• Research Areas

    • Explainable Deep Learning
    • Nanophotonic Neural Networks

     

  •  

    Publications

    • , , , , , , , , , , , , and . . “Probabilistic photonic computing with chaotic light.Nature Communications, 15 (1): 1044510445. doi: 10.1038/s41467-024-54931-6.
    • , , , , and . . “Learning Proposal Distributions in Simulated Annealing via Template Networks: A Case Study in Nanophotonic Inverse Design.” in Pattern Recognition, Vol.27 of 27th International Conference ICPR 2024, edited by Apostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya and Umapada Pal. Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-031-78186-5_13.
    • , , and . . “Critical nonlinear aspects of hopping transport for reconfigurable logic in disordered dopant networks.Physical Review Applied, 22 (2) doi: 10.1103/PhysRevApplied.22.024063.
    • , , , , and . . “Accelerating Finite-Difference Frequency-Domain Simulations for Inverse Design Problems in Nanophotonics using Deep Learning.Journal of the Optical Society of America B, 41 (4): 10391046. doi: 10.1364/JOSAB.506159.

    • , , , , , , and . . “Coherent dimension reduction with integrated photonic circuits exploiting tailored disorder.Journal of the Optical Society of America B, 40 (3): B35B40.
    • , , , , and . . “A Universal Approach to Nanophotonic Inverse Design through Reinforcement Learning.” in CLEO 2023, paper STh4G.3, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/CLEO_SI.2023.STh4G.3.
    • , , , , and . . “A Novel Approach to Nanophotonic Black-Box Optimization Through Reinforcement Learning.” in Q 30 Nano-optics, edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , , , and . . “Adaptive Photo-Chemical Nonlinearities for Optical Neural Networks.Advanced Intelligent Systems, ‎ 5 (12) 2300229. doi: 10.1002/aisy.202300229 .
    • , , , , , , , , , , , and . . “Event-driven adaptive optical neural network.Science advances, 9 (42): eadi9127. doi: 10.1126/sciadv.adi9127.
    • , , , , and . “Utilizing a tablet-based artificial intelligence system to assess movement disorders in a prospective study.Scientific Reports, 13 (1) doi: 10.1038/s41598-023-37388-3.
    • , , , , , and . . “Activation Functions in Non-Negative Neural Networks.” contributed to the Machine Learning and the Physical Sciences Workshop, NeurIPS, New Orleans
    • , , , , , and . . “Adaptive Photochemical Nonlinearities for Optical Neural Networks.Advanced Intelligent Systems, 5 (12) doi: 10.1002/aisy.202300229.
    • , , , , and . . “Combinatorial Optimization via Memory Metropolis: Template Networks for Proposal Distributions in Simulated Annealing applied to Nanophotonic Inverse Design.” contributed to the Neural Information Processing Systems (NeurIPS) Workshop on AI for Accelerated Materials Design (AI4Mat-2023), New Orleans

    • , , , , and . . “Development of a nanophotonic nonlinear unit for optical artificial neural networks.” contributed to the DPG Springmeeting 2022, Erlangen
    • , , , , and . . “Inverse Design of Nanophotonic Devices based on Reinforcement Learning.” in Q 38 Photonics II, edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , , , , , , and . “Hopping-transport mechanism for reconfigurable logic in disordered dopant networks.Physical Review Applied, 17 (6): 064025. doi: 10.1103/PhysRevApplied.17.064025.

    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology.Journal of Membrane Biology, 251 (5): 609631.