Publikationen
- . ‘Temperature-controlled Se-S isotope fractionation during seawater mixing and sulfide precipitation in black smoker chimneys. .’ Geochimica et Cosmochimica Acta 372: 13–27.
- . ‘Pyrite trace element proxies for magmatic volatile influx in submarine subduction-related hydrothermal systems. .’ Geochimica et Cosmochimica Acta 373: 52–67.
- 10.1007/s00126-024-01273-4. . ‘Insights into fluid evolution and Re enrichment by mineral microanalysis and fluid inclusion constraints: Evidence from the Maronia Cu-Mo ± Re ± Au porphyry system in NE Greece. .’ Mineralium Deposita 59. doi:
- . ‘Methanogenic archaea as catalysts for magnetite formation in iron-rich marine sediments. .’ Journal of Geophysical Research - Solid Earth 129: e2023JB028312.
- 10.1016/j.precamres.2024.107526. . ‘The basal Cambrian carbon isotope excursion revealed in the Central Iberian Zone, Spain. .’ Precambrian Research 411: 107526. doi:
- . ‘Magmatic and hydrothermal evolution of the Skouries Au-Cu porphyry deposit, northern Greece. .’ Ore Geology Reviews 173: 106233.
- . ‘The Yadovitaya fumarole, Tolbachik volcano: a comprehensive mineralogical and geochemical study and driving factors of mineral diversity.’ Chemie der Erde / Geochemistry 84: 126179.
- 10.1080/10256016.2024.2410293. . ‘Microscale δ34S and δ18O heterogeneities in igneous rock hosted barite reveal variations between sulfur reducing and oxidizing microbes.’ Isotopes in Environmental and Health Studies . doi:
- . ‘The effects of early diagenesis in various marine environments on the stable isotope records of environmental conditions and biogeochemical processes. .’ Frontiers in Marine Science 10: 1161577.
- . ‘Multi-isotope fingerprints of recent environmental samples from the Baltic coast and their implications for bioarchaeological studies.’ Science of the Total Environment 874: 162513.
- . ‘Seawater sulphate heritage governed early Late Miocene methane consumption in the long-lived Lake Pannon. .’ Communications Earth & Environment 4: 207.
- . ‘Sulfur isotope evidence from peridotite enclaves in southern West Greenland for recycling of surface material into Eoarchean depleted mantle domains.’ Chemical Geology 633: 121568.
- . ‘Experimental evidence for the hydrothermal formation of native sulfur by synproportionation.’ Frontiers in Earth Sciences 11: 1132794.
- . ‘The relationship between bacterial sulfur cycling and Ca/Mg carbonate precipitation – Old tales and new insights from Lagoa Vermelha and Brejo do Espinho, Brazil. .’ Geosciences 13: 229.
- . ‘Does Microbial and Faunal Pattern Correspond to Dynamics in Hydrogeology and Hydrochemistry? Comparative Study of Two Isolated Groundwater Ecosystems in Münsterland, Germany. .’ Geosciences 13: 140.
- . ‘Radiaxial fibrous calcite forms via early marine-diagenetic alteration of micritic Mg calcite. .’ Sedimentology 70: 434–450.
- 10.1007/s00767-022-00525-2. [submitted / under review] . „Die Baumberge als isolierte Grundwasser-Ökosysteme und bedeutende Quellenregion im zentralen Münsterland.“ Grundwasser 2022, Nr. 27: 277–293. doi:
- 10.1016/j.gca.2022.01.004. . ‘Sulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge.’ Geochimica et Cosmochimica Acta 320: 179–206. doi:
- 10.1038/s41561-022-00902-9.. . ‘Emergence of felsic crust and subaerial weathering recorded in Paleoarchean barite.’ Nature Geoscience 15: 227–232. doi:
- 10.1029/2021GC010259. . ‘Spatial variations in magmatic volatile influx and fluid boiling in submarine hydrothermal systems: Insights from sulfide chemistry at Niuatahi caldera, Tonga rear-arc.’ Geochemistry, Geophysics, Geosystems 23: e2021GC010259. doi:
- 10.3389/feart.2022.862333. . ‘Sulfur and oxygen isotope records of sulfate-driven anaerobic oxidation of methane in diffusion-dominated marine sediments.’ Frontiers in Earth Sciences 10: 862333. doi:
- 10.3389/fmars.2022.765648. . ‘Geochemistry of hydrothermal fluids from the E2-segment of the East Scotia Ridge: Magmatic water input, reaction zone processes, fluid mixing regimes and bioenergetic landscapes.’ Frontiers in Marine Science 9: 765648. doi:
- 10.1016/j.chemgeo.2022.120927. . ‘Sulfur formation associated with coexisting sulfide minerals in the Kemp Caldera hydrothermal system, Scotia Sea.’ Chemical Geology 606: 120927. doi:
- 10.1002/mbo3.1287. . ‘Seasonal phytoplankton and geochemical shifts in the subsurface chlorophyll maximum layer of a dimictic ferruginous lake.’ Microbiology Open 11: e1287. doi:
- 10.1016/j.coal.2022.103958. . ‘Climatic and environmental conditions during the Pleistocene in the Central Quaidam Basin, NE Tibetan Plateau: Evidence from GDGTs, stable isotopes and major and trace elements in the Qigequan Formation.’ International Journal of Coal Geology 254: 103958. doi:
- . ‘Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain.’ Geosciences 12: 381.
- . ‘Identification and quantification of the sea spray effect on isotopic systems in α-cellulose (δ13C, δ18O), total sulfur (δ34S), and 87Sr/86Sr of European beach grass (Ammophila arenaria, L.) in a greenhouse experiment. .’ Science of the Total Environment 856: 158840.
- . ‘Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments. .’ Geochimica et Cosmochimica Acta 333: 75–94.
- 10.3389/feart.2021.641654. . ‘Trace element signatures in pyrite and marcasite from shallow marine island arc-related hydrothermal vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece.’ Frontiers in Earth Sciences . doi:
- 10.1016/j.marpetgeo.2021.105020. . ‘Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China Sea.’ Marine and Petroleum Geology 128. doi:
- 10.1016/j.marpetgeo.2020.104819. . ‘Peculiar Berriasian “Wealden” Shales of the western Lower Saxony Basin, Germany: Organic facies, depositional environment, thermal maturity and kinetics of petroleum generation.’ Marine and Petroleum Geology 124. doi:
- 10.1130/G48069.1. . ‘A novel authigenic magnetite source for sedimentary magnetizations.’ Geology 49: 360–365. doi:
- . ‘SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin.’ Chemical Geology 586: 120586.
- 10.3389/feart.2021.776925. . ‘Trace element and isotope systematics in vent fluids and sulphides from Maka volcano, North Eastern Lau Spreading Centre: Insights into three-component fluid mixing.’ Frontiers in Earth Sciences 9: 776925. doi:
- . ‘Coastal seawater geochemistry of a modern arid 'epeiric´ sea: spatial variability and effects of organic decomposition.’ Geochimica et Cosmochimica Acta 314: 159–177.
- . ‘Sulfur isotope evidence for surface-derived sulfur in Eoarchean TTGs.’ Earth and Planetary Science Letters 576: 117218.
- 10.1002/dep2.133. . ‘Microbial activity affects sulphur in biogenic aragonite.’ The Depositional Record 7: 500–519. doi:
- 10.1111/sed.12939. . ‘Constraints on the preservation of proxy data in carbonate archives – lessons from a marine limestone-to-marble transect, Latemar, Italy.’ Sedimentology 2021. doi:
- . ‘Assessing the robustness of carbonate-associated sulfate during hydrothermal dolomitization of the Latemar platform, Italy.’ Terra Nova 33: 621–629.
- . ‘Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow-marine hydrothermal systems: Evidence from Milos Island, Greece.’ Chemical Geology 583: 120457.
- 10.1016/j.gca.2021.07.020. . ‘Intense biogeochemical iron cycling revealed in Neoarchean micropyrites from stromatolites.’ Geochimica et Cosmochimica Acta 312: 299–320. doi:
- . ‘Effect of fluid boiling on volatile element and Au enrichment in submarine hydrothermal sulphides, Niua South, Tonga arc.’ Geochimica et Cosmochimica Acta 307: 105–132.
- . ‘Trace element fractionation and precipitation in submarine back-arc hydrothermal systems, Nifonea caldera, New Hebrides subduction zone.’ Ore Geology Reviews 135: 104211.
- . ‘Molybdenum isotope composition of seep carbonates – Constraints on sediment biogeochemistry in seepage environments.’ Geochimica et Cosmochimca Acta 307: 56–71.
- 10.1016/j.chemgeo.2020.119501. . ‘Structure, kinematics and composition of fluid-controlled brittle faults and veins in Lower Cretaceous claystones (Lower Saxony Basin, Northern Germany): Constraints from petrographic studies, microfabrics, stable isotopes and biomarker analyses.’ Chemical Geology 540. doi:
- 10.1016/j.chemgeo.2020.119495. . ‘Sub-seafloor sulfur cycling in a low-temperature barite field: A multi-proxy study from the Arctic Loki’s Castle vent field.’ Chemical Geology 539. doi:
- 10.1016/j.chemgeo.2019.119325. . ‘Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite, Cyprus.’ Chemical Geology 531. doi:
- . ‘Origins of kimberlites and associated carbonatites during continental collision – perspectives from the Kaapvaal craton.’ Earth Science Reviews 208: 103287.
- 10.1016/j.jhydrol.2020.125037. . ‘Contamination characteristic and multiple stable isotope fractionation in hydrology: a case of tap water from rural Beijing.’ Journal of Hydrology 588: 125037. doi:
- 10.1016/j.precamres.2020.105767. . ‘Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments.’ Precambrian Research 344: 105767. doi:
- 10.1016/j.oregeorev.2020.103527. . ‘Heterogeneous lead isotopic compositions of sulfide minerals from a hydrothermal replacement deposit (Janggun mine, South Korea).’ Ore Geology Reviews 122: 103527. doi:
- 10.1002/dep2.133. . ‘Microbial activity affects sulphur in biogenic aragonite.’ The Depositional Record . doi:
- 10.1021/acs.analchem.0c03253. . ‘Simultaneous compound-specific analysis of δ33S and δ34S in organic compounds by GC-MC-ICPMS using medium and low mass resolution mode.’ Analytical Chemistry 92: 14685–14692. doi:
- 10.1029/2019GC008525. . ‘Origin of High Mg and SO4 Fluids in Sediments of the Terceira Rift, Azores‐Indications for Caminite Dissolution in a Waning Hydrothermal System.’ Geochemistry, Geophysics, Geosystems 20: 6078–6094. doi:
- 10.1016/j.chemgeo.2019.119289Get. . ‘Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc.’ Chemical Geology 528. doi:
- 10.1016/j.margeo.2019.105986. . ‘Deep Sulfate-Methane-Transition and sediment diagenesis in the Gulf of Alaska (IODP Site U1417).’ Marine Geology 417. doi:
- . ‘Heterogeneity of free and occluded bitumen in a natural maturity sequence from Oligocene Lake Enspel.’ Geochimica et Cosmochimica Acta 245: 240–265.
- . ‘Silver-rich sulfide mineralization in the northwestern termination of the Western Cycladic Detachment System, at Mt. Hymittos (Attica, Greece): a mineralogical, geochemical and stable isotope study.’ Ore Geology Reviews 111.
- . ‘Mineralization and alteration of a modern bimodal-mafic volcaniclastic-hosted massive sulfide deposit.’ Economic Geology 114: 857–896.
- . ‘Intra-formational fluid flow in the Thuringian Syncline (Germany) - evidence from stable isotope data in vein mineralization of Late Permian and Mesozoic sediments.’ Chemical Geology 523: 133–153.
- . ‘Contamination patterns in river water from rural Beijing: a hydrochemical and multiple stable isotope study.’ Science of the Total Environment 654: 226–236.
- . ‘Deep-seated fault-related volcanogenic H2S as the key agent of high sinkhole concentration areas.’ Earth Surface Processes and Landforms .
- . ‘Distribution of platinum-group elements in pristine and near-surface oxidized Platreef ore and the variation along strike, northern Bushveld Complex, South Africa.’ Mineralium Deposita .
- . ‘Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China.’ Science of the Total Environment 637-638: 1035-1045.
- 10.1016/j.dsr2.2018.03.006. . ‘Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome.’ Deep Sea-Research Part II 153: 36–47. doi:
- . ‘Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment.’ Marine Geology 403: 271–284.
- . ‘Testing models of pre-GOE environmental oxidation: a Paleoproterozoic marine signal in platform dolomites of the Tongwane Formation (South Africa).’ Precambrian Research 313: 205–220.
- 10.1016/j.dsr2.2017.11.014. . ‘Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin).’ Deep-Sea Research Part II 153: 79–91. doi:
- . ‘Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation.’ Earth and Planetry Science Letters 489: 1–7.
- . ‘Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica.’ Chemical Geology 482: 72–90.
- . ‘Anaerobic microbial activity affects earliest diagenetic pathways of bivalve shells.’ Sedimentology 65: 1390–1411.
- . ‘Tracking water-rock interaction at the Atlantis Massif (MAR, 30°N) using sulfur geochemistry.’ Geochemistry, Geophysics, Geosystems 19: 5461–5483.
- . ‘Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea.’ Journal of Asian Earth Sciences 168: 112–124.
- . ‘Multiple sulfur isotopes (δ34S, D33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan.’ Organic Geochemistry 125: 29–40.
- . ‘Preparation of authigenic pyrite from methane-bearing sediments for in-situ sulfur isotope analysis using SIMS.’ Journal of Visualized Experiments 126: e55970.
- . ‘A multiple sulfur isotope study through the volcanic section of the Troodos ophiolite.’ Chemical Geology 468: 49–62.
- . ‘Diagenesis of carbonate associated sulfate.’ Chemical Geology 463: 61–75.
- . . ‘Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece.’ Lithos 282-283: 281-297. doi: 10.1016/j.lithos.2017.02.019.
- 10.1016/j.palaeo.2017.02.025. . ‘Volatile Early Triassic sulfur cycle: A consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate?’ Palaeogeography Palaeoclimatology Palaeoecology 486: 74–85. doi:
- 10.1016/j.chemgeo.2017.02.017. . ‘Sulfur diagenesis under rapid accumulation of organic-rich sediments in a marine mangrove from Guadeloupe (French West Indies).’ Chemical Geology 454: 67–79. doi:
- 10.1016/j.chemgeo.2016.08.019. . ‘Plates or plumes in the origin of kimberlites: insights from U/Pb age and Sr-Nd-Hf-Os isotopes analyses, Renard and Wemindji clusters, Superior Craton, Canada.’ Chemical Geology 2017, Nr. 455: 57–83. doi:
- . ‘The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea.’ Chemical Geology 449: 15–29.
- . ‘Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea.’ Geochimica et Cosmochimica Acta 211: 153–173.
- . ‘Multiple sulfur isotopes (δ34S, Δ33S), carbon isotopes (δ13Corg) and trace elements (Mo, U, V) reveal changing palaeoenvironments in the Chokier Formation, Belgium, Upper Carboniferous.’ Chemical Geology 441: 47–62.
- . ‘Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland).’ Precambrian Research 283: 1–12.
- . ‘How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea.’ Chemical Geology 440: 26–41.
- 10.1016/j.envpol.2016.06.038. . ‘Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: Implication from water-soluble ions and sulfur isotope.’ Environmental Pollution 218: 230–241. doi:
- . ‘Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.’ Scientific Reports 6.
- 10.1017/S1473550415000531. . ‘Sulphur Tales from the Early Archean World.’ International Journal of Astrobiology 15. doi:
- . ‘Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposits, Troodos ophilolite, Cyprus.’ Chemical Geology 423: 7–18.
- . ‘Eutrophication, microbial-sulfate reduction and mass extinctions.’ Communicative & Integrative Biology 9: 1–9.
- 10.1371/journal.pone.0147629. . ‘A rare glimpse of Paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies (3.4 Ga Strelley Pool Formation, Western Australia).’ PlosOne 2016. doi:
- . ‘Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry.’ Journal of Volcanology and Geothermal Research 304: 180–193.
- 10.1016/j.gexplo.2015.05.013. . ‘Geochemical and multiple stable isotope (N, O, S) investigation on tap and bottled water from Beijing, China.’ Journal of Geochemical Exploration 157: 36–51. doi:
- 10.1073/pnas.1503755112. . ‘Flourishing ocean drives the end-Permian marine mass-extinction.’ Proceedings of the National Academy of Sciences 112: 10298–10303. doi:
- . ‘The role of bacterial sulfate reduction during dolomite precipitation: implications from Upper Jurassic platform carbonates.’ Chemical Geology 412: 1–14.
- 10.1016/j.precamres.2015.06.008. . ‘Paleoarchean sulfur cycling: multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. .’ Precambrian Research 2015. doi:
- 10.1017/S0016756815000187. . ‘Questioning a widespread euxinia for the Furongian ( 1 Late Cambrian) SPICE event: Indications from δ13C, δ18O, δ34S, and from biostratigraphic constraints. .’ Geological Magazine 2015. doi:
- 10.1080/10256016.2015.1032961. . ‘Multiple sulfur and oxygen isotopes reveal microbial sulfur cycling in spring waters in the Lower Engadin, Switzerland.’ Isotopes in Environmental and Health Studies 2015: 1–19. doi:
- . ‘δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate.’ Earth & Planetary Science Letters 399: 44–51.
- . . ‘Modelling changes of the Paleogene Ca budget using benthic foraminifera.’ Contributed to the American Geophysical Union Fall Meeting, San Francisco, USA.
- . ‘Drilling shallow-water massive sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy.’ Economic Geology 109: 2129–2157.
- . ‘Airborne hydrocarbon contamination from laboratory atmospheres.’ Organic Geochemistry 76: 26–38.
- . ‘Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki’s Castle vent field.’ Geobiology 12: 308–321.
- . ‘Biosignatures in chimney structures and sediment from the Loki’s Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge.’ Extremophiles 18: 545–560.
- . ‘Reconstructing marine redox conditions for the transition between Cambrian Series 2 and Cambrian Series 3, Kaili area, Yangtze Platform: Evidence from biogenic sulfur and degree of pyritization.’ Palaeogeography Palaeoclimatology Palaeoecology 398: 144–153.
- . ‘Depositional environment and source-rock characterization of organic-matter rich Upper Santonian-Upper Campanian carbonates, northern Lebanon.’ Journal of Petroleum Geology 37: 5–24.
- . ‘Composition and origin of authigenic carbonates in the KrishnaeGodavari and Mahanadi Basins, eastern continental margin of India.’ Marine and Petroleum Geology 58: 438–460.
- . . ‘Calcium-ammonium exchange on standard clay minerals and natural marine sediments in seawater.’ Isotopes in Environmental and Health Studies 50. doi: 10.1080/10256016.2013.806505.
- 10.1016/j.palaeo.2013.10.001. (Ed.): . Tracing Phanerozoic hydrocarbon seepage from local basins to the global Earth system. Amsterdam: Elsevier. doi:
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project. , edited by , 1395–1405. . ‘Biomarkers and Isotopic Tracers. .’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project. , edited by , 1195–1273. . ‘Enhanced Accumulation of Organic Matter – The Shunga Event. .’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project. , edited by , 1169–1194. . ‘Abundant Marine Calcium Sulphates – Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle. .’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project. , edited by , 1049–1058. . ‘The End of Mass-Independent Fractionation of Sulphur Isotopes. .’
- . ‘High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran – Cambrian transition. .’ Precambrian Research 225: 209–217.
- . ‘Tracing the source of Beijing soil organic carbon: A carbon isotope approach. .’ Environmental Pollution 176: 208–214.
- . ‘Regional sulfate–hematite–sulfide zoning in the auriferous Mariana anticline, Quadrilátero Ferrífero of Minas Gerais, Brazil. .’ Mineralium Deposita 48: 805–816.
- . ‘Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): a biogenic methane regulation on mass independent fractionation of sulfur during the early Neoarchean? .’ Geochimica et Cosmochimica Acta 121: 120–138.
- . ‘Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis.’ Earth & Planetary Science Letters 366: 17–26.
- . ‘Linking geology, fluid chemistry and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.’ Geobiology 11: 340–355.
- 10.1016/j.dsr2.2013.09.008. . ‘Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments (Bowers Ridge, IODP Exp. 323 Site U1341).’ Deep Sea Research Part II: Topical Studies in Oceanography null, Nr. null. doi:
- 10.1016/j.gca.2012.09.041. . ‘Isotope fractionation during Ca exchange on clay minerals in a marine environment.’ Geochimica et Cosmochimica Acta 112, Nr. null: 374–388. doi:
- 10.1016/j.palaeo.2013.03.001. . ‘Glendonites from an Early Jurassic methane seep - Climate or methane indicators?’ Palaeogeography, Palaeoclimatology, Palaeoecology 390, Nr. null: 81–93. doi:
- . ‘Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. .’ Precambrian Research 192: 78–88.
- . ‘Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea. .’ Frontiers in Microbiology 3.
- . ‘Carbonate-associated sulfate: Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol.’ Chemical Geology 326-327: 132–144.
- . ‘A Profile of Multiple Sulfur Isotopes through the Oman Ophiolite. .’ Chemical Geology 312-313: 27–46.
- . ‘Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple sulfur isotopes. .’ Isotopes in Environmental and Health Studies 48: 166–179.
- . ‘Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga.’ Precambrian Research 192-195: 78–88.
- . ‘Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana.’ Geochimica et Cosmochimica Acta 85: 228–253.
- 10.1080/10256016.2012.648930. . ‘Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes.’ Isotopes in Environmental and Health Studies 48, Nr. 1: 166–179. doi:
- . . ‘Calcium isotope fractionation in ikaite and vaterite.’ Chemical Geology 285: 194–202. doi: 10.1016/j.chemgeo.2011.04.002.
- . ‘Driving forces behind the biotope structures in the diffuse venting low-temperature hydrothermal sites at 5°S and 9°S MAR. .’ Environmental Microbiology Reports 3: 727–737.
- . ‘Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil): Implications for the oxidation of the ocean and the atmosphere across the Archaean–Proterozoic transition. .’ Chemical Geology 289: 124–139.
- . ‘Strontium, carbon and oxygen isotope geochemistry of marbles from the Cycladic blueschist belt, Greece. .’ Geological Magazine 148: 511–528.
- . ‘Hydrothermalism in the Tyrrhenian Sea: inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data.’ Chemical Geology 280: 217–231.
- . ‘Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithosphere.’ Chemical Geology 280: 1–18.
- In STROMATOLITES: Interaction of Microbes with Sediments, edited by , 689–701. . ‘Sulfur isotopes and stromatolites. .’
- In Encyclopedia for Astrobiology, edited by , 183–187. . ‘Isotopic Biomarkers. .’
- 10.3389/fmicb.2011.00249. . ‘Anaerobic oxidation of methane at a marine methane seep in a forearc sediment basin off Sumatra, Indian Ocean.’ Frontiers in Microbiology 2, Nr. null: 1–16. doi:
- . . ‘Corrigendum to "A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China" [Palaeogeography, Palaeoclimatology, Palaeoecology 285 (2010) 143-151] (DOI:10.1016/j.palaeo.2009.11.005).’ Palaeogeography, Palaeoclimatology, Palaeoecology 288, Nr. 1-4: 118. doi: 10.1016/j.palaeo.2010.01.022.
- . . ‘Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany.’ Earth and Planetary Science Letters 290, Nr. 3-4: 391–402. doi: 10.1016/j.epsl.2009.12.034.
- . ‘Strontium, carbon and oxygen isotope geochemistry of marbles from the Cycladic blueschist belt, Greece. .’ Geological Magazine 148: 511–528.
- . . ‘Quantification of microbial communities in forearc sediment basins off Sumatra.’ Geomicrobiology Journal 27, Nr. 2: 170–182. doi: 10.1080/01490450903456798.
- 10.5194/bg-7-3123-2010. . ‘The enigmatic ichnofossil Tisoa siphonalis and widespread authigenic seep carbonate formation during the Late Pliensbachian in southern France.’ Biogeosciences 7, Nr. 10: 3123–3138. doi:
- . . ‘Sulfur isotope characteristics of metamorphosed Zn-Cu volcanogenic massive sulfides in the Areachap Group, Northern Cape Province, South Africa.’ Mineralium Deposita 45, Nr. 5: 481–496. doi: 10.1007/s00126-010-0285-8.
- . . ‘Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial.’ Geochimica et Cosmochimica Acta 74, Nr. 7: 2053–2071. doi: 10.1016/j.gca.2009.12.012.
- . . ‘Sulfur cycling at the Mid-Atlantic Ridge: A multiple sulfur isotope approach.’ Chemical Geology 269, Nr. 3-4: 180–196. doi: 10.1016/j.chemgeo.2009.09.016.
- . . ‘A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China.’ Palaeogeography, Palaeoclimatology, Palaeoecology 285, Nr. 3-4: 143–151. doi: 10.1016/j.palaeo.2009.11.005.
- . . ‘Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa.’ Precambrian Research 169, Nr. 1-4: 15–27. doi: 10.1016/j.precamres.2008.10.010.
- . . ‘Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5°S on the Mid-Atlantic Ridge.’ Environmental Microbiology 11, Nr. 10: 2526–2541. doi: 10.1111/j.1462-2920.2009.01978.x.
- . . ‘Controls on calcium isotope fractionation in sedimentary porewaters.’ Earth and Planetary Science Letters 279, Nr. 3-4: 373–382. doi: 10.1016/j.epsl.2009.01.011.
- In Encyclopedia of Paleoclimatology and Ancient Environments, edited by , 926–929. . ‘Sulfur Isotopes.’
- In Sediment-hosted gas hydrates: New insights on natural and synthetic systems, edited by , 11–19. doi: 10.1144/SP319.2. . ‘Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311.’
- . . ‘Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge.’ Environmental Microbiology 11, Nr. 10: 2526. doi: 10.1111/j.1462-2920.2009.01978.x.
- . . ‘Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition.’ Geology 37, Nr. 5: 399–402. doi: 10.1130/G25423A.1.
- . . ‘Petroleum surface oil seeps from a Palaeoproterozoic petrified giant oilfield.’ Terra Nova 21, Nr. 2: 119–126. doi: 10.1111/j.1365-3121.2009.00864.x.
- . . Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. doi: 10.1016/j.precamres.2008.10.010.
- . . ‘Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments.’ Chemical Geology 253, Nr. 1-2: 30–37. doi: 10.1016/j.chemgeo.2008.03.014.
- . . ‘Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany.’ International Journal of Earth Sciences : 1–18.
- . . ‘Erratum: Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa (Terra Nova (115-117)).’ Terra Nova 20, Nr. 3: 252.
- . . ‘Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system.’ Chemical Geology 255, Nr. 1-2: 60–67. doi: 10.1016/j.chemgeo.2008.06.005.
- . . ‘Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge.’ Geology 36, Nr. 8: 615–618. doi: 10.1130/G24726A.1.
- . . ‘Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa.’ Terra Nova 20, Nr. 2: 108–117. doi: 10.1111/j.1365-3121.2008.00795.x.
- . . ‘Rivers of North-Rhine Westphalia revisited: Tracing changes in river chemistry.’ Applied Geochemistry 23, Nr. 12: 3290–3304. doi: 10.1016/j.apgeochem.2008.06.030.
- . . ‘Data report: Bulk mineralogical composition of Cascadia Margin sediments.’ In Proceedings of the Integrated Ocean Drilling Program, edited by , 1–14. Washington DC. doi: 10.2204/iodp.proc.311.201.2008.
- . . ‘Ferruginous conditions dominated later neoproterozoic deep-water chemistry.’ Science 321, Nr. 5891: 949–952. doi: 10.1126/science.1154499.
- . . ‘Barite-bearing cap dolostones of the Taoudéni Basin, northwest Africa: Sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation.’ Precambrian Research 153, Nr. 3-4: 209–235. doi: 10.1016/j.precamres.2006.11.011.
- . . ‘Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 140–157. doi: 10.1016/j.palaeo.2007.03.014.
- . . ‘Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina.’ Chemical Geology 237, Nr. 1-2: 127–146.
- . . ‘From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 1–6. doi: 10.1016/j.palaeo.2007.03.026.
- . . ‘Geochemistry of bedded barite of the Mesoproterozoic Aggeneys-Gamsberg Broken Hill-type district, South Africa.’ Mineralium Deposita 42, Nr. 5: 537–549. doi: 10.1007/s00126-007-0128-4.
- . . ‘Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S).’ Environmental Microbiology 9, Nr. 5: 1186–1201. doi: 10.1111/j.1462-2920.2007.01241.x.
- . . ‘Modeling the carbon and sulfur isotope compositions of marine sediments: Climate evolution during the Devonian.’ Chemical Geology 246, Nr. 1-2: 19–38. doi: 10.1016/j.chemgeo.2007.08.014.
- . . ‘Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 175–193. doi: 10.1016/j.palaeo.2007.03.015.
- . . ‘The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge.’ FEMS Microbiology Ecology 61, Nr. 1: 97–109. doi: 10.1111/j.1574-6941.2007.00325.x.
- . . ‘Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 194–216. doi: 10.1016/j.palaeo.2007.03.016.
- . . ‘Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge.’ Geochemistry, Geophysics, Geosystems 8, Nr. 11. doi: 10.1029/2006GC001509.
- . . ‘Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.’ Nature 449, Nr. 7163: 706–709. doi: 10.1038/nature06202.
- . . Quantification of sulphur cycling at the Mid-Atlantic Ridge.
- . . ‘The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge.’ FEMS Microbiology Ecology 61, Nr. 1: 97–109. doi: 10.1111/j.1574-6941.2007.00325.x.
- . . ‘Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S).’ Environmental Microbiology 9, Nr. 5: 1186. doi: 10.1111/j.1462-2920.2007.01241.x.
- . . ‘A major sulphur isotope event at c. 510 Ma: A possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition?’ Terra Nova 18, Nr. 4: 257–263.
- . . ‘Insights from stable S and O isotopes into biogeochemical processes and genesis of Lower Cambrian barite-pyrite concretions of South China.’ Organic Geochemistry 37, Nr. 10: 1278–1288. doi: 10.1016/j.orggeochem.2006.04.013.
- . . ‘Reconstructing the evolution of the latest Pennsylvanian-earliest Permian Lake Odernheim based on stable isotope geochemistry and palynofacies: A case study from the Saar-Nahe Basin, Germany.’ Palaeogeography, Palaeoclimatology, Palaeoecology 240, Nr. 1-2: 204–224. doi: 10.1016/j.palaeo.2006.03.049.
- . . ‘Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic-early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle.’ Precambrian Research 149, Nr. 3-4: 217–230. doi: 10.1016/j.precamres.2006.06.008.
- . . ‘The chemostratigraphy of a Paleoproterozoic MnF-BIF succession - The Voëlwater Subgroup of the Transvaal Supergroup in Griqualand West, South Africa.’ South African Journal of Geology 109, Nr. 1-2: 63–80. doi: 10.2113/gssajg.109.1-2.63.
- . . ‘Data Report: Composition of authigenic carbonates in sediments of the Cascadia Accretionary Prism, ODP Leg 204.’ In Proceedings of the Ocean Drilling Program, Scientific Results, edited by , Available from World Wide Web: http://www–odp.tamu.edu/publications/204_SR/116/116.htm. [Cited 2006–01–19]. College Station, TX.
- 10.2204/iodp.sd.3.04.2006. . ‘Stages of gas-hydrate evolution on the Northern Cascadia margin.’ Scientific Drilling 1, Nr. 3: 18–24. doi:
- . ‘Gas hydrate transect across northern Cascadia margin.’ Eos, Transactions American Geophysical Union 87, Nr. 33: 329–330.
- . . ‘The land plant delta C-13 record and plant evolution in the Late Palaeozoic.’ Palaeogeography, Palaeoclimatology, Palaeoecology 240, Nr. 1-2: 237–252. doi: 10.1016/j.palaeo.2006.03.051.
- . . ‘Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments.’ Geology 33, Nr. 3: 213–216. doi: 10.1130/G21317.1.
- . . ‘Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China.’ Geological Magazine 142, Nr. 6: 723–733. doi: 10.1017/S0016756805001202.
- . . ‘Carbon isotopic bio-geochemical study on the section of Doushantuo Formation in Weng'an, Guizhou Province.’ Kuangwu Yanshi 25, Nr. 2: 75–80.
- . . ‘Emergence of the aerobic biosphere during the Archean-Proterozoic transition: Challenges of future research.’ GSA Today 15, Nr. 11: 4–11. doi: 10.1130/1052-5173(2005)015[4:EOAABD]2.0.CO;2.
- . . ‘Stable isotopes, life, and early earth history: A special issue of Precambrian Research in honor of Manfred Schidlowski.’ Precambrian Research 137, Nr. 3-4: 115–117. doi: 10.1016/j.precamres.2005.03.001.
- . . ‘Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution.’ Precambrian Research 137, Nr. 3-4: 223–241. doi: 10.1016/j.precamres.2005.03.003.
- . . ‘Active microbial sulfur disproportionation in the Mesoproterozoic.’ Science 310, Nr. 5753: 1477–1479. doi: 10.1126/science.1117824.
- . . ‘Calcium isotope fractionation in calcite and aragonite.’ Geochimica et Cosmochimica Acta 69, Nr. 18: 4485–4494. doi: 10.1016/j.gca.2005.06.003.
- . . ‘Chemoherms on Hydrate Ridge - Unique microbially-mediated carbonate build-ups growing into the water column.’ Palaeogeography, Palaeoclimatology, Palaeoecology 227, Nr. 1-3: 67–85. doi: 10.1016/j.palaeo.2005.04.029.
- . . ‘Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry.’ Earth and Planetary Science Letters 239, Nr. 1-2: 106–121. doi: 10.1016/j.epsl.2005.08.002.
- . . ‘Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran.’ International Journal of Earth Sciences 93, Nr. 4: 565–581.
- . . ‘4 Ga of seawater evolution: evidence from the sulfur isotopic composition of sulfate.’ In Sulfur Biogeochemistry: past and present, edited by , 195–205. Boulder, CO: Geological Society of America.
- . . ‘Relationship of pore water freshening to accretionary processes in the Cascadia margin: Fluid sources and gas hydrate abundance.’ Geophysical Research Letters 31, Nr. 22: doi:10.1029/2004GL021219. doi: 10.1029/2004GL021219.
- . . „Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204.“ Earth and Planetary Science Letters 222, Nr. 3-4: 845–862. doi: 10.1016/j.epsl.2004.03.035.
- . . ‘FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer.’ Microbial Ecology 47, Nr. 3: 236. doi: 10.1007/s00248-004-9952-6.
- . . ‘The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates.’ Chemical Geology 204, Nr. 3-4: 255–286. doi: 10.1016/j.chemgeo.2003.11.013.
- . . ‘Sulphur isotopes and the early Archaean sulphur cycle.’ Precambrian Research 126, Nr. 3-4: 349–361. doi: 10.1016/S0301-9268(03)00104-9.
- . . ‘The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter.’ Geochemistry, Geophysics, Geosystems 4, Nr. 10. doi: 10.1029/2003GC000555.
- . . ‘Unravelling chemostratigraphic signatures of sedimentation and diagenesis in Palaeoproterozoic iron and manganese formations.’ Applied Earth Science 112, Nr. 2 AUG: B159–B161.
- . . ‘U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations.’ Geochimica et Cosmochimica Acta 67, Nr. 20: 3845–3857. doi: 10.1016/S0016-7037(03)00128-5.
- . . ‘The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater - Evidence from the cyclic Hanseran evaporites, NW India.’ Chemical Geology 175, Nr. 1-2: 17–28. doi: 10.1016/S0009-2541(00)00361-2.
- . . ‘The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: Implications for coeval seawater, correlation with other geochemical cyles and isotope stratigraphy.’ Chemical Geology 175, Nr. 1-2: 149–173. doi: 10.1016/S0009-2541(00)00367-3.
- . . ‘Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala - Holy Cross Mountains/Poland).’ Chemical Geology 175, Nr. 1-2: 109–131. doi: 10.1016/S0009-2541(00)00365-X.
- . . ‘Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin.’ In Natural gas hydrates: Occurrence, distribution, and detection, edited by , 87–98. Washington, D.C.: American Geophysical Union.
- . . ‘The carbon isotopic composition of terrestrial organic matter from the Late Paleozoic. .’ Terra Nostra 4: 52–56.
- . . ‘Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.’ Microbial Ecology 42, Nr. 3: 238–247. doi: 10.1007/s00248-001-1014-8.
- . . ‘87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater.’ Chemical Geology 161, Nr. 1-3: 59–88. doi: 10.1016/S0009-2541(99)00081-9.
- . . ‘Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea.’ Marine Geology 158, Nr. 1-4: 1–13. doi: 10.1016/S0025-3227(98)00191-1.
- . . ‘Geological evolution from isotope proxy signals - Sulfur.’ Chemical Geology 161, Nr. 1: 89–101. doi: 10.1016/S0009-2541(99)00082-0.
- . . ‘Stable carbon and oxygen isotope geochemistry of the upper Visingsö Group (early Neoproterozoic), southern Sweden.’ Geological Magazine 136, Nr. 1: 63–73. doi: 10.1017/S0016756899002253.
- . . ‘Sulphur isotope compositions of sedimentary phosphorites from the basal Cambrian of China: Implications for Neoproterozoic-Cambrian biogeochemical cycling.’ Journal of the Geological Society 156, Nr. 5: 943–955. doi: 10.1144/gsjgs.156.5.0943.
- . . ‘The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma.’ Chemical Geology 161, Nr. 1-3: 103–125. doi: 10.1016/S0009-2541(99)00083-2.
- . . ‘The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein Basin, northern Germany.’ Geologische Rundschau 87, Nr. 2: 192–199. doi: 10.1007/s005310050201.
- . . ‘Carbon isotope geochemistry and palaeontology of Neoproterozoic to early Cambrian siliciclastic successions in the East European Platform, Poland.’ Geological Magazine 134, Nr. 1: 1–16. doi: 10.1017/S0016756897006602.
- . . ‘Isotope ratios of sulphur and carbon species from sediments and deep groundwaters of the Lower Rhine Inlet | Isotopenverhaltnisse der Schwefel- und Kohlenstoffspezies aus Sedimenten und tiefen Grundwassern der Niederrheinischen Bucht.’ Grundwasser 2, Nr. 3: 103–110. doi: 10.1007/s767-1997-8531-4.
- . . ‘Oxygen isotope evolution of Phanerozoic seawater.’ Palaeogeography, Palaeoclimatology, Palaeoecology 132, Nr. 1-4: 159–172. doi: 10.1016/S0031-0182(97)00052-7.
- . . ‘The isotopic composition of sedimentary sulfur through time.’ Palaeogeography, Palaeoclimatology, Palaeoecology 132, Nr. 1-4: 97–118. doi: 10.1016/S0031-0182(97)00067-9.
- . . ‘Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa.’ Precambrian Research 79, Nr. 1-2: 57–71. doi: 10.1016/0301-9268(95)00088-7.
- . . ‘Analysis of respiratory water--a new method for evaluation of myocardial energy metabolism.’ Journal of Applied Physiology 81, Nr. 5: 2115.
- . . ‘Proterozoic carbon cycle [3].’ Nature 362, Nr. 6416: 117–118. doi: 10.1038/362117b0.
- . . ‘Proterozoic carbon cycle [5].’ Nature 362, Nr. 6416: 118.
- . . ‘The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record.’ Precambrian Research 63, Nr. 3-4: 225–246. doi: 10.1016/0301-9268(93)90035-Z.
- . . ‘Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark.’ Geological Magazine 129, Nr. 2: 181–195. doi: 10.1017/S001675680000827X.
- . . ‘Stable isotope geochemistry and palynology of the late Precambrian to early Cambrian sequence in Newfoundland.’ Canadian journal of earth sciences 29, Nr. 8: 1662–1673. doi: 10.1139/e92-131.
- . . ‘Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment.’ Nature 359, Nr. 6396: 605. doi: 10.1038/359605a0.
- . . ‘Nature and nurture: Environmental isotope story of the river Rhine.’ Naturwissenschaften 78, Nr. 8: 337–346. doi: 10.1007/BF01131605.
- . . ‘A sulfur isotope study of pyrite genesis: The mid-proterozoic Newland formation, belt supergroup, Montana.’ Geochimica et Cosmochimica Acta 54, Nr. 1: 197–204. doi: 10.1016/0016-7037(90)90207-2.
- . . ‘Carbon and sulfur isotope data for carbonaceous metasediments from the Kidd Creek massive sulfide deposit and vicinity, Timmins, Ontario.’ Economic geology and the bulletin of the Society of Economic Geologists 84, Nr. 4: 959–962. doi: 10.2113/gsecongeo.84.4.959.
- . . ‘Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield.’ Geochimica et Cosmochimica Acta 50, Nr. 12: 2653–2662. doi: 10.1016/0016-7037(86)90216-4.