Idealtypischer Studienverlauf Bachelor of Science in Mathematik

  • Bachelor of Science Mathematik – PO 2020

    Möglicher Studienverlauf:

     
    Sem.         Summe LP
    1 Analysis I (M1)
    (9 LP)
    Lineare Algebra I (M2)
    (9 LP)
    Logische Grundlagen (M3)
    (3 LP)
    Nebenfach, Kompetenz­erweiterung
    (9 LP)
    30
    2 Analysis II (M1)
    (9 LP)
    Lineare Algebra II (M2)
    (9 LP)
    Programmierkurs (M3)
    (2 LP)
    Nebenfach, Kompetenz­erweiterung
    (10 LP)
    30
    3 Analysis III (M5)
    (9 LP)
    Stochastik (M6)
    (9 LP)
    Ergänzungen zur Analysis und LA,
    Repetitorium + mündliche Prüfung
    (M4)
    (7 LP)

    Nebenfach, Kompetenz­erweiterung
    (5 LP)
    30
    4 Einf. in die Algebra (M5)
    (9 LP)
    Analysis und Numerik von Differential­gleichungen *)
    (M6)
    (9 LP)
    Lange Vertiefung – Teil 1 (M8)
    (9 LP)
    Nebenfach, Kompetenz­erweiterung
    (3 LP)
    30
    5   Kurze Vertiefung (M7)
    (9 LP)
    Lange Vertiefung – Teil 2 (M8)
    (9 LP)
    Nebenfach, Kompetenz­erweiterung
    (12 LP)
    30
    6 Seminar (M9)
    (6 LP)
    Ringvorlesung (M9)
    (3 LP)
    Bachelorarbeit (M10)
    (12 LP)
    Nebenfach, Kompetenz­erweiterung
    (3 LP)
    30

    *) Die Veranstaltung "Analysis und Numerik von Differentialgleichungen" wird jedes Semester angeboten. Je nach gewähltem Nebenfach kann es daher sinnvoll sein, diese Veranstaltung bereits im 3. Fachsemester zu absolvieren.

    In den Modulen M1, M2, M5 und M6 wird jeweils nach jeder Vorlesung eine Klausur zu den in der Vorlesung behandelten Themen angeboten. Jede dieser Klausuren gilt als Modulprüfung für das entsprechende Modul. Wurde die Klausur zu einem der zwei Modulbestandteile bestanden, kann die Klausur des zweiten Modulbestandteils im Rahmen der maximal zur Verfügung stehenden Prüfungsversuche zur Notenverbesserung genutzt werden. Die Übungsaufgaben müssen allerdings für beide Modulbestandteile erfolgreich gerechnet werden. Weitere Informationen: s. hier.

    Im vierten und fünften Semester wählen Sie in der Regel Ihre Vertiefungsmodule. Hierbei handelt es sich um zwei Wahlpflichtmodule. Eines besteht aus einer Vorlesung mit Übungen (4+2 SWS) - je nach inhaltlicher Ausrichtung im Sommersemester oder im Wintersemester -, das andere aus zwei thematisch zusammenhängenden Vorlesungen und Übungen (à 4+2 SWS). Dieses Modul beginnt in der Regel im Sommersemester und wird im anschließenden Wintersemester fortgesetzt.

    Sie können dabei Veranstaltungen aus folgenden Bereichen wählen:

    • Differentialgeometrie
    • Topologie
    • Funktionalanalysis
    • Höhere Algebra
    • Logik
    • Partielle Differentialgleichungen
    • Numerik partieller Differentialgleichungen
    • Wahrscheinlichkeitstheorie und ihre Anwendungen

    Wird die kurze Vertiefung im Sommersemester (4. Fachsemester) gewählt, sollten die Veranstaltungen aus dem Kompetenzerweiterungsbereich als Ausgleich im folgenden Wintersemester (5. Fachsemester) belegt werden, um den Arbeitsaufwand insgesamt gleichmäßig zu verteilen.

    Das Modul "Selbstständiges Arbeiten" besteht aus einem Seminar (in der Regel aus dem Themengebiet einer Ihrer Vertiefungen) sowie einer Ringvorlesung, die in jedem Sommersemester angeboten wird.

    Falls Sie überlegen, in Münster einen Master of Science anzuschließen, sollten Sie sich Ihre Wahl genau überlegen, denn hiermit legen Sie im Prinzip auch ihre beiden Spezialisierungen im Masterstudiengang fest.

  • Bachelor of Science Mathematik – PO 2014

    Möglicher Studienverlauf:

     
    Sem.         Summe LP
    1 Analysis I (M1)
    (9 LP)
    Lineare Algebra I (M2)
    (9 LP)
    Logische Grundlagen (M3)
    (3 LP)
    Nebenfach
    (9 LP)
    30
    2 Analysis II (M1)
    (9 LP)
    Lineare Algebra II (M2)
    (9 LP)
    Programmierkurs (M3)
    (2 LP)
    Nebenfach
    (10 LP)
    30
    3 Analysis III (M5)
    (9 LP)
    Stochastik (M6)
    (9 LP)
    Numerische LA *)
    (M6)
    (9 LP)
    Ergänzungen zur Analysis und LA (M4)
    (3 LP)
    30
    4 Einf. in die Algebra (M5)
    (9 LP)
    Lange Vertiefung – Teil 1 (M8)
    (9 LP)
    Repetitorium + mündliche Prüfung (M4) **)
    (3 LP)
    Kompetenz­erweiterung
    (9 LP)
    30
    5 Kurze Vertiefung (M7)
    (10 LP)
    Lange Vertiefung – Teil 2 (M8)
    (9 LP)
      Nebenfach
    (11 LP)
    30
    6 Seminar (M9)
    (6 LP)
    Ringvorlesung (M9)
    (3 LP)
    Bachelorarbeit (M10)
    (12 LP)
    Kompetenz­erweiterung
    (9 LP)
    30

    *) Die Veranstaltung "Numerische LA" kann auch durch die Veranstaltung "Numerische Analysis" (Angebot im SoSe) ersetzt werden. In dem Fall würde man dann nur noch "Numerische LA" in den langen Vertiefungsmodulen der Numerik wählen können.

    **) Das Repetitorium wird in der Regel im Wintersemester angeboten, die mündlichen Prüfungen jedes Semester.

    In den Modulen M1, M2, M5 und M6 wird jeweils nach jeder Vorlesung eine Klausur zu den in der Vorlesung behandelten Themen angeboten. Jede dieser Klausuren gilt als Modulprüfung für das entsprechende Modul. Wurde die Klausur zu einem der zwei Modulbestandteile bestanden, kann die Klausur des zweiten Modulbestandteils im Rahmen der maximal zur Verfügung stehenden Prüfungsversuche zur Notenverbesserung genutzt werden. Die Übungsaufgaben müssen allerdings für beide Modulbestandteile erfolgreich gerechnet werden. Weitere Informationen: s. hier.

    Im vierten und fünften Semester wählen Sie in der Regel Ihre Vertiefungsmodule. Hierbei handelt es sich um zwei Wahlpflichtmodule. Eines besteht aus einer Vorlesung mit Übungen (4+2 SWS) - je nach inhaltlicher Ausrichtung im Sommersemester oder im Wintersemester -, das andere aus zwei thematisch zusammenhängenden Vorlesungen und Übungen (à 4+2 SWS). Dieses Modul beginnt in der Regel im Sommersemester und wird im anschließenden Wintersemester fortgesetzt.

    Sie können dabei Veranstaltungen aus folgenden Bereichen wählen:

    • Differentialgeometrie
    • Topologie
    • Funktionalanalysis
    • Höhere Algebra
    • Logik
    • Differentialgleichungen und Numerik
    • Differentialgleichungen und Modellierung
    • Numerik partieller Differentialgleichungen
    • Wahrscheinlichkeitstheorie und ihre Anwendungen

    Wird die kurze Vertiefung im Sommersemester (4. Fachsemester) gewählt, sollten die Veranstaltungen aus dem Kompetenzerweiterungsbereich als Ausgleich im folgenden Wintersemester (5. Fachsemester) belegt werden, um den Arbeitsaufwand insgesamt gleichmäßig zu verteilen.

    Das Modul "Selbstständiges Arbeiten" besteht aus einem Seminar (in der Regel aus dem Themengebiet einer Ihrer Vertiefungen) sowie einer Ringvorlesung, die in jedem Sommersemester angeboten wird.

    Falls Sie überlegen, in Münster einen Master of Science anzuschließen, sollten Sie sich Ihre Wahl genau überlegen, denn hiermit legen Sie im Prinzip auch ihre beiden Spezialisierungen im Masterstudiengang fest.