Mathematik und Informatik

Frau JProf. Dr. Theresa Simon, Angewandte Mathematik Münster: Institut für Analysis und Numerik

Member of Mathematics Münster
Investigator in Mathematics Münster
Field of expertise: Optimisation and calculus of variations

Research InterestsMicromagnetics and nonlocal isoperimetric problems
Multi-phase mean curvature flow
Dimension reduction in thin elastic bodies
Microstructures in shape memory alloys
Selected PublicationsBernand-Mantel, A.; Fondet, A; Barnova, S.; Simon, T.M.; Muratov C.B. Theory of magnetic field-stabilized compact skyrmions in thin film ferromagnets. Physical Review B Vol. 2023, 2023 online
Bernand-Mantel, A.; Muratov, C.B.; Simon, T.M. Unraveling the role of dipolar vs. Dzyaloshinskii-Moriya interaction in stabilizing compact magnetic skyrmions. Physical Review B Vol. 101 (4), 2020 online
Bernand-Mantel, A.; Muratov, C.B.; Simon, T.M. A quantitative description of skyrmions in ultrathin ferromagnetic films and rigidity of degree ±1 harmonic maps from from R² to S². Archive for Rational Mechanics and Analysis Vol. 239, 2021 online
Hensel, S.; Fischer, J.; Laux, T.; Simon, T.M. The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions. Journal of the European Mathematical Society online
Fischer, J.; Laux, T.; Simon, T.M. Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis Vol. 52 (6), 2020 online
Laux, T; Simon, T.M. Convergence of the Allen-Cahn equation to multi-phase mean curvature flow. Communications on Pure and Applied Mathematics Vol. 71 (8), 2018 online
Monteil, A; Muratov, C.B.; Simon, T.M.; Slastikov, V.V. Magnetic skyrmions under confinement. Communications in Mathematical Physics Vol. 404, 2023 online
Muratov, C.B.; Simon, T.M. A nonlocal isoperimetric problem with dipolar repulsion. Communications in Mathematical Physics Vol. 372, 2019 online
Rüland, A.; Simon, T.M. On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation. Journal of Elasticity Vol. 153, 2023 online
Simon, T.M. Rigidity of branching microstructures in shape memory alloys. Archive for Rational Mechanics and Analysis Vol. 241, 2021 online
Topics in
Mathematics Münster


T6: Singularities and PDEs
T9: Multi-scale processes and effective behaviour
Current TalksMagnetic skyrmions under confinement. Queer in Computational and Applied Mathematics, Providence, Rhode Island Link to event
Nonlocal isoperimetric problems. Queer in Math Day, Leipzig Link to event
The elastica functional as the critical Gamma-limit of the screened Gamow model. Modeling and Analysis in Nanomagnetism and beyond, Parma Link to event
Magnetic skyrmions in extremely thin films. Graduate seminar IntComSin, Regensburg
The elastica functional as the critical Gamma-limit of the screened Gamow model. Applied Analysis Seminar, Heidelberg
The elastica functional as the critical Gamma limit of a nonlocal isoperimetric problem. Partial Differential Equations and their Applications Seminar, University of Warwick
The elastica functional as the critical Gamma limit of a nonlocal isoperimetric problem. Current challenges in complex materials: modelling and analysis, HIM, Bonn Link to event
The elastica functional as the critical Gamma limit of a nonlocal isoperimetric problem. Oberseminar Analysis, Bonn
The elastica functional as the critical Gamma limit of a nonlocal isoperimetric problem. Isoperimetric Problems, Pisa Link to event
Current PublicationsFischer, J; Hensel, S; Laux, T; Simon, T.M. A weak-strong uniqueness principle for the Mullins-Sekerka equation. , 2024 online
Muratov, C.B.; Simon, T.M.; Slastikov, V.V. Existence of higher degree minimizers in the magnetic skyrmion problem. , 2024 online
Monteil, A; Muratov, C.B.; Simon, T.M.; Slastikov, V.V. Magnetic skyrmions under confinement. Communications in Mathematical Physics Vol. 404, 2023 online
Rüland, A.; Simon, T.M. On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation. Journal of Elasticity Vol. 153, 2023 online
Bernand-Mantel, A.; Fondet, A; Barnova, S.; Simon, T.M.; Muratov C.B. Theory of magnetic field-stabilized compact skyrmions in thin film ferromagnets. Physical Review B Vol. 2023, 2023 online
Fischer, J; Hensel, S; Laux, T; Simon, T.M. Local minimizers of the interface length functional based on a concept of local paired calibrations. , 2022 online
Muratov, C.B.; Simon, T.M. Correction to: A Nonlocal Isoperimetric Problem with Dipolar Repulsion. , 2022 online
Simon, T.M. Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via H-measures. SIAM Journal on Mathematical Analysis Vol. 53 (4), 2021 online
Simon, T.M. Rigidity of branching microstructures in shape memory alloys. Archive for Rational Mechanics and Analysis Vol. 241, 2021 online
Current ProjectsEXC 2044 - C1: Evolution and asymptotics In this unit, we will use generalisations of optimal transport metrics to develop gradient flow descriptions of (cross)-diffusion-reaction systems, rigorously analyse their pattern forming properties, and develop corresponding efficient numerical schemes. Related transport-type- and hyperbolic systems will be compared with respect to their pattern-forming behaviour, especially when mass is conserved. Bifurcations and the effects of noise perturbations will be explored.

Moreover, we aim to understand defect structures, their stability and their interactions. Examples are the evolution of fractures in brittle materials and of vortices in fluids. Our analysis will explore the underlying geometry of defect dynamics such as gradient descents or Hamiltonian structures. Also, we will further develop continuum mechanics and asymptotic descriptions for multiple bodies which deform, divide, move, and dynamically attach to each other in order to better describe the bio-mechanics of growing and dividing soft tissues.

Finally, we are interested in the asymptotic analysis of various random structures as the size or the dimension of the structure goes to infinity. More specifically, we shall consider random polytopes and random trees.For random polytopes we would like to compute the expected number of faces in all dimensions, the expected (intrinsic) volume, and absorption probabilities, as well as higher moments and limit distributions for these quantities. online
EXC 2044 - C4: Geometry-based modelling, approximation, and reduction In mathematical modelling and its application to the sciences, the notion of geometry enters in multiple related but different flavours: the geometry of the underlying space (in which e.g. data may be given), the geometry of patterns (as observed in experiments or solutions of corresponding mathematical models), or the geometry of domains (on which PDEs and their approximations act). We will develop analytical and numerical tools to understand, utilise and control geometry, also touching upon dynamically changing geometries and structural connections between different mathematical concepts, such as PDE solution manifolds, analysis of pattern formation, and geometry. online
E-Mailtheresa.simon@uni-muenster.de
Phone+49 251 83-35090
FAX+49 251 83-32729
Room130.019
Secretary   Sekretariat Claudia Giesbert
Frau Claudia Giesbert
Telefon +49 251 83-33792
Fax +49 251 83-32729
Zimmer 120.002
AddressFrau JProf. Dr. Theresa Simon
Angewandte Mathematik Münster: Institut für Analysis und Numerik
Fachbereich Mathematik und Informatik der Universität Münster
Orléans-Ring 10
48149 Münster
Diese Seite editieren