|
Claudia Giesbert

Nicola de Nitti (Universität Erlangen): Nonlocal regularizations of conservation laws

Wednesday, 11.05.2022 14:00 im Raum M5

Mathematik und Informatik

We present some recent results on the problem of approximating a scalar conservation law by a conservation law with nonlocal flux. As convolution kernel in the nonlocal flux, we consider an exponential-type approximation of the Dirac distribution. We prove that the (unique) weak solution of the nonlocal problem converges strongly in $C(L^1_{loc})$ to the entropy solution of the local conservation law. This talk is based on joint works with G. M. Coclite, J.-M. Coron, A. Keimer, and L. Pflug.



Angelegt am 10.02.2022 von Claudia Giesbert
Geändert am 12.04.2022 von Claudia Giesbert
[Edit | Vorlage]

Angewandte Mathematik Münster
Kolloquium der angewandten Mathematik