|
Claudia Lückert

Wilhelm Killing Kolloquium: Prof. Dr. Guido Kings (Universität Regensburg): Periods and L-functions

Thursday, 02.05.2024 14:15 im Raum M4

Mathematik und Informatik

Already Euler computed the values $\zeta(2), \zeta(4), \zeta(6),\ldots$ of the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}}$ to be \begin{equation*} \zeta(2k)=-\frac{(2\pi i)^{2k}}{2(2k!)}B_{2k} \end{equation*} where $B_{2k}\in \mathbb{Q}$ are the Bernoulli numbers. This formula can be seen as the easiest case of a vast conjecture by Deligne from 1977, which relates special values of $L$-functions of arithmetic varieties and their periods. In this talk we want to give a non-technical introduction to the Deligne conjecture, aimed at general mathematical audience. In the end we discuss very recent developments, which lead to a complete proof in the case of Hecke $L$-functions.



Anlagen
Kings Abstract-Muenster-02052024.pdf

Angelegt am 08.03.2024 von Claudia Lückert
Geändert am 18.04.2024 von Claudia Lückert
[Edit | Vorlage]

Kolloquium Wilhelm Killing
Vorträge des SFB 1442