Research Foci
- Evolution of immune systems
- Host-parasite coevolution
- Evolutionary ecology of parasites
CV
Academic Education
- Dr. rer. nat. (Biology, Zoology), University of Bonn
- Studies in Biology (Diplom), University of Cologne
- Studies in Biology (Vordiplom), University of Göttingen
Positions
- Visiting scientist, University of Padua, Italy
- Vice Dean for Structure and International Affairs, Faculty of Biology, University of Münster
- Fellow and Convenor, Institute of Advanced Study Berlin
- Professor W3 of Biology (Zoology), University of Münster
- Research associate, Institute for Integrative Biology, ETH Zürich, Switzerland
- Research associate, Max-Planck Institute for Limnology, Plön
- Visiting scientist; University of Sheffield, UK
- Cummunity service, Naturschutzstation Wesel
Honors
- Goldener Hans – Fachschaft Biologie der Universität Münster
- Fellowship of the Institute of Advanced Study 2006/2007 – Institute of Advanced Study
External Functions
- Speaker: DFG RTG 2220 'EvoPAD: Evolutionary Processes in Adaptation and Disease'
- Member of the Editorial Board 'Frontiers in Immunology'
- Speaker of the 'Münster Graduate School of Evolution' (MGSE)
- Member of the Editorial Board of 'Experimental Parasitology'
- Speaker of DFG SPP 1399 ‘Host-Parasite Coevolution’
- Member of the Faculty of 1000, Biology
- Member of the scientific council of the Max-Planck Society
Projects
In Process
- GEvol – SPP 2349: Genomic Basis of Evolutionary Innovations ( – )
Main DFG-Project Hosted at the University of Münster: DFG - Priority Programme - CRC TRR 212 C01 - The role of niche construction and evolutionary capacitance for evolvability in the Red Flour Beetle ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 212/2 - CRC TRR 212 C05 - Niche construction consequences of parasite virulence in eco-evolutionary dynamics ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 212/2 - SPP 2349 - Subproject: Evolution of epigenetic regulation in beetles (Coleoptera) ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Priority Programme | Project Number: KU 1929/9-1
Finished
- InChangE – Individualisierung in sich ändernden Umwelten ( – )
participations in other joint project: MKW - Förderlinie "Profilbildung" | Project Number: PROFILNRW-2020-143-B - RTG 2220 EvoPAD – RTG 2220: Evolutionary Processes in Adaptation and Disease ( – )
Main DFG-Project Hosted at the University of Münster: DFG - Research Training Group | Project Number: GRK 2220/1 - CRC TRR 212 C01 - The role of niche construction and evolutionary capacitance for evolvability in the Red Flour Beetle, Tribolium castaneum ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 212/1 - The Individual in the Focus of Life Sciences ( – )
Internally at the University of Münster Funded Project: Uni Münster-internal funding - Topical Programs - SPP 1819 - Subproject: The role of phenotypic plasticity for rapid evolutionary adaptation: theoretical and experimental approaches using Tribolium castaneum and Bacillus thuringiensis ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: KU 1929/8-1 - MGSE – Münster Graduate School of Evolution - Unterstützung des Evolution Think Tank ( – )
Individual Granted Project: Santander Consumer Bank AG - SPP 1399 - Work Package: Programme Coordination for the Priority Programme SPP 1399 on Host-Parasite Coevolution ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Priority Programme | Project Number: KU 1929/7-1 - SPP 1399 - Work Package: Coevulution between Tribolium Castaneum and Bacillus Thuringiensis: On the Evolutionary Significance of Genetic Specificity and Specific Immunity (2nd funding period) ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Priority Programme | Project Number: KU 1929/4-2 - SPP 1399: Host-Parasite Coevolution - Rapid Reciprocal Adaptation and its Genetic Basis ( – )
Main DFG-Project Hosted at the University of Münster: DFG - Priority Programme - Post doctoral project of Dr. Maike Diddens-de Buhr: "Transgenerational immunity – mechanisms and fitness consequences in an invertebrate, the red flour beetle Tribolium castaneum" ( – )
Individual Granted Project: VolkswagenStiftung | Project Number: I/84 794 - SPP 1399 - Work package: Coevulution between Tribolium castaneum and Bacillus thuringiensis: On the evolutionary significance of genetic specificity and specific immunity. ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Priority Programme | Project Number: KU 1929/4-1:1 - SPP 1399 - Work package: Host-Parasite Coevolution – Programme coordination and meta-analysis of Host-Parasite Coevolution ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Priority Programme | Project Number: KU 1929/5-1 - Post doctoral stipend of Dr. Sophie Armitage "Insect evolutionary immunology: the role of the Dscam gene in host-parasite coevolution" ( – )
Individual Granted Project: VolkswagenStiftung | Project Number: I/83 516 - Durchführung des 1. Statussymposiums der Initiative Evolutionsbiologie der Volkswagenstiftung ( – )
Scientific Event: VolkswagenStiftung | Project Number: I/84 252
- GEvol – SPP 2349: Genomic Basis of Evolutionary Innovations ( – )
Publications
- . . ‘Deciphering a Beetle Clock: Individual and Sex-Dependent Variation in Daily Activity Patterns.’ Journal of Biological Rhythms 00, № 00. doi: 10.1177/07487304241263619.
- . . ‘Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder.’ Translational Psychiatry 14, № 1. doi: 10.1038/s41398-024-02865-4.
- . . ‘Disentangling specific and unspecific components of innate immune memory in a copepod–tapeworm system.’ Frontiers in immunology 15. doi: 10.3389/fimmu.2024.1307477.
- ‘Individualisation and individualised science across disciplinary perspectives.’ European Journal for Philosophy of Science 14, № 41: 41. doi: 10.1007/s13194-024-00602-8. .
- . . ‘The combined effect of herbicide and Bacillus thuringiensis exposure delays development in the red flour beetle.’ Journal of Invertebrate Pathology 207. doi: 10.1016/j.jip.2024.108227. [unknown status]
- ‘Tapeworm infection affects sleep-like behaviour in three-spined sticklebacks.’ Scientific Reports 14: 23395. doi: 10.1038/s41598-024-73992-7. .
- . . ‘A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose.’ Scientific Reports 13. doi: 10.1038/s41598-022-24933-9.
- . . ‘Immune Stimulation via Wounding Alters Chemical Profiles of Adult Tribolium castaneum.’ Journal of Chemical Ecology 49, № 1-2: 46–58. doi: 10.1007/s10886-022-01395-x.
- . . ‘Rapid but narrow – Evolutionary adaptation and transcriptional response of Drosophila melanogaster to toxic mould.’ Molecular Ecology 32, № 11: 2784–2797. doi: 10.1111/mec.16885.
- . . ‘Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle.’ Biology Letters 19, № 11. doi: 10.1098/rsbl.2023.0322.
- . . ‘Herbicide exposure alters the effect of the entomopathogen Beauveria bassiana on immune gene expression in mealworm beetles.’ Environmental Pollution 338. doi: 10.1016/j.envpol.2023.122662.
- . . ‘Oral Immune Priming Treatment Alters Microbiome Composition in the Red Flour Beetle Tribolium castaneum.’ Frontiers in Microbiology 13: 793143. doi: 10.3389/fmicb.2022.793143.
- . . ‘How Individualized Niches Arise: Defining Mechanisms of Niche Construction, Niche Choice and Niche Conformance.’ BioScience 72, № 6: 538–548. doi: 10.1093/biosci/biac023.
- . . ‘Shifts between cooperation and antagonism driven by individual variation: a systematic synthesis review.’ Oikos 130. doi: 10.1111/oik.08201.
- . . ‘Paternal knockdown of tRNA(cytosine-5-)-methyltransferase (Dnmt2) increases offspring susceptibility to infection in red flour beetles.’ Insect Molecular Biology 31. doi: 10.1111/imb.12798.
- . . ‘How Individualized Niches Arise: Defining Mechanisms of Niche Construction, Niche Choice, and Niche Conformance.’ BioScience 72, № 6: 538–548. doi: 10.1093/biosci/biac023.
- . . ‘Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks.’ Scientific Reports 12, № 1. doi: 10.1038/s41598-022-15704-7.
- . . ‘Herbicide exposure alters the expression of antimicrobial peptide patterns in the mealworm beetle infected with the natural entomopathogen Beauveria bassiana.’ Contributed to the XXIst scientific meeting of the Italian Association of Developmental and Comparative Immunobiology (IADCI), Padua.
- . . ‘Paternal knockdown of tRNA (cytosine‐5‐)‐methyltransferase ( Dnmt2 ) increases offspring susceptibility to infection in red flour beetles.’ Insect Molecular Biology 31, № 6: 711–721. doi: 10.1111/imb.12798.
- . . ‘Serial passage in an insect host indicates genetic stability of the human probiotic Escherichia coli Nissle 1917.’ Evolution, Medicine and Public Health 10, № 1: 71–86.
- . . ‘Beyond standardization: Improving external validity and reproducibility in experimental evolution.’ BioScience biab008. doi: 10.1093/biosci/biab008.
- . . ‘Survival of the Sawfly Athalia rosae Upon Infection by an Entomopathogenic Fungus and in Relation to Clerodanoid Uptake.’ Frontiers in Physiology 12. doi: 10.3389/fphys.2021.637617.
- . . ‘Morphological characterisation of haemocytes in the mealworm beetle tenebrio molitor (Coleoptera, tenebrionidae).’ Insects 12, № 5. doi: 10.3390/insects12050423.
- . . ‘Parasite infection impairs the shoaling behaviour of uninfected shoal members under predator attack.’ Behavioral Ecology and Sociobiology 75, № 11. doi: 10.1007/s00265-021-03080-7.
- . . ‘Integrating evolutionary aspects into dual-use discussion: the cases of influenza virus and enterohemorrhagic Escherichia coli.’ Evolution, Medicine and Public Health 9, № 1: 383–392. doi: 10.1093/emph/eoab034.
- . . ‘Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes.’ Global Change Biology 26. doi: 10.1111/gcb.15402.
- . . ‘Parasite infection disrupts escape behaviours in fish shoals.’ Proceedings of the Royal Society B: Biological Sciences 287, № 1938. doi: 10.1098/rspb.2020.1158.
- . . ‘Dscam in immunity: A question of diversity in insects and crustaceans.’ Developmental and Comparative Immunology 105. doi: 10.1016/j.dci.2019.103539.
- . . ‘Comparative Mortality and Adaptation of a Smurf Assay in Two Species of Tenebrionid Beetles Exposed to Bacillus thuringiensis.’ Insects 11, № 4. doi: 10.3390/insects11040261.
- . . ‘A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance.’ Journal of Animal Ecology 88. doi: 10.1111/1365-2656.12953.
- . . ‘Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle Tribolium castaneum.’ Frontiers in Physiology 10, № 98. doi: 10.3389/fphys.2019.00098.
- . . ‘Consequences of divergent temperature optima in a host–parasite system.’ Oikos 128. doi: 10.1111/oik.05864.
- . . ‘In vitro effects of the neuroactive substances serotonin and γ-aminobutyric acid on leucocytes from sticklebacks (Gasterosteus aculeatus).’ Fish and Shellfish Immunology 87: 286–296. doi: 10.1016/j.fsi.2019.01.022.
- . . ‘Continuous Agrochemical Treatments in Agroecosystems Can Modify the Effects of Pendimethalin-Based Herbicide Exposure on Immunocompetence of a Beneficial Ground Beetle.’ DIVERSITY-BASEL 11, № 12. doi: 10.3390/d11120241.
- . . ‘Experimental evolution of immunological specificity.’ Proceedings of the National Academy of Sciences of the United States of America 116. doi: 10.1073/pnas.1904828116.
- . . ‘Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance.’ Journal of Evolutionary Biology 31, № 1: 159–171. doi: 10.1111/jeb.13211.
- . . ‘Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members.’ Proceedings of the Royal Society B: Biological Sciences 285, № 1881. doi: 10.1098/rspb.2018.0956.
- . . ‘Early stages of infection of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus.’ Journal of Fish Diseases 41, № 11: 1701–1708. doi: 10.1111/jfd.12876.
- . . ‘Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum.’ Scientific Reports 8. doi: 10.1038/s41598-018-34701-3.
- . . ‘Paternal knockdown of Dnmt2 increases offspring susceptibility to bacterial infection.’ bioRxiv 2018: 422063.
- . . ‘Dissecting the dynamics of trans-generational immune priming.’ Molecular Ecology 26, № 15: 3857–3859. doi: 10.1111/mec.14190.
- ‘Condition-dependence and sexual ornamentation: Effects of immune challenges on a highly sexually dimorphic grasshopper.’ Insect Science 25, № 4: 617–630. doi: 10.1111/1744-7917.12448. .
- . . ‘Dscam1 in pancrustacean immunity: Current status and a look to the future.’ Frontiers in immunology 8. doi: 10.3389/fimmu.2017.00662.
- ‘An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks.’ Experimental Parasitology 180, № SI: 119–132. doi: 10.1016/j.exppara.2017.03.004. .
- . . ‘Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association.’ Parasites & Vectors 10. doi: 10.1186/s13071-017-2192-7.
- ‘Specific manipulation or systemic impairment? Behavioural changes of three-spined sticklebacks (Gasterosteus aculeatus) infected with the tapeworm Schistocephalus solidus.’ Behavioral Ecology and Sociobiology 71, № 2. doi: 10.1007/s00265-017-2265-9. .
- . . ‘Effects of an anthropogenic saltwater inlet on three-spined stickleback (Gasterosteus aculeatus) (Teleostei: Gasterosteidae) and their parasites in an inland brook.’ European Zoological Journal 84, № 1: 444–456. doi: 10.1080/24750263.2017.1356386.
- . . ‘Specificity of oral immune priming in the red flour beetle Tribolium castaneum.’ Biology Letters 13, № 12. doi: 10.1098/rsbl.2017.0632.
- . . ‘Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming.’ Frontiers in immunology 8. doi: 10.3389/fimmu.2017.01811.
- . . ‘The hologenome concept: we need to incorporate function.’ Theory in biosciences = Theorie in den Biowissenschaften 136, № 3-4: 89–98. doi: 10.1007/s12064-016-0240-z.
- . . ‘Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae.’ BMC Genomics 18, № 1: 329.
- . . ‘Microbiota plays a role in oral immune priming in Tribolium castaneum.’ Frontiers in Microbiology 6. doi: 10.3389/fmicb.2015.01383.
- . . ‘Host–parasite coevolution—Rapid reciprocal adaptation and its genetic basis.’ Zoology 119. doi: 10.1016/j.zool.2016.06.011.
- . . ‘Immune priming in arthropods: an update focusing on the red flour beetle.’ Zoology 119. doi: 10.1016/j.zool.2016.03.006.
- . . ‘Effects of environmental variation on host–parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus).’ Zoology 119. doi: 10.1016/j.zool.2016.05.008.
- . . ‘Immune memory in invertebrates.’ Seminars in Immunology 28. doi: 10.1016/j.smim.2016.05.004.
- . . ‘Down syndrome cell adhesion molecule 1: Testing for a role in insect immunity, behaviour and reproduction.’ Royal Society Open Science 3, № 4. doi: 10.1098/rsos.160138.
- . . ‘A Novel Mechanism of Immune Memory Unveiled at the Invertebrate-Parasite Interface.’ Trends in Parasitology null, № null. doi: 10.1016/j.pt.2016.02.005.
- . . ‘Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction.’ Royal Society Open Science 3, № 4: 160138.
- . . ‘Immune memory in invertebrates.’ Seminars in immunology 28, № 4: 328–342.
- . . ‘Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues.’ Proceedings of the Royal Society B: Biological Sciences 282. doi: 10.1098/rspb.2015.2041.
- ‘Evolutionary aspects of allorecognition.’ Invertebrate Survival Journal 12, № null: 233–236. .
- ‘Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.’ Applied and Environmental Microbiology 81, № 23: 8135–8144. doi: 10.1128/AEM.02051-15. .
- . . ‘Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination.’ Applied and Environmental Microbiology 81, № 23: 8135–8144.
- . . ‘Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.’ PLoS Biology 13, № 6: e1002169. doi: 10.1371/journal.pbio.1002169.
- . . ‘A temperature shock can lead to trans-generational immune priming in the Red Flour Beetle, Tribolium castaneum.’ Ecology and Evolution 2015: 1–9. doi: 10.1002/ece3.1443.
- . . ‘Dscam and pancrustacean immune memory - A review of the evidence.’ Developmental and Comparative Immunology 48. doi: 10.1016/j.dci.2014.03.004.
- . . ‘Quantitative Profiling of Drosophila melanogaster Dscam1 Isoforms Reveals No Changes in Splicing after Bacterial Exposure.’ PloS one 9, № 10: e108660. doi: 10.1371/journal.pone.0108660.
- . . ‘Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring.’ Proceedings of the Royal Society B: Biological Sciences 281, № 1797. doi: 10.1098/rspb.2014.2089.
- ‘Invitro effects of prostaglandin E2 on leucocytes from sticklebacks (Gasterosteus aculeatus) infected and not infected with the cestode Schistocephalus solidus.’ Fish and Shellfish Immunology 41, № 2: 473–481. doi: 10.1016/j.fsi.2014.09.031. .
- „Krankheit und Evolution.“ In wissen.leben.ethik, herausgegeben von , 193–201. Paderborn: mentis Verlag. .
- ‘Experimental evolution of external immune defences in the red flour beetle.’ Journal of Evolutionary Biology 27, № 8: 1562–1571. doi: 10.1111/jeb.12406. .
- . . ‘Increased Survival in the Red Flour Beetle after Oral Priming with Bacteria-Conditioned Media.’ Journal of Innate Immunity 6, № 3: 306–314. doi: 10.1159/000355211.
- ‘Heat and immunity: An experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).’ Journal of Animal Ecology 83, № 4: 744–757. doi: 10.1111/1365-2656.12175. .
- . . ‘Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis.’ BMC Genomics 16, № 1: 445.
- . . ‘In vitro effects of prostaglandin E2 on leucocytes from sticklebacks (Gasterosteus aculeatus) infected and not infected with the cestode Schistocephalus solidus.’ Fish and Shellfish Immunology 41: 4473. doi: 10.1016/j.fsi.2014.09.031.
- ‘Excretory products of the cestode, Schistocephalus solidus, modulate invitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus).’ Fish and Shellfish Immunology 35, № 6: 1779–1787. doi: 10.1016/j.fsi.2013.08.029. .
- . . ‘The red flour beetle as a model for bacterial oral infections.’ PloS one 8. doi: 10.1371/journal.pone.0064638.
- . . ‘The evolution of Dscam genes across the arthropods.’ BMC Evolutionary Biology 12: 53. doi: 10.1186/1471-2148-12-53.
- . . ‘Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.’ Ecology and Evolution 2, № 6: 1122–1143. doi: 10.1002/ece3.232.
- . . ‘Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum.’ Journal of Animal Ecology 79, № 2: 403–413. doi: 10.1111/j.1365-2656.2009.01617.x.
- . . ‘A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica.’ Marine Biology 157, № 7: 1605–1611. doi: 10.1007/s00227-010-1433-5.
- . . ‘Introduction. Ecological immunology.’ Philosophical Transactions of the Royal Society B: Biological Sciences 364, № 1513: 3–14. doi: 10.1098/rstb.2008.0249.
- . . ‘Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda).’ Developmental and Comparative Immunology 33, № 11: 1151–1155. doi: 10.1016/j.dci.2009.04.005.
- . . ‘Ecological Immunology of a Tapeworms' Interaction with its Two Consecutive Hosts.’ Advances in Parasitology 68: 111+. doi: 10.1016/S0065-308X(08)00605-2.
- . . ‘Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum.’ Proceedings of the Royal Society B: Biological Sciences 276, № 1654: 145–151. doi: 10.1098/rspb.2008.1157.
- . . ‘Ecological immunology.’ Philosophical Transactions of the Royal Society B: Biological Sciences 364, № 1513: 3–14. doi: 10.1098/rstb.2008.0249.
- . . ‘The stimulation of immune defence accelerates development in the red flour beetle (Tribolium castaneum).’ Journal of Evolutionary Biology 21, № 6: 1703–1710. doi: 10.1111/j.1420-9101.2008.01584.x.
- . . Resistance is skin-deep: innate immunity may help amphibians to survive a deadly fungus. doi: 10.1111/j.1469-1795.2007.00149.x.
- ‘Resistance is skin-deep: Innate immunity may help amphibians to survive a deadly fungus.’ Animal Conservation 10, № 4: 422–424. doi: 10.1111/j.1469-1795.2007.00149.x. .
- . . ‘The correlation between immunocompetence and an ornament trait changes over lifetime in Panorpa vulgaris scorpionflies.’ Zoology 110, № 5: 336–343. doi: 10.1016/j.zool.2007.07.001.
- . . ‘An experimental test of the immunocompetence handicap hypothesis in a teleost fish: 11-ketotestosterone suppresses innate immunity in three-spined sticklebacks.’ American Naturalist 170, № 4: 509–519. doi: 10.1086/521316.
- . . ‘Schistocephalus solidus: Establishment of tapeworms in sticklebacks - fast food or fast lane?’ Experimental Parasitology 116, № 2: 142–149. doi: 10.1016/j.exppara.2006.12.013.
- . . Big fleas have little fleas: How discoveries of invertebrate diseases are advancing modern science.. doi: 10.1002/ajhb.20696.
- . . ‘Infectivity of two nematode parasites, Camallanus lacustris and Anguillicola crassus, in a paratenic host, the three-spined stickleback Gasterosteus aculeatus.’ Diseases of Aquatic Organisms 74, № 2: 119–126. doi: 10.3354/dao074119.
- . . ‘Alternative adaptive immunity in invertebrates.’ Trends in Immunology 27, № 11: 493–496. doi: 10.1016/j.it.2006.09.001.
- . . ‘Resistance against heterogeneous sequential infections: experimental studies with a tapeworm and its copepod host.’ Journal of Helminthology 80, № 2: 199–206. doi: 10.1079/JOH2006349.
- . . ‘MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach.’ Proceedings of the Royal Society B: Biological Sciences 273, № 1592: 1407–1414. doi: 10.1098/rspb.2005.3450.
- . . ‘Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks.’ Molecular Ecology 15, № 4: 1153–1164. doi: 10.1111/j.1365-294X.2006.02855.x.
- . . ‘Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum.’ Parasitology 132, № Part 1: 105–116. doi: 10.1017/S0031182005008681.
- . . ‘Immune response in Porcellio scaber (Isopoda : Oniscidea): copper revisited.’ European Journal of Soil Biology 41, № 3-4: 77–83. doi: 10.1016/j.ejsobi.2005.09.011.
- . . ‘Surface carbohydrate composition of a tapeworm in its consecutive intermediate hosts: Individual variation and fitness consequences.’ International Journal for Parasitology 35, № 14: 1499–1507. doi: 10.1016/j.ijpara.2005.08.011.
- . . ‘Evolutionary implications of the adaptation to different immune systems in a parasite with a complex life cycle.’ Proceedings of the Royal Society B: Biological Sciences 272, № 1580: 2511–2518. doi: 10.1098/rspb.2005.3241.
- . . ‘Juvenile immune status affects the expression of a sexually selected trait in field crickets.’ Journal of Evolutionary Biology 18, № 4: 1060–1068. doi: 10.1111/j.1420-9101.2005.00899.x.
- . . ‘Specific memory within innate immune systems.’ Trends in Immunology 26, № 4: 186–192. doi: 10.1016/j.it.2005.02.001.
- . . ‘Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets Gryllus campestris.’ Proceedings of the Royal Society B: Biological Sciences 272, № 1558: 63–69. doi: 10.1098/rspc.2004.2919.
- . . ‘Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks.’ Proceedings of the Royal Society B: Biological Sciences 271, № 1535: 197–204. doi: 10.1098/rspb.2003.2567.
- ‘Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm Schistocephalus solidus.’ Diseases of Aquatic Organisms 59, № 2: 141–150. .
- . . ‘Memory in the innate and adaptive immune systems.’ Microbes and Infection 6, № 15: 1410–1417. doi: 10.1016/j.micinf.2004.10.002.
- . . ‘Following a parasite through its life cycle: how tough is it to cope with different immune systems?’ International Journal of Medical Microbiology 293, № Suppl. 38: 53.
- . . ‘Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm Schistocephalus solidus.’ Diseases of Aquatic Organisms 59, № 2: 141–150. doi: 10.3354/dao059141.
- . . ‘Evaluation of an innate immune reaction to parasites in earthworms.’ Journal of Invertebrate Pathology 86, № 1-2: 45–49. doi: 10.1016/j.jiip.2004.04.001.
- . . ‘Response to comment on ''Parasite selection for immunogenetic optimality{''}}.’ Science 303, № 5660. doi: 10.1126/science.1093355.
- . . ‘Parasite selection for immunogenetic optimality.’ Science 301, № 5638: 1343. doi: 10.1126/science.1088293.
- . . ‘Evidence for memory in invertebrate immunity.’ Nature 425, № 6953: 37–38. doi: 10.1038/425037a.
- . . ‘Sex, parasites and resistance - an evolutionary approach.’ Zoology 106, № 4: 327–339. doi: 10.1078/0944-2006-00126.
- . . ‘Outcrossing increases infection success and competitive ability: Experimental evidence from a hermaphrodite parasite.’ Evolution 56, № 11: 2243–2251.
- . . ‘Altered host behaviour: manipulation or energy depletion in tapeworm-infected copepods?’ Parasitology 125, № Part 2: 187–196. doi: 10.1017/S0031182002001932.
- . . ‘Phagocytosis by invertebrate hemocytes: Causes of individual variation in Panorpa vulgaris scorpionflies.’ Microscopy Research and Technique 57, № 6: 456–468. doi: 10.1002/jemt.10099.
- . . ‘To avoid or eliminate: cestode infections in copepods.’ Parasitology 124, № Part 4: 465–474. doi: 10.1017/S0031182001001275.
- . . ‘Fluorescent vital labeling to track cestodes in a copepod intermediate host.’ Experimental Parasitology 100, № 1: 36–43. doi: 10.1006/expr.2001.4681.
- . . ‘Ecological immunity of arthropods - a thread of Ariadne?’ Trends in Ecology & Evolution 17, № 5: 204–205. doi: 10.1016/S0169-5347(02)02457-6.
- . . ‘Immune defence, dispersal and local adaptation.’ Evolutionary Ecology Research 4, № 3: 431–439.
- . . ‘Cryptic male choice: sperm allocation strategies when female quality varies.’ Journal of Evolutionary Biology 15, № 2: 201–209. doi: 10.1046/j.1420-9101.2002.00390.x.
- . . ‘Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes.’ Journal of Invertebrate Pathology 78, № 1: 53–55. doi: 10.1006/jipa.2001.5040.
- . . ‘Immunosuppression under stress: necessary for condition-dependent signalling?’ Trends in Ecology & Evolution 15, № 10: 418–419. doi: 10.1016/S0169-5347(00)01969-8.
- . . ‘Phagocytosis of Vairimorpha sp (Microsporida, Nosematidae) spores by Plutella xylostella and Panorpa vulgaris hemocytes.’ Journal of Invertebrate Pathology 75, № 3: 237–239. doi: 10.1006/jipa.1999.4909.
- . . ‘Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta : Mecoptera).’ Developmental and Comparative Immunology 24, № 1: 1–12. doi: 10.1016/S0145-305X(99)00057-9.
- . . ‘Genetic variability in the diapause response of the burnet moth Zygaena trifolii (Lepidoptera : Zygaenidae).’ Journal of Insect Physiology 46, № 2: 127–134. doi: 10.1016/S0022-1910(99)00108-0.
- . . ‘The immunocompetence handicap hypothesis: testing the genetic predictions.’ Proceedings of the Royal Society B: Biological Sciences 266, № 1437: 2515–2522. doi: 10.1098/rspb.1999.0954.
- . . ‘Meiotic drive and evolution of female choice.’ Proceedings of the Royal Society B: Biological Sciences 266, № 1426: 1341–1345. doi: 10.1098/rspb.1999.0785.
- . . ‘DNA preparation and efficient microsatellite analysis from insect hemolymph.’ Electrophoresis 19, № 18: 3069–3070. doi: 10.1002/elps.1150191804.
- . . ‘Mating system and sexual selection in the scorpionfly Panorpa vulgaris (Mecoptera : Panorpidae).’ Naturwissenschaften 85, № 5: 219–228. doi: 10.1007/s001140050487.
Supervised or Reviewed Theses
Doctoral Studies
Supervised
Länger, Zoe Marie Evolution of epigenetic regulation in Coleoptera Bauhus, Marc Genetic and phenotypic characterization of immunological niche conformance in cavefish Keizers, Marla Investigation of the role of pleiotropic regulatory systems on the evolution and adaptation of pathogenic and commensal Escherichia coli variants Dumevi, Rexford Mawunyo „Identifying Small Regulatory RNAs in Escherichia coli O104:H4 - Transcriptome Profile and Characterization of Pic-associated sRNAs“ R, Reshma The role of evolutionary capacitance for adaptability in the red flour beetle, Tribolium castaneum Sahin, Özge A Bulk Segregation Analysis for an HSP90-released reduced eye phenotype in Tribolium castaneum Klimek, Hanna Molecular interactions of probiotic and extraintestinal Escherichia coli isolates with human intestinal epithelial cells. Chitto, Marco The genomic stability of the pathogenicity islands of uropathogenic Escherichia coli 536: the role of extrinsic and intrinsic factors Zaldastanishvili, Elisabed Investigation of interaction and adaptation strategies of Escherichia coli in the urinary bladder Kästner, Niklas Of anxious males and angry females: how genes related to serotonergic neurotransmission, social experience, and the female reproductive cycle affect anxiety-like and social behaviour in mice Schmidt, Alexander Behavioural and physiological trade-off in an invasive freshwater amphipod (Echinogammarus berilloni, CATTA) Fischer, Josephine PU.1 dependent epigenetic control of neutrophil activation Franke, Frederik Parasite-host interaction in a cestode-fish system: Schistocephalus solidus and its obligatory second intermediate host, the three-spined stickleback (Gasterosteus aculeatus) Schüler, Andreas Evolution of Protein Domain Repeats in Metazoa Peuß, Robert The molecular underpinnings of phenotypic plasticity in Tribolium castaneum immune responses Kutzer, Megan Host immune strategies: remembering, resisting and tolerating Momir Futo The role of microbes as mediators of immune memory in insects Eggert, Hendrik Evolutionary Ecology of Trans-generational immune priming in Tribolium castaneum Milutinovic, Barbara Coevolution between the red flour beetle and Bacillus thuringiensis bacteria Dittmar, Janine Reciprocal adaptation of three-spined sticklebacks (Gasterosteus aculeatus) and the tapeworm Schistocephalus solidus in different environments Pande, Amit Evolutionary Impact of Vertebrate Transposons Hiersche, Milan Multifaktorielle Assoziationsmuster con SNP/CNV Daten zu kardiovaskulären Phänotypen James Peter, Jessin Janice Evolution of U12-type intron and its role in gene expression regulation Sietmann, Anika Comparative genomics and genetic analysis of hypertensive end organ damage Hammerschmidt, Katrin Host parasite interactions in a cestode with a complex life cycle, Schistocephalus solidus Reviewed
Länger, Zoe Marie Evolution of epigenetic regulation in Coleoptera Bauhus, Marc Genetic and phenotypic characterization of immunological niche conformance in cavefish Pöld, Jonas Mismatch Theories in Evolutionary Medicine: A Philosophical Exploration Keizers, Marla Investigation of the role of pleiotropic regulatory systems on the evolution and adaptation of pathogenic and commensal Escherichia coli variants Dumevi, Rexford Mawunyo „Identifying Small Regulatory RNAs in Escherichia coli O104:H4 - Transcriptome Profile and Characterization of Pic-associated sRNAs“ R, Reshma The role of evolutionary capacitance for adaptability in the red flour beetle, Tribolium castaneum Sahin, Özge A Bulk Segregation Analysis for an HSP90-released reduced eye phenotype in Tribolium castaneum Klimek, Hanna Molecular interactions of probiotic and extraintestinal Escherichia coli isolates with human intestinal epithelial cells. Supervised Postdoctoral Study
Schmitz, Jürgen Echoes from the Past: What Ancient Genomic Insertions say about the Phylogeny of Species
Professor Dr. Joachim Kurtz
Selected Publications
Ng TH; Harrison MC; Scharsack JP; Kurtz J. 2024. ‘Disentangling specific and unspecific components of innate immune memory in a copepod–tapeworm system.’ Frontiers in immunology 15. doi: 10.3389/fimmu.2024.1307477
Scharsack JP, Wieczorek B, Schmidt-Drewello A, Büscher J, Franke F, Moore A, Branca A, Witten A, Stoll M, Bornberg-Bauer E, Wicke S, Kurtz J. 2020. ‘Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes.’ Global Change Biology 26. doi: 10.1111/gcb.15402
Ferro K, Peuß R, Yang W, Rosenstiel P, Schulenburg H, Kurtz J. 2019. ‘Experimental evolution of immunological specificity.’ Proceedings of the National Academy of Sciences 116. doi: 10.1073/pnas.1904828116
Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J. 2010. ‘Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum.’ Journal of Animal Ecology 79, No. 2: 403–413. doi: 10.1111/j.1365-2656.2009.01617.x
Kurtz J, Kalbe M, Aeschlimann P, Haberli M, Wegner K, Reusch T, Milinski M. 2004. ‘Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks.’ Proceedings of the Royal Society B: Biological Sciences 271, No. 1535: 197–204. doi: 10.1098/rspb.2003.2567
Wegner K, Kalbe M, Kurtz J, Reusch T, Milinski M. 2003. ‘Parasite selection for immunogenetic optimality.’ Science 301, No. 5638: 1343. doi: 10.1126/science.1088293
Kurtz J, Franz K. 2003. ‘Evidence for memory in invertebrate immunity.’ Nature 425, No. 6953: 37–38. doi: 10.1038/425037a