Jun. - Prof. Dr. Diana Khoromskaia

Modelling mechano-chemical pattern formation
in tissues

Simulation of the concentration field of a morphogen in a model tissue with anisotropy.
© Diana Khoromskaia

Mathematical Modelling
Biophysics
Cell Mechanics

Active matter

My research group seeks to understand the physical principles that underly living matter.
We develop mathematical models using tools from soft and active matter physics and related computational techniques, to gain a quantitative understanding of the multi-scale dynamics and self-organisation observed in cells and tissues and to advance the theoretical descriptions of out-of-equilibrium materials. Current research directions include the morphodynamics of cells and epithelia, morphogen transport in porous tissues, and active matter at curved interfaces.

This project aims to investigate the interplay of chemical patterning, mechanical forces, and anisotropic structures (nematic or polar order) in a model epithelial tissue. We will use continuum and cell-based modelling approaches to shed light on the role that topological defects play in the generation and manipulation of mechano-chemical patterns. The project is an excellent opportunity to work at the intersection of physics and biology and offers the potential to collaborate with experimental groups.
 

Jun. - Prof. Dr. Diana Khoromskaia
© The Francis Crick Institute
Jun. - Prof. Dr. Diana Khoromskaia
University of Münster
Institute for Theoretical Physics
Busso-Peus-Strasse 10
48149 Münster
T: +49 (0) 251- 83 - 34488
diana.khoromskaia@uni-muenster.de

Vita

  • 2007 – 2012      BSc and MSc in Physics, University of Heidelberg
  • 2012 – 2013      MSc in Complexity Science, University of Warwick, UK
  • 2013 – 2017      PhD in Physics and Complexity Science, University of Warwick, UK
  • 2017 – 2021      Postdoctoral Traning Fellow, Francis Crick Institute, London
  • 2022 – 2025      Postdoctoral Research Associate, University College London and
                                   Francis Crick Institute
  • Since 2025        Junior Professor and Research Group Leader at University of Münster
     

Selected references

D. Khoromskaia and G. Salbreux. (2023). Active morphogenesis of patterned epithelial shells. eLife 11:e75878

C. Bächer, D. Khoromskaia, G. Salbreux, S. Gekle. (2021). A three-dimensional numerical model of an active cell cortex in the viscous limit. Front. Phys. 9:753230 (2021).

R. Bailleul, N. Cuny, D. Khoromskaia, S. Basu, G. Bergamini, P. Cucurachi, S. Rupp, A. Guse, C. Curantz, N. Swinhoe, P. Cleves, J. Craggs, S. Fujita, Y. Nakajima, P.J. Steenbergen, A. Diz-Muñoz, G. Salbreux, A. Ikmi. (2025). Cross-Species Biomechanical Determinants of Shape Diversity. https://www.biorxiv.org/content/10.1101/2025.02.07.637025v1

D. Khoromskaia and G. P. Alexander. (2017). Vortex formation and dynamics of defects in active nematic shells. New J. Phys. 19 103043

D. Khoromskaia and G. P. Alexander. (2015). Motility of active fluid drops on surfaces. Phys. Rev. E 92, 062311

Links

Khoromskaia Lab
(will be online soon)