Prof. Langer: Research and teaching
Research Areas
- Drug Targeting mittels Nanotechnologie
- Zielspezifische Tumortherapie
- Formulierung von Arzneistoffen
CV
Education
- Habilitation und Venia legendi im Fach "Pharmazeutische Technologie", Goethe-Universität Frankfurt
- Promotionsarbeit im Fach "Pharmazeutische Technologie", Johann Wolfgang Goethe-Universität Frankfurt
Positions
- Universitätsprofessor für Pharmazeutische Technologie, WWU Münster
- Wissenschaftlicher Mitarbeiter am Institut für Pharmazeutische Technologie, Goethe-Universität Frankfurt
- Gastprofessur für Pharmazeutische Technologie, Karl-Franzens-Universität Graz
- Pharmazeutisches Praktikum in einer Apotheke und bei der STADA Arzneimittel AG
Honors
- Goldener Spatel in the category "Gute Lehre" – Studierende der Pharmazie und des Masters Arzneimittelwissenschaften der Universität Münster
- PHOENIX Pharmazie Wissenschaftspreis – PHOENIX group
- Teaching Prize – University of Münster
- Preis des Fachbereichs Biochemie, Chemie und Pharmazie für exzellente Lehre – Goethe-Universität, Frankfurt
- Adolf Messer Prize – Adolf Messer Foundation
Projects
- Entwicklung einer Arzneiform zur TG-1-Enzymsubstitution der lamallären Ichthyose ( – )
Individual Granted Project: United for Fighting Ichthyosis - Amici per la Pelle - Stabilisierung von nanopartikulären pharmazeutischen Wirkstoffen durch humanes Serumalbumin (HSA) ( – )
Individual Granted Project: INVITE GmbH - PharMSchool ( – )
Individual Granted Project: Universitätsgesellschaft Münster e.V., Deutsche Pharmazeutische Gesellschaft e.V., Rottendorf Stiftung - Self Immolative Drug Delivery Systems based on Polycarbonate Copolymers ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: LA 1165/5-1 - Transglutaminase 1-Liposomen - Forschungsarbeiten auf dem Gebiet der lamellären Ichthyose ( – )
Individual Granted Project: Leibniz-Forschungsinstitut für Molekulare Pharmakologie - Patientenrelevanz generischer Substitution am Beispiel von L-Dopa ( – )
Individual Granted Project: Apothekerstiftung Westfalen-Lippe | Project Number: Wa/mie - EXC 1003 B1 - Formation and Properties of Epithelial and Endothelial Barriers ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC1003/1 - Auftragsanalytik (REM, DSC, ...) für den Bereich der Arzneimittelherstellung ( – )
Individual Granted Project: Rottendorf Pharma GmbH - Verbundprojekt: Zielgesteuerte BioTransporter oral applizierter Photosensibilisatoren zur photodynamischen Therapie gastrointestinaler Carcinome (GITCare) - Teilvorhaben: Nanostrukturierte Trägersysteme und deren biologische Bewertung ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 13N13423 - Rezepturfit - Validierung von Rezepturprozessen ( – )
Individual Granted Project: Apothekerstiftung Westfalen-Lippe - PharMSchool-Symposium ( – )
Scientific Event: Sonstige Mittelgeber - BioTraP for CCC – Biokonjugate zur peroralen Anwendung für den Transport von Problemarzneistoffen zur Behandlung des Cholangiozellulären Karzinoms
( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 13N11390 - Development for nanoparticles for Parkinson disease ( – )
Individual Granted Project: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - NanoGene – Stem cell generation and manipulation by nanoparticle mediated gene transfer for the safe clinical application of gene-modified cells ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 13N1I539 - NanoBrain – ERA-NET Neuron NanoBrain ( – )
Individual Granted Project: Sonstige Mittelgeber - Schaltbare Nanopartikel als Wirkstoffträger ( – )
Own Resources Project - NanoCancer – Development of cell type specific drug carrier systems for cancer therapy
( – )
Own Resources Project - NanoDrug – Nanoparticulate dosage forms for specific tumor therapy ( – )
Own Resources Project
- Entwicklung einer Arzneiform zur TG-1-Enzymsubstitution der lamallären Ichthyose ( – )
Publications
Research Articles (Journals)
- . . ‘Synthesis, activity, metabolic stability and cell permeability of new cytosolic phospholipase A2α inhibitors with 1-indolyl-3-phenoxypropan-2-one structure.’ Bioorganic and Medicinal Chemistry Letters 92: 129374. doi: 10.1016/j.bmcl.2023.129374.
- . . ‘A FRET-Based Assay for the Identification of PCNA Inhibitors.’ International Journal of Molecular Sciences (IJMS) 24. doi: https://doi.org/10.3390/ijms241411858.
- . . ‘Synthesis and pharmacokinetic properties of novel cPLA2α inhibitors with 1-(carboxyalkylpyrrolyl)-3-aryloxypropan-2-one structure.’ Bioorganic and Medicinal Chemistry 77: 117110. doi: 10.1016/j.bmc.2022.117110.
- 10.1016/j.ejpb.2023.10.022. . ‘Challenges of nanoparticle albumin bound (nab™) technology: Comparative study of Abraxane® with a newly developed albumin-stabilized itraconazole nanosuspension.’ European journal of pharmaceutics and biopharmaceutics 193: 129–143. doi:
- . „Problems with the change in generics: Justified complaints or only imagination of the patients? Probleme beim Generikawechsel Berechtigte Klagen oder nur Einbildung der Patienten?“ Deutsche Apotheker-Zeitung 163, No. 2.
- 10.1016/j.ijpharm.2023.123454. . ‘Triglyceride-filled albumin-based nanocapsules: A promising new system to avoid discarding poorly water-soluble drug candidates.’ International Journal of Pharmaceutics 646. doi:
- . . ‘Improved Reversion of Calcifications in Porcine Aortic Heart Valves Using Elastin-Targeted Nanoparticles.’ International Journal of Molecular Sciences (IJMS) 24, No. 22. doi: 10.3390/ijms242216471.
- . . ‘Permeability of dopamine D2 receptor agonist hordenine across the intestinal and blood-brain barrier in vitro.’ PloS one 17, No. 6: e0269486. doi: 10.1371/journal.pone.0269486.
- . . ‘Different dissolution conditions affect stability and dissolution profiles of bioequivalent levodopa-containing oral dosage forms.’ International Journal of Pharmaceutics 629: 122401. doi: 10.1016/j.ijpharm.2022.122401.
- 10.1016/j.bbiosy.2021.100032. . ‘Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles.’ Biomaterials and Biosystems 5: 100032. doi:
- 10.1002/cmdc.202100757. . ‘Hexafluoroisopropyl carbamates as selective MAGL and dual MAGL/FAAH inhibitors: Biochemical and physicochemical properties.’ ChemMedChem 17: e2021007. doi:
- . . ‘Effects of Generic Exchange of Levodopa Medication in Patients With Parkinson Disease.’ Journal of Patient Safety 18, No. 7. doi: 10.1097/PTS.0000000000001015.
- . . ‘Stimuli-accelerated polymeric drug delivery systems.’ Polymer International 72, No. 1. doi: 10.1002/pi.6474.
- . . ‘Tuning the protein corona of PLGA nanoparticles: Characterization of trastuzumab adsorption behavior and its cellular interaction with breast cancer cell lines.’ Journal of Drug Delivery Science and Technology 74. doi: 10.1016/j.jddst.2022.103543.
- . ‘Lecithin coating as universal stabilization and functionalization strategy for nanosized drug carriers to overcome the blood-brain barrier.’ Int. J. Pharm. 593: 120146.
- . ‘Backbone-degradable (co-)polymers for light-triggered drug delivery.’ ACS Appl. Polym. Mater. 2021: 3831–3842.
- 10.1039/d1py00442e. . ‘Backbone vs. side-chain: Two light-degradable polyurethanes based on 6-nitropiperonal.’ Polymer Chemistry 12: 4565–4575. doi:
- . ‘Development of a lyophilization process for long term storage of albumin based perfluorodecalin filled artificial oxygen carriers.’ Pharmaceutics 13: 584.
- . „mRNA- und DNA-Impfstoffe – Nanotechnologie der Covid-19-Vakzinen.“ Pharm. Ztg. 166: 1024–1031.
- . ‘Light-responsive nanoparticles based on a novel nitropiperonal derived polyester as drug delivery systems for photosensitizers in PDT.’ Int. J. Pharm. 597: 120326.
- . ‘Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles.’ European journal of pharmaceutics and biopharmaceutics 163: 212–222.
- . „Adjuvanzien im Europäischen Arzneibuch – Adjuvants in the European Pharmacopoeia.“ Pharmakon 8: 351–356.
- . ‘Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier.’ Int. J. Pharm. 589: 119821.
- . ‘Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly.’ PLoS Pathogenes 16: e1008775.
- . ‘Conversion of indomethacin nanosuspensions into solid dosage forms via fluid bed granulation and compaction.’ Eur. J. Pharm. Biopharm. 154: 89–97.
- . ‘Effects of generic exchange of solid oral dosage forms in neurological disorders: A systematic review.’ Int. J. Clin. Pharm. 42: 393–417.
- . ‘Reversion of arterial calcification by elastin-targeted DTPA-HSA nanoparticles.’ Eur. J. Pharm. Biopharm. 150: 108–119.
- . ‘Incorporation of doxorubicin in different polymer nanoparticles and their anti-cancer activity.’ Beilstein J. Nanotechnol. 10: 2062–2072.
- . ‘Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance.’ Beilstein J. Nanotechnol. 10: 1707–1715.
- . ‘Light-responsive serinol-based poylcarbonate and polyester as degradable scaffolds.’ ACS Applied Bio Materials 2: 3038–3051.
- . ‘Preparation of sesquiterpene lactone loaded - PLA nanoparticles and evaluation of their antitrypanosomal activity.’ Molecules 24: 2110.
- . ‘Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.’ Eur. J. Pharm. Biopharm. 2019: 70–80.
- . ‘In vitro evaluation of innovative light-responsive nanoparticles for controlled drug release in intestinal PDT.’ Int. J. Pharm. 565: 199–208.
- . ‘Serum type and concentration both affecting the protein corona composition of PLGA nanoparticles.’ Beilstein J. Nanotechnol. 10: 1002–1015.
- . ‘The impact of gastrointestinal mucus – new in vitro evaluation of promising mucus-penetrating PLGA-NP for photodynamic therapy in treatment of intestinal cancer.’ Eur. J. Pharm. Sci. 133: 28–39.
- . ‘Preparation of light-responsive aliphatic polycarbonate via versatile polycondensation for controlled degradation.’ Macromol. Chem. Phys. 220: 1800539.
- . ‘Light-responsive nanoparticles based on new polycarbonates as innovative drug delivery systems for photosensitizers in PDT.’ International Journal of Pharmaceutics 557: 182–191.
- 10.1371/journal.pone.0189970. . ‘Rhombic organization of microvilli domains found in a cell model of the human intestine.’ PloS one 13, No. 1. doi:
- 10.1016/j.jddst.2017.11.002. . ‘Didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Uptake and cytotoxic potential in Caco-2 cells.’ Journal of Drug Delivery Science and Technology 43, No. null: 430–438. doi:
- 10.1016/j.ijpharm.2017.11.047. . ‘A new preparation strategy for surface modified PLA nanoparticles to enhance uptake by endothelial cells.’ International Journal of Pharmaceutics 536, No. 1: 211–221. doi:
- . ‘Conversion of PLGA nanoparticle suspensions into solid dosage forms via fluid bed granulation and tableting.’ European Journal Pharmaceutics Biopharmaceutics 134: 77–87.
- . ‘Use of light-degradable aliphatic polycarbonate nanoparticles as drug carrier for photosensitizer.’ Biomacromolecules 19: 4677–4690.
- . ‘Mucus-penetrating nanoparticles: Promising drug delivery systems for the photodynamic therapy of intestinal cancer.’ European journal of pharmaceutics and biopharmaceutics 129: 1–9.
- 10.1016/j.ijpharm.2017.03.006. . ‘Modifying plasmid-loaded HSA-nanoparticles with cell penetrating peptides −cellular uptake and enhanced gene delivery .’ International Journal of Pharmaceutics 522: 198–209. doi:
- 10.1016/j.ijpharm.2016.12.025. . ‘Polymeric nanoparticles – Influence of the glass transition temperature on drug release.’ International Journal of Pharmaceutics 517, No. null: 338–347. doi:
- 10.1016/j.aca.2016.07.021. . ‘Quantitative bioimaging of platinum group elements in tumor spheroids.’ Analytica Chimica Acta 938, No. null: 106–113. doi:
- 10.1021/acs.cgd.5b01619. . ‘Crystal Engineering of Pharmaceutical Co-crystals: "nMR Crystallography" of Niclosamide Co-crystals.’ Crystal Growth and Design 16, No. 6: 3087–3100. doi:
- 10.2147/IJN.S106540. . ‘Comparison of cellular effects of starch-coated SPIONs and poly(Lactic-co-glycolic acid) matrix nanoparticles on human monocytes.’ International journal of nanomedicine 11, No. null: 5221–5236. doi:
- . . ‘Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.’ Talanta 146: 335–339. doi: 10.1016/j.talanta.2015.08.028.
- 10.1088/0957-4484/26/14/145103. . ‘PEGylated human serum albumin (HSA) nanoparticles: Preparation, characterization and quantification of the PEGylation extent.’ Nanotechnology 26, No. 14: 145103. doi:
- . ‘A novel asymmetrical flow field-flow fractionation for the analysis of PEG asparaginase.’ Talanta 146: 335–339.
- . ‘Ligand-modified human serum albumin nanoparticles for targeted gene delivery.’ Mol. Pharm. 12: 3202–3213.
- 10.1016/j.ijpharm.2015.10.023. . ‘Nanoparticulate carriers for photodynamic therapy of cholangiocarcinoma: In vitro comparison of various polymer-based nanoparticles.’ International Journal of Pharmaceutics 496, No. 2: 942–952. doi:
- 10.1007/s11051-015-3306-9. . ‘Detection and analysis of human serum albumin nanoparticles within phagocytic cells at the resolution of individual live cell or single 3D multicellular spheroid.’ Journal of Nanoparticle Research 17, No. 12: 1–14. doi:
- 10.1371/journal.pone.0127532. . ‘New perspective in the formulation and characterization of didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic-co-glycolic acid) (PLGA) nanoparticles.’ PloS one 10, No. 7. doi:
- . ‘Characterisation of PEGylated PLGA nanoparticles comparing the nanoparticle bulk to the particle surface using UV/Vis spectroscopy, SEC, 1H-NMR spectroscopy, and X-ray photoelectron spectroscopy.’ Appl. Surf. Sci. 347.
- . ‘Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.’ Sci. Rep. 5.
- . „2nd Pharm School Symposium: Networked study in Münster.“ Pharmazeutische Zeitung 160, No. 6.
- 10.1016/j.nano.2014.10.001. . ‘Reaction of human macrophages on protein corona covered TiO2 nanoparticles.’ Nanomedicine: Nanotechnology, Biology and Medicine 11, No. 2: 275–282. doi:
- 10.1016/j.ejpb.2015.03.021. . ‘Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS.’ European journal of pharmaceutics and biopharmaceutics 93: 80–87. doi:
- . . ‘Covalent modification of human serum albumin by the natural sesquiterpene lactone parthenolide.’ Molecules 20: 6211–6223. doi: 10.3390/molecules20046211.
- 10.1371/journal.pone.0092068. . ‘Tracking of magnetite labeled nanoparticles in the rat brain using MRI.’ PloS one 9, No. 3: e92068. doi:
- 10.1016/j.chroma.2014.04.048. . ‘Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes.’ Journal of Chromatography A 1346: 97–106. doi:
- . „Medicine-related problems in practice: Tablet splitting - (no) a problem? | Arzneimittelbezogene Probleme in der Praxis: Tablettenteilung - (k)ein Problem?“ Pz Prisma 21, No. 2: 75–81.
- 10.1039/c3mt00223c. . ‘A palladium label to monitor nanoparticle-assisted drug delivery of a photosensitizer into tumor spheroids by elemental bioimaging.’ Metallomics 6, No. 1: 77–81. doi:
- 10.1016/j.ijpharm.2013.11.044. . ‘Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing.’ International Journal of Pharmaceutics 461, No. 1: 137–144. doi:
- 10.1186/alzrt225. . ‘Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood-brain barrier model.’ Alzheimer's Research and Therapy 5, No. 6. doi:
- 10.3109/02652048.2011.635218. . ‘Albumin nanoparticles with predictable size by desolvation procedure.’ Journal of Microencapsulation 29, No. 2: 138. doi:
- 10.1016/j.ijpharm.2010.11.023. . ‘Photosensitizer loaded HSA nanoparticles II: In vitro investigations.’ International Journal of Pharmaceutics 404, No. 1-2: 308–316. doi:
- 10.1088/0957-4484/22/24/245102. . ‘Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells.’ Nanotechnology 22, No. 24: 245102. doi:
- 10.1016/j.nano.2010.12.003. . ‘Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells.’ Nanomedicine: Nanotechnology, Biology and Medicine 7. doi:
- 10.1016/j.jphotobiol.2010.08.006. . ‘Photophysical evaluation of mTHPC-loaded HSA nanoparticles as novel PDT delivery systems.’ Journal of Photochemistry and Photobiology B: Biology 101, No. 3: 340. doi:
- 10.1016/j.jconrel.2010.07.089. . ‘Comprehensive in vitro investigations on biodegradable photosensitizer-nanoparticle delivery systems.’ Journal of Controlled Release 148, No. 1: e117–e118. doi:
- 10.1016/j.ijpharm.2010.11.023. . ‘Photosensitizer loaded HSA nanoparticles II: In vitro investigations.’ International Journal of Pharmaceutics 404: 308–316. doi:
- 10.1016/j.ijpharm.2010.04.022. . ‘Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties.’ International Journal of Pharmaceutics 393, No. 1-2: 253. doi:
- 10.1016/j.biomaterials.2009.11.093. . ‘Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles.’ Biomaterials 31, No. 8: 2388. doi:
- 10.1016/j.bcp.2009.08.025. . ‘N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus.’ Biochemical Pharmacology 79, No. 3: 413–420. doi:
- 10.1080/10611860903118823. . ‘Uptake of plasmid-loaded nanoparticles in breast cancer cells and effect on Plk1 expression.’ Journal of Drug Targeting 17, No. 8: 627. doi:
- 10.1016/j.jphotobiol.2009.04.006. . ‘Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations.’ Journal of Photochemistry and Photobiology B: Biology 96, No. 1: 66–74. doi:
- . ‘Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage.’ European journal of pharmaceutics and biopharmaceutics 72, No. 2: 428.
- . „Nanotechnologie: Nanopartikel bringen Arzneistoffe sicher ans Ziel.“ Pharmazeutische Zeitung 4.
- 10.1021/bc8002452. . ‘Specific Targeting of HER2 Overexpressing Breast Cancer Cells with Doxorubicin-Loaded Trastuzumab-Modified Human Serum Albumin Nanoparticles.’ Bioconjugate Chemistry 19, No. 12: 2321–2331. doi:
- 10.1016/j.ijpharm.2008.07.004. . ‘Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.’ International Journal of Pharmaceutics 363, No. 1-2: 162. doi:
- 10.1016/j.biomaterials.2008.07.001. . ‘Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation.’ Biomaterials 29, No. 29: 4022. doi:
- 10.1158/1078-0432.CCR-08-0821. . ‘Cisplatin-Resistant Neuroblastoma Cells Express Enhanced Levels of Epidermal Growth Factor Receptor (EGFR) and Are Sensitive to Treatment with EGFR-Specific Toxins.’ Clinical Cancer Research 14, No. 20: 6531–6537. doi:
- 10.1593/neo.07916. . ‘Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles.’ Neoplasia 10, No. 3: 223. doi:
- 10.1016/j.ijpharm.2007.06.028. . ‘Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation.’ International Journal of Pharmaceutics 347, No. 1-2: 109. doi:
- 10.1016/j.ijpharm.2007.03.036. . ‘Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles.’ International Journal of Pharmaceutics 341, No. 1-2: 207. doi:
- 10.1016/j.ijpharm.2007.01.031. . ‘Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity.’ International Journal of Pharmaceutics 337, No. 1-2: 346. doi:
- 10.1016/j.jconrel.2006.12.012. . ‘Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain.’ Journal of Controlled Release 118, No. 1: 54. doi:
- 10.1016/j.biomaterials.2006.05.016. . ‘Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells.’ Biomaterials 27, No. 28: 4975. doi:
- 10.1124/jpet.105.097139. . ‘Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain.’ Journal of Pharmacology and Experimental Therapeutics 317, No. 3: 1246. doi:
- 10.1016/j.biomaterials.2005.02.038. . ‘Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes.’ Biomaterials 26, No. 29: 5898. doi:
- 10.1016/j.biomaterials.2004.07.047. . ‘Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes.’ Biomaterials 26, No. 15: 2723. doi:
- 10.1080/10611860400010697. . ‘Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells.’ Journal of Drug Targeting 12, No. 7: 461. doi:
- 10.1016/j.bbrc.2004.08.223. . ‘Pharmacological activity of DTPA linked to protein-based drug carrier systems.’ Biochemical and Biophysical Research Communications 323, No. 4: 1236. doi:
- 10.1016/j.bbrc.2004.04.067. . ‘Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases.’ Biochemical and Biophysical Research Communications 318, No. 2: 562. doi:
- 10.1016/j.bbrc.2004.04.067. . ‘Incorporation of biodegradable nanoparticles into human airway epithelium cells - in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases.’ Biochemical and Biophysical Research Communications 318, No. 2: 562–570. doi:
- 10.1016/j.jconrel.2004.01.029. . ‘Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles.’ Journal of Controlled Release 96, No. 3: 483. doi:
- 10.1016/j.jconrel.2004.01.029. . ‘Tumour cell delivery of antisense oligonucleotides by human serum albumin nanoparticles.’ Journal of Controlled Release 96, No. 3: 483–495. doi:
- . ‘Human serum albumin-polyethylenimine nanoparticles for gene delivery.’ Journal of Controlled Release 92, No. 1-2: 199–208.
- 10.1016/S0378-5173(03)00134-0. . ‘Optimization of the preparation process for human serum albumin (HSA) nanoparticles.’ International Journal of Pharmaceutics 257, No. 1-2: 169. doi:
- . ‘In vitro antiviral activity of aphidicolin and its derivates - Synergistic effects of aphidicolin with other antiviral drugs.’ Arzneimittel-Forschung 52, No. 5: 393–399.
- 10.1097/00001813-200202000-00006. . ‘Coupling of the antitumoral enzyme bovine seminal ribonuclease to polyethylene glycol chains increases its systemic efficacy in mice.’ Anti-Cancer Drugs 13, No. 2: 149–154. doi:
- 10.1016/S0378-5173(00)00590-1. . ‘Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups.’ International Journal of Pharmaceutics 211, No. 1-2: 67–78. doi:
- 10.1097/00001813-200007000-00009. . ‘Cytotoxicity of aphidicolin and its derivatives against neuroblastoma cells in vitro: synergism with doxorubicin and vincristine.’ Anti-Cancer Drugs 11, No. 6: 479–485. doi:
- 10.1097/00001813-200006000-00007. . ‘Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro.’ Anti-Cancer Drugs 11, No. 5: 369. doi:
- . ‘Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid.’ European journal of pharmaceutics and biopharmaceutics 49, No. 3: 303.
- 10.1080/026520400288427. . ‘Gelatin nanoparticles by two step desolvation--a new preparation method, surface modifications and cell uptake.’ Journal of Microencapsulation 17, No. 2: 187. doi:
- . ‘Gelatin nanoparticles by two step desolvation - a new preparation method, surface modifications and cell uptake.’ Journal of Microencapsulation 17, No. 2: 187–193.
- 10.1016/S0378-5173(99)00420-2. . ‘Desolvation process and surface characteristics of HSA-nanoparticles.’ International Journal of Pharmaceutics 196, No. 2: 197–200. doi:
- 10.1016/S0378-5173(99)00409-3. . ‘Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA).’ International Journal of Pharmaceutics 196, No. 2: 147. doi:
- 10.1016/S0378-5173(99)00370-1. . ‘Desolvation process and surface characterisation of protein nanoparticles.’ International Journal of Pharmaceutics 194, No. 1: 91–102. doi:
- 10.1016/S0378-4347(99)00456-9. . ‘Simple and efficient method for the detection of diethylenetriaminepentaacetic acid.’ Journal of Chromatography B 736, No. 1-2: 299–303. doi:
- . ‘The delivery of loperamide to the brain by using polybutyl cyanoacrylate nanoparticles | Dostavka loperamida v mozg s pomoshch'iu polibutiltsianoarilatnykh nanochastits.’ Eksperimental'naia i klinicheskaia farmakologiia 61, No. 1: 17–20.
- . ‘[The delivery of loperamide to the brain by using polybutyl cyanoacrylate nanoparticles].’ Eksperimental'naia i klinicheskaia farmakologiia 61, No. 1: 17–20.
- . ‘Acrylic nanoparticles for ocular drug delivery.’ S.T.P. Pharma Sciences 7, No. 6: 445–451.
- 10.1016/S0378-5173(97)00256-1. . ‘Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part II: Arecaidine propargyl ester and pilocarpine loading and in vitro release.’ International Journal of Pharmaceutics 158, No. 2: 211–217. doi:
- 10.1016/S0378-5173(97)00255-X. . ‘Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part III: Evaluation as drug delivery system for ophthalmic applications.’ International Journal of Pharmaceutics 158, No. 2: 219–231. doi:
- 10.1016/S0378-4347(96)00521-X. . ‘Quantitative colorimetric and gas chromatographic determination of arecaidine propargyl ester.’ Journal of Chromatography B: Biomedical applications 692, No. 2: 345–350. doi:
- 10.1023/A:1012098005098. . ‘Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles.’ Pharmaceutical Research 14, No. 3: 325. doi:
- 10.1016/0378-5173(95)04305-5. . ‘Characterization of polybutyleyanoacrylate nanoparticles. Part II: Determination of polymer content by NMR-analysis.’ International Journal of Pharmaceutics 128, No. 1-2: 189–195. doi:
- 10.1016/0378-5173(96)89589-5. . ‘Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part I: Preparation and physicochemical characterization.’ International Journal of Pharmaceutics 137, No. 1: 67–74. doi:
- 10.1016/0378-5173(94)90371-9. . ‘Characterisation of polybutylcyanoacrylate nanoparticles: I. Quantification of PBCA polymer and dextrans.’ International Journal of Pharmaceutics 110, No. 1: 21–27. doi:
Research Article (Book Contributions)
- In Partikel in der Pharmaproduktion, herausgegeben von , 67–96. . „Überblick über Messmethoden und deren physikalische Hintergründe: Submikron.“
- In Nanotechnologies for the Life Sciences, Vol. 2: Biological and Pharmaceutical Nanomaterials, herausgegeben von , 145–184. . „Peptide nanoparticles.“
Supervised Doctoral Studies
Horky, Corinna Entwicklung und zellbiologische Bewertung Stimulus-responsiver Nanopartikel zur Anwendung in der Tumortherapie Begasse, Theresa Nanopartikuläre Arzneiformen zum Einsatz bei der Therapie vaskulärer Erkrankungen Kramer, Maurice Entwicklung von Redox- und pH-sensitiven Nanopartikel-Systemen. Bodes, Jacqueline Protein delivery in skin: In vitro analysis of a novel therapeutic approach in Netherton Syndrome. Lins, Anika Untersuchungen zur Proteincorona an kolloidalen Arzneistoffträgern. Paul, Kris Entwicklung einer Enzymsubstitutionstherapie bei Transglutaminase 1-defizienter lamellärer Ichthyose Laabs, Moritz Entwicklung, Charakterisierung und Testung von Lecithin-gecoateten Nanopartikeln zur Überwindung der Blut-Hirn-Schranke. Tran, Xenia Antikörper-modifizierte Nanopartikel zum spezifischen Targeting von Tumoren. Adick, Annika HSA-stabilisierte Nanopartikel für intravenöse Anwendungen. Hester, Sarah Entwicklung proteinbasierter Nanokapseln als Trägersystem für Arzneistoffe Weitzel, Johanna Patientenrelevanz generischer Substitution am Beispiel von Levodopa Prell, Katharina Entwicklung und zellbiologische Testung von Nanopartikeln zur Überwindung der Blut-Hirn-Schranke. Spreen, Hendrik Untersuchungen zur Ausbildung einer Proteincorona an kolloidalen Arzneistoffträgern. Linß, Franziska Kerstin Nanopartikuläre Arzneiformen zum Einsatz bei der Therapie vaskulärer Erkrankungen. Schoppa, Timo Entwicklung Stimuli-responsiver nanopartikulärer Arzneistoffträgersysteme Barth, Christina Zellspezifisches Targeting proteinbasierter Nanopartikel Neufeld, Nelly Nanopartikuläre DNA-Trägersysteme als alternative nicht-virale Gen-Vektoren Stein, Nora Proteinstabilisierung nanopartikulärer Arzneiformen Sahnen, Frederic Überführung von Arzneistoff-Nanosuspensionen zu festen Arzneiformen. Backhaus, Solveig Johanna Oberflächenmodifizierte PLGA-Nanopartikel zur Überwindung der Blut-Hirn-Schranke. Hortmann, Pascal Untersuchungen zur Formulierung flüssiger Arzneistoffe in festen Arzneiformen Wünsch, Angelika Imitation von Lipoproteinen als nanopartikuläre Arzneistoffträgersysteme Alberding, Gerrit Nanopartikuläre Arzneiformen zur Überwindung der gastrointestinalen Barriere. Frank, Katharina Mukoadhäsive Darreichungsformen zur nanopartikulären photodynamischen Tumortherapie Grothe, Stephanie Physikochemische Charakterisierung von Nanopartikeln auf Basis ausgewählter Eudragit®-Polymere Keuth, Jacqueline Nanopartikuläre Arzneiformen zum Einsatz in der Therapie arterieller Calcifizierungen Motealleh, Andisheh Synthesis of nanocomposite hydrogels and stereoselective cell-material interactions. Partikel, Katrin Untersuchung der Proteinadsorption an PLGA-Nanopartikeln. Pieper, Sebastian Entwicklung und Charakterisierung von Nanopartikeln zur Resistenzüberwindung von Tumorzellen Mahlert, Laura Zellbiologische Bewertung Licht-responsiver Nanosysteme zur Anwendung in der intestinalen Tumortherapie. Anderski, Juliane Entwicklung Licht-responsiver Nanopartikel als Arzneistoffvehikel für die photodynamische Tumortherapie. Kimani, Mark Njogu Antiprotozoal Agents from Plants of the Family Asteraceae, Structure-Activity-Relationships and Formulation of Selected Compounds into PLA Nanoparticles Mesken, Julia Oberflächenmodifizierte HSA-Nanopartikel als nicht-virale DNA-Vektoren. Raudszus, Bastian Entwicklung und biologische Testung oberflächenmodifizierter PLA-Nanopartikel zur Überwindung der Blut-Hirn-Schranke Eidam, Sebastian Stakeholdermanagement bei der kooperativen Entwicklung von Arzneimitteln Wessels, Lisa Nanokapseln - Herstellungsmethoden, Charakterisierung und in vitro-Untersuchungen Horster, Lutz Wirbelschichtgranulierung mit polymeren Nanopartikeln Thoma, Frédérique Nicola Entwicklung und Charakterisierung kolloidaler Trägersysteme für Proteine Grünebaum, Jonas In vitro Charakterisierung von nanopartikulären Trägersystemen für die photodynamische Therapie Gossmann, Rebecca Entwicklung kationischer Nanopartikel und deren Zellinteraktion Fröhleke, Anna Katharina Möglichkeiten und Grenzen von PK-Sim® in der pädiatrischen Onkologie am Beispiel der Anthrazykline Lappe, Svenja Carina Glasübergangstemperatur und Freisetzungsverhalten polymerer Nanopartikel Spek, Silvia Entwicklung und Charakterisierung nanopartikulärer Systeme zur Analyse von Partikel-Zell-Interaktionen Look, Jennifer Neuartige Liganden-modifizierte Nanopartikel als Trägersysteme für Nukleinsäuren Fahrländer, Eva-Maria Entwicklung und Charakterisierung PEGylierter HSA-Nanopartikel Zlatev, Iavor Entwicklung von Nanopartikeln als Träger für Alzheimer Therapeutika John, Cornelia Asymmetrische Fluss-Feldfluss-Fraktionierung zur Charakterisierung kolloidaler Systeme Hindel, Stefan Entwicklung einer nanopartikulären Arzneimittelformulierung auf der Basis von PLGA zum aktiven Drug-Targeting von Doxorubicin an Tumorzellen mittels des monoklonalen Antikörpers DI17E6 Häuser, Manuel Entwicklung pH-schaltbarer Nanopartikelsysteme zur intrazellulären Wirkstofffreisetzung Dickschen, Kristin Josefine Ruth Überwindung der CYP2D6 vermittelten Tamoxifenresistenz bei postmenopausalen Brustkrebs: ein PBPK-Ansatz von Storp, Bernhard Entwicklung nanopartikulärer Arzneiformen für niedermolekulare Kinase-Inhibitoren zur Anwendung in der Tumortherapie Engel, Andrea Nanopartikuläre Trägersysteme für Tetrapyrrole Plöger, Michael Development of nanoparticular Drug Formulations for biologically active secondary Plant Constituents (Thesis written in German) Böker, Anne Partikuläre Arzneiformen zur kontrollierten Proteinfreisetzung Klassert, Denise Angiogenes Potential chemoresistenter und persistenter HCMV-infizierter Neuroblastomzellen Holzer, Melisande Antikörperbeladene PLGA-Nanopartikel als Trägersystem für eine verzögerte Wirkstofffreisetzung in der Tumortherapie Geiler, Janina Untersuchungen der Immunreaktion in Influenza-A-infizierten Zellen und Analyse von potentiellen antiviralen Substanzen Wacker, Matthias Entwicklung zellspezifischer Arzneistoffträger zur Tumortherapie Scientific Talks
- Anderski, Juliane; Mahlert, Laura (): ‘Interactions of nanoparticles with mucus - the first barrier before reaching intestinal cells’. Bad Herrenalber Transporter- und Barrieretage (Steinbeis Transferzentrum Biopharmazie und Analytik, Vertreten durch Gerd Fricker), Bad Herrenalb, Deutschland, .
- Raudszus, Bastian; Mulac, Dennis; Langer, Klaus (): ‘Apo E-modification of PLA-nanoparticles enhances cellular uptake into brain endothelium’. 10th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Glasgow, Vereinigtes Königreich, .
Honors
10.2016: PHOENIX Pharmazie Wissenschaftspreis – PHOENIX group
01.2016: Lehrpreis – Universität Münster
06.2008: Preis des Fachbereichs Biochemie, Chemie und Pharmazie für exzellente Lehre – Goethe-Universität, Frankfurt
01.2003: Adolf Messer Stiftungspreis – Adolf Messer Stiftung
Teaching
Lecture:
"Pharmazeutische Technologie einschließlich Medizinprodukte" (5th, 6th and 7th semester)
"Biopharmazie einschl. arzneiformenbezogener Pharmakokinetik" (5th, 6th and 7th semester)