MoRePaS 09
Model Reduction of Parametrized Systems
Alexander von Humbold-Haus, University of Münster
September 16, 2009 – September 18, 2009
You can find more information on the conference Website MoRePaS09
During this 3-day workshop, we want to bring together mathematicians and engineers working on model reduction of parametrized problems. In particular we aim at
Reduced Basis (RB) methods
for parametrized partial differential equations and
Parametrized Model Order Reduction
(PMOR) techniques for parametrized dynamical systems.
We especially encourage contributions dealing with the following (but as well further) aspects of parametrized model reduction:
- Parametrized Partial Differential Equations
- Parametrized Dynamical Systems
- Reduced Basis Methods
- Proper Orthogonal Decomposition
- Krylov-Subspace Methods (Padé, Moment matching, etc.)
- Error Esimation (a priori, a posteriori, effectivities, etc.)
- Basis Construction
- Preservation of System-Properties (Conservation, Stability, etc.)
- Approximation of Nonlinearities
- Interpolation Methods
- Robust Optimization
- Applications of Reduced Models (Control, Parameter Indentification, Inverse Problems, Hierarchical Models, etc.)
- Engineering Applications (CFD, MEMS, etc.)
Invited Speakers
Prof. Dr. Peter Benner (Chemnitz)
System-Theoretic and Interpolatory Methods for Parametric Model Reduction
http://www-user.tu-chemnitz.de/~benner/
Prof. Dr. Yvon Maday (Paris, France)
A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent P.D.E
http://www.ann.jussieu.fr/~maday/
Prof. Dr. Anthony T. Patera (Cambridge MA, USA)
Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations
http://meche.mit.edu/people/faculty/index.html?id=66
Prof. Dr. Einar M. Rønquist (Trondheim, Norway)
The hp-type reduced basis method for parametrized partial differential equations
http://www.math.ntnu.no/~ronquist/
Dr. Gianluigi Rozza (Lausanne, Switzerland)
Reduced basis method for shape design, parametrization and optimization
http://people.epfl.ch/gianluigi.rozza
Dr. Tatjana Stykel (Berlin)
Model reduction of differential-algebraic equations: algorithms and applications
http://www.math.tu-berlin.de/~stykel/
Prof. Dr. Stefan Volkwein (Konstanz)
POD a-posteriori error estimates for optimal control problems
http://www.math.uni-konstanz.de/numerik/personen/volkwein/
Prof. Dr. Danny C. Sorensen (Houston TX, USA)
Discrete Empirical Interpolation for Nonlinear Model Reduction