Vice Dean

Prof. Dr. Iris Finkemeier
© Uni MS

Finkemeier, Iris, Prof. Dr rer. nat.
Universität Münster
Dekanat des Fachbereichs Biologie
Schlossplatz 4
D-48149 Münster
Tel. +49 (0)251 / 83-2 30 12
dekanat.bio@uni-muenster.de

Wissenschaftlicher Werdegang
Professor, Plant Physiology, Institute for Plant Biology and Biotechnology, 2015 - present
Research Group Leader, Plant Proteomics, Max-Planck-Institute for Plant Breeding Research, Cologne, 2013-2015
Habilitation in Botany, LMU Munich, 2014
Emmy Noether Research Group Leader, Ludwig Maximilians University Munich, 2010-2013
Junior Research Fellow for Biology, Christ Church College, University of Oxford, 2007 – 2011
Feodor-Lynen Research Fellow, Department of Plant Sciences, University of Oxford, 2006 – 2009
Postdoctoral Researcher, Bielefeld University, 2005
PhD in Plant Physiology and Biochemistry, Bielefeld University, 2005
Diploma (equ. to MSc) in Biology, Bielefeld University, 2001


Lehrschwerpunkte
- Plant Physiology and Biochemistry
- Plant Proteomics

Forschungsschwerpunkte
- Mitochondria and Chloroplasts
- Adaptation to abiotic stress
- Metabolite and energy signalling
- Post-translational modifications
- Metabolic pathways
- Plant proteomics

Ausgewählte Projekte
- Exploring the role of lysine acetylation in the regulation of plant metabolism
- Retrograde regulation of plant organellar functions

Publications

  • , , , , and . . “The interplay of post‐translational protein modifications in Arabidopsis leaves during photosynthesis induction.The Plant journal, 116 (4): 11721193. doi: 10.1111/tpj.16406.
  • , , , et al. . “A bi-kinase module sensitizes and potentiates plant immune signaling.Science advances, 11 (4): eadt9804eadt9804. doi: 10.1126/sciadv.adt9804.
  • , , , et al. . “The interaction networks of small rubber particle proteins in the latex of <i>Taraxacum koksaghyz</i> reveal diverse functions in stress responses and secondary metabolism.Frontiers in Plant Science, 15: 14987371498737. doi: 10.3389/fpls.2024.1498737.
  • , , , , and . . “Coordinated metabolic adaptation of Arabidopsis thaliana to high light.The Plant journal, n/a doi: 10.1111/tpj.16992 .
  • , , , et al. . “Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation.Nature Chemistry, 2023 doi: 10.1038/s41557-023-01388-7.
  • , , , et al. . “Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex.Plant Physiology, 2024 doi: 10.1093/plphys/kiae200.
  • , , , and . . “Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.Redox Biology, 2024 doi: 10.1016/j.redox.2024.103141.
  • , , , , and . . “Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase.Physiologia Plantarum, 176 (3) doi: 10.1111/ppl.14340.
  • , , , and . “Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.Methods in Molecular Biology, 2832: 99113. doi: 10.1007/978-1-0716-3973-3_7.
  • , , , et al. . “Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.Molecular and Cellular Proteomics, 23 (11) 100845. doi: 10.1016/j.mcpro.2024.100845.
  • , , , et al. . “The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensable for state transitions.Molecular and Cellular Proteomics, 23 (11) 100850. doi: 10.1016/j.mcpro.2024.100850.
  • , , , , , and . . “The kinase NEK6 positively regulates LSD1 activity and accumulation in local chromatin sub-compartments.Communications biology, 7 (1) 1483. doi: 10.1038/s42003-024-07199-x.
  • , , , et al. . “The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism.Frontiers in Plant Science, 15 1498737. doi: 10.3389/fpls.2024.1498737.
  • , , , and . . “Multilayered Regulation of Plastids and Mitochondria.Plant and Cell Physiology, 64 (4): 473476. doi: 10.1093/pcp/pcae036.
  • , , , and . . “Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.The Plant cell, 34 doi: 10.1093/plcell/koac237.
  • , , , et al. . “Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis.Plant Physiology, 2023 doi: 10.1093/plphys/kiad446.
  • , , , et al. . “Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.New Phytologist, 237 (1): 160176. doi: 10.1111/nph.18534.
  • , , , , and . “Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.Methods in Enzymology, 684: 209252. doi: 10.1016/bs.mie.2022.09.005.
  • , , , et al. . “Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves.The Plant journal, 115 (1): 275292. doi: 10.1111/tpj.16206.
  • , , , et al. . “Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.New Phytologist, 2022 doi: 10.1111/nph.18534.
  • , , , et al. . “Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation.New Phytologist, 238 (1) doi: 10.1111/nph.18657.
  • , , , et al. . “Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle.Biology Letters, 19 (11) doi: 10.1098/rsbl.2023.0322.
  • , , , et al. . “Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis.Plant and Cell Physiology, 64 (5): 549563. doi: 10.1093/pcp/pcad017.
  • , , , , and . . “Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.Methods in Molecular Biology, 2363: 215234. doi: 10.1007/978-1-0716-1653-6_16.
  • . . “Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum.Frontiers in Plant Science, 13 909624. doi: 10.3389/fpls.2022.909624.
  • , , , et al. . “Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants.The Plant journal, 109 (1): 92111. doi: 10.1111/tpj.15556.
  • , , , , , and . “ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation.Plant Physiology, 189 (2): 666678. doi: 10.1093/plphys/kiac096.
  • , , , et al. . “Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas.The Plant journal, 109 (1): 261277. doi: 10.1111/tpj.15555.
  • , , , , , and . “Editorial: Plant protein termini: Their generation, modification and function.Frontiers in Plant Science, 13 doi: 10.3389/fpls.2022.1040392.
  • , , , and . “Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.The Plant cell, 34 (11): 46234640. doi: 10.1093/plcell/koac237.
  • , , , , , and . “Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.ChemBioChem, 23 (17) doi: 10.1002/cbic.202200255.
  • , , , et al. . “Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.The Plant journal, 111 (6): 17801800. doi: 10.1111/tpj.15924.
  • , , , , and . “Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.Methods in Molecular Biology, 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16.
  • , , , et al. . “Dynamic light‐ and acetate‐dependent regulation of the proteome and lysine acetylome of Chlamydomonas.The Plant journal, 109 (1): 261277. doi: 10.1111/tpj.15555.
  • , , , et al. . “Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.The Plant journal, 111 (6): 17801800. doi: 10.1111/tpj.15924.
  • , , , et al. . “Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling.Molecular Plant, 15 (4): 651670. doi: 10.1016/j.molp.2021.11.006.
  • , , , , , and . . “Investigating Peptide‐Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N‐Terminal and Lysine Acetyltransferases.ChemBioChem, 23 doi: 10.1002/cbic.202200255.
  • , , , et al. . “Functional characterization of protonantiport regulation in the thylakoid membrane.Plant Physiology, 187 doi: 10.1093/plphys/kiab135.
  • , , , et al. . “Functional characterization of proton antiport regulation in the thylakoid membrane.Plant Physiology, 187 (4): 22092229. doi: 10.1093/plphys/kiab135.
  • , , , et al. . “Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity.Nature Communications, 12 (1) doi: 10.1038/s41467-021-23614-x.
  • , , , , , and . “Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.BBA - Bioenergetics, 1862 (8) doi: 10.1016/j.bbabio.2021.148443.
  • , , , et al. . “The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.International Journal of Biological Macromolecules, 193: 13321339. doi: 10.1016/j.ijbiomac.2021.10.192.
  • , , , et al. . “The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry.Nucleic Acids Research, 49 (1): 400415. doi: 10.1093/nar/gkaa1192.
  • , , , et al. . “Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis.Molecular Plant, 14 (7): 11041118. doi: 10.1016/j.molp.2021.03.023.
  • , , , , , and . “Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.BBA - Bioenergetics, 1862 (8) doi: 10.1016/j.bbabio.2021.148443.
  • , , , et al. . “The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.International Journal of Biological Macromolecules, 193: 13321339. doi: 10.1016/j.ijbiomac.2021.10.192.
  • , , , et al. . “Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.Molecular Systems Biology, 16 (7): e9464. doi: 10.15252/msb.20209464.
  • , , , et al. . “Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics.The Plant journal, 1 doi: 10.1111/tpj.14534.
  • , , , et al. . “NAA50 is an enzymatically active Nα-acetyltransferase that is crucial for development and regulation of stress responses.Plant Physiology, 183 (4): 15021516. doi: 10.1104/pp.20.00222.
  • , , , et al. . “Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination.Proceedings of the National Academy of Sciences of the United States of America, 117 (1): 741751. doi: 10.1073/pnas.1910501117.
  • , , , et al. . “An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in Barley.Plant Physiology, 183 (3): 10881109. doi: 10.1104/pp.20.00087.
  • , , , et al. . “Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII.Photosynthesis Research, 145 (1): 1530. doi: 10.1007/s11120-020-00711-4.
  • , , , et al. . “Multidimensional gene regulatory landscape of a bacterial pathogen in plants.Nature plants, 6 (7): 883896. doi: 10.1038/s41477-020-0690-7.
  • , , , et al. . “NAA50 is an enzymatically active Na-acetyltransferase that is crucial for development and regulation of stress responses1[OPEN].Plant Physiology, 183 (4): 15021516. doi: 10.1104/pp.20.00222.
  • , , , et al. . “The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response.New Phytologist, 228 (2): 554569. doi: 10.1111/nph.16747.
  • , , , , and . “The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features.Photosynthesis Research, 145 (1): 4354. doi: 10.1007/s11120-019-00700-2.
  • , , , , and . “Comparative proteome and metabolome analyses of latex-exuding and non-exuding Taraxacum koksaghyz roots provide insights into laticifer biology.Journal of Experimental Botany, 71 (4): 12781293. doi: 10.1093/jxb/erz512.
  • , , and . “High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.Methods in Molecular Biology, 2139: 241256. doi: 10.1007/978-1-0716-0528-8_18.
  • , , and . “A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification.Methods in Molecular Biology, 2139: 257271. doi: 10.1007/978-1-0716-0528-8_19.
  • , , , , and . “Peptide-Based 2-Aminophenylamide Probes for Targeting Endogenous Class I Histone Deacetylase Complexes.ChemBioChem, 20 (24): 30013005. doi: 10.1002/cbic.201900339.
  • , , , et al. . “Uncovering mechanisms of rubber biosynthesis in Taraxacum koksaghyz – role of cis-prenyltransferase-like 1 protein.The Plant journal, 100 (3): 591609. doi: 10.1111/tpj.14471.
  • , , , et al. . “In vivo evidence for a regulatory role of phosphorylation of Arabidopsis Rubisco activase at the Thr78 site.Proceedings of the National Academy of Sciences of the United States of America, 116 (37): 1872318731. doi: 10.1073/pnas.1812916116.
  • , , , et al. . “A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves.Journal of Proteomics, 196: 120130. doi: 10.1016/j.jprot.2018.04.015.
  • , , , et al. . “A golgi-released subpopulation of the trans-golgi network mediates protein secretion in arabidopsis.Plant Physiology, 179 (2): 519532. doi: 10.1104/pp.18.01228.
  • , , , et al. . “Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves.Plant, Cell and Environment, 2018 (null) doi: 10.1111/pce.13100.
  • , and . . “Mitochondrial regulation in the photosynthetic cell: principles and concepts.” in Annual Plant Reviews: Plant Mitochondria, edited by Logan DC. New York City: John Wiley & Sons.
  • , , , , , and . “Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity.The Plant journal, 96 (3): 487502. doi: 10.1111/tpj.14043.
  • , , , et al. . “Label-free quantitative proteome data associated with MSP1 and flg22 induced signaling in rice leaves.Data in Brief, 20: 204209. doi: 10.1016/j.dib.2018.07.063.
  • , , , et al. . “Chloroplast acetyltransferase NSI is required for state transitions in arabidopsis Thaliana.The Plant cell, 30 (8): 16951709. doi: 10.1105/tpc.18.00155.
  • , , , , and . “Genes for seed longevity in barley identified by genomic analysis on near isogenic lines.Plant, Cell and Environment, 41 (8): 18951911. doi: 10.1111/pce.13330.
  • , , , et al. . “Beyond histones: New substrate proteins of lysine deacetylases in arabidopsis nuclei.Frontiers in Plant Science, 9 461. doi: 10.3389/fpls.2018.00461.
  • , , , et al. . “A Multi-Omics Analysis of Glycine max Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment.Proteomics, 18 (7) 1700366. doi: 10.1002/pmic.201700366.
  • , , , et al. . “Lysine acetylation in mitochondria: From inventory to function.Mitochondrion, 33 (null): 5871. doi: 10.1016/j.mito.2016.07.012.
  • , , , et al. . “Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis.Molecular Systems Biology, 13 (10) doi: 10.15252/msb.20177819.
  • . “Identification of the missing mitochondrial methyltransferase of citrate synthase.FEBS Letters, 591 (12): 16531656. doi: 10.1002/1873-3468.12692.
  • , , , , , and . “Dimethyl-labeling-based quantification of the lysine acetylome and proteome of plants.” in Photorespiration, Methods in Molecular Biology , Vol.1653 of Methods in Molecular Biology, edited by A. Fernie, H. Bauwe and A. Weber. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-7225-8_5.
  • , , , et al. . “DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy /631/449/2679/2683 /631/449/2653 article.Nature Communications, 8 (1) doi: 10.1038/s41467-017-00113-6.
  • , , , , , and . “Obligate biotroph pathogens of the genus albugo are better adapted to active host defense compared to niche competitors.Frontiers in Plant Science, 7 (null) doi: 10.3389/fpls.2016.00820.
  • , , , , , and . “Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy.Plant Physiology, 171 (4): 26592670. doi: 10.1104/pp.16.00525.
  • , , , , , and . “Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.Journal of Peptide Science, 22 (5): 352359. doi: 10.1002/psc.2875.
  • , , , , and . “The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization.Molecular Microbiology, 102 (6): 951974. doi: 10.1111/mmi.13528.
  • , , , et al. . “Interrogating substrate selectivity and composition of endogenous histone deacetylase complexes with chemical probes.Angewandte Chemie International Edition, 55 (3): 11921195. doi: 10.1002/anie.201508174.
  • , , and . “Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.” in Plant Mitochondria, Vol.1305 of Methods in Molecular Biology, edited by Whelan James and W.Murcha Monika. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-2639-8_7.
  • , , and . “Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.” in Plant Mitochondria: Methods and Protocols, Vol.null , edited by Humana MiMB. Heidelberg: Springer. doi: 10.1007/978-1-4939-2639-8_7.
  • , , , et al. . “The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in arabidopsis.The Plant cell, 27 (11): 31903212. doi: 10.1105/tpc.15.00509.
  • , , , et al. . “The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism.Plant Physiology, 164 (3): 14011414. doi: 10.1104/pp.113.232496.
  • , , , , , and . “Redox regulation of Arabidopsis mitochondrial citrate synthase.Molecular Plant, 7 (1): 156169.
  • , , , et al. . “Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.Molecular Plant, 7 (7): 11671190. doi: 10.1093/mp/ssu042.
  • , , , et al. . “Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling.Molecular Plant, 7 (7): 12111227. doi: 10.1093/mp/ssu034.
  • , , , et al. . “FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.Plant Physiology, 166 (2): 808828. doi: 10.1104/pp.114.243824.
  • , , , , and . “The mitochondrial lysine acetylome of Arabidopsis.Mitochondrion, 19 (null): 252260. doi: 10.1016/j.mito.2014.03.004.
  • , , , et al. . “The life of plant mitochondrial complex I.Mitochondrion, 19 (null): 295313. doi: 10.1016/j.mito.2014.02.006.
  • , and . “Protein modification. Lysine acetylation: A well-known protein modification in new light.BIOspektrum, 19 (7): 810812. doi: 10.1007/s12268-013-0392-z.
  • , and . “Mitochondrial energy and redox signaling in plants.Antioxidants and Redox Signaling, 18 (16): 21222144. doi: 10.1089/ars.2012.5104.
  • , , , et al. . “Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in arabidopsis leaves.Plant Physiology, 162 (1): 239253. doi: 10.1104/pp.113.214114.
  • , and . “Plant mitochondrial retrograde signaling: Post-translational modifications enter the stage.Frontiers in Plant Science, 3 (null) doi: 10.3389/fpls.2012.00253.
  • , , , and . “The impact of impaired mitochondrial function on retrograde signalling: A meta-analysis of transcriptomic responses.Journal of Experimental Botany, 63 (4): 17351750. doi: 10.1093/jxb/err374.
  • , , , , and . “Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis.Plant Physiology, 155 (4): 17791790. doi: 10.1104/pp.110.171595.
  • , and . . “Plant Chloroplasts and Other Plastids.eLS, na
  • , and . . “The role of malate in plant homeostasis.F1000 Biology Reports, I (47)
  • , , , et al. . “Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis.Plant Physiology, 147 (1): 101114. doi: 10.1104/pp.107.113613.
  • , , , et al. . “S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.The Plant cell, 19 (12): 41204130. doi: 10.1105/tpc.107.055061.
  • , , , , , and . “Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.Plant Physiology and Biochemistry, 45 (null): 729739. doi: 10.1016/j.plaphy.2007.07.017.
  • , , , et al. . “The mitochondrial type II peroxiredoxin from poplar.Physiologia Plantarum, 129 (1): 196206. doi: 10.1111/j.1399-3054.2006.00785.x.
  • , and . “Signalling in primary metabolism.New Phytologist, 171 (3): 445447. doi: 10.1111/j.1469-8137.2006.01805.x.
  • , , , et al. . “Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.FEBS Letters, 580 (5): 12691276. doi: 10.1016/j.febslet.2006.01.043.
  • , , , et al. . “Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.The Plant journal, 45 (6): 968981. doi: 10.1111/j.1365-313X.2006.02665.x.
  • , , , et al. . “The Role of Peroxiredoxins in Oxygenic Photosynthesis of Cyanobacteria and Higher Plants: Peroxide Detoxification or Redox Sensing?” in Photoprotection, photoinhibition, gene regulation, and environment, edited by B Demmig-Adams, W Adams and A Mattoo. Dordrecht: Kluwer Academic.
  • , , , et al. . “The function of peroxiredoxins in plant organelle redox metabolism.Journal of Experimental Botany, 57 (8): 16971709. doi: 10.1093/jxb/erj160.
  • , , , et al. . “Identification of plant glutaredoxin targets.Antioxidants and Redox Signaling, 7 (null): 919929. doi: 10.1089/ars.2005.7.919.
  • , , , , , and . “The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.Journal of Biological Chemistry, 280 (13): 1216812180. doi: 10.1074/jbc.M413189200.
  • , , , , and . “The antioxidant status of photosynthesizing leaves under nutrient deficiency: Redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana.Physiologia Plantarum, 120 (1): 6373. doi: 10.1111/j.0031-9317.2004.0272.x.
  • , , , , , and . “Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status.Plant Science, 166 (5): 12871295. doi: 10.1016/j.plantsci.2004.01.006.
  • , , , and . “Salicylic acid alleviates the cadmium toxicity in barley seedlings.Plant Physiology, 132 (1): 272281. doi: 10.1104/pp.102.018457.
  • , , , et al. . “Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.Plant Physiology, 131 (1): 317325. doi: 10.1104/pp.010017.
  • , , , , , and . “Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare.Plant, Cell and Environment, 26 (6): 821833. doi: 10.1046/j.1365-3040.2003.01014.x.