I studied chemistry and biochemistry and obtained my PhD in the field of chemical biology. I have been working in the field of mass spectrometry-based proteomics for several years now and have analysed samples from various organisms and origins. During a postdoctoral stay in Stockholm (Sweden), I was working on chemical and clinical proteomics, before joining the plant physiology and proteomics group at the University of Münster. My current research interest focuses on the analysis of post-translational modifications in plants to understand their function in stress response and other biological processes.
Forschungsartikel (Zeitschriften)
- . . ‘Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.’ Redox Biology 2024. doi: 10.1016/j.redox.2024.103141.
- . . ‘Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase.’ Physiologia Plantarum 176, Nr. 3. doi: 10.1111/ppl.14340.
- ‘Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.’ Methods in Molecular Biology 2832: 99–113. doi: 10.1007/978-1-0716-3973-3_7. .
- . . ‘Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.’ Molecular and Cellular Proteomics 2024. doi: 10.1016/j.mcpro.2024.100845.
- . . ‘The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensable for state transitions.’ Molecular and Cellular Proteomics . doi: 10.1016/j.mcpro.2024.100850. [unknown status]
- . . ‘Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex.’ Plant Physiology 2024. doi: 10.1093/plphys/kiae200.
- . . ‘The interplay of post‐translational protein modifications in Arabidopsis leaves during photosynthesis induction.’ The Plant journal 116, Nr. 4: 1172–1193. doi: 10.1111/tpj.16406.
- . . ‘Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation.’ Nature Chemistry 2023. doi: 10.1038/s41557-023-01388-7.
- ‘Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.’ New Phytologist 237, Nr. 1: 160–176. doi: 10.1111/nph.18534. .
- ‘Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.’ Methods in Enzymology 684: 209–252. doi: 10.1016/bs.mie.2022.09.005. .
- ‘Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves.’ The Plant journal 115, Nr. 1: 275–292. doi: 10.1111/tpj.16206. .
- . . ‘Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.’ New Phytologist 2022. doi: 10.1111/nph.18534.
- . . ‘Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation.’ New Phytologist 238, Nr. 1. doi: 10.1111/nph.18657.
- . . ‘Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle.’ Biology Letters 19, Nr. 11. doi: 10.1098/rsbl.2023.0322.
- . . ‘Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis.’ Plant Physiology 2023. doi: 10.1093/plphys/kiad446.
- . . ‘Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.’ The Plant cell 34. doi: 10.1093/plcell/koac237.
- . . ‘Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.’ Methods in Molecular Biology 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16.
- . . ‘Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants.’ The Plant journal 109, Nr. 1: 92–111. doi: 10.1111/tpj.15556.
- ‘Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas.’ The Plant journal 109, Nr. 1: 261–277. doi: 10.1111/tpj.15555. .
- ‘Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.’ The Plant cell 34, Nr. 11: 4623–4640. doi: 10.1093/plcell/koac237. .
- ‘Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.’ ChemBioChem 23, Nr. 17. doi: 10.1002/cbic.202200255. .
- ‘Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.’ The Plant journal 111, Nr. 6: 1780–1800. doi: 10.1111/tpj.15924. .
- ‘Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.’ Methods in Molecular Biology 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16. .
- . . ‘Dynamic light‐ and acetate‐dependent regulation of the proteome and lysine acetylome of Chlamydomonas.’ The Plant journal 109, Nr. 1: 261–277. doi: 10.1111/tpj.15555.
- ‘Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.’ The Plant journal 111, Nr. 6: 1780–1800. doi: 10.1111/tpj.15924. .
- ‘Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling.’ Molecular Plant 15, Nr. 4: 651–670. doi: 10.1016/j.molp.2021.11.006. .
- . . ‘Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum.’ Frontiers in Plant Science 13: 909624. doi: 10.3389/fpls.2022.909624.
- . . ‘Investigating Peptide‐Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N‐Terminal and Lysine Acetyltransferases.’ ChemBioChem 23. doi: 10.1002/cbic.202200255.
- . . ‘Functional characterization of protonantiport regulation in the thylakoid membrane.’ Plant Physiology 187. doi: 10.1093/plphys/kiab135.
- ‘Functional characterization of proton antiport regulation in the thylakoid membrane.’ Plant Physiology 187, Nr. 4: 2209–2229. doi: 10.1093/plphys/kiab135. .
- ‘Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.’ Biochimica et Biophysica Acta - Bioenergetics 1862, Nr. 8. doi: 10.1016/j.bbabio.2021.148443. .
- ‘The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.’ International Journal of Biological Macromolecules 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192. .
- ‘Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound.’ Cell Death and Disease 12, Nr. 10. doi: 10.1038/s41419-021-04191-9. .
- ‘Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.’ Biochimica et Biophysica Acta - Bioenergetics 1862, Nr. 8. doi: 10.1016/j.bbabio.2021.148443. .
- ‘The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.’ International Journal of Biological Macromolecules 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192. .
- . . ‘NAA50 is an enzymatically active Nα-acetyltransferase that is crucial for development and regulation of stress responses.’ Plant Physiology 183, Nr. 4: 1502–1516. doi: 10.1104/pp.20.00222.
- ‘NAA50 is an enzymatically active Na-acetyltransferase that is crucial for development and regulation of stress responses1[OPEN].’ Plant Physiology 183, Nr. 4: 1502–1516. doi: 10.1104/pp.20.00222. .
- ‘Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells.’ Cell Reports 31, Nr. 12. doi: 10.1016/j.celrep.2020.107811. .
- . . ‘Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.’ Molecular Systems Biology 16, Nr. 7: e9464. doi: 10.15252/msb.20209464.
- ‘A Chemical Proteomic Analysis of Illudin-Interacting Proteins.’ Chemistry - A European Journal 25, Nr. 54: 12644–12651. doi: 10.1002/chem.201902919. .
- . . ‘Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens.’ Nature 563, Nr. 7731: 416–420. doi: 10.1038/s41586-018-0653-6.
- ‘Driving Protein Conformational Changes with Light: Photoinduced Structural Rearrangement in a Heterobimetallic Oxidase.’ Journal of the American Chemical Society 140, Nr. 4: 1471–1480. doi: 10.1021/jacs.7b11966. .
- . . ‘A small molecule inhibits protein disulfide isomerase and triggers the chemosensitization of cancer cells.’ Angewandte Chemie International Edition 53, Nr. 47: 12960–12965. doi: 10.1002/anie.201406577.
- . . ‘Naturstoffe und ihre zellulären Angriffsziele.’ Nachrichten aus der Chemie 62, Nr. 7: 743–747.
- . . ‘Eine niedermolekulare Verbindung inhibiert die Proteindisulfidisomerase und sensibilisiert Krebszellen für die Chemotherapie.’ Angewandte Chemie 126, Nr. 47: 13174–13179.
- „Natural substances and their cellular targets Naturstoffe und ihre zellulären Angriffsziele.“ Nachrichten aus der Chemie 62, Nr. 7: 743–747. doi: 10.1002/nadc.201490249. .
- . . ‘Pretubulysin derived probes as novel tools for monitoring the microtubule network via activity-based protein profiling and fluorescence microscopy.’ Molecular BioSystems 8, Nr. 8: 2067–2075. doi: 10.1039/c2mb25144b.
- . . ‘Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells.’ Journal of the American Chemical Society 133, Nr. 31: 12144–12153. doi: 10.1021/ja2039979.
- . . ‘A new ground state single electron donor for excess electron transfer studies in DNA.’ Chemical communications 24, Nr. 24: 3583–3584. doi: 10.1039/b906180k.