Publikationen
- Balcke, Gerd Ulrich, Vahabi, Khabat, Giese, Jonas, Finkemeier, Iris, und Tissier, Alain. . „Coordinated metabolic adaptation of Arabidopsis thaliana to high light.“ The Plant journal, Nr. n/a doi: 10.1111/tpj.16992 .
- Armbruster, Laura, Pożoga, Marlena, Wu, Zhongshou, u. a. . „Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex.“ Plant Physiology, Nr. 2024 doi: 10.1093/plphys/kiae200.
- Arimura, Shin-Ichi, Finkemeier, Iris, Kühn, Kristina, und Takenaka, Mizuki. . „Multilayered Regulation of Plastids and Mitochondria.“ Plant and Cell Physiology, Nr. 64 (4): 473–476. doi: 10.1093/pcp/pcae036.
- Vogelsang, Lara, Eirich, Jürgen, Finkemeier, Iris, und Dietz, Karl-Josef. . „Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.“ Redox Biology, Nr. 2024 doi: 10.1016/j.redox.2024.103141.
- Cosse, Maike, Rehders, Tanja, Eirich, Juergen, Finkemeier, Iris, und Selinski, Jennifer. . „Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase.“ Physiologia Plantarum, Nr. 176 (3) doi: 10.1111/ppl.14340.
- Vogelsang, L., Eirich, J., Finkemeier, I., und Dietz, K.-J. . „Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.“ Methods in Molecular Biology, Nr. 2832: 99–113. doi: 10.1007/978-1-0716-3973-3_7.
- Eirich, Jürgen, Boyer, Jean-Baptiste, Armbruster, Laura, u. a. . „Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.“ Molecular and Cellular Proteomics, Nr. 23 (11) 100845. doi: 10.1016/j.mcpro.2024.100845.
- Brünje, Annika, Füßl, Magdalena, Eirich, Jürgen, u. a. . „The plastidial protein acetyltransferase GNAT1 forms a complex with GNAT2, yet their interaction is dispensable for state transitions.“ Molecular and Cellular Proteomics, Nr. 23 (11) 100850. doi: 10.1016/j.mcpro.2024.100850.
- Knodel, Franziska, Eirich, Jürgen, Pinter, Sabine, Eisler, Stephan A., Finkemeier, Iris, und Rathert, Philipp. . „The kinase NEK6 positively regulates LSD1 activity and accumulation in local chromatin sub-compartments.“ Communications biology, Nr. 7 (1) 1483. doi: 10.1038/s42003-024-07199-x.
- Wolters, Silva Melissa, Laibach, Natalie, Riekötter, Jenny, u. a. . „The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism.“ Frontiers in Plant Science, Nr. 15 1498737. doi: 10.3389/fpls.2024.1498737.
- Giese, Jonas Eirich Jürgen, Walther, Dirk Zhang Youjun, Lassowskat, Ines Fernie R. Alisdair, Elsässer, Marlene Maurino G. Veronica, und Schwarzländer, Markus Finkemeier Iris. . „The interplay of post‐translational protein modifications in Arabidopsis leaves during photosynthesis induction.“ The Plant journal, Nr. 116 (4): 1172–1193. doi: 10.1111/tpj.16406.
- Hartmann, Philipp, Bohdan, Kostiantyn, Hommrich, Moritz, u. a. . „Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation.“ Nature Chemistry, Nr. 2023 doi: 10.1038/s41557-023-01388-7.
- Keller, JM, Frieboes, MJ, Jödecke, L, u. a. . „Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis.“ Plant Physiology, Nr. 2023 doi: 10.1093/plphys/kiad446.
- Ivanauskaite, A., Rantala, M., Laihonen, L., u. a. . „Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis.“ Plant and Cell Physiology, Nr. 64 (5): 549–563. doi: 10.1093/pcp/pcad017.
- Eirich, J., Köhl, K., Jahns, P., u. a. . „Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.“ New Phytologist, Nr. 237 (1): 160–176. doi: 10.1111/nph.18534.
- Eirich, J., Sindlinger, J., Schön, S., Schwarzer, D., und Finkemeier, I. . „Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.“ Methods in Enzymology, Nr. 684: 209–252. doi: 10.1016/bs.mie.2022.09.005.
- Tilak, P., Kotnik, F., Née, G., u. a. . „Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves.“ The Plant journal, Nr. 115 (1): 275–292. doi: 10.1111/tpj.16206.
- Bismarck, von Thekla, Korkmaz, Kübra, Ruß, Jeremy, u. a. . „Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.“ New Phytologist, Nr. 2022 doi: 10.1111/nph.18534.
- Jethva, Jay, Lichtenauer, Sophie, Schmidt-Schippers, Romy, u. a. . „Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation.“ New Phytologist, Nr. 238 (1) doi: 10.1111/nph.18657.
- Länger, Marie Zoe, Baur, Moritz, Korša, Ana, u. a. . „Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle.“ Biology Letters, Nr. 19 (11) doi: 10.1098/rsbl.2023.0322.
- Sinha, Neha, Eirich, Jürgen, Finkemeier, Iris, und Grimm, Bernhard. . „Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.“ The Plant cell, Nr. 34 doi: 10.1093/plcell/koac237.
- Giese, J, Eirich, J, Post, F, Schwarzländer, M, und Finkemeier, I. . „Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.“ Methods in Molecular Biology, Nr. 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16.
- Linnenbrügger, L; Doering, L; Lansing, H; Fischer, K; Eirich, J; Finkemeier, I; von Schaewen, A. . „Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum.“ Frontiers in Plant Science, Nr. 13 909624. doi: 10.3389/fpls.2022.909624.
- Dr., Julia Sindlinger, Stefan, Schön, Dr., Jürgen Eirich, Dr., Sören Kirchgäßner, Prof. Dr., Iris Finkemeier, und Prof. Dr., Dirk Schwarzer. . „Investigating Peptide‐Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N‐Terminal and Lysine Acetyltransferases.“ ChemBioChem, Nr. 23 doi: 10.1002/cbic.202200255.
- Balparda, M, Elsässer, M, Badia, MB, u. a. . „Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants.“ The Plant journal, Nr. 109 (1): 92–111. doi: 10.1111/tpj.15556.
- Lynch, T., Née, G., Chu, A., Krüger, T., Finkemeier, I., und Finkelstein, R.R. . „ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation.“ Plant Physiology, Nr. 189 (2): 666–678. doi: 10.1093/plphys/kiac096.
- Leister, D., Kramer, K., Finkemeier, I., u. a. . „Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas.“ The Plant journal, Nr. 109 (1): 261–277. doi: 10.1111/tpj.15555.
- Van Breusegem, F., Meinnel, T., Willems, P., Huesgen, P.F., Finkemeier, I., und Graciet, E. . „Editorial: Plant protein termini: Their generation, modification and function.“ Frontiers in Plant Science, Nr. 13 doi: 10.3389/fpls.2022.1040392.
- Sinha, N., Eirich, J., Finkemeier, I., und Grimm, B. . „Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.“ The Plant cell, Nr. 34 (11): 4623–4640. doi: 10.1093/plcell/koac237.
- Sindlinger, J., Schön, S., Eirich, J., Kirchgäßner, S., Finkemeier, I., und Schwarzer, D. . „Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.“ ChemBioChem, Nr. 23 (17) doi: 10.1002/cbic.202200255.
- Nickelsen, J., Bohne, A.V., Neusius, D., u. a. . „Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.“ The Plant journal, Nr. 111 (6): 1780–1800. doi: 10.1111/tpj.15924.
- Giese, J., Eirich, J., Post, F., Schwarzländer, M., und Finkemeier, I. . „Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.“ Methods in Molecular Biology, Nr. 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16.
- Füßl, Magdalena, König, Ann-Christine, Eirich, Jürgen, u. a. . „Dynamic light‐ and acetate‐dependent regulation of the proteome and lysine acetylome of Chlamydomonas.“ The Plant journal, Nr. 109 (1): 261–277. doi: 10.1111/tpj.15555.
- Neusius, D., Kleinknecht, L., Teh, J.T., u. a. . „Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.“ The Plant journal, Nr. 111 (6): 1780–1800. doi: 10.1111/tpj.15924.
- Zhou, H., Zhang, F., Zhai, F., u. a. . „Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling.“ Molecular Plant, Nr. 15 (4): 651–670. doi: 10.1016/j.molp.2021.11.006.
- Uflewski, M, Mielke, S, Corre, GV, u. a. . „Functional characterization of protonantiport regulation in the thylakoid membrane.“ Plant Physiology, Nr. 187 doi: 10.1093/plphys/kiab135.
- Eirich, J., Skirycz, A., Schöttler, M.A., u. a. . „Functional characterization of proton antiport regulation in the thylakoid membrane.“ Plant Physiology, Nr. 187 (4): 2209–2229. doi: 10.1093/plphys/kiab135.
- Blanvillain-Baufumé, S., Rzemieniewski, J., Bautor, J., u. a. . „Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity.“ Nature Communications, Nr. 12 (1) doi: 10.1038/s41467-021-23614-x.
- Rugen, N., Schaarschmidt, F., Eirich, J., Finkemeier, I., Braun, H.P., und Eubel, H. . „Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.“ Biochimica et Biophysica Acta - Bioenergetics, Nr. 1862 (8) doi: 10.1016/j.bbabio.2021.148443.
- Rose, J., Müller, B., Groscurth, S., u. a. . „The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.“ International Journal of Biological Macromolecules, Nr. 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192.
- Ramundo, S., Mühlenbeck, J.S., Finkemeier, I., u. a. . „The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry.“ Nucleic Acids Research, Nr. 49 (1): 400–415. doi: 10.1093/nar/gkaa1192.
- Stitt, M., Daloso, D.M., Fernie, A.R., u. a. . „Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis.“ Molecular Plant, Nr. 14 (7): 1104–1118. doi: 10.1016/j.molp.2021.03.023.
- Rugen, N., Schaarschmidt, F., Eirich, J., Finkemeier, I., Braun, H.P., und Eubel, H. . „Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.“ Biochimica et Biophysica Acta - Bioenergetics, Nr. 1862 (8) doi: 10.1016/j.bbabio.2021.148443.
- Rose, J., Müller, B., Groscurth, S., u. a. . „The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.“ International Journal of Biological Macromolecules, Nr. 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192.
- Bienvenut, WV, Brünje, A, Boyer, J, u. a. . „Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.“ Molecular Systems Biology, Nr. 16 (7): e9464. doi: 10.15252/msb.20209464.
- Fuchs, P, Rugen, N, Carrie, C, u. a. . „Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics.“ The Plant journal, Nr. 1 doi: 10.1111/tpj.14534.
- Armbruster, L, Linster, E, Boyer, J, u. a. . „NAA50 is an enzymatically active Nα-acetyltransferase that is crucial for development and regulation of stress responses.“ Plant Physiology, Nr. 183 (4): 1502–1516. doi: 10.1104/pp.20.00222.
- Nietzel, T, Mostertz, J, Ruberti, C, u. a. . „Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination.“ Proceedings of the National Academy of Sciences of the United States of America, Nr. 117 (1): 741–751. doi: 10.1073/pnas.1910501117.
- von Korff, M., Simon, R., Walla, A., u. a. . „An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in Barley.“ Plant Physiology, Nr. 183 (3): 1088–1109. doi: 10.1104/pp.20.00087.
- Mulo, P., Koskela, M.M., Brünje, A., u. a. . „Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII.“ Photosynthesis Research, Nr. 145 (1): 15–30. doi: 10.1007/s11120-020-00711-4.
- Tsuda, K., Nakagami, H., Nobori, T., u. a. . „Multidimensional gene regulatory landscape of a bacterial pathogen in plants.“ Nature plants, Nr. 6 (7): 883–896. doi: 10.1038/s41477-020-0690-7.
- Sinning, I., Hell, R., Giglione, C., u. a. . „NAA50 is an enzymatically active Na-acetyltransferase that is crucial for development and regulation of stress responses1[OPEN].“ Plant Physiology, Nr. 183 (4): 1502–1516. doi: 10.1104/pp.20.00222.
- Linster, E., Layer, D., Bienvenut, W.V., u. a. . „The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response.“ New Phytologist, Nr. 228 (2): 554–569. doi: 10.1111/nph.16747.
- Bölter, B., Mitterreiter, M.J., Schwenkert, S., Finkemeier, I., und Kunz, H.H. . „The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features.“ Photosynthesis Research, Nr. 145 (1): 43–54. doi: 10.1007/s11120-019-00700-2.
- Benninghaus, V.A.Van Deenen N. Müller B. Roelfs K.-U., Lassowskat, I., Finkemeier, I., Prüfer, D., und Gronover, C.S. . „Comparative proteome and metabolome analyses of latex-exuding and non-exuding Taraxacum koksaghyz roots provide insights into laticifer biology.“ Journal of Experimental Botany, Nr. 71 (4): 1278–1293. doi: 10.1093/jxb/erz512.
- Giese, J., Lassowskat, I., und Finkemeier, I. . „High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.“ Methods in Molecular Biology, Nr. 2139: 241–256. doi: 10.1007/978-1-0716-0528-8_18.
- Née, G., Tilak, P., und Finkemeier, I. . „A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification.“ Methods in Molecular Biology, Nr. 2139: 257–271. doi: 10.1007/978-1-0716-0528-8_19.
- Seidel, J., Meisinger, T., Sindlinger, J., Pieloch, P, und Finkemeier, I.Schwarzer D. . „Peptide-Based 2-Aminophenylamide Probes for Targeting Endogenous Class I Histone Deacetylase Complexes.“ ChemBioChem, Nr. 20 (24): 3001–3005. doi: 10.1002/cbic.201900339.
- Niephaus, E., Müller, B., van Deenen, N., u. a. . „Uncovering mechanisms of rubber biosynthesis in Taraxacum koksaghyz – role of cis-prenyltransferase-like 1 protein.“ The Plant journal, Nr. 100 (3): 591–609. doi: 10.1111/tpj.14471.
- Kim, S.Y., Harvey, C.M., Giese, J., u. a. . „In vivo evidence for a regulatory role of phosphorylation of Arabidopsis Rubisco activase at the Thr78 site.“ Proceedings of the National Academy of Sciences of the United States of America, Nr. 116 (37): 18723–18731. doi: 10.1073/pnas.1812916116.
- Meng, Q., Gupta, R., Min, C.W., u. a. . „A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves.“ Journal of Proteomics, Nr. 196: 120–130. doi: 10.1016/j.jprot.2018.04.015.
- Uemura, T., Nakano, R.T., Takagi, J., u. a. . „A golgi-released subpopulation of the trans-golgi network mediates protein secretion in arabidopsis.“ Plant Physiology, Nr. 179 (2): 519–532. doi: 10.1104/pp.18.01228.
- Zhou, H., Finkemeier, I., Guan, W., u. a. . „Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves.“ Plant, Cell and Environment, Nr. 2018 (null) doi: 10.1111/pce.13100.
- Finkemeier, I, und Schwarzländer, M. . „Mitochondrial regulation in the photosynthetic cell: principles and concepts.“ In Annual Plant Reviews: Plant Mitochondria, herausgegeben von Logan DC. New York City: John Wiley & Sons.
- Birkenbihl, R.P., Kracher, B., Ross, A., Kramer, K., Finkemeier, I., und Somssich, I.E. . „Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity.“ The Plant journal, Nr. 96 (3): 487–502. doi: 10.1111/tpj.14043.
- Meng, Q., Gupta, R., Min, C.W., u. a. . „Label-free quantitative proteome data associated with MSP1 and flg22 induced signaling in rice leaves.“ Data in Brief, Nr. 20: 204–209. doi: 10.1016/j.dib.2018.07.063.
- Koskela, M.M., Brünje, A., Ivanauskaite, A., u. a. . „Chloroplast acetyltransferase NSI is required for state transitions in arabidopsis Thaliana.“ The Plant cell, Nr. 30 (8): 1695–1709. doi: 10.1105/tpc.18.00155.
- Wozny, D., Kramer, K., Finkemeier, I., Acosta, i.F., und Koornneef, M. . „Genes for seed longevity in barley identified by genomic analysis on near isogenic lines.“ Plant, Cell and Environment, Nr. 41 (8): 1895–1911. doi: 10.1111/pce.13330.
- Füßl, M., Lassowskat, I., Née, G, u. a. . „Beyond histones: New substrate proteins of lysine deacetylases in arabidopsis nuclei.“ Frontiers in Plant Science, Nr. 9 461. doi: 10.3389/fpls.2018.00461.
- Gupta, R., Min, C.W., Kramer, K., u. a. . „A Multi-Omics Analysis of Glycine max Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment.“ Proteomics, Nr. 18 (7) 1700366. doi: 10.1002/pmic.201700366.
- Hosp, F., Lassowskat, I., Santoro, V., u. a. . „Lysine acetylation in mitochondria: From inventory to function.“ Mitochondrion, Nr. 33 (null): 58–71. doi: 10.1016/j.mito.2016.07.012.
- Hartl, M., Füßl, M., Boersema, P., u. a. . „Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis.“ Molecular Systems Biology, Nr. 13 (10) doi: 10.15252/msb.20177819.
- Finkemeier, I. . „Identification of the missing mitochondrial methyltransferase of citrate synthase.“ FEBS Letters, Nr. 591 (12): 1653–1656. doi: 10.1002/1873-3468.12692.
- Lassowskat, I., Hartl, M., Hosp, F., Boersema, P., Mann, M., und Finkemeier, I. . „Dimethyl-labeling-based quantification of the lysine acetylome and proteome of plants.“ In Photorespiration, Methods in Molecular Biology , Bd. 1653 aus Methods in Molecular Biology, herausgegeben von A. Fernie, H. Bauwe und A. Weber. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-7225-8_5.
- Née, G., Kramer, K., Nakabayashi, K., u. a. . „DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy /631/449/2679/2683 /631/449/2653 article.“ Nature Communications, Nr. 8 (1) doi: 10.1038/s41467-017-00113-6.
- Ruhe, J., Agler, M., Placzek, A., Kramer, K., Finkemeier, I., und Kemen, E. . „Obligate biotroph pathogens of the genus albugo are better adapted to active host defense compared to niche competitors.“ Frontiers in Plant Science, Nr. 7 (null) doi: 10.3389/fpls.2016.00820.
- Xiang, Y., Song, B., Née, G., Kramer, K., Finkemeier, I., und Soppe, W. . „Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy.“ Plant Physiology, Nr. 171 (4): 2659–2670. doi: 10.1104/pp.16.00525.
- Sindlinger, J., Bierlmeier, J., Geiger, L., Kramer, K., Finkemeier, I., und Schwarzer, D. . „Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.“ Journal of Peptide Science, Nr. 22 (5): 352–359. doi: 10.1002/psc.2875.
- Rösler, S., Kramer, K., Finkemeier, I., Humpf, H., und Tudzynski, B. . „The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization.“ Molecular Microbiology, Nr. 102 (6): 951–974. doi: 10.1111/mmi.13528.
- Dose, A., Sindlinger, J., Bierlmeier, J., u. a. . „Interrogating substrate selectivity and composition of endogenous histone deacetylase complexes with chemical probes.“ Angewandte Chemie International Edition, Nr. 55 (3): 1192–1195. doi: 10.1002/anie.201508174.
- Hartl, M., König, A., und Finkemeier, I. . „Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.“ In Plant Mitochondria, Bd. 1305 aus Methods in Molecular Biology, herausgegeben von Whelan James und W.Murcha Monika. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-2639-8_7.
- Hartl, M., König, A., und Finkemeier, I. . „Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.“ In Plant Mitochondria: Methods and Protocols, Bd. null , herausgegeben von Humana MiMB. Heidelberg: Springer. doi: 10.1007/978-1-4939-2639-8_7.
- Wagner, S., Behera, S., De Bortoli, S., u. a. . „The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in arabidopsis.“ The Plant cell, Nr. 27 (11): 3190–3212. doi: 10.1105/tpc.15.00509.
- König, A., Hartl, M., Boersema, P., Mann, M., und Finkemeier, I. . „The mitochondrial lysine acetylome of Arabidopsis.“ Mitochondrion, Nr. 19 (null): 252–260. doi: 10.1016/j.mito.2014.03.004.
- Braun, H., Binder, S., Brennicke, A., u. a. . „The life of plant mitochondrial complex I.“ Mitochondrion, Nr. 19 (null): 295–313. doi: 10.1016/j.mito.2014.02.006.
- König, A., Hartl, M., Pham, P., u. a. . „The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism.“ Plant Physiology, Nr. 164 (3): 1401–1414. doi: 10.1104/pp.113.232496.
- Schmidtmann, E., König, A., Orwat, A., Leister, D., Hartl, M., und Finkemeier, I. . „Redox regulation of Arabidopsis mitochondrial citrate synthase.“ Molecular Plant, Nr. 7 (1): 156–169.
- Gläßer, C., Haberer, G., Finkemeier, I., u. a. . „Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.“ Molecular Plant, Nr. 7 (7): 1167–1190. doi: 10.1093/mp/ssu042.
- Schlicke, H., Hartwig, A., Firtzlaff, V., u. a. . „Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling.“ Molecular Plant, Nr. 7 (7): 1211–1227. doi: 10.1093/mp/ssu034.
- El, Zawily A., Schwarzländer, M., Finkemeier, I., u. a. . „FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.“ Plant Physiology, Nr. 166 (2): 808–828. doi: 10.1104/pp.114.243824.
- Finkemeier, I., König, A., Heard, W., u. a. . „Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in arabidopsis leaves.“ Plant Physiology, Nr. 162 (1): 239–253. doi: 10.1104/pp.113.214114.
- Finkemeier, I., und Schwarzer, D. . „Protein modification. Lysine acetylation: A well-known protein modification in new light.“ BIOspektrum, Nr. 19 (7): 810–812. doi: 10.1007/s12268-013-0392-z.
- Schwarzländer, M., und Finkemeier, I. . „Mitochondrial energy and redox signaling in plants.“ Antioxidants and Redox Signaling, Nr. 18 (16): 2122–2144. doi: 10.1089/ars.2012.5104.
- Schwarzländer, M., König, A., Sweetlove, L., und Finkemeier, I. . „The impact of impaired mitochondrial function on retrograde signalling: A meta-analysis of transcriptomic responses.“ Journal of Experimental Botany, Nr. 63 (4): 1735–1750. doi: 10.1093/jxb/err374.
- Hartl, M., und Finkemeier, I. . „Plant mitochondrial retrograde signaling: Post-translational modifications enter the stage.“ Frontiers in Plant Science, Nr. 3 (null) doi: 10.3389/fpls.2012.00253.
- Finkemeier, I., Laxa, M., Miguet, L., Howden, A., und Sweetlove, L. . „Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis.“ Plant Physiology, Nr. 155 (4): 1779–1790. doi: 10.1104/pp.110.171595.
- Finkemeier, I, und Dario, L. . „Plant Chloroplasts and Other Plastids.“ eLS, Nr. na
- Finkemeier, I, und Sweetlove, LJ. . „The role of malate in plant homeostasis.“ F1000 Biology Reports, Nr. I (47)
- Morgan, M., Lehmann, M., Schwarzländer, M., u. a. . „Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis.“ Plant Physiology, Nr. 147 (1): 101–114. doi: 10.1104/pp.107.113613.
- Gama, F., Keech, O., Eymery, F., u. a. . „The mitochondrial type II peroxiredoxin from poplar.“ Physiologia Plantarum, Nr. 129 (1): 196–206. doi: 10.1111/j.1399-3054.2006.00785.x.
- Romero-Puertas, M., Laxa, M., Mattè, A., u. a. . „S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.“ The Plant cell, Nr. 19 (12): 4120–4130. doi: 10.1105/tpc.107.055061.
- Barranco-Medina, S., Krell, T., Finkemeier, I., Sevilla, F., Lázaro, J., und Dietz, K. . „Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.“ Plant Physiology and Biochemistry, Nr. 45 (null): 729–739. doi: 10.1016/j.plaphy.2007.07.017.
- Dietz, K.-J, Stork, T, Finkemeier, I, u. a. . „The Role of Peroxiredoxins in Oxygenic Photosynthesis of Cyanobacteria and Higher Plants: Peroxide Detoxification or Redox Sensing?“ In Photoprotection, photoinhibition, gene regulation, and environment, herausgegeben von B Demmig-Adams, W Adams und A Mattoo. Dordrecht: Kluwer Academic.
- Dietz, K., Jacob, S., Oelze, M., u. a. . „The function of peroxiredoxins in plant organelle redox metabolism.“ Journal of Experimental Botany, Nr. 57 (8): 1697–1709. doi: 10.1093/jxb/erj160.
- Finkemeier, I., und Sweetlove, L. . „Signalling in primary metabolism.“ New Phytologist, Nr. 171 (3): 445–447. doi: 10.1111/j.1469-8137.2006.01805.x.
- Groten, K., Dutilleul, C., Van Heerden, P., u. a. . „Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.“ FEBS Letters, Nr. 580 (5): 1269–1276. doi: 10.1016/j.febslet.2006.01.043.
- Lamkemeyer, P., Laxa, M., Collin, V., u. a. . „Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.“ The Plant journal, Nr. 45 (6): 968–981. doi: 10.1111/j.1365-313X.2006.02665.x.
- Finkemeier, I., Goodman, M., Lamkemeyer, P., Kandlbinder, A., Sweetlove, L., und Dietz, K. . „The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.“ Journal of Biological Chemistry, Nr. 280 (13): 12168–12180. doi: 10.1074/jbc.M413189200.
- Rouhier, N., Villarejo, A., Srivastava, M., u. a. . „Identification of plant glutaredoxin targets.“ Antioxidants and Redox Signaling, Nr. 7 (null): 919–929. doi: 10.1089/ars.2005.7.919.
- Kandlbinder, A., Finkemeier, I., Wormuth, D., Hanitzsch, M., und Dietz, K. . „The antioxidant status of photosynthesizing leaves under nutrient deficiency: Redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana.“ Physiologia Plantarum, Nr. 120 (1): 63–73. doi: 10.1111/j.0031-9317.2004.0272.x.
- Sharma, S., Kaul, S., Metwally, A., Goyal, K., Finkemeier, I., und Dietz, K. . „Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status.“ Plant Science, Nr. 166 (5): 1287–1295. doi: 10.1016/j.plantsci.2004.01.006.
- Metwally, A., Finkemeier, I., Georgi, M., und Dietz, K. . „Salicylic acid alleviates the cadmium toxicity in barley seedlings.“ Plant Physiology, Nr. 132 (1): 272–281. doi: 10.1104/pp.102.018457.
- Horling, F., Lamkemeyer, P., König, J., u. a. . „Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.“ Plant Physiology, Nr. 131 (1): 317–325. doi: 10.1104/pp.010017.
- Finkemeier, I., Kluge, C., Metwally, A., Georgi, M., Grotjohann, N., und Dietz, K. . „Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare.“ Plant, Cell and Environment, Nr. 26 (6): 821–833. doi: 10.1046/j.1365-3040.2003.01014.x.