Publikationen
- . . ‘Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.’ Redox Biology 2024. doi: 10.1016/j.redox.2024.103141.
- . . ‘Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase.’ Physiologia Plantarum 176, Nr. 3. doi: 10.1111/ppl.14340.
- ‘Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.’ Methods in Molecular Biology 2832: 99–113. doi: 10.1007/978-1-0716-3973-3_7. .
- . . ‘Coordinated metabolic adaptation of Arabidopsis thaliana to high light.’ The Plant journal n/a. doi: 10.1111/tpj.16992 .
- . . ‘Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex.’ Plant Physiology 2024. doi: 10.1093/plphys/kiae200.
- . . ‘Multilayered Regulation of Plastids and Mitochondria.’ Plant and Cell Physiology 64, Nr. 4: 473–476. doi: 10.1093/pcp/pcae036.
- . . ‘The interplay of post‐translational protein modifications in Arabidopsis leaves during photosynthesis induction.’ The Plant journal 116, Nr. 4: 1172–1193. doi: 10.1111/tpj.16406.
- . . ‘Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation.’ Nature Chemistry 2023. doi: 10.1038/s41557-023-01388-7.
- ‘Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.’ New Phytologist 237, Nr. 1: 160–176. doi: 10.1111/nph.18534. .
- ‘Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.’ Methods in Enzymology 684: 209–252. doi: 10.1016/bs.mie.2022.09.005. .
- ‘Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves.’ The Plant journal 115, Nr. 1: 275–292. doi: 10.1111/tpj.16206. .
- . . ‘Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis.’ New Phytologist 2022. doi: 10.1111/nph.18534.
- . . ‘Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation.’ New Phytologist 238, Nr. 1. doi: 10.1111/nph.18657.
- . . ‘Differential proteome profiling of bacterial culture supernatants reveals candidates for the induction of oral immune priming in the red flour beetle.’ Biology Letters 19, Nr. 11. doi: 10.1098/rsbl.2023.0322.
- . . ‘Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis.’ Plant Physiology 2023. doi: 10.1093/plphys/kiad446.
- ‘Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis.’ Plant and Cell Physiology 64, Nr. 5: 549–563. doi: 10.1093/pcp/pcad017. .
- . . ‘Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.’ The Plant cell 34. doi: 10.1093/plcell/koac237.
- . . ‘Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.’ Methods in Molecular Biology 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16.
- . . ‘Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants.’ The Plant journal 109, Nr. 1: 92–111. doi: 10.1111/tpj.15556.
- ‘ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation.’ Plant Physiology 189, Nr. 2: 666–678. doi: 10.1093/plphys/kiac096. .
- ‘Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas.’ The Plant journal 109, Nr. 1: 261–277. doi: 10.1111/tpj.15555. .
- ‘Editorial: Plant protein termini: Their generation, modification and function.’ Frontiers in Plant Science 13. doi: 10.3389/fpls.2022.1040392. .
- ‘Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis.’ The Plant cell 34, Nr. 11: 4623–4640. doi: 10.1093/plcell/koac237. .
- ‘Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.’ ChemBioChem 23, Nr. 17. doi: 10.1002/cbic.202200255. .
- ‘Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.’ The Plant journal 111, Nr. 6: 1780–1800. doi: 10.1111/tpj.15924. .
- ‘Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.’ Methods in Molecular Biology 2363: 215–234. doi: 10.1007/978-1-0716-1653-6_16. .
- . . ‘Dynamic light‐ and acetate‐dependent regulation of the proteome and lysine acetylome of Chlamydomonas.’ The Plant journal 109, Nr. 1: 261–277. doi: 10.1111/tpj.15555.
- ‘Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas.’ The Plant journal 111, Nr. 6: 1780–1800. doi: 10.1111/tpj.15924. .
- ‘Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling.’ Molecular Plant 15, Nr. 4: 651–670. doi: 10.1016/j.molp.2021.11.006. .
- . . ‘Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum.’ Frontiers in Plant Science 13: 909624. doi: 10.3389/fpls.2022.909624.
- . . ‘Investigating Peptide‐Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N‐Terminal and Lysine Acetyltransferases.’ ChemBioChem 23. doi: 10.1002/cbic.202200255.
- ‘Functional characterization of proton antiport regulation in the thylakoid membrane.’ Plant Physiology 187, Nr. 4: 2209–2229. doi: 10.1093/plphys/kiab135. .
- ‘Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity.’ Nature Communications 12, Nr. 1. doi: 10.1038/s41467-021-23614-x. .
- ‘Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.’ Biochimica et Biophysica Acta - Bioenergetics 1862, Nr. 8. doi: 10.1016/j.bbabio.2021.148443. .
- ‘The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.’ International Journal of Biological Macromolecules 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192. .
- ‘The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry.’ Nucleic Acids Research 49, Nr. 1: 400–415. doi: 10.1093/nar/gkaa1192. .
- ‘Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis.’ Molecular Plant 14, Nr. 7: 1104–1118. doi: 10.1016/j.molp.2021.03.023. .
- ‘Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light.’ Biochimica et Biophysica Acta - Bioenergetics 1862, Nr. 8. doi: 10.1016/j.bbabio.2021.148443. .
- ‘The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues.’ International Journal of Biological Macromolecules 193: 1332–1339. doi: 10.1016/j.ijbiomac.2021.10.192. .
- . . ‘Functional characterization of protonantiport regulation in the thylakoid membrane.’ Plant Physiology 187. doi: 10.1093/plphys/kiab135.
- . . ‘Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination.’ Proceedings of the National Academy of Sciences of the United States of America 117, Nr. 1: 741–751. doi: 10.1073/pnas.1910501117.
- ‘An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in Barley.’ Plant Physiology 183, Nr. 3: 1088–1109. doi: 10.1104/pp.20.00087. .
- ‘Comparative analysis of thylakoid protein complexes in state transition mutants nsi and stn7: focus on PSI and LHCII.’ Photosynthesis Research 145, Nr. 1: 15–30. doi: 10.1007/s11120-020-00711-4. .
- ‘Multidimensional gene regulatory landscape of a bacterial pathogen in plants.’ Nature plants 6, Nr. 7: 883–896. doi: 10.1038/s41477-020-0690-7. .
- ‘NAA50 is an enzymatically active Na-acetyltransferase that is crucial for development and regulation of stress responses1[OPEN].’ Plant Physiology 183, Nr. 4: 1502–1516. doi: 10.1104/pp.20.00222. .
- ‘The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response.’ New Phytologist 228, Nr. 2: 554–569. doi: 10.1111/nph.16747. .
- ‘The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features.’ Photosynthesis Research 145, Nr. 1: 43–54. doi: 10.1007/s11120-019-00700-2. .
- ‘Comparative proteome and metabolome analyses of latex-exuding and non-exuding Taraxacum koksaghyz roots provide insights into laticifer biology.’ Journal of Experimental Botany 71, Nr. 4: 1278–1293. doi: 10.1093/jxb/erz512. .
- ‘High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.’ Methods in Molecular Biology 2139: 241–256. doi: 10.1007/978-1-0716-0528-8_18. .
- ‘A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification.’ Methods in Molecular Biology 2139: 257–271. doi: 10.1007/978-1-0716-0528-8_19. .
- . . ‘Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics.’ The Plant journal 1. doi: 10.1111/tpj.14534.
- . . ‘NAA50 is an enzymatically active Nα-acetyltransferase that is crucial for development and regulation of stress responses.’ Plant Physiology 183, Nr. 4: 1502–1516. doi: 10.1104/pp.20.00222.
- . . ‘Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.’ Molecular Systems Biology 16, Nr. 7: e9464. doi: 10.15252/msb.20209464.
- ‘Peptide-Based 2-Aminophenylamide Probes for Targeting Endogenous Class I Histone Deacetylase Complexes.’ ChemBioChem 20, Nr. 24: 3001–3005. doi: 10.1002/cbic.201900339. .
- ‘Uncovering mechanisms of rubber biosynthesis in Taraxacum koksaghyz – role of cis-prenyltransferase-like 1 protein.’ The Plant journal 100, Nr. 3: 591–609. doi: 10.1111/tpj.14471. .
- ‘In vivo evidence for a regulatory role of phosphorylation of Arabidopsis Rubisco activase at the Thr78 site.’ Proceedings of the National Academy of Sciences of the United States of America 116, Nr. 37: 18723–18731. doi: 10.1073/pnas.1812916116. .
- ‘A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves.’ Journal of Proteomics 196: 120–130. doi: 10.1016/j.jprot.2018.04.015. .
- ‘A golgi-released subpopulation of the trans-golgi network mediates protein secretion in arabidopsis.’ Plant Physiology 179, Nr. 2: 519–532. doi: 10.1104/pp.18.01228. .
- ‘Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity.’ The Plant journal 96, Nr. 3: 487–502. doi: 10.1111/tpj.14043. .
- ‘Label-free quantitative proteome data associated with MSP1 and flg22 induced signaling in rice leaves.’ Data in Brief 20: 204–209. doi: 10.1016/j.dib.2018.07.063. .
- ‘Chloroplast acetyltransferase NSI is required for state transitions in arabidopsis Thaliana.’ The Plant cell 30, Nr. 8: 1695–1709. doi: 10.1105/tpc.18.00155. .
- ‘Genes for seed longevity in barley identified by genomic analysis on near isogenic lines.’ Plant, Cell and Environment 41, Nr. 8: 1895–1911. doi: 10.1111/pce.13330. .
- ‘Beyond histones: New substrate proteins of lysine deacetylases in arabidopsis nuclei.’ Frontiers in Plant Science 9: 461. doi: 10.3389/fpls.2018.00461. .
- ‘A Multi-Omics Analysis of Glycine max Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment.’ Proteomics 18, Nr. 7: 1700366. doi: 10.1002/pmic.201700366. .
- ‘Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves.’ Plant, Cell and Environment 2018, Nr. null. doi: 10.1111/pce.13100. [online first] .
- . . ‘Mitochondrial regulation in the photosynthetic cell: principles and concepts.’ In Annual Plant Reviews: Plant Mitochondria, edited by , 185–226. 2. Aufl. New York City: John Wiley & Sons.
- ‘Lysine acetylation in mitochondria: From inventory to function.’ Mitochondrion 33, Nr. null: 58–71. doi: 10.1016/j.mito.2016.07.012. .
- ‘Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis.’ Molecular Systems Biology 13, Nr. 10. doi: 10.15252/msb.20177819. .
- ‘Identification of the missing mitochondrial methyltransferase of citrate synthase.’ FEBS Letters 591, Nr. 12: 1653–1656. doi: 10.1002/1873-3468.12692. .
- ‘Dimethyl-labeling-based quantification of the lysine acetylome and proteome of plants.’ In Photorespiration, Methods in Molecular Biology , edited by , 65–81. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-7225-8_5. .
- ‘DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy /631/449/2679/2683 /631/449/2653 article.’ Nature Communications 8, Nr. 1. doi: 10.1038/s41467-017-00113-6. .
- ‘Obligate biotroph pathogens of the genus albugo are better adapted to active host defense compared to niche competitors.’ Frontiers in Plant Science 7, Nr. null. doi: 10.3389/fpls.2016.00820. .
- ‘Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy.’ Plant Physiology 171, Nr. 4: 2659–2670. doi: 10.1104/pp.16.00525. .
- ‘Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.’ Journal of Peptide Science 22, Nr. 5: 352–359. doi: 10.1002/psc.2875. .
- ‘The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization.’ Molecular Microbiology 102, Nr. 6: 951–974. doi: 10.1111/mmi.13528. .
- ‘Interrogating substrate selectivity and composition of endogenous histone deacetylase complexes with chemical probes.’ Angewandte Chemie International Edition 55, Nr. 3: 1192–1195. doi: 10.1002/anie.201508174. .
- ‘Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.’ In Plant Mitochondria, edited by , 107–121. Totowa, NJ: Humana Press. doi: 10.1007/978-1-4939-2639-8_7. .
- ‘Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.’ In Plant Mitochondria: Methods and Protocols, edited by , 107–121. Heidelberg: Springer. doi: 10.1007/978-1-4939-2639-8_7. .
- ‘The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in arabidopsis.’ The Plant cell 27, Nr. 11: 3190–3212. doi: 10.1105/tpc.15.00509. .
- ‘The mitochondrial lysine acetylome of Arabidopsis.’ Mitochondrion 19, Nr. null: 252–260. doi: 10.1016/j.mito.2014.03.004. .
- ‘The life of plant mitochondrial complex I.’ Mitochondrion 19, Nr. null: 295–313. doi: 10.1016/j.mito.2014.02.006. .
- ‘The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism.’ Plant Physiology 164, Nr. 3: 1401–1414. doi: 10.1104/pp.113.232496. .
- ‘Redox regulation of Arabidopsis mitochondrial citrate synthase.’ Molecular Plant 7, Nr. 1: 156–169. .
- ‘Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.’ Molecular Plant 7, Nr. 7: 1167–1190. doi: 10.1093/mp/ssu042. .
- ‘Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling.’ Molecular Plant 7, Nr. 7: 1211–1227. doi: 10.1093/mp/ssu034. .
- ‘FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.’ Plant Physiology 166, Nr. 2: 808–828. doi: 10.1104/pp.114.243824. .
- ‘Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in arabidopsis leaves.’ Plant Physiology 162, Nr. 1: 239–253. doi: 10.1104/pp.113.214114. .
- „Protein modification. Lysine acetylation: A well-known protein modification in new light.“ BIOspektrum 19, Nr. 7: 810–812. doi: 10.1007/s12268-013-0392-z. .
- ‘Mitochondrial energy and redox signaling in plants.’ Antioxidants and Redox Signaling 18, Nr. 16: 2122–2144. doi: 10.1089/ars.2012.5104. .
- ‘The impact of impaired mitochondrial function on retrograde signalling: A meta-analysis of transcriptomic responses.’ Journal of Experimental Botany 63, Nr. 4: 1735–1750. doi: 10.1093/jxb/err374. .
- ‘Plant mitochondrial retrograde signaling: Post-translational modifications enter the stage.’ Frontiers in Plant Science 3, Nr. null. doi: 10.3389/fpls.2012.00253. .
- ‘Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis.’ Plant Physiology 155, Nr. 4: 1779–1790. doi: 10.1104/pp.110.171595. .
- . . ‘Plant Chloroplasts and Other Plastids .’ eLS na.
- . . ‘The role of malate in plant homeostasis.’ F1000 Biology Reports I, Nr. 47.
- ‘Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis.’ Plant Physiology 147, Nr. 1: 101–114. doi: 10.1104/pp.107.113613. .
- ‘The mitochondrial type II peroxiredoxin from poplar.’ Physiologia Plantarum 129, Nr. 1: 196–206. doi: 10.1111/j.1399-3054.2006.00785.x. .
- ‘S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.’ The Plant cell 19, Nr. 12: 4120–4130. doi: 10.1105/tpc.107.055061. .
- ‘Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.’ Plant Physiology and Biochemistry 45, Nr. null: 729–739. doi: 10.1016/j.plaphy.2007.07.017. .
- . . ‘The Role of Peroxiredoxins in Oxygenic Photosynthesis of Cyanobacteria and Higher Plants: Peroxide Detoxification or Redox Sensing? .’ In Photoprotection, photoinhibition, gene regulation, and environment, edited by , 303–319. Dordrecht: Kluwer Academic.
- ‘The function of peroxiredoxins in plant organelle redox metabolism.’ Journal of Experimental Botany 57, Nr. 8: 1697–1709. doi: 10.1093/jxb/erj160. .
- ‘Signalling in primary metabolism.’ New Phytologist 171, Nr. 3: 445–447. doi: 10.1111/j.1469-8137.2006.01805.x. .
- ‘Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.’ FEBS Letters 580, Nr. 5: 1269–1276. doi: 10.1016/j.febslet.2006.01.043. .
- ‘Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.’ The Plant journal 45, Nr. 6: 968–981. doi: 10.1111/j.1365-313X.2006.02665.x. .
- ‘The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.’ Journal of Biological Chemistry 280, Nr. 13: 12168–12180. doi: 10.1074/jbc.M413189200. .
- ‘Identification of plant glutaredoxin targets.’ Antioxidants and Redox Signaling 7, Nr. null: 919–929. doi: 10.1089/ars.2005.7.919. .
- ‘The antioxidant status of photosynthesizing leaves under nutrient deficiency: Redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana.’ Physiologia Plantarum 120, Nr. 1: 63–73. doi: 10.1111/j.0031-9317.2004.0272.x. .
- ‘Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status.’ Plant Science 166, Nr. 5: 1287–1295. doi: 10.1016/j.plantsci.2004.01.006. .
- ‘Salicylic acid alleviates the cadmium toxicity in barley seedlings.’ Plant Physiology 132, Nr. 1: 272–281. doi: 10.1104/pp.102.018457. .
- ‘Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.’ Plant Physiology 131, Nr. 1: 317–325. doi: 10.1104/pp.010017. .
- ‘Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare.’ Plant, Cell and Environment 26, Nr. 6: 821–833. doi: 10.1046/j.1365-3040.2003.01014.x. .