Publikationen

  • , , und . . „A new generic vanishing theorem on homogeneous varieties and the positivity conjecture for triple intersections of Schubert cells.Compositio Mathematica, Nr. 161 (1): 112. doi: 10.1112/S0010437X24007462.
  • , und . . „Weighted Ehrhart theory via mixed Hodge modules on toric varieties.International Mathematics Research Notices, Nr. 2025 (7): 125. doi: 10.1093/imrn/rnaf067.

  • , , , und . . „Motivic Chern classes of Schubert cells, Hecke algebras, and applications to Casselman's problem.Annales Scientifiques de l'École Normale Supérieure, Nr. 57 (1): 87141. doi: 10.24033/asens.2571.
  • , , , und . . „Equivariant toric geometry and Euler-Maclaurin formulae—an overview.Revue Roumaine des Mathematiques Pures et Appliquees, Nr. 69 (2): 105128. doi: 10.59277/RRMPA.2024.105.128.
  • , , , und . . „From motivic Chern classes of Schubert cells to their Hirzebruch and CSM classes.Contemporary Mathematics, Nr. 804: 152. doi: 10.1090/conm/804/16110 .

  • , , , und . . „Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells.Duke Mathematical Journal, Nr. 172 (17): 3257 3320. doi: 10.1215/00127094-2022-0101.
  • , und . . „An algebraic approach to a quartic analogue of the Kontsevich model.Mathematical Proceedings, Nr. 174 (3): 471495. doi: 10.1017/S0305004122000366.

  • , und . . „Constructible Sheaf Complexes in Complex Geometry and Applications.“ In Handbook of Geometry and Topology of Singularities III, Bd.3 aus Handbook of Geometry and Topology of Singularities, herausgegeben von José Luis Cisneros-Molina, Dũng Tráng und José Seade. Berlin: Springer Nature. doi: 10.1007/978-3-030-95760-5.
  • , , , und . „Positivity of Segre–MacPherson Classes.“ In Facets of Algebraic Geometry: A Collection in Honor of William Fulton's 80th Birthday, herausgegeben von P. Aluffi, D. Anderson, M. Hering, M. Mustaţă und S. Payne. doi: 10.1017/9781108877831.001.

  • , , und . . „Spectral Hirzebruch–Milnor classes of singular hypersurfaces.Mathematische Annalen, Nr. 377 (1-2): 281315. doi: 10.1007/s00208-018-1750-4.
  • , , und . . „Thom–Sebastiani Theorems for Filtered D-Modules and for Multiplier Ideals.International Mathematics Research Notices, Nr. 2020 (1): 91111. doi: 10.1093/imrn/rny032.
  • . . „Plethysm and cohomology representations of external and symmetric products.Advances in Mathematics, Nr. 375: 107373. doi: 10.1016/j.aim.2020.107373.

  • . . „Witt groups of abelian categories and perverse sheaves.Annals of K-theory, Nr. 2019 (4): 621670. doi: 10.2140/akt.2019.4.621.

  • . . „Characteristic classes of mixed Hodge modules and applications.“ In Schubert varieties, equivariant cohomology and characteristic classes - Impanga 15, EMS Ser. Congr. Rep., herausgegeben von Jaroslaw Buczynski, Mateusz Michalek und Elisa Postighel. doi: 10.4171/182-1/8.

  • . . „Equivariant characteristic classes of external and symmetric products of varieties.Geometry and Topology, Nr. 22: 471515. doi: 10.2140/gt.2018.22.471.
  • , , , , und . . „Characteristic classes of symmetric products of complex quasi-projective varieties.J. Reine Angew. Math., Nr. 2017 doi: 10.1515/crelle-2014-0114.
  • . . „Chern Classes and Transversality for Singular Spaces.“ Beitrag präsentiert auf der Singularities in Geometry, Topology, Foliations and Dynamics, Merida doi: 10.1007/978-3-319-39339-1.

  • , , und . . „Hirzebruch–Milnor Classes and Steenbrink Spectra of Certain Projective Hypersurfaces.“ Beitrag präsentiert auf der Arbeitstagung Bonn 2013, Bonn doi: 10.1007/978-3-319-43648-7_9.
  • , , und . . „Motivic and derived motivic Hirzebruch classes.Homology Homotopy Appl., Nr. 2016 doi: 10.4310/HHA.2016.v18.n2.a16.

  • . . „Characteristic Classes of Singular Toric Varieties.Communications on Pure and Applied Mathematics, Nr. 2015 doi: 10.1002/cpa.21553.
  • , , , und . . „Purity for graded potentials and quantum cluster positivity.Compositio Mathematica, Nr. 2015 doi: 10.1112/S0010437X15007332.

  • . . „Motivic bivariant characteristic classes.Adv. Math., Nr. 250: 611649. doi: 10.1016/j.aim.2013.09.024.

  • . . „Characteristic classes of singular toric varieties.Electron. Res. Announc. Math. sci., Nr. 20: 109120.
  • , , , , und . . „Characteristic classes of Hilbert schemes of points via symmetric products.Geom. Topol., Nr. 17: 11651198. doi: 10.2140/gt.2013.17.1165.
  • , , und . . „Hirzebruch-Milnor classes of complete intersections.Adv. Math., Nr. 241: 220245. doi: 10.1016/j.aim.2013.04.001.

  • . . „Nearby cycles and characteristic classes of singular spaces.“ In Singularities in geometry and topology doi: 10.4171/118.
  • , , , und . . „Equivariant characteristic classes of singular complex algebraic varieties.Comm. Pure Appl. Math., Nr. 65: 17221769. doi: 10.1002/cpa.21427.
  • . . „Motivic bivariant characteristic classes and related topics.J. Singularities, Nr. 5: 124152. doi: 10.5427/jsing.2012.5j.
  • . . „Grothendieck groups and categorification of additive invariants.Internat. J. Math., Nr. 23: 1250057–1–37. doi: 10.1142/S0129167X12500577.
  • . . „twisted genera of symmetric products.Selecta Math. new series, Nr. 18: 283317. doi: 10.1007/s00029-011-0072-0.

  • , , und . . „Symmetric products of mixed Hodges modules.J. Math. Pures Appl., Nr. 96: 462483. doi: 10.1016/j.matpur.2011.04.003.
  • . . „Characteristic classes of mixed Hodges modules.“ In Topology of stratified spaces, Bd.58 aus Math. Sci. Res. Inst. Publ.
  • . . „Hirzebruch invariants of symmetric products.“ In Bd.538 aus Contemp. Math. doi: 10.1090/conm/538.

  • , , , und . . „Characteristic classes of complex hypersurfaces.Advances in Mathematics, Nr. 225 (5): 26162647. doi: 10.1016/j.aim.2010.05.007.
  • , , und . . „Hirzebruch classes and motivic Chern classes for singular spaces.Journal of Topology and Analysis, Nr. 2 (1): 155. doi: 10.1142/S1793525310000239.
  • , und . . „Index formula for MacPherson cycles of affine algebraic varieties.Tohoku Mathematical Journal, Nr. 62 (1): 2944. doi: 10.2748/tmj/1270041025.

  • , und . . „Hodge-theoretic Atiyah-Meyer formulae and the stratified multiplicative property.“ In Singularities I, Contemp. Math. Providence, RI: American Mathematical Society.

  • , und . . „A survey of characteristic classes of singular spaces.“ In Singularity theory Singapore: World Scientific Publishing. doi: 10.1142/9789812707499_0037.
  • , , und . . „On Grothendieck transformations in Fulton-MacPherson's bivariant theory.Journal of Pure and Applied Algebra, Nr. 211 (3): 665684. doi: 10.1016/j.jpaa.2007.03.004.
  • , , und . . „On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations.Advances in Mathematics, Nr. 210 (2): 797812. doi: 10.1016/j.aim.2006.07.014.

  • . . „On the dimension formula for the hyperfunction solutions of some holonomic {$D$}-modules.Publications of the Research Institute for Mathematical Sciences, Nr. 42 (1): 18. doi: 10.2977/prims/1166642055.
  • , , und . . „Classes de Hirzebruch et classes de Chern motiviques.Comptes Rendus Mathématique, Nr. 342 (5): 325328. doi: 10.1016/j.crma.2005.12.022.

  • . . „Lectures on characteristic classes of constructible functions.“ In Topics in cohomological studies of algebraic varieties, Trends Math. Basel: Birkhäuser Verlag. doi: 10.1007/3-7643-7342-3_7.

  • . . „A general intersection formula for Lagrangian cycles.Compositio Mathematica, Nr. 140 (4): 10371052. doi: 10.1112/S0010437X04000272.

  • . . Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], Topology of singular spaces and constructible sheaves, Basel: Birkhäuser Verlag. doi: 10.1007/978-3-0348-8061-9.

  • . . „Embeddings of Stein spaces into affine spaces of minimal dimension.Mathematische Annalen, Nr. 307 (3): 381399. doi: 10.1007/s002080050040.

  • . . „Endlichkeits- und Verschwindungssätze für (schwach-) konstruierbare Garbenkomplexe auf komplexen Räumen.Journal für die reine und angewandte Mathematik, Nr. 466: 2743. doi: 10.1515/crll.1995.466.27.

  • . . Schriftenreihe des Mathematischen Instituts der Universität Münster, 3. Serie [Series of the Mathematical Institute of the University of Münster, 3rd Series], Einbettungen Steinscher Räume in affine Räume minimaler Dimension, N/A: Selbstverlag / Eigenverlag.