Publications

  • Nguyen, Kieu Hieu; Viehmann, Eva. . ‘A Harder-Narasimhan stratification of the B_{dR}^+-Grassmannian.’ Compositio Mathematica 159,  4: 711–745. doi: 10.1112/S0010437X23007066.
  • Viehmann, Eva. . ‘On Newton strata in the B_{dR}^+-Grassmannian.Duke Mathematical Journal 173,  1: 177–225. doi: 10.1215/00127094-2024-0005.

  • Viehmann, Eva. . ‘Minimal Newton strata in Iwahori double cosets.’ International Mathematics Research Notices 2019,  7: 5349–5365. doi: 10.1093/imrn/rnz351.
  • U. Hartl, E. Viehmann. . ‘The generic fiber of moduli spaces of bounded local G-shtukas.’ Journal of the Institute of Mathematics of Jussieu 2021: 1–80. doi: 10.1017/S1474748021000293.
  • Trentin S., Viehmann E. . ‘Closure relations of Newton strata in Iwahori double cosets.’ Manuscripta Mathematica 2021. doi: 10.1007/s00229-021-01349-9.

  • Hamacher P, Viehmann E. . ‘Finiteness properties of affine Deligne-Lusztig varieties.’ Documenta Mathematica 25: 899–910.
  • Milićević E, Viehmann E. . ‘Generic Newton points and the Newton poset in Iwahori-double cosets.’ Forum of Mathematics, Sigma 8: Paper No. e50, 18. doi: 10.1017/fms.2020.46.
  • Viehmann, Eva. . ‘On the geometry of the Newton stratification.’ In Stabilization of the trace formula, Shimure varieties, and arithmetic applications, Volume II: Shimura varieties and Galois representations, edited by Haines T, Harris M, 192–208. Cambridge: Cambridge University Press.

  • Chen M, Viehmann E. . ‘Affine Deligne-Lusztig varieties and the action of {$J$}.’ Journal of Algebraic Geometry 27,  2: 273–304. doi: 10.1090/jag/693.
  • Viehmann E, Wu H. . ‘Central leaves in loop groups.’ Mathematical Research Letters 25,  3: 989–1008. doi: 10.4310/MRL.2018.v25.n3.a13.
  • Hamacher P, Viehmann E. . ‘Irreducible components of minuscule affine Deligne-Lusztig varieties.’ Algebra and Number Theory 12,  7: 1611–1634. doi: 10.2140/ant.2018.12.1611.
  • Viehmann, Eva. . ‘Moduli spaces of local {$G$}}-shtukas.’ In Proceedings of the International Congress of Mathematicians---Rio de Janeiro 2018. Vol. {II}. Invited lectures, edited by Sirakov, Boyan; de Souza, Paulo Ney; Viana, Marcelo, 1443–1464. Singapore: World Scientific Publishing.

  • Chen M, Kisin M, Viehmann E. . ‘Corrigendum: ``Connected components of affine Deligne-Lusztig varieties in mixed characteristic'' [ {MR}3406443].’ Compositio Mathematica 151: 218–222. doi: 10.1112/S0010437X1600782X.

  • Chen M, Kisin M, Viehmann E. . ‘Connected components of affine Deligne-Lusztig varieties in mixed characteristic.’ Compositio Mathematica 151,  9: 1697–1762. doi: 10.1112/S0010437X15007253.

  • Viehmann, Eva. . ‘Truncations of level 1 of elements in the loop group of a reductive group.’ Annals of Mathematics 179,  3: 1009–1040. doi: 10.4007/annals.2014.179.3.3.
  • Rapoport M, Viehmann E. . ‘Towards a theory of local Shimura varieties.’ Münster Journal of Mathematics 7,  1: 273–326.

  • Viehmann, Eva. . ‘Newton strata in the loop group of a reductive group.’ American Journal of Mathematics 135,  2: 499–518. doi: 10.1353/ajm.2013.0017.
  • Viehmann E, Wedhorn T. . ‘Ekedahl-Oort and Newton strata for Shimura varieties of {PEL} type.’ Mathematische Annalen 356,  4: 1493–1550. doi: 10.1007/s00208-012-0892-z.

  • Hartl Urs, Viehmann Eva. . ‘Foliations in deformation spaces of local {$G$}-shtukas.’ Advances in Mathematics 229: 54–78. doi: 10.1016/j.aim.2011.08.011.
  • Kottwitz R, Viehmann E. . ‘Generalized affine Springer fibres.’ Journal of the Institute of Mathematics of Jussieu 11,  3: 569–609. doi: 10.1017/S147474801100020X.

  • Hartl Urs, Viehmann Eva. . ‘The Newton stratification on deformations of local {$G$}-shtukas.’ Journal für die reine und angewandte Mathematik 656: 87–129. doi: 10.1515/CRELLE.2011.044.

  • Mantovan E, Viehmann E. . ‘On the Hodge-Newton filtration for {$p$}-divisible {$\scr O$}-modules.’ Mathematische Zeitschrift 266,  1: 193–205. doi: 10.1007/s00209-009-0561-4.

  • Viehmann, Eva. . ‘Moduli spaces of {$p$}-divisible groups.’ Journal of Algebraic Geometry 17,  2: 341–374. doi: 10.1090/S1056-3911-07-00480-8.
  • Viehmann, Eva. . ‘The global structure of moduli spaces of polarized {$p$}-divisible groups.’ Documenta Mathematica 13: 825–852.
  • Viehmann Eva. . ‘Connected components of closed affine Deligne-Lusztig varieties.’ Mathematische Annalen 340,  2: 315–333. doi: 10.1007/s00208-007-0153-8.

  • Viehmann E., Ziegler K. . ‘Formal moduli of formal ΟK-modules.’ Astérisque 2007: 57–66.
  • Viehmann Eva. . ‘Lifting endomorphisms of formal ΟK-modules.’ Astérisque 2007: 99–104.

  • Viehmann, Eva. . ‘The dimension of some affine Deligne-Lusztig varieties.’ Annales Scientifiques de l'École Normale Supérieure 39,  3: 513–526. doi: 10.1016/j.ansens.2006.04.001.