Papers and Preprints
Title | Co-author | in: | |
On explicit bases in Sobolew spaces | H. Lange | Exp. Math. 3 (1985), 25-39 | |
On the analogue of the formula of Chowla and Selberg for real quadratic fields | J. Reine Angew. Math. 351 (1984), 171-191 | ||
The e-invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups | W. Singhof | Invent. Math. 78 (1984), 101-112 | |
On Artin-Verdier duality for function fiels | Math. Z. 188 (1984), 91-100 | ||
On the d-invariant of compact solvmanifolds | W. Singhof | J. Reine Angew. Math. 361 (1985), 47-49 | |
Artin-Verdier duality for n-dimensional local fields involving higher algebraic K-sheaves | K. Wingberg | J. Pure Appl. Algebra 43 (1986), 243-255 | |
On the cohomology of nilpotent Lie algebras | W. Singhof | Bull. Soc. Math. France 116 (1988), 3-14 | |
An extension of Artin-Verdier duality to non-torsion sheaves | J. Reine Angew. Math. 366 (1986), 18-131 | ||
l-adic Lefschetz numbers of arithmetical schemes | J. Reine Angew. Math. 375/376 (1987), 326-345 | ||
Duality in the étale cohomology of one dimensional proper schemes and generalizations | Math. Ann. 277 (1987), 231-237 | ||
A proper base change theorem for non-torsionsheaves in étale cohomology | J. Pure Appl. Algebra 50 (1988), 231-237 | ||
On the Beilinson conjectures for elliptic curves with complex multiplication | K. Wingberg | Beilinson's conjectures on special values of L-functions. Herausgegeben von M. Rapoport et al. Perspectives in Math. Academic Press 1988, 249-272. |
|
Higher regulators of elliptic curves with complex multiplication | Seminaire de Theorie des Nombres Paris 1986-87. Herausgegeben von Ch. Goldstein. Progress in Math. Birkhäuser 1989 |
||
Higher regulators and Hecke L-series of imaginary quadratic fields I. | Invent. Math. 96 (1989), 1-69 | ||
Higher regulators and Hecke L-series of imaginary quadratic fields II. | Ann. Math. 132 (1990), 131-158 | ||
Formal groups and L-series | E. Nart | Comm. Math. Helv. 65 (1990), 318-333 | |
On the Γ-factors attached to motives | Invent. Math. 104 (1991), 245-261 | ||
The Beilinson conjectures | A.J. Scholl | L-functions and Arithmetic. Herausgegeben von J. Coates und M. Taylor. London Math. Soc. Lect. Notes 153 (1991), 173-209 |
|
Local L-factors of motives and regularized determinants | Invent. Math. 107 (1992), 135-150 | ||
Motivic decomposition of abelian schemes and the Fourier transform | J. Murre | J. Reine Angew. Math. 422 (1991), 201-219 | |
Motivic L-functions and regularized determinants | Jannsen, Kleimann, Serre (eds.). Seattle conference on motives 1991. Proc. Symp. Pure Math. AMS 55 (1994), Part 1, 707-743 |
||
L-functions of mixed motives | Jannsen, Kleimann, Serre (eds.). Seattle conference on motives 1991. Proc. Symp. Pure Math. AMS 55 (1994), Part 1, 517-525 |
||
Lefschetz trace formulas and explicit formulas in analytic number theory | J. Reine Angew. Math. 441 (1993), 1-15 | ||
Evidence for a cohomological approach to analytic number theory | Joseph, Rentschler (eds.): Proceedings of the EMS conference 1992, 491-510, Birkhäuser 1994 | ||
Motivic ε-factors at infinity and regularized dimensions | Indag. Math., N.S. 5 (4), (1994), 403-409 | ||
On Ext2 of motives over arithmetic curves | E. Nart | Amer. J. of Math. 117 (1995), 601-625 | |
Higher order operations in Deligne cohomology | Invent. Math. 120 (1995), 289-315 | ||
A distribution theoretic interpretation of Guinand's functional equation for Cramér's V-function and generalizations | M. Schröter | J. London Math. Soc. (2) 52 (1995) 48-60 | |
Isogenies of abelian varieties with mutiplications | Abh. Math. Sem. Univ. Hamburg 65 (1995), 249-257 | ||
Motivic L-functions and regularized determinants II. | F. Catanese (ed.), Arithmetic Geometry, Cortona, 1994 Symp. Math. 37, 138-156, Cambridge Univ. Press 1997 |
||
Extensions of mixed motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic fields | F. Catanese (ed.), Arithmetic Geometry, Cortona, 1994 Symp. Math. 37, 99-137, Cambridge Univ. Press 1997 |
||
On extensions of mixed motives | Collect. Math. 48, 1-2 (1997), 97-113 | ||
Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions | Journal of the AMS 10 (2), 259-281 (1997) | ||
On Dynamical systems and their Possible Significance for Arithmetic Geometry | A. Reznikov, N. Schappacher (eds.), Regulators in Analysis, Geometry and Number Theory. Progess in Mathematics 171, 29-87, Birkhäuser 1999 |
||
Some analogies between number theory and dynamical systems on filiated spaces | Doc. Math. J. DMV. Extra Volume ICM I (1998), 23-46 | ||
p-adic Mahler measures | A. Besser | J. reine Angew. Math. 517 (1999), 121-132 | |
How to recover an L-series from its values at almost all positive integers. Some remarks on a formula of Ramanujan | Proc. Indian Aca. Sci. 110 (2000), 121-132 | ||
On the Γ-factors of motives II | Doc. Math. 6 (2001), 209-219 | ||
A counterexample to smooth leafwise Hodge decomposition for general foliations and to a type of dynamical trace formulas | W. Singhof | Ann. Int. Fourier, Grenoble, 51, 1 (2001), 209-219 | |
A note on dynamical trace formulas | W. Singhof | M.L. Lapidus, V. van Frankenhuysen (eds.), Dynamical Spectral and Arithmetic Zeta-Functions AMS Contemp. Math. 290 (2001), 41-55 |
|
A dynamical Lefschetz trace formula for algebraic Anosov diffeomorphisms | ArXiv | A. Deitmar | Hamb. Math. Abh. |
Number theory and dynamical systems on foliated spaces | ArXiv | Jber. d. Dt. Math.-Verein. 103 (2001), 79-100 | |
Real polaziable Hodge structures arising from foliations. | ArXiv | W. Singhof | Annals of Global Analysis and Geometry 21 (2002), 377-399 |
On the nature of the "explicit formulas" in analytic number theory - a simple example | ArXiv | S. Kanemitsu, C. Jia (eds.), Number Theoretic Methods - Future Trends. In: DEVM "Developements of Mathematics", Kluwer Academic Publ. | |
A note on arithmetical topology and dynamical systems | ArXiv | S. Vostokov, Y. Zarhin (eds.), Algebraic Number Theory and Algebraic Geometry. Papers Dedicated to A.N. Parshin on the Occasion of his Sixtieth Birthday. Contemporary Mathematics 300 (2002), 99-114 |
|
Exchanging the places p and ∞ in the Leopoldt conjecture | ArXiv | J. Number Theory 114, 1 (2005, 1-17 | |
Two-variable zeta functions and regularized products | ArXiv | Doc. Math. extra volume: Kazuya Kato's Fiftieth Birthday 2003, 227-259 | |
A motivic version of Pellikaan's two variable zeta function | ArXiv | F. Baldassarri, N. Naumann | Diophantine geometry, vol. 4 of CRM Series, 35-43. Ed. Norm. 2007 |
Arithmetic Geometry and Analysis on Foliated Spaces | ArXiv | ||
Vector bundles and p-adic representations I | ArXiv | A. Werner | |
Vector bundles on p-adic curves and parallel transport | ArXiv | A. Werner | Ann. Scient. Ec. Norm. Sup., 4e serie, 38 (2005), 553-597 |
Line bundles and p-adic characters | ArXiv | A. Werner | G. van der Geer, B. Moonen, R. Schoof (eds.), Number Fields and Function Fields - Two Parallel Worlds, Progress in Mathematics 239, 101-131, Birkhäuser 2005 |
Fuglede-Kadison determinants and entropy for actions of discrete amenable groups | ArXiv | J. Amer. Math. Soc. 19 (2006), 737-758 | |
On Tannaka duality for vector bundles on p-adic curves | ArXiv | A. Werner | Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser. 344, 94-111, Cambridge Univ. Press 2007 |
A dynamical systems analogue of Lichtenbaum's conjectures on special values of Hasse-Weil zeta functions | ArXiv | ||
Expansive algebraic actions of discrete residually finite amenable groups and their entropy | ArXiv | K. Schmidt | Ergodic Theory Dynam. Systems 3 (2007), 769-786 |
p-adic entropy and a p-adic Fuglede--Kadison determinant | ArXiv | Algebra, arithmetic, and geometry: in honor of Yu.I. Manin.Vol.I, Progr. Math. 269, 423-442, Birkh\"auser Boston Inc. 2009 | |
Analogies between analysis on foliated spaces and arithmetic geometry | ArXiv | Groups and analysis, London Math. Soc. Lecture Note Ser. 354, 174--190, Cambridge Univ. Press 2008 | |
Determinants on von Neumann algebras, Mahler measures and Ljapunov exponents | ArXiv | J. Reine Angew. Math. 651, 165--185 (2011) | |
Vector bundles on p-adic curves and parallel transport II | ArXiv | A. Werner | Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math. 58, 1-26, Math. Soc. Japan 2010 |
Invariant functions on p-divisible groups and the p-adic Corona problem | ArXiv | Tokyo J. Math. 33, 393-406 (2010) | |
C*-algebras of Toeplitz type associated with algebraic number fields | ArXiv | J. Cuntz, M. Laca | Math. Ann. 355 (2013), no. 4, 1383–1423. |
Regulators, entropy and infinite determinants | ArXiv | Regulators, 117–134, Contemp. Math., 571, Amer. Math. Soc., Providence, RI, 2012. | |
Representations attached to vector bundles on curves over finite and p-adic fields, a comparison | ArXiv | Münster J. Math. 3 (2010), 29–41 | |
Mahler measures and Fuglede-Kadison determinants | ArXiv | Münster J. Math. 2 (2009), 45–63 | |
The Hilbert-Polya strategy and height pairings | ArXiv | Casimir force, Casimir operators and the Riemann hypothesis, 275–283, Walter de Gruyter, Berlin, 2010. | |
Invariant measures on the circle and functional equations | ArXiv | ||
Horizontal factorizations of certain Hasse-Weil zeta functions - a remark on a paper by Taniyama | ArXiv | D. Wegner | Rend. Semin. Mat. Univ. Padova 128 (2012), 91–108 (2013). |
A remark on the structure of torsors under an affine group scheme | ArXiv | Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 1, 189–192 | |
An alternative to Witt vectors | ArXiv | J. Cuntz | Münster J. Math. 7 (2014), no. 1, 105–114 |
Witt Vector Rings and the Relative de Rham Witt Complex. With an Appendix by Umberto Zannier | ArXiv | J. Cuntz | J. Algebra 440 (2015), 545–593 |
The Universal Deformation of the Witt Ring Scheme | ArXiv | Young-Tak Oh | (Russian) Mat. Sb. 208 (2017), no. 6, 26--54; translation in Sb. Math. 208 (2017), no. 5-6, 764–790 |
Parallel transport for vector bundles on p-adic varieties | ArXiv | Annette Werner | J. Algebraic Geom. 29 (2020), no. 1, 1–52. |
p-adic limits of renormalized logarithmic Euler characteristics | ArXiv | Groups Geom. Dyn. 14 (2020), no. 2, 427–467 | |
\mathbb{Z}R and rings of Witt vectors W_S (R) | ArXiv | Rend. Semin. Mat. Univ. Padova 142 (2019), 93–102. | |
Dynamical systems for arithmetic schemes | ArXiv | ||
A Pro-algebraic Fundamental Group for Topological Spaces. Dedicated to the memory of Alexei Nikolaevich Parshin. |
|
|
Proceedings of the Steklov Institute of Mathematics, 2023, Vol. 320, 62-90 |
There is no "Weil-"cohomology theory with real coefficients for arithmetic curves | ArXiv | ||
Weyl tensors, strongly regular graphs, multiplicative characters, and a quadratic matrix equation | ArXiv |
Theo Grundhöfer, |
J. Algebra, 656 (2024), 170-195 |
Primes, knots and periodic orbits | ArXiv | ||
On the proalgebraic fundamental group of topological spaces and amalgamated products of affine group schemes | ArXiv | Michael Wibmer |