Dr. Benno Kuckuck, Angewandte Mathematik Münster: Institut für Analysis und Numerik

Member of Mathematics Münster
Field of expertise: Numerical analysis, machine learning, scientific computing
Topics in
Mathematics Münster


T10: Deep learning and surrogate methods
Current PublicationsBeck C, Hutzenthaler M, Jentzen A, Kuckuck B An overview on deep learning-based approximation methods for partial differential equations. Discrete and Continuous Dynamical Systems - Series B Vol. 28 (6), 2023 online
Boussange, V.; Becker, S.; Jentzen, A.; Kuckuck, B.; Pellissier, L. Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions. , 2022 online
Jentzen A, Kuckuck B, Müller-Gronbach T, Yaroslavtseva L Counterexamples to local Lipschitz and local Hölder continuity with respect to the initial values for additive noise driven SDEs with smooth drift coefficient functions with at most polynomially growing derivatives. Discrete and Continuous Dynamical Systems - Series B Vol. 27 (7), 2022 online
Beck C, Jentzen A, Kuckuck B Full error analysis for the training of deep neural networks. Infinite Dimensional Analysis, Quantum Probability and Related Topics Vol. 25 (2), 2022 online
Jentzen A, Kuckuck B, Neufeld A, von Wurstemberger P Strong error analysis for stochastic gradient descent optimization algorithms. IMA Journal of Numerical Analysis Vol. 41 (1), 2021, pp 455-492 online
Hutzenthaler M, Jentzen A, Kuckuck B, Padgett JL Strong $L^p$-error analysis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial differential equations. arXiv Vol. 0, 2021 online
Beneventano P, Cheridito P, Graeber R, Jentzen A, Kuckuck B Deep neural network approximation theory for high-dimensional functions. arXiv Vol. 0, 2021 online
Jentzen A, Kuckuck B, Müller-Gronbach T, Yaroslavtseva L On the strong regularity of degenerate additive noise driven stochastic differential equations with respect to their initial values. Journal of Mathematical Analysis and Applications Vol. 502 (2), 2021, pp Paper No. 125240 online
Kuckuck B, Rothe J Monotonicity, Duplication Monotonicity, and Pareto Optimality in the Scoring-Based Allocation of Indivisible Goods. , 2019, pp 173-189 online
E-Mailbkuckuck@uni-muenster.de
Phone+49 251 83-35128
FAX+49 251 83-32729
Room120.003
Secretary   Sekretariat Claudia Giesbert
Frau Claudia Giesbert
Telefon +49 251 83-33792
Fax +49 251 83-32729
Zimmer 120.002
AddressDr. Benno Kuckuck
Angewandte Mathematik Münster: Institut für Analysis und Numerik
Fachbereich Mathematik und Informatik der Universität Münster
Orléans-Ring 10
48149 Münster
Diese Seite editieren