rbmatlab 0.10.01
Public Member Functions | Public Attributes
ldgdiscfunc Class Reference

Detailed Description

an ldg shape functions implementation

Definition at line 1 of file ldgdiscfunc.m.

Collaboration diagram for ldgdiscfunc:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 ldgdiscfunc ( varargin)
 initialize ldg function on triangular grids with input
function  display ()
function res evaluate ( eindices, lcoord)
function res subsasgn ( S, val)
function res subsref ( S)
function sdf scalar_component ( ncomp)
 extraction of scalar component of vectorial ldg function
function p plot ( params)
 plot as colormap

Public Attributes

 nelements
 number of elements
 pdeg
 polynomial degree
 ndofs_per_element
 number of DOFs per grid elment
 ndofs
 number of DOFs
 dimrange
 dimension of range space
 dofs
 the DOF vector
::gridbase grid
 grid object

Constructor & Destructor Documentation

ldgdiscfunc.ldgdiscfunc (   varargin)

initialize ldg function on triangular grids with input

note, the only use of this class is, that by local storage of the dof vector and a (..) as evaluation routine, these objects can be used identically as analytical functions in integration, matrix assembly, etc. But in general the ../ldg directory contains methods for handling ldg functions based on seperate dof and parameter storage. These methods are more efficient as the class&methods.

arguments
varargin: This can be one of
  • inp = ldgdiscfunc : copy constructor
- inp = {dofs, params}
optional vector of dofs to be stored in the ldg function
- inp = params
Generate an empty ldg function,
where the required fields of params are
  • pdeg - polynomial degree on each element
  • dimrange - dimension of function
  • nelements - number of triangles
df has a field dofs, which are sorted as follows
  • for all elements
    • for all degrees
      • for all dimensions

i.e. dofs with number 1,1+dimrange,1+2 dimrange ... are the dofs of the first scalar component, etc.

let $\hat phi_i i=1...m$ be an orthonormal basis on the reference triangle $\hat T$. Let T be an arbitrary triangle and $F_T$ be the reference mapping from $\hat T$ to $T$. Then for all global dof indices $j=1,...,N$ there exists an element $T(j)$ and local index $i(j)$ such that $phi_j (x) = \hat phi_i(j) ( F_T^-1(x))$

Then an ldg-discrete function is given by

\[ df (x) = sum_j=1^N dof(j) * phi_j(x)= sum_j=1^N dof(j) * \hat phi_i(j) (F_T(j)^-1 (x) )= \]

Parameters:
vararginvarargin

Definition at line 68 of file ldgdiscfunc.m.


Member Function Documentation

function ldgdiscfunc.display ( )

Documentation Update:

Definition at line 2 of file display.m.

function res = ldgdiscfunc.evaluate (   eindices,
  lcoord 
)

Documentation Update:

Definition at line 2 of file evaluate.m.

function p = ldgdiscfunc.plot (   params)

plot as colormap

Parameters:
paramsparams
Return values:
pp

Definition at line 195 of file ldgdiscfunc.m.

function sdf = ldgdiscfunc.scalar_component (   ncomp)

extraction of scalar component of vectorial ldg function

Parameters:
ncompncomp
Return values:
sdfsdf

Definition at line 182 of file ldgdiscfunc.m.

function res = ldgdiscfunc.subsasgn (   S,
  val 
)

Documentation Update:

Definition at line 2 of file subsasgn.m.

function res = ldgdiscfunc.subsref (   S)

Documentation Update:

Definition at line 2 of file subsref.m.


The documentation for this class was generated from the following files:
All Classes Namespaces Files Functions Variables