Vorlesung und Übung:
Numerische Lineare Algebra
WS 2015/2016
Dozent: | Prof. Dr. Benedikt Wirth, Sprechstunde n.V. |
Übung: | M. Sc. Carolin Rossmanith, Fragen zur Übung bitte direkt an Carolin Rossmanith |
1. Klausur
Termin: | 08.02.2016, 8:00-11:00, M1-M3 |
Ergebnisse: | Die Ergebnisse der 1. Klausur sind da und können ab Mittwoch, den 10.02., auf dem Aushang vor dem Dekanat eingesehen werden! |
Einsicht: | Die Klausureinsicht findet am Freitag, den 12.02., um 14 Uhr im N1 (gegenüber der Fachschaft) statt. |
2. Klausur
Termin: | 21.03.2016, 11:30-14:30, M1 |
Ergebnisse: | Die Ergebnisse der zweiten Klausur sind da und können ab sofort auf dem Aushang vor dem Dekanat eingesehen werden! |
Einsicht: | Die Klausureinsicht findet am Donnerstag, den 24.03., um 14 Uhr im Besprechungsraum der Numerik (120.029) statt. |
Informationen zur Vorlesung
KLAUSURINFO: |
Die Anmeldung im QISPOS ist bis eine Woche vor der Klausur möglich. Alle Studenten, die sich im Rahmen ihres Studiums nicht über das QISPOS-System für die Klausur anmelden können, schreiben bitte bis eine Woche vor der Klausur eine Email an Carolin Rossmanith. |
Zeit, Ort: |
Mo. 10:00 bis 12:00, wöchentlich, M1 Do. 10:00 bis 12:00, wöchentlich, M1 Beginn der Vorlesung: 19.10.2015 Beginn der Übungen: 26.10.2015 |
Inhalt: | Die Vorlesung "Numerische Lineare Algebra" setzt den Schwerpunkt auf die Lineare Algebra in der Numerik. Zentraler Gegenstand ist die Konstruktion und Analyse von numerischen Verfahren zur Lösung von linearen und nichtlinearen Gleichungssystemen (z.B. Gauß-Elimination, Cholesky-Zerlegung, Gradienten-Verfahren). Weitere Themen sind die Berechnung von Eigenwerten großer Matrizen und Grundlagen der Approximationstheorie. Ein wichtiger Aspekt wird die numerische Umsetzung der Algorithmen sein. |
Themen: |
Mo. 19.10.15 Einführung Do. 22.10.15 Normierte Räume Mo. 26.10.15 Signulärwertzerlegung Do. 29.10.15 Numerische Fehler Mo. 02.11.15 Stabilität Do. 05.11.15 Gauss-Elimination Mo. 09.11.15 Pivoting Do. 12.11.15 Strassen-Algorithmus und Cholesky-Zerlegung Mo. 16.11.15 QR-Zerlegung Do. 19.11.15 Modifiziertes Gram-Schmidt-Verfahren und Householder-Verfahren Mo. 23.11.15 Dünnbesetzte Matrizen und Graphen Do. 26.11.15 Symbolische Cholesky-Zerlegung und Minimum-Degree-Algorithmus Mo. 30.11.15 Kleinste Fehlerquadrate Do. 03.12.15 Minimum-Norm-Lösung, Tikhonov-Regularisierung, Banachscher Fixpunktsatz Mo. 07.12.15 Iterative Gleichungssystemlöser Do. 10.12.15 SOR, Landweberverfahren, Gradientenverfahren Mo. 14.12.15 CG-Verfahren Do. 17.12.15 CG-Konvergenz Mo. 21.12.15 Obere Hessenbergform Do. 07.01.16 Bisektion und Newtonverfahren Mo. 11.01.16 Eigenwerte Do. 14.01.16 Vektoriteration und inverse Iteration Mo. 18.01.16 QR-Iteration Do. 21.01.16 Bisektionsverfahren Mo. 25.01.16 Divide-And-Conquer-Verfahren und Jacobi-Verfahren Do. 28.01.16 Lanczos-Verfahren Mo. 01.02.16 SVD |
Voraussetzungen: |
Lineare Algebra MATLAB-Kenntnisse (s.u.) |
Anmeldung: | Vergessen Sie nicht die verbindliche Anmeldung im QISPOS im Anmeldezeitraum des Wintersemesters 2015/2016. |
Prüfung: |
Die Prüfungsleistung wird erbracht durch Bestehen einer dreistündigen schriftlichen Klausur.
Zur Klausurzulassung müssen 50% der erreichbaren Punkte in den Übungsaufgaben erreicht werden. Werden nur eine Studienleistung oder ein Leistungsnachweis benötigt, kann die erfolgreiche Teilnahme bescheinigt werden, wenn entweder 50% der erreichbaren Punkte in den Übungsaufgaben erreicht wurden oder in einem 20minütigen Gespräch mit dem Dozenten das Verständnis der Vorlesungsinhalte demonstriert wurde (für die zweite Variante melden Sie sich bitte innerhalb der ersten drei Vorlesungswochen beim Dozenten an). Erster Klausurtermin: 8. Februar 2016, 8:00-11:00 (s.t.), Hörsaal M1-M3. Zweiter Klausurtermin: 21. März 2016, 11:30-14:30 (s.t.), Hörsaal M1-M3 |
Material: | Vorlesungsnotizen |
Literatur: |
|
Informationen zur Übung
WICHTIGE INFO: |
In der Weihnachtswoche (21.-23.12.) finden keine Übungen statt. Es muss auch kein Übungszettel abgegeben werden, stattdessen wird es eine freiwillige Probeklausur geben, die über die Weihnachtsferien bearbeitet werden kann. Die Probeklausur finden Sie hier:
Probeklausur (Bearbeitung freiwillig) Einen Lösungsvorschlag (ohne Gewähr) für die Probeklausur finden Sie hier: Lösungsvorschlag Probeklausur |
Voraussetzungen: | Für das erfolgreiche Bestehen der Übungsaufgaben wird die Abgabe von Programmieraufgaben in MATLAB notwendig sein. Zur Vorbereitung wird Anfang des Wintersemesters 2015/2016 ein 1-wöchiger MATLAB-Kurs angeboten: Matlabkurs im WiSe 2015/16. Weitere Informationen finden Sie auf der Veranstaltungsseite des MATLAB-Kurses. |
Gruppen: |
Mo. 8:00 bis 10:00, N1 (Marvin Strätz), BK 109 Mo. 14:00 bis 16:00, N1 (Thomas Elsken), BK 114 Mi. 8:00 bis 10:00, N1 (Koushyar Arzideh), BK 115 Mi. 8:00 bis 10:00, SRZ 104 (Bernd Mekes), BK 102 Mi. 8:00 bis 10:00, SRZ 105 (Niko Burschik), BK 118 Mi. 10:00 bis 12:00, N1 (Bernd Mekes), BK 102 Mi. 10:00 bis 12:00, SRZ 117 (Hannes Ortmeier), BK 113 Mi. 12:00 bis 14:00, N1 (Hannes Ortmeier), BK 113 Mi. 14:00 bis 16:00, N1 (Julia Schleuss), BK 106 |
Anmeldung: | Die Anmeldung zu den Übungsgruppen wird über das Kursbuchungssystem stattfinden. Die Anmeldung wird NACH der ersten Vorlesung, 19.10.2015 18:00 Uhr, freigeschaltet. |
Abgaben: | Die Abgaben werden wöchentlich in den entsprechenden Briefkasten der Übungsgruppe angegeben. Die Programmierabgaben werden zusätzlich zu einem Ausdruck des Quellcodes per E-Mail abgegeben. Die Adresse wird in der Übung bekanntgegeben. Für die Klausurzulassung sind 50% der erreichbaren Punkte notwendig. |
Aufgaben: |
Anwesenheitsblatt (keine Abgabe) Übungsblatt 1 (Abgabe: 29.10.15 10 Uhr) Übungsblatt 2 (Abgabe: 05.11.15 10 Uhr) Übungsblatt 3 (Abgabe: 12.11.15 10 Uhr) Übungsblatt 4 (Abgabe: 19.11.15 10 Uhr) Übungsblatt 5 (Abgabe: 26.11.15 10 Uhr) Übungsblatt 6 (Abgabe: 03.12.15 10 Uhr), Matlab-File zur Zusatzaufgabe Übungsblatt 7 (Abgabe: 10.12.15 10 Uhr), Matlab-File zur Programmieraufgabe Übungsblatt 8 (Abgabe: 17.12.15 10 Uhr) Übungsblatt 9 (Abgabe: 14.01.16 10 Uhr) Übungsblatt 10 (Abgabe: 21.01.16 10 Uhr) Übungsblatt 11 (Abgabe: 28.01.16 10 Uhr) |