Publications
Publications of the group, ordered by topics:
Variational models of brittle fracture
- M. Friedrich, M. Perugini, F. Solombrino:
Gamma-convergence for free-discontinuity problems in linear elasticity: Homogenization and relaxation. Submitted 2020.
[Preprint]
- V. Crismale, M. Friedrich, F. Solombrino:
Integral representation for energies in linear elasticity with surface discontinuities. Adv. Calc. Var., to appear. [Preprint]
- M. Friedrich:
Griffith energies as small strain limit of nonlinear models for nonsimple brittle
materials. Mathematics in Engineering, 2 (2020), pp. 75-100. [Preprint, Article]
- M. Friedrich:
A compactness result in GSBV^p and applications to Γ-convergence for free discontinuity problems. Calc. Var. PDE 58:86 (2019).
[Preprint, Article]
- M. Friedrich, F. Solombrino:
Quasistatic crack growth in 2d-linearized elasticity.
Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) pp. 27-64.
[Preprint,
Article]
- M. Friedrich:
A derivation of linearized Griffith energies from nonlinear models.
Arch. Ration. Mech. Anal. 225 (2017) pp. 425-467.
[Preprint,
Article]
Epitaxially strained films and material voids
- M. Friedrich, L. Kreutz, K. Zemas:
Geometric rigidity in variable domains and derivation of linearized models for elastic materials with free surfaces. Submitted 2021. [Preprint]
- V. Crismale, M. Friedrich:
Equilibrium configurations for epitaxially strained films and material voids in three-dimensional linear elasticity. Arch. Ration. Mech. Anal. 237 (2020), pp. 1041-1098.
[Preprint, Article]
- L. Kreutz, P. Piovano:
Microscopic validation of a variational model of epitaxially strained crystalline film. SIAM J. Math. Anal., in press. [Preprint]
Multiphase materials
- M. Friedrich, L. Kreutz, B. Schmidt:
Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy. Arch. Ration. Mech. Anal., to appear. [Preprint]
- E. Davoli, M. Friedrich:
Two-well linearization for solid-solid phase transitions. Submitted 2020. [Preprint]
- M. Friedrich, F. Solombrino:
Functionals defined on piecewise rigid functions: Integral representation and Γ-convergence. Arch. Ration. Mech. Anal. 236 (2020), pp. 1325-1387. [Preprint, Article]
- E. Davoli, M. Friedrich:
Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions. Calc. Var. PDE 59:44 (2020).
[Preprint, Article]
Foundation of the function space SBD
- M. Friedrich, M. Perugini, F. Solombrino:
Lower semicontinuity for functionals defined on piecewise rigid functions and on GSBD. J. Func. Anal., to appear.
[Preprint, Article]
- F. Cagnetti, A. Chambolle, M. Perugini, L. Scardia:
An extension result for generalised special functions of bounded deformation. Submitted 2020.
[Preprint]
- M. Friedrich:
A piecewise Korn inequality in SBD and applications to embedding and density results. SIAM J. Math. Anal. 50 (2018), pp. 3842-3918.
[Preprint,
Article]
- M. Friedrich:
On a decomposition of regular domains into John domains with uniform
constants. ESAIM Control Optim. Calc. Var. 24 (2018), pp. 1541-1583.
[Preprint,
Article]
- M. Friedrich:
A Korn-type inequality in SBD for functions with small jump sets.
Math. Models Methods Appl. Sci. (M3AS) 27 (2017) pp. 2461-2484.
[Preprint,
Article]
- M. Friedrich, B. Schmidt:
A quantitative geometric rigidity result in SBD.
Preprint 2015.
[Preprint]
Crystallization and lattice energies
- L. Bétermin, M. Friedrich, U. Stefanelli:
Lattice ground states for Embedded-Atom Models in 2D and 3D. Submitted 2021. [Preprint]
- M. Friedrich, U. Stefanelli:
Crystallization in a one-dimensional periodic landscape. J. Stat.Phys. 179 (2020), pp. 485-501.
[Preprint, Article]
- M. Friedrich, L. Kreutz:
Finite crystallization and Wulff shape emergence for ionic compounds in the square lattice. Nonlinearity 33 (2020), pp. 1240-1296. [Preprint, Article]
- M. Friedrich, L. Kreutz:
Crystallization in the hexagonal lattice for ionic dimers. Math. Models Methods Appl. Sci. (M3AS) 29 (2019), pp. 1853-1900. [Preprint, Article]
Geometry and stability of nanostructures
- M. Friedrich, M. Seitz, U. Stefanelli:
Tilings with nonflat squares: a characterization. Submitted 2021. [Preprint]
- L. Bétermin, M. Friedrich, U. Stefanelli:
Angle-rigidity for Z^2 configurations. Submitted 2020. [Preprint]
- M. Friedrich, U. Stefanelli:
Ripples in graphene: A variational approach. Comm. Math. Phys. 379 (2020), pp. 915–954.
[Preprint, Article]
- M. Friedrich, E. Mainini, P. Piovano, U. Stefanelli:
Characterization of optimal carbon nanotubes under stretching and validation of the Cauchy-Born rule. Arch. Ration. Mech. Anal. 231 (2019), pp. 465-517.
[Preprint, Article]
- U. Ludacka, M. R. A. Monazam, C. Rentenberger, M. Friedrich, U. Stefanelli, J. C. Meyer, J. Kotakoski:
In situ control over graphene ripples and strain in the electron microscope. npj 2D Materials and Applications 2: 25 (2018). [Article]
- M. Friedrich, U. Stefanelli:
Graphene ground states. Zeitschrift für angewandte Mathematik und Physik, June 2018, 69:70.
[Preprint,
Article]
- M. Friedrich, P. Piovano, U. Stefanelli:
The geometry of C60: A rigorous approach via Molecular Mechanics.
SIAM J. Appl. Math. 76 (2016) pp. 2009-2029.
[Preprint,
Article]
Spin systems
- A. Bach, M. Cicalese, L. Kreutz, G. Orlando:
The antiferromagnetic XY model on the triangular lattice: topological singularities. Submitted 2020. [Preprint]
- A. Bach, M. Cicalese, L. Kreutz, G. Orlando:
The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling. Submitted 2020. [Preprint]
- A. Braides, L. Kreutz:
Optimal design of lattice surface energies. Calc. Var. PDE 57, 97 (2018) [Preprint, Article]
- A. Braides, L. Kreutz:
Optimal bounds for periodic mixtures of nearest-neighbour ferromagnetic interactions. Rendiconti Lincei-Matematica e Applicazioni 28(1) (2017) 103–117 [Preprint, Article]
Cleavage laws in brittle crystals
- M. Friedrich, B. Schmidt:
On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime.
Netw. Heterog. Media 10 (2015) pp. 321-342.
[Preprint,
Article]
- M. Friedrich, B. Schmidt:
An analysis of crystal cleavage in the passage from atomistic models to continuum theory.
Arch. Ration. Mech. Anal. 217 (2015) pp. 263-308.
[Preprint,
Article]
- M. Friedrich, B. Schmidt:
An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem.
J. Nonlin. Sci. 24 (2014) pp. 145-183.
[Preprint,
Article]
Nonlinear viscoelasticity
- M. Friedrich, L. Machill:
Derivation of a one-dimensional von Kármán theory for viscoelastic ribbons. Submitted 2021.
[Preprint]
- M. Friedrich, M. Kruzik:
Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity. Arch. Ration. Mech. Anal. 238 (2020), pp. 489-540. [Preprint, Article]
- M. Friedrich, M. Kruzik, J. Valdman:
Numerical approximation of von Kármán viscoelastic plates. DCDS-S, to appear. [Preprint, Article]
- M. Friedrich, M. Kruzik:
On the passage from nonlinear to linearized viscoelasticity. SIAM J. Math. Anal. 50 (2018), pp. 4426-4456.
[Preprint,
Article]
|