Dr. Andreas Morlok

Dr. Andreas Morlok

Wilhelm-Klemm-Str. 10
48149 Münster

T: +49 251 83-39069

  • Projects

  • Research Articles (Journals)

    • , , , , , , , and . . “Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.Icarus, 415 116078. doi: 10.1016/j.icarus.2024.116078.
    • , , , , , , , and . . “Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.Journal of Geophysical Research: Planets, 129 (8): e2024JE0e2024JE008483. doi: 10.1029/2024JE008483.

    • , , , , , , , , , , and . . “Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.Icarus, 391 doi: 10.1016/j.icarus.2022.115344.
    • , , , , , , , and . . “A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.Icarus, 396: 115498. doi: 10.1016/j.icarus.2023.115498.
    • , , , , , , , , and . . “Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.Earth and Space Science, 10 (6): e2023EA002903. doi: 10.1029/2023EA002903.
    • , , , , , , , , and . . “Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.Icarus, 404: 115683115683. doi: 10.1016/j.icarus.2023.115683.
    • , , , , , , and . . “Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.Journal of Geophysical Research: Planets, 128 (12): e2023JE0. doi: 10.1029/2023JE007895.

    • , , , , , , and . . “Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.Earth and Planetary Science Letters, 593: 117647. doi: 10.1016/j.epsl.2022.117647.

    • , , , , , , , , , , , , , , , , and . . “Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.Icarus, 361: 114363. doi: 10.1016/j.icarus.2021.114363.
    • , , , , , , , , , , , and . . “A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.ıcarus, 357: 114162. doi: 10.1016/j.icarus.2020.114162.
    • , , , , , , , , and . . “The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.Earth and Planetary Science Letters, 569: 117072. doi: 10.1016/j.epsl.2021.117072.
    • , , , , , , and . . “Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.Journal of Geophysical Research (Planets), 126 (8): e06832. doi: 10.1029/2021JE006832.

    • , , , , , and . . “Mid-infrared spectroscopy of alkali feldspar samples for space application.Mineralogy and Petrology, 114: 453–463. doi: 10.1007/s00710-020-00709-9.
    • , , , , , , , , , , , , and . . “Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.Space Science Reviews, 216 (6): 110. doi: 10.1007/s11214-020-00732-4.
    • , , , and . . “Mid-infrerad reflectance spectroscopy of aubrite components.Meteoritics & Planetary Science, 55: 2080–2096. doi: 10.1111/maps.13568.
    • , , , , , , , , , , , and . . “Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.Earth and Planetary Science Letters, 530 doi: 10.1016/j.epsl.2019.115884.

    • , , , , , , and . . “Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.Icarus, 324: 86103. doi: 10.1016/j.icarus.2019.02.010.

    • , , , , , , , , , , , , , , , , , , , , , , , , , , , and . “The Braunschweig meteorite - a recent L6 chondrite fall in Germany.Chemie der Erde / Geochemistry, 77 (null): 207224. doi: 10.1016/j.chemer.2016.10.004.
    • , , , , and . “Chelyabinsk – a rock with many different (stony) faces: An infrared study.Icarus, 284 (null): 431442. doi: 10.1016/j.icarus.2016.11.030.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . “The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.Meteoritics and Planetary Science, 52 (8): 16831703. doi: 10.1111/maps.12883.

    • , , and . “Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.Icarus, 278: 162179. doi: 10.1016/j.icarus.2016.06.013.
    • , , , and . “Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.Icarus, 264: 352368. doi: 10.1016/j.icarus.2015.10.003.
    • , , , , , , , , , , , , , and . “Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.Meteoritics and Planetary Science, 51 (1): 330. doi: 10.1111/maps.12586.

    • , , and . . “Dust from collisions: A way to probe the composition of exo-planets?Icarus, 239: 114.
    • , , , , and . . “Mid-infrared spectroscopy of components in chondrites: Search for processed materials in young Solar Systems and comets.Icarus, 2014 (231): 338355. doi: 10.1016/j.icarus.2013.12.018.

    • , and . . “Aqueous alteration in CR chondrites: Meteorite parent body processes as analogue for long-term corrosion processes relevant for nuclear waste disposal.Geochimica et Cosmochimica Acta, 103: 76103. doi: 10.1016/j.gca.2012.10.030.

    • , , , , , , , , , and . . “Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η corvi at 1 Gyr.Astrophysical Journal, 747 (2) doi: 10.1088/0004-637X/747/2/93.
    • , , , , , , , , , , and . . “A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system.Astrophysical Journal, 761 (1) doi: 10.1088/0004-637X/761/1/45.
    • , , , , , , and . . “Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks.Icarus, 219 (1): 4856. doi: 10.1016/j.icarus.2012.02.018.
    • , and . . “Chondrules born in plasma? Simulation of gas-grain interaction using plasma arcs with applications to chondrule and cosmic spherule formation.Meteoritics and Planetary Science, 2012 doi: 10.1111/maps.12043.
    • , , , , and . . “Laihunite in planetary materials: An FTIR and TEM study of oxidized synthetic and meteoritic Fe-rich olivine.Journal of Mineralogical and Petrological Sciences, 107 (4): 157166. doi: 10.2465/jmps.120409.

    • , , , , , , , and . . “The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses | L'utilisation des analogues naturels et archéologiques pour la compréhension de l'évolution à long terme des verres nucléaires.Comptes Rendus Géoscience, 343 (2-3): 237245. doi: 10.1016/j.crte.2010.12.004.

    • , , , , and . . “Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks.Icarus, 207 (1): 4553. doi: 10.1016/j.icarus.2009.11.018.

    • , , , , , , and . . “Abundant circumstellar silica dust and sio gas created by a giant hypervelocity collision in the 12 myr hd172555 system.Astrophysical Journal Letters, 701 (2): 20192032. doi: 10.1088/0004-637X/701/2/2019.

    • , , , and . . “Circumstellar dust created by terrestrial planet formation in HD 113766.Astrophysical Journal Letters, 673 (2): 11061122. doi: 10.1086/523626.
    • , , and . . “Mid-infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites.Meteoritics and Planetary Science, 43 (7): 11471160. doi: 10.1111/j.1945-5100.2008.tb01119.x.

    • , , , and . . “2-16 μm spectroscopy of micron-sized enstatite (Mg,Fe) 2Si 2O 6 silicates from primitive chondritic meteorites.Monthly Notices of the Royal Astronomical Society, 376 (3): 13671374. doi: 10.1111/j.1365-2966.2007.11548.x.

    • , , and . . “Brecciation and chemical heterogeneities of CI chondrites.Geochimica et Cosmochimica Acta, 70 (21): 53715394. doi: 10.1016/j.gca.2006.08.007.
    • , and . . “FT-IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques.Planetary and Space Science, 54 (6): 599611. doi: 10.1016/j.pss.2006.02.002.
    • , and . . “FTIR 2-16 micron spectroscopy of micron-sized olivines from primitive meteorites.Meteoritics and Planetary Science, 41 (5): 773784. doi: 10.1111/j.1945-5100.2006.tb00991.x.

    • , , , and . . “Stable isotope composition of impact glasses from the Nördlinger ries impact crater Germany.Geochimica et Cosmochimica Acta, 65 (8): 13251336. doi: 10.1016/S0016-7037(00)00600-1.