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The aim of this paper is to unravel (and explain) a new phenomenon in the theory
of p-adic automorphic forms. Given a reductive group G over a number field
(overconvergent) p-adic automorphic forms are p-adic avatars of automorphic forms
on G. We usually refer to the latter as classical automorphic forms in order



to distinguish them from their p-adic limits. Additional structures on spaces of
automorphic forms, such as the Hecke-action, naturally extend to the L-vector
spaces of overconvergent p-adic automorphic forms ST(K?), ST(KP), where the field
of coefficients L is a finite extension of Q, and K? C G(AP) is a compact open
subgroup (referred to as the tame level) and k is a weight. A central question
about p-adic automorphic forms is to clarify whether a given overconvergent p-
adic automorphic form (of algebraic weight) that is an eigenform for the Hecke
action is a classical automorphic form. Often this question can be answered in
terms of the Hecke eigenvalues. Coleman’s small slope implies classical result
[Col97] and generalizations thereof (see e.g. [Kas06], [Chell], [BPS16]) asserts
that this question can be purely decided using the Hecke action at p if the p-adic
valuation of the Hecke eigenvalues at p is small compared to the weight. Beyond
the numerically non critical slope it is known that this fails. However, one can
ask the same question taking into account the full Hecke action (as opposed to the
Hecke action at p).

Assume that we are in a situation where we can construct the Galois repre-
sentation py = p, attached to a p-adic eigenform f, respectively to the Hecke
character x giving the system of Hecke eigenvalues of f. Then the Hecke action
away from p encodes all the information about the p-adic Galois representation py,
including the p-adic Hodge theoretic information at places dividing p (though this
is encoded in a rather indirect and mysterious way). The naive generalization of
the classicality question about overconvergent p-adic automorphic forms can hence
be phrased as follows (though we phrase the question in a rather informal way):

Question A: Let f be an overconvergent p-adic eigenform of dominant algebraic
weight such that the corresponding Galois representation p; is de Rham at places
dividing p. Is it true that f is a classical automorphic form?

We note that a softer version of this question is the following expectation that
is implied by the Fontaine-Mazur conjecture. Again we state the expectation in a
rather informal way — it might fail without more precise assumptions on the group
the level, etc. (see e.g. [BHS19, Conj. 5.1.1] for a precise formulation).

Rough Expectation B: Let SI(K?)[x] C SI(K”) be an eigensystem (for the
action of the full Hecke algebra T generated by Hecke operators at p and away
from p) in the space S{(KP) of overconvergent p-adic automorphic forms of weight
k on G. Assume that k is dominant algebraic and that the Galois representation
py associated to the Hecke character x : T — L is de Rham at places dividing p.
Then ST (KP)[x] contains a classical automorphic form, i.e. its subspace S<(K?)[x]
of classical forms is non-zero.

Question A then can be rephrased as the question whether SY[x]|(KP) =
ST(KP)[x] in Expectation B. It is known that Question A does not have an af-



firmative answer in general. Ludwig [Lud18] and Johansson-Ludwig [JL23] have
shown that there are counterexamples for SLy. The reason for these counterexam-
ples however, is of global (endoscopic) nature and it remains a reasonable question
to ask Question A for groups where these phenomena do not apply, e.g. for definite
unitary groups.

Expectation B has been verified for GLy (this is basically [Kis03]), and general-
izations of Kisins’ result were proven by Bellaiche and his coauthors ([BC06],[Bel12]
and [BD16]). For definite unitary groups, and under Taylor-Wiles assumptions,
these results were vastly generalized in [BHS17a], [BHS19]. We point out that in
the cases treated in [BHS17a] the results imply that S<(K?)[x] = ST(KP)[x], while
the more general case in [BHS19] only allows to construct some classical form in the
eigensystem (though no counterexample to Question A is constructed in loc. cit.).
The reason for this difference is due to a phenomenon in the geometry of eigenva-
rieties (i.e. rigid analytic spaces parametrizing the systems of Hecke eigenvalues in
the space of overconvergent p-adic automorphic forms of finite slope), respectively
in the geometry of their local Galois-theoretic counterparts (the so-called triangu-
line variety of [BHSI7h]). In the case treated in [BHS17a] the trianguline variety
is smooth at the Galois representations in question (and hence the eigenvariety is
local complete intersection). In general the trianguline variety is not smooth, and
as a consequence one can construct non-smooth points on the corresponding eigen-
varieties, see [BHS19, Thm. 5.4.2]. It is this failure of smoothness that prevents
[BHS19] from identifying S(KP)[x] and ST(KP)[x].

In this paper we prove that the answer to Question A is no for definite unitary
groups in three variables (see Theorem below for a more precise formulation).

Theorem 1.1. There exists a unitary group in three variables U, a tame level K7,
a dominant algebraic weight k and a Hecke character x : T — L that occurs in
the space ST(KP)g of overconvergent automorphic forms of finite slope and weight
Kk such that the eigenspace ST(KP)[x] contains classical as well as non-classical
eigenforms.

The construction of this example also clarifies the role of the singularities of
the trianguline variety Xi,;. The precise results we prove suggest that the answer
to Question A is no, whenever the dualizing sheaf wx, , is not locally free at the
point defined by p (and the refinement associated to ), i.e. whenever Xy, is non-
Gorenstein at this point (we refer to Theorem below for the precise link with
Wy, ). In the three dimensional case, this results in a precise comparison of the
dimensions of the eigenspaces S¢(K?)[x] C SI(KP)[x].

We point out that, in contrast to [Ludl§] and [JL23| this is a purely local p-
adic phenomenon. Moreover, the theorem implies that the usual invariants (i.e. the



Hecke action, respectively the p-adic Hodge theoretic information of the associated
Galois representation) can not distinguished between classical and non-classical
forms. We like to refer to the non-classical forms in such eigensystems as under-
cover automorphic forms.

The main result, and in particular the occurrence of the dualizing sheaf wy,
therein, is inspired by the categorical point of view in the p-adic Langlands pro-
gram, see [EGH23|]. The space of overconvergent p-adic automorphic forms of
finite slope ST(KP)g can be viewed as the topological dual of the global sections
of a coherent sheaf (that we simply refer to as the sheaf of p-adic automorphic
forms) on the rigid analytic generic fiber of the universal deformation space of
Galois representations (more precisely, on the product of this space with the space
of continuous characters of a maximal torus 7'(Q,) C G(Q,) at p). The support
of this sheaf is, by definition, the corresponding eigenvariety. The local-global-
compatibility conjectures [EGH23| Conj. 9.6.8 and Conj. 9.6.16] give a precise de-
scription of this sheaf in terms of the geometry of moduli stacks of (¢, I')-modules
(that are closely related to the trianguline variety). More precisely, the categorical
approach to the p-adic Langlands program asks for a functor from certain (locally
analytic) representations of G(Q,) to sheaves on stacks of (¢, I')-modules, and the
sheaf of p-adic automorphic forms is the globalization of the evaluation of this
functor on a specific representation. One of the punchlines of [EGH23| (see sec-
tion 1.6 therein for a more detailed discussion) is that avatars of the envisioned
functor have been around in number theory during the past decades in the con-
text of the Taylor-Wiles patching method, in particular patching functors as used
for example in [EGST5] (or also in [BHS19, 5.]) A crucial point in the proof of
the main theorem is the identification of such a patching functor with an explicit
local functor, see Theorem below. This partially confirms expectations in the
categorical picture, see [EGH23, Expectation 6.2.27].

We now describe our results in more detail. Let F' be a totally real number
field and let E/F be a CM (imaginary) quadratic extension in which every place
vlp in F splits in E. Let U be a unitary group (over Q) in n variables for the
quadratic extension F/F which is compact at infinity. By the hypothesis on p the
group Ug, is a product of general linear groups over finite extensions of Q, and
we denote T a maximal torus of Ug,. We also fix a finite extension L/Q, which
is big enough to split E. Let Oy C L be its ring of integers, 77, a uniformizer and
k; its residue field.

For any continuous character 6 : T(Q,) — L*, we can define a weight
(which is given by the derivative of § at 1) and a character of the Atkin—Lehner
ring A(p) (the ring of Hecke-operators at p, see Definition that we still denote
by 8. We will assume that 70 is algebraic where T° C T(Q,) is the maximal



compact subgroup. Let K? C U(AP) be a tame level and let S be a finite set,
containing places above p, away from which KP? is hyperspecial. We write T® for
the unramified Hecke algebra at places not in S and T = T @7 A(p). Associated
to these data we consider the spaces ST(KP) and S(KP), see Definition for
the precise definition, which come equipped with an action of T and A(p).

Given a character x° : T — L let ¥ = x° ® 0 and consider the eigenspaces
ST(KP)[x] and SC(KP)[x]. We note that the classical subspace S<(KP)[y] is zero
unless x is dominant algebraic. To an eigenvector f € Sf(KP?)[x] we can associate
a Galois representation p = p; = p, : Galg == Gal(E/E) — GL,(Q,). For the
precise form of the main result we introduce the following (strong) Taylor-Wiles
hypothesis. Let p : Galp — GL, (k) be the semisimplification of the reduction
modulo the maximal ideal of Op, of p. We assume that (see Hypothesis in the
text)
p>2,

E/F is unramified and ¢, ¢ E,

U is quasi-split at all finite places of F, (1)
if a place v of F is inert in F, then K, is hyperspecial,

p is absolutely irreducible and p(Galg,)) is adequate.

For simplicity of the exposition we assume now that that p is totally split in F’
(in the core of the paper we work in the general case). If the representation p is
crystalline at v|p, it can be described by its associated filtered isocrystal which is
a finite dimensional L-vector space De;s(p,) endowed with a linear automorphism
¢ € GL(Dgis(py)) and a complete flag D®, called the Hodge-Tate filtration (in
our case, this is a complete flag as p, has necessarily regular Hodge-Tate weights).
We say that p, is p-generic if the ratio of two of its eigenvalues is not in {1, p}.
In this case the character 0 determines an order of the eigenvalues of ¢ (that is
called a refinement of p,) which in turn (using the fact that the ¢-eigenvalues are
pairwise distinct) defines another complete flag F, on Deis(p,,) which is ¢-stable.
We denote w,5, € &, the relative position of the flags F, and D*® in the flag
variety of Deyis(py). When w5, = wy is the longest element of &,,, i.e. when the
two flags D*® and JF, are in generic position, we say that f is non-critical at v. The
“most critical case” is the case where w, 5, = 1, i.e. when the two flags coincides.
In this case we say that f is very critical at v.

Theorem 1.2. Assume n = 3. Let § : T(Q,) — L* be a continuous character of
weight k dominant algebraic. Let x° : T — L be a character and let x = x° ® 6.
We assume that the eigenspace ST(KP)[x] is mnon-zero and that for any v|p the
local Galois representation p, = pylcay, : Galg, — GL3(Q,) is crystalline with
distinct Hodge-Tate weights and is p-generic. Assume moreover that the Taylor—
Wiles hypothesis is satisfied. Let r be the number of places v|p in F such that



Wy, 50 = 1. Then
dim SHK?)[] = 2" dim S (K7

We refer to Corollary for a more general statement where p is not neces-
sarily totally split in F'.

Theorem [I.2) would be vacuous without proving the existence of characters y
and § (and a group U and a tame level K?) such that the corresponding eigenspace
Se(KP)[x] is non-zero and consists of very critical forms. As there exist only count-
ably many classical automorphic forms, but uncountably many flags it doesn’t seem
very easy to construct an f with w, s = 1. This is Corollary[8.13] the main result
of section [§] which uses global automorphic methods that are rather disjoint from
the methods of the other parts of the paper. The Galois representation corre-
sponding to the constructed Hecke character is induced from a degree 3 extension

of E.

We finally discuss the relation of these results with patching functors and the
categorical approach to a p-adic Langlands correspondence. Assume that d = 03"
is the product of a dominant algebraic character §, and a smooth unramified
character 653" (which is in fact implied by the assumption that p, is crystalline). As
the notation suggests, the character 63" corresponds to the choice of a refinement
R of p, == (pu)vlp- Let &, = Spec(R,,) be the scheme associated to the universal
deformation ring of p,. Using results of [BHS19|, we can construct a subscheme

X/?: = Spec(Rqtrl ) C &,

of “quasi-trianguline” deformations of p, associated to the refinement R. By
loc cit. this scheme has a local model modeled on the Steinberg variety (or rather

s “Grothendieck—Springer” variant) and its irreducible components X% arLw are
labeled by the Weyl group W of I[,, GL3. It is known that these 1rredu(31ble
components are normal and Cohen-Macaulay.

Let’s denote A = d|7o(= dx70), this is a dominant algebraic character. Using
hypothesis the Taylor-Wiles method, as extended to the setting of completed
cohomology in [CEG™16], can be used ([BHS19, 5.]) to construct coherent sheaves
Moo(L(N)) and Moo (M (w - N)) for w € W over X&¥ o = Spec(Rgtr;z[[xl, con xgl])
for some g > 0, that “patch” the duals of the spaces of classical, respectively
p-adic, automorphic forms. More precisely

Moo(L(N)) ® k(py) = Homp (SS(K?)[x], L),
Moo(M(w - X)) ® k(p,) = Homp (S}, (K?)[x], L).

These coherent sheaves are in a certain precise sense associated to the U(g)-
modules L(A) (the algebraic representation of highest weight \) respectively the
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Verma modules M (w- \), where g is the Lie algebra of Uy, = [],, GL3. The results
of [BHS19] show that the coherent sheaves M (M (w-\)) have generic rank (when

nonzero) equal to dim; S§{(K?)[y]. Denote X&"% = X< o X yau XIZY. The
P, )

key to the proof of Theorem is the following result:

Theorem 1.3. Under the assumptions of Theorem let m = dimy, S§![x]. For
any w € W, there is an isomorphism

Mac(M (1 X)) = 02

co,p, R

qtri,wwo thrl AWWQ

Here watiweg is the dualizing sheaf of a complete intersection X o, jz~ C Xy )R

00, pR

In order to prove Theorem [I.3] we extend M, to a functor on the whole
category O,, the block of the BGG category O containing L(A). This is the
patching functor alluded to above. More precisely, assuming that p, is crystalline
with regular Hodge-Tate weights, and ¢ is (p-generic, we construct an exact functor

Mo : Oy — Coh(X3 1y,

00,p, R/

such that, for every M € O, the sheaf M, (M) is Cohen—Macaulay of the expected
dimension.

In spirit of the categorical approach to the p-adic Langlands correspondence
the functor M, should be a “local” functor, that is (up to multiplicities coming
from contributions at the places away from p) the functor M., should be the
pullback, denoted B, of a functor

B, : Oy — Coh(X").

This functor B, can be written down explicitly using the local model for X, qt“
and a functor constructed by Bezrukavnikov [Bez16], see [7.2] for details. Our main
local result compares M, and B, (see Corollary (7.23 - 3| for the general version):

Theorem 1.4. Under the assumptions of Theorem let m = dimp, S§![x]. Then
there is an isomorphism of functors My, ~ BZ™. As a consequence, we have

]) f07° all w E W, Moo(M< ) ) qutrlwwo )

oopR

2) for allw € W, Mg (M(w - \)) ~ WEZZU wwg

co,p, R

3) for all M € O, we have Moo (MY) =~ Mo(M)Y where ()Y denote both the
dual in Oy and the Serre dual in the category of coherent sheaves.

8



Remark 1.5. We can only prove Theorem [1.4]in the three dimensional case. How-
ever, we expect an isomorphism M, = BZ™ for higher dimensional definite uni-
tary groups as well.

In fact B, should factor through the category of locally analytic representations,
and is expected to extend to a functor with values in coherent sheaves on the stack
of all (¢, I')-modules (compare [EGH23|, Conjecture 6.2.4 and Expectation 6.2.27]).
Theorem [I.4] should be viewed as some partial evidence for these expectations.

The key to proving Theorem is to extend the functor M., to a larger
category Ogy, and to a deformation O, as introduced in [Soe92], which we think of
as a deformed version of O,. We would like to emphasize that we first proveand
we deduce the isomorphism M, ~ BZ™ from this in a second time . The proof of
is based on a dévissage whose has its origin in the paper [EGS15]. We first prove
the result in the case where ng;z’w is smooth and then proceed inductively. Note
that the existence of Bezrukavnikov’s functor B, plays a key role in this induction.
The second main input into this induction is the computation of M (M;(w - \))
where M (w - \) is a generalized Verma module (corresponding to some parabolic
Pr). These sheaves, that are related to sheaves of p-adic automorphic forms on
the partial eigenvarieties constructed by Wu [Wul, are supported on “partially de
Rham quasi-trianguline” deformation spaces X plpf%tri which have been studied by
Breuil and Ding in [BDJ.

We finally note that the component ij’rpi:%o is not Gorenstein and its dualizing
sheaf has a 2"-dimensional fiber at p,, which is the reason for the factor 2" in

Theorem [T.2]

We now describe the content of the article. In section 2] we introduce the cate-
gory Oy, and its deformed versions. Section [3| studies Emerton’s Jacquet functor
and gives the abstract framework to construct patching functors. In section [4] we
recall the quasi-trianguline deformation spaces of [BHS19], their local models, and
their parabolic version ([BD| [Wul). Section 5| recalls the definitions of the global
objects like completed cohomology, overconvergent automorphic forms and their
patched versions. Section [f]is devoted to the further study of the functor M, and
its factorization through X;tzﬁ, the (global) quasi-trianguline deformation space.
In section |7, we study the supports of the sheaves M (M) for specific objects
of O (and their deformed version), and we recall results on Bezrukavnikov’s
functor before deducing Theorem (in the three dimensional case). Finally, in
section [§ we explain how to explicitly construct very critical forms satisfying the
assumptions in Theorem for n = 3.
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Notations

Let p be a prime number. When K is a field, we write Galx = Gal(K*?/K) for
its absolute Galois group. We fix L a finite extension of Q, which will be chosen
sufficiently large in the text.

2 Variants of the BGG-category O

In this section, we fix L to be a field of characteristic 0. Let G be a split reductive
group over L. Let B be a Borel subgroup, T a maximal split torus of G contained
in B and NN the radical of B. We use the notation g, b, t, n... for the Lie
algebras of G, B, T, N... We denote by X*(T) the finite free abelian group
Hom(T, G,, ) of characters of T. This abelian group can be identified with a
Z-lattice in t* := Homy (t, L). For A € X*(T'), we also write A for the character of
t induced by \. Let ® be the set of roots of the pair (G,T) and let & C ® be the
subset of positive roots with respect to B and A C ®* the subset of simple roots.
As usual we write 0¢ € X*(T) ®7 Q for the half sum of positive roots. Let W be
the Weyl group of (G,T). For w € W, we write A — w - A for the dot action of
W on X*(T) (with respect to B, that is w - A = w(\ + dg) — dg). We equip W
with the Bruhat order corresponding to the choice of B and we denote wg € W
the longest element for this order.

If I C A is a subset of simple roots, we denote by ®; C & the subset of roots
which are sums of elements of I and P; D B be the standard parabolic subgroup
of G such that p;y = b+ > ,cs, 9o Let L; be the standard Levi subgroup of P;
and Z; be the center of L;. We say that a character A\ € X*(T) is dominant
with respect to Py if (A\,a") > 0 for a € I and we denote X*(T')} the set of such
characters. When I = A, we have P, = G and we write X*(T)* = X*(T)%.
We use the following order relation on X*(T), we say that A > pu if and only if
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A — H € Za€¢+ Na.

We write W; for the Weyl group of the Levi L; of P;; it is the subgroup of
W generated by the simple reflexions s, for a« € I. Given w € W, we denote
w™™ (resp. w™) the unique minimal (resp. maximal) element for the Bruhat
order having the same class as w in W;\W. This definition depends on I (and on
the fact that the quotient is on the left) but we hope our notation will cause no
confusion. As usual, we write wy € W for the longest element in W. Then we
have (wwg)™" = w™®wy and (wwg)™*® = w™"w, for any w € W . Finally, we
write /W for the set of minimal length representatives of W;\W in W.

If b is a Lie algebra we note h* its derived Lie algebra.

2.1 Recollections

For I C A, we consider the full subcategory 05> of the category U(g)-mod of
U(g)-modules that consists of all finitely generated U(g)-modules M such that

o for any m € M, the L-vector space U(p;)m is finite dimensional;

o for any h € t and any h-stable finite dimensional L-vector subspace V' C M,
the characteristic polynomial of hyy is split in L[X].

This is the category OP*>° in [AS22] §3.1].

For p € Homy(t, L), we write M* C M for the L-subspace of those v € M
such that, for any h € t, (h — pu(h))™ - v = 0 for some n > 1. We have

M= @ M-

wEHomyp (t,L)

We write Oifgo for the full subcategory of O whose objects M satisfy M* = 0
for p & X*(T).
I

Moreover, we write O,, C Oi{go for the full subcategory whose objects are
direct sums of finitely generated semisimple U(I;)-modules (when seen as U(l;)-
modules). This coincides with the usual parabolic (algebraic) category O, which is
denoted O}, in [OS15]). When I = () we simply use the notations Ogf, and Oy for

a

OS;? and Oglg. Note that Oi{go C Ogj, for any I C A. As these categories depend
on the choices of g and b we write O%° (with additional decorations) instead of O,

when the context is unclear.

These categories are stable by subobject and quotients in the category of U(g)-

I . .
modules. Moreover the category O,j,° is stable under extensions.

11



For any character A € X*(T)}, we write L;(\) for the simple U([;)-module of
highest weight A\. This is a finite dimensional L-vector space and we define the
generalized Verma module of highest weight \ as

M;(A) = U(g) Qupp) Li(A).

The generalized Verma module is an object of Oilg and has a unique simple quotient
L(X\). When I = (), we simply write M(\) = My(\) and say that M(\) is a Verma
module. We also denote by P(\) the projective cover of the simple module L(\).
If A is dominant with respect to B, we call P(wg - A) the antidominant projective
(with respect to A).

2.2 Nilpotent action of U(t)

Given I C A we denote by m; the augmentation ideal of U(3;) and set

Ap = U(ﬁl)ml
A=Ay =U(t)n.

The canonical Lie algebra decomposition [; = 3; @ [7° defines a canonical morphism
of Lie algebras p; : [; — 3; which extends to a morphism U(l;) — U(3;) of L-
algebras also denoted by p;. This morphism induces a surjective morphism A — A;
of Aj-algebras.

We show that the category O>° naturally embeds into the category U(g) 4,-mod,
where U(g)a, = U(g) ®1 A;.

Let M be an object of the category OF*. Let h € t. For v € M the element h
defines an L-linear endomorphism of the finite dimensional L-vector space U(t)v
and we write h = Dy, + Nj,,, for its Jordan decomposition with semisimple part
Dy, , and nilpotent part N, ,. As M is locally U(t)-finite, uniqueness of the Jordan
decomposition implies that these endomorphisms “glue” into an endomorphism
Dj, and a locally nilpotent endomorphism N, of M such that Dy, respectively
Ny, is the restriction of Dy, respectively Ny, to U(t)v for any v € M.

Lemma 2.1. The endomorphism Ny, is U(g)-equivariant.

Proof. By construction N, and Dj, commute with the action of t and stabilize each
M#. Let « € ® and = € g,. For v € M*, we have x-v € M** and [h, z] = a(h)z
so that

Dpx-v+ Nyx-v=2axDp-v+xNy- v+ alh)xv.

By definition of M*, we have Dy, - v = p(h)v for any v € M*. This implies
Dyz-v = (u(h)+a(h))x-vand Dy -v = p(h)x-v. Therefore Nyx-v = xNp,-v. We
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conclude that N;, commutes with the endomorphism of M induced by x. Therefore
Ny, is U(g)-equivariant. O

Given M € 01> Lemma [2.1| implies that we can define an U (t)-module struc-
ture on M by letting h € t C U(t) act via N,. As the action of each h on M is
locally nilpotent, this action extends to an A-module structure.

Lemma 2.2. Let M be an object of O1°°, then the A-action on M factors through
A;. Moreover, this Ar-module structure makes O into a full subcategory of

U(g)AI—mod.

Proof. In order to prove that the A-action factors through A — Aj it is enough to
prove that for A € tNI* the endomorphism NN}, is zero. This is a direct consequence
of the fact that [* is a semi-simple Lie algebra and that the L-vector space U (I**)v
is finite dimensional for any v € M (by definition of O7>). As the U(g)-action
commutes with the A-action by Lemma the module M is an U(g)4,-module.
Finally we note that, given h € t, the construction of N}, is functorial in M. [

Remark 2.3. Let M € O"* and p € Homp(t,L) then the above construction
implies that
M" ={ve M| hv= (uh)v)+ pr(v))v Vh € t}

Let M € Og,. Lemma [2.1]also implies that we can define another structure of
an U(g)-module on M where an element h € t acts through the semisimple part
Dy, and the action of an element z € g, for a € ® is not modified. We denote
this U(g)-module structure by A/*. Then M® is an object of Oy, and [OS15)
Lemm. 3.2] implies that there is a unique structure of algebraic B-module on M
lifting the structure of U(b)-module on M. This B-action is compatible with the
original U(g)-module structure on M in the following sense:

Lemma 2.4. Let M be an object of Og, endowed with the B-module structure
defined above. Then
b- (X - (b7 -v)) = (Ad(b)X) - v

foranybe B(L), X € g andv € M.
Proof. 1t is sufficient to prove the formula for b € N(L) and for b € T'(L). If

b e N(L), then b = exp(n) for some n € n. It follows that Ad(b)X is equal to the
finite sum >, %ad(n)kX and that the action of b on M is given by the series

13



Y k=0 1" (which is locally finite). Therefore we have,

_ 1
b-(X-(b7"-0)= > (—1)£mnan£ -V
k>0,00
1 m
N _q)k-m kXl .
% 2 (o

-5 L (ad(n)"X) v = AdB)X .

If be T'(L), then if « € @ U {0} and X € g,, and if v € M*, we have
b (X - (b7 v) =0 (X - (u(d")) = (1 + @) (B)u(d™ )X - v
=ab)X -v=Adb)X -v
as Ad(b)X = a(b)X. O

For later use, we note that we can resolve objects in Ogj, as follows:

Lemma 2.5. Let M be an object of Og,. Then there exist finite dimensional
U(b)-modules Vy and Vi and an ezact sequence of U(g)-modules

U(g) Quey Vi — U(g) @uwy Vo — M — 0. (2)

Moreover, this exact sequence is B-equivariant for the B-actions (on each of the
three terms) defined just before Lemma .

Proof. The existence of a finite dimensional U(b)-module Vj and a surjective map
U(g)®uw Vo — M is a consequence of Proposition . The existence of V| and of
the map U(g) ®@u @) Vi = U(g) @uv) Vo follows again from Proposition applied
to the kernel of U(g) ®u @) Vo — M. The B-equivariance is a direct consequence
of the definition of the algebraic action of B-action on each term of the sequence

®. 0

2.3 Deformations of the category O

Fix I € A and let M be some U(g)4,-module. For u € X*(T), we define the
A;-submodule

Mt ={ve M|Yhet h-v=(pr(h)+ plh))v}.

We note that for M € O this coincides with the generalized eigenspace for
by Remark . Inspired by the construction of [Soe92] §3.1], we define Oilg as the
category of U(g)a,-modules M such that

14



o M is finitely generated over U(g)a, ;
o M =@®,cx~r) M" and each M" is a finite free Ar-module ;
o for any m € M the Ar-submodule (U(pr) ®7 Ar)m is finitely generated.

Lemma 2.6. Let M be an object of @ilg. Then for any n > 0, the U(g)-module

M /w3 M is an object of OL° and M/m;M is in OF

alg alg*

Proof. This is a direct consequence of the definitions. m

For A\ € X*(T)} we define the deformed generalized Verma module of weight \
as

M;(\) = U(g) @u) (Li(A) @1 Ar)

where U(p;) acts on Ay via the composition U(p;) — U(lr) 2 U(31) — Aj. The
module M;(V) is an object of Of}, and we have an isomorphism of U(g) 4,-modules

M(\) @4, Ar/mp = M;(\).

2.3.1 Duality

Recall that there exist an internal duality functor M — MY on the category O,
(see [HumO8, §3.2]). We will define an analogue on O,,. Let M be an object
of the category (’Xlg. We define an action of U(g) on M* = Homy, (M, A;) by
x - f(m) = f(r(x)m) where 7 is the anti-involution of U(g) defined in [HumO8|
§0.5]. We then define M"Y to be the sub-U(g)-module of M* given by

MY = P (M)~

REX*(T)

Lemma 2.7. If M is an object of the category @ilg, then so is MV . Moreover there

is a canonical isomorphism M = (MY)V. Consequently M" /M ~ (M /m;M)Y
is in the category Of,.

Proof. We have a canonical isomorphism of A;-modules

M* ~ H HomAI(M“,AI)

peX*(T)

and we easily check that (M*)* = Homy,(M*, A;) for p € X*(T). As any M* is
a finite free A;-module, so is (M*)* = (MVY)*.
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Let nj == @nc_ao+\0, o denote the nilpotent radical of the parabolic Lie sub-
algebra opposite to p;. Note that a U(g)4,-module M such that M = @, M* with

M* finite free over A; is in 6£Ig if and only if we can write M = U(n;)- (EBues M“)
for some finite set S C X*(T'). By Lemma [2.6] the object M /m;M lies in the cat-
egory O, and it follows from [Hum08, §9.3] that (M/m;M)" lies in Of,,. This

alg
implies that there exists a finite set S C X*(T') such that

(M/mM)" = U(n;) - (@ (M/mM)"+).

neS

It follows that for any p such that (M/m;M)Y#* 2 0, the map

D (M mM) — (M )mp M)
Vezae—é\él Na
wes
W tv=p
given by the action of the corresponding element of U(n;) on each summand, is
surjective. As M* is a finite free A;-module and Ay is a local ring, we deduce from
Nakayama’s Lemma that the map

e M — M
VeZag—@\dq Na
wes
W tv=p
is surjective and thus that MY = U(n;) - (@NIGS MV*"). This implies that MY
is a finitely generated U(g)4,-module and we also deduce from this equality that
MY is locally U(p;) a,-finite.

In order to prove that M = (M")" we note that the natural map M — (M")*
of U(g)a,-modules factors through (M")Y and respects the weight decomposition.
Moreover as M* is free over A; for all u, the induced bi-duality M#* — (M**)*
morphism is an isomorphism. O

2.3.2 Blocks

Let Z(g) denote the center of U(g) and let x : Z(g) — L be a character of Z(g).
Let O, be the subcategory of objects M of Oy such that z — x(2) acts nilpotently
on M for any z € Z(g). For I C A, we denote by Oi the full subcategory of
objects of Of}, which are also in O,. We deduce from [Hum0S8, Prop. 1.12] that
there is a decomposition into blocks

Oilg =P Oi.
X
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We write (531( for the subcategory of objects M of (’Xlg such that M/m;M lies in
Oi, and similarly (9)1(’00.
Remark 2.8. For A\ € X*(T), let x be the character y, defined in [HumO8| §1.7].

Then loc. cit. implies that M;()) is in O .

Lemma 2.9. We have decompositions @ilg =@, @i and Oi{;o =@, 0.

Proof. Let M be an object of @ilg. For a character x : Z(g) — L and p € X*(T),
let M"X denote the subset of elements x € M* such that (z — x(z))"x — 0
for the m-adic topology on the finite free A;-module M*. We easily check that

MX = @ ex-) M"Y is an U(g)a,-submodule of M which lies in @f{ and that
M = @, MX. The case of Oil’;o is similar. O

Lemma 2.10. Let A\j,\y € X*(T). Assume that M;(\)) and M;(Xs) are in the
same block (9)1< for a character x : Z(g) — L. Then there exists w € W such that
w - )\1 = )\2.

Proof. By Remark , the claim follows from the same claim in the category (’))I(.
As M;(A1) and M;()\y) are quotients of M (A1) and M ()z), this is a consequence
of [Hum08, Thm. 1.10]. O

When A is a character of t, we often write by abuse of notation O, (resp.
O}, 0}) for the block O,, (resp. OL> O ) where x, is the character of Z(g)

X\

giving the action of the center on M () (see [HumO8| §1.7]). In particular, x» = x,
if, and only if, there is w € W such that w - A = p.

Corollary 2.11. Let A € X*(T) be a dominant weight and let xx be the associated
character of Z(g). If M is an object of O (resp. OL>), then M* = (M*)".

Proof. Assume that this is false. Then there exists « € &1 and x € g, such that
xM?* # 0. Thus there exists ¢ > A such that M* # 0. As M lies in the category
Ol (resp. OL>), we can choose 4 to be maximal which then implies nM* = 0.
As M*" # 0 Nakayama’s lemma implies that there exists v € M* which is non zero
in M*/mM*. Then v defines a map M; (i) — M with x> A, which is non-zero
after reduction by m. Thus it induces a non-zero map M;(u) — M/mM € O,,.

It follows that p = w - A which is a contradiction. O]

2.3.3 Deformed Verma modules

Let A € X*(T') and let V' be a finite dimensional U(g)-module. Then we have an
isomorphism of U(g) 4-modules

M) @V ~U(g)a @uwy, (Ve @1 A(N)).
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Indeed there is a canonical map from the left to the right, which then is easily
checked to be an isomorphism. As V}, is a successive extension of one dimensional
U(b)-modules, and as U(g)a Qu), (—) is an exact functor (as follows from the
PBW Theorem), we have a filtration (Fil;) of M()\)®.V such that each subquotient
Fil; / Fil;_; is isomorphic to M (A + 1) for v; a weight of V. Moreover the family
(v4) is the family of weights of V' (counted with multiplicity).

Proposition 2.12. Let K denote the fraction field of A. Then the filtration
(Fil; ® 4 K) of (M(N)®@LV)®4 K splits in the category of U(g) x-modules, i.e. there
exists an isomorphism of U(g)x-modules

(MN) @ V) @4 K ~ @M+ 1) @4 K)
compatible with the filtration (Fil; @ 4K).

Proof. This is a consequence of the paragraph preceding [Soe92, Thm. 8]. O]

Lemma 2.13. Let A € X*(T)F be a dominant weight (with respect to P;) and let
V' be a finite dimensional U(g)-module. Let M be an object of (9;{?. Then the
map -

Homy ), (M7 (A) @1V, M) — Homy g (M;(A) @ V, M/m M)

given by reduction modulo my is surjective.

Proof. The L-vector space Homp(V, L) has the structure of an U(g)-module in-
duced by g-action defined by z - ¢ = —¢(z-) for x € g and ¢ € Homy(V, L). For
any U(g)-modules M; and M,, the adjunction isomorphism Homy (M; @V, My) ~
Homy, (M, My®pHomy(V, L)) is g-equivariant and hence induces an isomorphism,
HomU(g)(Ml X, V, MQ) ~ HomU(g)(Ml, Mg X, HOHIL(‘/, L))
Thus, as M ®; Homg(V, L) lies in O;l’;o we can assume that V' = L. Using
Lemma , we can assume that M is in Oi’oo for some character xy and by Remark
2.8 it is sufficient to consider the case where y = .. By construction of the
deformed generalized Verma modules we have Homy(g), (Mr(A), M) = (M*)™ and
Homy ) (M;(N), M/m;M) = (M/m;M)*)". However it follows from Corollary
that (M) = M* and ((M/m;M)*)™ = (M/m;)*. Tt is thus sufficient to
prove that the map M* — (M /m;M)? is surjective, which is obvious. O

1,00

Proposition 2.14. Let M be an object of the category O,j, . Then there exist
weights i, ..., \, € X*(T)} and finite dimensional U(g)-modules Wy, ..., W, and
a surjective map of U(g)a,-modules

(Mi(\) @ Wh) @ -+ @ (Mr(\,) @, W,) — M. (3)
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In particular M is a quotient of an object of the category Oalg Moreover there
exists an integer N > 0 such that the map (@ factors through

((My(\) @, W) @ - @ (Mr(\,) @1 W,)) @4, Ar/m).

Proof. By [Hum08, Thm. 9.8] (and its proof), there exist dominant weights A1, ..., A,
finite dimensional U(g)-modules W7, ..., W, and a surjective map

(Mr( M) @ Wh) @ -+ (Mp(N\,) @ W) = M/m; M.
By Lemma [2.13] this map can be lifted into a U(g),-equivariant map
Mi(A) @ Wi @ -+ My(\,) @ Wy — M

which is surjective by Nakayama’s Lemma. The last assertion is a consequence
of the fact that M is finitely generated as a U(g)- module and all its elements are
killed by some power of m; so that M is killed by m¥ for some N > 0. [

2.4 Bimodule structure

Let € : Z(g) — U(t) be the Harish-Chandra map. Recall that it is defined as
follows: for x € Z(g) there exists a unique element £(z) € U(t) such that x €
&(z) + U(g)n (see [KnaOl, Lem. 8.17]). For any v € X*(T) we denote by t, the
unique endomorphism of U(t) such that t,(z) = = + v(z) for x € t. Note that
t_s. o & induces an isomorphism from Z(g) on to U(t)" (see [Kna0OI, Thm. 6.18]).
For a dominant weight A € X*(T') we define a map

hy: A®r Z(g) 225 Ag, oU() 2% Ag,w A

following [Soe92) §3.2], It follows from [Soe92, Thm. 9] that h, is surjective (note
that W, in loc. cit. is trivial in our situation). If I C A is a finite subset,
tensorization on the left with p; : A — Aj yields a map hy : Ay ®1 Z(g) —
A @qw A.

For w e W, let I, C A; ®1 Z(g) denote the kernel of the map

haw : Ar®p Z(g) —> 1d®hy M8h 4 @ 4w A 2@y (zp; (Ad(w)y)) J A,
It is not hard to see that this kernel only depends on the choice of w € W \W.

Proposition 2.15. Forw € "W, the A;®1, Z(g)-modules M;(w-\) and M;(w-\)"
are annihilated by I, .
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Proof. The result for M;(w - A)V follows from the result for M;(w - A\)¥ and the
inclusion - -
Mr(w - A\)Y C Homu(Mr(w - N), A).

Hence it is enough to check that the action of A; @7 Z(g) on M(w - \) factors
through hy .. As this action is central and M;(w-\) is generated by M;(w-A)* as
an U(g) 4,-module, it is sufficient to check that the action A;®;Z(g) on M;(w-\)**
factors through hy ,,. Using the fact that n acts trivially on M r(w-\)**, an element
x € Z(g) acts on this space via . For the clarity of the computation let us write
g, : U(t) — Aj for the L-algebra homomorphism associated to an L-linear map
vit— Ajandlet s :t— A — A;. Then for 2 € Z(g) and v € M;(w-\), we have

furte(6()) = Euirrsarut 1)t (§(2))) = Expsgru1)(t-ss (E(@))
= ey 100 (@) = pr(Ad(w) (ha(2))

(where we use that the image of ¢_s, o & lies in U(t)"). As an element y € U(t)
acts by multiplication by ey, (y) on M;(w - A)*?, we conclude that an element
r®z € A;®r, Z(g) acts by multiplication by xp;(Ad(w)(hy(x))) on Mr(w - \)¥2,
which is the desired formula. O]

Remark 2.16. The ring U(t) (resp. U(37)) is the affine coordinate ring of the
(affine) L-scheme associated to the dual t* of t (resp. to the dual 37 of 37) so that
A (resp. Aj) is the stalk of the structure sheaf of t* (resp. of 3}) at the origin. The
ideal I,, is the ideal defining the irreducible component 77, of (37 X W t*)(()’o)
consisting of pairs (A, i) € 37 X t* of characters such that p = w(\).

Later in the paper we will view the L-scheme t* as the Lie algebra t" of the
dual torus T} of the Langlands dual group Gy, that we consider as an algebraic
group over L. As we will later specialize to the case where G is isomorphic to a
product of r copies of GL,, the reductive group G is self dual and we will identify
t* = t¥ with t in order to avoid the additional (—)" in the notation. In particular
we will consider U(t) as the affine coordinate ring of t. The inclusion 37 < [}
induced by the projection py : [; — 3; is then identified with the inclusion 3} < [
of the center of the Lie algebra of the Langlands dual group of L and again we use
self duality (in the case of products of copies of GL,) to identify this map with
37 — I;. Hence we obtain a canonical map 3; < t of L-schemes corresponding
to the morphism U(t) — U(37). With this identification the ideal I, defines the
irreducible component Ty, of (37 X/w t)(0,0) Whose points are the pairs (z,y) €
such that y = w=(x).

We finally recall the following result of Soergel (Endomorphismensatz 7 [Soe90]).

Proposition 2.17. The action of Z(g) on P(wy - A) factors through the map
trol : Z(g) » L@aw A and induces an isomorphism L® 4w A ~ Endo(P(wg-\)).
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3 The Emerton—Jacquet functor

Let G be a quasi-split reductive group defined over Q,,. Let B be a Borel subgroup
and 7" be a maximal torus of G contained in B. We set G == G(Q,), B = B(Q,),
T :=1T(Q,). We also fix L a finite extension of QQ, which will be the coefficient
field of our representations. We assume that L is big enough so that the torus
T xq, L is split (and then G xq, L is split). We denote g, b etc. the Lie algebras
of G xq, L, B Xg, L etc. In the following we will consider the category ReplLaG
of locally analytic G-representations on locally convex L-vector spaces, as well as
the corresponding variants for the (Q,-analytic) groups B,T, etc. In [Eme06al
Def. 3.4.5] Emerton constructs a functor

Jp: ReplLaG — Replz‘T

that we refer to as the Emerton—Jacquet functor. It is defined as follows: Let Ny
be a compact open subgroup of N and let T = {t € T | tNot~' C No}. If V is a
L-linear representation of B, we endow the L-vector space Vo with the action of
the monoid 7" defined by

[tjo = [No: tNot']7" > ut(v).

u€Np /tNot—1

Then Jp(V) is the finite slope space (V™0)g of Vo with respect to the action of
T+ on which the T-action extends to a locally analytic representation of 7.

3.1 Families of locally analytic representations of the Borel
subgroup

Let s € Z>o be an integer and let II be a locally analytic L-representation of
Zy, x B. We consider the following hypothesis on II:

Hypothesis 3.1. There exists a locally analytic representation of Ny on a locally
convex L-vector space of compact type V such that

Mizswn, =~ C™(Z5, L)&LV.

Given s, we set S := O [[Z;]] and write Spf (S)"e for the rigid analytic generic
fiber of Spf(.S). This space is a rigid analytic open polydisc and we write

Srig — F(Spf(s)rlg’ OSpfSrig)
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for its ring of rigid analytic functions, which is a Fréchet L-algebra (when endowed
with its natural topology). We note that a finitely generated, projective S™8-
module C' defines a vector bundle on Spf(S)"8. As every vector bundle on a rigid
analytic polydisc is free, it follows that C'is free as well, i.e. every finitely generated
projective S™8-module is finite free. Moreover, finite dimensional quotients of S™8
admit resolutions by a perfect complexes:

Lemma 3.2. Let a C S"® be a closed strict ideal such that dimy, S™8 /a < co. Then
there exists perfect complex Cy of S"8-modules which is a resolution of S™/a and

such that Cy = S™8.

Proof. As S[1/p] is dense in S™# its image in S™8/a is dense L-vector space and,
as S"&/a is finite dimensional, is in fact equal to S™8/a. Setting ag := a N S[1/p),
we have S[1/p]/ag ~ S"8/a. As S™8 is a flat S[1/p]-module, it is sufficient to prove
that S[1/p]/ap has a finite resolution by finite projective S[1/p]-modules, which is
a consequence of the fact that S[1/p] is a regular noetherian ring. O]

Let C, be a complex of finite free S™8-modules. For each n > 0, C,, is endowed
with its canonical topology induced by the topology of S™&, then the differentials
in the complex C, are continuous. The complex II* := Homgug(Cs, IT) is then a
complex of locally analytic L-representations of Z; x B. We also set [INoe =
Homgrig (Cy, ITV0) and Jp(I1)® := Homgrie (C,, Jp(I1)).

Lemma 3.3. Let 0 = U — V — W — 0 be a short exact sequence of topological
L-vector spaces of compact type (resp. nuclear Fréchet spaces) and let X be a
topological L-vector space of compact type (resp. nuclear Fréchet space). Then the
following sequence is exact

00U X - V&L X - W& X —0.

Proof. The claim follows from [Schlll Lemm. 4.13], [ST02, Cor. 1.4] and from
[Emel7, Prop. 1.1.32]. O

Lemma 3.4. Let IT be a locally analytic representation of Z, X B satisfying Hy-
pothesis . Then the two complexes 11°* and IIN* are complexes of L-vector
spaces of compact type with strict continuous transition maps. Moreover for any
integer n > 0, we have an isomorphism of topological T - modules

Hn(HNO’.) ~ Hn(Ho)NO )

Proof. Fix an isomorphism H\Zg,x No = Cla(Z;, L)® 1.V whose existence comes from
hypothesis . As any C,, is a finite free S™8-module and as the completed tensor
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product —&;— commutes with finite direct sums ([Koh(07, Lem. 1.2.13]), we have
an isomorphism of complexes of topological representations of Z; x Ny:

I1* ~ Homgss (Co, C™(Z5, L)) &, V.

As Cla(ZZ,L) is an admissible locally analytic representation of Z;, the com-
plex Homgris (Cy, C**(Z3, L)) has strict transition maps with closed images ([ST03|
Prop. 6.4]). We deduce from this fact and from Lemma that the complex II®
has strict transition maps and that we have topological isomorphisms H"(II*) ~
H"(Homgris(Cy, C*(Z5, L)))&LV for any n > 0. The commutation of &, with fi-
nite direct sum implies that we have a topological isomorphism of L-vector spaces
for any m > 0:

(Homgei (Cyy, IT0) ~ Homgeis (Cyry, C*(Z5, L)) &L V.
We deduce as before that the complex II*™ has strict transition maps and that
we have isomorphisms
Hn<HN0,o> ~ Hn(HO)NQ
for any n > 0. O]
Proposition 3.5. For any integer n > 0, there is an isomorphism
H"(Jp(I1)*) =~ Jp(H"(II*))

of locally analytic L-representations of Z, x T'.

Proof. 1t follows from [Eme06al, Prop. 3.2.4.(ii)] that there is a natural continuous
T*-equivariant map of complexes (IT"0*)g — TIV0:* inducing a continuous 77-

equivariant morphism H"(IIY**) — H"(IINo*). By loc. cit., the universal property

of the functor (—)g provides a T-equivariant map H™(ITR*®) — H™(IINo*)g. Tt
follows from Lemma that it is sufficient to prove that this map is a topological

isomorphism.

We now deduce from [Eme06a, Prop. 3.2.27] and [Fu, Thm. 4.5] that given an
exact sequence 0 — U — V — W — 0 of spaces of compact type with continuous
action of T, then 0 — Uy, — Vis — Wi — 0 is exact, the image of Uy, is closed in
Vis and the map Vg — Wi is strict. The open mapping theorem then implies that
the sequence is strict exact. As the complex IIV0® has strict transition maps by
Lemma , we conclude that the map H"(IIN**) — H"™(ITNo*)g is a topological
isomorphism. O

Proposition 3.6. Let 11 be a locally analytic L-representation of Z, x B satisfying
the hypothesis . Let a be a closed strict ideal of S™® such that dimy S™ /a < +o0.
Then the map

a Qgrie Jp(I1) — Jp(11)

18 injective.
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Proof. By Lemma , there exists a perfect complex C, of S™&-modules such
that, Coy = S8, Hy(C,) ~ S"¢/a and H;(C,) = 0 for i > 0. By Hypothesis [3.1]
we have Il|zsxn, =~ Cla(Z;, L)®.V for some topological L-vector space of compact
type V. As C, has strict transition maps, it follows from Lemma [3.3| that the
complex Cy ®grig [I' =~ Co&1 V' is a resolution of (S™8/a)&V’. We then deduce
from Homgre(C, IT) ~ C; Qgrig I’ for any ¢ > 0, that H'(Homgus(Cs, 1)) = 0
for ¢ > 0. Therefore Proposition implies that H*(Homgre(C,, Jp(IT))) = 0
for i > 0. We denote by (—)’ the duality between spaces of compact type and
Fréchet spaces. This duality implies that H;(Cy ®gris Jp(I1)') = 0 for i > 0. As
a = Coker(Cy — (), we deduce that

a ®Srig JB<H)/ = Coker(C2 ®Srig JB(H)/ — Cl ®Srig JB(H)I)

3.2 Families of locally analytic representations of ¢

Let IT be an admissible locally analytic L-representation of Z; X G. The aim of
this section is to use Il in order to construct a functor

M — HomU(g)(M, H)

from the category O, to the category of locally analytic Z; x B-representations,
and then, by composing with Jp, to locally analytic Z; X T-representations. We
will usually assume that we are in the following situation:

Hypothesis 3.7. There exists a uniform open pro-p-subgroup H of GG, an integer
m 2= 0 and a topological Z; x H-equivariant isomorphism

Wiz wn ~ C*(Z x H,L)™.

Recall from section [2.2|that if M is an object of Ogy,, there is a unique algebraic
action of B(L) on M which lifts the structure of U(b)-module on M. We endow
M with the action of B = B(Q,) obtained by restriction to B.

Let M be an object of OF}, with its semi-simplified B-action. We define an
action of B on Homp (M, II) by

b-f=bf(07"-)

for f € Homy(M,II) and b € B. It follows from Lemma that this action
preserves the subspace Homy g (M, II). We moreover endow Homy g (M, IT) with
the left Z;-action inherited from the one on II. While the definition of the B-action
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using the semi-simplified action on M might not seem very natural at a first glance,
the following lemma says that this definition applied to deformed Verma modules
allows us to compute generalized eigenspaces. Given an U (t)-module X we write

X[(t—= N ={x € XVt € t,(t — \(t))*z = 0}.
With this notation we have the following result:

Lemma 3.8. Let A € X*(T)7 and M = M;(\) ®a4, A;/wk. Then there is an
isomorphism
Homy g) (M, 1) = (I @ Ly(A)")[mj]

of B-representations, where (=)' denote the dual (algebraic) representation. In
particular, when I = (),

Homy g (M(A), IT) = (I" (A1) [m*] = (I"[(£ = A AT

Proof. We compute using the U(g)-structure

HomU(g)(M, H) = HOIHU )(U( ) ®U(b (L[(/\) ®L A]/ml}), H)
= Homyy)(Lr(\) @1 Ar/mj, 1)
= HomU )( I/mI,H'” ®L ()\))
(I @ Ly(A)))[mj].
Moreover each equality is compatible with the semi-simplified B-actions. O

Lemma 3.9. Let IT be a locally analytic representation of Z;, x G' and let M be an
object of Ogy,. Then the Z;, x B-representation Homy ) (M, I1) is locally analytic.

Proof. Let U(g) Qu) Vi = U(g) ®uwp) Vo = M — 0 be a resolution as in Lemma
2.5l Then Homy ) (M, 1) is the kernel of the map

Homy 4 (U (9) @u(v) Vo, IT) = (V@ 1I)" — Homy(g) (U(g) Q) Vi, ) ~ (V@ I1)°

which is continuous and B-equivariant. Therefore Homy () (M, II) is isomorphic to
a closed B-stable subspace of Vj @ II. As Vj is an algebraic finite dimensional
representation of B, the representation Vi @y, II is locally analytic and hence so is
HOH]U(g) (M, H) ]

As Homyg) (M, 1II) is a locally analytic representation of B this action may

be derived and induces the structure of an U(b)-module on Homy g (M,II). Via
restriction to U(t) C U(b) we may view Homy g (M, 1I) as an U(t)-module.
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Lemma 3.10. Let II be a locally analytic representation of Z, X G and let M be
an object of OgFy,. Then the U(t) action on Homy g (M, I1) factors through a finite
dimensional quotient.

Proof. By Proposition there exist dominant weights Aq, ..., \,, finite dimen-
sional g-modules Vi, ..., V, and a surjective map

MM)@LVi@ @ M\) @V, — M.

Moreover by Lemma there exists k¥ > 1 such that this map factors through m*
(recall that A is the localization of U(t) at its augmentation ideal m). Therefore
we have an inclusion of U(t)-modules

Homy(g) (M, IT) < @B Homy o) (M (\i) @4 A/m* @, Vi, T1).
i=1
By Lemma HomU(g)(M()\i)/mk @ Vi, 1) = (T @ V;(\;))"[m*].

Let py, ..., us be the finitely many characters which appears in the restriction
to U(t) of Vi(A1),...,Vi(A). Then the action of U(t) on Homy ) (M, 1I) factors
through the quotient of U(t) by the intersection of the k-th powers of the kernels
of the u;. O]

Lemma 3.11. Assume that Il is an admissible locally analytic L-representation
of Z3 x G satisfying Hypothesz’s and M € Og,. Then Homyyq) (M, II) satisfies
Hypothesis

Proof. We can assume that Ny C H. As we assume Hypothesis[3.7] there is an iso-
morphism IT = C*(Z5 x H, L)™ ~ C*(Z5, L)®C(H, L)™ of Z5 x H-representation.

Let [U(g) ®uw) Vi — U(g) ®uw) Vo] be a resolution of M as in Lemma .
Then Homy () (M, C*(H, L)™) is the kernel of the map

(Vo @1 C*(H,L)™)* — (V{ @1 C*(H,L)™)". (4)

We claim that this is a strict map, then the lemma follows, as exactness of the
functor C*(Z5, L)®,(—) implies that we have an isomorphism of locally analytic
Z;, X No-representation

Homyq) (M, IT) ~ C*(Z;, L)& 1, Homy ) (M, C*(H, L))™
In order to prove that (4} is strict, we use an additional H-action. We let H-act on

C'%(H, L) by right translation and extend this to V/ @ C%(H, L) by acting trivially
on V. This action commutes with the (diagonal) action of U(b), as the U(b) action
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on C*(H, L) is induced by left translations. It follows that (V! @ C'a(H, L)™)° is
a closed H-stable subspace of an admissible locally analytic H-representation, and
hence an admissible locally analytic H-representation itself. Hence is an H-
equivariant map between admissible locally analytic H-representations and hence
a strict map which proves the claim. O

Proposition 3.12. Let IT be an admissible locally analytic representation of Z,x G
satisfying the hypothesis and let M be an object of Of,. Then the locally
analytic representation Jp(Homy g (M, 1)) of Z; x T' is essentially admissible.

Proof. Let U(g) Que) Vi — U(g) ®ue) Vo = M — 0 be a resolution of M given
by Lemma [2.5] Then we have an exact sequence

0 — Homyg) (M, IT) — Homy ) (U(8)®uv ) Vo, 1) — Homy ) (U(g)®u ) V1, 11)

of locally analytic representations of Z; x B (see Lemma . As the functor Jp
is left exact ([Eme06al, Lem. 3.4.7.(iii)]), this induces a short exact sequence

0— JB(HOIHU(Q)(M, H)) — JB(HomU(g)(U(g) ®U(b) V(), H))
— Jp(Homy () (U(g) ®u () V1,11))

of locally analytic representations of Z; x T As the kernel of a morphism be-
tween essentially admissible representations is essentially admissible ([Eme06al
Thm. 3.1.3]), it is sufficient to prove that Jz(Homy ) (U(g) ®@ue V,1I)) is essen-
tially admissible for any finite dimensional algebraic representation V of B. As
an algebraic representation of B is an extension of rank 1 object, it is sufficient to
prove this when V' is 1-dimensional and V" = V. The left exactness of Jg implies
that

Jp(Homy (o) (U(g) ®u(e) V. 11)) 2= Jp(Homy ) (V, I1")) 22 Homy ) (V, Jp(II)).

By [BHS17b, Prop. 3.4] (whose proof follows [Eme06a, Thm. 0.5]), the locally
analytic representation Jp(II) of Z x T is essentially admissible. As U (t) is finitely
generated, we conclude that Homy ) (V, Jp(II)) is essentially admissible. O

Lemma 3.13. Let I be a locally analytic representation of Z, X G satisfying
Hypothesis 3.7

1) The functor M +— Homy g (M, 1) from O, to the category of locally ana-
(9) alg
lytic representations of Z, X B is exact.

(ii) The functor M +— Homy g (M, 1) from Oz to the category of locally
conver L-vector spaces sends short exact sequences on short exact sequences with
strict maps.
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Proof. The assertion is [BHS19, Lem. 5.2.5]. We recall the proof as we will

need notation for the proof of . Let M be an object of the category Opj,. Let

H C G be a uniform compact open pro-p-subgroup. Recall (see for example the
proof of [ST03|, Prop. 6.5]) that Mzswn = hﬂra IT, with

Hr = Homzont(Dr(Z; X H) ®D(Z§><G,L) H, L)
As M is a finitely presented U(g)-module, we have

Homy(g) (M, IT) ~ liﬂHomU(g)(M, I1,) = hﬂHomUT(g)(Mr, I1,)

r<l

with M, = U,(g) ®u() M. Note that there exists an integer m > 0 such that
IT, ~ Hom{™"(D,(Z5 x H), L)™. Therefore we have

HOI’IlDT(H) (DT(H) ®U(g) M, Hr>
~Hom{™ (D, (H) ®u, (g M,, HomP**(D,(Z, L), L))",

for r < 1. Asthe functor M — M, is exact and D, (H) is a finite free U, (g)-module,

this proves .

Now we prove . As Ny is a compact group and L is of characteristic 0, it is
equivalent to prove after replacing Ny by an open subgroup. Therefore we can
assume that Ng = H N N and that H = (NN H)(T N H)(N N H) where N is the
group of Q,-points of the unipotent subgroup of G opposite to N. Let r < 1. The
space Homy gy (M, I1,)™0 is the space of maps from M to II, that are equivariant
for the actions of Ny and U(g). Therefore we have

Homy(g) (M, I1,)Y = Homy, (g)ey, o Dr(No) (M, I1,.)
 HomP™ (D, (H) (0, (qyo0, o) M Homse™ (D, (23, L), L))"

As D, (H) is a finite free right U,(g) ®u, n) Dr(No)-module (see [Koh07, Thm 1.4]),
this proves the claim. O

Theorem 3.14. The functor M +— Jg(Homyg) (M, I1)) from the category Og, to
the category of essentially admissible representations of T is exact.

Proof. This is essentially a consequence of Lemma and we conclude as at
the end of the proof Proposition [3.5 O

3.3 The case of Banach representations with coefficients

Let R be a complete local noetherian Op-algebra. As above we will write R¥®
for the ring of rigid analytic functions on (Spf R)". Let II be an R-admissible
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R-Banach representation of the group G (see [BHS17h, Def. 3.1]). We assume that
our representations satisfies the following property:

Hypothesis 3.15. there exists an integer s > 0, a local morphism of O-algebras
S = O[[Z;]] — R such that, for some (resp. any) open pro-p-subgroup Go C G,
the S[[Go]][1/p]-module I := Hom{*™(IL, L) is finite free (as a consequence II is
also S-admissible).

Using the hypothesis, one shows that the R-analytic vectors II¥~2" and the
S-analytic vectors II°2" of II coincide and they also coincides with the subspace
of Zs x G-locally analytic vectors in II (see [BHSITH, Prop. 3.8]). We will simply
denote this subspace by II'* in what follows. This is a locally analytic representa-
tion of Z; x G with an action of R"8 commuting with G. Moreover if we forget
the R"&-action, the representation IT® satisfies Hypothesis [3.7]

In the following we will write T' for the rigid analytic space of continuous
characters of T' and T, for the space of continuous characters of the maximal
compact subgroup Ty C T'. We recall that the ring of rigid analytic functions on To
is identified with the algebra D(Ty, L) of L-valued distributions on Tj. Restriction
to Tg defines a canonical projection T — Tp. Moreover, the derivative of a character
at 1 defines a weight map

wt : Ty — ¢, (5)

where by abuse of notation we write t* for the rigid analytic space associated to
the L-vector space t*. The map wt is étale and locally finite. Moreover, étaleness
implies that for any character dy : Ty — L* we can identify the tangent space of
Ty at & with the L-vector space t*.

Lemma 3.16. For any object M in Og,, the dual Jg(Homy g (M,I1%))" of the

Emerton-Jacquet module Jg(Homy ) (M, I1*)) is coadmissible as an R&,O(T)-
module.

Proof. This is essentially the same proof than for Proposition [3.12] using the fact
that Jp(IT"®) is essentially admissible as a representation of Z3 x T for any s’ and

surjection OL[[Z;/]] — R by [BHSI7b, Prop. 3.4]. O

Let M be an object of Og,. Tt follows from Lemma that there exists a

unique up to unique isomorphism coherent sheaf My (M) on Spf(R)™ x T such
that
T'(Spf(R)" x T, Mn(M)) = Jp(Homy g (M, 11))"

In particular we obtain a functor from O}, to the category of coherent sheaves on
Spf(R)" x T.
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Theorem 3.17. The coherent sheaf Mu(M) on Spf(R)"™ x T is, locally on
Spf(R)"& x T, finite free over Spf(S)"e. In particular, if nonzero, it is Cohen—
Macaulay of dimension s.

Proof. Let Ty be the maximal compact subgroup of 7" and let TB be the rigid
analytic space of characters of Ty over L. Set N := Jg(Homy g (M,II*)). It
follows from the proof of [BHSI17b, Prop. 3.11] that there exists a family Z of
pairs (U, V) where U is a rational open subset of Spf (R)"& x T and V is a ratio-
nal open subset of Spf(S)™ x Ty such that V is the image of U and such that
Supp(Mn(M)) C Uw,vyez U. Moreover, we may assume that I'(U, My (M)) is a
finite projective O(V)-module that is a direct factor of O(V)&guss, pery.1)N-

After shrinking each U and V' if necessary, we may even assume (by the con-
struction of the family Z) that for each (U, V') € Z, the rational open V is of the
form V; x V5 with V; rational open in Spf(S)"& and V; rational open in TO. It is suf-
ficient to prove that, for any pair (U, V; x V) € Z, the O(V;)-module I'(U, M(M))
is finitely generated and flat.

The map Va — t* has finite fibers (as the weight map is locally finite), and hence
there are only finitely many points of V3 lying over a given character of U(t). It thus
follows from Lemma that the action of L[Tp] on I'(U, M(M)) factors through
a finite dimensional quotient. It follows that ['(U, M(M)) is finitely generated
over O(W}).

Let m C O(V}) be a maximal ideal. As O(V}) is an affinoid L-algebra, m is
closed in O(V;) and O(V;)/m is a finite extension of L. As the image of S™8 in
O(V}) is dense, we have S™8/(S™¢ Nm) ~ O(V;)/m. The ideal a := S"8 Nm of S*&
is finitely generated by Lemma so that the sheaf a ® gz My (M) is coherent
and

T(Spf(R)"® x T, a @grie My(M)) ~ a @grie T(Spf(R)™ x T, My (M)).

As the functor M — I'(U, Mp) is exact on the category of coherent sheaves, we
have an isomorphism

LU, a @grie Mu(M)) =~ a @gris ['(U, Mp(M)) ~m ®o(vr) (U, Mu(M)).
Therefore we deduce from Proposition [3.6] that the map
m Qo) QU (U, Mp(M)) — I'(U, M(M))
is injective. This implies that I'(U, Mp(M)) is a flat O(V;)-module. O

Corollary 3.18. Assume that the representation I1 satisfies Hypothesis[3.15. Then
the functor M+ My (M) is an exact functor from the category Ogy, to the category

of Cohen—Macaulay sheaves on Spf(R)"e x T. Moreover if M (M) is nonzero, its
support is s-dimensional, where s is as in Hypothesis[3.15,
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3.4 Comparison with the parabolic Jacquet functor

Let II be an R-admissible Banach representation of GG satisfying hypothesis [3.15]
We end this section by computing the evaluation of My on generalized (deformed)
Verma modules in terms of Emerton’s parabolic Jacquet-module.

Let I C A be a subset of simple roots. Let A € X*(T); be an algebraic
character dominant with respect to p;. Recall that, by [Eme06al, §3.4], the L-
representation Jp, (I1'*) of L; is locally analytic. Following [Wii, §5.2], we define

Tp, (I1*) = Homys) (Li(N), Jp, (I1*)) @1 Li(A)
JI,,\(Hla) = JBmL,(JP,(Hla),\)~
Similarly to Lemma [3.16| we have the following finiteness result:
Proposition 3.19. The R"®,O(T)-module J; (1) is coadmissible.

Proof. This is a consequence of [Wul, Lemm. 5.1 & 5.2]. O

By the above proposition there is a coherent sheaf /\/lﬁ/\ on Spf(R)"& x T such
that
T(Spf(R)™ x T, Mi;) = Jy (1),
For k > 1, let T,jm be the k-th infinitesimal nelghborhood of the closed subspace
s of smooth characters in T and let i, be the closed immersion of T,Sm in T.
Moreover, for A € X*(T') C T, we write ty : T — T for the map defined by
tx(0) = 0.

Proposition 3.20. Let A € X*(T)] be an algebraic character of T dominant with
respect to Py and let M = M(\) ®ar Ar/m* € Og- Then there is an isomorphism

of coherent sheaves on Spf(R)"& x T':
Mu(M) ~ i it M

Proof. Using the left exactness of the functor Jp,(—), we have an isomorphism an
R"8-equivariant morphism of locally analytic representations of L; :

Jp, (Homy g (M7(A) @4, Ar/m* %)) ~ Homy ) (L1(\) @7 Ar/mF, Jp, (I1%)).
Therefore
Homy (A @1 Ar/m¥, Jpar, (Jp, (I1%),))
~ Jpnr, (Homy gy (Ar/m*, Homy ) (L (A), Jp, (IT%))))
= Jpn, (Homy i,y (Lr(A) @ Ar/m*, Jp, (11%)))
~ Jpnr, (Jp,(Homy ) (Li(X) @1 Ap/m*, 11)))
~ Jp(Homy g (M(\) @4, Ar/m*, 11%))
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where the first isomorphism comes from [Wul, Lemm. 5.3]. The claim now follows
form the fact that the source of this chain of isomorphisms is the dual (of the
global sections) of iy, ift; M and the target is the dual of M (M). O

4 Quasi-trianguline local deformation rings

Let F be a finite extension of Q. We keep the notation of section [3|but we specialize
ourselves to the case G = Res(rg,0,)/0,(GLnreq,) = I, Resr,jq, GLnr,. We
fix B the upper triangular Borel subgroup and T the diagonal torus. It is therefore
sufficient to choose L a finite extension of Q, splitting all the F,. We point out
that, though the field L of coefficients is the same as in the preceding section, the
group G in this section should be considered as the Langlands dual group of the
group in section [3

Let Xz be the set of embeddings of F' in L. This set can be decomposed as
Yr =1y 2F,, where X, is the set of Q,-linear embeddings of F;, into L and where
the index set is the set of places v of F' that divide p. We have a decomposition

g~ (P Lie(G) ®pgyq,r L) ~ @ Lie(GL, 1)

TEX R TEX R

Let A be the set of simple roots of G; with respect to B;. Then

A= H A‘rv AT = {al,ﬂ'a s 7an—1,7'}

TEX R

where a4 7, ..., a,_1, are the simple roots of the copy of Lie(GL, 1) corresponding
to 7. For I C A we denote P; the standard parabolic subgroup of GG; correspond-
ing to 1.

4.1 Local models

Let g :== G, xB. b be the Grothendieck—Springer resolution of g (which is con-
sidered as a scheme over L not just as a vector space in this section). We have a
closed embedding g < G /B x g given by (¢B, X) — (bB, Ad(g)X) and set

X =gx,8CGL/B,xgxG/By.
More generally if I C A, we set

gy, =G ¥ (31 & ny)
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where we recall that P; is the parabolic subgroup of G associated to A and p; is
its Lie algebra. Moreover, we write 3; for the center of p; and n; for its unipotent
radical. Again we consider all these L-vector spaces as L-schemes. We have also a
closed embedding g,, — G/P; x g given by (9P, X) + (9P, Ad(g9)X) and we
set

Xy, = ﬁ‘,}, Xg8 = G /P xgxG./By.

In particular we have X, = X. There scheme X,, decomposes into irreducible
components as follows:

Xo,= U Xpw CGL/P;xgxG./B.

wEW[\W

Here X, ., is the closure of on open subset V;, ., C X,,, which is by definition the
preimage of the G-orbit of G - (1,w) C G/P; x G/B, where w € W is a lift of
w € W\W (see [BD), Cor. 5.2.2] for details). In this paper we need to control the
singularities of X,,,. Even though, for our purpose, the result of [BHS19, Rk. 4.1.6]
would be sufficient, we mention the following more general result.

Proposition 4.1. Let w € W. Then X,, is smooth if, and only if, w is a product
of distinct simple reflections.

Proof. We note that the natural action

of G,, on X by scaling on the g-factor extends to an action of the monoid A'.
This action obviously preserves each X,,. As the singular locus is closed the non-
singular locus, if non-empty, contains a point of the form (¢BhB,0) We will thus
prove the previous proposition using [BHS19|] Proposition 2.5.3 (ii).

We first assume that w is a product of distinct simple reflections. In this case
it is enough to prove that

a) U, is smooth in G; /B x G,/ B;

b) t“*"" has codimension lg(w) —lg(w’) in t for all w’ < w for Bruhat ordering
(with lg the Bruhat length).

By Fan’s Theorem [BL0O(, Theorem 7.2.14], if w is a product of distinct simples
reflexions, then U, is smooth and @ is true. Thus we only need to prove @ For
w € W, let us introduce

l(w) =min{k > 0| w=ry...ry,r, €W a reflection}
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(we recall that reflection is an element of the form s, where o € ® is a root, but
not necessarily a simple root). By [Car72, Lemma 2] and [BHS17a, Lemma 2.7
we have ((w) = dimy, t — dim, t* = d,, (in the notations of [BHS17al).

Claim 4.2. If w is a product of distinct simple reflections, we have
fww'™Y) = f(w) — f(u) = Igw) — g(w)

for all v’ < w.

If Claim is true, we have f(ww' ™) = dimt — dim t**" = lg(w) — lg(w’)
thus Proposition 2.5.3 of [BHS19] applies and X,, is smooth. We now prove the
claim. The second equality of the claim is a consequence of [Car72, Lemma 3] as
w and w’ are products of pairwise distinct simple reflections. Indeed, a product
of pairwise distinct simple reflexions s; ... s, is always a composition of reflections
s; along vectors v; such that vy,..., v are linearly independent. Thus [Car72,
Lemma 3] implies {(w) = lg(w) and ¢(w') = lg(w’).

We write w' = s;,...s;, and w = t;...1, as reduced expressions of pairwise
distinct simple roots such that there exists a; < ... < ay satisfying ta; = 8;;. For
a; < Jj < asq1 let r; denote the reflection r; 1= s;, ... 55,t;8;, ... 5;,. We then have

ww' ™t =ty s, .. S,

=t1 ... tay—1[Sistay+180] - - - [Sirtas—15i,][Sis Siztaz+15i, 8]
Tay 41 Tag—1 Tag+1
oo [Siy - Sitag1Siy - Sig) - [Siy - SiteSiy - - - Sy
b
:tl C tal—lrm—l—l oo Tag—1Tag+1 oo - Ty.

In particular, {(ww'~!) < lg(w) — lg(w’) = £(w) — £(w'). Now Claim follows
from
Claim 4.3. Let w € W and w’ be a product of distinct simple reflections. Then
L(ww' ™1 = l(w) — L(w') = L(w) — Ig(w’).

We now prove Claim [£.3] By induction on the number of simple reflexions
appearing in w’, it is enough to prove f(ws) > ¢(w) — 1 when w' = s is a simple
reflexion. Note that for any w we have dimyt** Nt® > dim,t*¥* — 1 as t¥ is a

hyperplane in t. Moreover, t** Nt* =t Nt* C t*. Thus dimt* > dimt** — 1.
Using /(w) = dim t — dim t* we hence find

l(w) < l(ws) + 1.

Thus ¢(ws) > ¢(w) — 1, which proves Claim [4.3]
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We now prove the converse, i.e. that X, is singular, if w is not a product of
distinct simple reflections. We hence assume that w is not a product of distinct
simple reflections.

It is enough (but actually equivalent) to prove that X, is singular at (B, B, 0).
We will use Mowlavi’s results [Mow23]. The pair (1, w) is a good pair ([Mow23]),
and thus [Mow23|, Theorem 6] applies. Hence [Mow23, Proposition 3.2.2] gives an
exact formula for the tangent space at x = (B, B,0) € (X, NV1)(L). This can be
rewritten as

dimp, T, X,, = dimy, T\ Uy — dyy + dimp, t + 1g(wy)
> dim B + lg(w) — lg(w) + dimy t + 1g(wy),

as w is not a product of distinct simples so lg(w) > d,, ([BHS17a] Lemma 2.7),
and where we use the notation E] d, = dimy t — dimy, t“. Thus

dimy T, X,, > 2dim B + dim t = dim G; = dim X,

i.e. X, is not smooth at z. O

We write X; for the inverse image of X,, under the canonical projection
G; /B xgx G /By — G /P; xgxGr/B;. This scheme can also be defined as

X, = (G xBr (3; ®ny)) Xg 8,

in particular Xy = X. The map X; — X,, is a P;/B-torsor and thus is projective
and smooth. We deduce that we have a decomposition in irreducible components

Xr= U Xrw
weW\W

where each X7, — X, . is projective and smooth. Moreover, we have a closed
embedding X; < X induced by the closed embedding 3; & n; < b, and this
induces a closed embedding X;,, < X,max, as each fiber of X; — X, over a
point in V;, ,, contains a (dense) open subset consisting of points that lie in the
Schubert cell G (1,w™) C G/B x G/B.

Lemma 4.4. The schemes X; and X,, are generically reduced.

Proof. As Xy is smooth over X, , it suffices to prove the claim for X,,,. Forw € W,
let Uy, = Gp(1,w) C G/P; x G /B and let V,, C X, be the inverse image of
Uy. It follows from [BD| Prop. 5.2.1] that the V,, are smooth L-schemes, and
they all have the same dimension. As they also cover X,,, their generic points are
the generic points of the irreducible components of X,,. This shows that X,, is
generically reduced. O

see [BHS19] just before Proposition 4.1.5
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Recall that we have two maps Ky, ke : X — t (see [BHSI9, §2.3]) defined by
ki(1B, N, gB) = g; 'Ng;(mod n). By construction, the image of K1|x, lands in
37 and the map k) x, factors through X;,. This provides a commutative diagram

X — X,

o e

3 Xyw t

where Oy is the restriction of the map (k1, k2) to X7.

The following result is the analogue of [BHS19, Lem. 2.5.1] in our context, with
analogous proof.

Lemma 4.5. The irreducible components of 31 X¢w t are the (Tt ) wew,\w where
Trw = {(2,Ad(w™)(2)) | 2 € 31}

Moreover, the irreducible component Xp,, (resp. Xy, w) is the unique component
of X1 (resp. X,,) whose image under O (resp. ©,,) dominates T} ,,.

Remark 4.6. For future use, we make the following notational convention: When
F = Q, we have G = GL,, 1, we will use the notations X,,, X, ;, X, 1. etc. for
the schemes X, X, X7, etc.

4.2 Partially de Rham deformation rings

For each place v|p of F, we fix r, : Galp, — GL, (L) a framed ¢-generic Hodge—
Tate regular crystalline representation, that we assume that the (¢, I")-module
Dig(r,) associated to 7, is crystalline ¢-generic with regular Hodge-Tate type in
the sense of [HMS], §3.3&§3.4]. We also fix a refinement R, = (¢1,...,pn) € L™
of r, (see loc. cit.). We will use the notation r = (r,),, and R = (R,)u|, and say
that r is @-generic Hodge—Tate regular and that R is a refinement of r.

Let Cy, be the category of local artinian L-algebras. Fix v|p a place of F'. Let XE
be the groupoid over Cy, of deformations of r,. It is represented by a formal scheme
over L that we also denote by XE by abuse of notation. We recall from [BHS19,
3.6] that, given the refinement R,, the groupoid of trianguline deformations of
M., is representable by a closed formal subscheme Xg’%v C X7. Here M,,
the (¢, I')-module over Rk 1[1/t] obtained from Diig(r,) by inverting ¢ which is
equipped with the unique triangulation corresponding to the refinement R,. We
set Wy = War(Drig(r0)[1/t]) and W, = War(Ma,,) and let Xy, w, , denote the
groupoid of deformations of (W,, W, ,) as defined in [BHS19| §3.3].
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Fix a finite subset I, C A,. For an object A of C, we define Xg/ifww(A)
to be the subset of all (W4, Wae) € Xw, w.,, (A) such that for any 7 € Yp, and
@i, € A; N 1, the Bi-representation Wa,; @, L/Wa i1 Q. L is de Rham,
where j is the largest integer < ¢ such that o, ; ¢ I (and j = 0 if 7 is the smallest
integer such that a;, ¢ I). It is obvious from the definition that XV% W., 18 a
subgroupoid of Xy, w, , ’

For an object A of C;, and r4 € Xfff;zv (A), we denote by My, the unique
triangulation of Dy,(74) lifting M, ,. We say that r4 is P;-de Rham if

(War(ra), War(Ma)) € Xipy. . (A)

(see [Wu, Def. 3.10 ]). It now follows from [Wu, Lemm. 3.11] that this functor
is representable by a closed formal subscheme of Xff%u that we denote Xrﬁ’ﬁfn.
More precisely, we have an isomorphism of groupoids

I, —qtri qtri Pr,
erva = X""v Rv XXWU,W-,U XWwWo,v'

Fix an L®q, F,-basis o, of W and let X{j. be the groupoid of deformations
of the pair (W,, a,,). We set

XI%l/U7W.,U = X%y XXWU XWmWo,v
Iy—qtri,0] I, —qtri O
ervn(zlj " - X”’mRCll/ B XXWU XWU‘
As the map X&t’%v = Xyt X xy, Xw, i, is formally smooth by [BHS19, Cor. 3.5.6],

we deduce that the map Xf:;&tri’m = Xyt Xxy, XI];/I;”V?/. , is formally smooth as
well.

. . - . I—qtri , I, —qtri
If I =11, L, CAandif a = (ay)y) is fixed, we set X, 2" = [I,, X. %,
I—qtri,(0 , I, —qtri,[J
and X, =1lp X r, -

We consider the point
Tpar = (9B, 0,hBy) € Xi(L) C (G/B x g x Gr/Bp)(L), (6)

where g € G(L) (resp. h) is the matrix sending the standard flag (corresponding to
our fixed basis ) of [[,, W% to the complete flag [],, War (Ma) %% (resp. to
the Hodge flag). We deduce the following result (see [BD, §6.3] in a slightly
different context):

Theorem 4.7. There exists a diagram of formal L-schemes with formally smooth
maps

I—qtri g I—qtri,0 f et
XT‘,R XT,R XI@de
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Proof. Let I = [ves, Lo, with I, C A, for v € S,. Note that we have a decompo-
sition X7 =~ [],c s, X, where X is the L-scheme defined in the same way as X;
but for the group Resp, g, GLy r,. We also write z,qr = (pdr,v)ves, Where zp4r.o
is the image of x,qr in X7,. We just have to check that the groupoid

PI O
—iv
Xt X xwy X Waw XXy X1,

is represented by the completion of X, at xpar,,. This can be checked easily as in
the proof of [Wu, Lemm. 3.11] using [BHS19, Cor. 3.1.9 &Thm. 3.2.5]. O

We finally note that the map r; from above induces a map of formal schemes
K1 X1e,a — 31, Where 37 is the completion of 37 at 0, and thus a map

I—qtri,[d ~

r

This maps factors into a map of formal schemes x; : Xi;zqm — 37

For w € W such that xpar € X1.(L), we denote by erﬁqtri’w the schematic
image of

I—qtri,™d et I—qtri
XT,R XXI . XIﬂ»”@de - XT,R
»IpdR

—5qtri 1 —qtri,w .. . . I—qtri
and by X, 1, (resp. X, = ) the schematic inverse image of {0} under ; in X, ™"
I—qtri,w

(resp. A, z%).

The schemes X,f;zqm and Xr{%qtri’w are formal spectra of complete local noethe-

rian rings that we denote by R,{;eqtri and R,{;zqtri’w. It follows from the constructions

I—qtriw . _
that moreover R, """ is an integral local ring.

5 Global construction

Let F' be a totally real number field and let E/F be a totally imaginary CM
extension of number fields, in particular [E : F] = 2. We assume that all places of
F dividing p are unramified and split in E/F and denote by S, the set of places
above p in F'. We fix a set ¥ of places of F dividing p such that, for each place
v € S, there is exactly one place of ¥ above v. Let U be a unitary group in n
variables for E//F' that we regard, via Weil restriction, as an algebraic group over Q.
We assume that U(R) is compact and and that Ug, is quasi-split. This implies in
particular that there exists an isomorphism Ug, =~ I[,cg, Resr, @, GL, r, that we
fix from now on. From now we note G = Ug, identified with J[,¢ s, Resr, /g, GL,.F,
via this fixed isomorphism and we use notations of section [3] i.e. L is the choice
of a field of coefficients that is assumed to be big enough so that all embeddings
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of E (equivalently of F) in @p factor through L. Moreover, B C G is the Borel
subgroup of upper triangular matrices, I’ C B is the maximal torus of diagonal
matrices, IV is the unipotent radical of B etc.

5.1 Classical and p-adic automorphic forms

We write T' = T'(Q,) ~ (Hvesp Fj)n and let Ty ~ (Huesp O;ﬂ)n C T denote its

maximal compact subgroup. We denote by T (resp. Ty) the rigid analytic spaces
over L parametrizing the continuous characters of T (resp. of Tp) and recall from
that there is a weight map

wt : Tp — t*
with values in the dual Lie algebra t* of T' (considered as a rigid space over L). We
will often, by abuse of notation, also write wt for the composition of wt with the
canonical projection 7' — Tp. Recall that we had identified X *(T) with a Z-lattice
in t*. Often we will identify X*(T) with Z"lf"Q.
Definition 5.1. Let § € T' (resp. € Tp) be a character.
(i) The weight of ¢ is the image wt(d) under the weight map.
(ii) The character § is called of algebraic weight if wt(d) € X*(T) C t*.
(iii) The character § is called algebraic if it is of the form

(Sk : (21 X 1, ey Z2n ® 1) — H (T(Zl)ki— .. T(Zn)k;)

for some k = (k],..., k) resp € Z"FQ 1t is called dominant algebraic if k €
X*(D)*, ie if k] > ... > k" for all 7.

Note that k£ — d;, defines a section of the weight map over the algebraic weights,
and we use this map to identify X*(T") with a subset of T' (resp. Tp).

Let K? C U(A*P) be a compact open subgroup, called a tame level that we
assume to be of the form [],, K, where K, is a compact open subgroup of U(Qy).
Let I, be the Iwahori subgroup of G = G(Q,) = U(Q,) with respect to our choice
of B. For any compact open K, C U(Q,) we consider the Shimura set

SthKp = U(Q)\U(AOO)/KPKP
As U(R) is compact, this is indeed a finite set of points.

Definition 5.2. The completed cohomology of the tower (Shkrk,)k,cu(,) of
Shimura sets is:

IT:=1I° ®o, L, with I1° = @@HO(S}U@KP,OL/WE),
n Kp
see [Eme06b].

39



The completed cohomology is an L-Banach space endowed with a continuous
action of U(Q,). This space is naturally identified with the space of continuous
functions

[ U@\U(A®)/K” — L. (7)

We denote I1'* the subspace of locally analytic vectors in II for U(Q,). This is
the subspace of functions in (7)) which are locally analytic. As IT" is a locally
analytic representation, there is a natural U(g)-action on IT'* obtained by deriving
the G = G(Q,)-action. Here, as above, we write g for the Lie algebra of G, and
b,t,n for the Lie algebras of the Borel B, of the torus 7" and of the unipotent
radical N of B.

Definition 5.3. The space of overconvergent p-adic automorphic forms of tame
weight KP? is the space

ST = (P = T (%),
NoCN(Qp)

where Ny varies among the compact open subgroups of N(Q,). Given a weight
k € t*, the space of overconvergent p-adic automorphic forms of tame weight K?
and weight k is the eigenspace

SH(K?) c ST(KP)
of eigenvalue x for the U (t)-action.

Denote by T(K?) = Z[KP\U(A*>?)/K?| the Hecke algebra of Hecke operators
over Z of tame level K?. Then T(K?) acts by convolution on ST(K?) and SI(KP).
Let S be a finite set of prime numbers containing p and all the ¢ such that K, is
not hyperspecial. The subalgebra T® = Qu¢s Te C T(KP) is commutative.

Definition 5.4. Let
T(Q,)*" = {diag(af,...,a,), € T(Q,) | v(a]) = ... > v(a,), Yo € Sp}.

The Atkin-Lehner ring A(p) is the sub-algebra of Z[T'(Q,)] generated by the ele-
ments ¢t € T(Q,)".

Let 6 : T'— L* be a continuous character. Then we can extend ¢ to a character
A(p) — L whose restriction to T is given by ¢. By abuse of notation we still
write ¢ for this character of A(p).
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Note that there is a cofinal system of compact open subgroups Ng C N =
N(Q,) such that tNgt~! C Ny for all t € T". We hence can define a Hecke action
of A(p) on ST(KP?) = (II'*)" by letting ¢t € T(Q,)" act on f € (II'*)™ via

1]f = (x»—) W > f(a:nt)) ,

neNy/tNot—1

where Nj is a sufficiently small compact open subgroup of N such that f € (IT'a)No
and such that tNyt—! C Nj.

Let T be the commutative algebra T° @7 A(p). Definition [5.4] provides a struc-
ture of T-module on ST(K?) and SI(KP?).

Definition 5.5. An overconvergent p-adic automorphic form f € ST(K?) = (II'*)"
is called a finite slope eigenvector for the A(p)-action if, for any ¢t € T'(Q,)*, there
exists a; € L* such that

tf = af.
More generally f is of finite slope for the A(p)-action if for all t € T(Q,)", there
exists a polynomial P € L[X] such that P(0) # 0 and P([t])f = 0.

Given a continuous character § : T — L*, we write ST(K?)[d] for the eigenspace
with respect to the A(p)-action of eigensystem § : A(p) — L. Note, that by
definition this eigensystem is automatically of finite slope and of weight x = wt(J).
Moreover, the A(p)-action on ST(K?)[d] uniquely extends to an action of Z[T(Q,)].

Remark 5.6. An overconvergent automorphic form of tame level K? with eigenvalue
§ : T — L* for the Hecke-action at p (i.e. for the action of the Atkin—Lehner ring)
is thus the same as a locally analytic function

[ U@Q\U(A®)/K” — L,

such that there exists a compact open subgroup Ny C N(Q,) so that, for all
g € U(A®),t € Ty,n € Ny,

flgtn) = 6(t) f(g),
and such that moreover, for all t € T(Q,)", [t]f = d(¢)f.

Definition 5.7. The space of classical automorphic forms of tame level K? is the
subspace S(KP) = (II9)") of ST(KP) = (II'*)" of elements which are K-finite for
some (resp. any) compact open K, C U(Q,).

We note that this subspace is stable under the action of T.

For any character x° : T — L, we let II[x”] (resp. ST(KP)[x”], resp. S¢(KP)[x°])
denote the subspace of y°-eigenvectors for T in I (resp. ST(KP), resp. S (KP)).
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If 6 : T — L is a character of T' (defining a character of A(p)) and if x = x° ® &
is the corresponding character of T = T* ®z A(p), we write ST(KP)[x] etc. for the
corresponding eigenspace.

Let m be a maximal ideal in T°. We then define

II, =1I; ®p, L, where II = @(HO/WZHO)m.

As there are only finitely many maximal ideals m of T such that (I1°/7I1°)y
is nonzero, the space Il is a topological direct summand of II stable under the
actions of U(Q,) and T.

Recall that if m is a maximal ideal (whose residue field is assumed to equal kr)
such that Il is non zero, then we may associate to m a continuous representation
p: Galp — GL, (k) which is conjugate autodual, and unramified away from S.
Such representations p are called modular (see for example [BHSI7h, §2.4]).

5.2 Patching the completed cohomology

We fix a maximal ideal m C T* such that II, # 0 is non-zero and denote by
p: Galp — GL, (k) the corresponding modular Galois representation. For each
place v of F' which splits in E we write

Py = ﬁ| Galg;»

for a choice of ¥|v of E. From now on we assume that, for v € S, the place v splits
in /F, we make a fixed choice Uv as before such that ¢ € ¥ if v| p, and denote
S = {vJv € S} so that S is in bijection with S and contains 3. For v € S we write
R%U for the universal lifting (i.e. framed deformation) ring of p, and define

B~

Po
to be the maximal reduced Z,-flat quotient.

Remark 5.8. If v|p we have in fact, by the main results of [BIP23], Egﬂ = Rj.
Using the main result of [DHKM24| we find that the same applies to places v 1 p,
as the deformation rings R%U may be identified with versal rings to the moduli
space of L-parameters. We still keep the notations introduced above in order to
be consistent with the notations from the references for the patching construction
below.

We denote by 5 s the quotient of 5 corresponding to the deformation problem
g — —nn —HU
S:(E/F7S,S,OL,p,€1 6E/F7{Rﬁv}’0€s)
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in the notations of [CHTOS, §2.3], where dg/p : Galp — {%1} is the quadratic
character associated to E/F, and

R = ®FQ :
veS h
We assume the following (strong) Taylor-Wiles hypothesis
Hypothesis 5.9. 1.p>2;

2. the extension E/F' is unramified and E does not contain a (non-trivial) p-th
root ¢, of 1 ;

3. the group U is quasi-split at all finite places of Q ;

4. the level K? is chosen such that K, is hyperspecial whenever the finite place
v of F is inert in F ;

5. the representation g, o 18 adequate.
p

By [CEGT16] sections 2.7,2.8, (see also [BHS17h, Théoreme 3.5]), we have the
following data.

Proposition 5.10. There exist

1. an integer g = 1 ;

2. a continuous, admissible, unitary Ro,-representation Il of U(Q,) over L,
where

R = R[[x1, ..., z,]];
3. a local map of local rings Soo := OL[[y1,- .., yt]] — Reo with
1
t =g +dim R — [F* . @]n(n;)

and a local map of local rings Ro — R5 s such that

(i) there exists an Op-lattice 112 C I stable by U(Q,) and Rw such that
(Hgo)/ = Homp, (Hgoa Op),
is a projective Sy [[Kp]]-module of finite type (via See — Ro) for some (equiva-

lently all) compact open subgroup K, C U(Q,) ;
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(it) the map Ro — Rpzs induces an isomorphism
Rw/aRs ~ R; s,

of local noetherian Op-algebras and an isomorphism of continuous admissible uni-
tary R /aRs-representations of U(Q,) on L

T [a] ~ I,
where a = (y1,...,y;) denotes the augmentation ideal of Seo,

It is a direct consequence of this proposition that the R..-representation Il of
U(Q,) satisfies Hypothesis [3.15, We note that the same applies to a slightly more
general context:

Lemma 5.11. Let V' be a finite dimensional algebraic representation of U(Q,)
over L. Then the Ro-Banach representation Il @1 V' satisfies Hypothesis[3.15.

Proof. As Il satisfies Hypothesis [3.15] for any open pro-p-subgroup H of U(Q,)
there exists an isomorphism of Z! x H-representations Mooz xm = C(Zy, x H,L)™
for some m > 1. But then

(oo ®1 V) zex ~ C(Zy, x H, V)™ ~ C(Z}, x H, L™ ™", u

In the reminder of this paper we will use the following notations: we set

—

DU i DU i
XP = Spf(@ves\s Ry )" o~ 11 Spt (£, )",
g veS\S,
where U9 := Spf(Oy[[z1,. .., 1,)])"® is an open polydisc. Moreover, we set

X, = Spf(@vesp}%%)rig7

Xoo = Spf(Roo)"™ =~ XP x X5 x 1Y
By construction the space X, contains X; s = (Spf R;.s)"® as a closed subspace.
For a point z = (2P, x,,2) € X(L) and a place v of F' dividing p, we denote by

puv the framed representation Galp, — GL, (L) associated to z. Finally we write
pazp for the the family of representations (pz.u)v|p-
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6 Patching functors

In this section, we keep notations and conventions of section [5 In particular, we
have G >~ [],cs, (L Xq, Resr, g, GLy,r,) which is an algebraic group over L and we

consider the associated categories O, Og, and O as in section (for the choice

of the upper triangular Borel subgroup B).

We fix once and for all a point x € X, (L) such that x maps to the origin in
(Spf. Soo )8 (i.e. the point defined by the augmentation ideal of S,,) and we denote
by Re . the completed local ring of X, at z.

6.1 Locally analytic patching functors

We fix a smooth and unramified character € : T(Q,) — L* and consider ¢ as a
point of T

By Lemma [5.11] we can apply Corollary to the admissible locally analytic
representation I1%2 and obtain a functor
%, — Coh(Xo x T)
M — MHOO (M )

Definition 6.1. For M € Og, we define
Moo,m,s(M) = -/\/ll'lOC (M)x,e
to be the stalk of My (M) at (x,¢).

It follows from Proposition that Mo, (M) is a Cohen-Macaulay fioo,x-
module and is follows from Theorem that the functor M — My, (M) is
exact.

Remark 6.2. We also have the following description:
/!
Mo e(M) == (Homy ) (M, T [m]) ¥ [m<])

where m. is the maximal ideal of A(p) ®z, Q, = Q,[T'(Q,)*] corresponding to the
character ¢ and m,, is the maximal ideal of R[1/p] corresponding to x.

Remark 6.3. Note that we have two U(t)-module structures on Mo . o(M): The
first one comes from the nilpotent U(t)-module structure on M as in section [2.2]
The second one comes from the action of U(t) induced from the locally analytic
T-structure on II%2. It is a tautological consequence of the construction, but we
point out that these two actions coincide.
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Definition 6.4. Let I C A be a finite subset of simple roots and let M be an
object of Oalg Then we define

Moz e(M) = ILm Moz e(M/m7).

Proposition 6.5. The functor M — M .o(M) is exact on O!

M € Oalg the fioo@—module Mo (M) is finitely generated and Cohen—Macaulay
of dimension t + dimg 37. Moreover My »-(M) is flat over U(31).

alg and for each

Proof. Let Sy be the completion of Sy [1/p] along the maximal ideal generated
by the augmentation ideal a of S,. Moreover, we write U; for the completion of
U(3r) at the maximal ideal m;.

By exactness of the functor M , ., we have
Mecae(M[m7 ) fm] o Moo oo (M/m])

for any n > 1. Tt follows from Theorem [3.17] that My, (M /m;) is a finite
projective S -module. We denote its rank by r > 0. The exactness of My ..
implies that M » -(M/m}) is a finite projective S ®rU(31)/m}-module of rank r
and it follows that M, (M) is a finite > projective S..&Ur-module of rank 7. As
the action of SOO® LU ; factors through R ~,z We deduce the result. The exactness
of the functor M .. is a consequence of the exactness of M, .. restricted to

o and the fact that each system (Mo, o(M/m7)), satisfies the Mittag-LefHer
condition.

Let t = (t1,...,tn) be a regular sequence generating the maximal ideal of
U(37)m,- This is also a regular sequence generating the maximal ideal of the
completion U 7. By exactness of the functor 500 ®r, — on strict exact sequences of
Fréchet L-algebras, the sequence ¢ is S &0 r-regular. As Mo, -(M) is a finite
free §oo® LU r-module, the sequence t is M . .(M)-regular. This is equivalent to
flatness over U(37)m,- O

6.2 A factorization property

We use the spaces and notations introduced in section[d} A point z € Xo(L) is said
to be crystalline p-generic and Hodge—Tate regular if for all v|p the representation
puw is crystalline ¢-generic and HodgeTate regular. Let x = (p?, pp, 2) € Xo(L)
be such a ¢-generic Hodge-Tate regular point. We fix a refinement R of p,.

Recall that G ~ [],eg, (L Xq, Resg,jq, GLn r,). If I is a set of simple roots of
G, we set
XI qtri — prp > XI qtr1 % Ug

co,x,R "~
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I—qtri

~.z,r the correspond-

This is a closed subscheme of (X ). and we write ROo s> R
ing quotient map. Moreover, for w € W, we set
I—qtriw . 7op I—qtri,w o
XHooR =P X X, 7" x U9

IR = (Y10 Pnw)olp € [lop(LX)", we define o to be the smooth unramified
character of T' defined by

(xl,va .- xnv vlp = HH gofiv i) vﬁn)

vlp 1

where ¢, denotes the cardinality of the residue field of F;,. We use the notation
Moo or = Mooz, The goal of this section is to prove the following result.

Theorem 6.6. Let v € X (L) be a @-generic Hodge—Tate regular crystalline
point and let R be a refinement of x. Then, for any M e Oalg , the Roow-module

Mooz (M) is killed by the kernel of the map Roo,x — RN Bouivalently its

00,x, R
support is contained in XOIO ;‘tR“
Proof. This is a consequence of Proposition [3.20, Proposition [2.14] and Corollary
which will be proved below. O

We will prove the auxiliary statements in (the proof of) this theorem by making
use of variants of the construction of eigenvarieties. More precisely, for a subset
I C A, a character A € X*(T)} (dominant with respect to P;) and an algebraic
representation V' of G we will consider the scheme-theoretic supports

EL(N) = supp(M}) C X x T
EL\V) = supp(/\/l”‘v) C X xT,

where ./\/l]H respectively ./\/l V" are the coherent sheaves associated to J; ATy
respectively to Jr((Ile ®1 V)la) (see section [3.4] for the notation). We will link
the completions of EL (X\) resp. EL (X, V) at points (z,8) € X, x T to the quasi-
trianguline deformation rings of section 4, This is done in two steps: we first
show that the set-theoretic support of ./\/ln’ resp. of M“‘V is contained in the
(quasi-)trianguline locus (see the proof of Proposition [6.7). We then prove that
EL(N) resp. EL (N, V) is reduced (see the proof of Proposition [6.9). The proof
of the latter statement follows the usual argument in the case of eigenvarieties,
see e.g. [BHSI7D, Corollaire 3.12 and Corollaire 3.20]: the general properties of
eigenvarieties (deduced from the fact that the sheaves Mﬁ;\o resp. M{I;\OV are

locally finite projective over (SpfSs)™8 x T, imply that EL(A) resp. EL(A, V)
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have no embedded components. Hence it is enough to produce on each of their
irreducible components a point y such that L (\) resp. £L (A, V) are reduced in a
neighborhood of y. By the same projectivity argument as above, the point y can
be chosen so that the weight map to Ty is smooth at this point. Reducedness then
boils down to checking that the Hecke operators (that generate the loeal rlng of
EL(A) resp. EL(N, V) at y) act semi-simply on the fiber of M{y" resp. MV over
T, which in turn follows from the fact that Hecke-operators act semi- smlply on
spaces of classical automorphic forms. We now give the details of these arguments.

Let 6 = (81, -+, 0n)ulp € T(L) be a parameter for a quasi-triangulation of z

at p, i.e. the trianguline filtration of the (¢, I')-module Djlg(pv)[l/t] over Ry p[1/1]
has graded pieces Ry 1(;)[1/t]. As x is Hodge-Tate regular, there is a natural
map

X — T

mapping a deformation at p of the (¢,I')-module Dilg(pv)[l /t], equipped with
its trianguline filtration, to its parameter (see e.g. [BHS19, eq (3.15)]). If 0 is
locally algebraic of the form § = A\ég for A € X*(T") and some smooth character
oRr € f(L), we shift the previous map to get

w=1_)\ws: thrl R — T5R
which only depends on the chosen refinement. This induces a map

. qtrl
X W X R—>XooxXT57

I —qtri
00,z,R*

or equivalently, a homomorphism Re., ® O% o, B

Proposition 6.7. Let A € X*(T)} be a weight dominant with respect to Py. The
R z-module My » R(M[()\)) is annihilated by the kernel of Roo = R More

00,2, R

precisely, Mm,x7R(M[(A)) is an ROW@OTA’&R-module and annihilated by the kernel

! Rea® O, — RII%.

Proof. Tt follows from Proposition and the definition of M4z (M;())) that
Mooz (Mr(N) = (M) (o)

as an Eoo,x ® O% 5R-module. It is thus enough to show that the completion of
Mﬁi‘o at the point (z, Mg) € Xw(L) X f(L) is supported at the closed subspace

. qtrl
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We closely follow the proof of [Wul, Prop. 5.13]. Let us write £, C X X T for
the scheme-theoretic support of the coherent sheaf defined by Jp(Ily). By [Wul,
5.4] this contains £L ()\) as a closed subspace. As in the proof of [Wul, Prop. 5.13]
we consider a proper birational map f : £, — £ such that the universal (¢, T')-
module over £ has a quasi-triangulation, and write &2 for the preimage of £L (\)
in & . Let Y C & be the Zariski closed reduced subspace of £ whose points are
exactly the points of £2 where the universal filtered (¢, I")-module over R[1/t] is
Pj-de Rham. As in [Wu], the existence of Y is a consequence of [Wul, Prop. A.10].
It follows that for any y € Y lying above (x,dz) the map

f/y—>Xoo><f

factors through X% yqtR” Let U C &L (\) be an affinoid open subset containing

x and a Zariski dense subset of points which are de Rham (and in _particular
Pr-de Rham) and trianguline with parameter given by &/ (\) — T. Such a
neighborhood exists by [Wu, Prop. 5.11 & 5.12]. We deduce that f(Y) D U and
hence f~'(U) C Y and we conclude as in the proof of [BHSI9, Prop. 3.7.2] (see
the erratum in [BD]) that the map

U%,\gR — XOO x T

factors through A2 a4 H

00,x, R *

Corollary 6.8. Let V' be an algebraic representation of G, then
M = Moo,x,R(Ml()\) ®@L V)

is annihilated by some power of the kernel of ]%oo’x ® O% e R;gtﬁ

Proof. We recall that
M;(N) @1V = U(9) Qugr) (Li(N) @1V = U(8) ®ugpy) (Li(X) @ Vip,)

and that V|p, is an extension of algebraic irreducible representations of L;. Ex-
actness of MooxR (see Proposition 6.5) implies that the Roo -~module M is an
extension of Ra 4 r-module of the form Meoar(M;(p)) for p € X*(T)5. We
deduce the result from Proposition [6.7] O

Proposition 6.9. Let V' be an algebraic representation of G. Then the schematic
support EL (N, V') of the coherent sheaf associated to Jy (s @1 V)®) is reduced.

Proof. We follow closely the proof of [BHSI7h, Cor. 3.20] replacing, where it is
nedeed, some arguments by results of [Wu]. To simplify notations we just write

E=EL(N\,V)and M = M{Ti‘ov for the reminder of this proof.
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Let N be the radical ideal of Og. Assume that N # 0 and let z € £ be a point
in the support of A/. Let T§ be the preimage of Aines € (tN I5*)* under the map

T —t — (tN 1),

where the first map is the weight map (B]). According to [Wil, §5.4] there exists an
open affinoid neighborhood U of z and an open affinoid subset W C T x Spf(Sa)"®
such that I'(U, M) is a finite free O(WW)-module (such a data exists according to
the results of [Wul, §5.4]). Then I'(U, NV) is the radical ideal of O(U). Moreover, as
OU) =T'(U, Og) is a sub-O(W)-module of End(I'(U, M)) (by the same argument
as in the proof of Theorem respectively of [BHS17h, Prop. 3.11]), the same is
true for I'(U, N). Therefore I'(U, N) is a torsion free O(WW)-module and its support
has the same dimension as W and hence contains an irreducible component Uy of
U. As a consequence the support of N contains an admissible open subset of £.
As the support of N is also a closed analytic subset of £, it follows from [Con99)
Lemm. 2.2.3] that the support of N contains an irreducible component of €. Tt
hence suffices to produce on each irreducible component of £ a point y such that
& is reduced in a neighborhood of y.

By [Wul Prop. 5.11] every irreducible component of £ contains a point with
algebraic weight.

Therefore we fix a point € £(L) with integral weight \' € ’ff Let U be an
open affinoid neighborhood of z and W C fj\’ X Spf(Ss)"® an open affinoid open
subset such that M = T'(U, M) is a direct factor of O(W)&1Jp, (Jp, (e @1V )A)'.
Let A= O(W) and B = O(U). Then M is a finitely generated B-module and
a finite projective A-module. Let C' > 0 and C" > 0 as in the proof of [Wu,
Prop. 5.11]. We set Z C W be the subset of algebraic character dy such that,
for any simple root o ¢ I, (N 4+ v, ) > C' for any v weight of VV. This is a
Zariski dense subset of W. Then for z = dyxdg, with dg, a smooth character,
using Proposition we see that the B-module M, = M ® k(z) is a direct
factor of Jg(Hom(M;(N),1l ® V). Let (x,6) € U be a point above z, i.e. § =
O 0sm, then arguing as in loc. cit., we have Homg(FE(N@LVY, bl ), oo [pa]) =
0 for any subquotient N of M;(\') different from L(\). This implies that M,
is actually a quotient of Jg(Homy g (L(N) ®1 V'V, 1ls)) which is isomorphic to
a finite direct sum of Jp(Homy ) (L(1), 1)) with p dominant. The proof of
[BHS17h, Cor. 3.20] shows that the global sections of the coherent sheaf associated
to each Jp(Homy ) (L(1), ) on UNk™ ({0x}) is a semisimple B-module. This
concludes the proof. O]

Corollary 6.10. The rigid analytic space EL(N) is reduced.

Proof. This is Proposition with V' the trivial representation. O]
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Corollary 6.11. Let V' be an irreducible algebraic representation of G. Then the
Reop ® Ozn -module Moo o r(Mr(\) ®1 V) is killed by the kernel of the map
SR

~

i
Row® Oz — RTR
SR

00,z,R"

Proof. By Proposition , the support of the module Mw7w7R(MI(A) ®p V) is
reduced for any A € X*(T') dominant with respect to P; and any algebraic repre-
sentation V of G. Therefore the result follows from Corollary [6.8| O

6.3 Bi-module structure on the patched functor

Let M be an object of Og}, or @élg. As seen in section there is a natural struc-
ture of A = U(t)p-module on M which provides, by functoriality, the structure of
an A-module on M, z(M). This A-module structure extends to an action of the
completion A of A with respect to the maximal ideal m. We recall from Remark
m that this action coincides with the structure of an A-module on Mo 4.1 (M)
induced from the T-action on Il...

On the other hand, the ring jof;R also carries a structure of an A-module
induced from the map r; defined in section 1.1} This gives a further structure
of an A-module on the Rgff;’n-module Moz (M). We will show that these A-
module structures agree.

For a € A, we denote by a (resp. @) the endomorphism of Mo (M) defined
by the first (resp. second) action. Note that if M is an object of @alg, then
Moz (M) is a finite free A& S-module for the first A-module structure by the

proof of Proposition . Thus it is A-torsion free (since Ais domain).

Lemma 6.12. For any a € A and any M in Og, or @alg, there is an equality
a=a € EndMy.r(M)).

Proof. If M = M(y) ®Qu U(t)/m™ for some p € X*(T), this is a consequence of
[BHS17b, Thm. 3.21], the commutative diagram [BHS19, (3.30)] and Remark [6.3]
This implies that for any p € X*(T'), we have a = @ on Moo = (M (1)).

Now we consider the general case. It follows from Proposition [2.14] that it
is sufficient to prove the equality @ = a when M = M(u) @1 V for p € X*(T)
dominant and V' a finite dimensional U(g)-module. Let (Fil;) be an increasing
filtration of M () ®1 V such that Fil; / Fil;_; ~ M (u;) where 1, ..., uq € X*(T)
and d = dimy V' (such a filtration exists by [S0e92, Lem. 8|. Let K denote the
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fraction field of A. It follows from Proposition that we have a decomposition
of U(g) k-modules

(M(p) @ V) @4 K ~ @ M (i) ke

splitting the filtration (Fil; ® 4 K). Let p; € Endy g, (M (1) @1 V) ®4 K) be the
projector on M (p;)k. As

Endy (g, (M(p) @1 V) @4 K) ~ Endyq) (M (1) ©1 V) @4 K

by [Soe92, Thm. 5], there exists, for each 1 < i < d, a nonzero element ¢; € A such
that ¢;p; actually restricts to an endomorphism of M () R V. Weset g =q1--- ¢,
and «; = g¢p;. Then the «a; are endomorphisms of M(u) ®, V' that stabilize
the filtration Fil,. As each Fil; /Fil;_; is a free A-module, the endomorphisms «;
induce the zero endomorphism of Fil;_; and M (y)®;, V/ Fil; and the multiplication
by ¢ on Fil; / Fil;_;.

In order to simplify notations we set

Moo = Moo,x,R(M(,u/) XL V)a

By construction, for each ¢ the endomorphism «; induces an R, ,-linear endomor-
phisms of Fil; M, for all j. By exactness of My ., the family (Fil; M) is a
filtration of M., and Fil; M,/ Fil; 1 M., ~ MOOIR(M(MJ) for any 7, so that a and
a induces the same endomorphism of Fil; M.,/ Fil;_; M. Finally, for 1 <1i < d,
we denote by Mé? = «;(Fil; M) the image of the i-th filtration step under «;. It
follows from the properties of «; that

o MY C Fil; My;
« the quotient Fil; M, /(Fil;_; M, + M) is killed by g;

« M is isomorphic to a quotient of Fil; M./ Fil;_; M.

Therefore, we have @ = a on M) for any a € A and the quotient of M., by the
sum of the M) is killed by ¢?. As M, is A-torsion free it follows that @ = a. [

Let € : Z(g) — U(t) be the Harish-Chandra map as recalled in section [2.4]
As in loc.cit. we write ¢, for the unique endomorphism of U(t) mapping = € t to
t,(x) =z + v(x).

Let h = (hiro < -+ < hnro)rw € X* (L) be the weight corresponding to the
Hodge-Tate weights of p, = (pu)e|p and let o, = (0, —1,-2,...,1—n),, € X*(T)
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be fixed central shift of the half sum of the positive roots dg € X*(T) ® Q. We
have a map

ket A=U(1), — RMy
induced from the map k9 of section [4.1]and we define the L-algebra homomorphism
a=ryoty, g 0&:Z(g) — qu
As in [DPS| Def. 4.23], we define, for any v|p, an L-algebra homomorphism

(S Z(Lie(Resp, /g, GLy)) — Ry

where p, is the universal family of Galois representations over R, T8 After com-
pletion at p, and taking the tensor product over all v|p, we obtam an L-algebra
homomorphism

¢“: Z(g) = Q Z(Lie(Resp, 1, GLy)) — R, — RI"%.

vlp

Note that the definition of C~ from p, depends on a choice of a central shift of

dg (see the discussion endmg [DPS §4.7]). We choose it equal to d;,. More con-
cretely (¢ is characterized by the following property. This is the unique continuous
homomorphism such that, for any local artinian L-algebra and any local homo-
morphism f : thr;z — A, correspondlng to pa = (paw : Galp, = GL,(A))ypp, the

composition map Z(g ) quR — Ais Z(g) 5 U(t) ;%> k(x) where
v € Homp (U)W, A) ~ Hom (U)W, A) ~ Homp (U(g*)z, A)
is the map induced by the conjugacy class of the Sen operators

(Osenpa)olp € (81 A).

Proposition 6.13. The homomorphisms (¢ and « defined above coincide.

Proof. 1t is sufficient to prove that for any local artinian L-algebra A and any
map [ : qu — A, we have f o(® = foa. Note that the map f gives rise to a
family (p A,U)v@ of local Galois representations. It follows from [BHS19, Lem. 3.7.5]
that, for any embedding 7 : F, < L, the 7-part of the Sen polynomial of p, is

(X = (hir+vi,)) where (v; ;) € Homp(t, A) corresponds to fors : U(t) = A.
The result is then a direct comparison of the definitions of o and (¢. m
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For each element M of the category Oy, or @alg, there is a natural homomor-
phism of L-algebras Z(g) — End(M). By functoriality of Mo, %, this gives a
map

2:2(8) = Endg_ (Mozr(M)),

I—qtri
Roo,x,R'

The following result tells us that this map factors through

Corollary 6.14. For any x € Z(g), the element z(x) is the multiplication by
a(z)®1e R

00,x,R*
Proof. This is a consequence of Proposition and of [DPS, Thm. 9.27]. O

Remark 6.15. Recall that h = (h1,, < -+ < hprp)ro denotes the weight corre-
sponding to the Hodge-Tate weights of p. Let A := wo(h) — 6, € X*(T'), which
is still a dominant character. Recall that ¢_s, o £ has image contained in U(t)".
Hence we have

th,(;/G Of = th ©) Ad(wo) e} t,(;/G 9] é' = Ad(wo) o two(h) e} t,(g/G 9] 5 = Ad(wo) @) t>\ e} f
Therefore
[dea=(Id® Ad(w)) o hy: AR Z(g) = ARw A,

where h is the map defined in section [2.4]

6.4 Computation of a support

Now we can prove our main result of this section concerning the support of the
patched functor applied to a generalized Verma module respectively applied to its
dual.

Theorem 6.16. Let x € X (L) be a point whose associated Galois representation
is crystalline, p-generic and Hodge—Tate reqular. Let R be a refinement of x. Let
h=(hir<-<hp)rrsr € X*(T) be the character given by the Hodge—Tate
weights of p.. Let og = det 17Tn(5g =(0,-1,...,1=n)rpep € X*(T), where dg is
the half sum of the positive roots, and define X .= wqo(h) — oy € X*(T)*.

Then, for I C A and w € W, the schematic supports of Mag .z (Mp(w™™ - X))

min

and Moo oz (Mp(w™™ - \)V) are either XOIO_’E'}?’IU Y0 or empty.

Proof. Let M be Mp(w™ - \) or M;(w™™ - \)V. As RI_9 is generically reduced

00,r,R

and equi-dimensional by Lemma and as My, »(M) is Cohen-Macaulay of
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I —qtri
00,T,R?

components of Spec R

dimension dim R its schematic support is reduced and is a union of irreducible

I —qtri
00,T,R?

By Proposition [2.15] the module M is annihilated by I,, C A; @, Z(g). This
implies in particular that the action of A; ® Z(g) on M factors through hy. By
functoriality, this gives rise to a structure of an A; ® 4w A-module on M , z(M).
Note that the map (k1, £2) of section |4.1{provides a morphism of L-algebras A;® 4w

A— Ri;gt;é and, using Theorem , a second structure of an A; ® 4w A-module

on Mooz r(M). It follows from Lemma [6.12] Corollary and Remark
that this two actions coincide up to composition with Id ® Ad(wp). We deduce

that Moo, =(M) is killed by the ideal of R4 defining the inverse image of

00,2z, R

Trww, C 31 Xyw t. Therefore Lemma (see also Remark [2.16)) implies that

the action of RL; %% factors through R 2" so that the schematic support of

Moovva(M) is Spec RI—qterwO . !

00,z,R

I—qtri,w’

!/
xR for some w' € W.

i.e. it is a union of Spec R

7 Main results

Let x = (pp, pP, 2) € Xs(L) corresponding to a classical automorphic form of tame
level KP. Moreover, we assume that (the Galois representation defined by) z is
crystalline, Hodge—Tate regular and ¢-generic (see section at p. This means
that x € A5 5(L) C Xo(L) and that there exists an automorphic representation
T = T @c 7y of U(Ag) whose associated Galois representation p is the represen-
tation defined by = and such that 7; ® W occurs in the locally algebraic vectors of
I1,, for some algebraic representation W depending on p. In particular, the auto-
morphic representation 7 is finite slope at p. It follows from the proof of [BHS17al
Cor. 3.12] that the image p? of z in Spf(@yegpp Egﬁ)rig lies in the smooth locus.

We fix a refinement R = (1.4, - - ., ©nw)o of z. Let us denote the 7-Hodge—Tate
weights of p,, for vlpin F and 7 : F, = L by hy; = (h1yr < -+ < hiy,). Given
this collection of Hodge Tate weights we write h = (hy )y and h, = (hyr)r
We then define R;f}is’h“ to be the crystalline deformation ring of p, of labelled
Hodge-Tate weight h, and set

—

cris,h __ ® cris,hy
Rpp - v\pRp’U )

We further define

oo

- | _
Xt — AP, % (Spf RS x 09,

Note that is follows from the definitions that X7 embeds into XI5 for any
choice of a refinement R.
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We set
My = (hl,v,'r; h?,v,r +1,... 7hn,v,'r + (n - 1)) = hv,T - 5/6',11,7'7

and ¢t = (fbvr)vr, which is thus antidominant (for the upper Borel), and A =
wo(h) — 6 = wo - p € X*(T)T. For all v|p in F, we denote by W, the Weyl group
of GL,(F,), which we identify with &,, and denote by s1,,...,S,-1, the simple
reflections with respect to the choice of the upper Borel B, C GL,, r,. Moreover,
Woyp = Sp—1w---52551,0520 - - - Sn—1,, Will denote the longest element of W,. We
then write W = [, W, the Weyl group of Gg, ~ [I,, GLx r, with respect to the
Borel B = [, |, B,- Because of the product structure, we will sometimes abuse
notations and simply write s; for the simple reflections and wy for the longest
element.

For a scheme X of dimension d we write Z°(X) = Z4(X) for the free abelian
group on the irreducible components of X. Moreover, for d' < d we write Zy(X)
for the free abelian group on the irreducible and reduced closed subschemes of
dimension d’. We recall that a coherent sheaf 7 on X with d’-dimensional support

defines a class [F] € Zg(X), see e.g. [BHS19, Equation (2.13)].

7.1 Sheaves and supports.

Let A = wq - € X*(T)*" dominant, integral.

We moreover write
m, = dim Mw7x7R(L(A)) ® k(). (8)

It follows from [BHS19, Thm. 5.1.3] that m, > 1 and the proof of [BHS19,
Thm. 5.3.3] implies that m, does not depend on the choice of a refinement R.
To x and R we associate a permutation

Wg R = (wm,RU)UEE = (wx,Rv,T)v,T cW

defined as in [HMS14! § 3.7]. We recall that these permutations encode the relative
position of the Hodge-Tate flags with respect to the full flag corresponding to
the refinement R. We recall that, for any object M of Og, or @alg, the sheaf
Moz r(M) is zero or Cohen—Macaulay of dimension d.

Lemma 7.1. Let R be a Cohen-Macaulay noetherian local ring of dimension
d' and let M and M' be two finitely generated Cohen—Macaulay modules. Let
(t1,...,tm) be a reqular sequence of elements of the maximal ideal of R which is
also M and M'-regular. Assume that [M] = [M’] in Zy(Spec R). Then

M/ (1, .t )M] = [M'[(t1, ...t ) M'] € Zar—n(R).
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Proof. By induction it is sufficient to prove the result when m = 1. Set ¢t = t;. Let
p be a prime ideal of R which is a generic point of Supp(M) or Supp(M’). It is suf-
ficient to prove that [M, /tM,] = [M,/tM,] in Zy_1(Spec R, /(t)), i.e. that M, /tM,
and M, /tM; are two R, /(t)-modules of the same length. This is a consequence of
[Sta24, Lemma 02QG]. O

Let N C g be the nilpotent cone and let A~ — A be the Springer resolution.
Similarly to the definition of the closed subschemes X,, C X in[4.I we define

Zw CN xy NCX

to be the Zariski closure of preimage under N x y N — G /B x G /B of the orbit
QL(17w> C QL/B X QL/E Set

Zy = 9 (2 N X)) x o x T C X,
where f and g are the maps from Theorem [4.7]

In the following we will make use of the following abusive notation for (local)
formal schemes: Let Spf R be a (local) affine formal scheme. Then we will say
that Spf R is reduced, if R is reduced. Moreover, we will say that Spf R is irre-
ducible if Spec R is irreducible. More generally, for a given irreducible component
Spec R/a C Spec R, we will refer to the formal subscheme Spf R/a C Spf R as an
irreducible component of Spf R. Similarly, we will write Z°(Spf R) = Z°(Spec R)
for the free abelian group on the irreducible components of Spf R to which we also
refer as the irreducible components of Spf R, etc.

Proposition 7.2. Let w € W. Then the following properties hold:

1) For all I C A and all w € W,/ \W satisfying w™™wy > w,r , the formal
subscheme Xgojﬁga“’wwo is reduced and irreducible and coincides with an irreducible

T—qtri
component of X, \%.

2) The schematic support of Moz r(M(w - X)), for w € W, is contained in

—5qtri,wwy . . . .
Xar U wwo = wer, and this sheaf is zero otherwise. Moreover,

Moo (M(w - N)] = m, [XE2"] € 22X %)

00,z,R 00,z,R

for wwy = w, g, where my is the integer defined by (@)
3) There is an equality
[Moo,:v,R(L(wwo . )\))] =My Z oy’ [Zw] c Zo(ff—qtri)

00,x,R
w’' <w

where the ay, v € N are the integers defined in [BHS19, Thm. 2.4.7]. In particular
Ay = 1.
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4) For all I C A, the sheaves

Moovsz(MI(wmin : >‘)) and Moo,ac,’R<MI<wmin . )\)\/)

are non zero if and only if w™™wy > w, .

5) For all I C A, the support of

M oo (Mp(w™™ - \)) and Moo g (M;(w™™ - X)Y),
for w € W\W, is xlatriewm

o i w™Mwy = wer and these sheaves are zero
otherwise.

6) The module My »=(L(N)) is free of rank m, over Xgli% C Xgﬁ:%‘).
7) For any I C A and any w € W, the sheaves
Mo oo (M (w™™ - N)) and Mg o r(Mp(w™ - \)Y)
are generically free of rank m, over their support.

Proof. We first prove point . As AP is smooth at p” (as recalled in the begining
of this section), the formal completion X7, is formally smooth. As U9 is also
formally smooth, the claim follows from the fact that

—

I, —qtri,[J I, —qtri I, —qtri,[J
er yRu eryT\,«v and ernv XI’IPdR

—

are formally smooth and that Xy, 4 4, is an irreducible component of Xy, .

By Theorem [6.16], the schematic support of the Cohen-Macaulay sheaves
M eozr(Mi(w - N)) and Mag o= (M;(w - X))

is contained in X2 which is irreducible. By Proposition as the sheaves

00,z, R )
are Cohen-Macaulay of dimension ¢ 4 dim 3; = dim cho_ﬁ%a“ (e.g. [BHS19. equation

(5.8)] and Proposition 3.20]), we deduce that, if non empty, their schematic support

. I—qtri,w
isall X ="

By Remark [6.3] we deduce also that

min

—5I—qtri,w™ ™ wqy

supp(Moo,x,R(MI(w . )\))) CX o or

for w € TWW. Note that the Jordan-Holder factors of M;(w - \) are among the the
L(w" - A) with w" > w and that L(w - \) is the cosocle of M(w - A). Therefore
Moo or(Mr(w - X)) # 0 if and only if My .r(M;(w - X)) # 0 if and only if
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Meozr(L(w - X)) # 0. Therefore the non nullity assertions in [4)| and [5)| follow
from the exactness of My, (Proposition and from [BHS19, Thm. 5.3.3].
This proves ) and

We prove point @ By [BHS19, Remark 4.3.1 and Proof of Theorem 5.3.3,
Step 7|, the schematic support of M . =(L()N)) is contained in the crystalline
locus X;fl;};z C XSJE’R, which is smooth and irreducible of the same dimension as

the support of Moo, = (L(A)). Thus these coincide and My, =(L(N)) is free of
rank m, over the crystalline locus.

No we prove point . The first assertion has already been proved with |4)| and
, therefore it remains to prove the assertion on the cycle. It follows from the
proof [BHS19, Thm. 5.3.3] that My , »(M(w - A)) is generically free of rank m,

tri . .
for wwy > wyr. As XL R is Cohen-Macaulay, the result is a consequence of

point |5) and of Lemma applied with
M - O:;tri,wwo and M/ = MOO,I,R(M<w : )\))

co,z, R

and to a regular sequence generating the maximal ideal of U(t),. This sequence
is M'-regular by Proposition [6.5]
We deduce [3)| from [2)| together with formulas (5.23) and (5.24) of [BHS19] and

the fact that the Verma modules form a basis of the Grothendieck group of the
category O, .

00,z, R
Moo r(M) is generically free, say of rank r, over its support where

We prove point . As xLl-amie’ i6 senerically smooth for any w’, the module

M e {Moo,x,R(MvI(wmin “A), Moo,x,R(Ml(wmin : )‘)V)}'

Now we claim that there exists an open an subset U in the regular locus of
Spec(Rigjf%wmmwo) such that U intersects the support of My .= (L(w™™ - X)).
The claim then implies 7 = m,. Indeed, the restriction of Mgz (M (w™™ - X))
to U is locally free since U is regular. Therefore M, ;= (M;(w™™ - X)) is locally
free of rank r over its support intersected with U. It follows from the point [3)|that
Mo (L(w' - X)) is not supported at the generic point of Z,min,, for w' > w™®
and that M., r(L(w™™" - X)) has length m, at the generic point of Z,min,,. As
L(w™™ . \) appears with multiplicity one in M;(w™™"-\) and all other subquotient
are of the form L(w’-\) with v’ > w™", we have r = m,. We now construct an
open subset U with the claimed properties. We set

U - g(f_l(vwmmwo ﬂ X\I7wminw07de)) X k\g)p X ®g7

where f and ¢ are the maps of Theorem and Vimin,, is the preimage of the
Schubert cell G (1, w™wy) C G;/B X Gp,/B in Xj yminy,. This is an open and

29



smooth subset of X7 ,min,,: indeed, the maps f and g are formally smooth, the
formal scheme X3 » — X :: 'z is formally smooth and the point as p” lies in the
smooth locus of A”. O

Proposition 7.3. Assume that xpar s a smooth point of X miny,. Then
Moo,z,R(M(wmin . /\)) and Moo,a:,’R(M(wmin . )\)\/)

are finite free C)}qm,wmmwo -modules.

oco,z, R

Proof. We write w™™ = w to simplify the notations. By Remark|[6.3] the two U (t)-
module structures on Mo ;= (M (w - A)) coming from the U(t)-action on M (w - \)
and the one coming from the derivative of the locally analytic action, coincide.
Thus we have the equality between My , z (M (w - X)) and the localisation
Moo or(M(w - N)) ~ 05" Moo oo (M (w - N)),
where i : T —» T denotes the inclusion of the closed subspace of smooth
characters. A similar remark applies to the dual Verma module. In particular, it
is enough to show that the O qu,wwo-modules
oc0,z, R

Meoor(M(w - X)) and Mooz (MY (w - N))

are finite free. But these modules are Cohen-Macaulay with support the localiza-

. tri . .
tion at x of X", which is smooth. O

7.2 Recollection on Bezrukavnikov’s functor

The aim if this section (or even of the paper) is to identify the patching functor
that takes objects in Oy (or more generally in Og,) to Cohen-Macaulay modules
on certain Galois deformation rings with a functor constructed by Bezrukavnikov
in geometric representation theory (more precisely: with the pullback from our
local models to the Galois deformation rings). Before doing so, we will need to
recall the result of Bezrukavnikov.

Recall that X = g x4 g where g is the Lie algebra of G; = [[,ex(L xq,
Resr, /g, GLy) as in section and denote by X" the completion of X along the
preimage of {(0,0)} € t xyw tin X. Moreover, we write X = X x, {0}, where
the fiber product is taken with respect to the map x; : X — t of that maps
(¢gB,hB,N) to ad(g~)(N) (mod n) € t. As in the preceding sections we fix the
shift -

0 =det 2

of the half sum of the positive roots dg.

5Q € X*(I)
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Theorem 7.4 (Bezrukavnikov). Let A € X*(T') be a dominant character. There
exists an exact functor

B:0,, — CthL(XA),
such that

1) for all M € O,, the sheaf B(M) is a Cohen-Macaulay sheaf,
2) for allw € W there is an isomorphism B(M (wwq - \)) ~ Ox—,
8) for all w € W there is an isomorphism B(M (wwyq - \)) ~ wx—,

4) the image B(P(wo - \)) of the anti-dominant projective P(wq - ) is the
structure sheaf O,

5) the image B(L(\)) of the algebraic representation L(X) is the line bundle
O(—0g)RO(—dg) on G1,/Bx G, /B which is viewed as a closed subscheme of X"

v1a
(9B, hB) w (9B, hB,0).

This result is (a small part of a result) due to Bezrukavnikov and his collabo-
rators whose proof is spread out through the papers [Bez16, BR12l [BL23, BR22]|).
For the convenience of the reader, we explain how to get the result in the previous
form.

Proof. By the main result of [Bez16], there are reverse equivalence of categories
W : Djo g0 ¢+ D"(Coh(g x4 8)) : @0,

which we can then localize on X C X. Up to use translation functors, we can
focus on the case A = 0. By [Bezl6l Corollary 42 ] the functor ¥ in fact takes values
in (G-equivariant) coherent sheaves on X, when restricted to perverse sheaves
F € Pervy(G/B). Moreover, the Beillinson-Bernstein localization theorem, more
precisely by [BG99] Localization Theorem 2.2, provides an exact fully faithfull
embedding of categories

Oy, — Pervy(G/N).

Composing the Beillinson—Bernstein equivalence with Bezrukavnikov’s functor (not-
ing that the blocks O,, and O,, are equivalent) we get the exact functor B.

Denote 1 = wyp - A denote the antidominant weight in the dot-orbit of A\. Now
the proof of [BL23, Proposition 5.8] implies that B(M (s-u)") = O« for all simple
reflection s and B(P(u)) = Ox. Bezrukavnikov’s main result [Bezl6, Theorem
1] implies that ¥ (hence B) intertwines the convolutions on both sides. Here
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the convolution on the category O,, ~ O,, is inherited from the convolution
in Pervy(G/B) defined as in [BR22, 7.]. We write w = s1...s, and compute
convolutions on both sides. By [BR12, Theorem 2.2.1] we have

By [BR22, Lemma 7.7] we have M (w- )Y = M(s1-p)¥ x+-+*xM(s,-p)" and hence
B(M(w - u)") = Ox.. Moreover, by [BRI12, Theorem 2.2.1] again, the dualizing
sheaf of X, is given by the convolution

()—Xw :()—X51*...*WX75T'
But [BRI2, Proposition 1.10.3] implies that the inverse of Ox- for the convolution
is wy, and as B is compatible with convolution, and as the inverse of M(s- )" is

M (s-p) (again using [BR22, Lemma 7.7]for example), we deduce wx~ = B(M (s-p)).
Finally 5. is a consequence of [BL23, Lemma 6.7] (with P = G). O

Recall that we have fixed a point x € X, associated which we have defined the
positive integer m, in ().

Corollary 7.5. The functor B induces an exact functor

B, : O, — Coh(Xx%™ )

o0,z,R

such that, for all M € O, the sheaf B,(M) is a Cohen-Macaulay sheaf and such
that
—5I—qtri
(Mecor(M)] = m,[B,(M)] € Z°(X0 %),

Proof. Let GG; be the completion of G at the unit element. As the representations
(pv)ulp defined by the point x are crystalline and hence de Rham we may choose
a basis o of W () = [Tyex; War (Drig(pz0)[1/t]) and define a point xpq4r associated
to 2 (or rather to the representations (p,),),) as in (). For all M € O, the sheaf
B(M) is a G -equivariant sheaf on X" and hence gives rise to a G-equivariant
sheaf on X, ... Now by [BHSI9, Theorem 3.4.4. and Corollary 3.5.8], see also
Theorem [4.7] above, we have a diagram

qtri,[J
Xoo,x,R

/ m
thri X/\

00,z, R ZTpdR*

More precisely, the map 7 forgets the deformation of the fixed basis «;, and hence
it is a G;-torsor. Moreover, W formally smooth and G;-equivariant for the natural
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left actions g - & := @& o g~ ! on the source (acting only on the deformation of the
isomorphisms «, : L®q, F,, — W,) and g- (kB,hB,N) = (gkB, ghB, g 'Ng) on
the target of W.

It follows that the pullback of B(M)? at X,

TpdR TpdR
sheaf and hence descends to a coherent sheaf

along W is a G-equivariant

B.(M) € Coh(X2™ ).

00,z,R

It follows from the construction that M ~— B,(M) and that B,(M) is Cohen-
Macaulay, as B(M) is. Moreover, B, is exact, as W is formally smooth and hence
flat.

It remains to check the assertion on cycles. But as taking cycles is additive
and B, is exact, we only need to check this equality on a generating set of the
Grothendieck group of O, , such as the Verma modules M (w-y). Hence the desired
equality follows from the previous result on Bezrukavnikov’s functor together with

Proposition [7.2] O

7.3 A detail study of local models when n =3

From now on we assume n = 3, so that the group G; is

QL ~ <ReSF®QQp/Qp GLg) XQP L~ H (L XQP Rest/@p GL3,F1,) ~ H GLg’L .

’UESP TEX R

We identify the previous local Weyl group W with []. W, and each W, with
War, ~ 63 and denote s ,, 52, the two simple reflection corresponding to the
choice of the upper Borel, and wg , = 515251, the longuest element in W.. If 7
is understood, we often omit it from the notation.

As in section we denote by X the Steinberg variety for the group
Q = ResF®Q@p/@p GLg,

over L. As L is assumed to contain all Galois conjugates of F' we have X ~
[ s, X3 (see Remark[4.6|for the notation X3). The Steinberg variety X (resp. X3)
has dimension 97! (resp. 9) and 6/*#! (resp. 6) irreducible components X,,, w € W
(resp. X3, w € G3), see e.g. [BHS19, Proposition 2.2.5].

Proposition 7.6. For w = (w;);ex,, let s = {7 € Xp | w, = wo}|. Then
the component X, is smooth if and only if s = 0. Moreover, if s # 0, then the
component X,, is Cohen—Macaulay but not Gorenstein. More precisel, let

deR = (gﬁa hﬁ, N) = (gTBT7 NT7 hTBT) € XW(L) = H X37w-r(L)7

TEX R
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and assume that N, = 0 when w, = wgy. Then
dimL wWx,, ® ]C(.T?de) = QT,

where r = |{1T | w, = woy, and g.B, = h,.B,}|.

Proof. The smoothness is a consequence of Proposition @ As X = [l ex, X3, it
is enough to prove the analogous result for X3 only. Indeed, by base change and
composition of upper shriek functors, the dualizing sheaf of X is a derived tensor
product ®H; Prwx,, where p; : X — X3 is projection to the 7-component. But as
the product X =[], X3 is a product over a field, we find

*
(.UX = ®p7—wX3
T

Thus from now on we denote X3 simply by X.

It is thus enough to prove that the fiber of wy, , is 2-dimensional at a point
of the form (¢B,0,¢9B). Let ¢ : § — g denote the Grothendieck resolution,
then X ~ G, xZ¢71(b). Moreover, Y := ¢ !(b) decomposes into irreducible
components Y = U,ew Yo such that X, ~ G, xBY,,. Hence it is enough to prove
that wy, has fiber dimension 2 at the point y,ar = (B,0). As X, is Cohen-
Macaulay and flat over t (cf [BHS19, Proposition 2.2.3]), we have the base change
formula wy,, ®x X ~ Wxo We are thus reduced to compute the dualizing sheaf
Wy~ of the irreducible component

Yo = Yu, Xt {0}

of Y = ¢~!(n). This scheme now has dimension 3 and we can use explicit compu-
tations.

A point of Y(L) is of the form (¢B, N) € (G/Bx g)(L). We use the embedding
G/B — P? x (P?)Y that sents a full flag (0 C L C P C k?) to (L C k*,P C k?).
In homogeneous coordinates ([xo : 1 : @2, [yo : y1 : y2]) the condition £ C P is
given by 2oyo + 2191 + Toy2 = 0. Let Y~ C Y denote the open subset defined by
the condition zy = y» = 1. It is enough to compute on this open subset, as this is
a neighborhood of the point ypar = (B,0) = ([1:0:0],[0:0:1]). On V" we can
thus remove yy from our equations. Let us write

0 w2 w3
N = 0 U923
0

for the universal matrix over Y. The ideal defining

=0
Y., C Z = Spec(k[r1, 2, Y1, U12, Un3, Ur3])
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is then given by

Ly = (u23®a, ur2(T2 + T191), 1221 + U13T2, Usgys — Ur3(T2 + T1Y1)).

We remark that we can replace uia(xe + 21y1) by w1222 — 21322y using the third
equation, and that automatically y,u12u23 = 0 using our new equation and us3y; —
u3(zy + x1y1) = 0. We then check (e.g. using Macaulay2) that

A’ A A
0— 07 == 0% = 0 == Oy

is a resolution of Oz/I,,, where

Y1 Y113 — U2 t
T1U12 + To2U13
—X2 0
T u TaU23
/ 1 23 "
A= , A" = Y1u12U23
0 —U12U23
T1Y1U13 — Y1U23 + TolUi3
0 — P23 Tl U Tol
2Y1U13 — TaU2
0 ziusg + zaup2
—T2U23 —Y1U23 0 Ty  —Yi1ui3 0
Tiuiz + ToU1z  Y1U13 —Y1U12 U 0 —Y1U13 + U2
A= 0 Ty T9 0 1 0
0 0 0 —XT9 U12 0
0 0 0 T U3 U923

Let 7 : ?2]0 — Z denote the canonical closed embedding. Then the dualizing sheaf

can be computed as wgo = i*Ext?(’QZ (O35, Oz) which is given by

Y Y9,

Wyo 0%/ < (y1, y1uas — ura), (2, 0), (21, u12), (0, ur2tins) >,
wo

as Tollgy = Tolljs + Ttz = 0 on 72]0. It follows that the fiber of weo at ypar is
wo

2-dimensional. O

Lemma 7.7. Let J C Agy,-

1. For w € W(GL3) ~ &3 the component X3, is smooth if w # wy.

2. If vpar = (9Bs, hB3,0) € X3,4,(L), with gBs # hBsy, then xpar is a smooth
point of Xs -

3. For 0 # J C AcrL, = {s1,52} the component X3 ;7 is smooth for any
w e WJ\WGLS.
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Proof. Point |1} is Proposition For the point 2] denote w’ the index of the
Schubert stratum in which z,4r lies. By [BHS19, Proposition 2.5.3(ii)] it is thus
enough (as Uy, = GL3 /B3 x GLs3 /Bj is smooth) to prove that codim,(t*o®*'~1) =
lg(wo) — lg(w’). But this codimension is what we have denoted ¢(wyw ') in the
proof of Proposition . As w' # 1 and n = 3, wow ! is a product of distinct
simple reflections thus (ww' 1) = lg(wyw' ') = lg(wy) — lg(w’). For point [3] as
n = 3 we have that J = {s1},{s2} or J = {s1,$2}. Denote P = P;. In the
case J = {s1,52}, then P; = GL3 and X3, = g is smooth. It is sufficient to
prove the case of J = {s1} (the other case is exactly the same), where an explicite
computation gives the smoothness (alternatively, when w™" has length < 1, [BD),
Corollary 5.3.4] also implies smoothness). O

Corollary 7.8. Let w = (w;), € W and let I = [[,1, C A. Let xpqr =
(Tpar.+)r = (9- B+, h:B,, N;) be a point such that N, = 0 whenever I, = ,w, = 1.
If

Mo wr(Mp(w™™ - X)) (resp. Moo or(Mr(w™™ - \)Y)),

. . flfqtri,wmin 0 . .
is not a finite free over X , 5 -module, then there exists an embedding T

such that I, =0, w, =1 and w,z, = 1.

Proof. Assume that there is no 7 such that I, = 0 and w, = w,z, = 1. Lemma
[7.7, then shows that the local model X; is smooth at zpqr. By [7.2] the support

Xl—qtri,wwo = supp Moo,x,R<MI(w . )\))

00,z, R

is smooth. Thus Mae .= (M;(w - ) is a free of rank m, over XL diiwwo By

00,x, R
—5I—qtri,wwo

Remark its follows that Mo . = (Mr(w-A)) is a free of rank m, over X _ ,

The same argument also applies to MOOJR(]T/[/I(w “A)). O

Proposition 7.9. For all w € W the sheaf B,(L(w - X)) is cyclic. Moreover, for
all w e W such that wwy > w, g the sheaf Mo (L(w - X)) is free of rank m, over
1ts support.

Proof. Recall that, for w € W, Z,, is the closure in N x N//\V/' of the preimage V,, of
the Bruhat Cell U, = G/ (1,w) C G, /B x G1/B. By [CGI0, Prop. 3.3.4], V,, can
be identified with the conormal bundle of U, in N'x N ~ T*(G;/BxG;/B). Asg
is isomorphic to direct sum of copies of gls, the closure U, of U, in G ./BxG;/B
is smooth, hence a local complete intersection. This proves that the conormal
bundle of U, is a closed smooth subscheme of N' x N containing V,, as an open
dense subset so that it coincides with Z,, and Z,, is smooth. This implies that 3,, is
a smooth. As M » r(L(wwy - A)) is Cohen-Macaulay, it follows from Proposition
and from the fact that a,,» = 0 for w # w’ (see [BHS19, Rk. 2.4.5]) that
the sheaf Mo, = (L(wwp - N)) is locally free over its support. O
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7.4 The case of dual Vermas

For later use, let us recall the following Lemma.

Lemma 7.10. Let R be a commutative local ring and let I C J two ideals of R.
Letm > 1 and m : (R/I)™ — (R/J)™ a surjective R-linear map. Then there
exist tsomorphisms

p: (RI)" — (R/J)™, 4 (R/I)™ — (R/I)™
such that p o™ = 7w o1 = can®™ where can : R/I — R/J is the quotient map.
Proof. Let (eq,...,e,) be the standard basis of (R/I)™ as an (R/I)-module and
(f1,..., fm) the standard basis of (R/J)™. Then (7 (e1),...,7(en)) is a generating
family of (R/J)™. As a surjective endomorphism of a module is bijective, we see
that (m(ey),...,m(en)) is also a basis of (R/I)™. Therefore we can define ¢ by
the formula ¢(m(e;)) = f;. Now, for any 1 < i < m, let f/ € (R/I)™ such that

7(f!) = fi. By Nakayama Lemma the family (f],..., f}) generates (R/I)™ and
so is a basis of (R/I)™. We can therefore define ¢ by the formula ¢(e;) = f/. O

We will use the previous Corollary to start a devissage which will be assured
by the following two Lemmas.

Lemma 7.11. Let M be an object of Oy, and let Q1, ..., Q, be quotients of M. Let
Q be the smallest quotient of M dominating all the Q;, i.e. @ = M/(MiN---NM,)
where M; = Ker(M — Q;) for 1 <i <r. We assume that

(i) for any 1 <i <, the sheaf Moo 2(Qi) is free of rank m, over it support;
(77) for any 1 < i < r, the sheaf B,(Q;) is cyclic (generated by one element);
(ii1) for any 1 < i <71, Supp Moo .= (Qi) = Supp B, (@) ;

(iv) the sheaf B,(Q) is cyclic.

Then the sheaf My » = (Q) is free of rank m, over its support and
Supp(Mz,OO,R(Q) = SUPP(BI(Q)).

Proof. To ease notation we note m = m,. Let’s prove the result when r = 2. Let
A= ngj;ﬁ be the ring of global sections of fgfj;ﬁ and let I; = Ann(B,(Q;))

for i € {1,2}. Define @y the largest common quotient of ()1 and Qs, i.e. Qo =
M /(M + Ms). Then we have a short exact sequence

0 —Q —=0Q1BQs — Qy — 0.
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By exactness of M, r, we have a short exact sequence

0— Moo,x,R(Q) — Moo,:p,’R(Ql) S Moo,:r,’R(Q2) — Moo,a:,’R(QO) — 0

where the map Q1 © Q2 — Qo is given by (z,y) — = — v.

We fix isomorphisms (A/1;)™ = Moo= (Q:) fori € {1,2}. As Qo is a quotient
of both @)1 and (), we have surjective maps

(A/Iz>m — Moo,z,R(Qz) — Moo,x,’R(QO)u

which factor through (A/(I;+12))™. Using Lemma we can choose the previous
isomorphisms such that the following diagram commutes

)=y

(A/I)™ & (A L) 07V A /(L + L™ ——— 0

- | g

Mm,x,’R(Ql) @ Moo,m,’R(QZ) — Moo,m,’R(QO) — 0.

As the kernel of the upper horizontal map is isomorphic to (A/(I; N I3))™, we
obtain a commutative diagram

0 —— (A/(LNL)" — (A/L)"® (A) L))" ——— A/(L+ )™ —— 0

0 —— Mu:r(Q) —— Mz r(Q1) ® Mooz r(Q2) —— Mezr(Qo) —— 0.
(10)
As Ann(B.(Q)) = I N I, and B,(Q) is cyclic, there exists an isomorphism
B.(Q) ~ A/(I1NI3). Moreover, by hypothesis, we have Supp(B,(Q;)) = Spec(A/I;)
so that the maps A/(I1 N Iy) ~ B,(Q) — B.(Q;) factors through isomorphisms
A/I; ~ B,(Q;). Therefore, by exactness of B,, we also have a commutatif diagram

z—(z,x)

0 —— (A/(I1n])) —= (A/L) ® (A/L)

) !

0 ——— Bu(Q) —— Ba(Q1) ® Bx(Q2) —— Bx(Qo) —— 0.

This implies that we have an isomorphism A/([; + I5) ~ B,(Qo). As B.(Qo) is
Cohen—Macaulay, so is A/(I; + I2). As the ring A/(I; + I3) is Cohen—Macaulay,
the vertical right arrow of diagram (9 is a surjective map (A/(I; + L))" —
Mo .= (Qo) between two Cohen-Macaulay modules with the same cycle by Corol-
lary[7.5] It is therefore an isomorphism and the Snake Lemma allows us to conclude
that the left vertical arrow in ([10)) is an isomorphism.
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Assume that the result is proved for some integer r > 2. Let Qq,...,Q,11 be
quotients of M satisfying the hypotheses of the Lemma. Let Q" be the smallest
quotient of M dominating all the @; for 1 < i < r. Note that B,(Q’) is a quotient of
B.(Q) and is therefore cyclic. By induction, My » z(Q') is free of rank m over its
support and Supp My = (Q') = Supp B.(Q'). The quotient () is now the smallest
quotient of M dominating Q)" and @Q,,;. Therefore the case r = 2 implies that
Mo 2= (Q) is free of rank m over its support and Supp Mo 2 = (Q) = Supp B,(Q),
which concludes the induction. O]

Lemma 7.12. Let M be an object of the category O,, . Assume that Moz r (M) is
generated by m, elements and B, (M) is cyclic. Then My (M) is locally free of
rank m, over its support, its support is Cohen-Macaulay and Supp My (M) =

Supp B (M).

Proof. We prove the result by induction on the length of M. If M is simple this is
done in Proposition [7.9] Thus we can assume that we have a short exact sequence

0—L—M-— —0

with L simple such that M, =(L) # 0 and that the result is true for ). Let [ =
Anmn(Moo 2 (M)), Ip = Ann(B,(M)), J = Ann(B,(Q)) and K = Ann(B,(L)).
Then we have two short exact sequences

0 — By(L) — B,(M) — B,(Q) — 0
0 — Muoor(L) — Mo zr(M) — Moo =(Q) — 0.

The first exact sequence shows that ]TZOOJ; /K ~ J/Ig sothat Iz = JK. The second
exact sequence shows that I C I. Therefore, as M, z(M) is generated by m,
elements, we have a surjective map

Bo(M)™ ~ (R o /Ip)™ = Moo ar(M).

These modules are both Cohen-Macaulay of the same dimension with identical
associated maximal cycle by Corollary [7.5] therefore this map is an isomorphism
and Ip = I. Moreover as M, . (M) is Cohen-Macaulay, so is its support. O

Theorem 7.13. For any w € W such that wwy > w, g, the coherent sheaf
Mooz r(M(w - X)) is locally free of rank m, over its support.

Proof. As M(w - \)Y is a quotient of M (\)Y for any w € W, Lemma implies
that it is sufficient to prove the result for w = 1.

Recall that W = [],.p_,;, W, and write w, g = (w,,). Let J C Hom(F, L) be
the set embeddings such that w, . = 1. Let E be the set of elements w = (w,) € W
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such that w, € {s1,s:} if 7 € Jand w, = 1 if 7 ¢ J. By Corollary[7.§land Lemma
[7.12] for w € E, the module Mo ;= (M (w-A)") is free of rank m, over its support
and Moo r(M(w - X)Y) = Bo(M(w - A\)¥)™. Let @ be the smallest quotient
of M(\)Y dominating all the M(w - \)¥ for w € E. Lemma implies that
Mo 2= (Q) is free of rank m, over its support and Mo, = (Q) = B.(Q)™. Let
N be the kernel of the map M — Q).

Let I of the form [I,c;{s;.} where i, € {1,2}. Then the image of the map
MV = MY = Qis Qr = Keey Lisss, - Ar) Kogy M(\,)". By Corol
lary , the module Mo, =(M(N\)Y) is free of rank m, over its support. Thus
Mo =(Qr) is generated by m, elements, and its quotient

L[ = & T € JL(S;;,@'T : )\7-) X % M(wx,rwo : )\T)V>

satisfies

Moo,:p,’R(LI) == Moo,g@R( & L<S37i7- . )\T) Y & L(U}xﬂ-wo . )\T))

TeJ T¢J

by Proposition [7.2] Moreover, by Proposition [7.9] this module is free of rank m,
over its support so that its fiber at x has dimension m,. This implies that the
following surjective maps are all isomorphisms

k(2)™ =~ Moo o r(M1(N)Y) @ k(2) = Moo 2(Qr) @ k(2)
= Moo ar(Lr) @ k(z) =~ k(x)™e.

As moreover Ker(M;(\)Y — Q) = N N M;(\)Y, we see that the map
Mooz r(NOM(N)Y) @ k(z) — Moozr(M(N)Y) @ k(z)

is zero. As M(N)Y is multiplicity-free, we have N = > ;(N N M;(\)Y) and we
conclude that the map

Mooz mR(N) ® k() — Moo o r(M(N)Y) @ k()
is zero. Therefore Mo, (M (AN)Y) @ k(2) 2 M. r(Q) ® k(x) =~ k(z)™ and we
conclude with Lemma since B, (M (X)) is cyclic. O
7.5 The case of the antidominant projective

Theorem 7.14. The coherent sheaf Moo = (P(wo - N)) is free of rank m, over its
support.
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Proof. Recall that A = U(t), and set D = L ® 4w A. By Proposition m,
the action of Z(g) on P(wp - A) induces a structure of D-module on P(wy - A).
As M(N)Y is an injective object, it follows from [Soe90, Prop. 6], that M(\)Y ~
P(wy - A\) ®p (D/mp), where mp is the maximal ideal of D. We have also a local
map of local algebras o : D — Oz awi  defined in section [6.3] It follows from

co,z, R

Corollary that these define the same action of D on My , z(P(wp - A)). As
moreover the functor M , » is exact, we have an isomorphism M ;= (M (A)Y) =~
Moz r(P(wo - A)) ®@p (D/mp). As moreover the map A @,w A — Ogpan s a

co,z, R
local map of local rings, we have an isomorphism M . r(P(wo - \)) ® k(z) =
Mooz (M (N)Y)®@k(x) and thus dimj, Mo 4 = (P(wo-A)) @k(z) = m, by Theorem
[7.13] We conclude by Lemma O
Corollary 7.15. Let Q be a quotient of the anti-dominant projective P(wg - \)
in the category Oy, . If M. r(Q) # 0, then it is finite free of rank m, over its
support and its support is Cohen—Macaulay.

Proof. As Moz =(P(wo- ) (resp. B, (P(wp-A))) is free of rank m, (resp. 1) over

its support by Theorems and [7.4] we have that Mo, =(Q) (resp. B,(Q)) is
generated by at most m, elements (resp. cyclic). It follows from Lemma [7.12]

Mo =(Q) is free of rank m, over its support and that its support is Cohen—
Macaulay. O

Corollary 7.16. For all w € W, the coherent sheaf
Moo r(P(w - A\)Y),

is free of rank m, over its support.

Proof. By Corollary [7.15] it is sufficient to prove that Mo, . =(P(w - A)¥) is non
zero and that there exists a surjective map

P(wy-A) — P(w-\)".

As P(wq- ) is the projective envelope of L(wg-A), this is equivalent to showing
that the socle of P(w-\) is isomorphic to L(wg-A). By [Str03, Thm. 8.1], the socle
of P(w-\) is isomorphic to L(wg-\)™ with m = [P(w-\) : M(\)] = [M(\) : L(w-\)]
by [HumO8, Thm. 3.9]. As g is isomorphic to a direct sum of copies of gl; ;, we
have [M(A) : L(w - \)] =1 for any w € W.

Moreover, as [M(A) : L(A)] = 1, we have
[P(w-\)Y : L\)] = [P(w-\): L\)] = 1.
As Moo r(L(X)) # 0, we have My . »(P(w - \)Y) # 0. O
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7.6 Duality
For a Cohen-Macaulay sheaf F on ?‘jff;n of dimension dim X’
w’?qm for the dualizing complex and set

co,z, R

qtri

xRy WE write

FV := RHomqui R(}" ,wWhaui )[—dim i 1

00,z,R
oco,x, R

This complex F" is a coherent sheaf concentrated in degree 0 to which we refer to
FV as the shifted Serre dual of F.

Lemma 7.17. Let F be a maximal Cohen—Macaulay coherent sheaf over o

co,x,R*
Then [FV] = [F]. As a consequence if Y C X o

oz 18 @ mazimal Cohen-Macaulay
closed subscheme, we have [wy] = [V].

Proof. Let R be local complete regular ring such that Ogaui is isomorphic to a

00,1, R
quotient of R. Then we can compute 7 by the formula 7" = Ext%(F, R) where
d is the codimension of ng;ﬁ in Spec(R). By definition, we have [F|] =Y, a(z)z
where the sum is over all maximal points in Supp(F) and a(z) is the length of
the finite length R,-module F,. Let z € Spec(R) be a maximal point of the
support of F. The localization R, of R at z is a local regular ring and we have
FY ~ Ext} (F.,R.). As Ext} (—, R,) is a an exact functor on the subcategory
of finite length R.-modules and dimy(,) Ext} (k(2),R.) = 1, the length of the
R.-module Exthz (F., R.) is a(z). So we have the proved the claim. O

Proposition 7.18. Let M be a subobject of the anti-dominant projective P(wg- ).
Assume that Mo (M) # 0 and let Y be the support of Meoor(M). Then

Mg

Moz (M) is isomorphic to wy,* and Y is Cohen—Macaulay.

Proof. Let @ be the quotient of P(wg-A) by M. If My . =(Q) = 0, then Theorem
7.14] implies the result. So we can assume that M, . z(M) # 0 and ./\/loomR(Q) +
0. By Corollary [7.15, M . =(Q) is isomorphic to O%* for Z C ?sz;ﬁ maximal
Cohen—Macaulay. Using Lemma [7.10 we can construct a commutative diagram

0 —— Moo,:c,’R(M) I— Moo,:c,R(P(w() : /\)) I— Moo,a:,R(Q) — 0

|- I B
0 ——— Ker o con = oL 0.

—Sqtri
X

co,z, R

Let I be the ideal defining Z. As ?‘;?;R and Z are Cohen-Macaulay of the same
dimension, the involutivity of the duality implies that we have I ~ wp, where
Y = Supp([) so that we have the result. O
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Theorem 7.19. For all w € W, with wwy > w, g, the sheaf Moo r(M(w - X))

is isomorphic to
SEma
(qutri,wwo )

o0,z, R

Proof. 1t follows from Propositions and that Mo m(M(w - A)) ~ wy*
where Y = Supp Mo . »(M(w - \)) is Cohen—Macaulay. However it follows from

Theorem [6.16| that J C fgzr;%uo By Lemma [7.17, we have an equality [wy] =
[V] and it follows from Corollary that (Moo r(M(w - X)) = my, [rahee),

0o,x,R
—5qtri,wwo —5qtri,wwo
Therefore we have [V] = [X | and thus Y = X' /.

D._.

We choose for all A dominant weight, and all w € W a surjective map 7, :
P(wg - \) — P(w - \)Y (see proof of Corollary [7.16]).

Lemma 7.20. For all map fuy. @ P(w-A)Y — P(w' - \)Y there exists a map
Jww @ Plwg - X) — P(wg - \) such that the following diagram commutes

e a

Plw-3)Y 2 Plw- A)Y

Proof. As my @ P(wy - A) — P(w’ - \)Y is surjective and P(wy - \) is projective,
the map Hom (P (wo- A, P(wo-A)) — Hom(P(wp- ), P(w'-\)") is surjective, thus
there exists fy, . mapping to fy . o m,. This proves the claim. ]

Lemma 7.21. Let F be either B, B, or My . r. There exists a family of isomor-
phisms indexed by w € W

U, : F(P(w-\)Y) = F(P(w-\)".

such that for any w,w'" € W and any if fyuw @ P(w-X)Y — P - \)Y, the
following diagram commutes

F(fuo o)
—

F(P(w-A)) F(P(w'-A))

wa wa, (12)
FL 0
F(P(w-A)" —— F(P(w- )"

where we denote by the same symbol (-)¥ the duality in O and Serre duality on
coherent sheaves.
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Proof. Let w € W. The sheaves F(P(w - \)¥) and F(P(w - A))" are isomorphic
to the same quotient of F(P(wq-A)) by Theorem [7.4| for B, B, and Corollary
and Proposition for M ;. This implies that there exists an isomorphism
U, F(P(w-\)Y) = F(P(w- )Y such that the following diagram commutes

F(P(wp - ) —22 F(P(wy - \))"

lf(m) lf(mi)v (13)
F(P(w-A\)Y) =22 F(P(w- \)

Fix w,w" and let’s show that the diagram is commutative. Let f, . €
Hom(P(w-\)Y, P(w'-\)¥). By Lemma|7.20} there exists a map f,,.v € End(P(wp-
A)) such that the diagram is commutative. We first consider the following
diagram

F(P(wo - A) — F(P(uwy - A)”
lﬂfw,w/) lf(}fj,w,)v (14)
Yoy

F(P(wg - A)Y) —= F(P(wg - \))Y

But as f,. € Endo(P(wq-A), P(wg-))) ~ D = L® 4w A, it follows from Corollary
for F = My .» and [Bezl6l Prop. 23] for F = B,, and the fact that ¥, is

O pai_-linear, that this diagram commutes. Now consider the diagram

co,z, R
F(P(wy - A Fmu)” F(P(w' - \)
(P(wo - X)) (P(w'- X))
\I}wo T \I/w/
F(P(wo - \)) 0w L F (P - A)Y) FUY )Y
FFL DY
FFo) F(P(wp - \)) Frw) F(P(w-\)Y
\I}wo ]:(fw,w’) /
‘ljw
F(P(wy - \)) il F(P(w-\)Y)

All faces, except maybe the right hand one (which is the one of the statement),
of this cube are commutative diagrams by functoriality and diagrams , ,
(14). Moreover F (), F(my)", F(my), F(my,)" are surjective, thus the last right

w
hand face also commutes. O

Corollary 7.22. For any M € Oy, there is a compatible choice of isomorphisms

\I/M.F(Mv) 4 f(M)v,
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where F is either the functor B, By or Mu = In particular, F is compatible with
duality.

Proof. Choose a resolution

@P(,Ui) — @P()\j) — M — 0. (15)

Then we have two exact sequences
0— F(MY) — P FPN))— PFEP
j i
and
0— F(M)" — P F(PWN) — DFP)"
j i
For the second one, recall that if K denote the Kernel in equation so that

0— K—&@PN)— M-—0,
J

then, as F(K) is CM of the same dimension as the other modules, we have

0 — F(M —>€B]—" )Y — F(K)Y — 0,

which is exact. Moreover, by the previous Lemma we have a commutative
diagram with vertical isomorphisms

0 —— F(MY) —— @; F(P(X))") —— @i F(P(1)")
‘@j\ykg‘ ‘GBZ‘I’M
0 —— F(M)" —— @; F(P()))" —— & F(P(m))”

which induces an isomorphism Wy, : F(MY) — F(M)". O
Corollary 7.23. There exists an isomorphism of functors B' ~ Mq, » ».

Proof. By a similar argument to the proof of Lemma [7.21, we can construct a
family indexed by w € W of isomorphisms

D, Bo(P(w-A)Y)™ 5 Moo (P(w-A)Y)
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such that, for any w,w’ € W and any f,,. € Hom(P(w - )", P(w' - \)", the
following diagram commutes

Bo(P(w))yme —o) B (- A)Y)

2 [

Moo (Plw - NP0 (Pl - \)Y).

Such a family of isomorphisms provides an isomorphism of functors between B
and M, » restricted to the full subcategory of O, of injective objects. As the
category O, has enough injectives, this isomorphism extends to all of O,. O

7.7 Consequences

In this section we keep the setting introduced in subsection [7.3] In particular
n=3.

Lemma 7.24. Let p,\, R be as above and let x € Xy (L) the point corresponding
to p. Then for all M € O,,,

/

Moo e (M) @ k(x) = (Homy g (M, T [m, )" [ms )
Proof. By construction (see Remark , we have
/
Mee s m(M) = (Homy g (M, T [m32]) " [mgs]) .

By Corollary tAhe X X T-structure on the sheaf Mo v (M) factors through
XL R — X x T. Thus,

Moo (M) ® k(x) =~ (Homyg) (M, 1% [m,])™[mg,]) . O

Corollary 7.25. Let § : T — L* be a continuous character and let x° : T% — L
be a character such that there exists f € ST(KP)[x® ® 6] an overconvergent p-adic
eigenform on the group U(3). Assume that the Galois representation p associated
to [ is crystalline strictly dominant and p-generic at p satisfying . Let r =
|{T S EF ’ Wy R T = 1}| Then

dim ST(KP)[x® ® 6] = 2" dim SY(KP)[x° ® 6] # 0.

Proof. The assumptions imply that the character ¢ is locally algebraic and that it
factors as 0 = 0 0 for some A\ € X*(T)* and some unramified character ég. By
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Breuil’s adjunction formula [Brel5, Théoreme 4.3] (see also [BHS19, eq. (5.5)])
and [BHS19, Lemma 5.2.3] we have

SHEP)[x" @ 0] = Homyg) (M(A), I [x*]) ™ [mag ],

SUEP) X" @ 0] = Homy(g) (L), T [x ) [, ).
In particular, by Lemma [7.24] these spaces are indentified with the dual vector
spaces of the fiber of My . r(M(N)) resp. of Mo wr(L(N)) at k(z). Thus, as

my = dim Mooz =(L(N\)) ® k(z), the result is a direct corollary of Theorem
(and Proposition [7.6)). O

We can also deduce the following corollary on the structure of the completed
cohomology II (see Definition , which is a representation of G := U(Q,). Let
gl; be the Lie algebra (over L) of the group GL3 and for a dominant A we consider
the extension

N(A) = [L(s1-A\) @ L(s- ) = L(\)] € Exty(L(A), L(s1 - A) ® L(sz - A)),

which is non trivial when mapped in each of Ext,(L()), L(s;-))), for i = 1,2. This
extension is the quotient of the Verma module M (X) by M (s182- ) + M(s281 - N).

As before we consider the Lie algebra

g = Lie(Gp ~ (Respsgg,/g, GLa) xg, L)~ ] ol

TEEF

with Borel b ~ [], b,. Associated to a dominant weight A = (\,;), € X*(T)* and
wr = (Wr.r)renp € W we define the object

N\, wg) = (lX'L &&N(M)

TIWR, 71 TwR, =1

of the category Oy, = [, 0¥, We also define

S\, wg) = &SAT,wRT €0y,

where

— ®w<w7a,-rwo L(w ' /\7—) if WR,r 7é 1
S(Ar,wr ) = { By 1 Lw-A\)BNO,) ifwg,=1"

so that S(A\, wr) = @ypcwpu, L(w - A) if wg # 1 for all 7, and

N()\, UJR) C S()\, U)R),
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otherwise.

If M is a U(g)-module, we denote Hompg(M, E) the U(g)-module with under-
lying vector space Homg(M, E) and action of v € U(g) given by

(t-¢)(m) = o(tm), ¢ € Homg(M,E),me M,

where t — t is the anti-involution of U(g) extending —1 on g. We denote B the
Borel opposite to B, whose Lie algebra is b with @ its nilpotent radical. We then
denote B = B(Q,),B = B(Q,) and dp the modulus character of B. We then
denote M’ := Hompg (M, E)™" the vectors which are killed by a finite power of .
It M = @rex-m), Mx € 0% then M’ € O%°. Finally recall that if M € O%°
and 0 is a smooth character of T'(Q,), then Orlik-Strauch constructed (see [OS10]
or also [Brel6])
F(M,5),

which is a locally analytic representation of G. In particular, locally analytic
principal series are of this form : if M = M()\)¥ € O%°, then

FE((M(N)),6) = ind§(3,6)". (16)

Let p : Galg — GL, (L) be a crystalline, Hodge-Tate regular and (-generic
autodual representation satisfying Hypothesis such that II[m,] # 0 where m,
is the ideal of T® ® L associated to p. Let R a choice of refinement and dz the
associated unramified character. Denote A = (\;), := HT(p) — g € X*(T)" the
(dominant) algebraic character associated to p as before, where HT(p) = (h1, >

+ > hyr)ren, € X*(L) gives the Hodge-Tate weights of p. As IIjm,] # 0
and p satisfies Hypothesis |5.9 it corresponds to a point © € X, (L). Denote
Wy R = (WyR,r)res, and m, :=m, > 1 as in Section [7.1]

Corollary 7.26. For p, \,R as above and all w < wrwy, we have

dim Homg (ind%(6,,,6=05")"™, I1¥[m,]) = m,,.

Proof. By [Brelbl Proposition 4.2] and [BHS19, Lemma 5.2.3], we have, for all
MeO

Homy gy (M, 11%[m,])"" [ms, ] ~ Homeq,)(FG (M, 0rd5"), I m,])
~ HOHI(&EP)(M X CSO(NB<L), 573), H[mp])

Thus, using equation and Lemma we deduce that the statement is equiv-
alent to

dim Homy () (M (w - A)Y, IT®[m,)[m;] = dim Mo, r(M(w - \)Y) @ k(x) = m,,
which is Theorem [7.13l ]
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Corollary 7.27. For p,\, R as before, we have an injection of (g, B(L))-modules
(S(A\wy,r) ® CZ(Np(L), %)) "™ < I [m,],
or, equivalently, an injection of G-representations
FE(S(A\ wyr), 0rd5")™ C I[m,).
Moreover each map from FE(M(w - X)',6rd5") to I[m,] factors through the pre-

vious representation FS(S(X, wyr), 0rdp').

Proof. The two statements about injections are equivalent and each of the m,
asserted maps comes from a section of

HomU(g) (S()‘7 wp,R)7 e [mp])NO [m573]’

by the adjunction recalled in the proof of the previous corollary.
We already know, by [BHS19], that for all w < w,gwo we have, in previously
used notations
dim Homy g (L(w - A), T*[m, )" [ms, ] = m, = m,.

Moreover, for each w, grwy > w with w,z, # 1 if w, = 1, we have

m,, = dim Homg (g) (M (w - X), Hla[mp])No (M ]
= dim Homy g (L(w - A), T [m, )" [mgy ],
by Corollary . Thus, for those w, all maps from M (w - \) factors through
L(w - \).

So we really need to take care of the direct factors of S(\, w, ) where a factor
N(A;) appears. Such a factors is of the form

&L(wT)\T)IE&N()\T)7 szll—|127

Telh TEl

and is a quotient of M (w - A) where w = (w,) with w, = 1 if 7 € I5, and even of
M(w - \) where I = { s1,|7 € I; such that w, =1=w,%,}.

We first prove that any map from M;(w - A) has to factor through S(\, w,z)
and more precisely through the previous factor.

Choose 1y € I so that w, g ., = w,, = 1 and for i = 1,2 let s;° € W with

(s7)- = w, = if 7 # 7, and wy, = 5. Then

Mi(si® - X) C Mi(w - \).
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Moreover, M;(s[° - \) has a quotient

QP =X L) B L(si - Ay) B X M(w: - A,),

Tel T€la:T#T0

and we first prove that maps from M;(s[°-\) into IT"*[m,] factors through Q7°. This
is equivalent to proving that My . =(M(s°)) ® k(z) — Moczr(M(N)) ® k(z)
factors through My , = (Q7°) ® k(x). By Corollary [7.23] this is equivalent to the

1
same question for B,.

Claim 7.28. If G = G; x G, A = (A1, A2) is an algebraic weight and O,, =
Oy, X Oy,,, then

BG(MI X M2) = BGl (Ml) X BGz(MQ)v

where By is Bezrukavnikov’s functor of Theorem [7.4] for the group H, under the
obvious isomorphism of Steinberg varieties

XG = XG1 X XGQ.

Proof. This follows from the very construction of Bezrukvanikov’s functor. The
functors Bg is even defined on the larger category D?(Pervy(G/N)) and compati-
ble with its monoidal structure. Then, by Theorem [7.4] we know that dual Vermas
are sent to the structure sheaves of the respective components by B¢, and similarly
for Bg,. In particular we have an isomorphism

Bo (M ((wy, ws) - (A1, A2))") =2 By (M (wy - A1)Y) B B, (M (ws - A2)Y).

As the functors Bg and Bg, X Bg, are both monoidal and triangulated, using
translation functors we deduce that Bg and Bg, KB, are isomorphic on projective
objects. Thus by the same proof of Lemma and Lemma [7.23] we deduce the
isomorphism of functors on O,, . O]

So we want to prove that B,(M;(s° - \)) ® k(x) — B.(M(w - \)) ® k(x)
factors through @Q7°. By the previous claim, it suffices to show one 7 at a time
using M (s® - A) = M(s; - Ary) ¥ Mp(w™ - A™). Thus when 7 # 7 this is obvious
for 7 € I, and reduces to freeness of X3, when 7 € I as before. For 7 = 7y this
amount to show that, for k # ¢ € {1,2} the map

Bo(M(sse - Ary)) @ k(x) — Bo(M(si - Ary)) @ k(2),

vanishes. But as B, (M (s; - Ar,)) is free of rank 1, this is obvious. Thus, we have
a factorisation through Q7° for all 79,7 = 1,2, thus

Meooaor(Mp(w- X)) @ k(x) = Mo or(M) @ k(z),
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where

M= X LR X M)/ (M(sisz- M)+ M(sas1- ).

TWpy R, 7L Tw, R, =1

N(Ar)

Now we prove the last part of the statement, i.e. any map from (the Orlik-Strauch
induction of) a Verma M (w - ) to II"*[m,] will factor through S()\, wg). Assume
given a map in Homgg (M (w - \), T%[m, )" [ms,], and let I, = {7 € Sjw,r, =
w, = 1} and I its complement, then by the previous argument the map factors

through
X L(w: - ;) & X N(A-).
7€l TEIS

As any quotient of this module is a sub-representation of S(\,w, %), we have that
any map
FE(M(w - \)*, 6r05") — H[m,]

factors through FS(S(A, w,r)*, 0rdp").

We now prove the injective part. As S(\, w, ) is the direct sum of terms of
the form, for w € W,

Mw,ll,lg - & L(U}T ° AT) IX & N(AT), E = ]1 LJ 127

Tely 7€l

where I, C { 7 € X|w, g, = w, = 1}, we first prove that the direct sum of m,
copies of (the Orlik-Strauch induction of) each term M, 1, 1, injects in 11'"*[m,)].
First remark

dim HomU(E)(Mle,b? Hla[mp])[m57a] - 2‘I2|mp’

by the previous factorisation of Mj(w - p) for some [ C I; and the computation
using B, (and using Proposition . Now each quotient of M, j, 1, is of the form

My 1,001, \J = |X| L(wT : )\r) X |X| NO\r)»

TelhuJ TERL\J
for some J C I (remark that if 7 € I, w, = 1), and thus
dim Homyg) (Mu,rus1o\5, 1 [m]) [mg, ] = 21217V,

We deduce that the dimension of homomorphisms modulo those which factors
through a strict quotient is

2|12\mp _ Z (_1)\J|+12|I2\—|J|mp =m,.
0£JCI2
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In particular there are m, independent injective maps from .7:%(]\/[1’”’[17[2,57%) to
I1'*. Now when w and I, I, varies, these objects have distincts irreducible in their
socle. Thus the direct sum of all those maps

@ ‘Fg(M'L/U,Il,]é? 5R)®mp = Fg(‘S(A? wp,R)/) 5735;1)@”1/))

w, 11,12
injects into IT[m,). O

Remark 7.29. In particular, for each 7 such that wg ; = 1 we deduce the injection
of the locally analytic representation

FE (N, 0r+05)) = [LA,, ® LA,, — LALG],
as representation of GL3(F;) (acting through 7), where
LALG := L(\;) @, ind3 (6r +05)),
is an irreducible locally algebraic representation which appears in cosocle, where
LA, = Fg(L(s - A;)', 0r.705")
is the irreducible, non-locally algebraic, socle of the locally analytic principal series
LA, C 1nd%: (55-)\757277—(5];3)13.

In this case, the locally algebraic representation LALG appears with multiplicity
m, in the socle by the main result of [BHSI9], but also with multiplicity m,
as an higher order Jordan-Hoélder factor, namely, in the cosocle of the previous
Fo (N(A)', 0r,05.).

8 Existence of very critical classical modular forms

In this section we show the existence of a classical form f satisfying the hypothesis
of Theorem [1.2] The main difficulty is to find a form satisfying the Taylor-Wiles
hypothesis, which is moreover completely critical at p (i.e. w, ;R=1).

For a finite extension F' of Q,, we denote by recp : F* — Gal}b the local
reciprocity map sending a uniformizer of F' on a geometric Frobenius. If K is a
number field we denote by Artg the Artin reciprocity map A% /K* — Gal such
that, for any finite place v of K the precomposition of Artyx with the inclusion
K} — Ay isreck,. If U is a character of Ay /K> and v is a finite place of K such
that U, is unramified, we write W(v) for the evaluation of ¥, at an uniformizer of
Ex. First, we remark the following,
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Lemma 8.1. Let K/Q, be a finite extension and let p, : Galx — GL,(Q,) be
a crystalline representation with reqular Hodge—Tate weights such that there exists
a refinement Fy C Deys(pp) which contains the Hodge filtration. We moreover
assume that the eigenvalues of the linearization of the crystalline Frobenius on
D.yis(pp) are pairwise distinct. Then p, is a split sum of characters.

Proof. This is a simple application of weak admissibility. Up to extending scalars,
we can assume that D = Deis(py) = @, D, is split, and is a filtered ¢-module.
We consider the linearization ¢/ of the Frobenius on D,, where f = [K : Q,]. We
write Fil®*D, for the filtration on D, induced by the Hodge-filtration on D. The
assumption is that the Hodge filtration on D is p-stable i.e. there is a full flag
of K® @p—modules F,, stable under ¢, such that, for all 7, it k] < ... < k] are
the (opposite) 7-Hodge-Tate weights (with multiplicities) then Fj . C Fil*~#+1D_.
Denote the eigenvalues of ¢/ on F;, by (¢1,...,9;). Thus by weak admissibility,

ch(UWl) + -t o(er) 2 Z;: kg

Now, if G; is a complementary -stable subspace of F; in D (which exists due to the
assumptions on the eigenvalues of /), then we see directly that the 7-Hodge-Tate
weights of G; are k7,...,k]_,. Thus by weak admissibility again,

) Yn—g

F0lpin) o o) 2 A

But by weak admissibility of D, the endpoints of both polygons gives

1

o)+ +ulen) = LY
Thus both G; and F; are weakly admissible, thus admissible, thus p, splits accord-
ingly. As this is true for all i, we get the Lemma. O]

It follows that, when n = 3, an eigenform f as in Theorem (1.2 has a split
representation at p. In the case of modular forms, it was asked by Greenberg (see
the work of Ghate and Vatsal [Gha04], [GV04]) if a cuspform whose representation
is split at p is necessarily a CM form. The natural generalization of this question
to GL3 would suggest that we cannot find a form f to apply Theorem with
very large image. Fortunately, we can construct an analog of a CM form for GL;
(more precisely for U(3)) which still has adequate image modulo p.
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8.1 Choosing a Hecke character

Let E be a CM field with totally real subfield ET = F and let F’ be a totally real
field disjoint from E, such that F'/Q is Galois and such that [F’" : Q] = 3. Set
K = EF’'. This is a CM field. We moreover assume that all the ramified primes
of K/F lie above split primes in E/E™. Choose two distinct primes p and ¢ such
that £ is totally split in K = EF’ and primes above p in ET = F are totally split
in K. Moreover assume p > 8(= 2(n+ 1) when n = 3) and ¢, ¢ E.

Ezxample 8.2. 1. The easiest choice is F' = Q(¢;)* and E = Q(iv/3) so that 7
is split in £. For this F’, we can also choose E = Q(i, v/3), with maximal totally
real subfield £+ = Q(+/3) so that £/E" is unramified everywhere.

2. The second easiest choice for F' is F’ = Q((o)". In this case we can choose

E = Q(iV5).

3. If E = Q(i), we can choose F' = Q(a) with o a root of X? — X? —4X —1,
which has discriminant 132

4. If F' = Q(«) and E = Q(i), we can choose any prime p > 8, ¢ congruent to
1,5,21,25 (mod 52), like 5,53,73,.... In particular in that case we better should
exclude p = 13 as in the early version [Bell(] (who knows?).

5. If F' = Q(¢;)" and E = Q(iv/3), we can choose any prime congruent to
1,13 (mod 21) like 13,43,97....

6. If F' = Q(¢7)* and E = Q(4,/3), we can take any prime ¢ = 1,13 (mod 84)
like 13,97,169... and p = 1,13 (mod 21) like 13,43, 97....

7. If we really want to use p = 13 and that p = 13 isinert in F' = E, and if we
want moreover £/E* to be unramified everywhere, we can choose E = Q(i,/7)

with F' = Q(8) C Q((3) as 43 is split in Q(i,+/7)/Q(v/7), with 3 a root of
X3 - X? - 14X - 8.

In the following we say that a weight k& € ZHo™(5.0) is yery reqular if, for 7 #
in Hom(K, C), we have |k;, — k.| > 2.

Let W be an algebraic Hecke character of Ay with algebraic very regular weight
k = (kuv)vjoo, such that W¢ = ¥ and such that ¥ is unramified both at p and /.
Choose an isomorphism ¢ : C ~ Q,. We moreover assume that

(U, p) if plp in E, we have ¥(v)¥(v')~ ¢ {1,p} for v # v’ places of K dividing p.

(¥, ¢) There exists A|¢ in E, and X'|X in E((,), such that for all v; # vy places of K
dividing A, if v{, v} are the corresponding places above X in K ((,), ¢(¥(v])
(mod m@p) # 1(V(v})) (mod m@p).
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Consider moreover the following hypothesis on VU :

(¥, Ram) If v is a place of K such that U is ramified at v, then v divides a prime
which is totally split in K/Q.

Let ¥, : Ay — @; be the p-adic realization of ¥ and ¢, and 9, : Galg — @;
such that 1, = ¥, o Artg. It is a Galois representation satisfying w;/ =y

8.2 Galois induction

Definition 8.3. We denote by p the induced Galois representation
p= indggﬁ vy ={f:Galp — Z, | f(gk) = V' (k) f(9)Vg € Galg, k € Galg},

where the action of g € Galg is given by (g - f)(x) = f(g " x).

Then p is a three dimensional Galois representation since [K : E|] is Galois of
degree 3. We claim the following

Lemma 8.4. 1. The representation p := p @ F, is absolutely irreducible, in
particular p is absolutely irreducible.

2. The representation p(Galgc,)) is adequate.
3. The representation p is polarized, i.e. p© =~ p".

4. The representation pga,, is split, p-generic, Hodge—Tate reqular for any v|p
in F,

5. Ifvis a place of E such that p is ramified at v, then Homgai, (pv, po(1)) = 0.

Proof. We will actually prove that p(Galg,)) acts absolutely irreducibly, which
will imply point (1| and point [2| will follow by [Thol2] Lemma 2.4. To prove point
1, remark that if we denote by o € Galg a lift of a generator of the Galois group
Gal(K/E) =< o >= Z/37Z, then p has a basis given by f,o - f,0? - f, where f is
the function

f: Galg = Galg HaGalKHa2GalK — Z;, k € Galg — gbp_l(k:), ok, ok — 0.
Then o® - f = 1,(0®)f. Thus, after restricting to Galg, there is an isomorphism

P|Galye ™ wpeng@wgz, where 97 = ¥,(c7'-0). We reduce mod p, where we have a
similar reduction after restricting to Galy. Because of the hypothesis (U, /) away
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from p, we have that pg, ) for N'|¢, is the sum of three distinct characters.
P

N
Moreover the group Galg acts transitively on these three eigenspaces. Therefore
this representation is absolutely irreducible. To prove point [3, we compute p¥. By

[CR&1, Prop. 10.28], we have an isomorphism
p ~ IndGa® ¥, = IndGai® v ~ o,

Let us prove[dl As p is totally split in K/F, we have for v|p in E, Galg, C Galg so
that pcaly, >~ Vpo Uy, & ¢gi. As the group Galg acts transitively on the three
places of K over v, we have p|galy, =~ Do Upo- Therefore pgal, is crystalline and
the eigenvalues of the Frobenius endomorphism of Deis(pjcal,, ) are the W(v') for
v'|v in K. It follows from hypothesis (¥, p) that pjqai,, is ¢-generic. Moreover the
Hodge-Tate weights of pqay,, corresponds to the algebraic (infinitesimal) weight
of W, which was assumed regular so that pgay;, is Hodge-Tate regular.

Finally we prove 5] Let v be a place of E such that p, is ramified. Then
either v is ramified in K/F or U, is ramified. Assume in a first time that U, is
ramified. Then (¥, Ram) implies that v divides a prime of Q which is totally split
in K. In particular, v is split in K/E. As above, we have p, >~ @/, {p. with
Ypy = Yy 0 rec}i/ as v' { p. Therefore it follows from Lemma below that
Homgai, (pu, pu(1)) = 0.

Now assume that v is non split in K. As K/F is Galois there is a unique place
Galg,

w of K over v and p, ~ Indg,;;,

Yp.w. By Frobenius reciprocity, we have

o o2
HomGalEU (pm pv(l)) ~ HomGale (¢p7’u) & wp,w b ,lvbp,uﬂ wp,chyde)-

Assume that ¢, , = ¢g’wxcyc| Ko+ AS XeyolK, = ngc| K, > we deduce ¢§,w = l/Jzi)XCyd Ko
and wgiu = ngchc\ Ko = YpwXeye|K,, S0 that ¥, ,, = wp,wxqu Kk, Which is false. We
prove similarly than 1,,, # wgiuchcl Kk, and deduce Homgai, (o, po(1)) = 0. If
U, # W, oo, then the characters ¥,,, ¥,, o o, ¥ o 0% are pairwise distinct and p,
is irreducible so that Homgai,, (pv, pu(1)) = 0. If ¥, = ¥, 0 o, then p, is not
irreducible, but clearly Homgai, (pv, po(1)) = 0 (as ¥p|Galy, 7 YplGalg, (1))- O

Lemma 8.5. Let W : Af/K* be an algebraic Hecke character of very regular
weight k. Then, if € is a prime number which is totally split in K, then W, # Wy, |-|.
for all places v,w of K dividing .

Proof. Let W and (¢ be as in the statement. Fix . : C ~ Q, and let |-|, be the
unique absolute value on Q, extending the one on ;. Let ¥, be the continuous
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character A% /K*KX — Q, defined by

\ij(l‘w) if w /M,w /YOO
U, w(zy) =41 if w|oo

LW (Wi)) T, ettom (Ko T,) 7o T(zy) s if wll,

where 7|w means that |.|; o 7 extends the absolute value given by w on K, and

(ko)octom(k,c) is the weight of W. As the group Ag /K> KZ is compact, we have
Im(W,) C Z,. As ( is totally split ¢ induces a bijection between {v|[¢} and
Hom(K,C). Let v be a place of K dividing ¢ corresponding to 7 (i.e. |.[p0 ¢

extends |.|,) and denote k, = k,-1,. We have
[T ()7 ()] =1

so that [¢(¥,(¢))| = I*. As ¢ is a uniformizer of K,, for any v|¢, the result
follows. 0

8.3 Construction of an explicit set of Hecke characters

In this subsection we explain one way to find a W as before, satisfying hypothesis
(U, p), (¥, 0), (¥, Ram). Fix E a CM extension, with E* = F its maximal totally
real subfield, so that [F : ET] = 2. Fix also F’ disjoint from FE, a totally real
degree 3 Galois extension of Q. Choose p, ¢ two primes with are totally split in
K := EF’ such that p > 8. The following Lemma is a more precise version of
[CHTOS, Lem. 4.1.1].

Lemma 8.6. Let F' be a number field. Let S be a finite set of places of F. Let
Xs be an unramified continuous character F§ = [I,cq F) — C* of finite order.
Let T be a set of finite places of F', disjoint from S and of Dirichlet density 1.
Then there exists a continuous character x : Ay/F* — C* of finite order such
that X|Fx = Xs and the ramification places of x are in T.

Proof. Let U® be the product of the OF for v ¢ S. Then F* NU¥ is a finitely
generated subgroup of F'*. Let us write m for the order of the finite cyclic group
xs(E* N U?). Tt follows from the proof of Theorem 1 in [Che51] that we can find
finitely many places wy, . .., w, in T such that the subgroup of F* NU? congruent
to 1 modulo py,, . . ., Pu, is contained in (F* NUS)™. We conclude as in the proof
of [CHTO08, Lem. 4.1.1] choosing for U the product of the U, for v not in S nor
{wy,...,w,} and a small enough subgroup at wy, ..., w,. ]
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Lemma 8.7. Let K be an (imaginary) CM field with totally real subfield K
and complex conjugacy c. Denote v : Aj /K> — C* be a continuous character.
Assume that there exists a finite set S of places of K which are split in K/K™* and
such that ;' = 1., forv € S. Moreover, assume that S contains the Archimedean
places. Let T be a finite set of places of K that contains S and is stable under
¢, such that ¢ is unramified outside of T'. Then there exists a Hecke character

P A% /KX — C* such that =1 = @EC and @EU =1, forv € S and such that 7@, 18
unramified outside of T

Proof. Let 6 = 1) o Ng/g+. As S contains the Archimedean places, the character
0 is trivial at Archimedean places and is therefore a character of finite order. Let
Ur C Ilyers K0 be a compact open subgroup such that 6y, is trivial and such

that ¢(Ur) = Ur. Let

U=(I[0x%) Ur- (1] K).

vg¢T ves

We have an injection of compact groups
Ni/k+(Ag)/(Nijr+ (Ag) N K*U) — Ag /K*U.

L (a0 I8 trivial on (N e+ (A )NEK>U).
Therefore it extends to a character a of finite order of Ay trivial on K*U. We

thus have ¢ o N+ = ao Nk g+. It is easy to check that the character U = Yo
satisfies our requirements. O

Under our hypothesis, the character wl Niex

Proposition 8.8. For each choice of fields E and F' and places p and ¢ and
very reqular weight k as above there exists a Hecke character ¥ : Ax /K* — C*
satisfying (U, p), (¥, ¢) and (¥, Ram) and such that ¥~ = We.

Proof. Let k be a very regular weight. It follows from [Sch&88], Section 0.3, that
there exists a Hecke character Wy of A} /K> with weight k. Using Lemma we
can construct a Hecke character 6 of finite order such that, setting ¥, = U6, we
have

o the character ¥, satisfies (W, p) and (Wy,7) ;

o there exists finitely many primes /4, ..., /., different from p and ¢, which
are totally split in K and such that ¥y is only ramified at places dividing
£17 s 767’ )

e we have ‘Ifﬁu =V, ., for any place w of K dividing ¢ or p.
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Now it follows from Lemma that there exists a Hecke character ¥ of Ay /K*
such that

o Ul=ye:
e U,=1V,, if vis a place of K dividing p or ¢ ;

o U is ramified only at places dividing ¢4, ..., /,. O]

8.4 Automorphic Induction and base change

Let ¥ and p as in subsection and let U denote the unitary group in three
variables for E/E™ that is compact at infinity and quasi-split at all finite places.
We need to find an automorphic form for U whose associated Galois representation
is induced representation p from 8.3

Proposition 8.9. There exists an automorphic representation 11 of GL3 g, cusp-
idal, cohomological at infinity, unramified at ¢ and p, polarized, whose associated
Galois representation is given by p.

Proof. This is the content of [Henl2] Théoreme 3 (as K/FE cyclic of degree 3) for
the existence of the automorphic representation, Théoreme 5 for the compatibility
with the local correspondence at ¢ and p and at infinity (cf. the following remark
of [Henl2]). Polarization can be checked after base change of the automorphic
induction to K, where it follows as ¢ = ¥V and as ¥ # W7 for 0 € Gal(K/FE)
such that o # 1. Moreover, the automorphic induction is also cuspidal (Theorem
2 of [Henl2]). O

Conjecture 8.10. There exists a cohomological, cuspidal, automorphic represen-
tation m of U whose base change to GL3 g is II.

Proposition 8.11. If E/E* is everywhere unramified (e.g. for E = Q(i,+/3) or
Q(i,V/7)), then the previous conjecture is true.

Proof. This is [Labl1] Theorem 5.4. O

Proposition 8.12. If E is quadratic imaginary, then the previous conjecture is
true.

Proof. By [Morl(] Corollary 8.5.3 (ii), there exists 7/ an automorphic representa-
tion for GU(3) associated to [1x 1, which is automorphic for GL3 x GL;. By [HS22]
Lemma A.7 (based on [HT01]), there exists 7, an automorphic representation of
U(3) associated to 7. O
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Corollary 8.13. If E is quadratic imaginary or if E/E™ is everywhere unramified,
then there exists a classical form on U(3) satisfying the hypothesis of Theorem .

Proof. Let m be the automorphic representation of U considered above, and let
f € m be an eigenform for the Hecke operators away from a set S of bad places
of m. Then py = pr = p is crystalline at p and ¢-generic. In particular it has
3! = 6 refinements which are automorphic and split at p. Hence there exists an
automorphic refinement R of f with relative position wr = 1 with respect to
the Hodge filtration. In particular, for this choice of a refinement, there exists a
refined classical modular form f’ satisfying all hypothesis of Theorem [1.2] But,
by Lemma (5) we know that f gives, for all v € S\S,, a point of X7 which
satisfies Homga,, (v, po(1)) = 0. When v splits in E/E™, such a v is a smooth

point by [AII16] Prop 1.2.2. a
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