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1 Introduction

The aim of this paper is to unravel (and explain) a new phenomenon in the theory
of p-adic automorphic forms. Given a reductive group G over a number field
(overconvergent) p-adic automorphic forms are p-adic avatars of automorphic forms
on G. We usually refer to the latter as classical automorphic forms in order
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to distinguish them from their p-adic limits. Additional structures on spaces of
automorphic forms, such as the Hecke-action, naturally extend to the L-vector
spaces of overconvergent p-adic automorphic forms S†(Kp), S†κ(Kp), where the field
of coefficients L is a finite extension of Qp and Kp ⊂ G(Ap) is a compact open
subgroup (referred to as the tame level) and κ is a weight. A central question
about p-adic automorphic forms is to clarify whether a given overconvergent p-
adic automorphic form (of algebraic weight) that is an eigenform for the Hecke
action is a classical automorphic form. Often this question can be answered in
terms of the Hecke eigenvalues. Coleman’s small slope implies classical result
[Col97] and generalizations thereof (see e.g. [Kas06], [Che11], [BPS16]) asserts
that this question can be purely decided using the Hecke action at p if the p-adic
valuation of the Hecke eigenvalues at p is small compared to the weight. Beyond
the numerically non critical slope it is known that this fails. However, one can
ask the same question taking into account the full Hecke action (as opposed to the
Hecke action at p).

Assume that we are in a situation where we can construct the Galois repre-
sentation ρf = ρχ attached to a p-adic eigenform f , respectively to the Hecke
character χ giving the system of Hecke eigenvalues of f . Then the Hecke action
away from p encodes all the information about the p-adic Galois representation ρf ,
including the p-adic Hodge theoretic information at places dividing p (though this
is encoded in a rather indirect and mysterious way). The naive generalization of
the classicality question about overconvergent p-adic automorphic forms can hence
be phrased as follows (though we phrase the question in a rather informal way):
Question A: Let f be an overconvergent p-adic eigenform of dominant algebraic
weight such that the corresponding Galois representation ρf is de Rham at places
dividing p. Is it true that f is a classical automorphic form?

We note that a softer version of this question is the following expectation that
is implied by the Fontaine–Mazur conjecture. Again we state the expectation in a
rather informal way – it might fail without more precise assumptions on the group
the level, etc. (see e.g. [BHS19, Conj. 5.1.1] for a precise formulation).
Rough Expectation B: Let S†κ(Kp)[χ] ⊂ S†κ(Kp) be an eigensystem (for the
action of the full Hecke algebra T generated by Hecke operators at p and away
from p) in the space S†κ(Kp) of overconvergent p-adic automorphic forms of weight
κ on G. Assume that κ is dominant algebraic and that the Galois representation
ρχ associated to the Hecke character χ : T → L is de Rham at places dividing p.
Then S†κ(Kp)[χ] contains a classical automorphic form, i.e. its subspace Scl

κ (Kp)[χ]
of classical forms is non-zero.

Question A then can be rephrased as the question whether Scl
κ [χ](Kp) =

S†κ(Kp)[χ] in Expectation B. It is known that Question A does not have an af-
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firmative answer in general. Ludwig [Lud18] and Johansson–Ludwig [JL23] have
shown that there are counterexamples for SL2. The reason for these counterexam-
ples however, is of global (endoscopic) nature and it remains a reasonable question
to ask Question A for groups where these phenomena do not apply, e.g. for definite
unitary groups.

Expectation B has been verified for GL2 (this is basically [Kis03]), and general-
izations of Kisins’ result were proven by Bellaïche and his coauthors ([BC06],[Bel12]
and [BD16]). For definite unitary groups, and under Taylor–Wiles assumptions,
these results were vastly generalized in [BHS17a], [BHS19]. We point out that in
the cases treated in [BHS17a] the results imply that Scl

κ (Kp)[χ] = S†κ(Kp)[χ], while
the more general case in [BHS19] only allows to construct some classical form in the
eigensystem (though no counterexample to Question A is constructed in loc. cit.).
The reason for this difference is due to a phenomenon in the geometry of eigenva-
rieties (i.e. rigid analytic spaces parametrizing the systems of Hecke eigenvalues in
the space of overconvergent p-adic automorphic forms of finite slope), respectively
in the geometry of their local Galois-theoretic counterparts (the so-called triangu-
line variety of [BHS17b]). In the case treated in [BHS17a] the trianguline variety
is smooth at the Galois representations in question (and hence the eigenvariety is
local complete intersection). In general the trianguline variety is not smooth, and
as a consequence one can construct non-smooth points on the corresponding eigen-
varieties, see [BHS19, Thm. 5.4.2]. It is this failure of smoothness that prevents
[BHS19] from identifying Scl

κ (Kp)[χ] and S†κ(Kp)[χ].
In this paper we prove that the answer to Question A is no for definite unitary

groups in three variables (see Theorem 1.2 below for a more precise formulation).

Theorem 1.1. There exists a unitary group in three variables U , a tame level Kp,
a dominant algebraic weight κ and a Hecke character χ : T → L that occurs in
the space S†κ(Kp)fs of overconvergent automorphic forms of finite slope and weight
κ such that the eigenspace S†κ(Kp)[χ] contains classical as well as non-classical
eigenforms.

The construction of this example also clarifies the role of the singularities of
the trianguline variety Xtri. The precise results we prove suggest that the answer
to Question A is no, whenever the dualizing sheaf ωXtri is not locally free at the
point defined by ρ (and the refinement associated to χ), i.e. whenever Xtri is non-
Gorenstein at this point (we refer to Theorem 1.3 below for the precise link with
ωXtri). In the three dimensional case, this results in a precise comparison of the
dimensions of the eigenspaces Scl

κ (Kp)[χ] ⊂ S†κ(Kp)[χ].
We point out that, in contrast to [Lud18] and [JL23] this is a purely local p-

adic phenomenon. Moreover, the theorem implies that the usual invariants (i.e. the
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Hecke action, respectively the p-adic Hodge theoretic information of the associated
Galois representation) can not distinguished between classical and non-classical
forms. We like to refer to the non-classical forms in such eigensystems as under-
cover automorphic forms.

The main result, and in particular the occurrence of the dualizing sheaf ωXtri

therein, is inspired by the categorical point of view in the p-adic Langlands pro-
gram, see [EGH23]. The space of overconvergent p-adic automorphic forms of
finite slope S†(Kp)fs can be viewed as the topological dual of the global sections
of a coherent sheaf (that we simply refer to as the sheaf of p-adic automorphic
forms) on the rigid analytic generic fiber of the universal deformation space of
Galois representations (more precisely, on the product of this space with the space
of continuous characters of a maximal torus T (Qp) ⊂ G(Qp) at p). The support
of this sheaf is, by definition, the corresponding eigenvariety. The local-global-
compatibility conjectures [EGH23, Conj. 9.6.8 and Conj. 9.6.16] give a precise de-
scription of this sheaf in terms of the geometry of moduli stacks of (ϕ,Γ)-modules
(that are closely related to the trianguline variety). More precisely, the categorical
approach to the p-adic Langlands program asks for a functor from certain (locally
analytic) representations of G(Qp) to sheaves on stacks of (ϕ,Γ)-modules, and the
sheaf of p-adic automorphic forms is the globalization of the evaluation of this
functor on a specific representation. One of the punchlines of [EGH23] (see sec-
tion 1.6 therein for a more detailed discussion) is that avatars of the envisioned
functor have been around in number theory during the past decades in the con-
text of the Taylor–Wiles patching method, in particular patching functors as used
for example in [EGS15] (or also in [BHS19, 5.]) A crucial point in the proof of
the main theorem is the identification of such a patching functor with an explicit
local functor, see Theorem 1.4 below. This partially confirms expectations in the
categorical picture, see [EGH23, Expectation 6.2.27].

We now describe our results in more detail. Let F be a totally real number
field and let E/F be a CM (imaginary) quadratic extension in which every place
v|p in F splits in E. Let U be a unitary group (over Q) in n variables for the
quadratic extension E/F which is compact at infinity. By the hypothesis on p the
group UQp is a product of general linear groups over finite extensions of Qp and
we denote T a maximal torus of UQp . We also fix a finite extension L/Qp which
is big enough to split E. Let OL ⊂ L be its ring of integers, πL a uniformizer and
kL its residue field.

For any continuous character δ : T (Qp) −→ L×, we can define a weight κ
(which is given by the derivative of δ at 1) and a character of the Atkin–Lehner
ring A(p) (the ring of Hecke-operators at p, see Definition 5.4) that we still denote
by δ. We will assume that δ|T 0 is algebraic where T 0 ⊂ T (Qp) is the maximal
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compact subgroup. Let Kp ⊂ U(Ap) be a tame level and let S be a finite set,
containing places above p, away from which Kp is hyperspecial. We write TS for
the unramified Hecke algebra at places not in S and T = TS ⊗Z A(p). Associated
to these data we consider the spaces S†κ(Kp) and Scl

κ (Kp), see Definition 5.7 for
the precise definition, which come equipped with an action of TS and A(p).

Given a character χS : TS → L let χ = χS ⊗ δ and consider the eigenspaces
S†κ(Kp)[χ] and Scl

κ (Kp)[χ]. We note that the classical subspace Scl
κ (Kp)[χ] is zero

unless κ is dominant algebraic. To an eigenvector f ∈ S†κ(Kp)[χ] we can associate
a Galois representation ρ = ρf = ρχ : GalE := Gal(E/E) −→ GLn(Qp). For the
precise form of the main result we introduce the following (strong) Taylor–Wiles
hypothesis. Let ρ : GalE −→ GLn(kL) be the semisimplification of the reduction
modulo the maximal ideal of OL of ρ. We assume that (see Hypothesis 5.9 in the
text) 

• p > 2,
• E/F is unramified and ζp /∈ E,
• U is quasi-split at all finite places of F,
• if a place v of F is inert in E, then Kv is hyperspecial,
• ρ is absolutely irreducible and ρ(GalE(ζp)) is adequate.

(1)

For simplicity of the exposition we assume now that that p is totally split in F
(in the core of the paper we work in the general case). If the representation ρ is
crystalline at v|p, it can be described by its associated filtered isocrystal which is
a finite dimensional L-vector space Dcris(ρv) endowed with a linear automorphism
ϕ ∈ GL(Dcris(ρv)) and a complete flag D•, called the Hodge–Tate filtration (in
our case, this is a complete flag as ρv has necessarily regular Hodge–Tate weights).
We say that ρv is ϕ-generic if the ratio of two of its eigenvalues is not in {1, p}.
In this case the character δ determines an order of the eigenvalues of ϕ (that is
called a refinement of ρv) which in turn (using the fact that the ϕ-eigenvalues are
pairwise distinct) defines another complete flag F• on Dcris(ρv) which is ϕ-stable.
We denote wρ,δ,v ∈ Sn the relative position of the flags F• and D• in the flag
variety of Dcris(ρv). When wρ,δ,v = w0 is the longest element of Sn, i.e. when the
two flags D• and F• are in generic position, we say that f is non-critical at v. The
“most critical case” is the case where wρ,δ,v = 1, i.e. when the two flags coincides.
In this case we say that f is very critical at v.

Theorem 1.2. Assume n = 3. Let δ : T (Qp) → L× be a continuous character of
weight κ dominant algebraic. Let χS : TS → L be a character and let χ = χS ⊗ δ.
We assume that the eigenspace S†κ(Kp)[χ] is non-zero and that for any v|p the
local Galois representation ρv = ρχ|GalEv : GalEv −→ GL3(Qp) is crystalline with
distinct Hodge-Tate weights and is ϕ-generic. Assume moreover that the Taylor–
Wiles hypothesis (1) is satisfied. Let r be the number of places v|p in F such that
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wρχ,δ,v = 1. Then
dimS†κ(Kp)[χ] = 2r dimScl

κ (Kp)[χ].

We refer to Corollary 7.25 for a more general statement where p is not neces-
sarily totally split in F .

Theorem 1.2 would be vacuous without proving the existence of characters χ
and δ (and a group U and a tame level Kp) such that the corresponding eigenspace
Scl
κ (Kp)[χ] is non-zero and consists of very critical forms. As there exist only count-

ably many classical automorphic forms, but uncountably many flags it doesn’t seem
very easy to construct an f with wρf ,δ = 1. This is Corollary 8.13, the main result
of section 8, which uses global automorphic methods that are rather disjoint from
the methods of the other parts of the paper. The Galois representation corre-
sponding to the constructed Hecke character is induced from a degree 3 extension
of E.

We finally discuss the relation of these results with patching functors and the
categorical approach to a p-adic Langlands correspondence. Assume that δ = δλδ

sm
R

is the product of a dominant algebraic character δλ and a smooth unramified
character δsm

R (which is in fact implied by the assumption that ρv is crystalline). As
the notation suggests, the character δsm

R corresponds to the choice of a refinement
R of ρp := (ρv)v|p. Let Xρp = Spec(Rρp) be the scheme associated to the universal
deformation ring of ρp. Using results of [BHS19], we can construct a subscheme

X qtri
ρp,R = Spec(Rqtri

ρp,R) ⊂ Xρp

of “quasi-trianguline” deformations of ρp associated to the refinement R. By
loc. cit. this scheme has a local model modeled on the Steinberg variety (or rather
its “Grothendieck–Springer” variant) and its irreducible components X qtri,w

ρ,R are
labeled by the Weyl group W of ∏v|p GL3. It is known that these irreducible
components are normal and Cohen–Macaulay.

Let’s denote λ = δ|T 0(= δλ|T 0), this is a dominant algebraic character. Using
hypothesis (1) the Taylor–Wiles method, as extended to the setting of completed
cohomology in [CEG+16], can be used ([BHS19, 5.]) to construct coherent sheaves
M∞(L(λ)) andM∞(M(w ·λ)) for w ∈ W over X qtri

∞,ρ,R = Spec(Rqtri
ρp,R[[x1, . . . , xg]])

for some g > 0, that “patch” the duals of the spaces of classical, respectively
p-adic, automorphic forms. More precisely

M∞(L(λ))⊗ k(ρp) = HomL(Scl
λ (Kp)[χ], L),

M∞(M(w · λ))⊗ k(ρp) = HomL(S†w·λ(Kp)[χ], L).

These coherent sheaves are in a certain precise sense associated to the U(g)-
modules L(λ) (the algebraic representation of highest weight λ) respectively the
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Verma modulesM(w ·λ), where g is the Lie algebra of UL ∼=
∏
v|p GL3. The results

of [BHS19] show that the coherent sheavesM∞(M(w ·λ)) have generic rank (when
nonzero) equal to dimL S

cl
λ (Kp)[χ]. Denote X qtri,w

∞,ρ,R := X qtri
∞,ρ,R ×X qtri

ρ,R
X qtri,w
ρ,R . The

key to the proof of Theorem 1.2 is the following result:

Theorem 1.3. Under the assumptions of Theorem 1.2, let m = dimL S
cl
λ [χ]. For

any w ∈ W , there is an isomorphism

M∞(M(w · λ)) ∼= ω⊕m
X qtri,ww0
∞,ρ,R

.

Here ωX qtri,ww0
∞,ρR

is the dualizing sheaf of a complete intersection X qtri,ww0
∞,ρ,R ⊂ X qtri,ww0

∞,ρ,R .

In order to prove Theorem 1.3, we extend M∞ to a functor on the whole
category Oλ, the block of the BGG category O containing L(λ). This is the
patching functor alluded to above. More precisely, assuming that ρp is crystalline
with regular Hodge-Tate weights, and δ is ϕ-generic, we construct an exact functor

M∞ : Oλ −→ Coh(X qtri
∞,ρ,R),

such that, for everyM ∈ Oλ the sheafM∞(M) is Cohen–Macaulay of the expected
dimension.

In spirit of the categorical approach to the p-adic Langlands correspondence
the functorM∞ should be a “local” functor, that is (up to multiplicities coming
from contributions at the places away from p) the functor M∞ should be the
pullback, denoted B∞, of a functor

Bp : Oλ −→ Coh(X qtri
ρp,R).

This functor Bp can be written down explicitly using the local model for X qtri
ρp,R

and a functor constructed by Bezrukavnikov [Bez16], see 7.2 for details. Our main
local result comparesM∞ and Bp (see Corollary 7.23 for the general version):

Theorem 1.4. Under the assumptions of Theorem 1.2, let m = dimL S
cl
λ [χ]. Then

there is an isomorphism of functorsM∞ ' B⊕m∞ . As a consequence, we have

1) for all w ∈ W ,M∞(M(w · λ)∨) ' O⊕m
X qtri,ww0
∞,ρ,R

;

2) for all w ∈ W ,M∞(M(w · λ)) ' ω⊕m
X qtri,ww0
∞,ρ,R

;

3) for all M ∈ O, we have M∞(M∨) ' M∞(M)∨ where (·)∨ denote both the
dual in Oλ and the Serre dual in the category of coherent sheaves.
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Remark 1.5. We can only prove Theorem 1.4 in the three dimensional case. How-
ever, we expect an isomorphismM∞ ∼= B⊕m∞ for higher dimensional definite uni-
tary groups as well.

In fact Bp should factor through the category of locally analytic representations,
and is expected to extend to a functor with values in coherent sheaves on the stack
of all (ϕ,Γ)-modules (compare [EGH23, Conjecture 6.2.4 and Expectation 6.2.27]).
Theorem 1.4 should be viewed as some partial evidence for these expectations.

The key to proving Theorem 1.4 is to extend the functor M∞ to a larger
category O∞alg and to a deformation Õalg as introduced in [Soe92], which we think of
as a deformed version ofOalg. We would like to emphasize that we first prove 1) and
we deduce the isomorphismM∞ ' B⊕m∞ from this in a second time . The proof of
1) is based on a dévissage whose has its origin in the paper [EGS15]. We first prove
the result in the case where X qtri,w

∞,R is smooth and then proceed inductively. Note
that the existence of Bezrukavnikov’s functor B∞ plays a key role in this induction.
The second main input into this induction is the computation ofM∞(MI(w · λ))
where MI(w · λ) is a generalized Verma module (corresponding to some parabolic
PI). These sheaves, that are related to sheaves of p-adic automorphic forms on
the partial eigenvarieties constructed by Wu [Wu], are supported on “partially de
Rham quasi-trianguline” deformation spaces X I−qtri

ρp,R which have been studied by
Breuil and Ding in [BD].

We finally note that the component X qtri,w0
∞,ρ,R is not Gorenstein and its dualizing

sheaf has a 2r-dimensional fiber at ρp, which is the reason for the factor 2r in
Theorem 1.2.

We now describe the content of the article. In section 2 we introduce the cate-
gory Oalg and its deformed versions. Section 3 studies Emerton’s Jacquet functor
and gives the abstract framework to construct patching functors. In section 4, we
recall the quasi-trianguline deformation spaces of [BHS19], their local models, and
their parabolic version ([BD, Wu]). Section 5 recalls the definitions of the global
objects like completed cohomology, overconvergent automorphic forms and their
patched versions. Section 6 is devoted to the further study of the functorM∞ and
its factorization through X qtri

∞,ρ,R, the (global) quasi-trianguline deformation space.
In section 7, we study the supports of the sheaves M∞(M) for specific objects
of Oalg (and their deformed version), and we recall results on Bezrukavnikov’s
functor before deducing Theorem 1.4 (in the three dimensional case). Finally, in
section 8 we explain how to explicitly construct very critical forms satisfying the
assumptions in Theorem 1.2 for n = 3.
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Notations

Let p be a prime number. When K is a field, we write GalK = Gal(Ksep/K) for
its absolute Galois group. We fix L a finite extension of Qp which will be chosen
sufficiently large in the text.

2 Variants of the BGG-category O

In this section, we fix L to be a field of characteristic 0. Let G be a split reductive
group over L. Let B be a Borel subgroup, T a maximal split torus of G contained
in B and N the radical of B. We use the notation g, b, t, n... for the Lie
algebras of G, B, T , N ... We denote by X∗(T ) the finite free abelian group
Hom(T ,Gm,L) of characters of T . This abelian group can be identified with a
Z-lattice in t∗ := HomL(t, L). For λ ∈ X∗(T ), we also write λ for the character of
t induced by λ. Let Φ be the set of roots of the pair (G, T ) and let Φ+ ⊂ Φ be the
subset of positive roots with respect to B and ∆ ⊂ Φ+ the subset of simple roots.
As usual we write δG ∈ X∗(T )⊗Z Q for the half sum of positive roots. Let W be
the Weyl group of (G, T ). For w ∈ W , we write λ 7→ w · λ for the dot action of
W on X∗(T ) (with respect to B, that is w · λ := w(λ + δG) − δG). We equip W
with the Bruhat order corresponding to the choice of B and we denote w0 ∈ W
the longest element for this order.

If I ⊂ ∆ is a subset of simple roots, we denote by ΦI ⊂ Φ the subset of roots
which are sums of elements of I and P I ⊃ B be the standard parabolic subgroup
of G such that pI = b + ∑

α∈ΦI gα. Let LI be the standard Levi subgroup of P I

and ZI be the center of LI . We say that a character λ ∈ X∗(T ) is dominant
with respect to P I if 〈λ, α∨〉 > 0 for α ∈ I and we denote X∗(T )+

I the set of such
characters. When I = ∆, we have P∆ = G and we write X∗(T )+ = X∗(T )+

∆.
We use the following order relation on X∗(T ), we say that λ > µ if and only if
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λ− µ ∈ ∑α∈Φ+ Nα.
We write WI for the Weyl group of the Levi LI of P I ; it is the subgroup of

W generated by the simple reflexions sα for α ∈ I. Given w ∈ W , we denote
wmin (resp. wmax) the unique minimal (resp. maximal) element for the Bruhat
order having the same class as w in WI\W . This definition depends on I (and on
the fact that the quotient is on the left) but we hope our notation will cause no
confusion. As usual, we write w0 ∈ W for the longest element in W . Then we
have (ww0)min = wmaxw0 and (ww0)max = wminw0 for any w ∈ W . Finally, we
write IW for the set of minimal length representatives of WI\W in W .

If h is a Lie algebra we note hss its derived Lie algebra.

2.1 Recollections

For I ⊂ ∆, we consider the full subcategory OI,∞ of the category U(g)-mod of
U(g)-modules that consists of all finitely generated U(g)-modules M such that

• for any m ∈M , the L-vector space U(pI)m is finite dimensional;

• for any h ∈ t and any h-stable finite dimensional L-vector subspace V ⊂M ,
the characteristic polynomial of h|V is split in L[X].

This is the category OpI ,∞ in [AS22, §3.1].
For µ ∈ HomL(t, L), we write Mµ ⊂ M for the L-subspace of those v ∈ M

such that, for any h ∈ t, (h− µ(h))n · v = 0 for some n > 1. We have

M =
⊕

µ∈HomL(t,L)
Mµ.

We write OI,∞alg for the full subcategory of OI,∞ whose objects M satisfy Mµ = 0
for µ /∈ X∗(T ).

Moreover, we write OIalg ⊂ O
I,∞
alg for the full subcategory whose objects are

direct sums of finitely generated semisimple U(lI)-modules (when seen as U(lI)-
modules). This coincides with the usual parabolic (algebraic) category O, which is
denoted OpI

alg in [OS15]). When I = ∅ we simply use the notations O∞alg and Oalg for
O∅,∞alg and O∅alg. Note that OI,∞alg ⊂ O∞alg for any I ⊂ ∆. As these categories depend
on the choices of g and b we write Og,b (with additional decorations) instead of O,
when the context is unclear.

These categories are stable by subobject and quotients in the category of U(g)-
modules. Moreover the category OI,∞alg is stable under extensions.
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For any character λ ∈ X∗(T )+
I , we write LI(λ) for the simple U(lI)-module of

highest weight λ. This is a finite dimensional L-vector space and we define the
generalized Verma module of highest weight λ as

MI(λ) := U(g)⊗U(pI) LI(λ).

The generalized Verma module is an object ofOIalg and has a unique simple quotient
L(λ). When I = ∅, we simply write M(λ) = M∅(λ) and say that M(λ) is a Verma
module. We also denote by P (λ) the projective cover of the simple module L(λ).
If λ is dominant with respect to B, we call P (w0 · λ) the antidominant projective
(with respect to λ).

2.2 Nilpotent action of U(t)

Given I ⊂ ∆ we denote by mI the augmentation ideal of U(zI) and set

AI := U(zI)mI
A := A∅ := U(t)m.

The canonical Lie algebra decomposition lI = zI⊕ lssI defines a canonical morphism
of Lie algebras pI : lI � zI which extends to a morphism U(lI) � U(zI) of L-
algebras also denoted by pI . This morphism induces a surjective morphism A� AI
of AI-algebras.

We show that the categoryOI,∞ naturally embeds into the category U(g)AI -mod,
where U(g)AI := U(g)⊗L AI .

Let M be an object of the category OI,∞. Let h ∈ t. For v ∈M the element h
defines an L-linear endomorphism of the finite dimensional L-vector space U(t)v
and we write h = Dh,v + Nh,v for its Jordan decomposition with semisimple part
Dh,v and nilpotent part Nh,v. AsM is locally U(t)-finite, uniqueness of the Jordan
decomposition implies that these endomorphisms “glue” into an endomorphism
Dh and a locally nilpotent endomorphism Nh of M such that Dh,v respectively
Nh,v is the restriction of Dh respectively Nh to U(t)v for any v ∈M .

Lemma 2.1. The endomorphism Nh is U(g)-equivariant.

Proof. By construction Nh and Dh commute with the action of t and stabilize each
Mµ. Let α ∈ Φ and x ∈ gα. For v ∈Mµ, we have x · v ∈Mµ+α and [h, x] = α(h)x
so that

Dhx · v +Nhx · v = xDh · v + xNh · v + α(h)xv.
By definition of Mµ, we have Dh · v = µ(h)v for any v ∈ Mµ. This implies
Dhx ·v = (µ(h)+α(h))x ·v and xDh ·v = µ(h)x ·v. Therefore Nhx ·v = xNh ·v. We
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conclude that Nh commutes with the endomorphism ofM induced by x. Therefore
Nh is U(g)-equivariant.

Given M ∈ OI,∞ Lemma 2.1 implies that we can define an U(t)-module struc-
ture on M by letting h ∈ t ⊂ U(t) act via Nh. As the action of each h on M is
locally nilpotent, this action extends to an A-module structure.

Lemma 2.2. Let M be an object of OI,∞, then the A-action on M factors through
AI . Moreover, this AI-module structure makes OI,∞ into a full subcategory of
U(g)AI -mod.

Proof. In order to prove that the A-action factors through A→ AI it is enough to
prove that for h ∈ t∩lss the endomorphism Nh is zero. This is a direct consequence
of the fact that lss is a semi-simple Lie algebra and that the L-vector space U(lss)v
is finite dimensional for any v ∈ M (by definition of OI,∞). As the U(g)-action
commutes with the A-action by Lemma 2.1 the module M is an U(g)AI -module.
Finally we note that, given h ∈ t, the construction of Nh is functorial in M .

Remark 2.3. Let M ∈ OI,∞ and µ ∈ HomL(t, L) then the above construction
implies that

Mµ = {v ∈M | hv = (µ(h)v) + pI(v))v ∀h ∈ t}

Let M ∈ O∞alg. Lemma 2.1 also implies that we can define another structure of
an U(g)-module on M where an element h ∈ t acts through the semisimple part
Dh and the action of an element x ∈ gα for α ∈ Φ is not modified. We denote
this U(g)-module structure by M ss. Then M ss is an object of Oalg and [OS15,
Lemm. 3.2] implies that there is a unique structure of algebraic B-module on M
lifting the structure of U(b)-module on M ss. This B-action is compatible with the
original U(g)-module structure on M in the following sense:

Lemma 2.4. Let M be an object of O∞alg endowed with the B-module structure
defined above. Then

b · (X · (b−1 · v)) = (Ad(b)X) · v
for any b ∈ B(L), X ∈ g and v ∈M .

Proof. It is sufficient to prove the formula for b ∈ N(L) and for b ∈ T (L). If
b ∈ N(L), then b = exp(n) for some n ∈ n. It follows that Ad(b)X is equal to the
finite sum ∑

k>0
1
k!ad(n)kX and that the action of b on M is given by the series
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∑
k>0

1
k!n

k (which is locally finite). Therefore we have,

b · (X · (b−1 · v)) =
∑

k>0,`>0
(−1)` 1

k!`!n
kXn` · v

=
∑
m>0

1
m!

∑
k+`=m

(−1)k−m
(
m

k

)
nkXn` · v

=
∑
m>0

1
m! (ad(n)mX) · v = Ad(b)X · v.

If b ∈ T (L), then if α ∈ Φ ∪ {0} and X ∈ gα, and if v ∈Mµ, we have

b · (X · (b−1 · v)) = b · (X · (µ(b−1)v)) = (µ+ α)(b)µ(b−1)X · v
= α(b)X · v = Ad(b)X · v

as Ad(b)X = α(b)X.

For later use, we note that we can resolve objects in O∞alg as follows:

Lemma 2.5. Let M be an object of O∞alg. Then there exist finite dimensional
U(b)-modules V0 and V1 and an exact sequence of U(g)-modules

U(g)⊗U(b) V1 −→ U(g)⊗U(b) V0 −→M −→ 0. (2)

Moreover, this exact sequence is B-equivariant for the B-actions (on each of the
three terms) defined just before Lemma 2.4.

Proof. The existence of a finite dimensional U(b)-module V0 and a surjective map
U(g)⊗U(b)V0 �M is a consequence of Proposition 2.14. The existence of V1 and of
the map U(g)⊗U(b)V1 → U(g)⊗U(b)V0 follows again from Proposition 2.14 applied
to the kernel of U(g) ⊗U(b) V0 � M . The B-equivariance is a direct consequence
of the definition of the algebraic action of B-action on each term of the sequence
(2).

2.3 Deformations of the category O

Fix I ⊂ ∆ and let M be some U(g)AI -module. For µ ∈ X∗(T ), we define the
AI-submodule

Mµ := {v ∈M | ∀h ∈ t, h · v = (pI(h) + µ(h))v}.

We note that for M ∈ OI,∞ this coincides with the generalized eigenspace for µ
by Remark 2.3. Inspired by the construction of [Soe92, §3.1], we define ÕIalg as the
category of U(g)AI -modules M such that
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• M is finitely generated over U(g)AI ;

• M = ⊕
µ∈X∗(T ) M

µ and each Mµ is a finite free AI-module ;

• for any m ∈M the AI-submodule (U(pI)⊗L AI)m is finitely generated.

Lemma 2.6. Let M be an object of ÕIalg. Then for any n > 0, the U(g)-module
M/mn

IM is an object of OI,∞alg and M/mIM is in OIalg.

Proof. This is a direct consequence of the definitions.

For λ ∈ X∗(T )+
I we define the deformed generalized Verma module of weight λ

as
M̃I(λ) := U(g)⊗U(pI) (LI(λ)⊗L AI)

where U(pI) acts on AI via the composition U(pI)→ U(lI)
pI−→ U(zI)→ AI . The

module M̃I(V ) is an object of ÕIalg and we have an isomorphism of U(g)AI -modules

M̃I(λ)⊗AI AI/mI = MI(λ).

2.3.1 Duality

Recall that there exist an internal duality functor M 7→M∨ on the category Oalg
(see [Hum08, §3.2]). We will define an analogue on Õalg. Let M be an object
of the category ÕIalg. We define an action of U(g) on M∗ := HomAI (M,AI) by
x · f(m) = f(τ(x)m) where τ is the anti-involution of U(g) defined in [Hum08,
§0.5]. We then define M∨ to be the sub-U(g)-module of M∗ given by

M∨ :=
⊕

µ∈X∗(T )
(M∗)µ.

Lemma 2.7. IfM is an object of the category ÕIalg, then so isM∨. Moreover there
is a canonical isomorphismM

∼−→ (M∨)∨. ConsequentlyM∨/mIM
∨ ' (M/mIM)∨

is in the category OIalg.

Proof. We have a canonical isomorphism of AI-modules

M∗ '
∏

µ∈X∗(T )
HomAI (Mµ, AI)

and we easily check that (M∗)µ = HomAI (Mµ, AI) for µ ∈ X∗(T ). As any Mµ is
a finite free AI-module, so is (M∗)µ = (M∨)µ.
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Let n−I := ⊕
α∈−Φ+\ΦI gα denote the nilpotent radical of the parabolic Lie sub-

algebra opposite to pI . Note that a U(g)AI -moduleM such thatM = ⊕
µM

µ with
Mµ finite free over AI is in ÕIalg if and only if we can writeM = U(n−I )·

(⊕
µ∈SMµ

)
for some finite set S ⊂ X∗(T ). By Lemma 2.6, the object M/mIM lies in the cat-
egory OIalg and it follows from [Hum08, §9.3] that (M/mIM)∨ lies in OIalg. This
implies that there exists a finite set S ⊂ X∗(T ) such that

(M/mIM)∨ = U(n−I ) ·
(⊕
µ∈S

(M/mIM)∨,µ
)
.

It follows that for any µ such that (M/mIM)∨,µ 6= 0, the map⊕
ν∈
∑

α∈−Φ\ΦI
Nα

µ′∈S
µ′+ν=µ

(M/mIM)∨,µ′ −→ (M/mIM)∨,µ

given by the action of the corresponding element of U(n−I ) on each summand, is
surjective. AsMµ is a finite free AI-module and AI is a local ring, we deduce from
Nakayama’s Lemma that the map⊕

ν∈
∑

α∈−Φ\ΦI
Nα

µ′∈S
µ′+ν=µ

M∨,µ′ −→M∨,µ

is surjective and thus that M∨ = U(n−I ) ·
(⊕

µ′∈SM
∨,µ′

)
. This implies that M∨

is a finitely generated U(g)AI -module and we also deduce from this equality that
M∨ is locally U(pI)AI -finite.

In order to prove thatM ∼−→ (M∨)∨ we note that the natural mapM −→ (M∨)∗
of U(g)AI -modules factors through (M∨)∨ and respects the weight decomposition.
Moreover as Mµ is free over AI for all µ, the induced bi-duality Mµ ∼−→ (Mµ,∗)∗
morphism is an isomorphism.

2.3.2 Blocks

Let Z(g) denote the center of U(g) and let χ : Z(g) → L be a character of Z(g).
Let Oχ be the subcategory of objectsM of Oalg such that z−χ(z) acts nilpotently
on M for any z ∈ Z(g). For I ⊂ ∆, we denote by OIχ the full subcategory of
objects of OIalg which are also in Oχ. We deduce from [Hum08, Prop. 1.12] that
there is a decomposition into blocks

OIalg =
⊕
χ

OIχ.
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We write ÕIχ for the subcategory of objects M of ÕIalg such that M/mIM lies in
OIχ, and similarly OI,∞χ .
Remark 2.8. For λ ∈ X∗(T ), let χ be the character χλ defined in [Hum08, §1.7].
Then loc. cit. implies that M̃I(λ) is in ÕIχλ .

Lemma 2.9. We have decompositions ÕIalg = ⊕
χ ÕIχ and OI,∞alg = ⊕

χOI,∞χ .

Proof. Let M be an object of ÕIalg. For a character χ : Z(g)→ L and µ ∈ X∗(T ),
let Mµ,χ denote the subset of elements x ∈ Mµ such that (z − χ(z))nx → 0
for the mI-adic topology on the finite free AI-module Mµ. We easily check that
Mχ := ⊕

µ∈X∗(T ) M
µ,χ is an U(g)AI -submodule of M which lies in ÕIχ and that

M = ⊕
χM

χ. The case of OI,∞alg is similar.

Lemma 2.10. Let λ1, λ2 ∈ X∗(T ). Assume that M̃I(λ1) and M̃I(λ2) are in the
same block ÕIχ for a character χ : Z(g)→ L. Then there exists w ∈ W such that
w · λ1 = λ2.

Proof. By Remark 2.8, the claim follows from the same claim in the category OIχ.
As MI(λ1) and MI(λ2) are quotients of M(λ1) and M(λ2), this is a consequence
of [Hum08, Thm. 1.10].

When λ is a character of t, we often write by abuse of notation Oλ (resp.
OI,∞λ , ÕIλ) for the block Oχλ (resp. OI,∞χλ , Õ

I
χλ
) where χλ is the character of Z(g)

giving the action of the center onM(λ) (see [Hum08, §1.7]). In particular, χλ = χµ
if, and only if, there is w ∈ W such that w · λ = µ.
Corollary 2.11. Let λ ∈ X∗(T ) be a dominant weight and let χλ be the associated
character of Z(g). If M is an object of ÕIχλ (resp. OI,∞χλ ), then Mλ = (Mλ)n.

Proof. Assume that this is false. Then there exists α ∈ Φ+ and x ∈ gα such that
xMλ 6= 0. Thus there exists µ > λ such that Mµ 6= 0. As M lies in the category
ÕIalg (resp. OI,∞χ ), we can choose µ to be maximal which then implies nMµ = 0.
As Mµ 6= 0 Nakayama’s lemma implies that there exists v ∈Mµ which is non zero
in Mµ/mMµ. Then v defines a map M̃I(µ) → M with µ > λ, which is non-zero
after reduction by m. Thus it induces a non-zero map MI(µ) −→ M/mM ∈ Oχλ .
It follows that µ = w · λ which is a contradiction.

2.3.3 Deformed Verma modules

Let λ ∈ X∗(T ) and let V be a finite dimensional U(g)-module. Then we have an
isomorphism of U(g)A-modules

M̃(λ)⊗L V ' U(g)A ⊗U(b)A (V|b ⊗L A(λ)).
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Indeed there is a canonical map from the left to the right, which then is easily
checked to be an isomorphism. As V|b is a successive extension of one dimensional
U(b)-modules, and as U(g)A ⊗U(b)A (−) is an exact functor (as follows from the
PBWTheorem), we have a filtration (Fili) of M̃(λ)⊗LV such that each subquotient
Fili /Fili−1 is isomorphic to M̃(λ + νi) for νi a weight of V . Moreover the family
(νi) is the family of weights of V (counted with multiplicity).

Proposition 2.12. Let K denote the fraction field of A. Then the filtration
(Fili⊗AK) of (M̃(λ)⊗LV )⊗AK splits in the category of U(g)K-modules, i.e. there
exists an isomorphism of U(g)K-modules

(M̃(λ)⊗L V )⊗A K '
⊕
i

(M̃(λ+ νi)⊗A K)

compatible with the filtration (Fili⊗AK).

Proof. This is a consequence of the paragraph preceding [Soe92, Thm. 8].

Lemma 2.13. Let λ ∈ X∗(T )+
I be a dominant weight (with respect to P I) and let

V be a finite dimensional U(g)-module. Let M be an object of OI,∞alg . Then the
map

HomU(g)AI (M̃I(λ)⊗L V,M)→ HomU(g)(MI(λ)⊗L V,M/mIM)
given by reduction modulo mI is surjective.

Proof. The L-vector space HomL(V, L) has the structure of an U(g)-module in-
duced by g-action defined by x · φ = −φ(x·) for x ∈ g and φ ∈ HomL(V, L). For
any U(g)-modulesM1 andM2, the adjunction isomorphism HomL(M1⊗LV,M2) '
HomL(M1,M2⊗LHomL(V, L)) is g-equivariant and hence induces an isomorphism,

HomU(g)(M1 ⊗L V,M2) ' HomU(g)(M1,M2 ⊗L HomL(V, L)).

Thus, as M ⊗L HomL(V, L) lies in OI,∞alg we can assume that V = L. Using
Lemma 2.9, we can assume thatM is in OI,∞χ for some character χ and by Remark
2.8, it is sufficient to consider the case where χ = χλ. By construction of the
deformed generalized Verma modules we have HomU(g)AI (M̃I(λ),M) = (Mλ)nI and
HomU(g)(MI(λ),M/mIM) = ((M/mIM)λ)nI . However it follows from Corollary
2.11 that (Mλ)nI = Mλ and ((M/mIM)λ)nI = (M/mI)λ. It is thus sufficient to
prove that the map Mλ → (M/mIM)λ is surjective, which is obvious.

Proposition 2.14. Let M be an object of the category OI,∞alg . Then there exist
weights λ1, . . . , λr ∈ X∗(T )+

I and finite dimensional U(g)-modules W1, . . . ,Wr and
a surjective map of U(g)AI -modules

(M̃I(λ1)⊗LW1)⊕ · · · ⊕ (M̃I(λr)⊗LWr)�M. (3)
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In particular M is a quotient of an object of the category ÕIalg. Moreover there
exists an integer N > 0 such that the map (3) factors through(

(M̃I(λ1)⊗LW1)⊕ · · · ⊕ (M̃I(λr)⊗LWr)
)
⊗AI AI/mN

I .

Proof. By [Hum08, Thm. 9.8] (and its proof), there exist dominant weights λ1, . . . , λr,
finite dimensional U(g)-modules W1, . . . ,Wr and a surjective map

(MI(λ1)⊗LW1)⊕ · · · (MI(λr)⊗LWr)�M/mIM.

By Lemma 2.13, this map can be lifted into a U(g)AI -equivariant map

M̃I(λ1)⊗LW1 ⊕ · · · M̃I(λr)⊗LWr �M

which is surjective by Nakayama’s Lemma. The last assertion is a consequence
of the fact that M is finitely generated as a U(g)-module and all its elements are
killed by some power of mI so that M is killed by mN

I for some N > 0.

2.4 Bimodule structure

Let ξ : Z(g) → U(t) be the Harish-Chandra map. Recall that it is defined as
follows: for x ∈ Z(g) there exists a unique element ξ(x) ∈ U(t) such that x ∈
ξ(x) + U(g)n (see [Kna01, Lem. 8.17]). For any ν ∈ X∗(T ) we denote by tν the
unique endomorphism of U(t) such that tν(x) = x + ν(x) for x ∈ t. Note that
t−δG ◦ ξ induces an isomorphism from Z(g) on to U(t)W (see [Kna01, Thm. 6.18]).
For a dominant weight λ ∈ X∗(T ) we define a map

hλ : A⊗L Z(g) Id⊗ξ−−→ A⊗L ⊗U(t) Id⊗tλ−−−→ A⊗AW A

following [Soe92, §3.2], It follows from [Soe92, Thm. 9] that hλ is surjective (note
that Wλ in loc. cit. is trivial in our situation). If I ⊂ ∆ is a finite subset,
tensorization on the left with pI : A � AI yields a map hλ : AI ⊗L Z(g) →
AI ⊗AW A.

For w ∈ W , let Iw ⊂ AI ⊗L Z(g) denote the kernel of the map

hλ,w : AI ⊗L Z(g) Id⊗hλ−−−→ AI ⊗AW A
x⊗y 7→(xpI(Ad(w)y))−−−−−−−−−−−−→ AI .

It is not hard to see that this kernel only depends on the choice of w ∈ WI\W .

Proposition 2.15. For w ∈ IW , the AI⊗LZ(g)-modules M̃I(w ·λ) and M̃I(w ·λ)∨
are annihilated by Iw.
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Proof. The result for M̃I(w · λ)∨ follows from the result for M̃I(w · λ)∨ and the
inclusion

M̃I(w · λ)∨ ⊂ HomA(M̃I(w · λ), A).
Hence it is enough to check that the action of AI ⊗L Z(g) on M̃I(w · λ) factors
through hλ,w. As this action is central and M̃I(w ·λ) is generated by M̃I(w ·λ)w·λ as
an U(g)AI -module, it is sufficient to check that the action AI⊗LZ(g) on M̃I(w·λ)w·λ
factors through hλ,w. Using the fact that n acts trivially on M̃I(w·λ)w·λ, an element
x ∈ Z(g) acts on this space via ξ. For the clarity of the computation let us write
εν : U(t) → AI for the L-algebra homomorphism associated to an L-linear map
ν : t→ AI and let ι : t ↪→ A� AI . Then for x ∈ Z(g) and v ∈ M̃I(w ·λ), we have

εw·λ+ι(ξ(x)) = εw(λ+δG+w−1(ι))(t−δG(ξ(x))) = ελ+δG+w−1(ι)(t−δG(ξ(x)))
= εw−1(ι)(hλ(x)) = pI(Ad(w)(hλ(x)))

(where we use that the image of t−δG ◦ ξ lies in U(t)W ). As an element y ∈ U(t)
acts by multiplication by εw·λ+ι(y) on M̃I(w · λ)w·λ, we conclude that an element
x⊗ z ∈ AI ⊗L Z(g) acts by multiplication by xpI(Ad(w)(hλ(x))) on M̃I(w · λ)w·λ,
which is the desired formula.

Remark 2.16. The ring U(t) (resp. U(zI)) is the affine coordinate ring of the
(affine) L-scheme associated to the dual t∗ of t (resp. to the dual z∗I of zI) so that
A (resp. AI) is the stalk of the structure sheaf of t∗ (resp. of z∗I) at the origin. The
ideal Iw is the ideal defining the irreducible component TI,w of (z∗I ×t∗/W t∗)(0,0)
consisting of pairs (λ, µ) ∈ z∗I × t∗ of characters such that µ = w(λ).

Later in the paper we will view the L-scheme t∗ as the Lie algebra t∨ of the
dual torus T∨L of the Langlands dual group G∨L, that we consider as an algebraic
group over L. As we will later specialize to the case where G is isomorphic to a
product of r copies of GLn the reductive group G is self dual and we will identify
t∗ = t∨ with t in order to avoid the additional (−)∨ in the notation. In particular
we will consider U(t) as the affine coordinate ring of t. The inclusion z∗I ↪→ l∗I
induced by the projection pI : lI → zI is then identified with the inclusion z∨I ↪→ l∨I
of the center of the Lie algebra of the Langlands dual group of L and again we use
self duality (in the case of products of copies of GLn) to identify this map with
zI ↪→ lI . Hence we obtain a canonical map zI ↪→ t of L-schemes corresponding
to the morphism U(t) → U(zI). With this identification the ideal Iw defines the
irreducible component TI,w of (zI ×t/W t)(0,0) whose points are the pairs (x, y) ∈ t2

such that y = w−1(x).

We finally recall the following result of Soergel (Endomorphismensatz 7 [Soe90]).

Proposition 2.17. The action of Z(g) on P (w0 · λ) factors through the map
tλ ◦ξ : Z(g)� L⊗AW A and induces an isomorphism L⊗AW A ' EndO(P (w0 ·λ)).
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3 The Emerton–Jacquet functor

Let G be a quasi-split reductive group defined over Qp. Let B be a Borel subgroup
and T be a maximal torus of G contained in B. We set G := G(Qp), B := B(Qp),
T := T (Qp). We also fix L a finite extension of Qp which will be the coefficient
field of our representations. We assume that L is big enough so that the torus
T ×Qp L is split (and then G×Qp L is split). We denote g, b etc. the Lie algebras
of G ×Qp L, B ×Qp L etc. In the following we will consider the category Repla

LG
of locally analytic G-representations on locally convex L-vector spaces, as well as
the corresponding variants for the (Qp-analytic) groups B, T , etc. In [Eme06a,
Def. 3.4.5] Emerton constructs a functor

JB : Repla
LG→ Repla

LT

that we refer to as the Emerton–Jacquet functor. It is defined as follows: Let N0
be a compact open subgroup of N and let T+ := {t ∈ T | tN0t

−1 ⊂ N0}. If V is a
L-linear representation of B, we endow the L-vector space V N0 with the action of
the monoid T+ defined by

[t]v := [N0 : tN0t
−1]−1 ∑

u∈N0/tN0t−1

ut(v).

Then JB(V ) is the finite slope space (V N0)fs of V N0 with respect to the action of
T+ on which the T+-action extends to a locally analytic representation of T .

3.1 Families of locally analytic representations of the Borel
subgroup

Let s ∈ Z>0 be an integer and let Π be a locally analytic L-representation of
Zsp ×B. We consider the following hypothesis on Π:

Hypothesis 3.1. There exists a locally analytic representation of N0 on a locally
convex L-vector space of compact type V such that

Π|Zsp×N0 ' Cla(Zsp, L)⊗̂LV.

Given s, we set S := OL[[Zsp]] and write Spf(S)rig for the rigid analytic generic
fiber of Spf(S). This space is a rigid analytic open polydisc and we write

Srig = Γ(Spf(S)rig,OSpf Srig)
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for its ring of rigid analytic functions, which is a Fréchet L-algebra (when endowed
with its natural topology). We note that a finitely generated, projective Srig-
module C defines a vector bundle on Spf(S)rig. As every vector bundle on a rigid
analytic polydisc is free, it follows that C is free as well, i.e. every finitely generated
projective Srig-module is finite free. Moreover, finite dimensional quotients of Srig

admit resolutions by a perfect complexes:

Lemma 3.2. Let a ⊂ Srig be a closed strict ideal such that dimL S
rig/a <∞. Then

there exists perfect complex C• of Srig-modules which is a resolution of Srig/a and
such that C0 = Srig.

Proof. As S[1/p] is dense in Srig, its image in Srig/a is dense L-vector space and,
as Srig/a is finite dimensional, is in fact equal to Srig/a. Setting a0 := a ∩ S[1/p],
we have S[1/p]/a0 ' Srig/a. As Srig is a flat S[1/p]-module, it is sufficient to prove
that S[1/p]/a0 has a finite resolution by finite projective S[1/p]-modules, which is
a consequence of the fact that S[1/p] is a regular noetherian ring.

Let C• be a complex of finite free Srig-modules. For each n > 0, Cn is endowed
with its canonical topology induced by the topology of Srig, then the differentials
in the complex C• are continuous. The complex Π• := HomSrig(C•,Π) is then a
complex of locally analytic L-representations of Zsp × B. We also set ΠN0,• :=
HomSrig(C•,ΠN0) and JB(Π)• := HomSrig(C•, JB(Π)).

Lemma 3.3. Let 0→ U → V → W → 0 be a short exact sequence of topological
L-vector spaces of compact type (resp. nuclear Fréchet spaces) and let X be a
topological L-vector space of compact type (resp. nuclear Fréchet space). Then the
following sequence is exact

0→ U⊗̂LX → V ⊗̂LX → W ⊗̂LX → 0.

Proof. The claim follows from [Sch11, Lemm. 4.13], [ST02, Cor. 1.4] and from
[Eme17, Prop. 1.1.32].

Lemma 3.4. Let Π be a locally analytic representation of Zsp × B satisfying Hy-
pothesis 3.1. Then the two complexes Π• and ΠN0,• are complexes of L-vector
spaces of compact type with strict continuous transition maps. Moreover for any
integer n > 0, we have an isomorphism of topological T+- modules

Hn(ΠN0,•) ' Hn(Π•)N0 .

Proof. Fix an isomorphism Π|Zsp×N0 ' Cla(Zsp, L)⊗̂LV whose existence comes from
hypothesis 3.1. As any Cm is a finite free Srig-module and as the completed tensor

22



product −⊗̂L− commutes with finite direct sums ([Koh07, Lem. 1.2.13]), we have
an isomorphism of complexes of topological representations of Zsp ×N0:

Π• ' HomSrig(C•, Cla(Zsp, L))⊗̂LV.
As Cla(Zsp, L) is an admissible locally analytic representation of Zsp, the com-
plex HomSrig(C•, Cla(Zsp, L)) has strict transition maps with closed images ([ST03,
Prop. 6.4]). We deduce from this fact and from Lemma 3.3 that the complex Π•
has strict transition maps and that we have topological isomorphisms Hn(Π•) '
Hn(HomSrig(C•, Cla(Zsp, L)))⊗̂LV for any n > 0. The commutation of ⊗̂L with fi-
nite direct sum implies that we have a topological isomorphism of L-vector spaces
for any m > 0:

(HomSrig(Cm,ΠN0) ' HomSrig(Cm, Cla(Zsp, L))⊗̂LV N0 .

We deduce as before that the complex Π•,N0 has strict transition maps and that
we have isomorphisms

Hn(ΠN0,•) ' Hn(Π•)N0

for any n > 0.
Proposition 3.5. For any integer n > 0, there is an isomorphism

Hn(JB(Π)•) ' JB(Hn(Π•))
of locally analytic L-representations of Zsp × T .

Proof. It follows from [Eme06a, Prop. 3.2.4.(ii)] that there is a natural continuous
T+-equivariant map of complexes (ΠN0,•)fs → ΠN0,• inducing a continuous T+-
equivariant morphismHn(ΠN0,•

fs )→ Hn(ΠN0,•). By loc. cit., the universal property
of the functor (−)fs provides a T -equivariant map Hn(ΠN0,•

fs ) → Hn(ΠN0,•)fs. It
follows from Lemma 3.4 that it is sufficient to prove that this map is a topological
isomorphism.

We now deduce from [Eme06a, Prop. 3.2.27] and [Fu, Thm. 4.5] that given an
exact sequence 0→ U → V → W → 0 of spaces of compact type with continuous
action of T+, then 0→ Ufs → Vfs → Wfs → 0 is exact, the image of Ufs is closed in
Vfs and the map Vfs → Wfs is strict. The open mapping theorem then implies that
the sequence is strict exact. As the complex ΠN0,• has strict transition maps by
Lemma 3.4, we conclude that the map Hn(ΠN0,•

fs ) → Hn(ΠN0,•)fs is a topological
isomorphism.
Proposition 3.6. Let Π be a locally analytic L-representation of Zsp×B satisfying
the hypothesis 3.1. Let a be a closed strict ideal of Srig such that dimL S

rig/a < +∞.
Then the map

a⊗Srig JB(Π)′ −→ JB(Π)′

is injective.
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Proof. By Lemma 3.2, there exists a perfect complex C• of Srig-modules such
that, C0 = Srig, H0(C•) ' Srig/a and Hi(C•) = 0 for i > 0. By Hypothesis 3.1,
we have Π|Zsp×N0 ' Cla(Zsp, L)⊗̂LV for some topological L-vector space of compact
type V . As C• has strict transition maps, it follows from Lemma 3.3 that the
complex C• ⊗Srig Π′ ' C•⊗̂LV ′ is a resolution of (Srig/a)⊗̂LV ′. We then deduce
from HomSrig(Ci,Π)′ ' Ci ⊗Srig Π′ for any i > 0, that H i(HomSrig(C•,Π)) = 0
for i > 0. Therefore Proposition 3.5 implies that H i(HomSrig(C•, JB(Π))) = 0
for i > 0. We denote by (−)′ the duality between spaces of compact type and
Fréchet spaces. This duality implies that Hi(C• ⊗Srig JB(Π)′) = 0 for i > 0. As
a = Coker(C2 → C1), we deduce that

a⊗Srig JB(Π)′ = Coker(C2 ⊗Srig JB(Π)′ → C1 ⊗Srig JB(Π)′)
⊂ C0 ⊗Srig JB(Π)′ = JB(Π)′.

3.2 Families of locally analytic representations of G

Let Π be an admissible locally analytic L-representation of Zsp × G. The aim of
this section is to use Π in order to construct a functor

M 7→ HomU(g)(M,Π)

from the category O∞alg to the category of locally analytic Zsp ×B-representations,
and then, by composing with JB, to locally analytic Zsp × T -representations. We
will usually assume that we are in the following situation:

Hypothesis 3.7. There exists a uniform open pro-p-subgroup H of G, an integer
m > 0 and a topological Zsp ×H-equivariant isomorphism

Π|Zsp×H ' C
la(Zsp ×H,L)m.

Recall from section 2.2 that ifM is an object of O∞alg, there is a unique algebraic
action of B(L) on M which lifts the structure of U(b)-module on M ss. We endow
M with the action of B = B(Qp) obtained by restriction to B.

Let M be an object of O∞alg with its semi-simplified B-action. We define an
action of B on HomL(M,Π) by

b · f = bf(b−1−)

for f ∈ HomL(M,Π) and b ∈ B. It follows from Lemma 2.4 that this action
preserves the subspace HomU(g)(M,Π). We moreover endow HomU(g)(M,Π) with
the left Zsp-action inherited from the one on Π. While the definition of the B-action
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using the semi-simplified action onM might not seem very natural at a first glance,
the following lemma says that this definition applied to deformed Verma modules
allows us to compute generalized eigenspaces. Given an U(t)-module X we write

X[(t− λ)k] = {x ∈ X|∀t ∈ t, (t− λ(t))kx = 0}.

With this notation we have the following result:

Lemma 3.8. Let λ ∈ X∗(T )+
I and M = M̃I(λ) ⊗AI AI/mk

I . Then there is an
isomorphism

HomU(g)(M,Π) ' (ΠnI ⊗L LI(λ)′)[mk
I ]

of B-representations, where (−)′ denote the dual (algebraic) representation. In
particular, when I = ∅,

HomU(g)(M̃(λ),Π) ' (Πn(λ−1))[mk] ' (Πn[(t− λ)k])(λ−1).

Proof. We compute using the U(g)-structure

HomU(g)(M,Π) = HomU(g)(U(g)⊗U(b) (LI(λ)⊗L AI/mk
I ),Π)

= HomU(b)(LI(λ)⊗L AI/mk
I ,ΠnI )

= HomU(t)(AI/mk
I ,ΠnI ⊗ LI(λ)′)

= (ΠnI ⊗ LI(λ)′))[mk
I ].

Moreover each equality is compatible with the semi-simplified B-actions.

Lemma 3.9. Let Π be a locally analytic representation of Zsp×G and let M be an
object of O∞alg. Then the Zsp ×B-representation HomU(g)(M,Π) is locally analytic.

Proof. Let U(g)⊗U(b) V1 → U(g)⊗U(b) V0 →M → 0 be a resolution as in Lemma
2.5. Then HomU(g)(M,Π) is the kernel of the map

HomU(g)(U(g)⊗U(b)V0,Π) ' (V ′0⊗LΠ)b −→ HomU(g)(U(g)⊗U(b)V1,Π) ' (V ′1⊗LΠ)b

which is continuous and B-equivariant. Therefore HomU(g)(M,Π) is isomorphic to
a closed B-stable subspace of V ′0 ⊗L Π. As V0 is an algebraic finite dimensional
representation of B, the representation V ′0 ⊗L Π is locally analytic and hence so is
HomU(g)(M,Π).

As HomU(g)(M,Π) is a locally analytic representation of B this action may
be derived and induces the structure of an U(b)-module on HomU(g)(M,Π). Via
restriction to U(t) ⊂ U(b) we may view HomU(g)(M,Π) as an U(t)-module.
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Lemma 3.10. Let Π be a locally analytic representation of Zsp ×G and let M be
an object of O∞alg. Then the U(t) action on HomU(g)(M,Π) factors through a finite
dimensional quotient.

Proof. By Proposition 2.14 there exist dominant weights λ1, . . . , λr, finite dimen-
sional g-modules V1, . . . , Vr and a surjective map

M̃(λ1)⊗L V1 ⊕ · · · ⊕ M̃(λr)⊗L Vr �M.

Moreover by Lemma 2.14 there exists k > 1 such that this map factors through mk

(recall that A is the localization of U(t) at its augmentation ideal m). Therefore
we have an inclusion of U(t)-modules

HomU(g)(M,Π) ↪→
r⊕
i=1

HomU(g)(M̃(λi)⊗A A/mk ⊗L Vi,Π).

By Lemma 3.8, HomU(g)(M̃(λi)/mk ⊗L Vi,Π) = (Π⊗ Vi(λi)′)n[mk].
Let µ1, . . . , µs be the finitely many characters which appears in the restriction

to U(t) of V1(λ1), . . . , Vr(λr). Then the action of U(t) on HomU(g)(M,Π) factors
through the quotient of U(t) by the intersection of the k-th powers of the kernels
of the µi.

Lemma 3.11. Assume that Π is an admissible locally analytic L-representation
of Zsp ×G satisfying Hypothesis 3.7 and M ∈ O∞alg. Then HomU(g)(M,Π) satisfies
Hypothesis 3.1

Proof. We can assume that N0 ⊂ H. As we assume Hypothesis 3.7, there is an iso-
morphism Π ∼= Cla(Zsp×H,L)m ' Cla(Zsp, L)⊗̂LC(H,L)m of Zsp×H-representation.

Let [U(g) ⊗U(b) V1 → U(g) ⊗U(b) V0] be a resolution of M as in Lemma 2.5.
Then HomU(g)(M, Cla(H,L)m) is the kernel of the map

(V ′0 ⊗L Cla(H,L)m)b → (V ′1 ⊗L Cla(H,L)m)b. (4)

We claim that this is a strict map, then the lemma follows, as exactness of the
functor Cla(Zsp, L)⊗̂L(−) implies that we have an isomorphism of locally analytic
Zsp ×N0-representation

HomU(g)(M,Π) ' Cla(Zsp, L)⊗̂L HomU(g)(M, Cla(H,L))m.

In order to prove that (4) is strict, we use an additional H-action. We let H-act on
Cla(H,L) by right translation and extend this to V ′i ⊗LCla(H,L) by acting trivially
on V ′i . This action commutes with the (diagonal) action of U(b), as the U(b) action
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on Cla(H,L) is induced by left translations. It follows that (V ′i ⊗L Cla(H,L)m)b is
a closed H-stable subspace of an admissible locally analytic H-representation, and
hence an admissible locally analytic H-representation itself. Hence (4) is an H-
equivariant map between admissible locally analytic H-representations and hence
a strict map which proves the claim.

Proposition 3.12. Let Π be an admissible locally analytic representation of Zsp×G
satisfying the hypothesis 3.7 and let M be an object of O∞alg. Then the locally
analytic representation JB(HomU(g)(M,Π)) of Zsp × T is essentially admissible.

Proof. Let U(g) ⊗U(b) V1 → U(g) ⊗U(b) V0 → M → 0 be a resolution of M given
by Lemma 2.5. Then we have an exact sequence

0 −→ HomU(g)(M,Π) −→ HomU(g)(U(g)⊗U(b)V0,Π) −→ HomU(g)(U(g)⊗U(b)V1,Π)

of locally analytic representations of Zsp × B (see Lemma 3.9). As the functor JB
is left exact ([Eme06a, Lem. 3.4.7.(iii)]), this induces a short exact sequence

0 −→ JB(HomU(g)(M,Π)) −→ JB(HomU(g)(U(g)⊗U(b) V0,Π))
−→ JB(HomU(g)(U(g)⊗U(b) V1,Π))

of locally analytic representations of Zsp × T . As the kernel of a morphism be-
tween essentially admissible representations is essentially admissible ([Eme06a,
Thm. 3.1.3]), it is sufficient to prove that JB(HomU(g)(U(g) ⊗U(b) V,Π)) is essen-
tially admissible for any finite dimensional algebraic representation V of B. As
an algebraic representation of B is an extension of rank 1 object, it is sufficient to
prove this when V is 1-dimensional and V n = V . The left exactness of JB implies
that

JB(HomU(g)(U(g)⊗U(b) V,Π)) ' JB(HomU(b)(V,Πn)) ' HomU(t)(V, JB(Π)).

By [BHS17b, Prop. 3.4] (whose proof follows [Eme06a, Thm. 0.5]), the locally
analytic representation JB(Π) of Zsp×T is essentially admissible. As U(t) is finitely
generated, we conclude that HomU(t)(V, JB(Π)) is essentially admissible.

Lemma 3.13. Let Π be a locally analytic representation of Zsp × G satisfying
Hypothesis 3.7.

(i) The functor M 7→ HomU(g)(M,Π) from O∞alg to the category of locally ana-
lytic representations of Zsp ×B is exact.

(ii) The functor M 7→ HomU(g)(M,Π)N0from O∞alg to the category of locally
convex L-vector spaces sends short exact sequences on short exact sequences with
strict maps.
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Proof. The assertion (i) is [BHS19, Lem. 5.2.5]. We recall the proof as we will
need notation for the proof of (ii). Let M be an object of the category O∞alg. Let
H ⊂ G be a uniform compact open pro-p-subgroup. Recall (see for example the
proof of [ST03, Prop. 6.5]) that Π|Zsp×H = lim−→r<1 Πr with

Πr = Homcont
L (Dr(Zsp ×H)⊗D(Zsp×G,L) Π, L).

As M is a finitely presented U(g)-module, we have

HomU(g)(M,Π) ' lim−→
r<1

HomU(g)(M,Πr) = lim−→
r

HomUr(g)(Mr,Πr)

with Mr := Ur(g) ⊗U(g) M . Note that there exists an integer m > 0 such that
Πr ' Homcont

L (Dr(Zsp ×H), L)m. Therefore we have

HomDr(H)(Dr(H)⊗U(g) M,Πr)
'Homcont

L (Dr(H)⊗Ur(g) Mr,Homcont
L (Dr(Zsp, L), L))m,

for r < 1. As the functorM 7→Mr is exact andDr(H) is a finite free Ur(g)-module,
this proves (i).

Now we prove (ii). As N0 is a compact group and L is of characteristic 0, it is
equivalent to prove (ii) after replacing N0 by an open subgroup. Therefore we can
assume that N0 = H ∩N and that H = (N ∩H)(T ∩H)(N ∩H) where N is the
group of Qp-points of the unipotent subgroup of G opposite to N . Let r < 1. The
space HomU(g)(M,Πr)N0 is the space of maps from M to Πr that are equivariant
for the actions of N0 and U(g). Therefore we have

HomU(g)(M,Πr)N0 = HomUr(g)⊗Ur(n)Dr(N0)(Mr,Πr)
' Homcont

L (Dr(H)⊗(Ur(g)⊗Ur(n)Dr(N0)) Mr,Homcont
L (Dr(Zsp, L), L))m.

As Dr(H) is a finite free right Ur(g)⊗Ur(n)Dr(N0)-module (see [Koh07, Thm 1.4]),
this proves the claim.

Theorem 3.14. The functor M 7→ JB(HomU(g)(M,Π)) from the category O∞alg to
the category of essentially admissible representations of T is exact.

Proof. This is essentially a consequence of Lemma 3.13 (ii) and we conclude as at
the end of the proof Proposition 3.5.

3.3 The case of Banach representations with coefficients

Let R be a complete local noetherian OL-algebra. As above we will write Rrig

for the ring of rigid analytic functions on (Spf R)rig. Let Π be an R-admissible
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R-Banach representation of the group G (see [BHS17b, Def. 3.1]). We assume that
our representations satisfies the following property:

Hypothesis 3.15. there exists an integer s > 0, a local morphism of OL-algebras
S := OL[[Zsp]] → R such that, for some (resp. any) open pro-p-subgroup G0 ⊂ G,
the S[[G0]][1/p]-module Π′ := Homcont

L (Π, L) is finite free (as a consequence Π is
also S-admissible).

Using the hypothesis, one shows that the R-analytic vectors ΠR−an and the
S-analytic vectors ΠS−an of Π coincide and they also coincides with the subspace
of Zsp ×G-locally analytic vectors in Π (see [BHS17b, Prop. 3.8]). We will simply
denote this subspace by Πla in what follows. This is a locally analytic representa-
tion of Zsp × G with an action of Rrig commuting with G. Moreover if we forget
the Rrig-action, the representation Πla satisfies Hypothesis 3.7.

In the following we will write T̂ for the rigid analytic space of continuous
characters of T and T̂0 for the space of continuous characters of the maximal
compact subgroup T0 ⊂ T . We recall that the ring of rigid analytic functions on T̂0
is identified with the algebra D(T0, L) of L-valued distributions on T0. Restriction
to T0 defines a canonical projection T̂ → T̂0. Moreover, the derivative of a character
at 1 defines a weight map

wt : T̂0 → t∗, (5)
where by abuse of notation we write t∗ for the rigid analytic space associated to
the L-vector space t∗. The map wt is étale and locally finite. Moreover, étaleness
implies that for any character δ0 : T0 → L× we can identify the tangent space of
T̂0 at δ0 with the L-vector space t∗.

Lemma 3.16. For any object M in O∞alg, the dual JB(HomU(g)(M,Πla))′ of the
Emerton-Jacquet module JB(HomU(g)(M,Πla)) is coadmissible as an Rrig⊗̂LO(T̂ )-
module.

Proof. This is essentially the same proof than for Proposition 3.12 using the fact
that JB(Πla) is essentially admissible as a representation of Zs′p × T for any s′ and
surjection OL[[Zs′p ]]� R by [BHS17b, Prop. 3.4].

Let M be an object of O∞alg. It follows from Lemma 3.16 that there exists a
unique up to unique isomorphism coherent sheaf MΠ(M) on Spf(R)rig × T̂ such
that

Γ(Spf(R)rig × T̂ ,MΠ(M)) = JB(HomU(g)(M,Πla))′.
In particular we obtain a functor from O∞alg to the category of coherent sheaves on
Spf(R)rig × T̂ .
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Theorem 3.17. The coherent sheaf MΠ(M) on Spf(R)rig × T̂ is, locally on
Spf(R)rig × T̂ , finite free over Spf(S)rig. In particular, if nonzero, it is Cohen–
Macaulay of dimension s.

Proof. Let T0 be the maximal compact subgroup of T and let T̂0 be the rigid
analytic space of characters of T0 over L. Set N := JB(HomU(g)(M,Πla))′. It
follows from the proof of [BHS17b, Prop. 3.11] that there exists a family I of
pairs (U, V ) where U is a rational open subset of Spf(R)rig × T̂ and V is a ratio-
nal open subset of Spf(S)rig × T̂0 such that V is the image of U and such that
Supp(MΠ(M)) ⊂ ⋃

(U,V )∈I U . Moreover, we may assume that Γ(U,MΠ(M)) is a
finite projective O(V )-module that is a direct factor of O(V )⊗̂Srig⊗̂LD(T0,L)N .

After shrinking each U and V if necessary, we may even assume (by the con-
struction of the family I) that for each (U, V ) ∈ I, the rational open V is of the
form V1×V2 with V1 rational open in Spf(S)rig and V2 rational open in T̂0. It is suf-
ficient to prove that, for any pair (U, V1×V2) ∈ I, the O(V1)-module Γ(U,M(M))
is finitely generated and flat.

The map V2 → t∗ has finite fibers (as the weight map is locally finite), and hence
there are only finitely many points of V2 lying over a given character of U(t). It thus
follows from Lemma 3.10 that the action of L[T0] on Γ(U,M(M)) factors through
a finite dimensional quotient. It follows that Γ(U,M(M)) is finitely generated
over O(V1).

Let m ⊂ O(V1) be a maximal ideal. As O(V1) is an affinoid L-algebra, m is
closed in O(V1) and O(V1)/m is a finite extension of L. As the image of Srig in
O(V1) is dense, we have Srig/(Srig ∩m) ' O(V1)/m. The ideal a := Srig ∩m of Srig

is finitely generated by Lemma 3.2, so that the sheaf a ⊗Srig MΠ(M) is coherent
and

Γ(Spf(R)rig × T̂ , a⊗Srig MΠ(M)) ' a⊗Srig Γ(Spf(R)rig × T̂ ,MΠ(M)).
As the functor M 7→ Γ(U,MΠ) is exact on the category of coherent sheaves, we
have an isomorphism

Γ(U, a⊗Srig MΠ(M)) ' a⊗Srig Γ(U,MΠ(M)) ' m⊗O(V1) Γ(U,MΠ(M)).
Therefore we deduce from Proposition 3.6 that the map

m⊗O(V1) ⊗Γ(U,MΠ(M)) −→ Γ(U,M(M))
is injective. This implies that Γ(U,MΠ(M)) is a flat O(V1)-module.
Corollary 3.18. Assume that the representation Π satisfies Hypothesis 3.15. Then
the functorM 7→ MΠ(M) is an exact functor from the category O∞alg to the category
of Cohen–Macaulay sheaves on Spf(R)rig× T̂ . Moreover ifMΠ(M) is nonzero, its
support is s-dimensional, where s is as in Hypothesis 3.15.
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3.4 Comparison with the parabolic Jacquet functor

Let Π be an R-admissible Banach representation of G satisfying hypothesis 3.15.
We end this section by computing the evaluation ofMΠ on generalized (deformed)
Verma modules in terms of Emerton’s parabolic Jacquet-module.

Let I ⊂ ∆ be a subset of simple roots. Let λ ∈ X∗(T )+
I be an algebraic

character dominant with respect to pI . Recall that, by [Eme06a, §3.4], the L-
representation JPI (Πla) of LI is locally analytic. Following [Wu, §5.2], we define

JPI (Πla)λ := HomU(lssI )(LI(λ), JPI (Πla))⊗L LI(λ)
JI,λ(Πla) := JB∩LI (JPI (Πla)λ).

Similarly to Lemma 3.16 we have the following finiteness result:
Proposition 3.19. The Rrig⊗̂LO(T̂ )-module JI,λ(Πla)′ is coadmissible.

Proof. This is a consequence of [Wu, Lemm. 5.1 & 5.2].

By the above proposition there is a coherent sheafMI,λ
Π on Spf(R)rig× T̂ such

that
Γ(Spf(R)rig × T̂ ,MI,λ

Π ) = JI,λ(Πla)′.
For k > 1, let T̂ sm

k be the k-th infinitesimal neighborhood of the closed subspace
T̂ sm of smooth characters in T̂ and let ik be the closed immersion of T̂ sm

k in T̂ .
Moreover, for λ ∈ X∗(T ) ⊂ T̂ , we write tλ : T̂ −→ T̂ for the map defined by
tλ(δ) = δλ.
Proposition 3.20. Let λ ∈ X∗(T )+

I be an algebraic character of T dominant with
respect to P I and let M = M̃I(λ)⊗AIAI/mk ∈ O∞alg. Then there is an isomorphism
of coherent sheaves on Spf(R)rig × T̂ :

MΠ(M) ' ik,∗i
∗
kt
∗
λM

I,λ
Π .

Proof. Using the left exactness of the functor JPI (−), we have an isomorphism an
Rrig-equivariant morphism of locally analytic representations of LI :
JPI (HomU(g)(M̃I(λ)⊗AI AI/mk,Πla)) ' HomU(lI)(LI(λ)⊗L AI/mk, JPI (Πla)).

Therefore

HomU(t)(λ⊗L AI/mk, JB∩LI (JPI (Πla)λ))
' JB∩LI (HomU(t)(AI/mk,HomU(lssI )(LI(λ), JPI (Πla))))

= JB∩LI (HomU(lI)(LI(λ)⊗L AI/mk, JPI (Πla)))
' JB∩LI (JPI (HomU(pI)(LI(λ)⊗L AI/mk,Πla)))

' JB(HomU(g)(M̃I(λ)⊗AI AI/mk,Πla))
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where the first isomorphism comes from [Wu, Lemm. 5.3]. The claim now follows
form the fact that the source of this chain of isomorphisms is the dual (of the
global sections) of ik,∗i∗kt∗λM

I,λ
Π and the target is the dual ofMΠ(M).

4 Quasi-trianguline local deformation rings

Let F be a finite extension ofQ. We keep the notation of section 3 but we specialize
ourselves to the case G = Res(F⊗QQp)/Qp(GLn,F⊗QQp) '

∏
v|p ResFv/Qp GLn,Fv . We

fix B the upper triangular Borel subgroup and T the diagonal torus. It is therefore
sufficient to choose L a finite extension of Qp splitting all the Fv. We point out
that, though the field L of coefficients is the same as in the preceding section, the
group G in this section should be considered as the Langlands dual group of the
group in section 3.

Let ΣF be the set of embeddings of F in L. This set can be decomposed as
ΣF = ∐

v|p ΣFv , where ΣFv is the set ofQp-linear embeddings of Fv into L and where
the index set is the set of places v of F that divide p. We have a decomposition

g ' (
⊕
τ∈ΣF

Lie(G)⊗F⊗QQp,τ L) '
⊕
τ∈ΣF

Lie(GLn,L).

Let ∆ be the set of simple roots of GL with respect to BL. Then

∆ =
∐
τ∈ΣF

∆τ , ∆τ = {α1,τ , . . . , αn−1,τ}

where α1,τ , . . . , αn−1,τ are the simple roots of the copy of Lie(GLn,L) corresponding
to τ . For I ⊂ ∆ we denote P I the standard parabolic subgroup of GL correspond-
ing to I.

4.1 Local models

Let g̃ := GL ×BL b be the Grothendieck–Springer resolution of g (which is con-
sidered as a scheme over L not just as a vector space in this section). We have a
closed embedding g̃ ↪→ GL/B × g given by (gB,X) 7→ (bB,Ad(g)X) and set

X := g̃×g g̃ ⊂ GL/BL × g×GL/BL.

More generally if I ⊂ ∆, we set

g̃0
pI

:= GL ×P I (zI ⊕ nI)
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where we recall that P I is the parabolic subgroup of G associated to ∆ and pI is
its Lie algebra. Moreover, we write zI for the center of pI and nI for its unipotent
radical. Again we consider all these L-vector spaces as L-schemes. We have also a
closed embedding g̃0

pI
↪→ GL/P I × g given by (gP I , X) 7→ (gP I ,Ad(g)X) and we

set
XpI := g̃0

pI
×g g̃ ↪→ GL/P I × g×GL/BL.

In particular we have Xb = X. There scheme XpI decomposes into irreducible
components as follows:

XpI =
⋃

w∈WI\W
XpI ,w ⊂ GL/P I × g×GL/B.

Here XpI ,w is the closure of on open subset VpI ,w ⊂ XpI , which is by definition the
preimage of the G-orbit of G · (1, w̃) ⊂ G/P I × G/B, where w̃ ∈ W is a lift of
w ∈ WI\W (see [BD, Cor. 5.2.2] for details). In this paper we need to control the
singularities of XpI . Even though, for our purpose, the result of [BHS19, Rk. 4.1.6]
would be sufficient, we mention the following more general result.

Proposition 4.1. Let w ∈ W . Then Xw is smooth if, and only if, w is a product
of distinct simple reflections.

Proof. We note that the natural action

t · (gB, hB,N) = (gB, hB, tN)

of Gm on X by scaling on the g-factor extends to an action of the monoid A1.
This action obviously preserves each Xw. As the singular locus is closed the non-
singular locus, if non-empty, contains a point of the form (gBhB, 0) We will thus
prove the previous proposition using [BHS19] Proposition 2.5.3 (ii).

We first assume that w is a product of distinct simple reflections. In this case
it is enough to prove that

a) Uw is smooth in GL/B ×GL/B;

b) tww
′−1 has codimension lg(w)− lg(w′) in t for all w′ 6 w for Bruhat ordering

(with lg the Bruhat length).

By Fan’s Theorem [BL00, Theorem 7.2.14], if w is a product of distinct simples
reflexions, then Uw is smooth and a) is true. Thus we only need to prove b). For
w ∈ W , let us introduce

`(w) := min{k > 0 | w = r1 . . . rk, rk ∈ W a reflection}
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(we recall that reflection is an element of the form sα where α ∈ Φ is a root, but
not necessarily a simple root). By [Car72, Lemma 2] and [BHS17a, Lemma 2.7]
we have `(w) = dimL t− dimL t

w = dw (in the notations of [BHS17a]).
Claim 4.2. If w is a product of distinct simple reflections, we have

`(ww′−1) = `(w)− `(w′) = lg(w)− lg(w′)

for all w′ 6 w.

If Claim 4.2 is true, we have `(ww′−1) = dim t − dim tww
′−1 = lg(w) − lg(w′)

thus Proposition 2.5.3 of [BHS19] applies and Xw is smooth. We now prove the
claim. The second equality of the claim is a consequence of [Car72, Lemma 3] as
w and w′ are products of pairwise distinct simple reflections. Indeed, a product
of pairwise distinct simple reflexions s1 . . . sk is always a composition of reflections
si along vectors vi such that v1, . . . , vk are linearly independent. Thus [Car72,
Lemma 3] implies `(w) = lg(w) and `(w′) = lg(w′).

We write w′ = si1 . . . sik and w = t1 . . . tb as reduced expressions of pairwise
distinct simple roots such that there exists a1 6 . . . 6 ak satisfying taj = sij . For
at 6 j < at+1 let rj denote the reflection rj := si1 . . . sittjsit . . . si1 . We then have

ww′−1 =t1 . . . tbsik . . . si1
=t1 . . . ta1−1[si1ta1+1si1︸ ︷︷ ︸

ra1+1

] . . . [si1ta2−1si1︸ ︷︷ ︸
ra2−1

][si1si2ta2+1si2si1︸ ︷︷ ︸
ra2+1

]

. . . [si1 . . . siktak+1sik . . . si1 ] . . . [si1 . . . siktbsik . . . si1︸ ︷︷ ︸
rb

]

=t1 . . . ta1−1ra1+1 . . . ra2−1ra2+1 . . . . . . rb.

In particular, `(ww′−1) 6 lg(w) − lg(w′) = `(w) − `(w′). Now Claim 4.2 follows
from
Claim 4.3. Let w ∈ W and w′ be a product of distinct simple reflections. Then
`(ww′−1) > `(w)− `(w′) = `(w)− lg(w′).

We now prove Claim 4.3. By induction on the number of simple reflexions
appearing in w′, it is enough to prove `(ws) > `(w) − 1 when w′ = s is a simple
reflexion. Note that for any w we have dimL t

ws ∩ ts > dimL t
ws − 1 as ts is a

hyperplane in t. Moreover, tws ∩ ts = tw ∩ ts ⊂ tw. Thus dim tw > dim tws − 1.
Using `(w) = dim t− dim tw we hence find

`(w) 6 `(ws) + 1.

Thus `(ws) > `(w)− 1, which proves Claim 4.3.
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We now prove the converse, i.e. that Xw is singular, if w is not a product of
distinct simple reflections. We hence assume that w is not a product of distinct
simple reflections.

It is enough (but actually equivalent) to prove that Xw is singular at (B,B, 0).
We will use Mowlavi’s results [Mow23]. The pair (1, w) is a good pair ([Mow23]),
and thus [Mow23, Theorem 6] applies. Hence [Mow23, Proposition 3.2.2] gives an
exact formula for the tangent space at x = (B,B, 0) ∈ (Xw ∩ V1)(L). This can be
rewritten as

dimL TxXw = dimL Tπ(x)Uw − dw + dimL t + lg(w0)
> dimB + lg(w)− lg(w) + dimL t + lg(w0),

as w is not a product of distinct simples so lg(w) > dw ([BHS17a] Lemma 2.7),
and where we use the notation 1 dw = dimL t− dimL t

w. Thus

dimL TxXw > 2 dimB + dimL t = dimGL = dimXw,

i.e. Xw is not smooth at x.

We write XI for the inverse image of XpI under the canonical projection
GL/BL× g×GL/BL → GL/P I × g×GL/BL. This scheme can also be defined as

XI := (GL ×BL (zI ⊕ nI))×g g̃,

in particular X∅ = X. The map XI → XpI is a P I/BL-torsor and thus is projective
and smooth. We deduce that we have a decomposition in irreducible components

XI =
⋃

w∈WI\W
XI,w,

where each XI,w → XpI ,w is projective and smooth. Moreover, we have a closed
embedding XI ↪→ X induced by the closed embedding zI ⊕ nI ↪→ b, and this
induces a closed embedding XI,w ↪→ Xwmax , as each fiber of XI −→ XpI over a
point in VpI ,w contains a (dense) open subset consisting of points that lie in the
Schubert cell GL(1, wmax) ⊂ G/B ×G/B.

Lemma 4.4. The schemes XI and XpI are generically reduced.

Proof. As XI is smooth over XpI , it suffices to prove the claim for XpI . For w ∈ W ,
let Uw = GL(1, w) ⊂ GL/P I × GL/B and let Vw ⊂ XpI be the inverse image of
Uw. It follows from [BD, Prop. 5.2.1] that the Vw are smooth L-schemes, and
they all have the same dimension. As they also cover XpI , their generic points are
the generic points of the irreducible components of XpI . This shows that XpI is
generically reduced.

1see [BHS19] just before Proposition 4.1.5
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Recall that we have two maps κ1, κ2 : X → t (see [BHS19, §2.3]) defined by
κi(g1B,N, g2B) = g−1

i Ngi(mod n). By construction, the image of κ1|XI lands in
zI and the map κ1|XI factors through XpI . This provides a commutative diagram

XI XpI

zI ×t/W t

ΘI
ΘpI

where ΘI is the restriction of the map (κ1, κ2) to XI .
The following result is the analogue of [BHS19, Lem. 2.5.1] in our context, with

analogous proof.

Lemma 4.5. The irreducible components of zI ×t/W t are the (TI,w)w∈WI\W where

TI,w = {(z,Ad(w−1)(z)) | z ∈ zI}.

Moreover, the irreducible component XI,w (resp. XpI ,w) is the unique component
of XI (resp. XpI ) whose image under ΘI (resp. ΘpI ) dominates TI,w.

Remark 4.6. For future use, we make the following notational convention: When
F = Q, we have GL = GLn,L, we will use the notations Xn, Xn,I , Xn,I,w etc. for
the schemes X, XI , XI,w etc.

4.2 Partially de Rham deformation rings

For each place v|p of F , we fix rv : GalFv → GLn(L) a framed ϕ-generic Hodge–
Tate regular crystalline representation, that we assume that the (ϕ,Γ)-module
Drig(rv) associated to rv is crystalline ϕ-generic with regular Hodge–Tate type in
the sense of [HMS, §3.3&§3.4]. We also fix a refinement Rv = (ϕ1, . . . , ϕn) ∈ Ln
of rv (see loc. cit.). We will use the notation r = (rv)v|p and R = (Rv)v|p and say
that r is ϕ-generic Hodge–Tate regular and that R is a refinement of r.

Let CL be the category of local artinian L-algebras. Fix v|p a place of F . Let X�rv
be the groupoid over CL of deformations of rv. It is represented by a formal scheme
over L that we also denote by X�rv by abuse of notation. We recall from [BHS19,
3.6] that, given the refinement Rv, the groupoid of trianguline deformations of
M•,v is representable by a closed formal subscheme X qtri

rv ,Rv ⊂ X
�
rv . Here M•,v

the (ϕ,Γ)-module over RK,L[1/t] obtained from Drig(rv) by inverting t which is
equipped with the unique triangulation corresponding to the refinement Rv. We
set Wv = WdR(Drig(rv)[1/t]) and W•,v = WdR(M•,v) and let XWv ,W•,v denote the
groupoid of deformations of (Wv,W•,v) as defined in [BHS19, §3.3].
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Fix a finite subset Iv ⊂ ∆v. For an object A of CL, we define XP Iv
Wv ,W•,v(A)

to be the subset of all (WA,WA,•) ∈ XWv ,W•v (A) such that for any τ ∈ ΣFv and
αi,τ ∈ ∆τ r Iv, the B+

dR-representation WA,i ⊗K,τ L/WA,j+1 ⊗K,τ L is de Rham,
where j is the largest integer < i such that ατ,j /∈ I (and j = 0 if i is the smallest
integer such that αi,τ /∈ I). It is obvious from the definition that XP I

Wv ,W•,v is a
subgroupoid of XWv ,W•,v .

For an object A of CL and rA ∈ Xqtri
rv ,Rv(A), we denote by MA,• the unique

triangulation of Drig(rA) liftingM•,v. We say that rA is P I-de Rham if

(WdR(rA),WdR(MA,•)) ∈ X
P Iv
Wv ,W•,v(A)

(see [Wu, Def. 3.10 ]). It now follows from [Wu, Lemm. 3.11] that this functor
is representable by a closed formal subscheme of X qtri

rv ,Rv that we denote X Iv−qtri
rv ,Rv .

More precisely, we have an isomorphism of groupoids

X Iv−qtri
rv ,Rv ' X

qtri
rv ,Rv ×XWv,W•,v X

PIv
Wv ,W•,v .

Fix an L⊗QpFv-basis αv ofWGalK
v and let X�Wv

be the groupoid of deformations
of the pair (Wv, αv). We set

X�Wv ,W•,v = X�Wv
×XWv XWv ,W•,v

X Iv−qtri,�
rv ,Rv = X Iv−qtri

rv ,Rv ×XWv X
�
Wv
.

As the map X qtri
rv ,Rv → XW+

v
×XWvXWv ,W•,v is formally smooth by [BHS19, Cor. 3.5.6],

we deduce that the map X Iv−qtri,�
rv ,Rv → XW+

v
×XWv X

PIv ,�
Wv ,W•,v is formally smooth as

well.
If I = ∐

v|p Iv ⊂ ∆ and if α = (αv)v|p is fixed, we set X I−qtri
r,R := ∏

v|pX Iv−qtri
rv ,Rv

and X I−qtri,�
r,R := ∏

v|pX Iv−qtri,�
rv ,Rv .

We consider the point

xpdR := (gBL, 0, hBL) ∈ XI(L) ⊂ (GL/BL × g×GL/BL)(L), (6)

where g ∈ G(L) (resp. h) is the matrix sending the standard flag (corresponding to
our fixed basis α) of ∏v|pW

GalK
v to the complete flag ∏v|pWdR(M•,v)GalK (resp. to

the Hodge flag). We deduce the following result (see [BD, §6.3] in a slightly
different context):

Theorem 4.7. There exists a diagram of formal L-schemes with formally smooth
maps

X I−qtri
r,R X I−qtri,�

r,R X̂I,xpdR

g f
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Proof. Let I = ∐
v∈Sp Iv, with Iv ⊂ ∆v for v ∈ Sp. Note that we have a decompo-

sition XI '
∏
v∈Sp XIv where XIv is the L-scheme defined in the same way as XI

but for the group ResFv/Qp GLn,Fv . We also write xpdR = (xpdR,v)v∈Sp where xpdR,v
is the image of xpdR in XIv . We just have to check that the groupoid

XW+
v
×XWv X

P Iv
Wv ,W•,v ×XWv X

�
Wv

is represented by the completion of XIv at xpdR,v. This can be checked easily as in
the proof of [Wu, Lemm. 3.11] using [BHS19, Cor. 3.1.9 &Thm. 3.2.5].

We finally note that the map κ1 from above induces a map of formal schemes
κ1 : X̂I,xpdR → ẑI , where ẑI is the completion of zI at 0, and thus a map

X I−qtri,�
r,R → ẑI .

This maps factors into a map of formal schemes κ1 : X I−qtri
r,R −→ ẑI .

For w ∈ W such that xpdR ∈ XI,w(L), we denote by X I−qtri,w
r,R the schematic

image of
X I−qtri,�
r,R ×

X̂I,xpdR
X̂I,w,xpdR → X

I−qtri
r,R

and by X qtri
r,R (resp. X I−qtri,w

r,R ) the schematic inverse image of {0} under κ1 in X I−qtri
r,R

(resp. X I−qtri,w
r,R ).

The schemes X I−qtri
r,R and X I−qtri,w

r,R are formal spectra of complete local noethe-
rian rings that we denote by RI−qtri

r,R and RI−qtri,w
r,R . It follows from the constructions

that moreover RI−qtri,w
r,R is an integral local ring.

5 Global construction

Let F be a totally real number field and let E/F be a totally imaginary CM
extension of number fields, in particular [E : F ] = 2. We assume that all places of
F dividing p are unramified and split in E/F and denote by Sp the set of places
above p in F . We fix a set Σ of places of E dividing p such that, for each place
v ∈ Sp, there is exactly one place of Σ above v. Let U be a unitary group in n
variables for E/F that we regard, via Weil restriction, as an algebraic group overQ.
We assume that U(R) is compact and and that UQp is quasi-split. This implies in
particular that there exists an isomorphism UQp '

∏
v∈Sp ResFv/Qp GLn,Fv that we

fix from now on. From now we note G = UQp identified with ∏v∈Sp ResFv/Qp GLn,Fv
via this fixed isomorphism and we use notations of section 3, i.e. L is the choice
of a field of coefficients that is assumed to be big enough so that all embeddings
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of E (equivalently of F ) in Qp factor through L. Moreover, B ⊂ GL is the Borel
subgroup of upper triangular matrices, T ⊂ B is the maximal torus of diagonal
matrices, N is the unipotent radical of B etc.

5.1 Classical and p-adic automorphic forms

We write T = T (Qp) '
(∏

v∈Sp F
×
v

)n
and let T0 '

(∏
v∈Sp O

×
Fv

)n
⊂ T denote its

maximal compact subgroup. We denote by T̂ (resp. T̂0) the rigid analytic spaces
over L parametrizing the continuous characters of T (resp. of T0) and recall from
5 that there is a weight map

wt : T̂0 → t∗

with values in the dual Lie algebra t∗ of T (considered as a rigid space over L). We
will often, by abuse of notation, also write wt for the composition of wt with the
canonical projection T̂ → T̂0. Recall that we had identified X∗(T ) with a Z-lattice
in t∗. Often we will identify X∗(T ) with Zn[F :Q].
Definition 5.1. Let δ ∈ T̂ (resp. ∈ T̂0) be a character.
(i) The weight of δ is the image wt(δ) under the weight map.
(ii) The character δ is called of algebraic weight if wt(δ) ∈ X∗(T ) ⊂ t∗.
(iii) The character δ is called algebraic if it is of the form

δk : (z1 ⊗ 1, . . . , zn ⊗ 1) 7−→
∏
τ

(
τ(z1)kτ1 · · · τ(zn)kτn

)
for some k = (kτ1 , . . . , kτn)τ :F ↪→L ∈ Zn[F :Q]. It is called dominant algebraic if k ∈
X∗(T )+, i.e. if kτ1 > . . . > kτn for all τ .

Note that k 7→ δk defines a section of the weight map over the algebraic weights,
and we use this map to identify X∗(T ) with a subset of T̂ (resp. T̂0).

Let Kp ⊂ U(A∞,p) be a compact open subgroup, called a tame level that we
assume to be of the form ∏

6̀=pK` where K` is a compact open subgroup of U(Q`).
Let Ip be the Iwahori subgroup of G = G(Qp) = U(Qp) with respect to our choice
of B. For any compact open Kp ⊂ U(Qp) we consider the Shimura set

ShKpKp := U(Q)\U(A∞)/KpKp.

As U(R) is compact, this is indeed a finite set of points.
Definition 5.2. The completed cohomology of the tower (ShKpKp)Kp⊂U(Qp) of
Shimura sets is:

Π := Π◦ ⊗OL L, with Π◦ := lim←−
n

lim−→
Kp

H0(ShKpKp ,OL/πnL),

see [Eme06b].
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The completed cohomology is an L-Banach space endowed with a continuous
action of U(Qp). This space is naturally identified with the space of continuous
functions

f : U(Q)\U(A∞)/Kp −→ L. (7)
We denote Πla the subspace of locally analytic vectors in Π for U(Qp). This is
the subspace of functions in (7) which are locally analytic. As Πla is a locally
analytic representation, there is a natural U(g)-action on Πla obtained by deriving
the G = G(Qp)-action. Here, as above, we write g for the Lie algebra of G, and
b, t, n for the Lie algebras of the Borel B, of the torus T and of the unipotent
radical N of B.

Definition 5.3. The space of overconvergent p-adic automorphic forms of tame
weight Kp is the space

S†(Kp) = (Πla)n = lim−→
N0⊂N(Qp)

(Πla)N0 ,

where N0 varies among the compact open subgroups of N(Qp). Given a weight
κ ∈ t∗, the space of overconvergent p-adic automorphic forms of tame weight Kp

and weight κ is the eigenspace

S†κ(Kp) ⊂ S†(Kp)

of eigenvalue κ for the U(t)-action.

Denote by T(Kp) := Z[Kp\U(A∞,p)/Kp] the Hecke algebra of Hecke operators
over Z of tame level Kp. Then T(Kp) acts by convolution on S†(Kp) and S†κ(Kp).
Let S be a finite set of prime numbers containing p and all the ` such that K` is
not hyperspecial. The subalgebra TS := ⊗

`/∈S T` ⊂ T(Kp) is commutative.

Definition 5.4. Let

T (Qp)+ := {diag(av1, . . . , avn)v ∈ T (Qp) | v(av1) > . . . > v(avn), ∀v ∈ Sp}.

The Atkin–Lehner ring A(p) is the sub-algebra of Z[T (Qp)] generated by the ele-
ments t ∈ T (Qp)+.

Let δ : T → L× be a continuous character. Then we can extend δ to a character
A(p) → L whose restriction to T+ is given by δ. By abuse of notation we still
write δ for this character of A(p).
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Note that there is a cofinal system of compact open subgroups N0 ⊂ N =
N(Qp) such that tN0t

−1 ⊂ N0 for all t ∈ T+. We hence can define a Hecke action
of A(p) on S†(Kp) = (Πla)n by letting t ∈ T (Qp)+ act on f ∈ (Πla)N0 via

[t]f :=
x 7→ 1

[N0 : tN0t−1]
∑

n∈N0/tN0t−1

f(xnt)
 ,

where N0 is a sufficiently small compact open subgroup of N such that f ∈ (Πla)N0

and such that tN0t
−1 ⊂ N0.

Let T be the commutative algebra TS⊗ZA(p). Definition 5.4 provides a struc-
ture of T-module on S†(Kp) and S†κ(Kp).

Definition 5.5. An overconvergent p-adic automorphic form f ∈ S†(Kp) = (Πla)n
is called a finite slope eigenvector for the A(p)-action if, for any t ∈ T (Qp)+, there
exists at ∈ L× such that

[t]f = atf.

More generally f is of finite slope for the A(p)-action if for all t ∈ T (Qp)+, there
exists a polynomial P ∈ L[X] such that P (0) 6= 0 and P ([t])f = 0.

Given a continuous character δ : T → L×, we write S†(Kp)[δ] for the eigenspace
with respect to the A(p)-action of eigensystem δ : A(p) → L. Note, that by
definition this eigensystem is automatically of finite slope and of weight κ = wt(δ).
Moreover, the A(p)-action on S†(Kp)[δ] uniquely extends to an action of Z[T (Qp)].
Remark 5.6. An overconvergent automorphic form of tame levelKp with eigenvalue
δ : T → L× for the Hecke-action at p (i.e. for the action of the Atkin–Lehner ring)
is thus the same as a locally analytic function

f : U(Q)\U(A∞)/Kp −→ L,

such that there exists a compact open subgroup N0 ⊂ N(Qp) so that, for all
g ∈ U(A∞), t ∈ T0, n ∈ N0,

f(gtn) = δ(t)f(g),
and such that moreover, for all t ∈ T (Qp)+, [t]f = δ(t)f .

Definition 5.7. The space of classical automorphic forms of tame level Kp is the
subspace Scl(Kp) = (Πcl)n) of S†(Kp) = (Πla)n of elements which are Kp-finite for
some (resp. any) compact open Kp ⊂ U(Qp).

We note that this subspace is stable under the action of T.
For any character χS : TS −→ L, we let Π[χS] (resp. S†(Kp)[χS], resp. Scl(Kp)[χS])

denote the subspace of χS-eigenvectors for TS in Π (resp. S†(Kp), resp. Scl(Kp)).
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If δ : T → L is a character of T (defining a character of A(p)) and if χ = χS ⊗ δ
is the corresponding character of T = TS ⊗ZA(p), we write S†(Kp)[χ] etc. for the
corresponding eigenspace.

Let m be a maximal ideal in TS. We then define

Πm := Π◦m ⊗OL L, where Π◦m := lim←−
n

(Π◦/πnLΠ◦)m.

As there are only finitely many maximal ideals m of TS such that (Π◦/πLΠ◦)m
is nonzero, the space Πm is a topological direct summand of Π stable under the
actions of U(Qp) and T.

Recall that if m is a maximal ideal (whose residue field is assumed to equal kL)
such that Πm is non zero, then we may associate to m a continuous representation
ρ : GalE −→ GLn(kL) which is conjugate autodual, and unramified away from S.
Such representations ρ are called modular (see for example [BHS17b, §2.4]).

5.2 Patching the completed cohomology

We fix a maximal ideal m ⊂ TS such that Πm 6= 0 is non-zero and denote by
ρ : GalE −→ GLn(kL) the corresponding modular Galois representation. For each
place v of F which splits in E we write

ρv := ρ|GalEṽ
,

for a choice of ṽ|v of E. From now on we assume that, for v ∈ S, the place v splits
in E/F , we make a fixed choice ṽ|v as before such that ṽ ∈ Σ if v| p, and denote
S̃ = {ṽ|v ∈ S} so that S̃ is in bijection with S and contains Σ. For v ∈ S we write
R�ρv for the universal lifting (i.e. framed deformation) ring of ρv and define

R�ρv � R
�
ρv

to be the maximal reduced Zp-flat quotient.
Remark 5.8. If v|p we have in fact, by the main results of [BIP23], R�ρv = R�ρv .
Using the main result of [DHKM24] we find that the same applies to places v - p,
as the deformation rings R�ρv may be identified with versal rings to the moduli
space of L-parameters. We still keep the notations introduced above in order to
be consistent with the notations from the references for the patching construction
below.

We denote by Rρ,S the quotient of Rρ corresponding to the deformation problem

S = (E/F, S, S̃,OL, ρ, ε1−nδnE/F , {R
�
ρv
}v∈S)
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in the notations of [CHT08, §2.3], where δE/F : GalF −→ {±1} is the quadratic
character associated to E/F , and

Rloc :=
⊗̂
v∈S

R
�
ρv
.

We assume the following (strong) Taylor-Wiles hypothesis

Hypothesis 5.9. 1. p > 2 ;

2. the extension E/F is unramified and E does not contain a (non-trivial) p-th
root ζp of 1 ;

3. the group U is quasi-split at all finite places of Q ;

4. the level Kp is chosen such that Kv is hyperspecial whenever the finite place
v of F is inert in E ;

5. the representation ρ|GalE(ζp)
is adequate.

By [CEG+16] sections 2.7,2.8, (see also [BHS17b, Théorème 3.5]), we have the
following data.

Proposition 5.10. There exist

1. an integer g > 1 ;

2. a continuous, admissible, unitary R∞-representation Π∞ of U(Qp) over L,
where

R∞ := Rloc[[x1, . . . , xg]];

3. a local map of local rings S∞ := OL[[y1, . . . , yt]] −→ R∞ with

t = g + dimRloc − [F+ : Q]n(n+ 1)
2

and a local map of local rings R∞ −→ Rρ,S such that

(i) there exists an OL-lattice Π0
∞ ⊂ Π∞ stable by U(Qp) and R∞ such that

(Π0
∞)′ = HomOL(Π0

∞,OL),

is a projective S∞[[Kp]]-module of finite type (via S∞ −→ R∞) for some (equiva-
lently all) compact open subgroup Kp ⊂ U(Qp) ;
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(ii) the map R∞ → Rρ,S induces an isomorphism

R∞/aR∞ ' Rρ,S ,

of local noetherian OL-algebras and an isomorphism of continuous admissible uni-
tary R∞/aR∞-representations of U(Qp) on L

Π∞[a] ' Πm,

where a = (y1, . . . , yt) denotes the augmentation ideal of S∞,

It is a direct consequence of this proposition that the R∞-representation Π∞ of
U(Qp) satisfies Hypothesis 3.15. We note that the same applies to a slightly more
general context:

Lemma 5.11. Let V be a finite dimensional algebraic representation of U(Qp)
over L. Then the R∞-Banach representation Π∞ ⊗L V satisfies Hypothesis 3.15.

Proof. As Π∞ satisfies Hypothesis 3.15, for any open pro-p-subgroup H of U(Qp)
there exists an isomorphism of Ztp ×H-representations Π∞|Ztp×H ' C(Ztp ×H,L)m
for some m > 1. But then

(Π∞ ⊗L V )|Ztp×H ' C(Z
t
p ×H,V )m ' C(Ztp ×H,L)mdimL V .

In the reminder of this paper we will use the following notations: we set

X p := Spf(
⊗̂

v∈S\Sp
R
�
ρv

)rig '
∏

v∈S\Sp

Spf(R�ρv)
rig,

where Ug := Spf(OL[[x1, . . . , xg]])rig is an open polydisc. Moreover, we set

Xρp := Spf(
⊗̂

v∈Sp
R�ρv)

rig,

X∞ := Spf(R∞)rig ' X p ×Xρp × Ug.

By construction the space X∞ contains Xρ,S = (Spf Rρ,S)rig as a closed subspace.
For a point x = (xp, xp, z) ∈ X∞(L) and a place v of F dividing p, we denote by
ρx,v the framed representation GalFv → GLn(L) associated to x. Finally we write
ρx,p for the the family of representations (ρx,v)v|p.
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6 Patching functors

In this section, we keep notations and conventions of section 5. In particular, we
have G ' ∏v∈Sp(L×Qp ResFv/Qp GLn,Fv) which is an algebraic group over L and we
consider the associated categories O,O∞alg and Õalg as in section 2 (for the choice
of the upper triangular Borel subgroup B).

We fix once and for all a point x ∈ X∞(L) such that x maps to the origin in
(Spf S∞)rig (i.e. the point defined by the augmentation ideal of S∞) and we denote
by R̂∞,x the completed local ring of X∞ at x.

6.1 Locally analytic patching functors

We fix a smooth and unramified character ε : T (Qp) → L× and consider ε as a
point of T̂ .

By Lemma 5.11, we can apply Corollary 3.18 to the admissible locally analytic
representation Πla

∞, and obtain a functor

O∞alg → Coh(X∞ × T̂ )
M 7→ MΠ∞(M).

Definition 6.1. For M ∈ O∞alg we define

M∞,x,ε(M) :=MΠ∞(M)x,ε

to be the stalk ofMΠ∞(M) at (x, ε).

It follows from Proposition 3.17 thatM∞,x,ε(M) is a Cohen–Macaulay R̂∞,x-
module and is follows from Theorem 3.14 that the functor M 7→ M∞,x,ε(M) is
exact.
Remark 6.2. We also have the following description:

M∞,x,ε(M) '
(
HomU(g)(M,Πla

∞[m∞x ])N0 [m∞ε ]
)′

where mε is the maximal ideal of A(p)⊗Zp Qp = Qp[T (Qp)+] corresponding to the
character ε and mx is the maximal ideal of R∞[1/p] corresponding to x.
Remark 6.3. Note that we have two U(t)-module structures onM∞,x,ε(M): The
first one comes from the nilpotent U(t)-module structure on M as in section 2.2.
The second one comes from the action of U(t) induced from the locally analytic
T -structure on Πla

∞. It is a tautological consequence of the construction, but we
point out that these two actions coincide.
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Definition 6.4. Let I ⊂ ∆ be a finite subset of simple roots and let M be an
object of ÕIalg. Then we define

M∞,x,ε(M) := lim←−
n

M∞,x,ε(M/mn
I ).

Proposition 6.5. The functor M 7→ M∞,x,ε(M) is exact on ÕIalg and for each
M ∈ ÕIalg the R̂∞,x-moduleM∞,x,ε(M) is finitely generated and Cohen–Macaulay
of dimension t+ dimK zI . MoreoverM∞,x,ε(M) is flat over U(zI).

Proof. Let Ŝ∞ be the completion of S∞[1/p] along the maximal ideal generated
by the augmentation ideal a of S∞. Moreover, we write ÛI for the completion of
U(zI) at the maximal ideal mI .

By exactness of the functorM∞,x,ε, we have

M∞,x,ε(M/mn+1
I )/mn

I 'M∞,x,ε(M/mn
I )

for any n > 1. It follows from Theorem 3.17 that M∞,x,ε(M/mI) is a finite
projective Ŝ∞-module. We denote its rank by r > 0. The exactness of M∞,x,ε
implies thatM∞,x,ε(M/mn

I ) is a finite projective Ŝ∞⊗LU(zI)/mn
I -module of rank r

and it follows thatM∞,x,ε(M) is a finite projective Ŝ∞⊗̂LÛI-module of rank r. As
the action of Ŝ∞⊗̂LÛI factors through R̂∞,x we deduce the result. The exactness
of the functor M∞,x,ε is a consequence of the exactness of M∞,x,ε restricted to
O∞alg and the fact that each system (M∞,x,ε(M/mn

I ))n satisfies the Mittag-Leffler
condition.

Let t = (t1, . . . , tm) be a regular sequence generating the maximal ideal of
U(zI)mI . This is also a regular sequence generating the maximal ideal of the
completion ÛI . By exactness of the functor Ŝ∞ ⊗L − on strict exact sequences of
Fréchet L-algebras, the sequence t is Ŝ∞⊗̂LÛI-regular. As M∞,x,ε(M) is a finite
free Ŝ∞⊗̂LÛI-module, the sequence t isM∞,x,ε(M)-regular. This is equivalent to
flatness over U(zI)mI .

6.2 A factorization property

We use the spaces and notations introduced in section 4. A point x ∈ X∞(L) is said
to be crystalline ϕ-generic and Hodge–Tate regular if for all v|p the representation
ρx,v is crystalline ϕ-generic and Hodge–Tate regular. Let x = (ρp, ρp, z) ∈ X∞(L)
be such a ϕ-generic Hodge–Tate regular point. We fix a refinement R of ρp.

Recall that G ' ∏
v∈Sp(L×Qp ResFv/Qp GLn,Fv). If I is a set of simple roots of

G, we set
X I−qtri
∞,x,R := X̂ p

ρp ×X I−qtri
ρp,R × Ûg.
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This is a closed subscheme of (X̂∞)x and we write R̂∞,x � RI−qtri
∞,x,R the correspond-

ing quotient map. Moreover, for w ∈ W , we set

X I−qtri,w
∞,x,R := X̂ p

ρp ×X I−qtri,w
ρp,R × Ûg.

IfR = (ϕ1,v, . . . , ϕn,v)v|p ∈
∏
v|p(L×)n, we define δR to be the smooth unramified

character of T defined by

(x1,v, . . . , xn,v)v|p 7→
∏
v|p

∏
i

(ϕvFv (xi,v)
i,v qi−nv )

where qn denotes the cardinality of the residue field of Fv. We use the notation
M∞,x,R :=M∞,x,δR . The goal of this section is to prove the following result.

Theorem 6.6. Let x ∈ X∞(L) be a ϕ-generic Hodge–Tate regular crystalline
point and let R be a refinement of x. Then, for any M ∈ O∞,Ialg , the R̂∞,x-module
M∞,x,R(M) is killed by the kernel of the map R̂∞,x � RI−qtri

∞,x,R. Equivalently its
support is contained in X I−qtri

∞,x,R .

Proof. This is a consequence of Proposition 3.20, Proposition 2.14 and Corollary
6.11 which will be proved below.

We will prove the auxiliary statements in (the proof of) this theorem by making
use of variants of the construction of eigenvarieties. More precisely, for a subset
I ⊂ ∆, a character λ ∈ X∗(T )+

I (dominant with respect to P I) and an algebraic
representation V of G we will consider the scheme-theoretic supports

EI∞(λ) = supp(MI,λ
Π∞) ⊂ X∞ × T̂

EI∞(λ, V ) = supp(MI,λ,V
Π∞ ) ⊂ X∞ × T̂ ,

whereMI,λ
Π∞ respectivelyMI,λ,V

Π∞ are the coherent sheaves associated to JI,λ(Πla
∞)′

respectively to JI,λ((Π∞ ⊗L V )la)′ (see section 3.4 for the notation). We will link
the completions of EI∞(λ) resp. EI∞(λ, V ) at points (x, δ) ∈ X∞ × T̂ to the quasi-
trianguline deformation rings of section 4. This is done in two steps: we first
show that the set-theoretic support of MI,λ

Π∞ resp. of MI,λ,V
Π∞ is contained in the

(quasi-)trianguline locus (see the proof of Proposition 6.7). We then prove that
EI∞(λ) resp. EI∞(λ, V ) is reduced (see the proof of Proposition 6.9). The proof
of the latter statement follows the usual argument in the case of eigenvarieties,
see e.g. [BHS17b, Corollaire 3.12 and Corollaire 3.20]: the general properties of
eigenvarieties (deduced from the fact that the sheaves MI,λ

Π∞ resp. MI,λ,V
Π∞ are

locally finite projective over (Spf S∞)rig × T̂0 imply that EI∞(λ) resp. EI∞(λ, V )
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have no embedded components. Hence it is enough to produce on each of their
irreducible components a point y such that EI∞(λ) resp. EI∞(λ, V ) are reduced in a
neighborhood of y. By the same projectivity argument as above, the point y can
be chosen so that the weight map to T̂0 is smooth at this point. Reducedness then
boils down to checking that the Hecke operators (that generate the local ring of
EI∞(λ) resp. EI∞(λ, V ) at y) act semi-simply on the fiber ofMI,λ

Π∞ resp.MI,λ,V
Π∞ over

T̂0 which in turn follows from the fact that Hecke-operators act semi-simply on
spaces of classical automorphic forms. We now give the details of these arguments.

Let δ = (δ1,v, . . . , δn,v)v|p ∈ T̂ (L) be a parameter for a quasi-triangulation of x
at p, i.e. the trianguline filtration of the (ϕ,Γ)-module D†rig(ρv)[1/t] over RK,L[1/t]
has graded pieces RK,L(δi,v)[1/t]. As x is Hodge–Tate regular, there is a natural
map

ωδ : X qtri
∞,x,R −→ T̂∧δ ,

mapping a deformation at p of the (ϕ,Γ)-module D†rig(ρv)[1/t], equipped with
its trianguline filtration, to its parameter (see e.g. [BHS19, eq (3.15)]). If δ is
locally algebraic of the form δ = λδR for λ ∈ X∗(T ) and some smooth character
δR ∈ T̂ (L), we shift the previous map to get

ω = t−λωδ : X qtri
∞,x,R −→ T̂∧δR

which only depends on the chosen refinement. This induces a map

i× ω : X qtri
∞,x,R −→ X̂∞,x × T̂∧δR ,

or equivalently, a homomorphism R̂∞,x ⊗O∧T̂ ,δR −→ RI−qtri
∞,x,R.

Proposition 6.7. Let λ ∈ X∗(T )+
I be a weight dominant with respect to P I . The

R̂∞,x-moduleM∞,x,R(M̃I(λ)) is annihilated by the kernel of R̂∞,x → RI−qtri
∞,x,R. More

precisely,M∞,x,R(M̃I(λ)) is an R̂∞,x⊗O∧T̂ ,δR-module and annihilated by the kernel
of

R̂∞,x ⊗O∧T̂ ,δR −→ RI−qtri
∞,x,R.

Proof. It follows from Proposition 3.20 and the definition ofM∞,x,R(M̃I(λ)) that

M∞,x,R(M̃I(λ)) = (t∗λM
I,λ
Π∞)∧(x,δR)

as an R̂∞,x ⊗ O∧T̂ ,δR-module. It is thus enough to show that the completion of
MI,λ

Π∞ at the point (x, λδR) ∈ X∞(L)× T̂ (L) is supported at the closed subspace

i× wδ : X qtri
∞,x,R −→ X̂∞,x × T̂∧δλδR .
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We closely follow the proof of [Wu, Prop. 5.13]. Let us write E∞ ⊂ X × T̂ for
the scheme-theoretic support of the coherent sheaf defined by JB(Π∞)′. By [Wu,
5.4] this contains EI∞(λ) as a closed subspace. As in the proof of [Wu, Prop. 5.13]
we consider a proper birational map f : E ′∞ → E∞ such that the universal (ϕ,Γ)-
module over E ′∞ has a quasi-triangulation, and write E ′′∞ for the preimage of EI∞(λ)
in E ′∞. Let Y ⊂ E ′′∞ be the Zariski closed reduced subspace of E ′′∞ whose points are
exactly the points of E ′′∞ where the universal filtered (ϕ,Γ)-module over R[1/t] is
PI-de Rham. As in [Wu], the existence of Y is a consequence of [Wu, Prop. A.10].
It follows that for any y ∈ Y lying above (x, δR) the map

Ŷy → X∞ × T̂

factors through X I−qtri
∞,y,Ry . Let U ⊂ EI∞(λ) be an affinoid open subset containing

x and a Zariski dense subset of points which are de Rham (and in particular
PI-de Rham) and trianguline with parameter given by EI∞(λ) −→ T̂ . Such a
neighborhood exists by [Wu, Prop. 5.11 & 5.12]. We deduce that f(Y ) ⊃ U and
hence f−1(U) ⊂ Y and we conclude as in the proof of [BHS19, Prop. 3.7.2] (see
the erratum in [BD]) that the map

Ûx,λδR → X∞ × T̂

factors through X I−qtri
∞,x,R .

Corollary 6.8. Let V be an algebraic representation of G, then

M =M∞,x,R(M̃I(λ)⊗L V )

is annihilated by some power of the kernel of R̂∞,x ⊗O∧T̂ ,δR −→ RI−qtri
∞,x,R.

Proof. We recall that

M̃I(λ)⊗L V = U(g)⊗U(pI) (LI(λ))⊗L V ∼= U(g)⊗U(pI) (LI(λ)⊗ V|PI )

and that V|PI is an extension of algebraic irreducible representations of LI . Ex-
actness of M∞,x,R (see Proposition 6.5) implies that the R̂∞,x-module M is an
extension of R̂∞,x,R-module of the form M∞,x,R(M̃I(µ)) for µ ∈ X∗(T )+

I . We
deduce the result from Proposition 6.7.

Proposition 6.9. Let V be an algebraic representation of G. Then the schematic
support EI∞(λ, V ) of the coherent sheaf associated to JI,λ((Π∞⊗L V )la)′ is reduced.

Proof. We follow closely the proof of [BHS17b, Cor. 3.20] replacing, where it is
nedeed, some arguments by results of [Wu]. To simplify notations we just write
E = EI∞(λ, V ) andM =MI,λ,V

Π∞ for the reminder of this proof.
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Let N be the radical ideal of OE . Assume that N 6= 0 and let x ∈ E be a point
in the support of N . Let T̂ ◦λ be the preimage of λ|t∩lssI ∈ (t ∩ lssI )∗ under the map

T̂ → t∗ → (t ∩ lssI )∗,

where the first map is the weight map (5). According to [Wu, §5.4] there exists an
open affinoid neighborhood U of x and an open affinoid subsetW ⊂ T̂ ◦λ×Spf(S∞)rig

such that Γ(U,M) is a finite free O(W )-module (such a data exists according to
the results of [Wu, §5.4]). Then Γ(U,N ) is the radical ideal of O(U). Moreover, as
O(U) = Γ(U,OE) is a sub-O(W )-module of End(Γ(U,M)) (by the same argument
as in the proof of Theorem 3.17 respectively of [BHS17b, Prop. 3.11]), the same is
true for Γ(U,N ). Therefore Γ(U,N ) is a torsion free O(W )-module and its support
has the same dimension as W and hence contains an irreducible component U0 of
U . As a consequence the support of N contains an admissible open subset of E .
As the support of N is also a closed analytic subset of E , it follows from [Con99,
Lemm. 2.2.3] that the support of N contains an irreducible component of E . It
hence suffices to produce on each irreducible component of E a point y such that
E is reduced in a neighborhood of y.

By [Wu, Prop. 5.11] every irreducible component of E contains a point with
algebraic weight.

Therefore we fix a point x ∈ E(L) with integral weight λ′ ∈ T̂ ◦λ . Let U be an
open affinoid neighborhood of x and W ⊂ T̂ ◦λ × Spf(S∞)rig an open affinoid open
subset such thatM = Γ(U,M) is a direct factor of O(W )⊗̂LJBI (JPI (Π∞⊗LV )λ)′.
Let A = O(W ) and B = O(U). Then M is a finitely generated B-module and
a finite projective A-module. Let C > 0 and C ′ > 0 as in the proof of [Wu,
Prop. 5.11]. We set Z ⊂ W be the subset of algebraic character δλ′ such that,
for any simple root α /∈ I, 〈λ′ + ν, α〉 > C ′ for any ν weight of V ∨. This is a
Zariski dense subset of W . Then for z = δλ′δsm with δsm a smooth character,
using Proposition 3.20, we see that the B-module Mz = M ⊗ k(z) is a direct
factor of JB(Hom(MI(λ′),Π∞ ⊗L V ))′. Let (x, δ) ∈ U be a point above z, i.e. δ =
δλ′δsm, then arguing as in loc. cit., we have HomG(FG

B
(N⊗LV ∨, δsmδ

−1
B ),Π∞[px]) =

0 for any subquotient N of MI(λ′) different from L(λ′). This implies that Mz

is actually a quotient of JB(HomU(g)(L(λ′) ⊗L V ∨,Π∞)) which is isomorphic to
a finite direct sum of JB(HomU(g)(L(µ),Π∞)) with µ dominant. The proof of
[BHS17b, Cor. 3.20] shows that the global sections of the coherent sheaf associated
to each JB(HomU(g)(L(µ),Π∞))′ on U∩κ−1({δλ′}) is a semisimple B-module. This
concludes the proof.

Corollary 6.10. The rigid analytic space EI∞(λ) is reduced.

Proof. This is Proposition 6.9 with V the trivial representation.
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Corollary 6.11. Let V be an irreducible algebraic representation of G. Then the
R̂∞,x ⊗OT̂∧

δR
-moduleM∞,x,R(M̃I(λ)⊗L V ) is killed by the kernel of the map

R̂∞,x ⊗OT̂∧
δR
→ RI−qtri

∞,x,R.

Proof. By Proposition 6.9, the support of the module M∞,x,R(M̃I(λ) ⊗L V ) is
reduced for any λ ∈ X∗(T ) dominant with respect to P I and any algebraic repre-
sentation V of G. Therefore the result follows from Corollary 6.8.

6.3 Bi-module structure on the patched functor

LetM be an object of O∞alg or ÕIalg. As seen in section 2.2, there is a natural struc-
ture of A = U(t)m-module on M which provides, by functoriality, the structure of
an A-module onM∞,x,R(M). This A-module structure extends to an action of the
completion Â of A with respect to the maximal ideal m. We recall from Remark
6.3 that this action coincides with the structure of an Â-module on M∞,x,R(M)
induced from the T -action on Π∞.

On the other hand, the ring Rqtri
∞,x,R also carries a structure of an Â-module

induced from the map κ1 defined in section 4.1. This gives a further structure
of an Â-module on the Rqtri

∞,x,R-module M∞,x,R(M). We will show that these Â-
module structures agree.

For a ∈ Â, we denote by a (resp. ã) the endomorphism ofM∞,x,R(M) defined
by the first (resp. second) action. Note that if M is an object of Õalg, then
M∞,x,R(M) is a finite free Â⊗̂LŜ∞-module for the first Â-module structure by the
proof of Proposition 6.5. Thus it is A-torsion free (since Â is domain).

Lemma 6.12. For any a ∈ Â and any M in O∞alg or Õalg, there is an equality

a = ã ∈ End(M∞,x,R(M)).

Proof. If M = M̃(µ) ⊗U(t) U(t)/mn for some µ ∈ X∗(T ), this is a consequence of
[BHS17b, Thm. 3.21], the commutative diagram [BHS19, (3.30)] and Remark 6.3.
This implies that for any µ ∈ X∗(T ), we have a = ã onM∞,x,R(M̃(µ)).

Now we consider the general case. It follows from Proposition 2.14 that it
is sufficient to prove the equality ã = a when M = M̃(µ) ⊗L V for µ ∈ X∗(T )
dominant and V a finite dimensional U(g)-module. Let (Fili) be an increasing
filtration of M̃(µ)⊗L V such that Fili /Fili−1 ' M̃(µi) where µ1, . . . , µd ∈ X∗(T )
and d = dimL V (such a filtration exists by [Soe92, Lem. 8]. Let K denote the
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fraction field of A. It follows from Proposition 2.12 that we have a decomposition
of U(g)K-modules

(M̃(µ)⊗L V )⊗A K '
d⊕
i=1

M̃(µi)K

splitting the filtration (Fili⊗AK). Let pi ∈ EndU(g)K ((M̃(µ)⊗L V )⊗A K) be the
projector on M̃(µi)K . As

EndU(g)K ((M̃(µ)⊗L V )⊗A K) ' EndU(g)((M̃(µ)⊗L V ))⊗A K

by [Soe92, Thm. 5], there exists, for each 1 6 i 6 d, a nonzero element qi ∈ A such
that qipi actually restricts to an endomorphism of M̃(µ)⊗L V . We set q = q1 · · · qr
and αi = qpi. Then the αi are endomorphisms of M̃(µ) ⊗L V that stabilize
the filtration Fil•. As each Fili /Fili−1 is a free A-module, the endomorphisms αi
induce the zero endomorphism of Fili−1 and M̃(µ)⊗LV/Fili and the multiplication
by q on Fili /Fili−1.

In order to simplify notations we set

M∞ =M∞,x,R(M̃(µ)⊗L V ),
FiliM∞ =M∞,x,R(Fili).

By construction, for each i the endomorphism αi induces an R∞,x-linear endomor-
phisms of FiljM∞ for all j. By exactness of M∞,x,R, the family (FiliM∞) is a
filtration ofM∞ and FiliM∞/Fili−1M∞ 'M∞,x,R(M̃(µi)) for any i, so that a and
ã induces the same endomorphism of FiliM∞/Fili−1M∞. Finally, for 1 6 i 6 d,
we denote by M (i)

∞ = αi(FiliM∞) the image of the i-th filtration step under αi. It
follows from the properties of αi that

• M (i)
∞ ⊂ FiliM∞;

• the quotient FiliM∞/(Fili−1M∞ +M (i)
∞ ) is killed by q;

• M (i)
∞ is isomorphic to a quotient of FiliM∞/Fili−1M∞.

Therefore, we have ã = a on M (i)
∞ for any a ∈ Â and the quotient of M∞ by the

sum of the M (i)
∞ is killed by qd. As M∞ is A-torsion free it follows that ã = a.

Let ξ : Z(g) → U(t) be the Harish-Chandra map as recalled in section 2.4.
As in loc.cit. we write tν for the unique endomorphism of U(t) mapping x ∈ t to
tν(x) = x+ ν(x).

Let h = (h1,τ,v < · · · < hn,τ,v)τ,v ∈ X∗(T ) be the weight corresponding to the
Hodge–Tate weights of ρx = (ρv)v|p and let δ′G = (0,−1,−2, . . . , 1− n)τ,v ∈ X∗(T )
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be fixed central shift of the half sum of the positive roots δG ∈ X∗(T ) ⊗ Q. We
have a map

κ2 : Â = Û(t)m → Rqtri
ρp,R

induced from the map κ2 of section 4.1 and we define the L-algebra homomorphism

α = κ2 ◦ th−δ′G ◦ ξ : Z(g)→ Rqtri
ρp,R.

As in [DPS, Def. 4.23], we define, for any v|p, an L-algebra homomorphism

ζCρ̃Cv : Z(Lie(ResFv/Qp GLn)) −→ R�,rigρv

where ρ̃v is the universal family of Galois representations over R�,rigρv
. After com-

pletion at ρv and taking the tensor product over all v|p, we obtain an L-algebra
homomorphism

ζC : Z(g) =
⊗
v|p
Z(Lie(ResFv/Qp GLn)) −→ R�ρp � Rqtri

ρp,R.

Note that the definition of ζC
ρ̃Cv

from ρv depends on a choice of a central shift of
δG (see the discussion ending [DPS, §4.7]). We choose it equal to δ′G. More con-
cretely ζC is characterized by the following property. This is the unique continuous
homomorphism such that, for any local artinian L-algebra and any local homo-
morphism f : Rqtri

ρp,R → A, corresponding to ρA = (ρA,v : GalFv → GLn(A))v|p, the

composition map Z(g) ζC−→ Rqtri
ρp,R → A is Z(g) ξ−→ U(t)

tν−δ′
G−−−→ k(x) where

ν ∈ HomL(U(t)W , A) ' HomL(U(t∗)W , A) ' HomL(U(g∗)GL , A)

is the map induced by the conjugacy class of the Sen operators

(ΘSen,ρA,v)v|p ∈ (g⊗L A).

Proposition 6.13. The homomorphisms ζC and α defined above coincide.

Proof. It is sufficient to prove that for any local artinian L-algebra A and any
map f : Rqtri

ρp,R → A, we have f ◦ ζC = f ◦ α. Note that the map f gives rise to a
family (ρA,v)v|p of local Galois representations. It follows from [BHS19, Lem. 3.7.5]
that, for any embedding τ : Fv ↪→ L, the τ -part of the Sen polynomial of ρv is∏n
i=1(X− (hi,τ +νi,τ )) where (νi,τ ) ∈ HomL(t, A) corresponds to f ◦κ2 : U(t)→ A.

The result is then a direct comparison of the definitions of α and ζC .
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For each element M of the category O∞alg or Õalg, there is a natural homomor-
phism of L-algebras Z(g) → End(M). By functoriality of M∞,x,R, this gives a
map

z : Z(g)→ End
R̂∞,x

(M∞,x,R(M)).

The following result tells us that this map factors through RI−qtri
∞,x,R.

Corollary 6.14. For any x ∈ Z(g), the element z(x) is the multiplication by
α(x)⊗ 1 ∈ RI−qtri

∞,x,R.

Proof. This is a consequence of Proposition 6.13 and of [DPS, Thm. 9.27].

Remark 6.15. Recall that h = (h1,τ,v < · · · < hn,τ,v)τ,v denotes the weight corre-
sponding to the Hodge–Tate weights of ρ. Let λ := w0(h) − δ′G ∈ X∗(T ), which
is still a dominant character. Recall that t−δG ◦ ξ has image contained in U(t)W .
Hence we have

th−δ′G ◦ ξ = th ◦ Ad(w0) ◦ t−δ′G ◦ ξ = Ad(w0) ◦ tw0(h) ◦ t−δ′G ◦ ξ = Ad(w0) ◦ tλ ◦ ξ.

Therefore

Id⊗ α = (Id⊗ Ad(w0)) ◦ hλ : A⊗L Z(g)→ A⊗AW A,

where hλ is the map defined in section 2.4.

6.4 Computation of a support

Now we can prove our main result of this section concerning the support of the
patched functor applied to a generalized Verma module respectively applied to its
dual.

Theorem 6.16. Let x ∈ X∞(L) be a point whose associated Galois representation
is crystalline, ϕ-generic and Hodge–Tate regular. Let R be a refinement of x. Let
h = (h1,τ < · · · < hn,τ )τ :F ↪→L ∈ X∗(T ) be the character given by the Hodge–Tate
weights of ρx. Let δ′G = det 1−n

2 δG = (0,−1, . . . , 1− n)τ :F ↪→L ∈ X∗(T ), where δG is
the half sum of the positive roots, and define λ := w0(h)− δ′G ∈ X∗(T )+.

Then, for I ⊂ ∆ and w ∈ W , the schematic supports ofM∞,x,R(M̃I(wmin · λ))
andM∞,x,R(M̃I(wmin · λ)∨) are either X I−qtri,wminw0

∞,x,R or empty.

Proof. Let M be M̃I(wmin · λ) or M̃I(wmin · λ)∨. As RI−qtri
∞,x,R is generically reduced

and equi-dimensional by Lemma 4.4 and as M∞,x,R(M) is Cohen–Macaulay of
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dimension dimRI−qtri
∞,x,R, its schematic support is reduced and is a union of irreducible

components of SpecRI−qtri
∞,x,R, i.e. it is a union of SpecRI−qtri,w′

∞,x,R for some w′ ∈ W .
By Proposition 2.15, the module M is annihilated by Iw ⊂ AI ⊗L Z(g). This

implies in particular that the action of AI ⊗L Z(g) on M factors through hλ. By
functoriality, this gives rise to a structure of an AI⊗AW A-module onM∞,x,R(M).
Note that the map (κ1, κ2) of section 4.1 provides a morphism of L-algebras AI⊗AW
A→ RI−qtri

∞,x,R and, using Theorem 6.6, a second structure of an AI ⊗AW A-module
on M∞,x,R(M). It follows from Lemma 6.12, Corollary 6.14 and Remark 6.15
that this two actions coincide up to composition with Id ⊗ Ad(w0). We deduce
that M∞,x,R(M) is killed by the ideal of RI−qtri

∞,x,R defining the inverse image of
TI,ww0 ⊂ zI ×t/W t. Therefore Lemma 4.5 (see also Remark 2.16) implies that
the action of RI−qtri

∞,x,R factors through RI−qtri,ww0
∞,x,R so that the schematic support of

M∞,x,R(M) is SpecRI−qtri,ww0
∞,x,R .

7 Main results

Let x = (ρp, ρp, z) ∈ X∞(L) corresponding to a classical automorphic form of tame
level Kp. Moreover, we assume that (the Galois representation defined by) x is
crystalline, Hodge–Tate regular and ϕ-generic (see section 6.2) at p. This means
that x ∈ Xρ,S(L) ⊂ X∞(L) and that there exists an automorphic representation
π = π∞ ⊗C πf of U(AQ) whose associated Galois representation ρ is the represen-
tation defined by x and such that πf ⊗W occurs in the locally algebraic vectors of
Πm for some algebraic representation W depending on ρ. In particular, the auto-
morphic representation π is finite slope at p. It follows from the proof of [BHS17a,
Cor. 3.12] that the image ρp of x in Spf(⊗v∈S,p-v R

�
ρv

)rig lies in the smooth locus.
We fix a refinement R = (ϕ1,v, . . . , ϕn,v)v of x. Let us denote the τ -Hodge–Tate

weights of ρx,v for v|p in F and τ : Fv ↪→ L by hv,τ := (h1,v,τ < · · · < h1,v,τ ). Given
this collection of Hodge–Tate weights we write h = (hv,τ )v,τ and hv = (hv,τ )τ .
We then define Rcris,hv

ρv to be the crystalline deformation ring of ρv of labelled
Hodge–Tate weight hv and set

Rcris,h
ρp =

⊗̂
v|p
Rcris,hv
ρv .

We further define
X cris,h
∞,x,R = X̂ p

ρp × (Spf Rcris,hv
ρv )× Ûg.

Note that is follows from the definitions that X cris,h
∞,x,R embeds into X qtri,w0

∞,x,R for any
choice of a refinement R.
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We set

µv,τ = (h1,v,τ , h2,v,τ + 1, . . . , hn,v,τ + (n− 1)) = hv,τ − δ′G,v,τ ,

and µ = (µv,τ )v,τ , which is thus antidominant (for the upper Borel), and λ =
w0(h)− δ′G = w0 · µ ∈ X∗(T )+. For all v|p in F , we denote by Wv the Weyl group
of GLn(Fv), which we identify with Sn and denote by s1,v, . . . , sn−1,v the simple
reflections with respect to the choice of the upper Borel Bv ⊂ GLn,Fv . Moreover,
w0,v = sn−1,v . . . s2,vs1,vs2,v . . . sn−1,v will denote the longest element of Wv. We
then write W = ∏

vWv the Weyl group of GQp '
∏
v|p GLn,Fv with respect to the

Borel B = ∏
v|pBv. Because of the product structure, we will sometimes abuse

notations and simply write si for the simple reflections and w0 for the longest
element.

For a scheme X of dimension d we write Z0(X) = Zd(X) for the free abelian
group on the irreducible components of X. Moreover, for d′ 6 d we write Zd′(X)
for the free abelian group on the irreducible and reduced closed subschemes of
dimension d′. We recall that a coherent sheaf F on X with d′-dimensional support
defines a class [F ] ∈ Zd′(X), see e.g. [BHS19, Equation (2.13)].

7.1 Sheaves and supports.

Let λ = w0 · µ ∈ X∗(T )+ dominant, integral.
We moreover write

mx = dimM∞,x,R(L(λ))⊗ k(x). (8)

It follows from [BHS19, Thm. 5.1.3] that mx > 1 and the proof of [BHS19,
Thm. 5.3.3] implies that mx does not depend on the choice of a refinement R.
To x and R we associate a permutation

wx,R = (wx,Rv)v∈Σ = (wx,Rv ,τ )v,τ ∈ W

defined as in [HMS14, § 3.7]. We recall that these permutations encode the relative
position of the Hodge–Tate flags with respect to the full flag corresponding to
the refinement R. We recall that, for any object M of O∞alg or Õalg, the sheaf
M∞,x,R(M) is zero or Cohen–Macaulay of dimension d.

Lemma 7.1. Let R be a Cohen–Macaulay noetherian local ring of dimension
d′ and let M and M ′ be two finitely generated Cohen–Macaulay modules. Let
(t1, . . . , tm) be a regular sequence of elements of the maximal ideal of R which is
also M and M ′-regular. Assume that [M ] = [M ′] in Zd′(SpecR). Then

[M/(t1, . . . , tm)M ] = [M ′/(t1, . . . , tm)M ′] ∈ Zd′−m(R).
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Proof. By induction it is sufficient to prove the result when m = 1. Set t = t1. Let
p be a prime ideal of R which is a generic point of Supp(M) or Supp(M ′). It is suf-
ficient to prove that [Mp/tMp] = [M ′

p/tM
′
p] in Zd′−1(SpecRp/(t)), i.e. thatMp/tMp

and M ′
p/tM

′
p are two Rp/(t)-modules of the same length. This is a consequence of

[Sta24, Lemma 02QG].

Let N ⊂ g be the nilpotent cone and let Ñ → N be the Springer resolution.
Similarly to the definition of the closed subschemes Xw ⊂ X in 4.1 we define

Zw ⊂ Ñ ×N Ñ ⊂ X

to be the Zariski closure of preimage under Ñ ×N Ñ → GL/B×GL/B of the orbit
GL(1, w) ⊂ GL/B ×GL/B. Set

Zw = g(f−1(Zw ∩ X̂I,w,xdR))× X̂ p
ρp × Ûg ⊂ X qtri

∞,x,R,

where f and g are the maps from Theorem 4.7.
In the following we will make use of the following abusive notation for (local)

formal schemes: Let Spf R be a (local) affine formal scheme. Then we will say
that Spf R is reduced, if R is reduced. Moreover, we will say that Spf R is irre-
ducible if SpecR is irreducible. More generally, for a given irreducible component
SpecR/a ⊂ SpecR, we will refer to the formal subscheme Spf R/a ⊂ Spf R as an
irreducible component of Spf R. Similarly, we will write Z0(Spf R) = Z0(SpecR)
for the free abelian group on the irreducible components of Spf R to which we also
refer as the irreducible components of Spf R, etc.
Proposition 7.2. Let w ∈ W . Then the following properties hold:

1) For all I ⊂ ∆ and all w ∈ WI\W satisfying wminw0 > wx,R , the formal
subscheme X I−qtri,ww0

∞,x,R is reduced and irreducible and coincides with an irreducible
component of X I−qtri

∞,x,R .

2) The schematic support of M∞,x,R(M(w · λ)), for w ∈ W , is contained in
X qtri,ww0
∞,x,R if ww0 > wx,R, and this sheaf is zero otherwise. Moreover,

[M∞,x,R(M(w · λ))] = mx[X
qtri,ww0
∞,x,R ] ∈ Z0(X I−qtri

∞,x,R)

for ww0 > wx,R, where mx is the integer defined by (8).

3) There is an equality

[M∞,x,R(L(ww0 · λ))] = mx

∑
w′6w

aw,w′ [Zw] ∈ Z0(X I−qtri
∞,x,R)

where the aw,w′ ∈ N are the integers defined in [BHS19, Thm. 2.4.7]. In particular
aw,w = 1.
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4) For all I ⊂ ∆, the sheaves

M∞,x,R(MI(wmin · λ)) andM∞,x,R(MI(wmin · λ)∨)

are non zero if and only if wminw0 > wx,R.

5) For all I ⊂ ∆, the support of

M∞,x,R(M̃I(wmin · λ)) andM∞,x,R(M̃I(wmin · λ)∨),

for w ∈ WI\W , is X I−qtri,wminw0
∞,x,R if wminw0 > wx,R and these sheaves are zero

otherwise.

6) The moduleM∞,x,R(L(λ)) is free of rank mx over X cris,h
∞,x,R ⊂ X

qtri,w0
∞,x,R .

7) For any I ⊂ ∆ and any w ∈ W , the sheaves

M∞,x,R(M̃I(wmin · λ)) andM∞,x,R(M̃I(wmin · λ)∨)

are generically free of rank mx over their support.

Proof. We first prove point 1)). As X p is smooth at ρp (as recalled in the begining
of this section), the formal completion X̂ p

ρp is formally smooth. As Ûg is also
formally smooth, the claim follows from the fact that

X Iv−qtri,�
rv ,Rv −→ X Iv−qtri

rv ,Rv and X Iv−qtri,�
rv ,Rv −→ X̂I,xpdR

are formally smooth and that XI,w,xpdR is an irreducible component of X̂I,xpdR .
By Theorem 6.16, the schematic support of the Cohen-Macaulay sheaves

M∞,x,R(M̃I(w · λ)) andM∞,x,R(M̃I(w · λ)∨)

is contained in X I−qtri,w
∞,x,R which is irreducible. By Proposition 6.5, as the sheaves

are Cohen–Macaulay of dimension t+ dim zI = dimX I−qtri
∞,x,R (e.g. [BHS19, equation

(5.8)] and Proposition 3.20), we deduce that, if non empty, their schematic support
is all X I−qtri,w

∞,x,R .
By Remark 6.3 we deduce also that

supp
(
M∞,x,R(MI(w · λ))

)
⊂ X I−qtri,wminw0

∞,x,R

for w ∈ IW . Note that the Jordan–Hölder factors of MI(w · λ) are among the the
L(w′ · λ) with w′ > w and that L(w · λ) is the cosocle of MI(w · λ). Therefore
M∞,x,R(M̃I(w · λ)) 6= 0 if and only if M∞,x,R(MI(w · λ)) 6= 0 if and only if
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M∞,x,R(L(w · λ)) 6= 0. Therefore the non nullity assertions in 4) and 5) follow
from the exactness of M∞,x,R (Proposition 6.5) and from [BHS19, Thm. 5.3.3].
This proves 4) and 5)

We prove point 6). By [BHS19, Remark 4.3.1 and Proof of Theorem 5.3.3,
Step 7], the schematic support of M∞,x,R(L(λ)) is contained in the crystalline
locus X cris,h

∞,x,R ⊂ X
qtri
∞,x,R, which is smooth and irreducible of the same dimension as

the support of M∞,x,R(L(λ)). Thus these coincide and M∞,x,R(L(λ)) is free of
rank mx over the crystalline locus.

No we prove point 2). The first assertion has already been proved with 4) and
5), therefore it remains to prove the assertion on the cycle. It follows from the
proof [BHS19, Thm. 5.3.3] thatM∞,x,R(M(w · λ)) is generically free of rank mx

for ww0 > wx,R. As X qtri,ww0
∞,x,R is Cohen–Macaulay, the result is a consequence of

point 5) and of Lemma 7.1 applied with

M = Omx
X qtri,ww0
∞,x,R

and M ′ =M∞,x,R(M(w · λ))

and to a regular sequence generating the maximal ideal of U(t)m. This sequence
is M ′-regular by Proposition 6.5.

We deduce 3) from 2) together with formulas (5.23) and (5.24) of [BHS19] and
the fact that the Verma modules form a basis of the Grothendieck group of the
category Oχλ .

We prove point 7). As X I−qtri,w′
∞,x,R is generically smooth for any w′, the module

M∞,x,R(M) is generically free, say of rank r, over its support where

M ∈ {M∞,x,R(M̃I(wmin · λ)),M∞,x,R(M̃I(wmin · λ)∨)}.

Now we claim that there exists an open an subset U in the regular locus of
Spec(RI−qtri,wminw0

∞,x,R ) such that U intersects the support of M∞,x,R(L(wmin · λ)).
The claim then implies r = mx. Indeed, the restriction ofM∞,x,R(M̃I(wmin · λ))
to U is locally free since U is regular. ThereforeM∞,x,R(MI(wmin · λ)) is locally
free of rank r over its support intersected with U . It follows from the point 3) that
M∞,x,R(L(w′ · λ)) is not supported at the generic point of Zwminw0 for w′ > wmin

and thatM∞,x,R(L(wmin · λ)) has length mx at the generic point of Zwminw0 . As
L(wmin ·λ) appears with multiplicity one in MI(wmin ·λ) and all other subquotient
are of the form L(w′ · λ) with w′ > wmin, we have r = mx. We now construct an
open subset U with the claimed properties. We set

U = g(f−1(Vwminw0 ∩ X̂I,wminw0,xdR))× X̂ p
ρp × Ûg,

where f and g are the maps of Theorem 4.7 and Vwminw0 is the preimage of the
Schubert cell GL(1, wminw0) ⊂ GL/B × GL/B in XI,wminw0 . This is an open and
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smooth subset of XI,wminw0 : indeed, the maps f and g are formally smooth, the
formal scheme X qtri

∞,x,R −→ X
qtri
ρp,R is formally smooth and the point as ρp lies in the

smooth locus of X p.
Proposition 7.3. Assume that xpdR is a smooth point of Xwminw0. Then

M∞,x,R(M(wmin · λ)) andM∞,x,R(M(wmin · λ)∨)

are finite free O
X qtri,wminw0
∞,x,R

-modules.

Proof. We write wmin = w to simplify the notations. By Remark 6.3, the two U(t)-
module structures onM∞,x,R(M̃(w ·λ)) coming from the U(t)-action on M̃(w ·λ)
and the one coming from the derivative of the locally analytic action, coincide.
Thus we have the equality betweenM∞,x,R(M(w · λ)) and the localisation

M∞,x,R(M(w · λ)) ' i∗i
∗M∞,x,R(M̃(w · λ)),

where i : T̂ sm −→ T̂ denotes the inclusion of the closed subspace of smooth
characters. A similar remark applies to the dual Verma module. In particular, it
is enough to show that the OX qtri,ww0

∞,x,R
-modules

M∞,x,R(M̃(w · λ)) andM∞,x,R(M̃∨(w · λ))

are finite free. But these modules are Cohen-Macaulay with support the localiza-
tion at x of X qtri,ww0

∞,x,R , which is smooth.

7.2 Recollection on Bezrukavnikov’s functor

The aim if this section (or even of the paper) is to identify the patching functor
that takes objects in Oalg (or more generally in O∞alg) to Cohen-Macaulay modules
on certain Galois deformation rings with a functor constructed by Bezrukavnikov
in geometric representation theory (more precisely: with the pullback from our
local models to the Galois deformation rings). Before doing so, we will need to
recall the result of Bezrukavnikov.

Recall that X = g̃ ×g g̃ where g is the Lie algebra of GL = ∏
v∈Σ(L ×Qp

ResFv/Qp GLn) as in section 4.1 and denote by X∧ the completion of X along the
preimage of {(0, 0)} ∈ t ×t/W t in X. Moreover, we write X = X ×t {0}, where
the fiber product is taken with respect to the map κ1 : X −→ t of 4.1 that maps
(gB, hB,N) to ad(g−1)(N) (mod n) ∈ t. As in the preceding sections we fix the
shift

δ′G = det
1−n

2 δG ∈ X∗(T )
of the half sum of the positive roots δG.
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Theorem 7.4 (Bezrukavnikov). Let λ ∈ X∗(T ) be a dominant character. There
exists an exact functor

B : Oχλ −→ CohGL(X∧),
such that

1) for all M ∈ Oχλ the sheaf B(M) is a Cohen-Macaulay sheaf,

2) for all w ∈ W there is an isomorphism B(M(ww0 · λ)∨) ' OXw ,

3) for all w ∈ W there is an isomorphism B(M(ww0 · λ)) ' ωXw ,

4) the image B(P (w0 · λ)) of the anti-dominant projective P (w0 · λ) is the
structure sheaf OX ,

5) the image B(L(λ)) of the algebraic representation L(λ) is the line bundle
O(−δ′G)�O(−δ′G) on GL/B×GL/B which is viewed as a closed subscheme of X∧
via

(gB, hB) 7→ (gB, hB, 0).

This result is (a small part of a result) due to Bezrukavnikov and his collabo-
rators whose proof is spread out through the papers [Bez16, BR12, BL23, BR22]).
For the convenience of the reader, we explain how to get the result in the previous
form.

Proof. By the main result of [Bez16], there are reverse equivalence of categories

Ψ : DI0,I0 ↔ Db(Coh(g̃×g g̃)) : ΦI0,I0 ,

which we can then localize on X∧ ⊂ X. Up to use translation functors, we can
focus on the case λ = 0. By [Bez16, Corollary 42 ] the functor Ψ in fact takes values
in (G-equivariant) coherent sheaves on X, when restricted to perverse sheaves
F ∈ PervN(G/B). Moreover, the Beillinson–Bernstein localization theorem, more
precisely by [BG99] Localization Theorem 2.2, provides an exact fully faithfull
embedding of categories

Oχ0 −→ PervN(G/N).
Composing the Beillinson–Bernstein equivalence with Bezrukavnikov’s functor (not-
ing that the blocks Oχ0 and Oχλ are equivalent) we get the exact functor B.

Denote µ = w0 · λ denote the antidominant weight in the dot-orbit of λ. Now
the proof of [BL23, Proposition 5.8] implies that B(M(s ·µ)∨) = OXs for all simple
reflection s and B(P (µ)) = OX . Bezrukavnikov’s main result [Bez16, Theorem
1] implies that Ψ (hence B) intertwines the convolutions on both sides. Here
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the convolution on the category Oχλ ' Oχ0 is inherited from the convolution
in PervN(G/B) defined as in [BR22, 7.]. We write w = s1 . . . sr and compute
convolutions on both sides. By [BR12, Theorem 2.2.1] we have

OXw = OXs1 ? · · · ?OXsr .

By [BR22, Lemma 7.7] we haveM(w ·µ)∨ = M(s1 ·µ)∨ ? · · ·?M(sr ·µ)∨ and hence
B(M(w · µ)∨) = OXw . Moreover, by [BR12, Theorem 2.2.1] again, the dualizing
sheaf of Xw is given by the convolution

ωXw = ωXs1
? · · · ? ωXsr .

But [BR12, Proposition 1.10.3] implies that the inverse of OXs for the convolution
is ωXs , and as B is compatible with convolution, and as the inverse of M(s · µ)∨ is
M(s·µ) (again using [BR22, Lemma 7.7]for example), we deduce ωXs = B(M(s·µ)).
Finally 5. is a consequence of [BL23, Lemma 6.7] (with P = G).

Recall that we have fixed a point x ∈ X∞ associated which we have defined the
positive integer mx in (8).

Corollary 7.5. The functor B induces an exact functor

Bx : Oχλ −→ Coh(X qtri
∞,x,R)

such that, for all M ∈ Oχλ the sheaf Bx(M) is a Cohen-Macaulay sheaf and such
that

[M∞,x,R(M)] = mx[Bx(M)] ∈ Z0(X I−qtri
∞,x,R).

Proof. Let G1 be the completion of G at the unit element. As the representations
(ρv)v|p defined by the point x are crystalline and hence de Rham we may choose
a basis α of W (x) = ∏

v∈Σ WdR(Drig(ρx,v)[1/t]) and define a point xpdR associated
to x (or rather to the representations (ρv)v|p) as in (6). For all M ∈ Oχλ , the sheaf
B(M) is a GL-equivariant sheaf on X∧ and hence gives rise to a G1-equivariant
sheaf on X̂xpdR . Now by [BHS19, Theorem 3.4.4. and Corollary 3.5.8], see also
Theorem 4.7 above, we have a diagram

X qtri,�
∞,x,R

X qtri
∞,x,R X∧xpdR

.

π W

More precisely, the map π forgets the deformation of the fixed basis α, and hence
it is a G1-torsor. Moreover, W formally smooth and G1-equivariant for the natural
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left actions g · α̃ := α̃ ◦ g−1 on the source (acting only on the deformation of the
isomorphisms αv : L⊗Qp Fv

∼−→ Wv) and g · (kB, hB,N) = (gkB, ghB, g−1Ng) on
the target of W .

It follows that the pullback of B(M)∧xpdR
at X̂xpdR along W is a G1-equivariant

sheaf and hence descends to a coherent sheaf

Bx(M) ∈ Coh(X qtri
∞,x,R).

It follows from the construction that M 7→ Bx(M) and that Bx(M) is Cohen-
Macaulay, as B(M) is. Moreover, Bx is exact, as W is formally smooth and hence
flat.

It remains to check the assertion on cycles. But as taking cycles is additive
and Bx is exact, we only need to check this equality on a generating set of the
Grothendieck group ofOχλ , such as the Verma modulesM(w·µ). Hence the desired
equality follows from the previous result on Bezrukavnikov’s functor together with
Proposition 7.2.

7.3 A detail study of local models when n = 3

From now on we assume n = 3, so that the group GL is

GL ' (ResF⊗QQp/Qp GL3)×Qp L '
∏
v∈Sp

(L×Qp ResFv/Qp GL3,Fv) '
∏
τ∈ΣF

GL3,L .

We identify the previous local Weyl group W with ∏
τ Wτ and each Wτ with

WGL3 ' S3 and denote s1,τ , s2,τ the two simple reflection corresponding to the
choice of the upper Borel, and w0,τ = s1,τs2,τs1,τ the longuest element in Wτ . If τ
is understood, we often omit it from the notation.

As in section 4.1 we denote by X the Steinberg variety for the group

G = ResF⊗QQp/Qp GL3,

over L. As L is assumed to contain all Galois conjugates of F we have X '∏
τ∈ΣF X3 (see Remark 4.6 for the notationX3). The Steinberg varietyX (resp.X3)

has dimension 9|ΣF | (resp. 9) and 6|ΣF | (resp. 6) irreducible components Xw, w ∈ W
(resp. X3,w, w ∈ S3), see e.g. [BHS19, Proposition 2.2.5].

Proposition 7.6. For w = (wτ )τ∈ΣF , let s = |{τ ∈ ΣF | wτ = w0}|. Then
the component Xw is smooth if and only if s = 0. Moreover, if s 6= 0, then the
component Xw is Cohen–Macaulay but not Gorenstein. More precisel, let

xpdR = (gB, hB,N) = (gτBτ , Nτ , hτBτ ) ∈ Xw(L) =
∏
τ∈ΣF

X3,wτ (L),
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and assume that Nτ = 0 when wτ = w0. Then

dimL ωXw ⊗ k(xpdR) = 2r,

where r := |{τ | wτ = w0, and gτBτ = hτBτ}|.

Proof. The smoothness is a consequence of Proposition 4.1. As X = ∏
τ∈ΣF X3, it

is enough to prove the analogous result for X3 only. Indeed, by base change and
composition of upper shriek functors, the dualizing sheaf of X is a derived tensor
product ⊗L

τ p
∗
τωX3 , where pτ : X −→ X3 is projection to the τ -component. But as

the product X = ∏
τ X3 is a product over a field, we find

ωX =
⊗
τ

p∗τωX3 .

Thus from now on we denote X3 simply by X.
It is thus enough to prove that the fiber of ωXw0

, is 2-dimensional at a point
of the form (gB, 0, gB). Let q : g̃ −→ g denote the Grothendieck resolution,
then X ' GL ×B q−1(b). Moreover, Y := q−1(b) decomposes into irreducible
components Y = ⋃

w∈W Yw such that Xw ' GL×B Yw. Hence it is enough to prove
that ωYw0

has fiber dimension 2 at the point ypdR = (B, 0). As Xw0 is Cohen-
Macaulay and flat over t (cf [BHS19, Proposition 2.2.3]), we have the base change
formula ωXw0

⊗X X ' ωXw0
. We are thus reduced to compute the dualizing sheaf

ωYw0
of the irreducible component

Yw0 = Yw0 ×t {0}

of Y = q−1(n). This scheme now has dimension 3 and we can use explicit compu-
tations.

A point of Y (L) is of the form (gB,N) ∈ (G/B×g)(L). We use the embedding
G/B ↪→ P2

L × (P2
L)∨ that sents a full flag (0 ⊂ L ⊂ P ⊂ k3) to (L ⊂ k3,P ⊂ k3).

In homogeneous coordinates ([x0 : x1 : x2], [y0 : y1 : y2]) the condition L ⊂ P is
given by x0y0 + x1y1 + x2y2 = 0. Let Y 0 ⊂ Y denote the open subset defined by
the condition x0 = y2 = 1. It is enough to compute on this open subset, as this is
a neighborhood of the point ypdR = (B, 0) = ([1 : 0 : 0], [0 : 0 : 1]). On Y 0 we can
thus remove y0 from our equations. Let us write

N =

 0 u12 u13
0 u23

0


for the universal matrix over Y 0. The ideal defining

Y
0
w0 ⊂ Z := Spec(k[x1, x2, y1, u12, u23, u13])
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is then given by

Iw0 = (u23x2, u12(x2 + x1y1), u12x1 + u13x2, u23y1 − u13(x2 + x1y1)).

We remark that we can replace u12(x2 + x1y1) by u12x2 − x13x2y1 using the third
equation, and that automatically y1u12u23 = 0 using our new equation and u23y1−
u13(x2 + x1y1) = 0. We then check (e.g. using Macaulay2) that

0 −→ O2
Z

A′−→ O6
Z

A−→ O5
Z

A′′−→ OZ

is a resolution of OZ/Iw0 , where

A′ =



y1 y1u13 − u12
−x2 0
x1 u23
0 −u12u23
0 −x2u23
0 x1u12 + x2u12


, A′′ =


x1u12 + x2u13

x2u23
y1u12u23

x1y1u13 − y1u23 + x2u13
x2y1u13 − x2u12



t

A =


−x2u23 −y1u23 0 x2 −y1u13 0

x1u12 + x2u13 y1u13 −y1u12 −y1 0 −y1u13 + u12
0 x1 x2 0 1 0
0 0 0 −x2 u12 0
0 0 0 x1 u13 u23

 .

Let i : Y 0
w0 ↪→ Z denote the canonical closed embedding. Then the dualizing sheaf

can be computed as ω
Y

0
w0

= i∗Ext3
OZ (O

Y 0
w0
,OZ) which is given by

ω
Y

0
w0
' O2

Z/ < (y1, y1u13 − u12), (x2, 0), (x1, u12), (0, u12u23) >,

as x2u23 = x2u12 + x2u12 = 0 on Y 0
w0 . It follows that the fiber of ω

Y
0
w0

at ypdR is
2-dimensional.

Lemma 7.7. Let J ⊂ ∆GL3.

1. For w ∈ W (GL3) ' S3 the component X3,w is smooth if w 6= w0.

2. If xpdR = (gB3, hB3, 0) ∈ X3,w0(L), with gB3 6= hB3, then xpdR is a smooth
point of X3,w0.

3. For ∅ 6= J ⊂ ∆GL3 = {s1, s2} the component X3,J,w is smooth for any
w ∈ WJ\WGL3.
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Proof. Point 1 is Proposition 7.6. For the point 2, denote w′ the index of the
Schubert stratum in which xpdR lies. By [BHS19, Proposition 2.5.3(ii)] it is thus
enough (as Uw0 = GL3 /B3 ×GL3 /B3 is smooth) to prove that codimt(tw0w′−1) =
lg(w0) − lg(w′). But this codimension is what we have denoted `(w0w

′−1) in the
proof of Proposition 4.1. As w′ 6= 1 and n = 3, w0w

′−1 is a product of distinct
simple reflections thus `(w0w

′−1) = lg(w0w
′−1) = lg(w0) − lg(w′). For point 3, as

n = 3 we have that J = {s1}, {s2} or J = {s1, s2}. Denote P = P J . In the
case J = {s1, s2}, then P J = GL3 and X3,J = g̃ is smooth. It is sufficient to
prove the case of J = {s1} (the other case is exactly the same), where an explicite
computation gives the smoothness (alternatively, when wmin has length 6 1, [BD,
Corollary 5.3.4] also implies smoothness).
Corollary 7.8. Let w = (wτ )τ ∈ W and let I = ∐

τ Iτ ⊂ ∆. Let xpdR =
(xpdR,τ )τ = (gτBτ , hτBτ , Nτ ) be a point such that Nτ = 0 whenever Iτ = ∅, wτ = 1.
If

M∞,x,R(MI(wmin · λ)) (resp. M∞,x,R(MI(wmin · λ)∨)),

is not a finite free over X I−qtri,wminw0
∞,x,R -module, then there exists an embedding τ

such that Iτ = ∅, wτ = 1 and wx,R,τ = 1.

Proof. Assume that there is no τ such that Iτ = ∅ and wτ = wx,R,τ = 1. Lemma
7.7, then shows that the local model XI is smooth at xpdR. By 7.2 the support

X I−qtri,ww0
∞,x,R = supp M∞,x,R(M̃I(w · λ))

is smooth. Thus M∞,x,R(M̃I(w · λ)) is a free of rank mx over X I−qtri,ww0
∞,x,R . By

Remark 6.3 its follows thatM∞,x,R(MI(w ·λ)) is a free of rankmx over X
I−qtri,ww0
∞,x,R .

The same argument also applies toM∞,x,R(M̃I(w · λ)).
Proposition 7.9. For all w ∈ W the sheaf Bx(L(w · λ)) is cyclic. Moreover, for
all w ∈ W such that ww0 > wx,R the sheafM∞(L(w · λ)) is free of rank mx over
its support.

Proof. Recall that, for w ∈ W , Zw is the closure in Ñ ×N Ñ of the preimage Vw of
the Bruhat Cell Uw = GL(1, w) ⊂ GL/B×GL/B. By [CG10, Prop. 3.3.4], Vw can
be identified with the conormal bundle of Uw in Ñ ×Ñ ' T ∗(GL/B×GL/B). As g
is isomorphic to direct sum of copies of gl3, the closure Uw of Uw in GL/B×GL/B
is smooth, hence a local complete intersection. This proves that the conormal
bundle of Uw is a closed smooth subscheme of Ñ × Ñ containing Vw as an open
dense subset so that it coincides with Zw and Zw is smooth. This implies that Zw is
a smooth. AsM∞,x,R(L(ww0 ·λ)) is Cohen–Macaulay, it follows from Proposition
7.2 3) and from the fact that aw,w′ = 0 for w 6= w′ (see [BHS19, Rk. 2.4.5]) that
the sheafM∞,x,R(L(ww0 · λ)) is locally free over its support.
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7.4 The case of dual Vermas

For later use, let us recall the following Lemma.

Lemma 7.10. Let R be a commutative local ring and let I ⊂ J two ideals of R.
Let m > 1 and π : (R/I)m −→ (R/J)m a surjective R-linear map. Then there
exist isomorphisms

ϕ : (R/J)m −→ (R/J)m, ψ : (R/I)m −→ (R/I)m

such that ϕ ◦ π = π ◦ ψ = can⊕m where can : R/I −→ R/J is the quotient map.

Proof. Let (e1, . . . , em) be the standard basis of (R/I)m as an (R/I)-module and
(f1, . . . , fm) the standard basis of (R/J)m. Then (π(e1), . . . , π(em)) is a generating
family of (R/J)m. As a surjective endomorphism of a module is bijective, we see
that (π(e1), . . . , π(em)) is also a basis of (R/I)m. Therefore we can define ϕ by
the formula ϕ(π(ei)) = fi. Now, for any 1 6 i 6 m, let f ′i ∈ (R/I)m such that
π(f ′i) = fi. By Nakayama Lemma the family (f ′1, . . . , f ′m) generates (R/I)m and
so is a basis of (R/I)m. We can therefore define ψ by the formula ψ(ei) = f ′i .

We will use the previous Corollary 7.8 to start a devissage which will be assured
by the following two Lemmas.

Lemma 7.11. LetM be an object of Oχλ and let Q1, . . . , Qr be quotients ofM . Let
Q be the smallest quotient of M dominating all the Qi, i.e. Q = M/(M1∩· · ·∩Mr)
where Mi = Ker(M → Qi) for 1 6 i 6 r. We assume that

(i) for any 1 6 i 6 r, the sheafM∞,x,R(Qi) is free of rank mx over it support;

(ii) for any 1 6 i 6 r, the sheaf Bx(Qi) is cyclic (generated by one element);

(iii) for any 1 6 i 6 r, SuppM∞,x,R(Qi) = SuppBx(Qi) ;

(iv) the sheaf Bx(Q) is cyclic.

Then the sheafM∞,x,R(Q) is free of rank mx over its support and

Supp(Mx,∞,R(Q) = Supp(Bx(Q)).

Proof. To ease notation we note m = mx. Let’s prove the result when r = 2. Let
A = R

qtri
∞,x,R be the ring of global sections of X qtri

∞,x,R and let Ii = Ann(Bx(Qi))
for i ∈ {1, 2}. Define Q0 the largest common quotient of Q1 and Q2, i.e. Q0 =
M/(M1 +M2). Then we have a short exact sequence

0 −→ Q −→ Q1 ⊕Q2 −→ Q0 −→ 0.
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By exactness ofM∞,x,R, we have a short exact sequence

0 −→M∞,x,R(Q) −→M∞,x,R(Q1)⊕M∞,x,R(Q2) −→M∞,x,R(Q0) −→ 0

where the map Q1 ⊕Q2 → Q0 is given by (x, y) 7→ x− y.
We fix isomorphisms (A/Ii)m ∼−→M∞,x,R(Qi) for i ∈ {1, 2}. As Q0 is a quotient

of both Q1 and Q2, we have surjective maps

(A/Ii)m −→M∞,x,R(Qi) −→M∞,x,R(Q0),

which factor through (A/(I1+I2))m. Using Lemma 7.10 we can choose the previous
isomorphisms such that the following diagram commutes

(A/I1)m ⊕ (A/I2)m A/(I1 + I2)m 0

M∞,x,R(Q1)⊕M∞,x,R(Q2) M∞,x,R(Q0) 0.

(x,y) 7→x−y

' (9)

As the kernel of the upper horizontal map is isomorphic to (A/(I1 ∩ I2))m, we
obtain a commutative diagram

0 (A/(I1 ∩ I2))m (A/I1)m ⊕ (A/I2)m A/(I1 + I2)m 0

0 M∞,x,R(Q) M∞,x,R(Q1)⊕M∞,x,R(Q2) M∞,x,R(Q0) 0.

'

(10)
As Ann(Bx(Q)) = I1 ∩ I2 and Bx(Q) is cyclic, there exists an isomorphism

Bx(Q) ' A/(I1∩I2). Moreover, by hypothesis, we have Supp(Bx(Qi)) = Spec(A/Ii)
so that the maps A/(I1 ∩ I2) ' Bx(Q) � Bx(Qi) factors through isomorphisms
A/Ii ' Bx(Qi). Therefore, by exactness of Bx, we also have a commutatif diagram

0 (A/(I1 ∩ I2)) (A/I1)⊕ (A/I2)

0 Bx(Q) Bx(Q1)⊕ Bx(Q2) Bx(Q0) 0.

x 7→(x,x)

' '

This implies that we have an isomorphism A/(I1 + I2) ' Bx(Q0). As Bx(Q0) is
Cohen–Macaulay, so is A/(I1 + I2). As the ring A/(I1 + I2) is Cohen–Macaulay,
the vertical right arrow of diagram (9) is a surjective map (A/(I1 + I2))m �
M∞,x,R(Q0) between two Cohen–Macaulay modules with the same cycle by Corol-
lary 7.5. It is therefore an isomorphism and the Snake Lemma allows us to conclude
that the left vertical arrow in (10) is an isomorphism.
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Assume that the result is proved for some integer r > 2. Let Q1, . . . , Qr+1 be
quotients of M satisfying the hypotheses of the Lemma. Let Q′ be the smallest
quotient ofM dominating all theQi for 1 6 i 6 r. Note that Bx(Q′) is a quotient of
Bx(Q) and is therefore cyclic. By induction,M∞,x,R(Q′) is free of rank m over its
support and SuppM∞,x,R(Q′) = SuppBx(Q′). The quotient Q is now the smallest
quotient of M dominating Q′ and Qr+1. Therefore the case r = 2 implies that
M∞,x,R(Q) is free of rank m over its support and SuppM∞,x,R(Q) = SuppBx(Q),
which concludes the induction.

Lemma 7.12. LetM be an object of the category Oχλ. Assume thatM∞,x,R(M) is
generated by mx elements and Bx(M) is cyclic. ThenM∞,x,R(M) is locally free of
rank mx over its support, its support is Cohen–Macaulay and SuppM∞,x,R(M) =
SuppBx(M).

Proof. We prove the result by induction on the length of M . If M is simple this is
done in Proposition 7.9. Thus we can assume that we have a short exact sequence

0 −→ L −→M −→ Q −→ 0

with L simple such thatM∞,x,R(L) 6= 0 and that the result is true for Q. Let I =
Ann(M∞,x,R(M)), IB = Ann(Bx(M)), J = Ann(Bx(Q)) and K = Ann(Bx(L)).
Then we have two short exact sequences

0 −→ Bx(L) −→ Bx(M) −→ Bx(Q) −→ 0
0 −→M∞,x,R(L) −→M∞,x,R(M) −→M∞,x,R(Q) −→ 0.

The first exact sequence shows that R̂∞,x/K ' J/IB so that IB = JK. The second
exact sequence shows that IB ⊂ I. Therefore, asM∞,x,R(M) is generated by mx

elements, we have a surjective map

Bx(M)mx ' (R̂∞,x/IB)mx �M∞,x,R(M).

These modules are both Cohen–Macaulay of the same dimension with identical
associated maximal cycle by Corollary 7.5, therefore this map is an isomorphism
and IB = I. Moreover asM∞,x,R(M) is Cohen–Macaulay, so is its support.

Theorem 7.13. For any w ∈ W such that ww0 > wx,R, the coherent sheaf
M∞,x,R(M(w · λ)∨) is locally free of rank mx over its support.

Proof. As M(w · λ)∨ is a quotient of M(λ)∨ for any w ∈ W , Lemma 7.12 implies
that it is sufficient to prove the result for w = 1.

Recall that W = ∏
τ :F ↪→LWτ and write wx,R = (wx,τ ). Let J ⊂ Hom(F,L) be

the set embeddings such that wx,τ = 1. Let E be the set of elements w = (wv) ∈ W
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such that wτ ∈ {s1, s2} if τ ∈ J and wτ = 1 if τ /∈ J . By Corollary 7.8 and Lemma
7.12, for w ∈ E, the moduleM∞,x,R(M(w ·λ)∨) is free of rank mx over its support
and M∞,x,R(M(w · λ)∨) = Bx(M(w · λ)∨)mx . Let Q be the smallest quotient
of M(λ)∨ dominating all the M(w · λ)∨ for w ∈ E. Lemma 7.11 implies that
M∞,x,R(Q) is free of rank mx over its support and M∞,x,R(Q) = Bx(Q)mx . Let
N be the kernel of the map M � Q.

Let I of the form ∐
τ∈J{siτ} where iτ ∈ {1, 2}. Then the image of the map

MI(λ)∨ ↪→ M(λ)∨ � Q is QI := �τ∈J L(s3−iτ · λτ )�τ /∈JM(λτ )∨. By Corol-
lary 7.8, the module M∞,x,R(MI(λ)∨) is free of rank mx over its support. Thus
M∞,x,R(QI) is generated by mx elements, and its quotient

LI :=� τ ∈ JL(s3−iτ · λτ )��
τ /∈J

M(wx,τw0 · λτ )∨,

satisfies

M∞,x,R(LI) =M∞,x,R
(
�
τ∈J

L(s3−iτ · λτ )��
τ /∈J

L(wx,τw0 · λτ )
)
.

by Proposition 7.2. Moreover, by Proposition 7.9, this module is free of rank mx

over its support so that its fiber at x has dimension mx. This implies that the
following surjective maps are all isomorphisms

k(x)mx 'M∞,x,R(MI(λ)∨)⊗ k(x) ∼−→M∞,x,R(QI)⊗ k(x)
∼−→M∞,x,R(LI)⊗ k(x) ' k(x)mx .

As moreover Ker(MI(λ)∨ → QI) = N ∩MI(λ)∨, we see that the map

M∞,x,R(N ∩MI(λ)∨)⊗ k(x) −→M∞,x,R(M(λ)∨)⊗ k(x)

is zero. As M(λ)∨ is multiplicity-free, we have N = ∑
I(N ∩ MI(λ)∨) and we

conclude that the map

M∞,x,R(N)⊗ k(x) −→M∞,x,R(M(λ)∨)⊗ k(x)

is zero. ThereforeM∞,x,R(M(λ)∨)⊗ k(x) 'M∞,x,R(Q)⊗ k(x) ' k(x)mx and we
conclude with Lemma 7.12 since Bx(M(λ)∨) is cyclic.

7.5 The case of the antidominant projective

Theorem 7.14. The coherent sheafM∞,x,R(P (w0 ·λ)) is free of rank mx over its
support.
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Proof. Recall that A = U(t)m and set D := L ⊗AW A. By Proposition 2.17,
the action of Z(g) on P (w0 · λ) induces a structure of D-module on P (w0 · λ).
As M(λ)∨ is an injective object, it follows from [Soe90, Prop. 6], that M(λ)∨ '
P (w0 · λ)⊗D (D/mD), where mD is the maximal ideal of D. We have also a local
map of local algebras α : D → OX qtri

∞,x,R
defined in section 6.3. It follows from

Corollary 6.14 that these define the same action of D onM∞,x,R(P (w0 · λ)). As
moreover the functorM∞,x,R is exact, we have an isomorphismM∞,x,R(M(λ)∨) '
M∞,x,R(P (w0 · λ)) ⊗D (D/mD). As moreover the map A ⊗AW A → OX qtri

∞,x,R
is a

local map of local rings, we have an isomorphism M∞,x,R(P (w0 · λ)) ⊗ k(x) ∼−→
M∞,x,R(M(λ)∨)⊗k(x) and thus dimLM∞,x,R(P (w0 ·λ))⊗k(x) = mx by Theorem
7.13. We conclude by Lemma 7.12.

Corollary 7.15. Let Q be a quotient of the anti-dominant projective P (w0 · λ)
in the category Oχλ. If M∞,x,R(Q) 6= 0, then it is finite free of rank mx over its
support and its support is Cohen–Macaulay.

Proof. AsM∞,x,R(P (w0 ·λ)) (resp. Bx(P (w0 ·λ))) is free of rank mx (resp. 1) over
its support by Theorems 7.14 and 7.4, we have thatM∞,x,R(Q) (resp. Bx(Q)) is
generated by at most mx elements (resp. cyclic). It follows from Lemma 7.12,
M∞,x,R(Q) is free of rank mx over its support and that its support is Cohen–
Macaulay.

Corollary 7.16. For all w ∈ W , the coherent sheaf

M∞,x,R(P (w · λ)∨),

is free of rank mx over its support.

Proof. By Corollary 7.15, it is sufficient to prove that M∞,x,R(P (w · λ)∨) is non
zero and that there exists a surjective map

P (w0 · λ) −→ P (w · λ)∨.

As P (w0 ·λ) is the projective envelope of L(w0 ·λ), this is equivalent to showing
that the socle of P (w ·λ) is isomorphic to L(w0 ·λ). By [Str03, Thm. 8.1], the socle
of P (w·λ) is isomorphic to L(w0·λ)m withm = [P (w·λ) : M(λ)] = [M(λ) : L(w·λ)]
by [Hum08, Thm. 3.9]. As g is isomorphic to a direct sum of copies of gl3,L, we
have [M(λ) : L(w · λ)] = 1 for any w ∈ W .

Moreover, as [M(λ) : L(λ)] = 1, we have

[P (w · λ)∨ : L(λ)] = [P (w · λ) : L(λ)] = 1.

AsM∞,x,R(L(λ)) 6= 0, we haveM∞,x,R(P (w · λ)∨) 6= 0.
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7.6 Duality

For a Cohen–Macaulay sheaf F on X qtri
∞,x,R of dimension dimX qtri

∞,x,R, we write
ω•
X qtri
∞,x,R

for the dualizing complex and set

F∨ := RHomX qtri
∞,x,R

(F , ω•
X qtri
∞,x,R

)[− dimX qtri
∞,x,R].

This complex F∨ is a coherent sheaf concentrated in degree 0 to which we refer to
F∨ as the shifted Serre dual of F .

Lemma 7.17. Let F be a maximal Cohen–Macaulay coherent sheaf over X qtri
∞,x,R.

Then [F∨] = [F ]. As a consequence if Y ⊂ X qtri
∞,x,R is a maximal Cohen–Macaulay

closed subscheme, we have [ωY ] = [Y ].

Proof. Let R be local complete regular ring such that OX qtri
∞,x,R

is isomorphic to a
quotient of R. Then we can compute F∨ by the formula F∨ = ExtdR(F , R) where
d is the codimension of X qtri

∞,x,R in Spec(R). By definition, we have [F ] = ∑
z a(z)z

where the sum is over all maximal points in Supp(F) and a(z) is the length of
the finite length Rz-module Fz. Let z ∈ Spec(R) be a maximal point of the
support of F . The localization Rz of R at z is a local regular ring and we have
F∨z ' ExtdRz(Fz, Rz). As ExtdRz(−, Rz) is a an exact functor on the subcategory
of finite length Rz-modules and dimk(z) ExtdRz(k(z), Rz) = 1, the length of the
Rz-module ExtdRz(Fz, Rz) is a(z). So we have the proved the claim.

Proposition 7.18. Let M be a subobject of the anti-dominant projective P (w0 ·λ).
Assume that M∞,x,R(M) 6= 0 and let Y be the support of M∞,x,R(M). Then
M∞,x,R(M) is isomorphic to ωmxY and Y is Cohen–Macaulay.

Proof. Let Q be the quotient of P (w0 ·λ) byM . IfM∞,x,R(Q) = 0, then Theorem
7.14 implies the result. So we can assume thatM∞,x,R(M) 6= 0 andM∞,x,R(Q) 6=
0. By Corollary 7.15,M∞,x,R(Q) is isomorphic to OmxZ for Z ⊂ X qtri

∞,x,R maximal
Cohen–Macaulay. Using Lemma 7.10, we can construct a commutative diagram

0 M∞,x,R(M) M∞,x,R(P (w0 · λ)) M∞,x,R(Q) 0

0 Ker Omx
X qtri
∞,x,R

OmxZ 0.

' ' '

canmx

Let I be the ideal defining Z. As X qtri
∞,x,R and Z are Cohen–Macaulay of the same

dimension, the involutivity of the duality implies that we have I ' ωOY where
Y = Supp(I) so that we have the result.
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Theorem 7.19. For all w ∈ W , with ww0 > wx,R, the sheaf M∞,x,R(M(w · λ))
is isomorphic to (

ωX qtri,ww0
∞,x,R

)⊕mx
.

Proof. It follows from Propositions 7.18 and 7.3 that M∞,x,R(M(w · λ)) ' ωmxY
where Y = SuppM∞,x,R(M(w · λ)) is Cohen–Macaulay. However it follows from
Theorem 6.16 that Y ⊂ X qtri,ww0

∞,x,R . By Lemma 7.17, we have an equality [ωY ] =
[Y ] and it follows from Corollary 7.5 that [M∞,x,R(M(w · λ))] = mx[X

qtri,ww0
∞,x,R ].

Therefore we have [Y ] = [X qtri,ww0
∞,x,R ] and thus Y = X qtri,ww0

∞,x,R .

We choose for all λ dominant weight, and all w ∈ W a surjective map πw :
P (w0 · λ) −→ P (w · λ)∨ (see proof of Corollary 7.16).

Lemma 7.20. For all map fw,w′ : P (w · λ)∨ −→ P (w′ · λ)∨ there exists a map
f̃w,w′ : P (w0 · λ) −→ P (w0 · λ) such that the following diagram commutes

P (w0 · λ) P (w0 · λ)

P (w · λ)∨ P (w · λ)∨

f̃w,w′

πw πw′

fw,w′

(11)

Proof. As πw′ : P (w0 · λ) −→ P (w′ · λ)∨ is surjective and P (w0 · λ) is projective,
the map Hom(P (w0 ·λ, P (w0 ·λ)) −→ Hom(P (w0 ·λ), P (w′ ·λ)∨) is surjective, thus
there exists f̃w,w′ mapping to fw,w′ ◦ πw. This proves the claim.

Lemma 7.21. Let F be either B,Bx orM∞,x,R. There exists a family of isomor-
phisms indexed by w ∈ W

Ψw : F(P (w · λ)∨) ∼−→ F(P (w · λ))∨.

such that for any w,w′ ∈ W and any if fw,w′ : P (w · λ)∨ −→ P (w′ · λ)∨, the
following diagram commutes

F(P (w · λ)∨) F(P (w′ · λ)∨)

F(P (w · λ))∨ F(P (w′ · λ))∨

F(fw,w′ )

Ψw Ψw′
F(f∨

w,w′ )
∨

(12)

where we denote by the same symbol (·)∨ the duality in O and Serre duality on
coherent sheaves.

73



Proof. Let w ∈ W . The sheaves F(P (w · λ)∨) and F(P (w · λ))∨ are isomorphic
to the same quotient of F(P (w0 · λ)) by Theorem 7.4 for B,Bx and Corollary 7.16
and Proposition 7.18 forM∞,x,R. This implies that there exists an isomorphism
Ψw : F(P (w · λ)∨) ∼−→ F(P (w · λ))∨ such that the following diagram commutes

F(P (w0 · λ)) F(P (w0 · λ))∨

F(P (w · λ)∨) F(P (w · λ))∨

Ψw0

F(πw) F(π∨w)∨

Ψw

(13)

Fix w,w′ and let’s show that the diagram (12) is commutative. Let fw,w′ ∈
Hom(P (w ·λ)∨, P (w′ ·λ)∨). By Lemma 7.20, there exists a map f̃w,w′ ∈ End(P (w0 ·
λ)) such that the diagram (11) is commutative. We first consider the following
diagram

F(P (w0 · λ)) F(P (w0 · λ))∨

F(P (w0 · λ)∨) F(P (w0 · λ))∨

Ψw0

F(f̃w,w′ ) F(f̃∨
w,w′ )

∨

Ψw0

(14)

But as f̃w,w′ ∈ EndO(P (w0 ·λ), P (w0 ·λ)) ' D = L⊗AW A, it follows from Corollary
6.14 for F =M∞,x,R and [Bez16, Prop. 23] for F = Bx, and the fact that Ψw0 is
OX qtri

∞,x,R
-linear, that this diagram commutes. Now consider the diagram

F(P (w0 · λ)) F(P (w′ · λ))∨

F(P (w0 · λ)) F(P (w′ · λ)∨)

F(P (w0 · λ)) F(P (w · λ))∨

F(P (w0 · λ)) F(P (w · λ)∨)

F(π∨
w′ )
∨

F(f̃∨
w,w′ )

∨

F(πw′ )

Ψw0 Ψw′

F(π∨w)∨

F(f∨
w,w′ )

∨

F(πw)

Ψw0

F(f̃w,w′ )

Ψw
F(fw,w′ )

All faces, except maybe the right hand one (which is the one of the statement),
of this cube are commutative diagrams by functoriality and diagrams (11), (13),
(14). Moreover F(πw), F(π∨w)∨, F(πw′), F(π∨w′)∨ are surjective, thus the last right
hand face also commutes.
Corollary 7.22. For any M ∈ Oalg, there is a compatible choice of isomorphisms

ΨM : F(M∨) ∼−→ F(M)∨,
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where F is either the functor B,Bx orM∞,x,R. In particular, F is compatible with
duality.

Proof. Choose a resolution⊕
i

P (µi) −→
⊕
j

P (λj) −→M −→ 0. (15)

Then we have two exact sequences

0 −→ F(M∨) −→
⊕
j

F(P (λj)∨) −→
⊕
i

F(P (µi)∨),

and
0 −→ F(M)∨ −→

⊕
j

F(P (λj))∨ −→
⊕
i

F(P (µi))∨.

For the second one, recall that if K denote the Kernel in equation (15) so that

0 −→ K −→
⊕
j

P (λj) −→M −→ 0,

then, as F(K) is CM of the same dimension as the other modules, we have

0 −→ F(M)∨ −→
⊕
j

F(P (λj))∨ −→ F(K)∨ −→ 0,

which is exact. Moreover, by the previous Lemma 7.21 we have a commutative
diagram with vertical isomorphisms

0 F(M∨) ⊕
j F(P (λj)∨)

⊕
iF(P (µi)∨)

0 F(M)∨ ⊕
j F(P (λj))∨

⊕
iF(P (µi))∨

⊕
j

Ψλj

⊕
i
Ψµi

which induces an isomorphism ΨM : F(M∨) −→ F(M)∨.

Corollary 7.23. There exists an isomorphism of functors Bmxx 'M∞,x,R.

Proof. By a similar argument to the proof of Lemma 7.21, we can construct a
family indexed by w ∈ W of isomorphisms

Φw : Bx(P (w · λ)∨)mx ∼−→M∞,x,R(P (w · λ)∨)
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such that, for any w,w′ ∈ W and any fw,w′ ∈ Hom(P (w · λ)∨, P (w′ · λ)∨, the
following diagram commutes

Bx(P (w·)∨)mx Bx(P (w′ · λ)∨)

M∞,x,R(P (w · λ)∨) M∞,x,R(P (w′ · λ)∨).

Bx(fw,w′ )

Φw Φw′
M∞,x,R(fw,w′ )

Such a family of isomorphisms provides an isomorphism of functors between Bmxx
and M∞,x,R restricted to the full subcategory of Oλ of injective objects. As the
category Oλ has enough injectives, this isomorphism extends to all of Oλ.

7.7 Consequences

In this section we keep the setting introduced in subsection 7.3. In particular
n = 3.

Lemma 7.24. Let ρ, λ,R be as above and let x ∈ X∞(L) the point corresponding
to ρ. Then for all M ∈ Oχλ,

M∞,x,R(M)⊗ k(x) '
(
HomU(g)(M,Πla[mρ])N

0 [mδR ]
)′
.

Proof. By construction (see Remark 6.2), we have

M∞,x,R(M) '
(
HomU(g)(M,Πla

∞[m∞x ])N0 [m∞δR ]
)′
.

By Corollary 6.11, the X∞× T̂ -structure on the sheafM∞,x,R(M) factors through
X qtri
∞,x,R −→ X∞ × T̂ . Thus,

M∞,x,R(M)⊗ k(x) '
(
HomU(g)(M,Πla

∞[mx])N0 [mδR ]
)′
.

Corollary 7.25. Let δ : T → L× be a continuous character and let χS : TS → L
be a character such that there exists f ∈ S†(Kp)[χS ⊗ δ] an overconvergent p-adic
eigenform on the group U(3). Assume that the Galois representation ρ associated
to f is crystalline strictly dominant and ϕ-generic at p satisfying (1). Let r =
|{τ ∈ ΣF | ωx,R,τ = 1}|. Then

dimS†(Kp)[χS ⊗ δ] = 2r dimScl(Kp)[χS ⊗ δ] 6= 0.

Proof. The assumptions imply that the character δ is locally algebraic and that it
factors as δ = δλδR for some λ ∈ X∗(T )+ and some unramified character δR. By
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Breuil’s adjunction formula [Bre15, Théorème 4.3] (see also [BHS19, eq. (5.5)])
and [BHS19, Lemma 5.2.3] we have

S†(Kp)[χS ⊗ δ] = HomU(g)(M(λ),Πla[χS])N0 [mδR ],
Scl(Kp)[χS ⊗ δ] = HomU(g)(L(λ),Πla[χS])N0 [mδR ].

In particular, by Lemma 7.24, these spaces are indentified with the dual vector
spaces of the fiber of M∞,x,R(M(λ)) resp. of M∞,x,R(L(λ)) at k(x). Thus, as
mx = dimM∞,x,R(L(λ)) ⊗ k(x), the result is a direct corollary of Theorem 7.19
(and Proposition 7.6).

We can also deduce the following corollary on the structure of the completed
cohomology Π (see Definition 5.2), which is a representation of G := U(Qp). Let
gl3 be the Lie algebra (over L) of the group GL3 and for a dominant λ we consider
the extension

N(λ) = [L(s1 · λ)⊕ L(s2 · λ)− L(λ)] ∈ Ext1
O(L(λ), L(s1 · λ)⊕ L(s2 · λ)),

which is non trivial when mapped in each of Ext1
O(L(λ), L(si ·λ)), for i = 1, 2. This

extension is the quotient of the Verma module M(λ) by M(s1s2 ·λ) +M(s2s1 ·λ).
As before we consider the Lie algebra

g = Lie
(
GL ' (ResF⊗QQp/Qp GL3)×Qp L

)
'

∏
τ∈ΣF

gl3

with Borel b ' ∏τ bτ . Associated to a dominant weight λ = (λτ )τ ∈ X∗(T )+ and
wR = (wR,τ )τ∈ΣF ∈ W we define the object

N(λ,wR) =
 �
τ :wR,τ 6=1

L(λτ )� �
τ :wR,τ=1

N(λτ )


of the category Oχλ =�τ Ogl3,bτ
χλτ

. We also define

S(λ,wR) =�
τ

S(λτ , wR,τ ) ∈ Oχλ ,

where
S(λτ , wR,τ ) =

{ ⊕
w6wR,τw0 L(w · λτ ) if wR,τ 6= 1⊕

`(w) 6=1 L(w · λτ )
⊕
N(λτ ) if wR,τ = 1 ,

so that S(λ,wR) = ⊕
w6wRw0 L(w · λ) if wR,τ 6= 1 for all τ , and

N(λ,wR) ⊂ S(λ,wR),
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otherwise.
If M is a U(g)-module, we denote HomE(M,E) the U(g)-module with under-

lying vector space HomE(M,E) and action of r ∈ U(g) given by

(r · φ)(m) := φ(ṙm), φ ∈ HomE(M,E),m ∈M,

where r 7→ ṙ is the anti-involution of U(g) extending −1 on g. We denote B the
Borel opposite to B, whose Lie algebra is b with n its nilpotent radical. We then
denote B = B(Qp), B = B(Qp) and δB the modulus character of B. We then
denote M ′ := HomE(M,E)n∞ the vectors which are killed by a finite power of n.
If M = ⊕

λ∈X∗(T )LMλ ∈ Og,b, then M ′ ∈ Og,b. Finally recall that if M ∈ Og,b

and δ is a smooth character of T (Qp), then Orlik-Strauch constructed (see [OS10]
or also [Bre16])

FG
B

(M, δ),
which is a locally analytic representation of G. In particular, locally analytic
principal series are of this form : if M = M(λ)∨ ∈ Og,b, then

FG
B

((M(λ)∨)′, δ) = indGB(δλδ)la. (16)

Let ρ : GalE −→ GLn(L) be a crystalline, Hodge-Tate regular and ϕ-generic
autodual representation satisfying Hypothesis 5.9 such that Π[mρ] 6= 0 where mρ

is the ideal of TS ⊗ L associated to ρ. Let R a choice of refinement and δR the
associated unramified character. Denote λ = (λτ )τ := HT(ρ) − δG ∈ X∗(T )+ the
(dominant) algebraic character associated to ρ as before, where HT(ρ) = (h1,τ >
· · · > hn,τ )τ∈ΣF ∈ X∗(T ) gives the Hodge-Tate weights of ρ. As Π[mρ] 6= 0
and ρ satisfies Hypothesis 5.9, it corresponds to a point x ∈ X∞(L). Denote
wρ,R = (wρ,R,τ )τ∈ΣF and mρ := mx > 1 as in Section 7.1.

Corollary 7.26. For ρ, λ,R as above and all w 6 wRw0, we have

dim HomG(indGB(δw·λδRδ−1
B )la,Πla[mρ]) = mρ.

Proof. By [Bre15, Proposition 4.2] and [BHS19, Lemma 5.2.3], we have, for all
M ∈ O

HomU(g)(M,Πla[mρ])N
0 [mδR ] ' HomG(Qp)(FGB (M ′, δRδ

−1
B ),Πla[mρ])

' Hom(g,Bp)(M ⊗L C∞c (NB(L), δR),Π[mρ]).

Thus, using equation (16) and Lemma 7.24 we deduce that the statement is equiv-
alent to

dim HomU(g)(M(w · λ)∨,Πla[mρ)[mδ] = dimM∞,x,R(M(w · λ)∨)⊗ k(x) = mx,

which is Theorem 7.13.
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Corollary 7.27. For ρ, λ,R as before, we have an injection of (g, B(L))-modules

(S(λ,wρ,R)⊗L C∞c (NB(L), δR))⊕mρ ↪→ Πla[mρ],

or, equivalently, an injection of G-representations

FG
B

(S(λ,wρ,R)′, δRδ−1
B )⊕mρ ⊂ Π[mρ].

Moreover each map from FG
B

(M(w · λ)′, δRδ−1
B ) to Π[mρ] factors through the pre-

vious representation FG
B

(S(λ,wρ,R)′, δRδ−1
B ).

Proof. The two statements about injections are equivalent and each of the mρ

asserted maps comes from a section of

HomU(g)(S(λ,wρ,R),Πla[mρ])N
0 [mδR ],

by the adjunction recalled in the proof of the previous corollary.
We already know, by [BHS19], that for all w 6 wρ,Rw0 we have, in previously

used notations

dim HomU(g)(L(w · λ),Πla[mρ])N
0 [mδR ] = mx = mρ.

Moreover, for each wρ,Rw0 > w with wρ,R,τ 6= 1 if wτ = 1, we have

mρ = dim HomU(g)(M(w · λ),Πla[mρ])N
0 [mδR ]

= dim HomU(g)(L(w · λ),Πla[mρ])N
0 [mδR ],

by Corollary 7.8. Thus, for those w, all maps from M(w · λ) factors through
L(w · λ).

So we really need to take care of the direct factors of S(λ,wρ,R) where a factor
N(λτ ) appears. Such a factors is of the form

�
τ∈I1

L(wτ · λτ )��
τ∈I2

N(λτ ), Σ = I1 t I2,

and is a quotient of M(w · λ) where w = (wτ ) with wτ = 1 if τ ∈ I2, and even of
MI(w · λ) where I = { s1,τ |τ ∈ I1 such that wτ = 1 = wρ,R,τ}.

We first prove that any map from MI(w · λ) has to factor through S(λ,wρ,R)
and more precisely through the previous factor.

Choose τ0 ∈ I2 so that wρ,R,τ0 = wτ0 = 1 and for i = 1, 2 let sτ0i ∈ W with
(sτ0i )τ = wτ = if τ 6= τ0, and wτ0 = si. Then

MI(sτ0i · λ) ⊂MI(w · λ).
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Moreover, MI(sτ0i · λ) has a quotient

Qτ0
i :=�

τ∈I1
L(λτ )� L(si · λτ0)� �

τ∈I2:τ 6=τ0
M(wτ · λτ ),

and we first prove that maps fromMI(sτ0i ·λ) into Πla[mρ] factors through Qτ0
i . This

is equivalent to proving that M∞,x,R(M(sτ0i )) ⊗ k(x) −→ M∞,x,R(M(λ)) ⊗ k(x)
factors throughM∞,x,R(Qτ0

i ) ⊗ k(x). By Corollary 7.23, this is equivalent to the
same question for Bx.
Claim 7.28. If G = G1 × G2, λ = (λ1, λ2) is an algebraic weight and Oχλ =
Oχλ1

�Oχλ2
, then

BG(M1 �M2) = BG1(M1)� BG2(M2),

where BH is Bezrukavnikov’s functor of Theorem 7.4 for the group H, under the
obvious isomorphism of Steinberg varieties

XG = XG1 ×XG2 .

Proof. This follows from the very construction of Bezrukvanikov’s functor. The
functors BG is even defined on the larger category Db(PervN(G/N)) and compati-
ble with its monoidal structure. Then, by Theorem 7.4, we know that dual Vermas
are sent to the structure sheaves of the respective components by BG, and similarly
for BGi . In particular we have an isomorphism

BG(M((w1, w2) · (λ1, λ2))∨) ' BG1(M(w1 · λ1)∨)� BG2(M(w2 · λ2)∨).

As the functors BG and BG1 � BG2 are both monoïdal and triangulated, using
translation functors we deduce that BG and BG1�BG2 are isomorphic on projective
objects. Thus by the same proof of Lemma 7.21 and Lemma 7.23, we deduce the
isomorphism of functors on Oχλ .

So we want to prove that Bx(MI(sτ0i · λ)) ⊗ k(x) −→ Bx(MI(w · λ)) ⊗ k(x)
factors through Qτ0

i . By the previous claim, it suffices to show one τ at a time
using M(sτ0i · λ) = M(si · λτ0) �MI(wτ0 · λτ0). Thus when τ 6= τ0 this is obvious
for τ ∈ I2 and reduces to freeness of X3,I,wτ when τ ∈ I1 as before. For τ = τ0 this
amount to show that, for k 6= ` ∈ {1, 2} the map

Bx(M(sks` · λτ0))⊗ k(x) −→ Bx(M(si · λτ0))⊗ k(x),

vanishes. But as Bx(M(si · λτ0)) is free of rank 1, this is obvious. Thus, we have
a factorisation through Qτ0

i for all τ0, i = 1, 2, thus

M∞,x,R(MI(w · λ))⊗ k(x) =M∞,x,R(M)⊗ k(x),
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where

M = �
τ :wρ,R,τ 6=1

L(λτ )� �
τ :wρ,R,τ=1

M(λτ )/(M(s1s2 · λτ ) +M(s2s1 · λτ ))︸ ︷︷ ︸
N(λτ )

.

Now we prove the last part of the statement, i.e. any map from (the Orlik-Strauch
induction of) a Verma M(w · λ) to Πla[mρ] will factor through S(λ,wR). Assume
given a map in HomU(g)(M(w · λ),Πla[mρ])N

0 [mδR ], and let I1 = {τ ∈ Σ|wρ,R,τ =
wτ = 1} and I2 its complement, then by the previous argument the map factors
through

�
τ∈I1

L(wτ · λτ )��
τ∈I2

N(λτ ).

As any quotient of this module is a sub-representation of S(λ,wρ,R), we have that
any map

FG
B

(M(w · λ)∗, δRδ−1
B )→ Π[mρ]

factors through FG
B

(S(λ,wρ,R)∗, δRδ−1
B ).

We now prove the injective part. As S(λ,wρ,R) is the direct sum of terms of
the form, for w ∈ W ,

Mw,I1,I2 =�
τ∈I1

L(wτ · λτ )��
τ∈I2

N(λτ ), Σ = I1 t I2,

where I2 ⊂ { τ ∈ Σ|wρ,R,τ = wτ = 1}, we first prove that the direct sum of mρ

copies of (the Orlik-Strauch induction of) each term Mw,I1,I2 injects in Πla[mρ].
First remark

dim HomU(g)(Mw,I1,I2 ,Πla[mρ])[mδR ] = 2|I2|mρ,

by the previous factorisation of MI(w · ρ) for some I ⊂ I1 and the computation
using Bx (and using Proposition 7.6). Now each quotient of Mw,I1,I2 is of the form

Mw,I1∪J,I2 \J = �
τ∈I1∪J

L(wτ · λτ )� �
τ∈I2\J

N(λτ ),

for some J ⊂ I2 (remark that if τ ∈ I2, wτ = 1), and thus

dim HomU(g)(Mw,I1∪J,I2\J ,Πla[mρ])[mδR ] = 2|I2|−|J |mρ.

We deduce that the dimension of homomorphisms modulo those which factors
through a strict quotient is

2|I2|mρ −
∑
∅6=J⊂I2

(−1)|J |+12|I2|−|J |mρ = mρ.
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In particular there are mρ independent injective maps from FG
B

(M ′
w,I1,I2 , δR) to

Πla. Now when w and I1, I2 varies, these objects have distincts irreducible in their
socle. Thus the direct sum of all those maps⊕

w,I1,I2

FG
B

(M ′
w,I1,I2 , δR)⊕mρ = FG

B
(S(λ,wρ,R)′, δRδ−1

B )⊕mρ ,

injects into Π[mρ].

Remark 7.29. In particular, for each τ such that wR,τ = 1 we deduce the injection
of the locally analytic representation

FGτ
Bτ

(N(λτ )′, δR,τδ−1
Bτ ) = [LAs1 ⊕ LAs2 − LALG],

as representation of GL3(Fτ ) (acting through τ), where

LALG := L(λτ )⊗L indGτ
Bτ

(δR,τδ−1
Bτ ),

is an irreducible locally algebraic representation which appears in cosocle, where

LAs = FGτ
Bτ

(L(s · λτ )′, δR,τδ−1
Bτ )

is the irreducible, non-locally algebraic, socle of the locally analytic principal series

LAs ⊂ indGτ
Bτ

(δs·λτ δR,τδ−1
Bτ )la.

In this case, the locally algebraic representation LALG appears with multiplicity
mρ in the socle by the main result of [BHS19], but also with multiplicity mρ

as an higher order Jordan-Hölder factor, namely, in the cosocle of the previous
FGτ
Bτ

(N(λτ )′, δR,τδ−1
Bτ ).

8 Existence of very critical classical modular forms

In this section we show the existence of a classical form f satisfying the hypothesis
of Theorem 1.2. The main difficulty is to find a form satisfying the Taylor-Wiles
hypothesis, which is moreover completely critical at p (i.e. wρf ,R = 1).

For a finite extension F of Qp, we denote by recF : F× → Galab
F the local

reciprocity map sending a uniformizer of F on a geometric Frobenius. If K is a
number field we denote by ArtK the Artin reciprocity map A×K/K× → Galab

K such
that, for any finite place v of K the precomposition of ArtK with the inclusion
K×v ↪→ A×K is recKv . If Ψ is a character of A×K/K× and v is a finite place of K such
that Ψv is unramified, we write Ψ(v) for the evaluation of Ψv at an uniformizer of
F×v . First, we remark the following,
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Lemma 8.1. Let K/Qp be a finite extension and let ρp : GalK −→ GLn(Qp) be
a crystalline representation with regular Hodge–Tate weights such that there exists
a refinement F• ⊂ Dcris(ρp) which contains the Hodge filtration. We moreover
assume that the eigenvalues of the linearization of the crystalline Frobenius on
Dcris(ρp) are pairwise distinct. Then ρp is a split sum of characters.

Proof. This is a simple application of weak admissibility. Up to extending scalars,
we can assume that D = Dcris(ρp) = ⊕

τ Dτ is split, and is a filtered ϕ-module.
We consider the linearization ϕfτ of the Frobenius on Dτ , where f = [K0 : Qp]. We
write Fil•Dτ for the filtration on Dτ induced by the Hodge-filtration on D. The
assumption is that the Hodge filtration on D is ϕ-stable i.e. there is a full flag
of K ⊗ Qp-modules F•, stable under ϕ, such that, for all τ , if kτ1 6 . . . 6 kτn are
the (opposite) τ -Hodge-Tate weights (with multiplicities) then Fi,τ ⊂ Filkn−i+1Dτ .
Denote the eigenvalues of ϕf on Fi,τ by (ϕ1, . . . , ϕi). Thus by weak admissibility,

1
f

(v(ϕ1) + · · ·+ v(ϕi)) >
∑
τ

i∑
k=1

kτn+1−k.

Now, if Gi is a complementary ϕ-stable subspace of Fi inD (which exists due to the
assumptions on the eigenvalues of ϕf ), then we see directly that the τ -Hodge-Tate
weights of Gi are kτ1 , . . . , kτn−i. Thus by weak admissibility again,

1
f

(v(ϕi+1) + · · ·+ v(ϕn)) >
∑
τ

n−i∑
k=1

kτk .

But by weak admissibility of D, the endpoints of both polygons gives

1
f

(v(ϕ1) + · · ·+ v(ϕn)) =
∑
τ

∑
i

kτi .

Thus both Gi and Fi are weakly admissible, thus admissible, thus ρp splits accord-
ingly. As this is true for all i, we get the Lemma.

It follows that, when n = 3, an eigenform f as in Theorem 1.2 has a split
representation at p. In the case of modular forms, it was asked by Greenberg (see
the work of Ghate and Vatsal [Gha04], [GV04]) if a cuspform whose representation
is split at p is necessarily a CM form. The natural generalization of this question
to GL3 would suggest that we cannot find a form f to apply Theorem 1.2 with
very large image. Fortunately, we can construct an analog of a CM form for GL3
(more precisely for U(3)) which still has adequate image modulo p.
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8.1 Choosing a Hecke character

Let E be a CM field with totally real subfield E+ = F and let F ′ be a totally real
field disjoint from E, such that F ′/Q is Galois and such that [F ′ : Q] = 3. Set
K = EF ′. This is a CM field. We moreover assume that all the ramified primes
of K/E lie above split primes in E/E+. Choose two distinct primes p and ` such
that ` is totally split in K = EF ′ and primes above p in E+ = F are totally split
in K. Moreover assume p > 8(= 2(n+ 1) when n = 3) and ζp /∈ E.
Example 8.2. 1. The easiest choice is F ′ = Q(ζ7)+ and E = Q(i

√
3) so that 7

is split in E. For this F ′, we can also choose E = Q(i,
√

3), with maximal totally
real subfield E+ = Q(

√
3) so that E/E+ is unramified everywhere.

2. The second easiest choice for F ′ is F ′ = Q(ζ9)+. In this case we can choose
E = Q(i

√
5).

3. If E = Q(i), we can choose F ′ = Q(α) with α a root of X3 −X2 − 4X − 1,
which has discriminant 132.

4. If F ′ = Q(α) and E = Q(i), we can choose any prime p > 8, ` congruent to
1, 5, 21, 25 (mod 52), like 5, 53, 73, .... In particular in that case we better should
exclude p = 13 as in the early version [Bel10] (who knows?).

5. If F ′ = Q(ζ7)+ and E = Q(i
√

3), we can choose any prime congruent to
1, 13 (mod 21) like 13, 43, 97....

6. If F ′ = Q(ζ7)+ and E = Q(i,
√

3), we can take any prime ` ≡ 1, 13 (mod 84)
like 13, 97, 169... and p ≡ 1, 13 (mod 21) like 13, 43, 97....

7. If we really want to use p = 13 and that p = 13 is inert in F = E+, and if we
want moreover E/E+ to be unramified everywhere, we can choose E = Q(i,

√
7)

with F ′ = Q(β) ⊂ Q(ζ43) as 43 is split in Q(i,
√

7)/Q(
√

7), with β a root of
X3 −X2 − 14X − 8.

In the following we say that a weight k ∈ ZHom(K,C) is very regular if, for τ1 6= τ2
in Hom(K,C), we have |kτ1 − kτ2| > 2.

Let Ψ be an algebraic Hecke character of A×K with algebraic very regular weight
k = (kv)v|∞, such that Ψc = Ψ∨ and such that Ψ is unramified both at p and `.
Choose an isomorphism ι : C ' Qp. We moreover assume that

(Ψ, p) if p|p in E, we have Ψ(v)Ψ(v′)−1 /∈ {1, p} for v 6= v′ places of K dividing p.

(Ψ, `) There exists λ|` in E, and λ′|λ in E(ζp), such that for all v1 6= v2 places of K
dividing λ, if v′1, v′2 are the corresponding places above λ′ in K(ζp), ι(Ψ(v′1)
(mod mQp) 6= ι(Ψ(v′2)) (mod mQp).
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Consider moreover the following hypothesis on Ψ :

(Ψ, Ram) If v is a place of K such that Ψ is ramified at v, then v divides a prime
which is totally split in K/Q.

Let Ψp : A×K −→ Q×p be the p-adic realization of Ψ and ι, and ψp : GalK → Q×p
such that ψp = Ψp ◦ ArtK . It is a Galois representation satisfying ψ∨p = ψcp.

8.2 Galois induction

Definition 8.3. We denote by ρ the induced Galois representation

ρ = indGalE
GalK ψp = {f : GalE −→ Zp

×| f(gk) = ψ−1
p (k)f(g)∀g ∈ GalE, k ∈ GalK},

where the action of g ∈ GalE is given by (g · f)(x) = f(g−1x).

Then ρ is a three dimensional Galois representation since [K : E] is Galois of
degree 3. We claim the following

Lemma 8.4. 1. The representation ρ := ρ ⊗ Fp is absolutely irreducible, in
particular ρ is absolutely irreducible.

2. The representation ρ(GalE(ζp)) is adequate.

3. The representation ρ is polarized, i.e. ρc ' ρ∨.

4. The representation ρGalEv is split, ϕ-generic, Hodge–Tate regular for any v|p
in E,

5. If v is a place of E such that ρ is ramified at v, then HomGalEv (ρv, ρv(1)) = 0.

Proof. We will actually prove that ρ(GalE(ζp)) acts absolutely irreducibly, which
will imply point 1 and point 2 will follow by [Tho12] Lemma 2.4. To prove point
1, remark that if we denote by σ ∈ GalE a lift of a generator of the Galois group
Gal(K/E) =< σ >= Z/3Z, then ρ has a basis given by f, σ · f, σ2 · f , where f is
the function

f : GalE = GalK
∐
σGalK

∐
σ2GalK −→ Z×p , k ∈ GalK 7→ ψ−1

p (k), σk, σ2k 7→ 0.

Then σ3 · f = ψp(σ3)f. Thus, after restricting to GalK , there is an isomorphism
ρ|GalK ' ψp⊕ψσp ⊕ψσ

2
p , where ψσp = ψp(σ−1 ·σ). We reduce mod p, where we have a

similar reduction after restricting to GalK . Because of the hypothesis (Ψ, `) away
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from p, we have that ρGalE(ζp)λ′
, for λ′|`, is the sum of three distinct characters.

Moreover the group GalE acts transitively on these three eigenspaces. Therefore
this representation is absolutely irreducible. To prove point 3, we compute ρ∨. By
[CR81, Prop. 10.28], we have an isomorphism

ρ∨ ' IndGalE
GalK ψ

−1
p = IndGalE

GalK ψ
c
p ' ρc.

Let us prove 4. As p is totally split in K/F , we have for v|p in E, GalEv ⊂ GalK so
that ρ|GalEv ' ψp,v ⊕ ψσp,v ⊕ ψσ

2
p,v. As the group GalE acts transitively on the three

places ofK over v, we have ρ|GalEv '
⊕
v′|v ψp,v′ . Therefore ρ|GalEv is crystalline and

the eigenvalues of the Frobenius endomorphism of Dcris(ρ|GalEv ) are the Ψ(v′) for
v′|v in K. It follows from hypothesis (Ψ, p) that ρ|GalEv is ϕ-generic. Moreover the
Hodge–Tate weights of ρ|GalEv corresponds to the algebraic (infinitesimal) weight
of Ψ, which was assumed regular so that ρGalEv is Hodge–Tate regular.

Finally we prove 5. Let v be a place of E such that ρv is ramified. Then
either v is ramified in K/E or Ψv is ramified. Assume in a first time that Ψv is
ramified. Then (Ψ, Ram) implies that v divides a prime of Q which is totally split
in K. In particular, v is split in K/E. As above, we have ρv '

⊕
v′|v ψp,v′ with

ψp,v′ = Ψv′ ◦ rec−1
Kv′

as v′ - p. Therefore it follows from Lemma 8.5 below that
HomGalEv (ρv, ρv(1)) = 0.

Now assume that v is non split in K. As K/E is Galois there is a unique place
w of K over v and ρv ' IndGalEv

GalKw ψp,w. By Frobenius reciprocity, we have

HomGalEv (ρv, ρv(1)) ' HomGalKw (ψp,w ⊕ ψσp,w ⊕ ψσ
2

p,w, ψp,wχcyc|Kw).

Assume that ψp,w = ψσp,wχcyc|Kw . As χcyc|Kw = χσcyc|Kw , we deduce ψ
σ
p,w = ψσ

2
p,wχcyc|Kw

and ψσ2
p,w = ψσ

3
p,wχcyc|Kw = ψp,wχcyc|Kw so that ψp,w = ψp,wχ

3
cyc|Kw which is false. We

prove similarly than ψp,w 6= ψσ
2

p,wχcyc|Kw and deduce HomGalEv (ρv, ρv(1)) = 0. If
Ψw 6= Ψw ◦ σ, then the characters Ψw,Ψw ◦ σ,Ψ ◦ σ2 are pairwise distinct and ρv
is irreducible so that HomGalEv (ρv, ρv(1)) = 0. If Ψw = Ψw ◦ σ, then ρv is not
irreducible, but clearly HomGalEv (ρv, ρv(1)) = 0 (as ψp|GalEv 6= ψp|GalEv (1)).

Lemma 8.5. Let Ψ : A×K/K× be an algebraic Hecke character of very regular
weight k. Then, if ` is a prime number which is totally split in K, then Ψv 6= Ψw|·|w
for all places v, w of K dividing `.

Proof. Let Ψ and ` be as in the statement. Fix ι : C ' Q` and let |·|` be the
unique absolute value on Q` extending the one on Q`. Let Ψι be the continuous
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character A×K/K×K×∞ → Q×` defined by

Ψι,w(xw) =


Ψw(xw) if w 6 |`, w 6 |∞
1 if w|∞
ι(Ψw(ww))∏τ∈Hom(Kw,Q`),τ |w τ(xw)kι−1τ if w|`,

where τ |w means that |.|` ◦ τ extends the absolute value given by w on K, and
(kσ)σ∈Hom(K,C) is the weight of Ψ. As the group A×K/K×K×∞ is compact, we have
Im(Ψι) ⊂ Z×` . As ` is totally split ι induces a bijection between {v|`} and
Hom(K,C). Let v be a place of K dividing ` corresponding to τ (i.e. |.|` ◦ ι−1τ
extends |.|v) and denote kv := kι−1τ . We have

|ιΨv(`)τ(`)kv |` = 1

so that |ι(Ψv(`))| = lkv . As ` is a uniformizer of Kv, for any v|`, the result
follows.

8.3 Construction of an explicit set of Hecke characters

In this subsection we explain one way to find a Ψ as before, satisfying hypothesis
(Ψ, p), (Ψ, `), (Ψ, Ram). Fix E a CM extension, with E+ = F its maximal totally
real subfield, so that [E : E+] = 2. Fix also F ′ disjoint from E, a totally real
degree 3 Galois extension of Q. Choose p, ` two primes with are totally split in
K := EF ′ such that p > 8. The following Lemma is a more precise version of
[CHT08, Lem. 4.1.1].

Lemma 8.6. Let F be a number field. Let S be a finite set of places of F . Let
χS be an unramified continuous character F×S := ∏

v∈S F
×
v → C× of finite order.

Let T be a set of finite places of F , disjoint from S and of Dirichlet density 1.
Then there exists a continuous character χ : A×F/F× → C× of finite order such
that χ|F×S = χS and the ramification places of χ are in T .

Proof. Let US be the product of the O×Fv for v /∈ S. Then F× ∩ US is a finitely
generated subgroup of F×. Let us write m for the order of the finite cyclic group
χS(F× ∩ US). It follows from the proof of Theorem 1 in [Che51] that we can find
finitely many places w1, . . . , wr in T such that the subgroup of F×∩US congruent
to 1 modulo pw1 , . . . , pwr is contained in (F× ∩US)m. We conclude as in the proof
of [CHT08, Lem. 4.1.1] choosing for U the product of the Uv for v not in S nor
{w1, . . . , wr} and a small enough subgroup at w1, . . . , wr.
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Lemma 8.7. Let K be an (imaginary) CM field with totally real subfield K+

and complex conjugacy c. Denote ψ : A×K/K× → C× be a continuous character.
Assume that there exists a finite set S of places of K which are split in K/K+ and
such that ψ−1

v = ψcv for v ∈ S. Moreover, assume that S contains the Archimedean
places. Let T be a finite set of places of K that contains S and is stable under
c, such that ψ is unramified outside of T . Then there exists a Hecke character
ψ̃ : A×K/K× → C× such that ψ̃−1 = ψ̃c and ψ̃v = ψv for v ∈ S and such that ψ̃v is
unramified outside of T .

Proof. Let θ = ψ ◦NK/K+ . As S contains the Archimedean places, the character
θ is trivial at Archimedean places and is therefore a character of finite order. Let
UT ⊂

∏
v∈TrSK

×
v be a compact open subgroup such that θ|UT is trivial and such

that c(UT ) = UT . Let

U =
( ∏
v/∈T
O×Kv

)
· UT ·

( ∏
v∈S

K×v
)
.

We have an injection of compact groups

NK/K+(A×K)/(NK/K+(A×K) ∩K×U) ↪→ A×K/K×U.

Under our hypothesis, the character ψ|NK/K+ (A×K) is trivial on (NK/K+(A×K)∩K×U).
Therefore it extends to a character α of finite order of A×K trivial on K×U . We
thus have ψ◦NK/K+ = α◦NK/K+ . It is easy to check that the character ψ̃ = ψα−1

satisfies our requirements.

Proposition 8.8. For each choice of fields E and F ′ and places p and ` and
very regular weight k as above there exists a Hecke character Ψ : A×K/K× → C×
satisfying (Ψ, p), (Ψ, `) and (Ψ, Ram) and such that Ψ−1 = Ψc.

Proof. Let k be a very regular weight. It follows from [Sch88], Section 0.3, that
there exists a Hecke character Ψ0 of A×K/K× with weight k. Using Lemma 8.6, we
can construct a Hecke character θ of finite order such that, setting Ψ1 = Ψ0θ, we
have

• the character Ψ1 satisfies (Ψ1, p) and (Ψ1, `) ;

• there exists finitely many primes `1, . . . , `r, different from p and `, which
are totally split in K and such that Ψ1 is only ramified at places dividing
`1, . . . , `r ;

• we have Ψ−1
1,w = Ψ1,cw for any place w of K dividing ` or p.
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Now it follows from Lemma 8.7 that there exists a Hecke character Ψ of A×K/K×
such that

• Ψ−1 = Ψc ;

• Ψv = Ψ1,v if v is a place of K dividing p or ` ;

• Ψ is ramified only at places dividing `1, . . . , `r.

8.4 Automorphic Induction and base change

Let Ψ and ρ as in subsection 8.1 and let U denote the unitary group in three
variables for E/E+ that is compact at infinity and quasi-split at all finite places.
We need to find an automorphic form for U whose associated Galois representation
is induced representation ρ from 8.3.

Proposition 8.9. There exists an automorphic representation Π of GL3,E, cusp-
idal, cohomological at infinity, unramified at ` and p, polarized, whose associated
Galois representation is given by ρ.

Proof. This is the content of [Hen12] Théorème 3 (as K/E cyclic of degree 3) for
the existence of the automorphic representation, Théorème 5 for the compatibility
with the local correspondence at ` and p and at infinity (cf. the following remark
of [Hen12]). Polarization can be checked after base change of the automorphic
induction to K, where it follows as Ψc = Ψ∨, and as Ψ 6= Ψσ for σ ∈ Gal(K/E)
such that σ 6= 1. Moreover, the automorphic induction is also cuspidal (Theorem
2 of [Hen12]).

Conjecture 8.10. There exists a cohomological, cuspidal, automorphic represen-
tation π of U whose base change to GL3,E is Π.

Proposition 8.11. If E/E+ is everywhere unramified (e.g. for E = Q(i,
√

3) or
Q(i,
√

7)), then the previous conjecture is true.

Proof. This is [Lab11] Theorem 5.4.

Proposition 8.12. If E is quadratic imaginary, then the previous conjecture is
true.

Proof. By [Mor10] Corollary 8.5.3 (ii), there exists π′ an automorphic representa-
tion for GU(3) associated to Π×1, which is automorphic for GL3×GL1. By [HS22]
Lemma A.7 (based on [HT01]), there exists π, an automorphic representation of
U(3) associated to π′.
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Corollary 8.13. If E is quadratic imaginary or if E/E+ is everywhere unramified,
then there exists a classical form on U(3) satisfying the hypothesis of Theorem 1.2.

Proof. Let π be the automorphic representation of U considered above, and let
f ∈ π be an eigenform for the Hecke operators away from a set S of bad places
of π. Then ρf = ρπ = ρ is crystalline at p and ϕ-generic. In particular it has
3! = 6 refinements which are automorphic and split at p. Hence there exists an
automorphic refinement R of f with relative position wR = 1 with respect to
the Hodge filtration. In particular, for this choice of a refinement, there exists a
refined classical modular form f ′ satisfying all hypothesis of Theorem 1.2. But,
by Lemma 8.4(5) we know that f gives, for all v ∈ S\Sp, a point of X�ρv which
satisfies HomGalEv (ρv, ρv(1)) = 0. When v splits in E/E+, such a v is a smooth
point by [All16] Prop 1.2.2.
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