2 Topologische Räume

Definition. Es sei X eine Menge. Eine Familie \mathcal{O} von Teilmengen in X heißt Topologie auf X, falls:

i) Jede Vereinigung von Mengen aus \mathcal{O} gehört zu \mathcal{O} , d.h. für jede Indexmenge I gilt:

$$U_i \in \mathcal{O}, \ \forall i \in I \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}$$

ii) Jeder endliche Durchschnitt von Mengen aus \mathcal{O} gehört zu \mathcal{O} , d.h. für jede endliche Indexmenge I gilt:

$$U_i \in \mathcal{O}, i \in I \Rightarrow \bigcap_{i \in I} U_i \in \mathcal{O}$$

iii) $\emptyset \in \mathcal{O}$ und $X \in \mathcal{O}$.

Ein Paar (X, \mathcal{O}) heißt ein topologischer Raum. Die zu \mathcal{O} gehörige Teilmengen aus X heißen offen. Komplemente von offenen Mengen heißen abgeschlossen. Die Elemente von X nennen wir Punkte.

Beispiel.

- i) Ist (X, d) ein metrischer Raum, so bilden die im metrsichen Sinne offenen Mengen in X eine Topologie auf X.
- ii) Diskrete Topologie auf einer Menge X: Hier ist $\mathcal O$ die Familie aller Teilmengen aus X
- iii) Die Klumpentopologie auf einer Menge X ist gegeben durch $\mathcal{O} = \{\emptyset, X\}$, d.h. \emptyset und X sind die einzigen offenen Mengen.

Bemerkung. Statt zu sagen, welche Mengen in einem topologischen Raum (X, \mathcal{O}) offen sind (um damit eine Topologie festzulegen), kann man alternativ sagen, welche Mengen die abgeschlossenen Mengen sind.

$$\mathcal{A} = \{A \text{ abgeschlossen in } (X, \mathcal{O})\} \quad \leftrightarrow \quad \mathcal{O} \stackrel{\text{def.}}{=} \{\text{offene Teilmengen in } (X, \mathcal{O})\}$$

$$A \quad \mapsto \quad X \backslash A$$

$$X \backslash U \quad \leftrightarrow \quad U$$

Definition. Eine Familie \mathcal{B} von offenen Mengen in einem topologischen Raum (X, \mathcal{O}) heißt Basis der Topologie, falls jede offene Menge von X eine Vereinigung von Teilmengen in \mathcal{B} ist. Eine Familie \mathcal{S} von offenen Mengen in X heißt Subbasis der Topologie, falls die Menge der endlichen Durchschnitte von Teilmengen in \mathcal{S} eine Basis der Topologie ist.

Beispiel.

- Die Menge der offenen Intervalle (a, b), $a, b \in \mathbb{R}$, bilden eine Basis der Topologie von \mathbb{R} mit der Standardtopologie, d.h. der durch die Metrik d(x, y) = |x y| induzierten Topologie (siehe Übungsaufgabe Blatt 2).
- Die Menge der Intervalle $(-\infty, b)$ und (a, ∞) für $a, b \in \mathbb{R}$ bilden eine Subbasis der Topologie von \mathbb{R} .

Bemerkung. Ist \mathcal{S} beliebige Familie von Teilmengen einer Menge X, so erhalten wir eine weitere Menge \mathcal{B} durch Hinzunahme aller endlichen Durchschnitte von Teilmengen in \mathcal{S} . Weiterhin erhalten wir dann eine Familie \mathcal{O} durch Hinzunahme beliebiger Vereinigungen von Teilmengen aus \mathcal{B} . Die Familie \mathcal{O} ist dann eine Topologie auf X, \mathcal{B} eine Basis der Topologie und \mathcal{S} ist eine Subbasis der Topologie.

Beispiel. Sei $X = \mathbb{R}$ als Menge! Sei $S = \{\{0\}, \{1\}\}.$

• Beliebige endliche Durchschnitte von Mengen aus S:

$$\bigcap_{\varnothing} \stackrel{\text{(Def)}}{=} X, \{0\} \cap \{1\} = \varnothing, \{0\}, \{1\}$$

Die Menge dieser Teilmengen definieren wir als die Menge \mathcal{B} .

• Beliebige Vereinigungen von Mengen aus \mathcal{B} :

$$\bigcup_{\varnothing} \stackrel{\text{(Def)}}{=} \varnothing, \{0\}, \{1\}, \{0,1\}, X$$

Die Menge dieser Teilmengen defineiren wir als die Menge \mathcal{O} . Nacj oboger Bemerkung ist die Menge \mathcal{O} ist dann eine Topologie auf X, \mathcal{B} eine Basis dieser Topologie, und \mathcal{S} eine Subbasis dieser Topologie.

Definition. Sei (X, \mathcal{O}) ein topologischer Raum, $x \in X$.

- $V \subset X$ heißt $Umgebung\ von\ x$, falls es eine offene Menge $U \subset X$ gibt, so dass $x \in U \subset V$. Wir setzen $\mathcal{V}(x) \coloneqq \{V \subset X \mid V \text{ ist eine Umgebung von } x\}$
- Eine Teilfamilie B(x) ⊂ V(x) heißt Umgebungsbasis von x, falls es zu jeder Umgebung V von x eine Menge V' ∈ B(x) gibt mit V' ⊂ V.
 Zum Beispiel: O_x = {U ⊂ X | U ist offen und x ∈ U} ist eine Umgebungsbasis.

Definition. Sei (X, \mathcal{O}) ein topologischer Raum und $A \subset X$.

• $x \in A$ heißt innerer Punkt von A, falls $A \in \mathcal{V}(x)$, d.h. A ist eine Umgebung von x. Wir setzen $\dot{A} = \{x \in X \mid x \text{ ist innerer Punkt von } A\}$. \dot{A} wird mit "Inneres von A" bezeichnet. Offensichtlich gilt $\dot{A} \subset A$.

• Ein Punkt $x \in X$ heißt Randpunkt von A, falls für jedes $V \in \mathcal{V}(x)$ gilt:

$$V \cap A \neq \emptyset$$
 und $V \cap (X \backslash A) \neq \emptyset$.

Wir setzen $\partial A = \{x \in X \mid x \text{ ist Randpunkt von } A\}$

• Die Menge $\overline{A} = \{x \in X \mid \forall V \in \mathcal{V}(x) \text{ gilt } V \cap A \neq \emptyset\}$ heißt der Abschluss von A.

Bemerkung.

- i) $\overline{A} = \dot{A} \cup \partial A$, $\dot{A} \cap \partial A = \emptyset$
- ii) $X \setminus \overline{A} = (X \setminus A)$

Nachweis.

- i) Sei $x \in A$ und sei V eine beliebige Umgebung von x (also $V \in \mathcal{V}(x)$). Da $x \in V$ folgt $V \cap A \neq \emptyset$, da $A \subset A$. Also gilt $x \in \overline{A}$. Ist $x \in \partial A$, so gilt offensichtlich für $V \in \mathcal{V}(x)$: $V \cap A \neq \emptyset$. Also folgt $\partial A \subset \overline{A}$. Sei $x \in \overline{A}$. Dann gilt für x genau eine der folgenden Eigenschaften:
 - a) Für jede Umgebung $V \in \mathcal{V}(x)$ gilt $V \cap (X \setminus A) \neq \emptyset$
 - b) Es gibt eine Umgebung $V \in \mathcal{V}(x)$ mit $V \cap (X \setminus A) = \emptyset$

Im Fall a) ist x ein Randpunkt von A. Im Fall b) folgt, dass $V \subset A$. Da $V \in \mathcal{V}(x)$ ist dann auch $A \in \mathcal{V}(x)$. Also gilt dann $x \in \dot{A}$.

Insgesamt gilt also, $\overline{A} = \dot{A} \cup \partial A$. Da a) und b) sich ausschließen gilt weiterhin $\dot{A} \cap \partial A = \emptyset$.

ii)
$$\overline{A} = \{x \in X \mid \forall V \in \mathcal{V}(x) \text{ gilt } V \cap A \neq \emptyset \}$$

$$X \setminus \overline{A} = \{x \in X \mid \exists V \in \mathcal{V}(x) \text{ mit } V \cap A = \emptyset \}$$

$$= \{x \in X \mid \exists V \in \mathcal{V}(x) \text{ mit } V \subset X \setminus A \}$$

$$= \{x \in X \mid X \setminus A \in \mathcal{V}(x) \}$$

$$= (X \setminus A)$$

Bemerkung.

i) \dot{A} ist die größte offene Menge, die in A enthalten ist, d.h. ist U offen und $U \subset A$, so gilt $U \subset \dot{A}$.

$$\dot{A} = \bigcup_{U \subset A} U$$

$$U \text{ offen}$$

ii) \overline{A} ist die kleinste abgeschlossene Menge, die A enthält, d.h. ist B abgeschlossen und $A \subset B$, so gilt $\overline{A} \subset B$.

$$\overline{A} = \bigcap_{A \subset B} B$$
 $A \subset B$
 $B \text{ abg.}$

Nachweis.

i) Sei U offen und $U \subset A$. Dann gilt für jeden Punkt $x \in U$, dass $U \subset \mathcal{V}(x)$ und somit auch $A \in \mathcal{V}(x)$. x ist also innerer Punkt und es folgt $U \subset \dot{A}$. Da U beliebig war, gilt

$$\bigcup_{U \subset A} U \subset \dot{A}.$$

$$U \cap A$$

$$U \cap Gen$$

Andererseits ist \dot{A} offen, denn ist $x \in \dot{A}$, so ist x nach Definition innerer Punkt von A, d.h. A ist eine Umgebung von x, d.h. $\exists U_x$ offen mit $x \in U_x \subset A$. Also erhalten wir

$$\label{eq:definition} \dot{A} = \bigcup_{x \in \dot{A}} \{x\} \subset \bigcup_{x \in \dot{A}} U_x \subset \bigcup_{\begin{subarray}{c} U \subset A \\ U \mbox{ offen} \end{subarray}} U \;.$$

ii) Wir betrachten nun

$$X \setminus \overline{A} = (X \setminus A) \stackrel{\text{mit i}}{=} \bigcup_{\substack{U \subset X \setminus A \\ U \text{ offen}}} U.$$

$$X \backslash (X \backslash A) = X \backslash \left(\bigcup_{U \subset X \backslash \overline{A}} U \right)$$

$$U \text{ offen}$$

$$= \bigcap_{U \subset X \backslash A} (X \backslash U)$$

$$U \text{ offen}$$

$$= \bigcap_{A \subset B} B,$$

$$B \text{ abg.}$$

wegen $X \setminus (X \setminus \overline{A}) = \overline{A}$ folgt also ii).

Definition. In einem top. Raum (X, \mathcal{O}) heißt eine Teilmenge A dicht, falls $\overline{A} = X$.

Beispiel. \mathbb{Q} liegt dicht in \mathbb{R} (mit der Standardtopolgie).

Stetigkeit von Abbildungen zwischen topologischen Räumen

Definition. Eine Abbildung $f: X \to X'$ zwischen topologischen Räumen (X, \mathcal{O}) und (X', \mathcal{O}') heißt stetig, falls die Urbilder aller offenen Mengen (X', \mathcal{O}') wieder offen in (X, \mathcal{O}) sind. f heißt stetig im Punkt $x_0 \in X$, falls das Urbild einer jeder Umgebung von $f(x_0)$ eine Umgebung von x_0 ist.

Bemerkung. Äquivalent kann man auch sagen: f ist stetig genau dann, wenn f in jedem Punkt $x_0 \in X$ stetig ist (ohne Beweis).

Bemerkung. Eine Abbildung $f: X \to X'$ zwischen topologischen Räumen ist genau dann stetig, wenn Urbilder abgeschlossener Mengen wieder abgeschlossen sind, denn

$$U'$$
 offen in (X', \mathcal{O}') $\stackrel{f \text{ stetig}}{\longleftrightarrow}$ $f^{-1}(U')$ ist offen in (X, \mathcal{O}) \updownarrow $A' = X' \setminus U'$ abg. $f^{-1}(A') = f^{-1}(X' \setminus U') \stackrel{(*)}{=} X \setminus f^{-1}(U')$ ist abg.

zu (*):
$$f^{-1}(X' \setminus U') = \{x \in X \mid f(x) \in X' \setminus U'\} = X \setminus \{x \in X \mid f(x) \in U'\} = X \setminus f^{-1}(U')$$

Satz. Eine Abbildung $f: X \to X'$ zwischen top. Räumen ist genau dann stetig, wenn für eine beliebige Subbasis S' der Topologie von X' die Mengen $f^{-1}(S')$ offen sind für alle $S' \in S'$.

Beweis.

,,⇒": Alle $S' \in \mathcal{S}'$ sind offen. Angenommen, f ist stetig, dann gilt $f^{-1}(S')$ ist offen.

" \Leftarrow ": Sei \mathcal{B}' die aus \mathcal{S}' entstehende Basis der Topologie auf X'. Dann ist $U' \in \mathcal{B}'$ ein endlicher Durchschnitt

$$U' = \bigcap_{i=1}^{n} S_i' \text{ mit } S_i' \in \mathcal{S}'.$$

Dann gilt: $f^{-1}(U') = f^{-1}(\bigcap_{i=1}^n S_i') = \bigcap_{i=1}^n f^{-1}(S_i')$. Da $f^{-1}(S_i')$ nach Voraussetzung offen sind, folgt

$$f^{-1}(U')$$
 ist offen.

Jede offene Menge von (X', \mathcal{O}') ist die Vereinigung von Mengen aus \mathcal{B}' , d.h. $V' \in \mathcal{O}'$ lässt sich schreiben als $V' = \bigcup_{i \in I} U'_i$ mit $U'_i \in \mathcal{B}$. Dann gilt

$$f^{-1}(V') = f^{-1}\left(\bigcup_{i \in I} U_i'\right) = \bigcup_{i \in I} f^{-1}\left(U_i'\right)$$
 ist offen in X

 $\Rightarrow f$ ist stetig.

Beispiel. Die Abbildung $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$ ist stetig im Sinne metrischer Räume (Kapitel 1), d.h.: Für alle $x_0 \in \mathbb{R}$ und zu jedem $\varepsilon > 0$ existiert ein $\delta > 0$ mit $x \in B_{\delta}(x_0) \Rightarrow f(x) \in B_{\varepsilon}(f(x_0)) \Leftrightarrow B_{\delta}(x_0) \subset f^{-1}(B_{\varepsilon}(f(x_0)))$. Mit den in der Analysis schon verwendeten Methoden erhält man daraus, dass die Mengen $f^{-1}(B_{\varepsilon}(f(x_0)))$ für alle $\varepsilon > 0$ und $x_0 \in X$ offen sind.

Da f surjektiv ist, bilden die Mengen $\{B_{\varepsilon}(f(x_0)) \mid x_0 \in X\}$ eine Subbasis der Topologie von \mathbb{R} und somit ist f mit dem obigen Satz stetig im Sinne der Definition in Sinne topologischer Räume (Kapitel 2).

Allgemein gilt:

Satz. Eine Abbildung $f: X \to X'$ zwischen metrischen Räumen (X, d) und (X', d') ist genau dann stetig im Sinne von Kapitel 1, falls sie stetig im Sinne der Definition für topologische Räume ist. (Übungsaufgabe)

Definition. Eine Abbildung $f: X \to X'$ zwischen Mengen X und X' heißt bijektiv, falls es eine Abbildung $g: X' \to X$ gibt, so dass g(f(x)) = x, f(g(x')) = x' für alle $x \in X$ und $x' \in X'$ oder anders ausgedrückt $g \circ f = id_X$ und $f \circ g = id_{X'}$. Die Abbildung g ist dann durch die Bedingungen eindeutig bestimmt und wird als die Umkehrabbildung von f bezeichnet. Man schreibt dann f^{-1} für die Umkehrabbildung von f.

Lemma. Es sei $f: X \to X'$ eine stetige bijektive Abbildung. Die Abbildung f^{-1} ist genau dann stetig, wenn f offene Mengen auf offene Mengen abbildet.

Beweis.

"←": Sei $U \subset X$ offen. Dann ist auch f(U) offen.

Urbild von
$$U$$
 bzgl. $f^{-1} = \left\{ x' \in X' \mid f^{-1}(x') \in U \right\}$

$$= \left\{ x' \in X' \mid \left(f \circ f^{-1} \right) \left(x' \right) \in f(U) \right\}$$

$$= \left\{ x' \in X' \mid x' \in f(U) \right\}$$

$$= f(U) \text{ ist offen in } X'.$$

"⇒": f^{-1} sei stetig und U sei offen in X.

$$f(U) = \left\{ x' \in X' \mid \exists x \in U \text{ mit } f(x) = x' \right\}$$

$$= \left\{ x' \in X' \mid \exists x \in U \text{ mit } f^{-1}(f(x)) = f^{-1}(x') \right\}$$

$$= \left\{ x' \in X' \mid \exists x \in U \text{ mit } x = f^{-1}(x') \right\}$$

$$= f^{-1}(X') \cap U \text{ offen in } X.$$

Definition. Eine Abbildung $f: X \to X'$ zwischen top. Räumen (X, \mathcal{O}) und (X', \mathcal{O}') heißt *offen*, falls sie offenen Mengen auf offene Mengen abbildet.

Homöomorphie

Definition. Eine bijektive Abbildung $f:(X,\mathcal{O}) \to (X',\mathcal{O}')$ zwischen topologischen Räumen (X,\mathcal{O}) und (X',\mathcal{O}') heißt *Homöomorphismus*, falls sowohl f auch die Umkehrabbildung f^{-1} stetig ist.

Bemerkung. Mit obigem Lemma ist eine Abbildung $f: X \to X'$ zwischen topologischen Räumen ein Homöomorphismus genau dann, wenn f stetig, bijektiv und offen ist.

Satz. Seien (X, \mathcal{O}) , (X', \mathcal{O}') und (X'', \mathcal{O}'') topologische Räume. Die Komposition zweier stetiger bzw. offener Abbildungen $f: X \to X'$ und $g: X' \to X''$ ist wieder stetig bzw. offen.

Korollar. Sind $f:(X,\mathcal{O}) \to (X',\mathcal{O}')$ und $g:(X',\mathcal{O}') \to (X'',\mathcal{O}'')$ Homöomorphismen, dann ist auch

$$(g \circ f) : (X, \mathcal{O}) \to (X'', \mathcal{O}'')$$

ein Homöomorphismus.

Beweis. des Satzes: für die Stetigkeit: Sei $U'' \subset X''$ offen.

$$(g \circ f)^{-1}(U'') = f^{-1}(g^{-1}(U''))$$
offen in X',
da g stetig
offen in X, da f stetig

ist offen in $X \Rightarrow (g \circ f)$ ist stetig.

..... für die Offenheit: Sei $U \subset X$ offen.

$$(g \circ f)(U) = g(f(U))$$
offen in X' ,
da f offen
offen in X , da g offen

ist offen in $X \Rightarrow (g \circ f)$ ist stetig.

Definition. Zwei topologische Räume (X, \mathcal{O}) und (X', \mathcal{O}') heißen homöomorph, falls es ein Homöomorphismus $f: (X, \mathcal{O}) \to (X', \mathcal{O}')$ gibt. Schreibweise:

$$(X, \mathcal{O}) = (X', \mathcal{O}') \text{ oder } X = X'.$$

Beispiel. Der Teilmenge $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ ist mit der induzierten Metrik $d((x,y),(x',y')) = \sqrt{(x-x')^2 + (y-y')^2}$ ein metrischer Raum, also auch ein topologischer Raum.

Ebenso ist die Teilmenge $E_{a,b} = \{(x,y) \in \mathbb{R}^2 \mid \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\}$ für $a,b \in \mathbb{R}, a,b > 0$ ist mit der induzierten Metrik $d((x,y),(x',y')) = \sqrt{(x-x')^2 + (y-y')^2}$ eine metrischer Raum, also auch ein topologischer Raum.

Die Abbildung

$$f: S^1 \to E_{a,b}, (x,y) \mapsto (ax,by)$$

ist ein Homöomorphismus. Ihre Umkehrabbildung ist

$$f^{-1}: E_{a,b} \to S^1, (x,y) \mapsto \left(\frac{x}{a}, \frac{y}{b}\right).$$

• f ist wohldefiniert, da: Ist $(x,y) \in S^1$, dann gilt für (ax,by):

$$\left(\frac{ax}{a}\right)^2 + \left(\frac{by}{b}\right)^2 = x^2 + y^2 = 1$$

$$\Rightarrow (ax, by) \in E_{a,b}.$$
 f^{-1} analog

• Stetigkeit von
$$f: \underbrace{(x_n, y_n)}_{\in S^1} \to \underbrace{(x, y)}_{\in S^1} \Rightarrow f(x_n, y_n) = \underbrace{(ax_n, by_n)}_{\in E_{a,b}} \stackrel{n \to \infty}{\to} \underbrace{(ax, by)}_{\in E_{a,b}} = f(x, y)$$

Satz. Homöomorphie erfüllt die Eigenschaften einer Aquivalenzrelation.

- i) Reflexivität: Ein topologischer Raum X erfüllt X = X, ausführlicher: $(X, \mathcal{O}) = (X, \mathcal{O})$.
- ii) Symmetrie: Falls X = X', dann gilt auch X' = X.
- iii) Transitivität: Falls X = X' und X' = X'', dann gilt auch X = X''.

Beweis.

- i) $id_X:(X,\mathcal{O})\to(X,\mathcal{O})$ ist ein Homöomorphismus.
- ii) Ist $f:(X,\mathcal{O})\to (X',\mathcal{O}')$ eine Homöomorphismus, dann ist auch $f^{-1}:(X',\mathcal{O}')\to (X,\mathcal{O})$ ein Homöomorphismus.
- iii) Sind $f:(X,\mathcal{O})\to (X',\mathcal{O}')$ und $g:(X',\mathcal{O}')\to (X'',\mathcal{O}'')$ Homöomorphismen, dann ist auch $g\circ f:(X,\mathcal{O})\to (X'',\mathcal{O}'')$ ein Homöomorphismus.