Annihilation of Cohomology over Gorenstein Rings

A conference in memoriam Ragnar-Olaf Buchweitz

Özgür Esentepe

March 21, 2019

University of Toronto

Table of contents

- 1. Introduction
- 2. The Problem
- 3. Orders

Introduction

The Singularity Category

Grenel MAXIMAL COHEN-MACAULAY MODULES AND TATE-COHOMOLOGY OVER GORENSTEIN RINGS Ragnar-Olaf BUCHWEITZ * (Hannover) The main theme of this article is : Why should one consider Maximal Cohen-Macaulay Modules ? Although there has been a lot of work and success lately in the theory of such modules, of which this conference witnessed, it has remained mysterious - at least to the present author - why these modules provide

such a powerful tool in studying the algebra and geometry of singula-

The Singularity Category of A Regular Ring is Trivial

```
Lemma 7.7.4.: Let S be a commutative Gorenstein ring of finite
Krull dimension. Then for a prime p in Spec(S) the groups Ext_S(X,Y)_p
are zero for all (complexes of) S-modules Y (in D (Mod-S)) and X
(in D^{D}(S)) if and only if S_{D} is a regular local ring.
   Coming back to the promised application of the Duality Theorem, let
us recall that t = \dim T and s = v\dim S = t - d by (7.6.3.(iii)).
   Then we have :
   Theorem 7.7.5. (The Duality Theorem for isolated singularities) :
Assume again given a homomorphism of rings f: T \longrightarrow S which satisfies
(7.6.2.), \omega_T and \omega_S dualizing modules over T and S respectively
as in (7.7.1.), M a complex of S-modules in D^b(S) and N a S-bimod-
ule which is MCM on both sides.
(i)
       If M and the underlying right S-module of N are stably trans-
```

Question.

For a commutative Gorenstein ring R, describe the ideal

$$\bigcap_{M\in\mathrm{MCM}(R)}\underline{\mathrm{Hom}}_R(M,N).$$

The Cohomology Annihilator Ideal - S.Iyengar and R.Takahashi

- The Jacobian ideal of a commutative ring and annihilators of cohomology (1610:02599),
- Annihilation of cohomology and decompositions of derived categories (1405:5299),
- Annihilation of cohomology and strong generation of module categories (1404:1476)

The Jacobian Ideal Annihilates All Tate Cohomology Groups

trivially valuated) field k in n variables. Assume given a sequence $\underline{f}=(f_1,\ldots,f_m)$ of elements in the unique simal ideal $m=(x_1,\ldots,x_n)$ and let $J(\underline{f})$ denote the corresponding

maximal ideal $\mathbf{m}=(x_1,\dots,x_n)$ and let $\overline{J}(\underline{f})$ denote the corresponding <u>Jacobian ideal</u> generated by all maximal minors of the Jacobian matrix of \underline{f} with respect to the chosen coordinate-functions (x_1,\dots,x_n) , whose entries are hence given by the partial derivatives $\partial f_i/\partial x_i$.

With these notations we have :

Corollary 7.8.7.: If $\underline{f} = (f_1, \dots, f_m)$ constitutes a regular sequence in $\underline{m} = (x_1, \dots, x_n)$, the quotient ring $R = P/\underline{f}P$ is a complete intersection ring, hence Gorenstein, of dimension n - m.

The Jacobian ideal $J(\underline{f})$ then annihilates all Tate-cohomology groups over R which become consequently modules over the <u>Jacobian ring</u> of R, $R = R/J(\underline{f})R$ in a natural way.

For the proof it needs only to be remarked that a composition

yields a finite flat homomorphism of rings if the corresponding minor

The Problem

The Group in Toronto

My Claim and Ragnar's Response

I claimed: Ragnar, I think over algebraic plane curves the cohomology annihilator ideal is equal to the conductor ideal.

My Claim and Ragnar's Response

I claimed: Ragnar, I think over algebraic plane curves the cohomology annihilator ideal is equal to the conductor ideal. Ragnar said: I don't think so! But check out this PhD thesis from early 1990's. It is by Hsin-Ju Wang, a student of Craig Huneke. It shows one inclusion holds!

My Claim and Ragnar's Response

I claimed: Ragnar, I think over algebraic plane curves the cohomology annihilator ideal is equal to the conductor ideal.

Ragnar said: I don't think so! But check out this PhD thesis from early 1990's. It is by Hsin-Ju Wang, a student of Craig Huneke. It shows one inclusion holds!

I claimed (silently): I think you are wrong Ragnar.

Theorem

Theorem

Over a 1-dimensional complete reduced Gorenstein local ring, the cohomology annihilator ideal coincides with the conductor ideal.

An Application

Theorem

Let $f(x,y) \subseteq \mathbb{C}[\![x,y]\!]$ be a reduced plane curve singularity. Consider

$$R = \mathbb{C}[\![x, y, z_1, \dots, z_n]\!]/(f(x, y) + z_1^2 + \dots + z_n^2).$$

Then,

$$\dim_{\mathbb{C}} R/J(R) = 2\dim_{\mathbb{C}} R/\operatorname{ca}(R) - r + 1$$

where r is the number of branches of the curve f at its singular point.

Orders

Order

We say that a module-finite R-algebra Λ is an R-order if it is maximal Cohen-Macaulay as an R-module.

Order

We say that a module-finite R-algebra Λ is an R-order if it is maximal Cohen-Macaulay as an R-module. In dimension one, the normalization of R is an R-order. We showed $\operatorname{ann}_R \operatorname{End}_R(\bar{R}) = \operatorname{ca}(R)$.

Order

We say that a module-finite R-algebra Λ is an R-order if it is maximal Cohen-Macaulay as an R-module. In dimension one, the normalization of R is an R-order. We showed $\operatorname{ann}_R \operatorname{\underline{End}}_R(\bar{R}) = \operatorname{ca}(R)$. Can we generalize this?

Examples

Examples of orders where this works:

- If *R* is of finite maximal Cohen-Macaulay type of dimension 0,1 or 2, then its Auslander algebra,
- If *R* is the generic determinantal hypersurface singularity, then the NCCR described by Buchweitz-Leuschke-van den Bergh,
- If *R* is a one dimensional torus invariant ring, then the NCCR described by van den Bergh.

At least we have this

Theorem

Let R be a Gorenstein ring. If Λ is an R-order of finite global dimension containing R as a direct summand, then

$$(\mathrm{ann}_R\underline{\mathrm{End}}_R(\Lambda))^{1+\mathrm{gldim}\Lambda}\subseteq \mathrm{ca}(R)\subseteq \mathrm{ann}_R\underline{\mathrm{End}}_R(\Lambda).$$

Danke Schön!