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A B S T R A C T   

Even though actions we observe in everyday life seem to unfold in a continuous manner, they are automatically 
divided into meaningful chunks, that are single actions or segments, which provide information for the formation 
and updating of internal predictive models. Specifically, boundaries between actions constitute a hub for pre
dictive processing since the prediction of the current action comes to an end and calls for updating of predictions 
for the next action. In the current study, we investigated neural processes which characterize such boundaries 
using a repertoire of complex action sequences with a predefined probabilistic structure. Action sequences 
consisted of actions that started with the hand touching an object (T) and ended with the hand releasing the 
object (U). These action boundaries were determined using an automatic computer vision algorithm. Participants 
trained all action sequences by imitating demo videos. Subsequently, they returned for an fMRI session during 
which the original action sequences were presented in addition to slightly modified versions thereof. Participants 
completed a post-fMRI memory test to assess the retention of original action sequences. The exchange of indi
vidual actions, and thus a violation of action prediction, resulted in increased activation of the action observation 
network and the anterior insula. At U events, marking the end of an action, increased brain activation in sup
plementary motor area, striatum, and lingual gyrus was indicative of the retrieval of the previously encoded 
action repertoire. As expected, brain activation at U events also reflected the predefined probabilistic branching 
structure of the action repertoire. At T events, marking the beginning of the next action, midline and hippo
campal regions were recruited, reflecting the selected prediction of the unfolding action segment. In conclusion, 
our findings contribute to a better understanding of the various cerebral processes characterizing prediction 
during the observation of complex action repertoires.   

1. Introduction 

When we observe actions, our brain generates predictions about how 
this complex, dynamic stimulus will evolve (Botvinick and Plaut, 2004; 
Colder, 2011; Csibra and Gergely, 2007; Kilner et al., 2004, 2007; 
Schiffer et al., 2013; Stadler et al., 2011). Expected and actual stimu
lations are compared, and only the difference between the two, the 
prediction error, is propagated to update future predictions about the 
probabilistic structure of our reality (Friston, 2005). It is generally 
assumed that these computations, as complex perception in general, are 

based on hierarchical predictive processing. According to this hierar
chical framework, prediction errors are conveyed in a bottom-up 
manner from lower cortical areas to higher ones via forward connec
tions, while predictions are delivered top-down by backward connec
tions (Friston, 2010; Friston and Kiebel, 2009). As of today, we still 
know little about the number of layers and their computational char
acteristics in this postulated action prediction hierarchy, and in which 
cerebral networks they are specifically implemented. 

One way to conceptualize action prediction is along a part-whole 
hierarchy, meaning that a goal-directed action sequence consists of 
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multiple segments or action steps (Uithol et al., 2012). Such segmental 
action structures are not deterministic, since at boundaries between 
action segments, we can often choose between multiple plausible steps 
that can be performed next. Studies have shown that subjects can reli
ably detect segment boundaries (Newtson, 1973) and that the brain’s 
event prediction is also oriented toward these segments (Zacks et al., 
2011). This has been observed when watching movies or reading stories, 
but also when observing actions of others (Kurby and Zacks, 2008). The 
segment boundaries are of particular interest, because here the predic
tion comes to a point where a new segment is pending but not yet 
observable. Accordingly, the prediction error reaches a maximum 
(Zacks et al., 2011) and triggers prediction updating (Schubotz et al., 
2012; Wahlheim et al., 2022; Zacks et al., 2007; Zacks and Sargent, 
2010). At the same time, it is reasonable to assume that the predictive 
model holds several options of connectable segments, which now form 
the new expectation. These can be compared to the next observed ac
tion, resulting in an update of the currently valid prediction. In a recent 
study (Pomp et al., 2021), it became clear that specific action bound
aries, namely start of hand-object contact (T, Touching) and end of 
hand-object contact (U, Untouching), are important features for the 
segmentation of observed actions. Additionally, we could not only 
confirm that prediction error signals peak at the segmental boundaries 
of actions but also disentangle prediction error and prediction updating 
as two temporally and neuronally distinct stages of processing (Pomp 
et al., 2021). 

In the current study, we built on these findings to investigate action 
prediction processes at boundaries between actions of a structured ac
tion repertoire. In a previous study (Pomp et al., 2021), we investigated 
updating at action boundaries within single, disconnected object ma
nipulations. In contrast, everyday actions mostly consist of action se
quences which are hierarchically structured in a way that some action 
boundaries, namely those with different connection options, involve a 
change in the level of the action hierarchy (Ondobaka and Bekkering, 
2012). In addition, different connection options create a variable degree 
of uncertainty and predictability. In the present study, we took the view 
that in an ecologically valid action repertoire, updating should comprise 
two distinct stages: first, opening of the option space by retrieving all 
expectable (probable) options, and then, upon exploiting evidence from 
the ongoing stimulus, restricting to one of them as the most probable 
option. To investigate this, we generated an action repertoire with a 
well-defined segmental branching structure; in particular, actions could 
be followed by one, two, three, or four possible other actions. We vid
eotaped an actress performing all 82 actions of this repertoire and 
determined action boundaries (i.e., segments) in these action videos 
using a computer vision-based model. Boundaries were defined as 
touching (T), i.e., the hand touching an object, and untouching (U), i.e., 
the hand releasing/ untouching an object. In the present stimulus ma
terial, T events defined the beginning of an action segment, whereas U 
events marked their ending (Aksoy et al., 2011; Wörgötter et al., 2013; 
Ziaeetabar et al., 2021). 

Participants first practiced the action repertoire themselves before 
entering the MRI scanner. There, they were presented with videos of 
actions that corresponded to the trained repertoire, but also action se
quences with a single action that did not match the learned action 
repertoire to induce prediction errors and, consequently, updating of 
event models. Specifically, we modeled the brain activation at hand- 
object T/U events (see Fig. 4 for the representation) to disentangle the 
two suggested stages of model updating in suprasegmental actions: 
retrieval of all upcoming options at the end of the previous action (hand 
untouching last object) and selecting the option at the beginning of the 
next action (hand touching next object). Moreover, we modeled the 
brain activation time-locked to untouching at the event boundaries by 
the parametric degree of probabilistic structure (i.e., branching). Since 
we used branches of equal probability, the level of uncertainty was 
proportional to the number of branches, meaning that more possible 
branches led to higher uncertainty, and fewer possible branches resulted 

in lower uncertainty. 
We expected the updating of predictions to activate areas upstream 

of the action observation network (AON), which is reliably engaged by 
viewing videos showing individual (separate) object manipulation ac
tions. The AON has been suggested to feature an intrinsic hierarchical 
processing architecture (Sasaki et al., 2018; Urgen et al., 2019; Urgen 
and Saygin, 2020). In addition to the goal level represented in the AON, 
additional layers have been proposed that propagate and prioritize goals 
of actions, supposedly involving dorsolateral prefrontal cortex and 
ventromedial networks, respectively (Pezzulo et al., 2018). However, as 
these latter supra-goal layers have so far been proposed for predicting 
one’s own actions, and, being related to control and motivation, they 
may not be relevant for passive observers. Therefore, it remains to be 
seen whether they are also used in predicting observed actions. 

Another strong candidate for higher layers of the prediction hierar
chy of observed actions is a network of the medial prefrontal cortex, 
posterior cingulate cortex/precuneus, and temporo-parietal junction. 
Depending on the research context of prediction hierarchy, this network 
has been referred to as the default mode network (DMN) whose com
putations are relevant to the most complex integrative functions of the 
brain (Pesquita et al., 2018). Studies where participants were asked to 
infer others’ intentions or beliefs from their actions found an increased 
DMN-AON connectivity (Koster-Hale and Saxe, 2013; Wurm et al., 
2011). Moreover, recently proposed hierarchical prediction and pre
diction error processing models (Alexander and Brown, 2015, 2018) 
suggest that the medial prefrontal cortex (a DMN area) provides 
high-level predictive input to the lateral prefrontal cortex (an AON 
area). More generally, the DMN including the medial prefrontal cortex is 
involved in processing complex and hierarchically structured schemas 
(Baldassano et al., 2018; Masís-Obando et al., 2022; Reagh and Ranga
nath, 2023; Sommer et al., 2022). Yet, the specific role of these areas in 
potentially providing higher-level input to action observation, reflecting 
a repertoire-informed updating of predictions, awaits further testing. 

2. Methods 

2.1. Participants 

Forty-five subjects (30 women, 15 men) between the age of 18 and 
30 years (M = 23.92; SD= 4.32) were recruited for the study. Data from 
four participants were not included in the final analyses due to excessive 
movement (> 5 mm) during the fMRI session. Consequently, the final 
sample included 41 datasets. Participants had normal or corrected to 
normal vision with no color blindness and were right-handed as assessed 
by the Edinburgh Handedness Inventory (Oldfield, 1971) with hand
edness scores varying between 50 and 100 (M = 87.02, SD = 15.31). All 
participants gave written informed consent to participate in this study 
and were compensated with money or course credits. The study was 
conducted in accordance with the Declaration of Helsinki and approved 
by the local ethics committee of the University of Münster. 

2.2. Stimuli 

As stimuli material, we used short video clips that showed multistep 
actions, presented in the third person perspective. Four objects, two cups 
with green bottom and two-colored cubes (red and blue; Fig. 1), were 
used to execute action sequences, with predefined actions (e.g., put the 
cup upside down) and probabilistic transitions between them (see Fig. 2 
for all possible object configurations). Video clips of 41 action sequences 
were generated, hereafter termed legal sequences (Fig. 3A). Each video 
started with the same initial frame showing two hands of an actress 
wearing white gloves placed on a table and the four objects, each on a 
fixed table location. The action sequences varied in length, ranging from 
four to six action steps and six to twelve seconds in duration. 

In addition to the 41 complete action sequences, the individual steps 
of each action sequence were also recorded separately for the imitation 
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training. The table on which the actions took place was covered with a 
table cover printed with a QR code-like pattern known as the “AprilTag” 
markers (Fig. 1). These markings are described in more detail below. 
The recorded videos were cropped to show only the hands of the actress 
with the objects (see Section 2.3 for detailed information). 

Furthermore, another set of 41 action sequences (termed illegal 
hereafter) was recorded, each of which corresponded to a legal 
sequence, but a single action was modified (Fig. 3B). This modification 
consisted of doing a different manipulation with the same object as in 
the legal ones or doing a different manipulation with a different object. 
The modification happened in one of the actions of the entire action 
sequence, however, the first step always remained unchanged. Impor
tantly, after the modification, action sequences continued the same way 

as the legal ones so that only one action differed between legal and 
illegal sequences. In the present study, illegal sequences were included 
to (1) allow for a discrimination task during the fMRI session (see Sec
tion 2.5) and (2) to distinguish well-known prediction error effects due 
to mismatch of expectancies from those that accumulate at event 
boundaries, which were the main interest of this study. 

2.3. Action segmentation and T/U determination 

For the creation of stimulus material and the subsequent segmenta
tion of actions based on touching (T) and untouching (U) events, a 
computer vision system was used. T was defined as the point in time 
when the actor’s hand made contact with one of the objects, U was when 
the actor’s hand released the object. T and U marked the beginning and 
the end of an action step, respectively (Fig. 4). 

The computer vision system consists of four parts: (1) The multi- 
camera setup, (2) the touching events detector, (3) the eye-tracker and 
the corresponding transformation system and (4) the synchronization 
scheme. These parts will be described in detail in the following. 

To record the visual content and track the hand and objects in the 
video, a five-camera setup was installed around the experiment table. 
The camera used here was Grasshopper GS3-U3–32S4C–C from Tele
dyne FLIR (resolution 1024×768; 60.0 frames per second (fps); color 
space: RGB8; synchronization mode: hardware synchronization via ca
bles). The camera setup was calibrated using a multi-camera calibration 
tool (Michels, 2022). Images captured from the cameras were saved as 
video files which consequently went through a pipeline for detection 
and tracking using YoloV5 (Jocher, 2020). In addition, the “Apriltag” 
markers (Olson, 2011) were employed to calculate both the eye tracker’s 

Fig. 1. A. The objects used for the stimuli preparation: two cups and two cubes; 
B. Starting frame of the videos, showing the actress from the 3pp and the 
starting distribution of all four objects on the table. 

Fig. 2. Schema of the object configurations achieved by actions. Two cups and two cubes were manipulated by stacking up, placing next to, putting in, taking out, 
turning over, placing over, and taking down. The trained action repertoire consisted only of actions generating object configurations labeled by capital letters A to Z. 
Lower case letters show configurations only achieved by illegal actions. Note that some actions were also illegal when generating a legal object configuration but in 
the wrong action sequence. 
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pose (extrinsic parameters of the camera) and the transformation matrix 
between the eye tracker and the five-camera setup. A tablecloth, with 7 
by 7 “Apriltag36h11” markers printed on it, was fixed on the experiment 
table. Hands and objects were tracked by the multi-camera setup. During 
the stimuli preparation, eye movements of the actress were also tracked, 
but these data were not relevant to the current study and are therefore 
not mentioned further below. 

For T/U event detection, a touching sensor was attached to the right 
index finger. The touching sensor consisted of a force-sensing resistor, a 
bias resistor with a 5-volt power supply, an OPAMP for buffering and an 
Arduino Uno for A/D conversion with a sampling rate of 1KHz and 
resolution of 8-bit. The sampled signal was compared with a threshold 
value of 127 (half of the max 8-bit binary number) and then denoised 
with manual human help to exclude false touching and untouching 

events, such as accidentally touching the table. Importantly, T and U 
events that were analyzed in the present study were restricted to the 
touching and untouching of the experimental objects (cups and cubes). 
Notably, due to the multistep nature of action sequences, untouching 
events signal transitions between actions and are, therefore, indicative 
of event boundaries. 

2.4. Training procedure 

The experimental protocol included four consecutive days. On the 
first two days, participants went through imitation training sessions. The 
imitation training consisted of three phases for each action sequence. 
During the first phase, participants were asked to observe the action 
sequence presented to them on a monitor (27 inches) using Presentation 

Fig. 3. A. Decision tree of the legal action repertoire; B. Illegal actions; actions that violate the learned repertoire are marked in blue. Letters indicate different actions 
as defined by their outcome, i.e., a certain configuration of objects (for a detailed description of object configurations, refer to Fig. 2). The branching level can be 
recognized at the transitions between the individual actions; for example, it is three for action D after the sequence I-E-D, but four for action C after the sequence I- 
F-C. 
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software 20.3 (Neurobehavioral Systems Inc., Berkley, CA, USA). In the 
second phase, participants imitated the actions of action sequences 
while the recorded videos were presented to them. They were instructed 
to imitate with the same speed and hand movements. In the last phase, 
participants imitated the complete action sequences along with the 
video. The distance between the seated participant and the screen 
measured approximately 80 cm. The same table cover and objects that 
were used for stimuli preparation were employed for the imitation 
training as well. 

The presentation of the 41 legal videos was organized in four blocks. 
Videos were assigned to a block based on the object that was manipu
lated first during the action sequence (upright cup, inverted cup, blue- 
side-up cube, and red-side-up cube) independent of its concrete 
manipulation. Within each block, videos were presented in the order of 
the length of the sequences of four, five, and six steps action sequences. 
Each training session included a short pause after two blocks, and the 
whole session lasted for about 75 to 90 min. During imitation training, 
participants were observed by an experimenter, and if the participants 
made a mistake, they were asked to imitate the action sequence again. 
The same procedure was followed on the second day of imitation 
training. 

2.5. fMRI session 

During the fMRI session, on the third day, participants were 

presented with the legal and illegal action sequences in randomized 
order. The session consisted of three blocks, with all 41 legal action 
sequences presented in three blocks. Forty-one illegal action sequences 
were distributed across blocks with 13 presented in the first block and 14 
each in the second and third block. Each block always started with a 
legal action sequence. An illegal sequence and its corresponding legal 
one were never presented consecutively and not more than three illegal 
sequences were presented in a row. After each block, there was a short 
break of approximately two to four minutes for eye-tracking calibration 
(see Section 2.7). Additionally, after the presentation of every action 
sequence, there was a question trial during which participants respon
ded by pressing a button to determine whether they had seen the specific 
action sequence during the imitation training. The question trial lasted 
till a button was pressed or a maximum of two seconds (Fig. 5A). 
Moreover, there were 15 null events, five in each block, during which 
only a fixation cross was presented for 1500, 2000, or 2500 ms. The 
entire experiment consisted of 123 trials of legal and 41 trials of illegal 
action sequences, 164 question trials, and 15 null events, and lasted for 
about 60 min, with each block 16 to 20 min long. 

2.6. Post-fMRI memory test 

One day after the fMRI session, participants performed a post-fMRI 
memory test on the legal sequences that they had observed and 
imitated during the first two days of the experiment. The task comprised 

Fig. 4. An example of a legal and the corresponding illegal action sequence with all Touching (T) and Untouching (U) events showing the moment of modification at 
T3. In the legal action sequence, at T3, the cup is taken to be placed over the blue-side-up cube next to it. In the illegal action sequence, instead of the cup, the red- 
side-up cube is grasped. 

Fig. 5. Schema of the experimental paradigm A. Trial schema for the fMRI session with legal and illegal action sequences B. Trial schema for the post-fMRI 
memory test. 
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all the 41 legal sequences presented on the monitor step by step. The 
video of the action sequence paused after each action and two options 
(one correct and one incorrect) appeared on the screen. The options, 
those are the possible next individual actions, were presented as videos 
one after the other, first on the left of the screen and then on the right. 
The distribution of the correct options was balanced between the right 
and left side of presentation. The incorrect options consisted of some of 
the illegal events of the fMRI session and some additionally new illegal 
events that had not been presented before during the imitation training 
sessions. The participants were instructed to decide which of the two 
presented actions would be the correct next action and give the response 
using two keys on their keyboard. The response time window was two 
seconds after the presentation of second video option (Fig. 5B). Once the 
participant gave a response or timed out, the video continued to play 
from where it paused and thus provided real-time feedback on the 
response. At the end of each action sequence, the participants were 
asked to rate how sure they had been to predict the upcoming steps on a 
Likert scale of 0 to 3 (0 – no idea, 1 – rather a guess, 2 – rather know, 3 – 
know for sure) and there was no time-out for this answer. The session 
lasted for approximately 35 to 45 min. 

2.7. fMRI data acquisition 

Neuroimaging data were acquired using a 3-Tesla Siemens Magne
tom Prisma MR tomograph with a 20-channel head coil. Participants lay 
supine on the scanner bed and were instructed to remain still. Addi
tionally, the fixation of the head, arms, and hands with form-fitting 
cushions minimized movements. During fMRI, we also recorded eye- 
tracking data using the Eyelink 1000 Plus eye tracker, which is not the 
focus of this manuscript and will not be reported further. Participants 
were provided with a response box with the right index and middle 
finger positioned on two buttons. Additionally, participants wore 
headphones and earplugs to attenuate scanner noise. Stimuli were pre
sented using Presentation software 20.3 and participants watched the 
videos on the screen in 640×512 pixels resolution through a mirror 
mounted on the head coil. The structural T1 weighted images were ac
quired using a 3-D magnetization prepared rapid gradient echo sequence 
(MPRAGE) sequence with 192 slices, repetition time (TR)= 2130 ms, 
echo time (TE)= 2.28 ms, slice thickness= 1 mm, field of view (FoV)=
256×256 mm2 and flip angle= 8◦ Following that, the functional data 
were obtained in an interleaved order, with the scanning parameters: 33 
slices, TR= 2000 ms, TE= 30 ms, slice thickness= 3 mm, slice spacing=
1 mm, FoV= 192×192 mm2, flip angle= 90◦

2.8. fMRI data preprocessing 

Structural and functional images were processed using Statistical 
Parametric Mapping 12 (SPM12; The Wellcome Centre for Human 
Neuroimaging, London, UK) implemented in MATLAB (MathWorks 
R2022a). Functional images were slice time corrected to the middle 
slice, then movement correction was applied, and images were realigned 
to the mean image. The structural image was co-registered with the 
mean functional image. Structural and functional images were then 
normalized to MNI space (Montreal Neurological Institute, Montreal, 
QC, Canada). Spatial smoothing was performed using a Gaussian kernel 
of Full-Width at Half Maximum (FWHM) 8 × 8 × 8 mm3, and a temporal 
high-pass filter of 128 s was applied. 

2.9. fMRI design specification 

Statistical analyses were performed using SPM12. We used a general 
linear model (GLM) for serially autocorrelated observations (Friston 
et al., 1995; Worsley and Friston, 1995) and convolved regressors with 
the canonical hemodynamic response function. On the first level of the 
analysis, we used a grey matter mask that was comprised of smoothed 
individual normalized grey matter images (8 × 8 × 8 mm3 FWHM) with 

a threshold of 0.2 implemented in ImCalc in SPM12. 
A total of 12 regressors were included in the GLM. There were four 

regressors for the experimental conditions, namely one regressor for the 
legal action sequences (Legal), one for the illegal action sequences 
(Illegal), one for hand-object touching events (T), and another one for 
the hand-object untouching events (U). The fMRI experiment comprised 
three blocks of trials. Per block, all 41 legal action sequences were 
presented once, summing up to 123 legal action trials in total. The 13 
illegal action sequences were presented in the first block, 14 in the 
second, and 14 in the third block. Out of 123 trials of legal action se
quences presented across three blocks, 14 from the first block, 13 from 
the second, and 13 from the third that corresponded to the illegal action 
sequences were selected for the GLM. This was done to balance the 
number of trials in each regressors, namely, legal and illegal action se
quences. Regressors Legal and Illegal included 41 trials each, while there 
were 450 trials each for T and U events. Additionally, two regressors for 
question events (164 trials) and null events (15 trials) were added. The 
onsets of the illegal action sequences were the point of expectation (or 
action repertoire) violation, and corresponding time points were 
determined in the legal sequences. The activity was modeled from the 
point of expectation violation to the end of the action sequences, T and U 
of the legal action sequences were modeled as events. Furthermore, a 
parametric regressor for U events with the number of branches (1, 2, 3, 
or 4) in decreasing order (i.e., the lowest number for the highest number 
of branches) was modeled. For the question trials and null events, the 
onsets were the beginning of each trial and modeled with a duration of 
zero. All parametric modulators were mean-centered (Mumford et al., 
2015). Finally, the six subject-specific rigid-body transformations ob
tained from realignment (three translations and three rotations) were 
included as regressors of nuisance. 

2.10. Whole brain fMRI analysis 

At the first level, the following t-contrasts were computed: (a) To test 
the effect of violation of expectation, a contrast between Illegal and 
Legal events of the action sequences (Illegal > Legal) was calculated; (b) 
To investigate the brain activity involved in the retrieval of information 
from the internal model formed during the imitation training, the direct 
contrast (U > T) was calculated; (c) To examine the role of the proba
bilistic structure of the actions in legal action sequences, parametric 
modeling of number of branches was performed (Branching); (d) To 
investigate neural changes during the update of the internal model when 
an action is initiated, the direct contrast (T > U) was generated. 

For the second level analysis, one sample t-tests were performed 
across participants. A false discovery rate (FDR) threshold of p < .05 or 
lower was applied. For the FDR of p < .05, the results are reported with 
an additional moderate cluster threshold of 20 voxels. However, when 
there was no significant activation at FDR of p < .05, we inspected t- 
maps at p < .001 (uncorrected) for completeness. Brain activation was 
visualized with MRIcroGL (version 1.2.20211006, McCausland Center 
for Brain Imaging, University of South Carolina, USA). 

2.11. Behavioral data analysis 

Accuracy and reaction time (RT) data from the fMRI session and the 
post-fMRI memory test were analyzed using generalized linear modeling 
conducted in the R programming language (R Core Team, 2019; Version 
4.2.1). For further RT analyses, only the trials with correct responses and 
RTs above 100 milliseconds were included. As the empirical distribu
tions of RTs and accuracy rates were not normal (assessed by the 
Shapiro-Wilk-Test and the Cullen and Frey graph), for analyses of RTs 
and accuracy, a log-normal family and a binomial family were used, 
respectively. Notably, as the output is not normally distributed, it is not 
possible to use ANOVA or an equivalent general linear model (GLM) 
using a Gaussian family. For the behavioral results of the fMRI session, 
the GLM model (Eq. 1) contained the STIMULUS TYPE as a fixed effect; 
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further, two random intercepts were assumed for subjects and trials. For 
the post-fMRI memory test, the GLM (Eq. 2) consisted of the STIMULUS 

HISTORY of the to-be-rejected option (Legal, Illegal in the fMRI session) 
and BRANCHING STRUCTURE (1, 2, 3, 4) as the fixed effects. For the post-hoc 
analyses, p-values are adjusted using Tukey’s correction for multiple 
comparisons. fMRI Session: 

Outcome ∼ Stimulus Type + (1|ID) + (1|Trial) (1) 

Post-fMRI memory test: 

Outcome ∼ Branching Structure + Stimulus History+
(1|ID) + (1|Trial) (2)  

3. Results 

3.1. Behavioral results 

3.1.1. fMRI session 
During the fMRI session, participants made 76.5 % correct responses, 

20.02 % incorrect responses, and 3.48 % of responses were missed due 
to time out. The main effects of the STIMULUS TYPE with respect to accuracy 
χ2(1) = 5.6824, p = 0.0171, Crameŕ s V = 0.029 and RTs χ2(1) =

80.07, p < 0.001, Crameŕ s V = 0.125 were significant. Tukey- 
corrected post hoc contrasts showed that the accuracy was signifi
cantly higher for illegal events than the legal events 
(z.ratio= 2.384, p= 0.0171) and RT for legal events was significantly 
longer than that of the illegal events (z.ratio = 8.948, p < 0.001). 

3.1.2. Post-fMRI memory test 
In the post-fMRI memory test, participants’ responses were correct in 

89.31 % of trials, while 8.33 % of incorrect responses were recorded, and 
2.36 % of responses were missed due to time out. There was no main 
effect of STIMULUS HISTORY, meaning that actions which were part of other 
legal sequences and actions which were not derived from legal se
quences were rejected with the same probability and equally fast. 

The data from the post-fMRI memory test showed that there was a 
significant main effect of BRANCHING STRUCTURE observed in accuracy χ2(3)
= 41.591, p < 0.001, Crameŕ s V = 0. 055 and RTs χ2(3) = 36.05, p <
0.001, Crameŕ s V = 0.052. Post hoc contrasts showed that the accuracy 
of one branch (95.7 % ± 0.203) was significantly higher compared to 
two banches (90 % ± 0.3) (z.ratio= 3.332, p= 0.005) and three 
branches (85.96 % ± 0.347) (z.ratio = 6.205, p< 0.001). There were 
high accuracy for four branches (93.87 % ± 0.24) than three branches 
(85.96 % ± 0.347) (z.ratio = − 3.265, p = 0.006). 

Further, regarding the RTs, the post hoc tests showed that actions 
with one branch (M = 429 ± 265.52 ms) were significantly shorter than 
for those with three branches (M = 442 ± 292.96 ms) 
(z.ratio = − 2.734, p= 0.031), and longer than for actions with four 
branches (M = 406.5 ± 245.08 ms) (z.ratio = 3.116, p = 0.009). 
Additionally, the RT for actions with two branches (M = 413 ± 240.84 
ms) were significantly shorter than for those with three branches (M =
442 ± 292.96 ms) (z.ratio = 1.658,p = 0.005) and RTs for actions with 
three branches (M = 442 ± 292.96 ms) were significantly longer than 
for those with four branches (M = 406.5 ± 245.08 ms) ( z.ratio = 5.654,
p< 0.001). The actions with three branches had significantly longer RT 

than one, two and four branches and the actions with one branch had 
longer RT than four branches. 

3.2. fMRI results 

To investigate the effect of violation of expectation generated by the 
mismatch between predicted and perceived actions, the contrast be
tween illegal and legal events of the action sequences (Illegal > Legal) 
was calculated. The contrast revealed activation in the bilateral sup
plementary motor area (SMA), supramarginal gyrus (SMG), and middle 
anterior insula (INS). In the right hemisphere, there was significant 

activation in the posterior superior temporal sulcus (pSTS) and thalamus 
(THA) (Fig. 6A, Table 1). 

To determine the effects of the event boundary U of the legal action 
sequences, the first step of the two-step predictive process, where up to 
four possible courses of action could be expected depending on 
branching, a direct contrast (U > T) was calculated. This contrast yiel
ded bilateral activation in SMA, INS/PUT, and lingual gyrus (LIN) 
(Fig. 6B, Table 2). The parametric modulator (Branching) at U events, 
reflecting the effects of the probabilistic branching structure of the ac
tion repertoire, revealed activation in the left fusiform gyrus (FFG), 
bilateral INS, and right anterior cingulate cortex (ACC) (Fig. 6C, 
Table 2). However, it is important to note that activation found for this 
effect did not survive correction for multiple comparisons and is there
fore described at p < .001, uncorrected. 

Additionally, to investigate the role of event boundary T of the legal 
action sequences, the time point when the action begins and which al
lows the restriction of the prediction to now only one option, the 
contrast (T > U) was calculated. This contrast showed significant acti
vation in the left caudate (CAU), medial prefrontal cortex (MPFC), 
posterior cingulate cortex (PCC), and hippocampus (HIP), as well as the 
bilateral medial cingulate cortex (MCC) (Fig. 6D, Table 2). 

As a control, we explored the effect of event boundaries U and T of 
the illegal action sequences. To this end, two contrasts (Ti > Ui) and (Ui 
> Ti) were calculated in a second GLM model. The (Ui > Ti) showed 
activation of the bilateral superior temporal gyrus (STG) and bilateral 
lingual gyrus (LIN). Furthermore, the contrast (Ti > Ui) did not survive 
multiple comparison corrections. However, the event boundaries, U and 
T, between the legal and illegal sequences could not be compared with 
the caveat of a highly unequal number of trials for the latter. 

4. Discussion 

Although actions appear to be a continuous stream of activities, they 
consist of meaningful segments. Studies have shown that the segmen
tation of actions takes place automatically and plays an important role in 
learning and memory through the formation of internal models (Eisen
berg et al., 2018; Kurby and Zacks, 2008; Richmond and Zacks, 2018). 
Specifically, the boundaries where one action comes to an end and the 
next action begins are the essential time points for predictive processing 
(Schubotz et al., 2012; Swallow et al., 2009). The current study aimed to 
better understand the processes that happen at these boundaries, using a 
probabilistic branching structure of actions in a defined action reper
toire. The results confirm the assumption of a two-stage updating pro
cess, which is also reflected at the neurofunctional level. These two 
updating steps involve, first, a set of frontal areas that seem to retrieve 
learned options of upcoming actions, and second, midline and hippo
campal regions that reflect the finally selected episodic prediction of the 
emerging action. We also find that this updating is distinct at the neu
rofunctional level from, and likely upstream of, the response to a pre
diction error, caused by an unexpected action at the single action 
segment level that informs the so-called action observation network. 
Our findings contribute to a better understanding of action prediction in 
the context of complex action repertoires that are typical of our 
everyday lives. 

The present study was designed to investigate prediction-updating 
processes at action boundaries by differentiating U and T events and 
examining the effects of the statistical properties of the action repertoire. 
In the first step, however, it was important to present the AON, which is 
well-reported to be underlying the processing of observed actions as a 
sanity check. To this end, we modified a single action in some of the 
presented action sequences, hypothesizing that such modifications 
induce a prediction error (Exton-McGuinness et al., 2015; Fernández 
et al., 2016; Jainta et al., 2022; Siestrup et al., 2023; Sinclair and 
Barense, 2019). In this case, the prediction had to quickly switch from 
complex expectation models of the suprasegmental structure to simpler 
expectation models that only call up the set of possible manipulations. 
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As expected, these prediction errors at the level of single actions induced 
a BOLD response in the AON (Caspers et al., 2010). In addition, acti
vation of the bilateral anterior insula increased in response to altered 
actions, indicating that participants recognized the modification as an 
action error (Bossaerts, 2018; Klein et al., 2007, 2013; Ullsperger et al., 
2010). This neurophysiological response to error detection also corre
sponded to the significantly faster classification times for sequences with 
an altered action. It should be noted here that the prediction error only 
occurred at the level of a single action segment, while the sequence 
remained repertoire-compliant up to this point and thereafter. Conse
quently, no structures further upstream were involved in the processing 
of the prediction error. 

At event boundaries, prediction errors accumulate (Kurby and Zacks, 
2008), since the current event model no longer allows for precise pre
diction, especially when several next actions are possible. In the present 
study, this situation was implemented by U events in our multistep ac
tions, where the learned action repertoire had to be accessed to form 
expectations with regard to the next action. At these U events, we found 
increased activation in SMA, lingual gyrus, putamen, and caudate nu
cleus. The striatum and the SMA are known to be involved in arranging 
sequences of action steps in the order in which they are to be executed 
(Bednark et al., 2015; Graybiel, 1998; Shima and Tanji, 2000; Tanji, 
2001). The striatum plays a key role in the coding of action sequences; in 
particular, it serves to integrate individual actions into coherent, orga
nized behavioral units, a process known as chunking (Favila et al., 2023; 
Graybiel, 1998). Studies in animals suggest that frontal input to the 
striatum, in particular the dorsomedial prefrontal cortex including SMA, 
shapes the representation of action sequences (Ostlund et al., 2009). 

Fig. 6. Brain Activation A. Effect of Violation of Expectation – IFS, inferior frontal sulcus; SMG, supramarginal gyrus; pSTS, posterior superior temporal sulcus; B. 
Effect of Untouching events – Pre - SMA, Pre - supplementary motor area; INS/PUT, insula/putamen; C. Effect of Branching – ACC, anterior cingulate cortex; D. Effect 
of Touching events – PCC, posterior cingulate cortex; MPFC, medial prefrontal cortex; HIP, hippocampus. 

Table 1 
Whole-brain activation for contrasts of Illegal > Legal action sequences at FDR p 
< 0.005.  

Anatomy H Cluster 
extent 
(voxels) 

MNI Coordinates t 
Value 

x 
{mm} 

y 
{mm} 

z 
{mm} 

Pre-Supplementary 
Motor Area 

L 50 − 3 17 53 5.14  

R 35 3 20 50 5.46 
Supramarginal 

Gyrus/ anterior 
Inferior Parietal 
Sulcus 

L 103 − 42 − 31 41 7.39  

R 265 54 − 22 41 9.80 
Anterior Dorsal 

Insula 
L 75 − 33 20 − 4 6.26  

R 142 33 23 − 1 8.87 
Inferior Precentral 

Sulcus 
L 124 − 54 5 35 6.16  

R 562 51 11 29 7.80 
Inferior Frontal 

Sulcus 
R l.m. 48 23 23 7.31 

Inferior Temporal 
Gyrus 

R 216 48 − 55 − 7 8.90 

Posterior Superior 
Temporal Sulcus 

R l.m. 54 − 40 14 5.71 

Thalamus R 39 9 − 16 8 4.59 

Only clusters with a minimum extent of 20 voxels are reported. H= Hemisphere; 
MNI= Montreal Neurological Institute; L= Left; R= Right; l.m.= local maximum. 

R.N. Selvan et al.                                                                                                                                                                                                                               



NeuroImage 296 (2024) 120687

9

Interestingly, rats with SMA lesions were still able to learn action se
quences but failed when sequences had to be re-organized. Their 
behavior suggested that they represented the elements of the sequence 
as distinct behavioral units, corroborating a critical role of the SMA in 
sequence-level representations. Although the execution of highly 
trained action sequences probably depends more on the striatum than on 
the SMA, both areas seem to remain relevant, especially for the initiation 
of action chunks (Favila et al., 2023). Against the background of these 
findings, the joint activation of SMA and striatum at the beginning of 
each action boundary is highly plausible. 

Moreover, increased activation detected in the lingual gyrus repli
cates previous findings where we investigated brain activity at bound
aries within single-segment action (Pomp et al., 2021). At this point in 
time, there is an increased need to visually evaluate the current positions 
of the objects (i.e., the local scene), to employ this information during 
the prediction of the subsequent action in a specific action sequence 
(Kamps et al., 2016; Ruotolo et al., 2019; Sulpizio et al., 2013). More 
generally, increased exploratory vision and visual gain (Shipp, 2016) 
reflect processes that are typically associated with a prediction error in 

terms of the predictive coding framework. 
In summary, these findings suggest that at the end of an action, when 

the object is released (U) to enable the initiation of the next action (T), 
the minimum of predictability is reached and counteracted by the 
retrieval of previously encoded event models, while at the same time, an 
intensive use of visual information already begins. 

As described above, U events constituted the first of a two-step 
predictive process in the viewing of multistep actions. At these event 
boundaries, the brain uses the before-trained probabilistic structure of 
actions to update predictions of upcoming actions. Our rationale was 
that this process should depend on the number of possible following 
actions, as operationalized as the number of branches in the present 
experiment. The number of branches ranged from one to four, while a 
situation with only one possible branch represents the lowest level of 
uncertainty or strongest prediction. With regard to the BOLD effects, the 
parametric analysis of the branching structure suggested that as the 
strength of the prediction increased, activity increased in the ACC and 
the anterior insula. Since this contrast did not survive the correction for 
multiple comparisons, we refrain from discussing this observation in 
detail. Also, although the accuracy and RT measures from the post-fMRI 
test were significantly influenced by the branching structure, the di
rections of these effects were rather mixed. However, we would like to 
point out that this observation fits very well with the previous findings 
that ACC was more active when the internal model was biased towards a 
specific prediction (Akam et al., 2021; Kennerley et al., 2006; Klein-
Flügge et al., 2022; Schiffer et al., 2013) and when participants were 
able to make predictions on the basis of previously trained sequences 
compared to observing completely new ones (Jainta et al., 2022; Sies
trup et al., 2022, 2023; Siestrup and Schubotz, 2023). Thus, in the 
present study, higher ACC activation for more restricted expectations 
might reflect a more straightforward retrieval of available predictive 
models at U events. 

After retrieving information from the internal model at the end of an 
action (U event), new information that supplies predictive processes is 
provided when a new action is initiated upon touching the next object (T 
event). In the case of our task, we assume that the expected options 
retrieved at U are matched with the now observed hand movements of 
the actress, leading to a final selection of the best matching option, 
which is broadcast as the newly expected action. This second step in the 
prediction updating process was characterized by increased BOLD re
sponses in cortical midline structures MPFC and PCC, fitting our hy
pothesis regarding the role of DMN areas in updating predictions at the 
suprasegmental levels of action organization. Notably, the observed 
brain activation could be related to comparing own predictive models 
with the unfolding sequence at T events to aid further prediction (Kos
ter-Hale and Saxe, 2013; Wurm et al., 2011). Moreover, recently pro
posed hierarchical prediction and prediction error processing models 
(Alexander and Brown, 2015, 2018) suggest that the MPFC provides 
high-level predictive input to the lateral frontal cortex, thus, DMN areas 
may provide top-down modulatory input to the AON to update and 
shape predictions of upcoming object transport and manipulation. 
Future studies should test this further by addressing causal network 
interactions using for instance dynamic causal modeling (Stephan et al., 
2010). Interestingly, we also found hippocampal activation at T events. 
The hippocampus is known to be sensitive to event boundaries 
(Ben-Yakov and Henson, 2018; Cooper and Ritchey, 2020). It has an 
important role in the generation of internal models and predictions 
(Barron et al., 2020), and operates as a match/mismatch detector be
tween situational input and predictions (Duncan et al., 2009, 2012; 
Sinclair et al., 2021) Thus, hippocampal activation may reflect the 
comparison of the previously formed internal model and new informa
tion concerning the relevant object. 

In summary, these findings suggest that at the beginning of the next 
action (T events), predictions that have been prepared during finalizing 
the previous action (U events) are now evaluated in reference to the 
unfolding observed action to exclude all but one prediction, involving a 

Table 2 
Whole-brain activation for contrasts of Event boundaries (Touching & Untouch
ing) and parametric modulator Branching at FDR p < .005/ uncorrected p < .001.  

Anatomy H Cluster 
extent 
(voxels) 

MNI Coordinates t 
Value 

x 
{mm} 

y 
{mm} 

z 
{mm} 

Untouching > Touching (FDR at p < .005) 

(Pre-)Supplementary 
Motor Area/ 
Anterior Cingulate 
Cortex 

L 1871 − 3 14 50 7.79  

R l.m. 12 8 62 7.86 
Insula/ Putamen L 414 − 33 23 − 4 6.23  

R 76 36 − 22 8 4.78 
Lingual Gyrus L 117 − 15 − 67 − 1 6.04  

R 218 24 − 49 − 1 5.63 
Posterior Inferior 

Temporal Sulcus 
R 133 54 − 49 − 7 5.71 

Posterior Superior 
Temporal Sulcus 

R l.m. 48 − 31 − 1 5.08 

Primary Motor Cortex L 54 − 36 − 22 53 5.70 
Anterior Middle 

Frontal Gyrus 
L 36 − 33 47 17 4.51 

Branching (uncorrected at p < .001) 

Fusiform Gyrus L 18 − 30 − 61 − 10 4.99 
Insula L 29 − 30 17 − 10 4.04  

R 52 42 20 − 7 4.76 
Anterior Inferior 

Parietal Sulcus 
R 59 48 − 25 44 4.21 

Middle Frontal Gyrus R 11 39 50 20 4.00 
Anterior Cingulate 

Cortex 
R 40 6 38 23 3.97 

Touching > Untouching (FDR at p < .005) 

Medial Prefrontal 
Cortex/ BA10/ 
Pregenual Anterior 
Cingulate Cortex 

L 598 − 3 50 − 1 7.33 

Dorsal Premotor 
Cortex 

L 80 − 24 − 7 56 5.68  

R 121 30 − 10 59 5.85 
Mid Cingulate Sulcus L 22 − 15 − 22 44 5.44  

R 23 9 − 19 47 4.93 
Posterior Cingulate 

Cortex 
L 108 − 9 − 52 26 6.12 

Fusiform Gyrus L 41 − 30 − 55 − 19 5.54 
Hippocampus L 25 − 24 − 28 − 7 6.09 

Only clusters with a minimum extent of 20 voxels for FDR at p < .005 and 10 
voxels for uncorrected at p < .001 are reported. BA= Brodmann Area; H=

Hemisphere; MNI= Montreal Neurological Institute; L= Left; R= Right; l.m.=
local maximum. 
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higher-level network of cortical midline and hippocampal areas. 

5. Conclusion 

Actions we observe in our daily life are organized in sequences of 
individual segments, and this segmental structure is highly relevant for 
prediction processes. In the present study, we showed that at U events, 
when the current event model comes to an end, the brain must retrieve 
previously formed internal models to generate predictions about the 
upcoming events. The observed neural responses also reflect the level of 
prediction strength. When new information about the continuation of an 
action sequence becomes available at T events, the brain evaluates the 
match between selected predictions and evidence from the observed 
action. In summary, this study provides valuable new insights into the 
stepwise predictive processes during the observation of complex manual 
action repertoires. 
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