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Abstract

■ Motion information has been argued to be central to the sub-
jective segmentation of observed actions. Concerning object-
directed actions, object-associated action information might as
well inform efficient action segmentation and prediction. The
present study compared the segmentation and neural processing
of object manipulations and equivalent dough ball manipulations
to elucidate the effect of object–action associations. Behavioral
data corroborated that objective relational changes in the form
of (un-)touchings of objects, hand, and ground represent mean-
ingful anchor points in subjective action segmentation rendering
them objective marks of meaningful event boundaries. As
expected, segmentation behavior became even more systematic
for the weakly informative dough. fMRI data were modeled by
critical subjective, and computer-vision-derived objective event
boundaries. Whole-brain as well as planned ROI analyses showed

that object information had significant effects on how the brain
processes these boundaries. This was especially pronounced at
untouchings, that is, events that announced the beginning of
the upcoming action and might be the point where competing
predictions are aligned with perceptual input to update the cur-
rent action model. As expected, weak object–action associations
at untouching events were accompanied by increased biological
motion processing, whereas strong object–action associations
came with an increased contextual associative information pro-
cessing, as indicated by increased parahippocampal activity.
Interestingly, anterior inferior parietal lobule activity increased
for weak object–action associations at untouching events, pre-
sumably because of an unrestricted number of candidate actions
for dough manipulation. Our findings offer new insights into the
significance of objects for the segmentation of action. ■

INTRODUCTION

Everyday actions consist of smoothly concatenated action
steps. The segmental structure of actions is reflected in the
way that we teach, learn, and execute actions ourselves
(Braun, Mehring, & Wolpert, 2010), and also in how we
perceive actions performed by others (Newtson, Hairfield,
Bloomingdale, & Cutino, 1987). Behavioral studies in chil-
dren (Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin,
2015; Baldwin, Baird, Saylor, & Clark, 2001) and adults
(Hard, Recchia, & Tversky, 2011; Newtson & Engquist,
1976) show that action segmentation arises spontaneously
(see also Zacks, Speer, Swallow, Braver, & Reynolds, 2007)
and helps us process and remember dynamic events effi-
ciently (Kurby & Zacks, 2018; Zacks & Swallow, 2007).
To measure subjective segmentation behavior,

researchers ask participants to indicate when they per-
ceive event boundaries, that is, those points in time when
one action segment ends and the next begins (Newtson,
1973). This procedure has been shown to yield intra-
individually consistent action segments (for a review:

Sargent, Zacks, & Bailey, 2015), but the question remains
which stimulus properties drive the segmentation
behavior. A number of studies have specifically addressed
the role of motion as a cue for updating action models at
event boundaries (Zacks, Kumar, Abrams, & Mehta, 2009;
Hard, Tversky, & Lang, 2006; Newtson, Engquist, & Bois,
1977). Typical measures to quantify motion include binary
time interval coding for separate movement types (Hard
et al., 2006) or motion tracking through speed and
acceleration of hands and head (Zacks et al., 2009). Corre-
spondingly, the activity of the motion-selective area MT
was found to increase during the perception of event
boundaries in actions (Schubotz, Korb, Schiffer, Stadler,
& von Cramon, 2012; Speer, Swallow, & Zacks, 2003; Zacks
et al., 2001), pointing to change in motion as an efficient
cue that announces event boundaries and triggers updat-
ing processes in frontal networks.

However, having a life-long experience with manipula-
ble objects, the movements one expects when observing
object-directed actions certainly also depend on the
involved object and might influence spatial attention and
processing. Objects are an important source of informa-
tion that individuals use to understand an observed action
because we have learned how to act with or on an object
and thereby build object–action associations (Borghi,
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2021; Zhao, 2019). In a former study (Schubotz, Wurm,
Wittmann, & von Cramon, 2014), we built on the idea that
objects are reminiscent of actions often performed with
them. For instance, the combination of a knife and an
apple remind us of peeling the apple or cutting it. Findings
confirmed that the BOLD response in action-related infe-
rior parietal and posterior temporal areas varied with the
number of object-implicated actions. This impact of
objects has been shown to influence the processing of
observed action, even when these objects are not actually
used (El-Sourani, Trempler, Wurm, Fink, & Schubotz,
2019; El-Sourani, Wurm, Trempler, Fink, & Schubotz,
2018; Hrkać, Wurm, Kühn, & Schubotz, 2015). However,
because action segmentation appears to be highly depen-
dent on movement-related information and may develop
in early infant action observation when functional or
semantic knowledge about objects is still rudimentary,
object informationmay not be essential for action segmen-
tation. One may ask how action structures are processed
before having experience-based knowledge of object-
associated actions, for instance, when encountering
actions with novel objects, which is common in young
infancy (cf. Hunnius & Bekkering, 2010).

In the present study, we aimed to investigate the effect
of object–action knowledge on action segmentation and
underlying brain processes. We built on a previous study
(Pomp et al., 2021), which examined action segmentation
in everyday object manipulations. To this end, we recre-
ated the movies of the object manipulation actions, but
this time using formed pieces of play dough as objects.
This replacement of common objects by formed dough
minimized object–action associations, that is, individuals
did not strongly associate the formed dough with specific
actions (except for kneading, if at all). The actions them-
selves were kept as similar as possible to the actions per-
formed on the everyday objects to balance the movement
patterns between the current and the previous study. After
a passive action observation session in the MRI scanner,
individual behavioral action segmentations of these
actions were gained using the unit marking procedure
(Newtson, 1973). Although subjective reports are impor-
tant and can be informative, we do not necessarily have
explicit access to all event boundaries that our brain regis-
ters and exploits to make sense of the world. Moreover,
subjective reportsmay be focused on behaviorally relevant
events and have been shown to be highly dependent on
the exact task, for example, with regard to the instruction
of detecting “meaningful” boundaries or selecting a spe-
cific “fine” or “coarse” grain of the segmentation (Zacks
et al., 2007). Manual action segmentation is therefore a
possible, but not necessarily a reliable, approximation
for the way in which the brain segments events.

An exciting complement to research into action seg-
mentation is therefore amore objectifiable stimulus-based
approach to action segmentation (Pomp et al., 2021). We
extracted objective stimulus characteristics based on the
notion of semantic event chains (Wörgötter et al., 2013;

Aksoy et al., 2011). In an object-directed action, this
approach describes actions as a sequence of relational
changes in the form of touchings (T) and untouchings
(U) of objects, hands, and ground (TUs, hereafter). For
instance, when a hand grasps an object, motion velocity
usually reaches zero whereas the hand and object touch.
In case of a subsequent object transport, the object then
untouches the ground, and velocity increases again until it
decreases before the object touches its destination. In
case of a subsequent object manipulation, for example,
turning, velocity increases while the object is turned and
decreases before the hand untouches the object after
manipulation. Thus, the binary coding of touching rela-
tions (touch, untouch) between each pair of objects,
hands, and ground in an action scene can be used to
describe the course of action without the need to analyze
velocity and trajectory patterns and was used in the cur-
rent study to model brain activity. Note that the above-
explained underlying computer-vision algorithm that we
used is model-free and stimulus-driven (Aksoy et al.,
2011). Therefore, it does not require functional or seman-
tic knowledge about objects (or hands or ground), which
might imitate the simple model of early infant action
observation. The use of objective event boundaries, which
can be extracted directly from the stimulus material, offers
promising opportunities to understand the neural pro-
cesses underlying ongoing action segmentation.
Using the touching–untouching approach in the pres-

ent study, we examined the impact of object–action
knowledge on action segmentation and underlying brain
processes. If object–action associations play a role in
action segmentation, we expected significant differences
between our previous study on object manipulation and
our current study on dough manipulation in terms of seg-
mentation behavior and time-point-specific brain activity.
To this end, we compared the neural processing of object
and dough videos at different types of event boundaries,
including group-consistent behavioral segmentations
(unit marks, Ms hereafter) and objective TU events as rel-
evant points in time. We refer to the boundaries assessed
by the participants as unit marks (conceptually based on
the unit marking procedure) and not as event boundaries,
as we assume that they are only one type of event bound-
ary of interest. For object manipulations, TU events were
found to be meaningful anchor points for action segmen-
tation behavior (Pomp et al., 2021), and we expected TUs
to gain even more importance when object–action associ-
ations are weak. Specifically, we expected participants’
action segmentation behavior to be evenmore dependent
on TU events, that is, temporally less spread and closer
to TUs. We refer to the temporal relation between
participant-judged event boundaries and TU events as
being systematic if their occurrence coincided more than
randomly often, which we examined on single subject and
group level. For object manipulations, this systematic rela-
tion had been shown (Pomp et al., 2021) and we expected
that this systematicity in behavior would increase for
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dough manipulations. Thus, we expected that participant-
judged event boundaries would reliably coincide with TU
events, but not necessarily vice versa.
With regard to brain activity, we examined at which of

the critical time points T, U, and M activity would differ
between object and dough manipulation in one of three
ROIs derived from previous findings: the anterior inferior
parietal lobule (aIPL), the parahippocampal cortex (PHC),
and the biological motion-sensitive area (BMA, hereafter)
in the lateral temporo-occipital cortex. Concerning the
first ROI, as mentioned above, Schubotz and colleagues
(2014) showed inferior parietal regions’ activity to vary
with the number of object-implicated actions at the mere
sight of the object, independent of its usage. This activity
was located in aIPL, and therefore, we expected increased
aIPL activation for actions performed on objects versus
dough pieces. The aIPL, as part of the ventrodorsal visual
processing route (Binkofski & Buxbaum, 2013), is
engaged in the representation of pragmatic object proper-
ties (Bosch et al., 2023) and hand–object interactions
(Pelgrims, Olivier, & Andres, 2011; Vingerhoets, 2008)
when we perform, plan, or observe object manipulations.
Correspondingly, aIPL is known to be an important ana-
tomic substrate underlying ideomotor apraxia (O’Neal
et al., 2021), and it has been suggested to resolve compe-
tition between possible actions (Watson & Buxbaum,
2015). Concerning the second ROI, as for aIPL, we hypoth-
esized an increased PHC activation for actions performed
on objects versus actions performed on dough. The PHC is
generally involved in processing contextual associations
(Li, Lu, & Zhong, 2016; Aminoff, Kveraga, & Bar, 2013;
Bar, Aminoff, & Schacter, 2008), which is the principal
element underlying many cognitive processes, including
spatial processing in scenes and episodic memory. In pre-
vious studies, we found PHC activity to specifically
increase at action boundaries, possibly signaling the
memory-driven updating of expectations of the next
action associated with the object (Pomp et al., 2021;
Schubotz et al., 2012). We here expected that familiar
objects would trigger more contextual action associations
than formed pieces of play dough accompanied by higher
PHC activity. Finally, regarding the third ROI, we expected
motion information to gain importance for play dough
compared with object videos, which we hypothesized to
detect in BMA. We reasoned that detailed motion analysis
might be less critical when objects provide clues about
which actions are about to be performed, whereas
detailed motion analysis might be especially important,
when pieces of dough are manipulated, to constrain the
observer’s predictions efficiently.

METHODS

For the current study, we used the experimental design of
a previous study (Pomp et al., 2021), employed new
videos, and tested a new group of participants comparable
in size. The current study was kept as similar as possible to

the previous one to allow direct statistical comparisons.
This includes that the participants were recruited through
the same channels, the study took place at the same insti-
tute, participants were scanned in the same MRI scanner,
behavioral sessions were in the same laboratory rooms,
and all sessions followed the exact same experimental pro-
tocols with similar equipment and materials (except for
the stimulus videos). The results of the previously pub-
lished study will not be shown here again, but only new
analyses relating to statistical between-studies compari-
sons. Regarding brain activity contrasts, only interaction
effects are reported, to make the results resistant to any
differences between groups. With regard to the interpre-
tation of direct comparisons between the two studies, we
statistically compared the sample characteristics to rule
out that differences between the samples could account
for differences observed between the video types. We
used the demographic details on age, sex, and profession,
as well as participants’ answers to the short surveys about
their physical andmental condition, and experimental task
features that concluded each of the separate sessions (for
details on the survey, see section Experimental Procedure)
to predict the participant’s affiliation to either study. In
separate analyses for the continuous, ordinal, and binary
data types, no significant differences between groups were
found using Bayesian modeling. To be precise, these anal-
yses yielded support for the null hypothesis in all but one
case, where the evidence ratio was inconclusive—giving
neither evidence for the null nor for the alternative
hypothesis. We uploaded the corresponding data, the R
script of the analyses, and the results to theOSF repository
(DOI 10.17605/OSF.IO/MGQSF).

Participants

Thirty-three right-handed participants (Mage = 23.03
years, SD = 3.06, age range = 18–29 years, 28 women, 5
men) took part in this study. This sample size was based on
previous work (Pomp et al., 2021) that showed robust
results with a similar sample size. All participants reported
intact color perception, and none of the participants
reported any history of neurological or psychiatric disor-
ders. The participants had not taken part in related precur-
sor studies. In the course of the experiment, it became
apparent that one participant had not understood the
instructions of the behavioral segmentation task correctly;
hence, this participant’s data set was excluded from the
behavioral model construction but was included in the
fMRI data set (as the fMRI session was before and indepen-
dent of the behavioral categorization task). Therefore, in
the behavioral analysis, the data of 32 participants (f =
27, m = 5) aged between 18 and 29 years (M = 22.88,
SD=3.13) were considered. Participants gave written con-
sent to voluntarily participate in the experiment and were
self-reportedly suitable for fMRI measures. They either
received course credits or were paid for their participa-
tion. The current study is in accordance to the Declaration

Pomp et al. 3

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02210/2408422/jocn_a_02210.pdf by U
N

IVER
SITAET M

U
EN

STER
 user on 08 July 2024

http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF


of Helsinki and was approved by the local ethics commit-
tee of the Faculty of Psychology at the University of
Münster (Germany).

Stimulus Material

The transitive actions employed in this study were
designed based on the Semantic Event Chain (SEC) frame-
work described by Wörgötter and colleagues (2013). Only
transitive actions involving one active hand and one or two
objects are included in this framework whereof 12 actions
were selected for the current study that belonged to six
action categories. The 12 selected actions were: turn, pull,
rip off, uncover, take down, take away, out on top, put
together, cut, scoop, hide, and put into. The execution
of these transitive actions was recorded using an industrial
camera (BASLER acA 1300-75gc) with a TV zoom lens
(11.5–69 mm, 1:1.4) as well as an ASUS Xtion Live RGB-
D sensor (ASUS TeK Computer Inc.) recording color as
well as depth images. The video material presented in this
study showed an actress from the front (BASLER camera)
up to the shoulders performing the action with formed
pieces of blue play dough on awhite table. The ASUS Xtion
Live recorded the actions from above, and its recordings
were utilized for SEC time point extraction. For each
object manipulation, 24–25 unique video takes were cho-
sen for the final stimulus set (to account for the natural var-
iation usually observed in human action performances),
meaning that no video was repeatedly presented. In total,
294 action videos were shown to the participants. The
videos had a frame rate of 23 fps. Each video started 10
frames before the hand lifts from the table to act and fin-
ished five frames after the hand lies back on the table with
a video duration ranging from 68 frames to 165 frames
(M= 112.35, SD= 18.13), that is, 2957 msec to 7174 msec
(M= 4885, SD= 788). To increase the perceptual variabil-
ity, all videos were vertically mirrored so that actions
seemed to be performed by the left hand. Each participant
saw 50% of the actions mirrored.

Adopted from our previous study (Pomp et al., 2021),
the stimulus sequence was designed as a second-level
counterbalanced De Bruijn sequence with seven condi-
tions (six action categories + null condition) created using
the De Bruijn cycle generator (Aguirre, Mattar, & Magis-

Weinberg, 2011). Subsequently, condition labels of the
six action categories were permuted to create 20 different
stimulus lists. Per list, half of the stimuli were shown mir-
rored, and a second list contained the complement of
these, which gave 40 different stimulus lists in total. For
the second and third experimental sessions, the start of
the individual stimulus sequence was shifted by one third
and two thirds, respectively, to prevent recognition of the
stimulus sequence as well as to prevent time-dependent
effects. For the fMRI session, the stimulus sequence was
subdivided into seven runs, and at the start of each run,
the last two videos of the preceding run were repeated
and then discarded from analyses to presume a continu-
ous stimulus sequence (the first run started with the last
two videos of the last run).

Video Segmentation and SEC Determination

As previously described (Pomp et al., 2021), we used an
automated extraction of time points of TU events. Extract-
ing these TU events automatically had the advantage that
human bias could be avoided in the objective segmenta-
tion process. A flow diagram for the automated extraction
of time points at which touching/untouching relations
between object pairs change is shown in Figure 1. Here,
we used the frame number to define the time points.
The input to the algorithm is a sequence of RGB-D frames
fi (i = 1…n, n is the number of frames), and the output is a
sequence of time events ti (i = 1…m, m is the number of
TU events, which was predefined manually). In the follow-
ing subsections, we provide details for the four main steps
of the algorithm.

Point Cloud Extraction and Preprocessing

Point clouds for each frame fi were generated from depth
images, which were acquired using ASUS Xtion Live sen-
sor. ROI on the left side of the frame was cut as shown
in Figure 1, because always only one hand was involved
in the analyzed actions. Furthermore, point clouds were
subsampled by a factor of four to reduce the number of
points, this way speeding up the clustering procedure.
Before clustering, ground plain subtraction was per-
formed. Ground plain subtraction, that is, removing points

Figure 1. Flow diagram for the automated extraction of time points of TU events (see Methods section for details). ANN = artificial neural network.
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corresponding to the table, was done as follows. First, we
fitted a flat 2-D surface and then removed all points from
the 3-D point cloud data, which were above the fitted
plane, that is, we first removed points pi = {xi, yi, zi}, if
zi – Z1i > th1, where Z1i = P1(xi, yi) are corresponding
points of the fitted plane P1, and th1 = 0.02 is the manually
set threshold. Afterward, we fitted the plane one more time
to the remaining background points bg_pi = {bg_xi,bg_yi,
bg_zi} and we removed points that were below the fitted
plane (see black points in Figure 2A, bottom row), that is,
pi = {xi, yi, zi}, if zi – Z2i < th2, where Z2i = P2(bg_xi,bg_yi)
are corresponding points of the fitted plane P2, and th2 =
0.01 is the manually set threshold. The removed points
pi were not included to further cluster analysis. Thus,
for the clustering step, we only used point clouds of
the hand and objects.

Clustering and Calculation of Silhouette Scores

Clustering of points (objects) was performed based on 3-D
point coordinates pi = {xi, yi, zi} by using hierarchical
clustering with Euclidean distance as a similarity measure
and nearest distance as a linkage method. The clustering
procedure was repeated K-1 times for each frame fi (i =
1…n) with a predefined number of clusters k = 2…K,
where K is the number of objects including the hand

(but excluding the table). For each frame fi, we com-
puted a maximal Silhouette score as follows:

S fið Þ ¼ max Skð Þ; k ¼ 1…KÞ;with (1)

Sk jð Þ ¼ sum½ðmin Dbetween j; lð Þð Þ− Dwithin jð ÞÞ

=max Dwithin jð Þ;min Dbetween j; lð Þð Þð Þ�=N; (2)

whereDwithin(j) is the average distance from the j-th point
to the other points in its own cluster, and Dbetween( j, l) is
the average distance from the j-th point to points in
another cluster l. Here, N is the total number of points.
The Silhouette score for each point jmeasures how similar
that point is to points in its own cluster in comparison to
points in other clusters. The values of the Silhouette score
are between−1 and 1. Thus, when two clusters are getting
closer, then the score S(fi) decreases, whereas it increases
when clusters are moving apart (see Figure 2B).

Fitting of Silhouette Curve Using Artificial
Neural Network

The time points of TU events can be extracted from the Sil-
houette curve; however, Silhouette scores are noisy because
of noise present in the point cloud data obtained from the
RGB-D sensor. Thus, we first filtered the Silhouette scores

Figure 2. Schema of the procedure for automatically extracting the time points for touching and untouching events from an exemplary action, here
“take down.” (A) RGB images (top) from the above-scene installed ASUS Xtion Live RGB-D sensor and corresponding clustered point clouds
(bottom). Clustered point clouds (objects) are color-coded and when two objects touch, they become one cluster with a shared color. When these
objects untouch, the point clouds separate and one cloud changes to an individual color. (B) Raw silhouette values (black), smoothed silhouette
values using a median filter (red), and fitted silhouette curve using an artificial neural network (ANN; blue). (C) Derivative of the ANN fit (green) and
obtained time points of TU events after thresholding: t1 = hand detaches from the table (i.e., first untouching); t2 = hand touches the upper play
dough object (i.e., first touching); t3 = hand lifts the upper play dough object from the bottom play dough object (i.e., second untouching); t4 =
hand places the play dough object on the table (i.e., second touching); t5 = hand detaches from the play dough object (i.e., third untouching); and
t6 = hand touches the table (i.e., third touching). Thus, in this example, a U-T-U-T-U-T event sequence is extracted. A demo source code of
automated extraction that corresponds to the shown example can be downloaded from the OSF repository (DOI 10.17605/OSF.IO/MGQSF).
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S(fi) using a median filter with a time window of 20 frames
and then fitted filtered scoreswith an artificial neural network
(ANN). This leads to a smooth curve with descending and
raising slopes that allows extracting of time points in the next
step. For fitting S(fi), we used a fully connected feed-forward
network with one hidden layer where, in the hidden layer,
we used a tansig transfer function and, in the output layer,
a linear transfer function was used. The number of neurons
in the hidden layer corresponded to the number of sigmoid
functions needed to fit the Silhouette value function S (see
Figure 2B), which corresponded to changes in cluster
configuration, that is, if two clusters are merging, then
objects are touching each other (T) and, if two clusters are
getting apart, then objects are detaching from each other
(U). In the given example in Figure 2 for a “take down”
action, we have six TU events (hand lifts up from the table,
hand touches upper play dough object, hand lifts the upper
play dough object from the lower play dough object, hand
places the play dough object on the table, hand leaves the
play dough object, and hand touches the table). Thus, the
TU events follow an irregular pattern of Ts and Us, and to
represent two TU events, one sigmoid function is needed
as demonstrated by an example shown in Figure 2C (see
t1, t2; t3, t4; and t5, t6). The number of neurons h in the
hidden layer was set based on the number of TU events m,
that is, h = round(m/2). In this case, we used three neurons
in the hidden layer. The network was fitted 10 times, and
then the best outcome with respect to the minimal mean
squared error between S(fi) and network’s prediction
SANN(fi) was used for the next step.

Extraction of Time Points

Finally, time points of TU events were extracted by applying
dynamic thresholding to the derivative of the SANN(fi). We
started with some initial threshold value THini = 0.01 and
increased it by 0.005 until the predefined number of TU
time points was obtained. The time points were extracted
at the frame numbers where the derivative of the SANN(fi)
crossed the threshold value TH (see Figure 2C).

Whenever the algorithm misinterpreted the scene,
which gave an error message, the extracted time points
were checked against manual TU segmentation results
and time points. Deviation from human TU segmentation,
on average, was 4.14 frames (SD= 3.42), and in 93.02% of
the cases, deviation was less than 10 frames (i.e., approx.
mean value +2*SD). Thus, we corrected outliers in 6.98%
of the cases, where TU event segmentation differences
were larger than nine frames, by setting values of auto-
mated segmentation to corresponding values of human
TU segmentation. The framework was implemented using
MATLAB (https://www.mathworks.com) where standard
MATLAB functions for clustering and ANN fitting were
used. Extracted TU events were taken as machine-
determined objective events (TUs) and the middle frames
between two TU events were taken as corresponding non-
events (nTU) to be maximally far away from an event.

Experimental Procedure

Congruent with our previous study (Pomp et al., 2021),
participants completed three sessions. The MRI session
was, on average, 4 days (range = 3–6) before the behav-
ioral test–retest sessions, which were, on average, 14 days
apart from one another (range = 14–18). In the first ses-
sion, participants paid attention to the action videos while
being in the MRI scanner. Action videos were back-
projected onto a screen and displayed centrally with a
screen resolution of 640 × 512 pixels by Presentation
20.3 (Neurobehavioral Systems Inc.). Participants viewed
the screen binocularly through a mirror above the head
coil. Attention-capturing questions followed 14% of the
videos, asking whether an action description was appro-
priate for the preceding action video (see Figure 3A for
the experimental trial design). Participants responded by
pressing one of the two response keys with their right
index and middle finger. Including anatomical scans and
six short breaks during the task, the scanning time
amounted to approximately 60 min. The overall duration
of the first session was between 90 and 120 min including
consent forms, instructions, preparation, scanning, and a
short survey at the end.
The second experimental session comprised the unit

marking task (Newtson, 1973). Participants saw the same
videos as in the first session. Stimuli were presented on a
23-in. monitor by Presentation 18.1 (Neurobehavioral Sys-
tems Inc.), and participants were instructed to press a button
with their right index finger whenever they think an action
step is finished, that is, an event boundary occurred. Training
trials were offered at the beginning, and two self-paced
breaks were provided after one third and two thirds of the
trials. This task took approximately 45 min. See Figure 3B
for the experimental trial design. In the third session, this
task was repeated to retest the unit marking behavior.
At the end of each of the three sessions, participants filled

in a two-paged survey about their current state (mood, sub-
jective health, tiredness before and after the task); the
amount of sleep in the last night andwhether this wasmore,
less, or as much as usual; drug consumption (the day before
and in general) ; their feeling of hunger before and after the
task; and task-related questions about difficulty, monotony,
task fatigue, inattentive phases, handedness of the shown
actor, subjective guessing rate for the answered questions
during the task, recognizability of the objects and actions,
change in individual segmentation strategy within-session
and between-sessions, and their segmentation strategy.

Behavioral Reliability Measures

Intra-individual Retest Reliability of
Unit Marking Responses

As the unitmarking procedure is a subjective judgment task
and, therefore, responses cannot be right or wrong, retest
reliability was assessed on the single-subject as well as on
the group level to ensure that responses were consistent
and meaningful. Details regarding these reliability
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measurements have been previously described (Pomp
et al., 2021). As the first step, responses were converted
from milliseconds to frames (one frame amounting to a
1000/23 msec segment) to allocate each response to the
correspondingly presented frame of the video. Note that
we did not subtract any motor RT as participants were
highly familiar with the kind of simple everyday actions that
we employed, which they saw for the second and third time
in the behavioral sessions. Hence, we adopted the premise
that responses were delivered in clear anticipation of critical
events in the videos, not in a reactive manner.
On the single-subject level, we examined whether test ses-

sion responses matched retest session responses consis-
tently. To this end, trials with an equal number of responses
in the test and retest session were selectively used to define
an individual temporal consistency criterion ci, which was
then applied to all trials independent of the number of
responses. For each response in each of these equal-number-
of-responses-trials, the absolute difference d|t–t0| in frames
between test button press t and retest button press t0 was
determined and then averaged over all responses per partic-
ipant. The upper bound of the 95% confidence interval (CI)
of this mean difference score per participant was taken as
individual criterion ci for consistent button presses in the test
and retest sessions. In summary, for each retest response t0, it
was determined whether a test response t appeared within
the individual time window around the retest response
(t0 ± ci). If this was the case, it was considered a consistent

unit marking response. That is, the participant pressed the
response key at the same time during the action video in
the test and retest session. Subsequently, as a measure of
intra-individual retest reliability, the percentage of consis-
tent responses per participant was identified. These
consistency rates were statistically compared with the corre-
sponding object study’s values using independent-samples
t tests and the corresponding Bayesian test with JASP
(JASP Team, 2024), and JZS Bayes factors are reported
(Rouder, Speckman, Sun, Morey, & Iverson, 2009).

To ensure the validity of our intra-individual retest reliabil-
ity results, we compared the intra-individual retest reliability
results to random button presses. To this end, we extracted
the time intervals between button presses (for the first but-
ton press in a video, we used the distance to the start of the
video) of the test session per participant. From this distribu-
tion, we randomly drew and cumulated intervals to simulate
random test session data while preserving the stochastic
characteristics of the individual behavior. By this procedure,
we generated 10 simulated test session data sets, calculated
the percentage of consistent responses per participant
based on the real retest session data (applying the identical
protocol as for the actual behavioral data), and averaged this
percentage per participant over the 10 simulations. To test
whether the participants performed more reliably than ran-
domly, we calculated a paired-samples t test between the
actual percentage of consistent responses per participant
and the percentages based on the simulated data sets.

Figure 3. Experimental task design. (A) In the fMRI session, video trials (action video followed by a jittered ISI that showed a white fixation cross)
and null event trials (showing a white fixation cross) were passively attended to but question trials (question followed by a jittered ISI that showed a
white fixation cross) required participants to confirm or reject an action description with regard to the preceding action video by button press. The
question disappeared only after button press and followed 14% of the action videos. For the video trials, here, each single frame represents a full
action video plus ISI as indicated by the dotted lines. In total, 308 videos, 42 questions, and 49 null events were presented to each participant,
separated in seven blocks with short breaks in between. (B) In the two subsequent behavioral sessions (test–retest), each participant saw the same
videos in the same sequence as during fMRI and indicated by button press (hand icon) when they thought an action step had finished. In case no
response was given (hand icon crossed out in red), the video at hand was repeated. Participants were instructed to use this mechanism in case they
wanted to rewatch the video before indicating action steps. Thus, minimally one button press was necessary per action video but no instruction was
given about the expected total number of button presses per action video. Each single frame in the figure represents a full action video plus an ISI that
showed a white fixation cross, as indicated by the dotted lines. Example videos are provided in an OSF repository (DOI 10.17605/OSF.IO/MGQSF). The
entire stimulus material is available via the Action Video Corpus Münster (AVICOM, https://www.uni-muenster.de/IVV5PSY/AvicomSrv/).
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Retest Reliability of Unit Marking Responses at the
Group Level

To examine the unit marking responses on the group
level, we smoothed the frame-by-frame data of all partici-
pants with a rectangular kernel of a width of three frames
(3*(1000/23) ≈ 130.4 msec, referred to as bin hereafter).
This means, for each video, we aggregated the number of
responses for each frame ft plus those from adjacent
frames ft−1 and ft+1. Thereby, we pooled the data of all
participants. Maximally, one response per participant
was taken into one bin of three frames so that the total
number of participants was the maximum value a bin
could reach. The bin value was then allocated to the mid-
dle frame ft of the bin and will be referred to as frame
value hereafter. Consequently, the frame value was set
to zero if no response had occurred within the bin. To
determine the group-level retest reliability, we correlated
the time series of frame values per video between the test
and the retest sessions (Pearson r). The r values per video
were then Fisher z-transformed, averaged, and retrans-
formed to r to give a mean correlation indicating group-
level retest reliability. Furthermore, the r values per video
were statistically compared with the corresponding object
study’s values using independent-samples t tests and the
corresponding Bayesian test reporting JZS Bayes factors
(Rouder et al., 2009) with JASP.

Group-consistent Unit Mark (M) Determination
and Their Relation to TU Events

Determination of Group-consistent Unit Marks

Themaximum frame value per video was taken to indicate
a group-consistent unit mark (M) as it reflects the point of
maximum group agreement. To assure the meaningful-
ness of these values, we utilized the 10 simulated test
session data sets that were generated to evaluate intra-
individual retest reliability. We applied the same protocol
to these 10 simulated data sets as we did to the original
data. Thereby, we determined simulated group-consistent
unit marks and then compared their maximum frame
values to the actual one per video.

To determine the non-unit-mark (nM) as relevant points
in time for the fMRI analyses, one of the frames with the
minimum frame value of zero was randomly chosen,
excluding the first 12 and last 12 frames of each video.
Ms and nMs were then used to model brain responses.

Temporal Convergence of Participant-determined Unit
Marks and Objective Events

We investigated the temporal relation of Ms to TUs by eval-
uating whether the majority of Ms coincides with TUs. We
examined how often an Mwas not further than two frames
(i.e., maximally ∼130 msec) away from a TU. Subse-
quently, we compared this result to randomly distributed
unit marks to validate the systematics of the relationship.

Equal to the protocol for the test–retest performance of
individual participants, we shuffled the time intervals
generated by the unit marks, randomly drew from this
shuffled distribution, and cumulated intervals to simulate
random unit marks while preserving the stochastic char-
acteristics of the group behavior. This way, we generated
10 simulated unit mark data sets, examined per data set
the proportion of simulated Ms being not further than
two frames away from a TU, and then calculated a one-
sample t test to compare simulated and actual coinci-
dence rates.

Effects of Object–Action Associations on the
Temporal Relation of Ms to TUs

Building on our previous study that showed that Ms were
systematically delivered in relation to TU events (Pomp
et al., 2021), we hypothesized weak object–action associ-
ations to increase the temporal proximity of M to TU. As
the first analytic step, we tested whether the M-TU differ-
ence distributions differed between studies using the
Mann–Whitney U test, and tested for equality of variances
using Levene’s test. Following our hypothesis that Ms are
closer to TU events in dough actions (independent of
whether they appear before or after the TU), absolute dif-
ference values were further analyzed. As these absolute
temporal differences between Ms and its closest TUs in
both studies had a negative binomial distribution, we
fitted a generalized linear (negative binomial) model using
the lme4 package (Bates, Mächler, Bolker, & Walker,
2015) in the R programming language (URL https://
www.R-project.org/). In the model, the absolute temporal
differences between Ms and TUs, measured in frames,
were predicted by Study (i.e., Dough vs. Object) and
Event Type (i.e., Touch vs. Untouch). In the model, the
action categories of the videos were used as a random
intercept:

absolute M−TUð Þ ∼ Study� EventType
þ 1j ActionCategoryð Þ: (3)

fMRI Data Acquisition

Structural and fMRI data were acquired using a 3-Tesla Sie-
mens Magnetom Prisma MR tomograph with a 20-channel
head coil at the Translational Research Imaging Center of
the University Hospital Münster. High-resolution, T1-
weighted images were obtained by a 3-D-multiplanar
rapidly acquired gradient-echo sequence (scanning
parameters: 192 slices, repetition time = 2130 msec, echo
time = 2.28 msec, slice thickness = 1 mm, field of view =
256×256mm2, flip angle= 8°). For the functional images,
a BOLD contrast was measured by gradient-EPI. Seven EPI
sequences were used to measure the seven experimental
blocks (scanning parameters: 33 slices, TR = 2000 msec,
echo time = 30 msec, slice thickness = 3 mm, field of
view = 192 × 192 mm2, flip angle = 90°).
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fMRI Data Analysis

Preprocessing

Anatomical and functional images were preprocessed
using the Statistical Parametric Mapping software
(SPM12; The Wellcome Centre for Human Neuroimaging)
implemented in MATLAB R2019a. Preprocessing included
slice time correction to the first slice, realignment to the
mean image, co-registration of the individual structural
scan to the mean functional image, normalization into
the standard anatomical MNI (Montreal Neurological Insti-
tute) space on the basis of segmentation parameters, as
well as spatial smoothing using an isotropic 8-mm FWHM
Gaussian kernel. To remove low-frequency noise, a
128-sec temporal high-pass filter was applied to the
time-series of functional images.

fMRI Design Specification and Whole-brain Statistics

The statistical analyses of the functional images were done
using SPM12, implementing a general linear model for
serially autocorrelated observations (Worsley & Friston,
1995; Friston et al., 1994) and a convolution with the
canonical hemodynamic response function. As regressors
of no interest, the six subject-specific rigid-body transfor-
mations obtained from realignment were included. The
volumes of the first two video presentations of each EPI
were discarded to allow for T1-equilibrium effects. To
investigate functional areas specialized in the processing
of subjective action boundaries, as well as objective T
and U events, a general linear model was constructed
including eight regressors of interest coding for onsets
and durations of the specific event types: video trial,
group-consistent unit mark of the test–retest session
(M), no unit mark in the test–retest session (nM), objec-
tive touching event (T), objective untouching event (U),
no touching or untouching event (nTU), null event, and
question trial. For each of the 340 Ms, an nM was deter-
mined (n = 340; see Determination of Group-consistent
Unit Marks section) and included in the design. Likewise,
all 735 touching and all 808 untouching events were
included and correspondingly 735 nTUs (see Video Seg-
mentation and SEC Determination section). Both types
of noncritical events (nTU and nM) appeared distributed
over the video duration and were chosen to be maximally
far away from their corresponding events (TU and M,
respectively). The rapid succession of Ms and TUs with
naturally jittered interevent intervals made it possible to
differentiate associated BOLD responses, and the differ-
ence in frequency of occurrence ensured the overall low
overlap between M and TU events. Moreover, we applied
the post hoc variance inflation factor (VIF) method using
the CANlab imaging analysis tools (https://canlab.gi
http://canlab.github.io/ thub.io/) to rule out multicollin-
earity issues and this yielded VIFs below 10 (object study
VIFs < 7.2, dough study VIFs < 7.9), speaking against a
severe issue of collinearity.

On the first level, t-contrasts for Ms versus nMs were cal-
culated and submitted to a second-level t test to detect
functional areas specialized in the processing of group-
determined event boundaries. Analogously, t-contrasts
for T versus nTU, U versus nTU, and the complete video
trials versus null events were conducted on the first level
and then passed to a second-level t test. To elucidate the
central question of the object–action association effect, we
contrasted activity patterns for play dough actions of this
study to activity patterns for object actions of our previous
study in a second-level two-sample t test. We did this for all
full-length videos as well as time-point specifically at M, T,
and U events. Importantly, because we only considered
interactions, all contrasts controlled for the main effects
of group, action type, and so forth.

To identify brain areas where neural activity was signif-
icantly explained by both object and play dough actions’
events, we performed conjunction analyses testing against
the conjunction null hypothesis, p(false discovery rate
[FDR]) < .005 (Nichols, Brett, Andersson, Wager, &
Poline, 2005) using a second-level, one-way ANOVA on
individual statistical maps derived from the M > nM,
T > nTU, U > nTU, and video > null contrasts.

For the second-level, whole-brain analyses, we applied
FDR correction at p< .005 peak level and a cluster extent
threshold of 15 voxels. Activity patterns were visualized
using bspmview (DOI 10.5281/zenodo.595175) in
MATLAB R2022a, and graphs for visualization were gener-
ated using the ggplot2 library (Wickham, 2016) in RStudio
(R Core Team, 2022). We uploaded the unthresholded sta-
tistical maps to NeuroVault.org (Gorgolewski et al., 2015),
which are available at https://neurovault.org/collections
/16065/.

ROI Analyses

To inspect the effects of object–action associations more
specifically in the hypothesized regions, we additionally
performed planned ROI analyses. Addressing aIPL, we
used area PFt (Caspers et al., 2006, 2008) of the Julich-
Brain Cytoarchitectonic Atlas (Amunts, Mohlberg, Bludau,
& Zilles, 2020; Eickhoff et al., 2005), noting that also
relevant peakMNI coordinates of our previous study all fell
into this field (Schubotz et al., 2014). The aIPL Julich-Brain
ROI was created using the SPM anatomy toolbox (www.fz
-juelich.de/inm/inm-7/ JuelichAnatomyToolbox). As
second ROI, we used the PHC. We defined the extend
of the PHC ROI using the Harvard-Oxford anatomical atlas
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and the soft-
ware MRIcron (https://www.mccauslandcenter.sc.edu
/mricro/mricron), including voxels if the atlas labeled
them as “Parahippocampal Gyrus, posterior division” or
“Parahippocampal Gyrus, anterior division” with a proba-
bility of > 25% (Li et al., 2016; Ward, Chun, & Kuhl, 2013).
As third ROI, we employed the temporo-occipital area sen-
sitive to biological motion (BMA), which we gratefully
adopted from a recent meta-analysis on the functional
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organization of the posterior lateral temporal cortex
(Hodgson, Lambon Ralph, & Jackson, 2022). We extracted
themean contrast estimates of ourmain contrasts for each
ROI using the Marsbar toolbox (Brett, Anton, Valabregue,
& Poline, 2002), which were then compared between
studies by a two-sample t test (unequal variances, α =
.05, two-sided) per region using MATLAB R2022a.

RESULTS

Behavioral Reliability Measures

Intra-individual Retest Reliability of
Unit Marking Responses

Concerning single-subject retest reliability, on average,
63.27% were consistent responses (i.e., the test response
matched the retest response in time) ranging between the
participants from minimally 48.18% to maximally 71.22%
(SD= 6.34). The individual consistency criterion ci, which
defined the width of the time window around the retest
response separately for each participant, was minimum
3.9 frames (i.e., ∼170 msec), median 5.7 frames (i.e.,
∼248 msec), and maximum 11.3 frames (i.e., ∼491 msec).
Importantly, the consistency of the participants’ unit
marking behavior was significantly higher than the consis-
tency of simulated random button presses, t(31) = 17.81,
95% CI [28.65, 36.07], p< .001, d= 3.15, two-sided. Thus,
participants’ unit marking behavior followed a specific
nonrandom pattern and was intra-individually consistent
across the test–retest sessions. Compared with the object
manipulation study (Pomp et al., 2021), the intra-
individual retest reliability was similar regarding the indi-
vidual percentages of consistent responses as indicated
by a Bayesian independent-samples t test that showed evi-
dence for the null hypothesis and its classical counterpart
yielding nonsignificant results, BF01 = 3.502), t(61) =
0.139, p = .89, d = 0.035, two-sided. With regard to the
respective comparison to random button presses, a
greater Cohen’s d of 3.15 in dough study’s individual retest
reliability versus 1.91 in the object study, indicated that
individual participants’ segmentations were even more
systematic for dough videos.

Retest Reliability of Unit Marking Responses at the
Group Level

Corresponding to the single-subject retest reliability
results, between-subject unit marking behavior was con-
sistent, as revealed by a highly significant correlation
between group-based test–retest segmentation perfor-
mance. That is, correlations testing the group level retest
reliability gave a mean correlation of test and retest
smoothed time series of frame values per video of
rz(292) = .72 (rmin = .40, rmax = .90; each individual
correlation per video being significant, all p ≤ .0001).
Compared with the object manipulation study (Pomp
et al., 2021), group-level retest reliability was significantly

higher for dough manipulations, t(586) = 17.153, p <
.001, d = 1.415, two-sided (BF10 = 1.365 × 10+50).

Group-consistent Unit Mark (M) Determination
and Their Relation to TU Events

Determination of Group-consistent Unit Marks

The frame with the maximum frame value in a video that
represents the maximum agreement between participants
was taken as group-consistent M. On average, this maxi-
mum frame value was 9.93 (SD = 2.00), ranging from 6
to 18. All maximum frame values were at least 2 SDs above
the mean frame value of the respective video, following
previous approaches (Pomp et al., 2021; Schubotz et al.,
2012). In contrast, the maximum frame values resulting
from simulated random unit markings ranged, on average,
between 6.11 and 6.37 (i.e., < 9.93). In none of these
simulated data sets all maximum frame values passed the
criterion of being at least 2 SDs above the respective video
mean frame value. Taken together, this finding suggests
that the participants did not segment the action videos
randomly, and overall, the group showed a specific non-
random segmentation behavior.
Furthermore, we inspected the relation between the

number of Ms and the number of TUs per video: The num-
ber of Ms per video on group level ranged fromone to four
(M= 1.2, SD= 0.36, n= 294) and was significantly lower
than the number of TUs per video that ranged from three
to six (M=5.2, SD=1.01, n=294; t(586) = 64.97, 95% CI
[3.97, 4.22], p< .001, d= 5.36, two-sided). On the single-
subject level, the average number of individual test–retest
consistent unit marking responses per video ranged from
0.6 to 1.9 with a mean of 1.4 (SD = 0.26, n = 294).
Crucially, the number of individually consistent unit mark-
ing responses per action significantly correlated with the
number of TUs per action video, r(292) = .55, p <
.0001, as well as the number of group-level Ms that posi-
tively correlated with the number of TUs, r(292) = .17,
p = .003, both pointing to a systematic relationship
between the number of Ms and TUs.

Temporal Convergence of Participant-determined Unit
Marks and Objective Events

With regard to the temporal relation of Ms to TUs, for
more than one third (39.1%) of the Ms, the time lag to
the next TU was maximally two frames, that is, ±130msec.
This coincidence rate was significantly higher than the
coincidence rates obtained from the 10 sets of simulated
random unit marks, t(9) = −9.46, 95% CI [24.32, 30.03],
p < .0001, d = 2.99, two-sided, underpinning our expec-
tation that Ms were systematically delivered in relation to
TUs. Comparedwith the objectmanipulation study (Pomp
et al., 2021), this significant coincidence rate’s difference
to simulated random unit marks was more pronounced in
the dough study with a Cohen’s d of 2.99 compared with a
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Cohen’s d of 1.27 in the object manipulation study, indi-
cating a stronger systematicity on the group level.

Effects of Object–Action Associations on the
Temporal Relation of Ms to TUs

As shown above and in Pomp and colleagues (2021), single
subject as well as group behavior was consistent across test
and retest sessions in both studies, and descriptive behav-
ioral values regarding the number of Ms per video were
comparable between both studies. Still, and as hypothe-
sized, our current results showed a higher coincidence
rate between Ms and TUs, with 39.12% for play dough
actions compared with 28.3% for object actions. Further-
more, inspecting the temporal distances between Ms and
their closest TUs, Levene’s test for equality of variances
indicated unequal variances, F(1, 688) = 5.71, p = .017,
with dough action M-TU distances having a significantly
lower variance (Var = 23.34) than object M-TU distances
(Var= 37.12) and thus, as hypothesized, a smaller spread
of data. The distributions of M-TU differences differed sig-
nificantly between studies (W = 48885.50, p < .001, r =
−.18, n= 690). To test our hypothesis that Ms are tempo-
rally closer to TUs when only weak object–action associa-
tion is present, we compared the absolute temporal delay
between the occurrence of M and TU for object and play
dough actions. Generalized linear (i.e., negative binomial)
modeling showed that although the two studies were not
significantly different, Wald X2(1) = 0.02, z test = −0.02,

p = .89, d = 0.02; dough: mean = 4.1 ± 3.2, median =
3.5; object:mean= 5.5 ± 4.4,median= 5, generally, the
M-T differences differed significantly from the M-U differ-
ences, Wald X2(1) = 13.87, z test = 0.30, p < .001, d =
0.30; M-T:mean= 4.84 ± 4.0,median= 4; m-u:mean=
4.78 ± 3.7, median = 4. Furthermore, a significant
interaction between Event Type (touch, untouch) and Study
(dough, object) was observed,Wald X2(1) = 15.98, z test =
−0.48,p< .001,d=−0.48. To elucidate this interaction,we
conducted Bonferroni-adjusted post hoc contrasts, which
revealed that although theM-T differences were significantly
different between the two studies, z-ratio(object/dough) =
−3.41, p < .001 (Figure 4B), the M-U differences were not
significantly different, z-ratio(object/dough) = 0.13, p= .89
(Figure 4D). These results indicate that actions were seg-
mented closer to T events in case of weak object–action
associations. For signed and unsigned M-T and M-U differ-
ences, see Figure 4. The signed temporal differences in
Figure 4A and Figure 4C illustrate when participant-judged
Ms appear in relation to T and U events. Moreover, the
unsigned differences shown in Figure 4B and Figure 4D
address the question whether Ms were temporally closer
to T or U events independent of the sign.

fMRI Results

To investigate the whole-brain and ROI effect of object–
action associations, we compared brain activity patterns
of the two studies for the full video length (video > null)

Figure 4. The temporal relation
of unit marks (M) to touch
(T) and untouch (U) events.
The distribution of M to T
differences (blue) shown as
signed values (A) and unsigned
values (B) given in frames and
grouped by study (top, light:
dough study; bottom, dark:
object study). Similarly, the
distribution of M to U
differences (green) shown as
signed values (C) and unsigned
values (D) grouped by study.
The red dashed line at x = 0
indicates when participants
behaviorally segmented actions,
that is, a unit mark (M) was
determined. The action videos
had a frame rate of 23 frames
per second (1 f ≙ 43.5 msec).
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Figure 5. fMRI activation in contrasts and conjunctions between object and dough data at p < .005, peak-level FDR-corrected, and ROI analyses of
left (L) and right (R) aIPL, biological motion area (BMA), and PHC. A, B, and C illustrate the between-studies’ effects for the full video length (video >
null; purple). D and E show the whole-brain effects, and F shows the ROI analyses for the between-study comparison at untouching events (U >
nTU; green). ROI analyses for the between-study comparison at touching events (T > nTU; blue) are illustrated in G and for unit marks (M > nM;
red) in H. Finally, between-study conjunction results are depicted in J for touching events and K for unit marks. For ROI analyses: Mean contrast
estimates were extracted from the contrasts video > null, U > nTU, T > nTU, and M > nM of the object (dark shade) and dough (light shade) study.
Note that all comparisons show Group × Event interaction effects. For objects n = 31, for dough n = 33. Statistics: two-sample t tests (two-tailed ).
*p< .05, **p< .01, ***p< .001. Unthresholded statistical maps of the whole-brain analyses have been uploaded to NeuroVault.org and are available
at https://neurovault.org/collections/16065/.
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Table 1. Maxima of Activation from the Contrasts and Conjunctions of Dough Study and Object Study Contrasts at p < .005
Peak-level FDR-Corrected

Macroanatomical Location Abbreviation H Cluster Extent t Value

MNI Coordinates

x y z

U > nTU

Dough > object

Anterior supramarginal gyrus/
ventral postcentral sulcus

aSMG/ vPoS R 672 9.48 60 −16 26

Anterior supramarginal gyrus aSMG R 9.38 66 −16 29

Anterior intraparietal sulcus aIPS R 7.19 57 −25 53

Anterior supramarginal gyrus/
ventral postcentral sulcus

aSMG/ vPoS L 742 9.17 −60 −19 23

Anterior intraparietal sulcus aIPS L 7.27 −57 −25 50

Superior parietal lobule SPL L 5.82 −18 −49 71

Mid-insula MIC L 152 7.94 −39 −4 14

R 162 7.08 39 −1 14

Insula IC R 6.48 39 −1 −1

Lateral occipito-temporal cortex LOTC R 341 7.17 51 −70 −7

Posterior inferior temporal gyrus pITG R 6.36 51 −58 −19

Lateral occipito-temporal cortex LOTC L 379 7.16 −48 −73 −1

Ventral precentral gyrus preCG R 127 5.70 57 11 35

L 23 4.30 −57 8 29

Cerebellum CER L 25 5.39 −15 −67 −46

Object > dough

Lingual gyrus LG R 445 7.18 15 −88 2

L 6.29 −24 −76 −4

Cuneus Cun R 6.52 9 −94 11

L 6.22 −9 −100 14

Object ∩ dough

Parahippocampal cortex PHC R 18 6.37 33 −55 −7

L 7 5.37 −33 −55 −7

Dorsal premotor cortex PMd L 29 5.48 −21 −10 56

Video > null

Object > dough

Anterior intraparietal sulcus/
postcentral sulcus

aIPS/PoS R 174 6.49 42 −31 47

Anterior supramarginal gyrus aSMG R 6.00 60 −19 32

Object ∩ dough

Posterior middle temporal gyrus pMTG R 1834 15.98 48 −64 2

Inferior occipital gyrus IOG R 15.09 42 −73 −7

Middle occipital gyrus MOG R 14.30 30 −91 5
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Table 1. (continued )

Macroanatomical Location Abbreviation H Cluster Extent t Value

MNI Coordinates

x y z

Hippocampus HC R 5.01 24 −13 −16

Posterior middle temporal gyrus pMTG L 1665 15.24 −45 −67 5

Lingual gyrus LG L 13.12 −27 −91 −10

Inferior occipital gyrus IOG L 12.60 −39 −76 −7

Fusiform gyrus FG L 11.20 −39 −61 −13

Parahippocampal gyrus PHG L 3.90 −24 −28 −16

Insula IC L 4379 10.79 −36 −7 14

Ventral postcentral sulcus vPoS L 10.79 −51 −25 41

Ventral premotor cortex PMv L 10.70 −57 5 32

Insula IC R 4379 10.37 36 −4 14

Postcentral gyrus PoG R 10.16 54 −19 41

Anterior intraparietal sulcus aIPS L 9.94 −42 −31 47

Cerebellum CER L 117 7.97 −9 −73 −43

R 89 6.44 12 −73 −43

Rectal gyrus RG L 105 6.02 0 29 −22

Mid cingulum MCC R 22 4.72 15 −16 44

SMA SMA L 81 4.63 −9 −1 56

R 4.44 9 2 56

Amygdala AMY R 29 4.34 36 −1 −16

M > nM

Object ∩ dough

Lateral occipital cortex LOC L 252 8.41 −48 −73 −7

L 8.02 −45 −70 2

Posterior middle temporal gyrus pMTG R 274 8.29 48 −64 2

Superior parietal lobule SPL R 40 5.55 18 −58 68

L 49 5.24 −21 −58 65

T > nTU

Object ∩ dough

Cuneus CUN L 657 6.75 −6 −82 23

R 5.99 9 −79 26

Lingual gyrus LG L 6.17 −9 −76 −1

R 5.87 12 −76 −4

H = hemisphere; L = left; R = right; U = untouching events; nTU = non-(un-)touching events; M = unit marks; T = touching events.
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as well as for the time-point-specific activation contrasts at
M (M>nM), T (T>nTU), andU (U>nTU) events. Please
note that we always refer to the just enumerated contrasts
when we refer to M, T, and U as events. This means that all
reported between-study time-point-specific effects are
interaction effects (e.g., object study M > nM vs. dough
study M > nM), ruling out group effects.

The Entire-video Effects

Comparing object versus dough videos for the full video
length (Figure 5A), we found a single cluster in the right
aIPL to be significant, including the posterior bank of the
ventral postcentral sulcus, the anterior supramarginal
gyrus (aSMG), and the anterior intraparietal sulcus (aIPS).
ROI analyses affirmed and extended this result by yielding
significant activation increases not only in the right,
t(44.53) = 5.77, p < .001, d = 1.45, two-tailed, but also
in the left, t(58.62) = 3.30, p= .002, d= 0.82, two-tailed,
aIPL for strong object–action associations in object
manipulations (Figure 5B). The reverse contrast did not
yield significant results. For the common activity between
studies during the entire action videos, see the corre-
sponding conjunction results as illustrated in Figure 5C
and Table 1.

Interaction Effects at Specific Time Points in the
Video (M, T, U)

Contrasting object versus dough videos at critical time
points’ contrasts, there were no significant differences at
Mor T events but at U events (Figure 5D) in bilateral cuneus
and lingual gyrus. Moreover, ROI analyses (Figure 5F)
showed increased activity in bilateral PHC, left PHC:
t(60.96) = 2.43, p = .018, d = 0.60, two-tailed; right
PHC: t(56.86) = 2.53, p = .014, d = 0.63, two-tailed.
The opposite contrast of dough versus object videos

(Figure 5E) led to higher BOLD responses at U events in
bilateral aIPS extending into the SMG in the right hemi-
sphere and to the superior parietal lobule (SPL) in the left
hemisphere; furthermore, bilateral insula, bilateral lateral
occipital cortex (LOC), and bilateral ventral precentral gyrus
activations were detected. The ROI analyses (Figure 5F)
showed dough versus object effects at U events in the
bilateral aIPS (left: t(58.75) = 6.35, p < .001, d = 1.58,
two-tailed; right: t(54.27) = 7.06, p < .001, d = 1.76, two-
tailed) and bilateral BMA, left: t(45.87) = 5.51, p < .001,
d = 1.39, two-tailed; right: t(44.01) = 5.68, p < .001, d =
1.43, two-tailed. Moreover, comparing dough versus object
yielded a significant increase in the right aIPS ROI for
T events, t(60.00) = 2.51, p = .015, d = 0.62, two-tailed
(Figure 5G), whereas whole-brain contrasts at T events
were nonsignificant. Neither whole-brain nor ROI analy-
ses revealed significant differences between dough and
object videos’ time-point-specific M activity (for ROI anal-
yses, see Figure 5H).

Conjunction Effects at Specific Time Points in the
Video (M, T, U)

To examine whether dough video effects at M, T, and U
resemble corresponding object video effects, conjunc-
tions between studies were calculated, and they generally
replicated T- and M-specific activity patterns. For T, the
conjunction yielded bilateral cuneus as well as bilateral
lingual gyrus activity (Figure 5J), and for M, the conjunc-
tion revealed bilateral LOC and bilateral SPL activation
(Figure 5K). Notably, the U-specific activity was partially
replicated. The conjunction showed overlapping activity
in bilateral PHC and left lateralized dorsal premotor area.
See Table 1 for the peak maxima of the described con-
trasts and conjunctions.

DISCUSSION

Previous studies have shown that motion information is of
central importance for the brain segmentation of observed
actions. Accordingly, we recently showed that touching–
untouching events indicating maximal motion changes
are an efficient cue for participant-judged event bound-
aries and are associated with specific processing steps at
the neural level (Pomp et al., 2021). In the current fMRI
study, we hypothesized that objects also have a significant
influence on action segmentation because they are associ-
ated with specific manipulations. Extending the previous
study, we replaced objects with formed pieces of dough
to weaken the object–action associations and compared
the behavioral and neural processes of action segmenta-
tion between the two fMRI studies. Findings show that,
indeed, objects influence action segmentation behavior
and the neural processing at specific events.

Behavioral findings showed that touching–untouching
information was used for action segmentation, no matter
whether object-associated action knowledge was strong
or weak. Moreover, intra-individual and group retest reli-
ability measures corroborated reliable segmentation
behavior for both studies, as tested via a unit marking
procedure (Newtson, 1973). In both object and dough
videos, participants reported event boundaries systema-
tically in relation to (un-)touchings. However, as
expected, the variance in segmentation behavior was sig-
nificantly smaller when object–action associations were
weak. In addition, when compared with random button
presses, participants’ segmentations were even more
systematic for dough videos. Accordingly, the retest reli-
ability on the group level was higher. In summary, this
suggests a lower dispersion of data values in the absence
of strongly learned object–action associations. Besides,
behavioral measures of reliability and consistency, as
well as event frequencies and systematicity in dough
action segmentation, resembled those in object actions,
corroborating the interpretability of subjective event
boundaries and their systematic relationship to objective
touching and untouching events.
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Inspecting the temporal relationship between
participant-judged event boundaries and (un-)touchings,
we observed that, as hypothesized, the coincidence rate
between unit marks and (un-)touchings was higher for
dough actions. Furthermore, here again, the specific
response pattern’s coincidence rate differed from simu-
lated random unit marks’ coincidence rate more pro-
nouncedwhen object–action associations were weak. This
result indicated higher behavioral systematicity in the
absence of strong object–action associations. In addition,
actions were segmented temporally closer to touching
events when object–action associations were weak,
indicating increased reliance on objective touching
events. This is in line with our previous findings suggesting
especially touching events announcing an untouching
event to be important anchor points of behavioral action
segmentation (Pomp et al., 2021). Note that the systematic
relation of Ms to TU does not imply a generally high
overlap of events in time, as there were considerably more
TU events (735 touching and 808 untouching events) than
participant-judged unit marks (340). Thus, consistent with
our first study (Pomp et al., 2021), we also found in the
dough manipulation study that participant-judged event
boundaries very frequently coincided with TU events,
but the majority of TU events did not coincide with a
participant-judged event boundary. Future studies need
to investigate exactly which TU events are used as anchor
points triggering subjective boundary detection.

Taken together, the smaller spread of data and the
larger behavioral systematicity in the responses to dough
videos showed that the subjective event boundaries relied
even more on touching events when strong object–action
associations are absent. Thus, before having experience-
based knowledge of object-associated actions, the individ-
ual presumably relies particularly strongly on objective
(un-)touchings. In general, our behavioral findings corrob-
orated that relational changes in the form of touchings and
untouchings of objects, hands, and ground represent
meaningful anchor points in subjective action segmenta-
tion. This finding is critical for creating objective event
boundaries that can be used for meaningful action seg-
ments. Hard and colleagues (2006) underpinned that
goal-based event schemas are not required to detect event
structure and concluded that physical changes in the
actions subserve event segmentation, measured as bursts
of change in movement features. Zacks and colleagues
(2009) came to a similar conclusion that movement
variables play an important role in action segmentation
using a motion tracking system and transcribing move-
ment as a set of 15 variables. Notably, both studies agreed
that event structure can be extracted from movement
parameters but used complex and costlymethods to quan-
tify movement. This is not required in our current
approach, which illustrates its practical advantage in this
area of research.

Extending the picture arising from the behavioral anal-
yses, fMRI data revealed that object information had

significant effects on how the brain processes different
types of event boundaries. Importantly, based on interac-
tion contrasts from within-study main effects, our
approach controlled for mere perceptual differences aris-
ing from the sight of objects or dough pieces. We expected
that aIPL and PHC processing might be more relevant for
the segmentation of object-directed actions than dough-
directed actions, whereas the opposite might be true for
an area sensitive to biological motion (BMA). Our findings
partly confirmed these hypotheses and also revealed that,
among the three types of event boundaries, untouchings
were associated with prominent differences between
object and dough videos. By contrast, modeling brain data
with touching events and participant-judged unit marks
replicated the effects that we found for object-directed
action segmentation largely (see Appendix). We will,
therefore, focus our discussions on untouching events.
As shown in our previous study (Pomp et al., 2021), partic-
ipants reported event boundaries in response to a subset
of touching–untouching motifs, that is, the point in time
where the observed movement increased significantly
from null (touching) to positive change (untouching)
and thus became highly informative in respect of the
upcoming manipulation. We suggest that object–action
associations made the biggest difference at untouching
events because participants had to rely much more on
movement information when observing dough videos as
compared with object videos.
At untouching events, activity increased for dough ver-

sus objectmanipulations in the prespecified ROIs aIPL and
BMA, along with bilateral insula and bilateral ventral pre-
central gyrus activity. Conversely, object versus dough
manipulations led to increased bilateral activity in the
PHC ROI along with bilateral lingual and cuneal activity.
These findings corroborated our hypotheses (a) regarding
the increased impact of biological motion for action seg-
mentation in the absence of strong object–action associa-
tions and (b) regarding the particular role of long-term
mnemonic associations of object and context as reflected
by parahippocampal sites for action segmentation in the
presence of strong object–action associations.
In light of the fact that (un)touching events provide

abstracted dynamic information, the BOLD difference in
the BMA at untouchings is a strong indication that partic-
ipants rely heavily on hand movements to meaningfully
process action segments in the absence of strong
object–action associations. The employed BMA ROI was
functionally defined in a recent meta-analysis (Hodgson
et al., 2022) for biological motion. Importantly, the
reported effect in our study cannot be because of an
increase in motion in the stimuli per se because videos dif-
fered only with regard to the target of manipulation,
dough, or everyday objects. BMA forms part of the ventro-
dorsal route for visual input (Binkofski & Buxbaum, 2013),
which has been argued to process information aconcep-
tually (Mahon, 2023), that is, without “knowing” what
the moving object is. Concerning the analysis of critical
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events in studies on action observation, participant-judged
event boundaries have been found to activate BMAs
(Pomp et al., 2021; Schubotz et al., 2012; Speer et al.,
2003). Similarly, dough manipulation data showed BMAs
to be active at participant-judged unit marks. This
unit-mark-related increase was found for both dough and
object-directed manipulations but the untouching-
related increase was more prominent for dough-related
actions. Therefore, the current approach extends our
understanding of motion as playing a key role in event
structure perception. Because activity in BMA at
untouchings was particularly prominent when objects
were weakly informative with regard to associated actions,
one may speculate that infants’ brains at an age when they
do not yet have a mature knowledge of object–action
associations can already segment actions into meaningful
units based on movement information and may even
begin to categorize object manipulation types using this
structure (Wörgötter et al., 2013, 2020). A similar
principle is used to allow robots to gain some kind of
“action understanding.” These machines are also, without
programming them with additional knowledge, agnostic
with respect to the action semantics of objects (Ziaeetabar
et al., 2021), and (un-)touching sequences (SECs; Aksoy
et al., 2011) can be used by them to recognize actions of
humans with whom a robot has to cooperate.
Object manipulations that offered associated action

options (and thus assumingly an informed predictive
action model) showed the hypothesized increase in PHC
activity at untouchings. PHC engagement is reliably seen
in tasks where contextual associative information is
encoded or retrieved from memory (Li et al., 2016;
Aminoff et al., 2013) and is sensitive to the stochastic
structure of observed events (Schiffer, Ahlheim, Wurm,
& Schubotz, 2012; Turk-Browne, Scholl, Johnson, & Chun,
2010; Amso, Davidson, Johnson, Glover, & Casey, 2005).
We take the stronger PHC engagement for object versus
dough at untouching to reflect a stronger top–down signal
of action prediction, as objects contained more informa-
tion about possible upcoming actions than pieces of
dough. This information about possible upcoming actions
possibly provided a restriction on the matching process
between the observed and the expected action based on
object–action association knowledge. In the absolutely
reduced scenery we used in our videos, which consisted
only of the table surface, one or two objects, and the
actress’s upper body up to the shoulders (without
head/face), contextual-associative information consisted
solely in the combination of the respective object(s) and
the manipulation performed on it.
Unexpectedly, aIPL activity did not increase for object

versus dough videos, but on the contrary, dominated for
dough compared with object videos when we modeled
brain activity at untouching events. In our view, this result
can only be interpreted if we also consider two other con-
ditions in which the same area was also significantly acti-
vated: for object versus dough videos when we modeled

the entire video length, and for the conjunction of both,
object and dough videos in their full length. Thus, the aIPL
was not specifically associated with the processing of only
object-related information, and its engagement precisely
increased at untouchings when weak object–action associ-
ations were available. Notably, in our study, untouching is
the phase where updating of the current expectation
occurs, as reflected by the engagement of frontal, parahip-
pocampal, and insula regions (Pomp et al., 2021). Note
that, although this finding was replicated in the present
study (see Appendix), here we focus only on the specific
modulations of these responses by the strength of object
information. Updating expectations would normally mean
that object information is used to select a restricted
number of possible manipulations, which can be (or are
typically) associated with the presented object. Thus,
expectations could be restricted based on this kind of
long-termmemory, as reflected by the dominance of para-
hippocampal activity for modeling the BOLD response at
untouching events for object versus dough videos. How-
ever, in the case of dough videos, this restriction was not
provided by the piece of dough, and aIPL activity increase
must be related to this unrestricted search for expectable
manipulations. The aIPL is generally engaged in tasks high-
lighting object–hand interactions (Pelgrims et al., 2011;
Vingerhoets, 2008). The activated cluster in the inferior
parietal lobule that we observed included closely co-
localized activation maxima in aSMG and aIPS, which have
been assigned distinct but synergetic functions underlying
the usage of tools. The aSMG was proposed to integrate
semantic and technical information about objects,
whereas aIPS rather selects the object-appropriate grasp
based on object affordances (Bosch et al., 2023). More-
over, the aSMGmay be particularly challenged by unfamil-
iar tools or conflicting alternative object-directed actions,
whereas aIPS modulates this competition by structure-
based and skilled use knowledge (Bosch et al., 2023;
Buxbaum, 2017; Watson & Buxbaum, 2015). In a previous
study, we found that activity in the aIPL varied as a function
of the number of actions that participants associated with
objects or object sets, even when these actions were not
observed (Schubotz et al., 2014). Against this background,
we suggest that aIPL was observed time-locked to
untouchings when object–action associations were weak
because of an unrestricted number of candidate actions
in the case of dough manipulation videos, reflecting the
matching of the beginning manipulation to the large rep-
ertoire of possible manipulations unrestricted by object–
action associations. In line with this suggestion, Sacheli,
Candidi, Era, and Aglioti (2015) demonstrated that the
inhibition of aIPL selectively impaired participants’ perfor-
mance during complementary interactions and suggested
aIPL to predictively code other people’s actions. In addi-
tion, Benedek and colleagues (2018) reported that gener-
ating new object uses compared with the generation of
known object uses was associated with increased left aIPL
activation.
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Limitations

Although we made every effort to achieve equal experi-
mental conditions for both experiments’ samples, we can-
not completely rule out that some behavioral differences
at the group level are an artifact. To avoid this limitation,
future studies need to randomly assign participants to
either group. Importantly, this limitation only concerns
the comparison of behavioral data as fMRI analyses con-
sisted only of interaction effects that rule out group
effects. However, the overall similarity between the behav-
ior of the two experimental groups concerning segmenta-
tion frequencies, intra-individual retest reliability, and
group coherence as well as the systematic relationship
to TU events gives us confidence in the authenticity of
our behavioral results.

Furthermore, objects and dough pieces did not only dif-
fer with respect to the associated actions and there might
be alternative interpretations of the differences in segmen-
tation behavior. Future research is needed to address the
degree of object–action associations in dependence on
affordance, functional knowledge, object familiarity, and
object complexity. It might be promising to parametrically
vary the strength of object–action associations and other
dimensions of relevance, and assess their impact on the
corresponding segmentation behavior.

Conclusion

Having a life-long experience with manipulable objects
provides individuals with a huge repertoire of object–
action associations, which is used to efficiently predict
object-directed actions. In the present study, modeling
brain activity with objective and subjective event bound-
aries, we showed that object information had, indeed, sig-
nificant effects on how the brain processes these events. In
the absence of strong object–action associations, the

increased impact of biological motion processing at objec-
tive untouching events, as well as the increased impact of
contextual associative information when strong object–
action associations were present, confirmed our hypothe-
ses. At the same time, aIPL activity increased for weak
object–action associations, presumably because of an
unrestricted number of candidate actions. Furthermore,
when objects were only weakly informative with regard
to associated actions, segmentation behavior became
even more systematic and tied to touching events. The
present study confirms that objective relational changes
in the form of touchings and untouchings of objects, hand,
and ground represent meaningful anchor points in subjec-
tive action segmentation, rendering them objective marks
of meaningful event boundaries. Our findings offer inter-
esting insights into the neural segmentation of object-
directed action and the significant influence objects have
on the processing of different types of event boundaries
because of their association with specific manipulations.

APPENDIX

Figure A1 shows the event-relatedmain effects of touching
and untouching events as well as of the participant-judged
unitmarks for object-directed and dough-directed actions.
See Table A1 for the activation peaks of the dough
manipulation study and Pomp and colleagues (2021) for
the activation peaks of the object manipulation study. It
gets obvious that object-directed action activation pat-
terns are largely replicated by dough-directed activation,
which means that event processing is mostly not modu-
lated by object–action associations. One striking differ-
ence is the activation in aIPS/SMG, which was found for
unit marks in object-directed actions and for untouching
events in dough-directed actions. Direct whole-brain
comparison of the contrasts though yielded no significant
differences between action types at unit marks just as the

Figure A1. fMRI activation at p < .005, peak-level FDR-corrected, for the main contrasts of post-fMRI, participant-judged unit marks (M > nM, red),
objective touching events (T > nTU, blue), and objective untouching events (U > nTU, green) of the object-directed action study (left), and the
dough-directed action study (right). PMd = dorsal premotor cortex; dAI = dorsal anterior insula; PHG = parahippocampal gyrus; IFJ = inferior
frontal junction; LG = lingual gyrus; CUN = cuneus; hMT = motion area; ACC = anterior cingulate cortex.
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Table A1. Maxima of Activation from the Main Contrasts of the Second-level Whole-brain Analyses of the Dough Manipulation Study
at p < .005 Peak-level FDR-Corrected

Macroanatomical Location Abbreviation H Cluster Extent

t Value MNI Coordinates

x y z

M > nM

Posterior middle temporal gyrus pMTG R 381 10.04 48 −64 2

Inferior occipital gyrus IOG R 6.38 30 −97 −1

Lateral occipital cortex LOC L 371 9.46 −48 −73 −7

Inferior occipital gyrus IOG L 7.01 −27 −97 −1

Superior parietal lobule SPL R 101 6.33 33 −52 65

Anterior intraparietal sulcus aIPS L 178 6.01 −51 −34 56

Superior parietal lobule SPL L 5.74 −24 −58 68

Intraparietal sulcus IPS L 5.58 −45 −40 62

Cerebellum CER R 19 5.04 9 −73 −43

T > nTU

Cuneus CUN L 1313 9.09 −12 −82 23

Lingual gyrus LG L 8.20 −12 −79 8

Calcarine gyrus CG L 7.57 −18 −73 14

Lingual gyrus LG R 7.47 15 −73 5

Calcarine gyrus CG R 7.41 15 −79 17

Cuneus CUN R 7.08 15 −79 26

Insula IC R 80 7.03 39 −16 23

Rolandic operculum ROL L 47 6.25 −42 −16 17

Rolandic operculum (lateral) ROL L 33 5.28 −57 5 5

R 36 5.04 54 −1 8

U > nTU

Postcentral gyrus / anterior
intraparietal sulcus

PoG/aIPS L 195 7.62 −63 −16 35

Anterior intraparietal sulcus aIPS L 4.99 −45 −22 38

L 4.91 −42 −28 41

Postcentral gyrus PoG R 219 7.22 66 −10 29

Anterior intraparietal sulcus aIPS R 5.75 51 −16 44

R 5.05 60 −16 44

R 4.78 51 −25 44

Mid-insula mIC R 62 7.01 36 −4 20

Parahippocampal cortex PHC R 114 7.00 36 −58 −7

L 127 6.66 −36 −55 −10

L 5.46 −33 −43 −16
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corresponding ROI analyses (see Results section). At
untouching events, however, significant differences were
found for aIPS/SMG as well as in other regions as discussed
in the Discussion section.
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Table A1. (continued )

Macroanatomical Location Abbreviation H Cluster Extent

t Value MNI Coordinates

x y z

Cuneus CUN R 26 6.44 12 −94 29

Middle intraparietal sulcus mIPS L 80 6.13 −27 −43 50

Dorsal premotor cortex PMd L 156 6.13 −30 −13 50

Mid-insula mIC L 85 6.11 −36 −7 20

Inferior frontal junction IFJ L 5.72 −54 2 32

Dorsal premotor cortex PMd R 35 5.91 36 −10 56

Middle intraparietal sulcus mIPS R 49 5.34 27 −40 50

Posterior intraparietal sulcus pIPS L 24 5.02 −21 −73 35

H = hemisphere; L = left; R = right; M = unit mark; nM = non-unit mark; T = touching event; U = untouching event; nTU = non-(un-)touching
event.

20 Journal of Cognitive Neuroscience Volume X, Number Y

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02210/2408422/jocn_a_02210.pdf by U
N

IVER
SITAET M

U
EN

STER
 user on 08 July 2024

mailto:jennifer.pomp@uni-muenster.de
mailto:jennifer.pomp@uni-muenster.de
mailto:jennifer.pomp@uni-muenster.de
mailto:jennifer.pomp@uni-muenster.de
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
http://dx.doi.org/10.17605/OSF.IO/MGQSF
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://neurovault.org/collections/16065/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659


REFERENCES

Aguirre, G. K., Mattar, M. G., & Magis-Weinberg, L. (2011).
De Bruijn cycles for neural decoding. Neuroimage, 56,
1293–1300. https://doi.org/10.1016/j.neuroimage.2011.02
.005, PubMed: 21315160

Aksoy, E. E., Abramov, A., Dörr, J., Ning, K., Dellen, B., &
Wörgötter, F. (2011). Learning the semantics of object–action
relations by observation. International Journal of Robotics
Research, 30, 1229–1249. https://doi.org/10.1177
/0278364911410459

Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the
parahippocampal cortex in cognition. Trends in Cognitive
Sciences, 17, 379–390. https://doi.org/10.1016/j.tics.2013.06
.009, PubMed: 23850264

Amso, D., Davidson, M. C., Johnson, S. P., Glover, G., & Casey,
B. J. (2005). Contributions of the hippocampus and the
striatum to simple association and frequency-based learning.
Neuroimage, 27, 291–298. https://doi.org/10.1016/j
.neuroimage.2005.02.035, PubMed: 16061152

Amunts, K., Mohlberg, H., Bludau, S., & Zilles, K. (2020). Julich-
brain: A 3D probabilistic atlas of the human brain’s
cytoarchitecture. Science, 369, 988–992. https://doi.org/10
.1126/science.abb4588, PubMed: 32732281

Baldwin, D. A., Baird, J. A., Saylor, M. M., & Clark, M. A. (2001).
Infants parse dynamic action. Child Development, 72,
708–717. https://doi.org/10.1111/1467-8624.00310, PubMed:
11405577

Bar, M., Aminoff, E., & Schacter, D. L. (2008). Scenes unseen:
The parahippocampal cortex intrinsically subserves
contextual associations, not scenes or places per se. Journal
of Neuroscience, 28, 8539–8544. https://doi.org/10.1523
/JNEUROSCI.0987-08.2008, PubMed: 18716212

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015).
Fitting linear mixed-effects models using lme4. Journal of
Statistical Software, 67, 1–48. https://doi.org/10.18637/jss
.v067.i01

Benedek, M., Schües, T., Beaty, R. E., Jauk, E., Koschutnig, K.,
Fink, A., et al. (2018). To create or to recall original ideas:
Brain processes associated with the imagination of novel
object uses. Cortex, 99, 93–102. https://doi.org/10.1016/j
.cortex.2017.10.024, PubMed: 29197665

Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the
human brain. Brain and Language, 127, 222–229. https://doi
.org/10.1016/j.bandl.2012.07.007, PubMed: 22889467

Borghi, A. M. (2021). Affordances, context and sociality.
Synthese, 199, 12485–12515. https://doi.org/10.1007/s11229
-018-02044-1

Bosch, T. J., Fercho, K. A., Hanna, R., Scholl, J. L., Rallis, A.,
& Baugh, L. A. (2023). Left anterior supramarginal gyrus
activity during tool use action observation after extensive
tool use training. Experimental Brain Research, 241,
1959–1971. https://doi.org/10.1007/s00221-023-06646-1,
PubMed: 37365345

Braun, D. A., Mehring, C., & Wolpert, D. M. (2010). Structure
learning in action. Behavioural Brain Research, 206,
157–165. https://doi.org/10.1016/j.bbr.2009.08.031, PubMed:
19720086

Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002).
Region of interest analysis using an SPM toolbox [abstract]. In
Paper Presented at the 8th International Conference on
Functional Mapping of the Human Brain, June 2–6, 2002.
Sendai: Japan.

Buchsbaum, D., Griffiths, T. L., Plunkett, D., Gopnik, A., &
Baldwin, D. (2015). Inferring action structure and causal
relationships in continuous sequences of human action.
Cognitive Psychology, 76, 30–77. https://doi.org/10.1016/j
.cogpsych.2014.10.001

Buxbaum, L. J. (2017). Distributed neurocognitive mechanisms.
Psychological Review, 124, 346–360. https://doi.org/10.1037
/rev0000051, PubMed: 28358565

Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg,
H., Zilles, K., et al. (2008). The human inferior parietal lobule
in stereotaxic space. Brain Structure and Function, 212,
481–495. https://doi.org/10.1007/s00429-008-0195-z, PubMed:
18651173

Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K.,
& Zilles, K. (2006). The human inferior parietal cortex:
Cytoarchitectonic parcellation and interindividual variability.
Neuroimage, 33, 430–448. https://doi.org/10.1016/j
.neuroimage.2006.06.054, PubMed: 16949304

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink,
G. R., Amunts, K., et al. (2005). A new SPM toolbox for
combining probabilistic cytoarchitectonic maps and
functional imaging data. Neuroimage, 25, 1325–1335.
https://doi.org/10.1016/j.neuroimage.2004.12.034, PubMed:
15850749

El-Sourani, N., Trempler, I., Wurm, M. F., Fink, G. R., &
Schubotz, R. I. (2019). Predictive impact of contextual objects
during action observation: Evidence from functional
magnetic resonance imaging. Journal of Cognitive
Neuroscience, 32, 326–337. https://doi.org/10.1162/jocn_a
_01480, PubMed: 31617822

El-Sourani, N., Wurm, M. F., Trempler, I., Fink, G. R., &
Schubotz, R. I. (2018). Making sense of objects lying
around: How contextual objects shape brain activity
during action observation. Neuroimage, 167, 429–437.
https://doi.org/10.1016/j.neuroimage.2017.11.047, PubMed:
29175612

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. -P., Frith,
C. D., & Frackowiak, R. S. J. (1994). Statistical parametric
maps in functional imaging: A general linear approach.
Human Brain Mapping, 2, 189–210. https://doi.org/10.1002
/hbm.460020402

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y.,
Ghosh, S. S., Maumet, C., et al. (2015). NeuroVault.Org:
A web-based repository for collecting and sharing
unthresholded statistical maps of the human brain. Frontiers
in Neuroinformatics, 9, 8. https://doi.org/10.3389/fninf.2015
.00008, PubMed: 25914639

Hard, B. M., Recchia, G., & Tversky, B. (2011). The shape of
action. Journal of Experimental Psychology: General, 140,
586–604. https://doi.org/10.1037/a0024310, PubMed:
21806308

Hard, B. M., Tversky, B., & Lang, D. S. (2006). Making sense of
abstract events: Building event schemas. Memory and
Cognition, 34, 1221–1235. https://doi.org/10.3758
/BF03193267

Hodgson, V. J., Lambon Ralph, M. A., & Jackson, R. L. (2023).
The cross-domain functional organization of posterior lateral
temporal cortex: Insights from ALE meta-analyses of 7
cognitive domains spanning 12,000 participants. Cerebral
Cortex, 33, 4990–5006. https://doi.org/10.1093/cercor
/bhac394, PubMed: 36269034

Hrkać, M., Wurm, M. F., Kühn, A. B., & Schubotz, R. I. (2015).
Objects mediate goal integration in ventrolateral prefrontal
cortex during action observation. PLoS One, 10, e0134316.
https://doi.org/10.1371/journal.pone.0134316, PubMed:
26218102

Hunnius, S., & Bekkering, H. (2010). The early development of
object knowledge: A study of infants’ visual anticipations
during action observation. Developmental Psychology, 46,
446–454. https://doi.org/10.1037/a0016543, PubMed:
20210504

JASP Team. (2024). JASP (Version 0.18.3). [Computer software].
https://jasp-stats.org/

Pomp et al. 21

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02210/2408422/jocn_a_02210.pdf by U
N

IVER
SITAET M

U
EN

STER
 user on 08 July 2024

https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://doi.org/10.1016/j.neuroimage.2011.02.005
https://pubmed.ncbi.nlm.nih.gov/21315160
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://doi.org/10.1016/j.tics.2013.06.009
https://pubmed.ncbi.nlm.nih.gov/23850264
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://doi.org/10.1016/j.neuroimage.2005.02.035
https://pubmed.ncbi.nlm.nih.gov/16061152
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://doi.org/10.1126/science.abb4588
https://pubmed.ncbi.nlm.nih.gov/32732281
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://doi.org/10.1111/1467-8624.00310
https://pubmed.ncbi.nlm.nih.gov/11405577
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://doi.org/10.1523/JNEUROSCI.0987-08.2008
https://pubmed.ncbi.nlm.nih.gov/18716212
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://doi.org/10.1016/j.cortex.2017.10.024
https://pubmed.ncbi.nlm.nih.gov/29197665
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://doi.org/10.1016/j.bandl.2012.07.007
https://pubmed.ncbi.nlm.nih.gov/22889467
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s11229-018-02044-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://doi.org/10.1007/s00221-023-06646-1
https://pubmed.ncbi.nlm.nih.gov/37365345
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://doi.org/10.1016/j.bbr.2009.08.031
https://pubmed.ncbi.nlm.nih.gov/19720086
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1016/j.cogpsych.2014.10.001
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://doi.org/10.1037/rev0000051
https://pubmed.ncbi.nlm.nih.gov/28358565
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://doi.org/10.1007/s00429-008-0195-z
https://pubmed.ncbi.nlm.nih.gov/18651173
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://doi.org/10.1016/j.neuroimage.2006.06.054
https://pubmed.ncbi.nlm.nih.gov/16949304
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://pubmed.ncbi.nlm.nih.gov/15850749
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://doi.org/10.1162/jocn_a_01480
https://pubmed.ncbi.nlm.nih.gov/31617822
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://doi.org/10.1016/j.neuroimage.2017.11.047
https://pubmed.ncbi.nlm.nih.gov/29175612
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://pubmed.ncbi.nlm.nih.gov/25914639
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://doi.org/10.1037/a0024310
https://pubmed.ncbi.nlm.nih.gov/21806308
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.3758/BF03193267
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://doi.org/10.1093/cercor/bhac394
https://pubmed.ncbi.nlm.nih.gov/36269034
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://doi.org/10.1371/journal.pone.0134316
https://pubmed.ncbi.nlm.nih.gov/26218102
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://doi.org/10.1037/a0016543
https://pubmed.ncbi.nlm.nih.gov/20210504
https://jasp-stats.org/
https://jasp-stats.org/
https://jasp-stats.org/
https://jasp-stats.org/
https://jasp-stats.org/
https://jasp-stats.org/


Kurby, C. A., & Zacks, J. M. (2018). Preserved neural event
segmentation in healthy older adults. Psychology and Aging,
33, 232–245. https://doi.org/10.1037/pag0000226, PubMed:
29446971

Li, M., Lu, S., & Zhong, N. (2016). The parahippocampal cortex
mediates contextual associative memory: Evidence from
an fMRI study. BioMed Research International, 2016,
9860604. https://doi.org/10.1155/2016/9860604, PubMed:
27247946

Mahon, B. Z. (2023). Higher order visual object representations:
A functional analysis of their role in perception and action.
In G. G. Brown, B. Crosson, K. Y. Haaland, & T. Z. King
(Eds.), APA handbook of neuropsychology: Neuroscience
and neuromethods (pp. 113–138). American Psychological
Association. https://doi.org/10.1037/0000308-006

Newtson, D. (1973). Attribution and the unit of perception of
ongoing behavior. Journal of Personality and Social
Psychology, 28, 28–38. https://doi.org/10.1037/h0035584

Newtson, D., & Engquist, G. (1976). The perceptual
organization of ongoing behavior. Journal of Experimental
Social Psychology, 12, 436–450. https://doi.org/10.1016/0022
-1031(76)90076-7

Newtson, D., Engquist, G. A., & Bois, J. (1977). The objective
basis of behavior units. Journal of Personality and Social
Psychology, 35, 847–862. https://doi.org/10.1037/0022-3514
.35.12.847

Newtson, D., Hairfield, J., Bloomingdale, J., & Cutino, S. (1987).
The structure of action and interaction. Social Cognition, 5,
191–238. https://doi.org/10.1521/soco.1987.5.3.191

Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B.
(2005). Valid conjunction inference with the minimum
statistic. Neuroimage, 25, 653–660. https://doi.org/10.1016/j
.neuroimage.2004.12.005, PubMed: 15808966

O’Neal, C. M., Ahsan, S. A., Dadario, N. B., Fonseka, R. D.,
Young, I. M., Parker, A., et al. (2021). A connectivity model
of the anatomic substrates underlying ideomotor apraxia:
A meta-analysis of functional neuroimaging studies.
Clinical Neurology and Neurosurgery, 207, 106765.
https://doi.org/10.1016/j.clineuro.2021.106765, PubMed:
34237682

Pelgrims, B., Olivier, E., & Andres, M. (2011). Dissociation
between manipulation and conceptual knowledge of object
use in the supramarginalis gyrus. Human Brain Mapping,
32, 1802–1810. https://doi.org/10.1002/hbm.21149, PubMed:
21140435

Pomp, J., Heins, N., Trempler, I., Kulvicius, T., Tamosiunaite,
M., Mecklenbrauck, F., et al. (2021). Touching events
predict human action segmentation in brain and behavior.
Neuroimage, 243, 118534. https://doi.org/10.1016/j
.neuroimage.2021.118534, PubMed: 34469813

R Core Team. (2022). R: A language and environment for
statistical computing (Version 2022.07.1). [Computer
software] R Foundation for Statistical Computing. https://
www.r-project.org/

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson,
G. (2009). Bayesian t tests for accepting and rejecting the null
hypothesis. Psychonomic Bulletin and Review, 16, 225–237.
https://doi.org/10.3758/PBR.16.2.225

Sacheli, L. M., Candidi, M., Era, V., & Aglioti, S. M. (2015).
Causative role of left aIPS in coding shared goals during
human–avatar complementary joint actions. Nature
Communications, 6, 7544. https://doi.org/10.1038
/ncomms8544, PubMed: 26154706

Sargent, J. Q., Zacks, J. M., & Bailey, H. R. (2015). Perceptual
segmentation of natural events: Theory, methods, and
applications. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo,
R. Parasuraman, & J. L. Szalma (Eds.), The Cambridge
handbook of applied perception research (Vol. 1,

pp. 443–465). Cambridge University Press. https://doi.org/10
.1017/CBO9780511973017.029

Schiffer, A. M., Ahlheim, C., Wurm, M. F., & Schubotz, R. I.
(2012). Surprised at all the entropy: Hippocampal, caudate
and midbrain contributions to learning from prediction
errors. PLoS One, 7, e36445. https://doi.org/10.1371/journal
.pone.0036445, PubMed: 22570715

Schubotz, R. I., Korb, F. M., Schiffer, A. M., Stadler, W., & von
Cramon, D. Y. (2012). The fraction of an action is more than a
movement: Neural signatures of event segmentation in fMRI.
Neuroimage, 61, 1195–1205. https://doi.org/10.1016/j
.neuroimage.2012.04.008, PubMed: 22521252

Schubotz, R. I., Wurm, M. F., Wittmann, M. K., & von Cramon,
D. Y. (2014). Objects tell us what action we can expect:
Dissociating brain areas for retrieval and exploitation of
action knowledge during action observation in fMRI.
Frontiers in Psychology, 5, 636. https://doi.org/10.3389/fpsyg
.2014.00636, PubMed: 25009519

Speer, N. K., Swallow, K. M., & Zacks, J. M. (2003). Activation
of human motion processing areas during event perception.
Cognitive, Affective, & Behavioral Neuroscience, 3, 335–345.
https://doi.org/10.3758/CABN.3.4.335, PubMed: 15040553

Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M.
(2010). Implicit perceptual anticipation triggered by
statistical learning. Journal of Neuroscience, 30,
11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10
.2010, PubMed: 20720125

Vingerhoets, G. (2008). Knowing about tools: Neural correlates
of tool familiarity and experience. Neuroimage, 40,
1380–1391. https://doi.org/10.1016/j.neuroimage.2007.12
.058, PubMed: 18280753

Ward, E. J., Chun, M. M., & Kuhl, B. A. (2013). Repetition
suppression and multi-voxel pattern similarity differentially
track implicit and explicit visual memory. Journal of
Neuroscience, 33, 14749–14757. https://doi.org/10.1523
/JNEUROSCI.4889-12.2013, PubMed: 24027275

Watson, C. E., & Buxbaum, L. J. (2015). A distributed network
critical for selecting among tool-directed actions. Cortex, 65,
65–82. https://doi.org/10.1016/j.cortex.2015.01.007, PubMed:
25681649

Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis (Version 3.4.0). [Computer software] New York:
Springer-Verlag. https://ggplot2.tidyverse.org

Wörgötter, F., Aksoy, E. E., Krüger, N., Piater, J., Ude, A., &
Tamosiunaite, M. (2013). A simple ontology of manipulation
actions based on hand–object relations. IEEE Transactions
on Autonomous Mental Development, 5, 117–134. https://
doi.org/10.1109/TAMD.2012.2232291

Wörgötter, F., Ziaeetabar, F., Pfeiffer, S., Kaya, O., Kulvicius, T.,
& Tamosiunaite, M. (2020). Humans predict action using
grammar-like structures. Scientific Reports, 10, 3999. https://doi
.org/10.1038/s41598-020-60923-5, PubMed: 32132602

Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI
time-series revisited—Again. Neuroimage, 2, 173–181.
https://doi.org/10.1006/nimg.1995.1023, PubMed: 9343600

Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I.,
Snyder, A. Z., Ollinger, J. M., et al. (2001). Human brain
activity time-locked to perceptual event boundaries. Nature
Neuroscience, 4, 651–655. https://doi.org/10.1038/88486,
PubMed: 17576286

Zacks, J. M., Kumar, S., Abrams, R. A., & Mehta, R. (2009). Using
movement and intentions to understand human activity.
Cognition, 112, 201–216. https://doi.org/10.1016/j.cognition
.2009.03.007

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., &
Reynolds, J. R. (2007). Event perception: A mind–brain
perspective. Psychological Bulletin, 133, 273–293. https://doi
.org/10.1037/0033-2909.133.2.273, PubMed: 17338600

22 Journal of Cognitive Neuroscience Volume X, Number Y

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02210/2408422/jocn_a_02210.pdf by U
N

IVER
SITAET M

U
EN

STER
 user on 08 July 2024

https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://doi.org/10.1037/pag0000226
https://pubmed.ncbi.nlm.nih.gov/29446971
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://doi.org/10.1155/2016/9860604
https://pubmed.ncbi.nlm.nih.gov/27247946
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/0000308-006
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1037/h0035584
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1016/0022-1031(76)90076-7
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1037/0022-3514.35.12.847
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1521/soco.1987.5.3.191
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://pubmed.ncbi.nlm.nih.gov/15808966
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://doi.org/10.1016/j.clineuro.2021.106765
https://pubmed.ncbi.nlm.nih.gov/34237682
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://doi.org/10.1002/hbm.21149
https://pubmed.ncbi.nlm.nih.gov/21140435
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://doi.org/10.1016/j.neuroimage.2021.118534
https://pubmed.ncbi.nlm.nih.gov/34469813
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://doi.org/10.1038/ncomms8544
https://pubmed.ncbi.nlm.nih.gov/26154706
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1017/CBO9780511973017.029
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1371/journal.pone.0036445
https://pubmed.ncbi.nlm.nih.gov/22570715
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://doi.org/10.1016/j.neuroimage.2012.04.008
https://pubmed.ncbi.nlm.nih.gov/22521252
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://doi.org/10.3389/fpsyg.2014.00636
https://pubmed.ncbi.nlm.nih.gov/25009519
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://doi.org/10.3758/CABN.3.4.335
https://pubmed.ncbi.nlm.nih.gov/15040553
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://pubmed.ncbi.nlm.nih.gov/20720125
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://doi.org/10.1016/j.neuroimage.2007.12.058
https://pubmed.ncbi.nlm.nih.gov/18280753
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://doi.org/10.1523/JNEUROSCI.4889-12.2013
https://pubmed.ncbi.nlm.nih.gov/24027275
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://doi.org/10.1016/j.cortex.2015.01.007
https://pubmed.ncbi.nlm.nih.gov/25681649
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1109/TAMD.2012.2232291
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://doi.org/10.1038/s41598-020-60923-5
https://pubmed.ncbi.nlm.nih.gov/32132602
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://doi.org/10.1006/nimg.1995.1023
https://pubmed.ncbi.nlm.nih.gov/9343600
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://doi.org/10.1038/88486
https://pubmed.ncbi.nlm.nih.gov/17576286
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1016/j.cognition.2009.03.007
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://doi.org/10.1037/0033-2909.133.2.273
https://pubmed.ncbi.nlm.nih.gov/17338600


Zacks, J. M., & Swallow, K. M. (2007). Event segmentation.
Current Directions in Psychological Science, 16, 80–84. https://
doi.org/10.1111/j.1467-8721.2007.00480.x, PubMed: 22468032

Zhao, L. (2019). The role of the action context in object
affordance. Psychological Research, 83, 227–234. https://doi
.org/10.1007/s00426-018-1002-y

Ziaeetabar, F., Pomp, J., Pfeiffer, S., El-Sourani, N., Schubotz,
R. I., Tamosiunaite, M., et al. (2021). Using enriched semantic
event chains to model human action prediction based on
(minimal) spatial information. PLoS One, 15, e0243829.
https://doi.org/10.1371/journal.pone.0243829, PubMed:
33370343

Pomp et al. 23

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02210/2408422/jocn_a_02210.pdf by U
N

IVER
SITAET M

U
EN

STER
 user on 08 July 2024

https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://pubmed.ncbi.nlm.nih.gov/22468032
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1007/s00426-018-1002-y
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://doi.org/10.1371/journal.pone.0243829
https://pubmed.ncbi.nlm.nih.gov/33370343



