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Abstract

Predictive brain processing is computationally efficient in that downstream predictions from internal
models are used to compress incoming sensory information solely to what is unexpected. In turn,
these prediction errors instigate rapid perceptual inference as well as slower, more global learning
mechanisms through model updating on different time scales. This dissertation presents three
consecutive studies aimed to extend the understanding of predictive efficiency: In study 1, we aimed
to qualitatively dissociate non-reward error signals in fMRI. Furthermore, we examined strategic
adaptation to contextual uncertainty. Checkpoints emerged as model-compliant events informing
model evaluation under global uncertainty.

Study 2 employed EEG to build functional profiles of checkpoints and prediction errors, revealing
P3b as a joint index of informational gain. In contrast, N4oo was found to indicate the mismatch
signal for prediction errors (vs checkpoints).

Again using EEG, study 3 assessed adjustment cues as a second class of model-compliant events which
— in contrast to checkpoints — provided on-line information about local changes in probability. By
means of multivariate pattern classification and representational similarity analysis, we were able to
show how the global model — despite clear behavioural and functional indices of adjustment cue
exploitation — takes precedence over local contingency changes. Implications on the role of prediction
errors, checkpoints, and adjustment cues as well as their interplay across time scales are discussed.
In conclusion, predictive processing exploits mismatch signals to adapt and — when called for —
model-compliant information to evaluate internal models across time scales for the sake of

computational efficiency.
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1. General introduction

1.1 Relevance and outline of this dissertation

In recent years, the concept of a predictive brain has been sustainably revived in cognitive
neuroscience (Clark, 2013). Very generally speaking, this notion postulates that it is one of the central
faculties of the brain to continuously - and actively - estimate both its own state and that of the world
surrounding it (Friston, 200s; Rao & Ballard, 1999). These predictive estimations arise from internal,
situational models of the world shaped by past experience and are constantly checked against
incoming sensory information (Huang & Rao, 2011; Lee & Mumford, 2003). Any mismatch between
expected and obtained information - termed a prediction error - is immediately fed forward to
instigate model updating (Bar, 2009). As a result, predictive processing is broadly conceptualised as a
bidirectional interplay of top-down predictive codes and bottom-up error propagation (Mumford,
1992.), which will be elaborated on in the next sections.

Naturally, such an account of brain function fundamentally challenges the classical view of a passive
brain waiting for and then reacting to sensory input. Its unequivocal benefits, however, are evident:
By restricting bottom-up signal flow solely to unpredicted (i.e., surprising) portions of information,
predictive processing is computationally and energetically efficient (Friston, 2009). Numerous
studies from various scientific domains have demonstrated the merit of anticipatory processing in
facilitating perception (Bar et al., 2006; Todorovic et al,, 2011), cognitive control (Alexander &
Brown, 2011), language (Kutas & Hillyard, 1980), and motor performance (Bestmann et al., 2008).
Moreover, model adaptation as an immediate consequence of false predictions has been widely
suggested as a parsimonious framework for various learning mechanisms (see 7.3 Model adaptation

and evaluation).
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With an increasing amount of attention gained in the neuroscientific community, critical advances
have been made in apprehending predictive processing as a general principle of brain function. While
these previous accomplishments will be the focus of the following sections, the extensive explanatory
potential of predictive coding has raised a number of topics that have yet to be adequately addressed.
In this dissertation, I will thus first provide a more detailed summary of the implications and
implementations of predictive processing as well as a selective review of previous work. Introductory
chapter 1 then concludes with a summary of overarching aims of this dissertation and specific research
questions motivating respective experiments. What follows are three studies conducted over the
course of my PhD (chapters 2 - 4). In chapter s, central findings will be brought together in a general
summary before larger-scale implications of selected results are discussed in more detail. After a
critical reflection on the present body of work, I will provide a comprehensive outlook on future

directions and conclude this dissertation.

1.2 The predictive brain

The idea of prediction as a core mechanism of brain function goes back to Von Helmholtz’ work in
the r9th century and is rooted in theoretical considerations of efference copies in oculomotor control
(Von Helmholtz, 1860). Its recent reformulations, most prominently the more formalised predictive
coding account (Friston, 200s; Mumford, 1992), are in stark contrast with traditional views of
perception: The classical perspective on perception assumed primacy of bottom-up feature detection
(Marr, 1982). Sensory areas such as the visual cortex were conceptualised as a hierarchy of neural
feature detectors whose responses were driven by bottom-up stimulus properties (Egner et al., 2010).
However, among the critical bottlenecks of this stimulus-driven view of brain function was the

implication that such passive brains should cease activation in the absence of task-specific simulation
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- an assumption decidedly refuted by a growing body of work on resting state activity and the default
mode (for review, see Raichle & Snyder, 2007). Rather, reverting to Helmholtz’ proposal, theoretical
models concerned with ongoing and endogenous brain activity have successively evolved into the
concept of predictive processing prevalent in modern day neuroscience (see Clark, 2013; Howhy,
2012). Based on the idea that a pro-active brain constantly tries to predict streams of sensory
information, this downward flow of predictions now carries most of the computational burden
(Clark, 2015). This allows short-term processing to focus exclusively on the portion of the input signal
that cannot be ‘explained away’ by top-down predictions. As a result, the driving sensory signal
effectively just provides corrective feedback prompted by these residual prediction errors (Friston,
2005; Hohwy, 2013). In other words, the classically assumed forward flow of sensory information is
replaced by the forward flow of prediction error (Feldman & Friston, 2010).

The underlying principle of compressing information solely to informative bits is widely applied as a
data compression strategy in auditory (MP3) and visual signal processing (JPEG). Translated into the
terminology of predictive coding, the informative bits of information equal the unpredicted - or
surprising - portion of sensory signals that cannot be explained by model-based assumptions (Friston,
2011). The concept of surprise (in a formalised rather than an intuitive sense) thus plays a central role
in all accounts of predictive processing, the implications and evidence of which will be outlined in the
next section (2.3 Model adaptation and evaluation).

Importantly, the computational efficiency of cancelling out redundant information is substantiated
further by implementing a hierarchical structure. The interplay of downstream prediction and
upstream prediction errors is suggested to operate at every level of the cortical hierarchy (Hohwy et
al., 2008): Using high-level knowledge, top-down probabilistic generative models encode the system’s
‘best guess’ of neural population activity within lower levels. This bidirectional cascade makes use of

layer-specific representation neurons (carrying model assumptions) and error neurons (propagating
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the mismatch signal to the next highest hierarchy level) for highly efficient, parallel computation
(Summerfield & Egner, 2009). This way, non-informative signal is disregarded already at low levels
of the processing hierarchy (i.e., primary sensory cortices). By means of such a bidirectional
hierarchical structure, predictive processing can elegantly account for adjustments of the system’s

model across time scales, which warrants a closer look at how these adaptations are implemented.

1.3 Model adaptation and evaluation

Thinking out the mechanisms described so far, the overarching goal of any predictive brain is to
acquire situational models that are as fitting as possible for as many contexts as possible: The more
incoming sensory signal is accounted for by model predictions, the smaller the residual prediction
error and, consequently, the computational load of processing. For updating and optimising
predictions, making use of a hierarchical structure induces so-called empirical priors, meaning that
the best model available at a given level is used to infer priors at the level below (Neal & Hinton,
1998). These priors are simply constraints reflecting current context and are therefore continuously
tuned by the sensory input itself. Model adaptation thus critically depends on the occurrence of
prediction errors: Following a mismatch at any hierarchy level, error-indicating activity is propagated
upstream to rapidly adjust probabilistic representations at the next highest level. This way,
adjustments can quickly be made to react on-line, while the error signal is simultaneously used to
instigate long-term, structural changes to the model. In terms of efficient processing, the system uses
such perceptual learning mechanisms to prepare the model for future encounters of the same or a
similar context (Clark, 2013).

At this poing, it is worth noting that model adaptation is not dependent on the domain of the error
signal: As predictive processing applies the same computational strategies (i.c., ‘explaining away’

sensory input for prediction error minimisation) to perception, cognition, and action, learning can
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take place in any of these domains following the same principles (see above). The concept of active
inference (Friston, 2009; Friston et al., 2010) extends to actions, meaning that error signals are used to
elicit targeted movements that incrementally change sensory as well as proprioceptive input (Friston,
2003). This framing of motor control may need getting used to, but the underlying logic is very
similar to the predictive account of perception outlined above: Imagine yourself sitting at the kitchen
table as you intend to grasp a glass of water in front of you. Active inference suggests that the desired
state (i.e., your hand grasping the glass) is ‘simulated’ and sent downstream where the substantial
mismatch with the perceived state (i.e., your hand lying on the kitchen table) is registered.
Consequently, this error signal initiates movement of the sensors (i.c., the hand) to gradually
minimise the discrepancy between predicted (i.e., desired) state and current sensory information.
Having established the importance of prediction errors for model updating, it is instructive to
consider the implication that - atleastin everyday life - no two prediction errors are exactly alike: They
may differ with regard to quantity (i.e., expecting a $1 reward and getting $2 vs $200) as well as their
quality (i.c., expecting a $1 reward and getting $2 vs losing $2). Quanditative differences between
prediction errors have been the focus of many studies with the concept of surprise (sometimes termed
surprisal; Tribus, 1961) introduced to reflect the improbability of a certain event (Jones, 1979). While
a more formal explanation is provided in the methods sections of studies 1 and 2, the basic reasoning
is this: The less probable the occurrence of an event, the more informative it is. In other words, the
high-amplitude prediction error induced by highly improbable (i.c., surprising) events leads to more
intense model adaptation (Egner et al., 2010; Strange et al., 200s).

As reflected by the example above, qualitatively different prediction errors have predominantly been
assessed in reward-related studies. For example, positive and negative prediction errors (i.c., getting
more or less reward than expected, respectively; Schultz, 1998) have long been established in reward

paradigms. However, aside from Sust being right’, much of our everyday experience is not
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particularly rewarded. Consider throwing a ball to a friend and missing: For consecutive attempts,
not only the amplitude (i.c., quantity - one or two feet), but also the direction (i.e., quality - left or
right) of the error signal entails corrective adjustments. Predictive processing - if it is indeed the
fundamental mechanism of brain function (see Friston, 2010) - should thus very equally differentiate
and classify these kinds of prediction errors to apply apt model adjustments for future occasions.
In neuroscientific research, however, investigations of such qualitatively different non-reward
prediction errors have to this date been limited to a handful of studies in the cognitive (Den Ouden
et al.,, 20105 Schiffer et al., 2012) and the perceptual domain (O’Reilly et al., 2013). Therefore, it was
one of the focal starting points of the work presented in this dissertation to assess distinctive
characteristics of non-reward prediction errors and their neural correlates in fMRI (for details, see 7.5
Aims of this dissertation).

To recap, prediction errors drive learning through progressive model adaptation. Error signals can be
distinguished quantitatively - e.g., by the amount of surprise they carry - or qualitatively. Finally,
distinct qualities of prediction errors, besides having distinct immediate consequences for behaviour,
bring about differential model adaptations to improve subsequent predictions.

Critically, some recent studies have stressed a role of probabilistic events that carry behaviourally
relevant information but do not index a canonical mismatch. Using digit sequences, Kithn and
Schubotz (2012) demonstrated distinct frontal activations for expected, model-compliant events at
sequential positions where rare prediction errors had previously been observed. In a similar vein,
Trempler and colleagues (2017) found partly joint activation patterns for sequential violations that
were model-compliant (termed drifts, e.g. 1-2-3-4 | 1-2-4) and those that prompted corrective model
updating (termed switches, e.g. 1-2-3-4 | 3-2-1). Both studies thus suggest that expected, model-
compliant information at critical time points is used to some extent to inform the internal model.

Even if everything goes according to plan, it appears intuitive to make use of information that can be
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gained to either reaffirm or, more generally, evaluate model assumptions for future profit.
Particularly in uncertain or ambiguous contexts, these evaluations can prove useful to estimate
higher-level statistics. When driving down an unknown street, you might find yourself checking
speed limit signs more frequently, evaluating whether your current set of assumptions (e.g., “I have
to go below 60”) are still valid. In Bayesian terms, this originates from insufficient priors (i.e., not
exactly knowing what to expect) increasing the system’s reliance on external information (Feldman
& Friston, 2010). Therefore, exploitation of model-congruent information for model evaluation

conceivably depends on global contextual features to maximise predictive efficiency.

1.4 Predictive efficiency

As highlighted earlier, computational efficiency is one of the fundamental principles of predictive
processing: By means of predictive codes sent top-down to cancel out expectable portions of sensory
input, the computational load is restricted to bottom-up propagation of error signals. In fact,
minimisation of prediction error (or entropy) has been proposed to be the one mechanism underlying
all brain function (Friston, 2010). While this rather radical proposal does not come without major
challenges (see Litde & Sommer, 2013, for discussion and a solution to the so-called dark room
dilemma), the energetically efficient nature of predictive coding is appealing. Consequently,
especially when considering global context features as a modulator, it remains an intriguing question
how the predictive system adapts to environments with different sets of rules to be learned.

In order for predictive processing to be computationally efficient across a variety of contexts, the
system has to a) register higher-order changes and b) flexibly adapt its predictive codes to the changed
environment. To start with, processing of such changes in statistical regularities per se has
conclusively been demonstrated in both reward (Behrens et al., 2007) and non-reward paradigms

(Tobia et al,, 2012). As for the nature of these changes, most studies involve some uncertainty
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formulation (Bland & Schaefer, 2012; Yu & Dayan, 2005): For example, volatility means fluctuation
in the probability with which certain outcomes are observed (Behrens et al., 2007) whereas irreducible
uncertainty refers to uncertainty that remains even after successful learning of local (i.e., lower-order)
contingencies (De Berker et al., 2016; Payzan-LeNestour & Bossaerts, 2011). In short, even if a good
situational model has been learned, global (i.e., higher-order) changes may still induce uncertainty
regarding the applicability of that model.

In light of the challenge this greater uncertainty poses onto the predictive brain, it seems unlikely that
an otherwise so highly efficient system would rely on a method of trial and error. Predicting
upcoming events can be seen as an investment in that mismatch signals arising from false predictions
immediately prompt energetically costly adjustments of the forward model (Clark, 2013). In matters
of minimising prediction errors, it would thus be most efficient to strategically adapt the way in
which predictions are made - specifically, how far these predictive codes reach into the future.
Consider walking down two flights of stairs in the dark: Even if you basically know your way down
(“The first flight has 12 steps, the second one has 147), using that full-length model bears the risk of
encountering (potentially hurtful) prediction errors. Instead, recognising the unsafe context, it
would be more efficient to make a sequence of partial predictions and evaluate their validity as you
go along. More generally, when contextual features indicate that forward models cannot be used
reliably, it may be more efficient to employ a short-term strategy of stepwise predictions, evaluating
model validity on-line. This way, such strategic adaptation closely relates to context-dependent use
of model-compliant information (see 1.3 Model adaptation and evaluation): Most likely to serve on-
line model evaluation are critical points in time where prediction errors could potentially occur, i.c.
monitoring the end of the first (and, having passed it, the second) flight of stairs in order not to over-

or underestimate the number of steps.
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Critically, global context modulations have to be distinguished from (cor-)related concepts like trial-
by-trial variation in surprise (for details, see discussion of study 1): In reliable, low uncertainty
contexts, prediction errors are rare (i.e., surprising) and therefore highly informative with regard to
potential model adaptation. In contrast, prediction errors are more frequent - and thus less
informative - in highly uncertain environments. Therefore, studies aiming to assess potential strategic
adaptation in predictive processing have to disentangle local probability changes from global

modulations caused by variations of context.

1.5 Aims of this dissertation

Predictive accounts of brain function are theoretically well-founded and have gained empirical
support from a multicude of domains in cognitive neuroscience (see Clark, 2013, for an extensive
review). The work presented in this dissertation aimed to address some of the compelling questions
that have so far remained unanswered. Broadly speaking, these open questions focussed on the
functional profiles of model-congruent and -incongruent event processing as well as their
modulation by means of local and global parameters.

More specifically, the aim of study 1 was twofold: First, we aimed to assess the respective neural
correlates of qualitatively distinct non-reward prediction error signals using fMRI and behavioural
data of a sequential pattern detection task. Second, we manipulated higher-order contextual statistics
(i.e., irreducible uncertainty) to investigate potential adaptation of the predictive strategy to these
environmental changes. We hoped to demonstrate how the prospective scope of top-down
predictions is adjusted to unstable contexts using information at critical sequential positions.
Consequently, we proposed the concept of checkpoints to capture model-compliant events which
inform downstream models under uncertainty. Following up on these findings, study 2 was designed

as a replication study exploiting the temporal benefits of EEG. We aimed to characterise the
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relationship of canonical prediction errors and checkpoints - namely, commonalities and differences
with regard to their functional profiles. As a result, we proposed checkpoint-induced model
evaluation as an informative process similar to model adaptation instigated by prediction errors.
Pursuing the question regarding the interplay of local vs global factors, behavioural subgroup
analyses were conducted to assess how implicit cue learning may influence information use at critical
reference points. This finally motivated study 3 in which we employed a variant of the experimental
paradigm that included incidental adjustment cues effectively overwriting learned task structures.
Combining classic EEG analysis and multivariate pattern classification methods, we followed up on
results of studies 1 and 2 to further understand how locally available information influences

prediction in changing global contexts.
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2.1 Abstract

Prediction errors are deemed necessary for the updating of internal models of the environment,
prompting us to stop or assert current action plans and helping us to adapt to environmental features.
The aim of the present study was twofold: First, we sought to determine the neural underpinnings
of qualitatively different abstract prediction errors in a serial pattern detection task. Distinct
frontoparietal components were found for sequential terminations (inferior frontal gyrus) and
extensions (superior frontal sulcus, posterior cingulate cortex, and angular gyrus), respectively. These
findings provide a novel approach of distinguishing non-reward prediction error signals with regard

to behavioural consequences they entail.

Second, we investigated predictive processing as a function of statistical context (irreducible
uncertainty). We hypothesised that the prospective scope of model-based expectancies is adapted to
the stability of respective contexts in that unstable environments call for more frequent comparisons
of expectancies with sensory input, resulting in stepwise predictions. Changes in environmental
stability were reflected in activation of the angular gyrus and inferior frontal gyrus for the highly
uncertain context at potential points of prediction violation (checkpoints). Notably, this effect was
not due to local fluctuations in stimulus improbability (surprise). Although further behavioural
support is needed, data point towards a context-dependent adaptation of predictive strategies.
Conceivably, enhanced BOLD responses at sequential checkpoints could reflect stepwise rather than
tull-length prediction. This strategic adjustment presumably relies on the iterant evaluation of model
information retrieved from working memory, as suggested by strengthened functional connectivity

of the parahippocampal area during epochs of high uncertainty.
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2..2. Introduction

In attempting to make sense of incoming sensory event information in everyday life, we are
constantly faced with discrepancies between our internal model of the world and the information we
actually obtain (Rao & Ballard, 1999). In predicting future events, the brain efficiently processes
predictable portions in perceptual information: only if incoming sensory signals differ from higher-
level predictions is the corresponding error signal propagated “upward” to the next highest stage of
the processing hierarchy (Friston, 200s5; Mumford, 1992). Such prediction errors inarguably differ
with regard to their quality and the behavioural consequences they entail: when walking down a
familiar flight of stairs, one might occasionally over- or underestimate the remaining number of stairs
on the bottom landing, evoking qualitatively different moments of surprise. Furthermore, context
will likely influence the way in which we make assumptions about upcoming events: we will compare
our expectations with reality more frequently in noisy or unfamiliar contexts, for instance when

carrying a fridge through the same staircase in dim lighting.

Rescarch on definitive features of these prediction errors has predominantly been directed towards
quantitative rather than qualitative differences between neural error signals. For instance, the concept
of surprise (Jones, 1979), cast to reflect the improbability of a particular event, has been demonstrated
to modulate prediction errors in that more surprising expectancy violations elicit stronger error
signals (Egner et al., 2010; Strange et al,, 2005). However, aside from a few studies in the cognitive
(e.g. den Ouden et al., 2010; Schiffer et al,, 2012) and the perceptual domain (O'Reilly et al., 2013),
imaging efforts to classify qualitatively different types of such prediction errors have so far been
restricted to contexts involving a reward component. Here, findings from animal studies (Bayer &

Glimcher, 2005) and gambling tasks in humans (Delgado et al., 2003) have demonstrated a functional
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distinction of positive and negative reward prediction errors based on whether an obtained reward

value was higher or lower than expected, respectively (Schultz, 1998).

In contrast, such distinctive characteristics of prediction errors are considerably less well understood
in absence of external reward (note that predicting or responding correctly may be rewarding in its
own right (Holroyd & Coles, 2002), which is not the objective of the present study). In light of the
immediate importance of error signals for internal model updating (e.g. Bastos et al., 2012) and
adequate action selection, however, the need to understand the qualities of more abstract prediction
errors becomes evident: as prediction errors are thought to be the foundation of learning mechanisms
(den Ouden et al.,, 2009), different types of expectancy violations might result in qualitatively
distinguishable prediction error signals and - consequently - in distinct modifications of upcoming
expectancies and behaviour. Recall that short term predictions are used to facilitate perception when
we observe structured regularities such as sequential events. When these regularities end earlier than
expected, the appropriate adaptation would be to reject the now invalid predictive model in favour
of a more externally driven mode of tracking incoming information. In contrast, any regularity we
perceive may as well persist longer than expected. Accordingly, such an unexpected extension would

then call for a resumption of the inrernally driven mode of model-based prediction.

As much as this reactive, local adaptation of stimulus processing and behaviour should reflect
different types of prediction errors, it should likewise depend on global, higher order characteristics
of the environment. Exploring the nature of error signals and their effects on model adaptation
therefore raises the question of whether predictive strategies remain constant across contexts.
Different measures of uncertainty have been discussed to refer to the variability of informational
value over time, thus reflecting higher-order statistical features of the environment (Bland &

Schaefer, 2012; Yu & Dayan, 2005). While sensitivity to context uncertainty has been linked to activity
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in the anterior cingulate cortex (ACC) as a function of reward prediction error computation (Behrens
et al., 2007; Scholl et al., 2017; Silvetti et al., 2013), implications of context (in)stability on abstract
prediction still remain unclear. Therefore, we manipulated the composition of experimental blocks
to vary the amount of irreducible uncertainty (De Berker et al., 2016; Payzan-LeNestour & Bossaerts,
2011) that would remain after successful learning. Conceivably, memory-driven internal models of
future sensory information might be adapted to the uncertainty of respective contexts: In stable
contexts of low uncertainty, prediction errors can be conceived of as more meaningful in that they
are highly informative with regard to potential benefits of model adaptation (i.e. learning). In
contrast, prediction errors in statistically unstable (i.e. highly uncertain) contexts carry less
information contributing to learning-related gains. Predicting upcoming events can be considered an
investment in the sense that false predictions inevitably lead to costly adjustments of forward models
(Clark, 2013). Therefore, depending on how reliably forward models can be used to predict future
events (as conveyed through statistical learning of environment regularities), it may be more efficient
to employ a strategy of partial or stepwise short-term predictions rather than predicting consecutive
events at full length. For example, as opposed to preparing a complete model of an expected sequence
of events, a stepwise prediction might imply an iterative monitoring of sequence continuation at
particular sequential positions. Research on sequential actions has suggested decision points
(Norman, 1985 Reason, 1992) as points in time where the selection of appropriate actions requires
accessing information about the broader task context. Translated into the perceptual primacy of our
experimental paradigm, we propose checkpoints as equally informative sequential positions at which
broader, uncertainty-dependent contextual information is exploited to prompt strategic
adjustments. Most likely to serve as such checkpoints would be those points in time where the
occurrence of stimuli was probabilistically modulated by blockwise manipulation of irreducible

uncertainty. This way, statistical learning might be employed to adapt predictive strategies to
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particular informational structures in the environment. Support for this hypothesis comes from
studies linking the working memory network (most prominently hippocampus and adjacent areas)
to both the predictive processing of sequential patterns (Fortin et al., 2002; Lisman & Redish, 2009;
Rolls, 2013) as well as the decoding of contextual information (Allen et al., 2014; Davachi & DuBrow,

2015).

We conducted the present fMRI study to assess qualitative differences between prediction error
signals and the influence of uncertainty on predictive strategies using an implicit cueing paradigm.
Participants were asked to detect short or long ordered digit sequences (s and 7 items, respectively)
within an otherwise pseudorandom stream of single digits. They indicated the onset of a detected
sequence by an immediate button press and the sequence ending by button release. The expected
sequence length, as implicitly cued by digit colour (see Material and Methods), was occasionally
violated by terminations and extensions. Thus, whereas the task was overtly concerned with sequence

detection, our analysis was focussed on specific events during or at the end of sequences.

As to our first hypothesis, we expected distinguishable neural correlates to reflect the respective
reorientation towards external stimuli (sequential terminations) or towards the internal model
derived from working memory (sequential extensions). Particularly, the unexpected need to
disregard the currently employed internal model as induced by sequential terminations was
hypothesised to engage the inferior frontal gyrus (IFG), an area that has been reported for violations

of ordered pattern expectancy across domains (Fiebach & Schubotz, 2006).

Second, we assessed the effects of context uncertainty on predictive strategies by manipulating the
P gies by P g
proportion of violated sequences over time. Neural activity at checkpoint positions was expected to
be elevated in highly uncertain contexts, thus indicating a stepwise prediction mode. Due to its
ghly g P P

established role in reward-related uncertainty monitoring (specifically volatility, Behrens et al., 2007),
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we assumed ACC to represent highcr—level context information necessary to initiate stepwise
predictions in highly uncertain environments. Crucially, these global fMRI effects were controlled
for potential confounds by varying levels of stimulus-bound surprise (i.e. the extent to which
individual stimuli were locally unexpected). To this end, we employed a parametric regressor of
nuisance reflecting a stimulus’ respective surprise value, thus allowing us to disentangle higher level

context effects from mere differences in improbability.

2..3 Material and methods

Participants

A total of 22 neurologically healthy, right-handed volunteers (13 female, mean age: 24.3 (20 — 30)
years) participated in the study. Participants were recruited from the university’s volunteer database
and had normal or corrected-to-normal vision. Colour blindness was ruled out using Ishihara colour
test plates (Ishihara, 1917). Written informed consent was obtained from each participant prior to the
start of experimental procedures. Experimental standards complied with the local Ethics Committee
of the University of Minster. Participants selectively received payment or course credit as
compensation for their participation in the study. Two participants were excluded from further data
analysis due to poor behavioural performance and self-reported tiredness during the experiment (see
below). Therefore, all reported analyses of functional data are based on a sample of 20 participants

(12 female, mean age 24.8 (21 - 30) years).
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Stimulus material

The stimuli consisted of pseudorandomly coloured single digits (o — 9, size 1.5° of visual angle)
presented individually for soo ms in the centre of a light grey computer screen (see Fig. 2-1A). Digits
were presented in blocks with a length of approximately 6 min. Numbers of presentations for all
colours and digits were equally distributed both within and across blocks. Each block contained
sequential trials (i.e. digits with a recognisable relation to the preceding one) as well as random trials
(i.e. digits that were not discernibly related to either the preceding or the following digit). Sequential
trials in turn belonged to one of two types of sequences: ordered sequences constantly increased the
preceding figure by one (e.g. s — 6 — 7 — 8 — 9; Fig. 2-1A, left). In order to allow for ordered sequences
to start on any figure, the ascending regularity necessarily included the o character and was thus
continued in a circular fashion after the figure 9 (c.g. 8 — 9 — 0 — 1 — 2). Colour sequences were defined
as consecutive trials all presented in the same colour (dark red). Importantly, the numerical values
during colour sequences were pseudorandom (Fig. 2-1A, right). Therefore, at no point was there a
succession of continuously ascending figures presented in the same colour, but only one sequential
condition at a time (i.e. ordered or colour). Colour sequences were employed to ensure a high level
of attentiveness and were not a pivotal subject to our analyses. Random trials included neither self-
repetitions nor immediately adjacent figures and therefore could not be mistaken for ordered

sequences.
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Figure 2-1. (A) Exemplary trial successions and time windows of respective corresponding responses for ordered (left)
and colour sequences (right). Sequential trials have been highlighted for illustrative purposes. (B) Cue-based expected
sequence length and resulting prediction errors for terminated, and extended short ordered sequences (expectation
compliance). Based on the cue (in this case, a magenta figure), five regularly ascending figures are expected. Cue trial has
been highlighted for illustrative purposes. Top: terminated sequences are shortened by two trials and therefore induce a
prediction error (predicted sequence > presented sequence). Bottom: extended sequences are prolonged by two trials and
therefore induce a prediction error (predicted sequence < presented sequence). (C) Local transition probabilities for
terminated, regular, and extended sequences depending on respective block uncertainty. Note that only the composition
of expectation compliance levels varied with uncertainty while cue validity itself remained fixed across blocks.

Undisclosed to the participants, two colours were used as cues to indicate the onset of ordered
sequences: one colour marked the first digit of a short ordered sequence (regular length of five digits),

asecond colour marked the first digit of a long ordered sequence (regular length of seven digits). Each
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participant was assigned two individual cue colours which did not belong to the same hue. Cue
validity was fixed at p = .80 throughout the experiment with invalid cues being followed by a random
figure instead of the next higher one (as would have been suggested by the cue). Neither one of the
cue colours nor the red hue used for the colour sequences appeared during random trials.
Importantly, the colour cues were employed to trigger predictions with regard to the length of the
to-be-observed sequence and were not analysed as events of interest themselves. Implicit cues were
used to control for mere attentional effects and to keep participants focussed on the numeric

information (instead of the colour information) while tracking the digits for regularities.

In order to induce prediction errors based on the implicit information conveyed by the colour cues,
ordered sequences were manipulated in terms of their expectation compliance. This tactor was
introduced to distinguish between regular, terminated, and extended ordered sequences. Given the
regular length of five and seven figures, respectively, terminated sequences were shortened by two
items (e.g. three instead of five figures for short ordered sequences) while extended sequences were
equally prolonged by two items (e.g. seven instead of five figures for short ordered sequences). A

graphic display of expected sequence length and expectation compliance is shown in Figure 2-1B.

Finally, the composition of regular, terminated, and extended sequences within a particular block
was varied across blocks. This way, the irreducible uncertainty of the blocks (i.e. the frequency of
change with regard to cue-based expectations) was set to be either high or low. Blocks of low
uncertainty featured local probabilities of preg = .70 for the regular configuration and premyexr = .15 for
both terminated and extended sequences. These blocks could therefore be seen as statistically stable
regarding cue-based expectations. Local probabilities for terminated and extended sequences were
always identical for both sequence lengths. Highly uncertain blocks, in contrast, corresponded to a

more unstable statistical structure regarding the expectation based on the cue. Local probabilities
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after the cue during highly uncertain blocks were preg = .40 and prermy/ext = .30. It is important to note
that at any point during the experiment the regular configuration was the statistically most likely
continuation of the sequence. An overview of the statistical structure following the uncertainty factor
is provided in Figure 2-1C, please see the Supplementary Material for details on the composition of

experimental blocks.

Starting points of all sequences were balanced across digits. Successions of random trials were equally
distributed within a range of s — 9 digits (44 = 7.19 digits) both within and across blocks. To ensure
an even distribution of colour presentations, a total of 29 different colours were used. The colours
employed in the present study had been validated in a behavioural pilot study (n = 18) to ensure equal

visibility of all colours.

Tasks

Participants were asked to indicate detection of ordered sequences as well as colour sequences by
corresponding button presses. Therefore, they were instructed to press the left button with their right
index finger as soon as they noticed an ordered sequence and to hold the button for the duration of
the sequence. Accordingly, release of the left mouse button was to indicate the end of the ordered
sequence (i.c. the onset of subsequent random trials). Equivalently, participants were instructed to
press and hold the right mouse button with their right middle finger to indicate detection of a colour
sequence. Once again, release of the right mouse button marked the end of a colour sequence. A
mouse was used in the behavioural sections (i.e. introductory trials, training, and post-measurement)

to closely match responses with the two-button response box used during the fMRI session (see

below).
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Experimental procedures

The study was conducted on two consecutive days. The first day appointment was laid out as a
training session in order to allow participants to familiarise themselves with the task and to provide
them with implicit knowledge concerning the cues and the underlying statistical structure of the
experiment. Importantly, at no point during the training or the fMRI session was it revealed that
there was informational content in some of the colours (i.e. the cues) or that the blocks varied in their
respective statistical structure (i.e. their level of uncertainty). The second day included the fMRI
session as well as a subsequent post-measurement. The experiment was programmed and run using

the Presentation 14.9 software (Neurobehavioral Systems, San Francisco, CA, USA).

Day 1 (training session)

After having been informed about the very general scope of the study (“digit processing”,
supposedly), participants completed a first introduction to the task. Participants were shown a 1 min
stream of digits including exactly one presentation of each ordered sequence configuration (i.e.
terminated, regular, and extended sequences of both lengths), one invalid cue of each sequence length
as well as one colour sequence. Length range and proportion of random trials were matched with the
behavioural and the fMRI experiment. Responses were not recorded during the introductory trials

and participants were allowed to repeat the introduction until they felt comfortable with the task.

The training consisted of two blocks (one block of high and low uncertainty, respectively) with a
total duration of approx. 12 min — (for more details, see section “Stimulus material”). Block order was
balanced across participants. Length range and proportion of random trials were matched with the
fMRI experiment. After the completion of a block, participants were encouraged to take some time

and grant themselves a short break before continuing with the next block.
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Day 2 (fMRI session and post-measurement)

Participants once again completed the introductory phase from the previous day in a quiet working
environment immediately before entering the scanner. The following fMRI session consisted of four
blocks (two blocks of both high and low uncertainty, respectively) with a total duration of approx.
24 min. Contrary to the training, participants were presented with a screen notifying them of a short
break for ten seconds after completion of a block. Experimental procedure and task during the fMRI

session were otherwise identical to the training session.

Following the functional scanning, participants completed a behavioural post-measurement in order
to assess their implicit knowledge of the cue information. To this end, they were presented with one
experimental block (duration approx. s min) shown on a computer. Length range and proportion of
random trials were matched with the training session and the fMRI experiment. Participants were
asked to perform the identical task as before (i.e. to indicate sequence detection by button press).
Crucially, only half of the ordered sequences were cued by the same colours as during the training
and the fMRI session. The other half began with fixed but different colours that had indeed been
presented during training and fMRI, but not as cues for the respective participant. Therefore, they
contained no implicitly learned information concerning upcoming trials. As with the established cue
colours, two previously non-informative colours were assigned to mark the beginning of short and

long ordered sequences, respectively.

Finally, participants were interviewed verbally to assess whether they were aware of any regularity at
all with regard to the digits’ colours. All participants denied having noticed any colour-related

regularity.

34



Behavioural data analysis
Statistical analyses of behavioural responses were performed using R statistical software (R
Foundation for Statistical Computing, Vienna, Austria). If not stated otherwise, an a-level of .05 was

defined as a statistical threshold.

First, correct and incorrect responses were aggregated separately for training, fMRI session, and post-
measurement for each participant. Incorrect responses were further divided into misses (no response
over the course of a sequence) and false alarms (response occurring without presentation of
sequential trials). Participants’ overall performances were assessed via the discrimination index PR
(Snodgrass & Corwin, 1988), defined as the difference between hit rate and false alarm rate: correctly
reported sequences (i.e. ordered or colour sequences) relative to all sequences was defined as the hit
rate. The false alarm rate was defined as falsely reported sequences (again, ordered or colour
sequences) relative to all sequences. No specific timeout criterion was defined for the onset of button

presses, i.e. responses were registered throughout the whole length of the respective sequence.

Reaction times for button presses (onset latency) and releases (offset latency) were assessed for fMRI
session and post-measurement. Latencies were aggregated separately for the levels of expectation
compliance (terminated, regular, extended) and uncertainty (high, low) as well as for established vs
new cue colours, respectively. Aggregation was executed for each participant individually. Onset
Jatency was calculated as reaction time relative to the onset of the second trial of any particular ordered
sequence: the second trial of the sequence was the carliest possible point to detect a sequential pattern,
since the current trial always had to be compared to the preceding one (i.e., to check whether the
figure had risen by 1). Offset latency was calculated as reaction time relative to the onset of the first
random trial after any particular sequence. Repeated-measures analyses of variance (ANOVA) and

paired #-tests were used to assess possible differences in offset (depending on expectation compliance
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and uncertainty) and onset latency (learned vs new cue colours during post-measurement),
respectively. Where appropriate, results of the paired ztests were corrected for multiple comparisons

at p = .os using the false discovery rate (fdr) correction by Benjamini & Hochberg (1995s).

Functional data analysis

fMRI data acquisition and data preprocessing

Functional and structural imaging data were collected using a 3T Siemens Magnetom Prisma MRI
scanner (Siemens, Erlangen, Germany) equipped with a 20-channel head coil. Participants lay supine
with their right hand placed on a two-button response box. Index and middle finger were placed on
the two response buttons, matching the response contingencies from the training session.
Participants’ arms were stabilised on form-fitting cushions and foam padding around the head was
applied to prevent motion artefacts. Earplugs and noise-cancelling headphones were provided to

reduce scanner noise.

During functional imaging, 30 x 4 mm axial slices (1 mm spacing, 64 x 64 voxel matrix, 192 x 192 mm
field of view, resulting voxel size 3 x 3 x 5 mm) were acquired parallel to the bi-commissural line (AC-
PC) using a single-shot gradient echo-planar imaging (EPI) sequence sensitive to BOLD contrast (TR
= 2000 ms, TE = 30 ms, 90° flip angle, ascending recording, 8oo repetitions). Prior to the functional
session, a high-resolution structural scan was recorded for each participant using a standard Siemens
3D Tr-weighted whole brain MPRAGE imaging sequence (1 x 1 x 1 mm voxel size, TR = 2130 ms, TE

= 2.28 ms, 256 x 256 mm field of view, 192 sagittal slices).

Data processing was done with the Lipsia software package (Lohmann et al., 2001). Functional data
were spike-corrected (using interpolation with adjacent time points) to reduce artefacts within time
series. Correction for slice acquisition time (using cubic spline interpolation) and head motion (3

translation, 3 rotational parameters) was applied and functional data were co-registered with the
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structural scan (using rigid transformation). Individual structural scans were normalised to the MNI
template via general affine transformation and resulting parameters were applied to the functional
scans. The resulting normalised functional images were resampled to 3 mm isotropic voxels, high-
pass filtered with a 100 s period cutoff and spatially smoothed with an 8 mm full-width half-

maximum (FWHM) Gaussian kernel.

fMRI analysis

Event-related BOLD responses were estimated in a general linear model (GLM) approach. The GLM
was constructed to test for distinct neural correlates of the different error types as well as for effects
of statistical block structure on neural processing at different time points during ordered sequences.
Additionally, the parametric effect of surprise was modelled to control for trial-by-trial variation in
stimulus improbability. Therefore, the model comprised a total of seven regressors of interest
reflecting the 3 x 2 combination of the factors expectation compliance (terminated, regular, extended)
and uncertainty (low, high) plus the surprise parameter. Regressors of nuisance included
experimental breaks, colour sequences, and motor responses (button presses and releases) in order to

account for variance unrelated to the events of interest.

For terminations, the event onset was time-locked to the first unexpected random digit (i.c. the fourth
[short sequences] or sixth [long sequences] sequential position, respectively; see Fig. 2-1B).
Equivalently, extensions were modelled with the onset time-locked to the first unexpected sequential
digit (i.c. the sixth [short] or eighth [long] sequential position, respectively). Regular events (termed
checkpoints) were defined as points in time at which we hypothesised the incoming stimulus to be
checked for either a termination (i.e. a check occurring during the ongoing sequence) or an extension
(i.e. a check at the regular end) of the ordered sequence. Importantly, checkpoints were only classified

as such when the ordered sequence was in fact continued as indicated by the cue, thatis, in the regular
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configuration (see Fig. 2-2 for an example and Supplementary Fig. 2-S1 for details on event
specification). In case the current stimulus did not match the prediction, the event was classified as a

prediction error instead of a checkpoint.
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Figure 2-2. Illustration of checkpoints during a regular short and long ordered sequence, respectively. As indicated by
the cue (highlighted for the purpose of this graphic), five or seven consecutive digits following the +1 rule are presented.
Two checkpoints are hypothesised over the course of each sequence: For instance, during short ordered sequences (top),
the fourth item can be used to check whether the sequence is terminated (check term) or not. A hypothetical course of a
terminated sequence is outlined (lower trial succession, dashed framing). The sixth item (i.e. the first random figure after
the regular short ordered sequence) can be used to check for an extension of the sequence (check ext). A hypothetical
course of an extended sequence is outlined (upper trial succession, dashed framing). Within a particular ordered sequence,
checkpoints are always preceded by deterministic items (det.).

With respect to difference characteristics, one could justifiably argue that the difference between
checkpoints and prediction errors may not at all be qualitative, but rather a quantitative excess of
prediction errors with regard to their respective improbabilities. From this point of view, checkpoints
could be construed as muted prediction error signals with a lesser degree of surprise. While surprise

inarguably modulated cognitive processing in the present task, our key point of suggesting a
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functional role for checkpoints was to gain insight into qualitatively different processing of regular
events depending on the particular context. By including a parametric surprise regressor, we
attempted to discriminate between these qualitative effects and quantitative distinctions that can be

ascribed to mere differences in improbability.

The parametric effect of surprise was estimated following the notion of an ideal Bayesian observer

(see Harrison et al., 2006). Event-specific surprise /(x;) was defined as the improbability of event x;,

i.e.
I1(x;) = —Inp(x;)
with
) n} +1
X)) = ———
PRI = 5 i1

where n; denotes the total number of occurrences of outcome j (terminated, regular, extended) up
to the current observation 7 relative to the sum of all past observations (with & for all possible

outcomes).

Contrast specification

The main effect of expectation compliance was assessed by the second-level contrast of terminated and
extended sequences (TERM > EXT). Common activations of both prediction error types were
assessed by the conjunction of the two single contrasts vs checkpoints, respectively (i.e. TERM >
CHECK N EXT > CHECK). Note that due to the probabilistic structure of the task, there were
considerably more checkpoints than prediction errors contributing to the respective regressors (ratio
~ 2:1). Therefore, for the conjunction of TERM > CHECK and EXT > CHECK, we constructed a

parallel GLM identical to the one described above, with the one exception that only half of the
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checkpointevents were included in the respective regressors of the second model. While this approach
resulted in reduced power of the respective contrasts and their conjunction, its meritlies in a markedly

well-balanced, less biased contrast of conditions.

The effects of uncertainty on checkpoint and prediction error processing were assessed by the
contrasts of high vs low uncertainty checkpoints (CHECK_HIGH > CHECK_LOW) and

prediction errors (PE_HIGH > PE_LOW, data not shown), respectively.

For group level analyses, one sample t-tests were calculated using first-level contrast images of all
participants. Resulting t-values were converted to z-scores and thresholded at voxel-wise p < .oo1. In
a second step, this initial thresholding was combined with a cluster-extent based threshold derived
from Monte Carlo Simulation (sece Forman et al, 1995). We ran sooo iterations using the
fMRIMonteCluster tool (available at github.com/mbrown/fmrimontecluster), yielding a cluster-

extent based threshold of £ > 783 mm3 (29 contingent voxels, cluster-level p < .05).

Exploratory functional connectivity analyses
Ezgenvector Cem‘mliz‘y mapping

When investigating the interplay of brain regions in forming coactivation networks, functional
connectivity measures have become increasingly popular to complement BOLD amplitude effects of
participating brain regions. Eigenvector centrality mapping (ECM) has been proposed by Lohmann
and colleagues (2010) as a graph-based means to determine the centrality of neural structures within
their respective networks. Particularly, eigenvector centrality (Bonacich, 2007) refers to how strongly
a certain structure (a node, in terms of graph theory) is functionally connected to other highly
interconnected nodes. Therefore, both number and quality of connections are factored into the

centrality value assigned to a particular voxel. Since the interesting aspect here was precisely to
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evaluate the influence of irreducible uncertainty on the neural processing within task-related
networks (whose components are themselves highly interconnected), ECM was explicitly well suited
for the functional connectivity analysis at hand. Importantly, ECM does not depend on a priori
assumptions and, due to computational efficiency, allows for functional connectivity analyses of the
entire brain. Finally, ECM does not require parameter adjustments other than the definition of the

voxel space and the time period of interest.

In order to assess potential effects of uncertainty on functional connectivity, eigenvector centrality
was analysed post-hoc within a whole-brain mask (= 60 ooo voxels). To avoid connectivity changes
caused by the mere duration of scanner time (see Lohmann et al., 2010), ECM analysis was restricted
to the first half of the experiment (i.c. one block of each uncertainty level in counterbalanced order)
for each participant. Pairwise similarity matrices for time series of any two voxels were computed and
subsequently analysed by the ECM algorithm. On the group level, a one-sample #-test was used to
assess whether the difference between the centrality maps for high and low uncertainty were
significantly greater than zero across participants. Resulting t-values were converted to z-scores and

thresholded at p < .oo1 (10 contiguous voxels).

Beta series correlation

As a follow-up analysis on the ECM approach, we used a beta series correlation analysis (Rissman et
al., 2004) to assess trial-by-trial covariation of activity in our regions of interest. In short, trial-specific
beta series within ROI were correlated for each condition on the group level. For a step-by-step

description of the analysis, the reader is referred to the Supplementary Material.
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2.4 Results

Behavioural results

fMRI session

Participants showed an overall high level of performance with a mean PR score of Mpr = 0.89 (SD
= 0.06) during the fMRI session, indicating good attentiveness throughout the experiment. Out of
176 detectable sequences (not counting invalid cues), participants correctly responded to 165.73 events
on average (SD = 12.91). Mean PR scores (Fig. 2-3A) did not differ significantly between experimental
blocks ({3, 76) = 1.23, p = .30), nor as function of uncertainty (#21) = 0.21, p = .84). As stated above,
two participants were excluded from further analyses due to their behavioural performance

(standardised PR scores of zpr = -1.79 and zpr = -2.47, respectively).

The repeated-measures ANOVA yielded a significant main effect of expectation compliance on
offset latency (F{(2, 38) = 45.75, p < .001, Greenhouse-Geisser-corrected). Post-hoc pairwise #-tests
revealed participants’ button releases to be significantly slower after terminated (M = 783.72 ms, SD
= 77.94 ms) than after regular (M = 713.92 ms, SD = 76.91 ms, fdr-adjusted p < .or1) as well as after
extended sequences (M = 549.94 ms, SD = 121.73 ms, fdr-adjusted p < .oor). The difference between
extended and regular sequences was significant as well (fdr-adjusted p < .oo1). This pattern of offset
latency differences appears intuitive in the sense that premature terminations unexpectedly violated
the prediction of continued sequential input, thus inducing a delayed response compared to the
regular condition. Critically, neither the main effect of uncertainty (f{1, 19) = 0.16, p = .70) nor the
interaction term of uncertainty X expectation compliance (F{2, 38) = 0.16, p = .85) reached statistical
significance, suggesting that participants were able to discriminate regular from manipulated

sequences regardless of the respective level of uncertainty. The number of misses ((19) = -0.58, p =
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.57) and false alarms (#(19) = 0.24, p = .81) did not differ significantly between high and low

uncertainty blocks (see Fig. 2-3A).
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Figure 2-3. (A) Left panel: Effects of expectation compliance (terminated, regular, extended) and irreducible uncertainty
(low, high) on mean offset latency. Right panel: Mean count of false alarms and misses as well as the mean PR score as a
function of uncertainty. (B) Left panel: Differences in onset latency between new and learned cue colours during post-
measurement for each subject. Blue bars indicate faster onset for learned cue colours, dotted line depicts mean gain across
subjects. Right panel: Overall mean onset latency for learned and new cue colours, respectively. Error bars show standard
error of the mean (SEM). ™ = p < .01, *™ = p < .001

Post-measurement
Participants performed equally well during the post-measurement (Mpr = .90, SD = 0.06) as they
had during the fMRI session. Out of 40 detectable sequences (not counting invalid cues),

participants correctly responded to 38.77 (SD = 2.02) sequences on average.

43



The post-measurement was conducted in order to assess accessibility of the signalling information
provided by the cues. If participants had learned the association of cue colours and prospective
ordered sequences over the course of the training and the fMRI session, they were expected to react
faster to sequences beginning with established cue colours than to those starting with new colours
during the post-measurement. Indeed, the corresponding #-test confirmed a significant difference
between learned and new cue colours (£19) = -2.78, p = .006, one-tailed). Participants exhibited a
shorter reaction time (defined as onset latency relative to the second sequential stimulus, see above)
to learned cue colours (A = 731.76 ms, SD = 152.68) than to new cue colours just introduced during

the post-measurement (A = 784.78 ms, SD = 184.04; sce Fig. 2-3B).

fMRI results

Supporting our first hypothesis, group-level activations discernibly related to sequential terminations
(TERM > EXT) were found in left inferior frontal gyrus (IFG). In contrast, sequential extensions
(EXT > TERM) were found to be distinctly reflected in activations across an extensive network
comprising posterior cingulate cortex (PCC), right superior frontal sulcus (SFS), and right angular

gyrus (Table 2-1).
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Table 2-1. Activation peaks, z-values, and anatomical locations for the main effect of expectation compliance (TERM >

EXT) and the conjunction of the two prediction error types vs checkpoints, respectively (TERM > CHECK N EXT >

CHECK).
local maxima
MNI
area X y z z-value volume
(mm?)
TERM > EXT
lefc IFG / BA44 -4 7 26 3.73 3402
right PCG 36 -29 71 459 2916
EXT > TERM
right anterior SES 27 58 23 -3.94 4212,
right STG 48 -5 -4 -4.13 2349
right PCC/BA31 15 32 41 -3.90 2025
right BAgo 6o -35 44 -4.85 11394
left BA7 21 -62 71 -4.52 1512
left STG I I -7 -4.46 5103
(TERM > CHECK) N (EXT > CHECK)
right putamen 30 -5 -1 4.02 891

IFG = inferior frontal gyrus, BA = Brodmann Area, PCG = postcentral gyrus, SFS = superior frontal sulcus, STG =

superior temporal gyrus, PCC = posterior cingulate cortex.

As expected, uncertainty had a significant effect on checkpoints processing (CHECK HIGH >

CHECK LOW). Contrary to our hypothesis, however, enhanced activation at sequential checkpoints

during blocks of high uncertainty was not found in ACC, but in bilateral IFG and the corresponding

projection area in parietal cortex, right angular gyrus / temporoparietal junction (rANG/TP], Fig.

2-4B; see Table 2-2 for coordinates).
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Table 2-2. Activation peaks, z-values, and anatomical locations for the effect of irreducible uncertainty on checkpoint
processing (CHECK_HIGH > CHECK_LOW) and the parametric effect of surprise.

local maxima

MNI
area X y z z-value V(?Illtrlnn;)e

CHECK_HIGH > CHECK_LOW

right IFG / BA44 33 16 26 4.14 1377

right TPJ / angular gyrus 36 -65 41 3.94 1458
SURPRISE

right dorsal insula 30 28 2 4.60 2781

right ACC o 13 29 3.74 1431

right BA4o 6o -44 26 3.77 1431

right BA7 15 -47 6s 3.67 837

left dorsal insula -42 10 -1 4.46 6183

left BA4/BAG -4 -8 56 3.97 891

IFG = inferior frontal gyrus, BA = Brodmann Area, TP] = temporoparietal junction, ACC = anterior cingulate cortex.

The conjunction of terminations and extensions relative to checkpoints (i.e. unexpected relative to
expected events, TERM > CHECK N EXT > CHECK) yielded significant activation in the right
putamen (Fig. 2-4C; see Table 2-2 for peak coordinates). Conceptually, this joint activation reflects
the shared portion of prediction error processing (i.e. an unexpected violation of the internal model)
in distinction to the qualitative differences in how the internal model is violated (i.e. having to

prematurely neglect vs unexpectedly resume the sequence model, see above).

46



e )
A TERM > EXT

>

X=

high

0
L 02 Wos ECM HIGH > LOW

Figure 2-4. (A) Areas positively correlated with sequential terminations (red) and extensions (blue). (B) Areas reflecting
neural processing at sequential checkpoints for high (vs low) uncertainty. (C) Common activations of terminations and
extensions relative to checkpoints. (D) Group averages of eigenvector centrality for low and high uncertainty blocks. (E)
Significantly higher centrality within the parahippocampal region for high > low uncertainty as revealed by a pairwise t-
test.
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The surprise parameter modulated neural responses in a widespread network (Table 2-2) including
bilateral anterior-dorsal insular cortex, right anterior cingulate cortex (ACC), and right fusiform

gyrus (see Supplementary Fig. 2-S2).

Exploratory eigenvector centrality mapping

Based on the finding that irreducible uncertainty modulated neural processing of sequential
checkpoints, we used eigenvector centrality mapping (ECM) as an exploratory tool to further analyse
uncertainty effects. Adding to the reported modulations in BOLD amplitude, ECM as a measure of
functional connectivity was employed to detect uncertainty-related differences on the neural

network level.

Both high and low uncertainty conditions equally displayed a network of highly interconnected
nodes including cingulate cortex, precuneus, basal ganglia, inferior frontal gyrus, and visual areas (Fig.
2-4D). Intriguingly, significantly higher eigenvector centrality was observed in the right
parahippocampal region (MNI coordinates 27, -3s, -13) for the high uncertainty condition, indicating
stronger functional connections between parahippocampal areas and the other central nodes (sce

above) during time periods of statistical instability (Fig. 2-4E).

Beta series correlation

Significant trial-by-trial correlations between our regions of interest were found to be exclusively
positive. Uncertainty-induced changes in network connectivity appear to differ between conditions:
For terminations and extensions, there were several significant links between arcas under high
uncertainty that were absent under low uncertainty (see Fig. 2-5). This does not seem to be the case
for checkpoints for which all network components were significantly correlated under low
uncertainty. PHC beta series under high uncertainty were found to be significantly correlated with
those of virtually all other network components for terminations and checkpoints, but not for
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extensions. Moreover, whereas the increase in significant PHC connections for high > low
uncertainty is most evident for terminations (with no significant correlation of PHC under low
uncertainty), PHC was highly interconnected even under low uncertainty at checkpoints and thus
showed no increase under high uncertainty. Finally, PHC was not significantly correlated with any

other network component at extensions (under neither uncertainty level).

7

LOW

HIGH

.

Figure 2-5. Connectivity patterns within the network identified in the fMRI contrasts. Significant correlations of trial-
specific beta series for terminations (TERM), extensions (EXT), and checkpoints (CHECK) are shown for both low and
high uncertainty. Links coloured in red depict positive correlations, with darker tone corresponding to higher r. IIFG =
left inferior frontal gyrus, rIFG = right inferior frontal gyrus, rSFS = right superior frontal sulcus, rANG = right angular

gyrus, PHC = parahippocampal cortex, PCC = posterior cingulate cortex.

Correlation of behavioural and functional data

We hypothesised predictive processing to be adapted to statistical properties of environments (in this
case, irreducible uncertainty). Conceivably, this strategic adaptation could manifest on the
behavioural level - successful adaption to highly uncertain contexts should facilitate resolution of

conflict under uncertainty and thus result in response time advantages at corresponding events. As
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we propose such adaptation to originate from more pronounced processing at checkpoints under
high uncertainty, the uncertainty -related behavioural measures reported so far may very well have
been too non-specific to reflect particular effects on reaction times. To closely link behavioural
measures to the reported BOLD effects, we correlated subject-level regression weights from the
CHECK_HIGH > CHECK_LOW contrast (i.e. rIFG and rANG, see above) with individual
differences in offset latency between high and low uncertainty blocks. Importantly, since checkpoints
were exclusively sampled from regular sequences for the fMRI contrasts, equally did only button
releases at the end of regular sequences contribute to the reported differences in the correlation
analysis. Both rANG (#(18) = .21, p = .19, one-sided) and rIFG (7(18) = .12, p = .31, one-sided) were
found to show a small but non-significant correlation with faster reaction times in highly uncertain

blocks (Fig. 2-6A).

In a second brain-behaviour correlation analysis, we assessed whether individual differences in
successful learning of the cue-length-contingency (operationalised as quicker reactions to learned vs
new cue colours in the post measurement, see Fig. 2-3B) were differentially related to activity in rIFG
and rANG (Fig. 2-6B). The difference between the two correlations (7(18) = .35, p = .07 and #/{18) =

.12, p =31, one-sided) was found to be non-significant (z = 1.01, p = .16, one-tailed).
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Figure 2-6. (A) Correlation of beta weights extracted from the contrast of high vs low uncertainty checkpoints and the
difference in offset latency following regular sequences in high vs low uncertainty environments. Differences in offset
latency are depicted as ’gain under high uncertainty, i.e. faster reaction times for button releases at the end of regular
sequences under high (vs low) uncertainty. (B) Correlation of beta weights extracted from the contrast of high vs low
uncertainty checkpoints and the difference in onset latency for learned vs new cue colours during the post test.
Differences in onset latency are depicted as ’gain during post measurement’, i.e. faster reaction times for button presses
at the beginning of ordered sequences following learned (vs new) cue colours.
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2.5 Discussion

The present fMRI study was conducted to investigate the strategic adaptation of predictive
processing to different non-reward prediction error qualities and to the prediction’s contextual
uncertainty. Distinguishable activation patterns were elicited by prediction errors depending on the
respective error type, lending support to a differential concept of non-reward prediction errors. In
particular, we found that unexpected terminations and extensions of predicted stimulus regularities
elicited increased activity in distinct brain networks. Moreover, increased activity at checkpoints for
high vs low irreducible uncertainty suggests that context stability affects predictive strategies.
Notably, this effect was controlled for the quantitatively variable surprise level (i.e. respective
improbability) of the sampled event types. Potentially, stable (i.e. low uncertainty) contexts allowed
a full-length prediction of sequential input based on the internal model, whereas highly uncertain
contexts induced iterant comparisons of sensory information with the internal model. Neural
processing at checkpoints was more pronounced in these unstable contexts, possibly pointing
towards a stepwise (rather than full model length) prediction. Although further research is needed to
link neural effects to changes on the behavioural level, these results provide novel insight into

potentially adaptive prediction strategies and their respective neural underpinnings.

Qualitative differences of prediction errors

Predictions of digit sequences could be violated by termination or extension of the expected sequence
length. While both types of prediction error (relative to checkpoints) commonly elicited enhanced
activity in right-lateralised putamen, their direct contrast yielded distinct frontal/ frontoparietal
activity specific to the respective prediction error type. While we tested a specific hypothesis for this
contrast (IFG for terminated sequences), we discuss further findings to suggest testable hypotheses

for future studies.
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Terminated sequences correlated with neural activity within IFG (BA44, see below) whereas
extensions were reflected in effects along the anterior portion of right SFS (lateral BA8/9). Evidence
from the action observation literature has implicated the SFS in the processing of event boundaries
(Schubotz et al,, 2012), i.e., behaviourally relevant transition points in event perception. In line with
the authors’ interpretation of boundary-related SFS activity as a correlate of updating attention to
the next stimulus, prediction error signals caused by sequential extensions presumably reflect the
violation of the (expected) sequence ending: at the point of a sequential extension, participants were
presented an unpredicted sequential digit when in fact expecting a random digit denoting the end of
the ordered sequence (vice versa for terminated sequences). In other words, present correlates of
extended sequences supposedly express a prediction error signal that ultimately results in memory-

directed reorientation of attention, i.c., the resumption of the internal model.

This interpretation is substantially supported by coactivation of the angular gyrus, another
component frequently associated with attentional reorientation towards salient or informative
stimuli (Gottlieb, 2007; Kincade et al., 2005; Rushworth et al., 2001). The angular gyrus, specifically
the dorsal portion we report for sequential extensions, has been shown to be connected to superior
frontal areas via the occipitofrontal fascicle (Makris et al., 2007; Nelson et al., 2010). Functionally, one
suggested role for the angular gyrus in attentional updating has been the integration of current
stimuli with recent task history (Taylor et al., 2011) - a highly relevant operation for extended but not
for terminated sequences. In a similar vein, O’Connor and colleagues (2010) reported expectancy
violations in an attentional cueing task to be reflected in supramarginal and angular gyrus. Their
differendal findings of prediction errors following old vs new items led the authors to assume that
IPL lesions should affect cognitive control mechanisms especially when unexpected familiar items

violate a strong expectation of novel stimuli. Our results further substantiate these suggestions, as the
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characteristic quality of extended sequences was precisely the observation of history-conform

sequential digits when participants expected novel (i.e. random) digits.

In contrast to sequential extensions, one specific digit (i.e. the preceding number raised by one) was
expected at the point of violation during terminated sequences. Therefore, sequential terminations
can be considered violating a more specific prediction than was the case for sequential extensions.
Our finding of IFG activity increase for sequential terminations adds to consistent reports of BA44
reflecting violations of expected regularities in language syntax (Friederici & Kotz, 2003), musical
structure (Maess et al., 2001), actions (Wurm & Schubotz, 2012), and abstract stimuli (Huettel et al.,
2002). Contrary to an unexpected continuation of observed regularities (see above), these studies and
our own results commonly point to a role for IFG in processing premature rule violations when

regular input of certain specificity is expected.

Predictive processing as a function of statistical context

The second main aim of the present study was to assess predictive strategies in varying statistical
contexts. Processing of changes in statistical regularities per se has been demonstrated for both reward
(Behrens et al,, 2007) and non-reward paradigms (Tobia et al., 2012). However, it remains unclear
whether or not predictions of abstract upcoming input strategically change with context (note that
here, “strategically” does not imply a conscious effort). To dissociate predictions in a stable vs
unstable context, the reasoning was as follows: while an implicit cue might trigger the prediction of
sequential input at full length in a stable context, an unstable context might lead to a stepwise
processing confirming the prediction is still valid. Recall the staircase analogy from before: in an
unstable context (e.g. in dim lighting), one might be well advised to verify the initial prediction (“This
flight has 13 steps”) at some critical point in order not to encounter a (potentially precarious)

prediction error.
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Following this rationale, we investigated effects of irreducible uncertainty on the neural processing
of possible checkpoints during prediction. Checkpoints were defined as regular events at those
sequential positions where prediction errors occurred in terminated or extended sequences. Note
that, by definition, violations of the cue - length contingency did not occur in regular sequences from
which checkpoints were sampled. Right IFG showed increased BOLD activity at checkpoints within
the high (vs low) uncertainty condition. Given the central involvement of prefrontal cortex (PFC) in
flexible interactions with the environment, a process oftentimes termed cognitive control (Corbetta &
Shulman, 2002; Petrides, 2000), enhanced prefrontal responses at porential violation sites might
indeed be interpreted as an updating mechanism accounting for changes of statistical regularities.
Previous work has shown that experimental context can be decoded from prefrontal neurons
(Waskom et al,, 2014), suggesting that cognitive control and decision-making benefit from
representations of current context encoded in PFC. Conceivably, the use of specific vs higher-order
information for context encoding in PFC depends on the respective network in which frontal sites
are coactivated. Recall that left-lateralised IFG activation was found for violations of number-specific
expectations: Consolidating IFG effects for both sequential terminations and highly uncertain
checkpoints, the common role for prefrontal sites may be a close monitoring of structured incoming
information. Depending on whether these monitoring processes lead to the detection of a specific
prediction error (as in the TERM > EXT contrast) or provide vital information about the current
task context (i.e. CHECK_HIGH > CHECK_LOW), respective network partners are coactivated
accordingly. Support for this interpretation comes from our finding that checkpoint processing
under high uncertainty was also found to be reflected within the right angular gyrus / TP]. As a direct
projection site of IFG, TP] has been established as part of a ventral network engaged in attentional
control (Corbetta & Shulman, 2002; see Cabeza et al., 2008 for review). Specifically, this network
initiates a bottom-up reorientation driven by behaviourally relevant but unattended stimuli.
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Fittingly, demanding the actor to enter a special attentional mode is one characteristic of junctures
from the field of sequential action selection (decision points; Reason, 1992). This way, increased
allocation of attentional resources may be one plausible interpretation of rANG / TP] effects for high
uncertainty checkpoints. However, an intriguing hypothesis redefining TPJ function was put
forward by Geng and Vossel (2013): the authors propose contextual updating as the main role of TP]
in cognitive processing, meaning the updating of internal models of context based on new sensory
information (Seghier, 2013). It is important to recall that the contrast of interest (CHECK_HIGH >
CHECK_LOW) only contained events of regular sequences where a violation of prediction
(termination or extension, respectively) was probable but did in fact not occur. Since there was no
external signal initiating a change in predictive strategies, enhanced processing of checkpoints for
highly uncertain contexts was solely based on the internal sequence model developed through
previous experience. Consequently, contextual updating as well as corresponding strategic
adjustments (i.e. the use of incremental predictions in unstable environments) do not seem to require
a bottom-up trigger signal but can instead be prompted by model-based expectancies alone. This
suggests an extension of the understanding of TPJ functioning for paradigms where contextual

updating relies on top-down generated internal models of context.

Due to the higher average surprise value for checkpoints in high vs low uncertainty blocks, an increase
in surprise could potentially present an intuitive explanation for the reported results. Crucially,
however, since the surprise parameter was modelled separately within the GLM, our findings cannot
be attributed to stimulus-bound surprise but instead reflect higher-order cognitive processes

exceeding trial-by-trial variation in informational value.

In sum, elevated BOLD responses within rIFG and rANG at sequential checkpoints potentially

point to an adaptive quality of abstract predictive processing that to our knowledge has not been
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demonstrated. Depending on the stability of statistical contexts, the top-down predictive strategy
may vary with regard to how far expectations reach into the future. Supporting this interpretation
on the behavioural level, the extent to which participants learned the colour-length association (i.e.
their gain in response speed during post-measurement) was more strongly correlated with the BOLD
uncertainty effects in the frontal (rIFG) than in the parietal (tANG) component of the checkpoint
network (although the difference in correlation did not reach significance). In other words, especially
for rIFG, the more successful the contingency between cue colour and sequence length was learned,

the more pronounced was the neural activity at checkpoints under high uncertainty (see Fig. 2-6).

Motivated by the reported BOLD amplitude effects of uncertainty, exploratory functional
connectivity analysis (ECM) revealed eigenvector centrality of the right middle temporal gyrus
(MTG) / parahippocampal region (PHC) to increase during epochs of high uncertainty. This reflects
a strengthened connectivity between the parahippocampal region and those highly interconnected
frontoparietal circuits that are central for the currently employed task. More detailed analyses of trial-
specific beta series within our regions of interest (see Supplementary Material) suggest differential
connectivity patterns of PHC depending on the outcome of a sequence and the respective level of
uncertainty: While PHC was found to be highly interconnected at checkpoints (regardless of
uncertainty), the same level of connectivity was found only for high uncertainty terminations. Lastly,
PHC activity at extensions did not covary significantly with any other network component. One
possible hypothesis would be that representations of terminations and checkpoints could be more
similar than, say, terminations and extensions; an intriguing starting point for multivariate analyses
of representational similarity (RSA; Kriegeskorte et al., 2008). Another possibility would be to look
atnetwork configurations at different points in time and formulate hypotheses about graph measures

(e.g. network density) to learn more about the respective roles of key regions implicated in predictive
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processing under uncertainty. These results motivate intriguing hypotheses and objectives for future
research targeting network configuration as a function of uncertainty (see Limitations and Future

Directions).

The medial temporal lobe including the hippocampal formation has been established as a crucial
structure for prospective processing and pattern completion during perception (Turk-Browne et al.,
2010), sequence learning (Schapiro et al., 2014; Schendan et al., 2003), and especially at points of
ambiguity (Bornstein & Daw, 2012; Kumaran & Maguire, 2006; Ross et al,, 2009). When multiple
competing predictions with regard to the next sequential item arise under uncertainty, the MTG
network is hypothesised to resolve this ambiguity, resulting in enhanced hippocampal responses (for
review, see Davachi & DuBrow, 2015). Critically, the present high uncertainty condition was
hypothesised to intensify neural processing at ambiguous checkpoints by means of a higher
proportion of sequential deviants. Therefore, the finding of strengthened functional connectivity
between the parahippocampal region and central task-related structures in a highly uncertain
environment further corroborates the understanding of MTG as a contingency-sensitive circuitry
engaged in encoding and extracting statistical information. Our results moreover suggest that this
information could then be employed to facilitate a context-appropriate change in predictive
processing, namely a stepwise prediction strategy for highly uncertain contexts. This way, instability
in the environment could supposedly be compensated by more frequently comparing model-based
expectations with actual sensory input. Combining the contextual updating hypothesis and MTG
involvement in sequential ambiguity, enhanced overall connectivity of MTG / parahippocampus
under high uncertainty could thus be interpreted as evaluating the validity of top-down, model-based
predictions in light of incoming sensory information (Kumaran & Maguire, 2006; Lisman, 1999).

Presumably, a stepwise prediction is not necessary in stable contexts, possibly due to frequent
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validation of the internal model (i.e. the high proportion of regular sequences) resulting in high
confidence in the initial full-length prediction. As for computational efficiency and economic
processing, stepwise prediction would appear to be a strategic adaptation to unstable contexts in
order to avoid the cost of prediction errors. One intuitive neural implementation of these stepwise
predictions would be through enhanced communication between MTG and frontoparietal
networks, thus enabling recourse to model information in working memory. Indeed, previous studies
have demonstrated the anatomical connectivity between angular gyrus/TPJ, associated frontal areas
(IFG / lateral PFC), and MTG (Clower et al., 2001; Makris et al., 200s; Petrides & Pandya, 1999;
Vincent et al., 2006). Within the scope of the contextual updating hypothesis, these connections are
thought to integrate internal representations of current context information with the appropriate
sensorimotor transformation necessary to respond adequately (Geng & Vossel, 2013). Strengthened
MTG involvement in contexts where regular updating is beneficial suggests that the internal model

is iteratively checked based on cue information retrieved from working memory.

Limitations and Future Directions

The present study, conceptualised as a first step into investigating adaptive qualities in predictive
processing, does not come without limitations. As mentioned above, one critical objective for future
efforts is to replicate the differential effects for terminations and extensions in an experimental design
that ensures equal response requirements for both PE types. Even though the direct contrast (TERM
> EXT) does not contain components primarily associated with motor function, identical
behavioural correlates would allow further analyses of response patterns, e.g. assessing modulatory
effects of surprise on offset latency. Furthermore, subsequent efforts could aim to uncouple
terminations and extensions from fixed sequental positions, thus eliminating potential influence of

timing or sequence length. Future directions also include the use of multivariate approaches, as single
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run measurement of fMRI data limited the applicability of multivariate analyses for our present
study. Follow-up studies could then use tools such as representational similarity analysis to decode
neural representations of the internal model at different points in time (see Schuck et al., 2015 for
preparatory mPFC encoding prior to strategy change). Such multivariate approaches could also be
combined with EEG data (currently in preparation) to provide novel information on the time course

of representations as a function of statistical context.

2.6 Conclusion

Different classes of abstract prediction errors were reflected in distinct brain activation patterns,
predominantly within separate frontoparietal networks. Depending on whether the respective
prediction error called for reorienting towards external stimuli or staying with the internal model,
cognitive processing was adjusted accordingly. High irreducible uncertainty resulted in more
pronounced processing of sequential checkpoints we preliminarily interpret as iterative comparisons
of sensory information and the internal model. Although further research is needed, our findings
suggest that this stepwise predictive strategy may be conducted through enhanced connectivity

between frontoparietal circuits and the (para-)hippocampal area.
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2.8 Supplementary material

Stimulus material

Both high and low uncertainty blocks included five invalid cues for each sequence length.
Furthermore, each block included four colour sequences which served as a motor control condition
(fixed length of five figures). Participants were informed that colour sequences would occur much
less frequently than ordered sequences. Each block included 20 ordered sequences for either sequence
length, the composition of which depended on the irreducible uncertainty level of the respective
block: blocks of low uncertainty comprised 14 regular, three terminated, and three extended
sequences of each sequence length. Highly uncertain blocks contained eight regular, six terminated,
and six extended sequences of each sequence length. The proportion of trials which were part of any
sequence (as opposed to being part of a random trial succession) was fixed at pevens = .45 across all

blocks (including the post measurement, see below).

Since only one block of trials was presented during the post-measurement, the composition of this
block was designed to match an approximate average of the two established levels of uncertainty
(high, low). The post-measurement comprised ten regular, four terminated, and four extended
ordered sequences of each sequence length, therefore corresponding to a medium level of uncertainty
(preg = .55, Prerm/ext=.22). In addition, four invalid cues of each sequence length as well as four colour

sequences were pI‘CSCIl'CCd.
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Detailed task instructions

Participants were informed that the experiment’s objective was to detect ordered digit sequences.
They were instructed to track a continuous stream of coloured single digits in the middle of the screen
and to perform two tasks: First, to indicate a regularly ascending sequence (suchas3 — 4 — 5 -6 —7)
by pressing the left mouse button and to keep the button pressed until the ordered sequence ended.
Second (and not as frequently), to indicate a sequence of digits continually presented in red by
pressing the right mouse button and to keep the button pressed until a digit was presented in a
different colour again. Participants were then made aware of the inclusion of the o character, so that
successions such as 8 — 9 — 0 — 1 — 2 were legitimate ordered sequences. Finally, participants were asked
to respond both as quickly and as correctly as possible when they detected either an ordered sequence
or a colour sequence. The two participants with the best task performance were promised gift

certificates for a popular online marketplace as an incentive to perform to the best of their ability.

Covariation in univariate contrasts

Methods

To gain further insight into functional connectivity patterns between the key regions yiclded from
our fMRI contrasts, we extracted regression weights from the TERM > EXT as well as from the
CHECK_HIGH > CHECK_LOW contrast. In order to avoid circularity (see Kriegeskorte et al.,
2009) we used the leave-one-out approach: We created functional regions of interest (ROI) by
calculating the group-level contrast considering #-1 participants. Group-level contrasts were corrected
for multiple comparisons as described in the Methods section of our manuscript. Regression weights

were then extracted on the subject level for the remaining participant. This procedure was repeated
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n times and ensured statistical independence between ROI generation and subsequent analyses of
regression weights extracted from that ROL

In accordance with our interpretation of the eigenvector centrality analysis findings (see the Results
section of the manuscript), we attempted to assess the role of the parahippocampal region (PHC) in
more detail: The hypothesis-free ECM analysis had revealed higher eigenvector centrality for PHC
under high uncertainty (i.c. a long-term effect of uncertainty on PHC connectivity to other highly
connected brain areas). In short, we interpreted this increase in functional connectivity as support for
the role PHC has been suggested to play in resolving conflict under uncertainty (for more details, see
the Discussion section). Conceivably, correlations of activity within PHC and “conflict-specific”
brain areas, as defined e.g. by our TERM > EXT contrast, could provide additional support for that

interpretation.

Results

Supplementary Fig. 2-S3 shows the respective correlation of regression weights extracted from PHC
with those of brain areas reported for the TERM > EXT and the CHECK_HIGH > CHECK_LOW
contrast. The former is the contrast of interest in the present analysis, given that terminations and
extensions are the two types of prediction errors. Of the brain areas whose activation was found to
be significant in the fMRI contrasts (see Results) we report correlations for the left inferior frontal
gyrus (IIFG, found for TERM > EXT), right superior frontal sulcus (rSFS), and posterior cingulate
cortex (PCC, both found for EXT > TERM). As a control condition, we also correlated PHC activity
with that of right inferior frontal gyrus (rIFG) and right angular gyrus (rANG), both reported for

the CHECK_HIGH > CHECK_LOW contrast.



Significant positive correlations were found between activity within PHC and frontal components
of the networks reported for terminations and extensions: PHC was found to be functionally
connected to lIIFG (#(18) = .57, p < .o1) as well as to rSFS (7(18) = .54, p < .05). In contrast, neither
PCC nor the two areas from right-lateralised CHECK_HIGH > CHECK_LOW network (rIFG and

rANG) showed a significant correlation with respective PHC activity (all p > .13).

Discussion

The more involved PE-specific areas were in the direct contrast of terminations and extensions, the
more PHC was found to be coactivated with the respective regions of interest. Although this analysis
does not account for trialwise variability in the BOLD signal, it points toward a functional
connection between PHC and frontal network components reflecting the qualitative difference in
prediction errors (i.e. lIFG for terminations and rSES for extensions). It was our hope that the present
results would function as a first step in disclosing the relationship between PHC and other key
regions under the modulating influence of uncertainty. To this end, we conducted a beta series
correlation analysis to consolidate results from the ECM analysis, univariate fMRI contrasts, and the

rather coarse coactivation pattern found therein.



Beta series correlation

Trial-by-trial connectivity patterns of the key regions identified in our fMRI contrasts was assessed
using the beta series correlation approach (Rissman et al., 2004). BOLD responses were estimated
separately for each trial of a given experimental condition (e.g. terminations under low uncertainty,
see Fig. 2-S1 for design specifics), yielding a set of trialwise beta weights for each voxel (or an array of
voxels). We defined functional regions of interest (R OI) using the leave-one-out procedure described
above. Following the concept of functional connectivity as the temporal correlation between event-
related neural activations (Friston et al., 1993), these beta series (averaged across voxels within each
ROI) were then correlated between our predefined ROIs to assess the degree of their respective
connectivity per condition. Thus, we ended up with 7 (20 subjects) x & (6 conditions) x 72 (6 ROIs)
symmetric correlation matrices. We first applied an arc-hyperbolic tangent transform (Fisher, 1921) to
all m x m entries of the k correlation matrices. Given the correlation coefficient’s restricted range of
[-1, 1], this transformation makes the coefficients’ distribution approximate a normal distribution. In

accordance with the procedure by Rissman and colleagues, the transformed correlation coefficients

were then divided by their known standard deviation 1/VN — 3 to yield z scores (N being the
number of data points contributing to the respective coefficient). Mean z-transformed correlation
matrices were calculated (averaged across participants) for each condition. Significance was
determined by assigning fdr-corrected p-values to the upper triangle of all £ z-transformed mean

correlation matrices.



Behavioural analysis including the surprise regressor

In order to approximate our fMRI analysis on the behavioural level, we controlled the reported
effects of expectation compliance on offset latency for the surprise values of the respective events. To
this end, we set up a linear model (Gaussian distribution, identity link function) with the factors
expectation compliance, uncertainty, and surprise for each participant and subsequently tested the
resulting regression coefficient of surprise for significance. The corresponding r-test revealed the
effect of surprise on mean offset latency to be not significant (#(19) = -0.78, p = .44, two-tailed). Please
note that regular events were equally sampled during and at the end of regular sequences for the
fMRI analysis (see Supplementary Fig. 2-S1). Since only checkpoints at the end of (but not during)
regular sequences required a response, comparability of fMRI and behavioural analyses is restricted

by varying event selection (see Limitations).
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Supplementary Figures
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Figure 2-S1. Illustration of event selection for each of the GLM regressors and both sequence lengths. Event selection
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3.1 Abstract

While prediction errors (PEs) have been established to drive learning through adaptation of internal
models, the role of model-compliant events in predictive processing is less clear. Checkpoints (CPs)
were recently introduced as points in time where expected sensory input resolved ambiguity
regarding the validity of the internal model. Conceivably, these events serve as on-line reference
points for model evaluation, particularly in uncertain contexts.

Using electroencephalography (EEG), the aim of the present study was to characterise the functional
relationship of CPs and PEs in a serial pattern detection task. Specifically, we first hypothesised a joint
P3b component of both event classes to index recourse to the internal model (compared to non-
informative standards, STD). Second, we assumed the mismatch signal of PEs to be reflected in an
N4o00 component when compared to CPs. Event-related findings supported these hypotheses. We
suggest that while model adaptation is instigated by PEs, CPs are similarly used for model evaluation.
Intriguingly, behavioural subgroup analyses showed that the exploitation of potentially informative
reference points may depend on initial cue learning: Strict reliance on cue-based predictions may
result in less attentive processing of these reference points, thus impeding upregulation of response
gain that would prompt flexible model adaptation.

Overall, present results highlight the role of CPs as model-compliant, informative reference points
and stimulate important research questions about their processing as function of learning und

uncertainty.
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3.2 Introduction

Predicting upcoming events constitutes one of the fundamental qualities of brain function. Based on
internal models shaped by previous experience, top-down predictions are compared to bottom-up
sensory signals (Rao & Ballard, 1999). Redundant components of perceptual information are
disregarded whereas surprising expectancy violations are propagated upward in the processing
hierarchy (Friston, 2005; Mumford, 1992). Model adaptation in consequence of such prediction
errors (PEs) has been proposed to be the foundation of associative learning mechanisms (Bastos et al.,
2012; Rescorla & Wagner, 1972), as unexpected events are particularly informative with regard to their
current context. Importantly, probabilistically occurring expected events have also been suggested to
inform the internal model (Kithn & Schubotz, 2012): While PEs instigate model adaptation, expected
events verify model-based predictions. These verifications are particularly informative when we face
uncertain environments. A recent fMRI study (Kluger & Schubotz, 2017) found that in uncertain
environments, so-called “checkpoints” (CPs) emerged as points in time where distinctive processing
of expected events pointed to a context-sensitive adaptation in predictive processing. While the entire
stimulus sequence could be predicted reliably in stable environments, unstable environments
prompted stepwise predictions. This way, CPs were used to verify the internal model in order to
predict the next section accordingly. Thus, while model adapration is induced by PEs, context-
dependent model evaluation does not seem to require expectancy violations. Instead, selected time
points carry information about the on-line validity of the internal model, raising the intriguing
question of how CPs and PEs functionally relate to one another.

For the present study, we employed the paradigm from Kluger and Schubotz (2017) in an
electroencephalography (EEG) experiment. Exploiting the temporal benefits of EEG, we aimed to

further understand the functional relationship of CPs and PEs as well as their respective evolution
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over time. Specifically, we aimed to show how functional commonalities of and central distinctions
between the two event types translate to electrophysiological signals.

Participants performed a serial pattern detection task in which they were asked to press and hold a
response button whenever they detected a short or long ordered digit sequence (e.g. 1-2-3-4-5, length
of either 5 or 7 items) within an otherwise pseudorandom stream of coloured single digits. Expectable
sequence length was cued by digit colour and occasionally violated by premature terminations or
unexpected extensions. In addition to these two types of prediction errors, checkpoints were defined
as sequential positions where PE could potendally occur, but did not. Thus, although checkpoints
were exclusively sampled from regular events consistent with the previous cue, their occurrence was
probabilistically modulated by blockwise manipulation of irreducible uncertainty (De Berker et al.,
2016; Payzan-LeNestour & Bossaerts, 2011). Going back to our research question, both CPs and PEs
provide central information for model evaluation or adaptation, respectively, whereas deterministic
standard trials (STD) did neither. Consequently, we first hypothesised a joint event-related (ERP)
component of CPs and PEs (compared to STD) reflecting recourse to the internal model. The P3b
component has been conclusively shown to co-vary with subjective improbability or unexpectedness
of a stimulus (Kutas & Federmeier, 2011; Mars et al., 2008; Seer et al., 2016). Such highly informative
events supposedly initiate contextual updating (Kimura et al., 2010; Verleger et al., 2016) or memory-
based revision of mental representations (Polich, 2007). Importantly, the P3b is elicited by
behaviourally relevant rather than merely deviant stimuli in order to facilitate motor responses
(Katayama & Polich, 1998; Nieuwenhuis et al., 2o11), making it a promising candidate for a joint
physiological component of CPs and PEs.

Aside from the aforementioned conceptual commonalities of CPs and PEs, one critical distinction
remains, namely the mismatch signal that is intrinsic to PEs. We hypothesised an enhanced N4oo0
component for PEs to reflect this mismatch signal in contrast to CPs. The N4oo amplitude is known
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to scale with event surprise in language (for review, see Kutas & Federmeier, 2011) and arithmetic tasks
(Niedeggen et al., 1999; Szlics & Csépe, 200s), presumably marking modality-independent
integration of incongruous information.

Complementing ERP analyses, we assessed topographic microstates (Lehmann et al., 1987) for a
multivariate, assumption-free comparison of the temporal dynamics underlying CP and PE
processing. This way, we aimed to characterise the two event classes using similarities and differences

in the onset, duration, and strength of their respective network activation.

3.3 Material and methods

Participants

A total of 32 neurologically healthy, right-handed volunteers (26 female) at the age of 23.4 * 2.5 years
(M £ SD) participated in the study for payment or course credit. Participants were recruited from
the university’s volunteer database and had (corrected-to-) normal vision. Written informed consent
was obtained from all participants prior to the start of experimental procedures. Experimental
standards complied with the local Ethics Committee of the University of Miinster. One participant
was excluded from further data analysis due to poor behavioural performance during the experiment
(see below); a second participant was excluded due to technical difficulties during the EEG session.
Therefore, all reported analyses are based on a sample of 30 participants (25 female, age 23.2 + 2.5

years).

Stimulus material

Task and stimulus material of the present study were adopted from a previous fMRI study conducted
in our lab (Kluger & Schubotz, 2017). In short, participants were shown pseudorandomly coloured
single digits presented for soo ms in the centre of a light grey computer screen (see Fig. 3-1A).
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Presentation frequencies for all colours and digits were equally distributed both within and across
blocks of approximately 6 minutes. Each block contained ordered sequences increasing the previous
digit by one (e.g. 1 — 2 — 3 — 4 — 5; Fig. 3-1A, left) embedded in random trials with no discernible
relation between consecutive digits. In order to balance sequential starting points across digits, the
ascending regularity necessarily included the o character and continued in a circular fashion after the

figure 9 (e.g. 8 —9—-0-1-2).
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Figure 3-1. (A) Exemplary trial succession and time frame of the corresponding response for ordered sequences.

Sequential trials have been highlighted for illustrative purposes. (B) Schematic structure of a short ordered sequence
showing the positions of checkpoints (CP) and prediction errors (PE, red). At the fourth position, the sequence could
either be terminated (PE) or continued as expected (CP). Similarly, the sixth position contained either the regular end
(CP) or an unexpected extension of the sequence (PE). (C) Cue-based expected sequence length and resulting prediction
errors for terminated and extended short ordered sequences (expectation compliance). (D) Local transition probabilities
for terminated, regular, and extended sequences depending on the respective level of irreducible uncertainty.
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Undisclosed to the participants, two colours were exclusively used as cues (fixed validity p = .80) to
indicate the start of ordered sequences: one colour marked the first digit of a short ordered sequence
(regular length of five digits), a second colour marked the first digit of a long ordered sequence (regular

length of seven digits). Each participant was assigned two individual cue colours from distinct hues.

Prediction errors were induced by manipulation of the sequences’ expectation compliance. While the
cues indicated the length of regular ordered sequences (e.g. seven digits for long ordered sequences),
terminated sequences were shortened by two items. Conversely, extended sequences were prolonged
by two items (Fig. 3-1B). Finally, the composition of regular, terminated, and extended sequences
within a particular block was varied across blocks. This way, the irreducible uncertainty of a block
was set to be either low or bigh (Fig. 3-1C). Low uncertainty blocks could be seen as stadistically stable
regarding cue-based expectations whereas highly uncertain blocks formed a more unstable statistical

structure. The experiment was programmed and run using the Presentation 14.9 software

(Neurobehavioral Systems, San Francisco, CA, USA).

Task

Participants were instructed to press and hold the left button of a response box with their right index
finger as soon as they noticed an ordered sequence. Release of the button was to indicate the end of

the ordered sequence.

Experimental procedures

The study was conducted on two consecutive days. On the first day, participants completed a training
session to familiarise themselves with the task and to provide them with implicit knowledge of the
cues and the underlying statistical structure of the experiment. The training consisted of two blocks

(one block of low and high uncertainty, respectively) with a total duration of approximately 12
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minutes. Importantly, at no point during the training or the EEG session was it revealed that there
was informational content in some of the colours (i.e. the cues) or that the blocks varied in their

respective statistical structure (i.e. their level of uncertainty).

The second day included the EEG session as well as a subsequent post-measurement. The EEG
session consisted of eight blocks (four blocks of each uncertainty level) with a total duration of
approximately 48 minutes. Participants were sitting comfortably on a chair in a darkened, sound-
dampened and electrically shielded EEG booth. They were instructed to avoid blinking the best they
could, most importantly during button presses. Experimental procedure and task during the EEG

session were otherwise identical to the training session.

Following the EEG session, participants completed a behavioural post-measurement in order to assess
their implicit knowledge of the cue information. To this end, they were shown one final experimental
block (duration approx. s min) on a computer outside the EEG booth, performing the identical task
as before. Crucially, only half of the ordered sequences were cued by the colours learned during the
training and the EEG session. The other half began with fixed but different colours that had indeed
been presented during training and EEG, but not as cues for the respective participant. Therefore,
these colours were non-informative in that they contained no implicitly learned information
concerning upcoming trials. In a verbal interview following the post-measurement, all participants

denied having noticed any colour-related regularity.
Behavioural data analysis

Statistical analyses of behavioural responses were performed in R (R Foundation for Statistical
Computing, Vienna, Austria). First, correct and incorrect responses were aggregated separately for

training, EEG session, and post-measurement for each participant. Incorrect responses were further
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divided into misses (no response over the course of a sequence) and false alarms (response occurring
without presentation of sequential trials). Participants’ overall performances were assessed via the

discrimination index Pr (Snodgrass & Corwin, 1988).

Reaction times for button presses and releases were assessed for the EEG session and post-
measurement. Onset latency was calculated as reaction time relative to the onset of the second trial of
any particular ordered sequence (i.e. the earliest possible point to detect a sequential pattern). Offset
latency was calculated as reaction time relative to the onset of the first random trial after a particular
sequence. Reaction times occurring either before the cue trial (i.e. carlier than -s00 ms) or more than
2000 ms after the end of the sequence were excluded. Repeated-measures analyses of variance
(ANOVA) and paired #-tests were used to assess possible differences in offset (as a function of
expectation compliance and uncertainty) and onset latency (learned vs new cue colours during post-
measurement). Where appropriate, results of paired #-tests were corrected for multiple comparisons

at p = .05 using the false discovery rate (fdr) correction by Benjamini & Hochberg (1995).

EEG data analysis

EEG data acquisition and data preprocessing

Scalp EEG was recorded from 62 Ag/AgCl-clectrodes mounted in a BrainCap TMS electrode cap
(Brain Products, Gilching, Germany) using the BrainVision Recorder software (Brain Products,
Gilching, Germany). All scalp channels were measured againsta ground electrode at position FPz and
referenced against FCz during recording. Two additional electrooculogram (EOG) clectrodes were
applied above and below the right eye for the detection of horizontal and vertical eye movements. All
impedances were kept below 10 kOhm. EEG was recorded at a sampling rate of 1 kHz with recording

filters set to 0.1 — 1000 Hz bandpass.
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EEG preprocessing was conducted in EEGLAB (Delorme & Makeig, 2004). Data segments
containing experimental breaks were discarded prior to independent component analysis (ICA).
Resulting components distinctly reflecting eye movements were subsequently rejected manually
(mean = 2.83 components) using the SASICA toolbox (Chaumon et al., 2015). Data were then filtered
with a 0.1 Hzlow cut and 30 Hz high cut filter and recalculated to common average reference. Based
on participants’ overall pattern of reaction times at the end of sequences, a time frame of [-100, 600]
ms was defined for the analysis of event-related potentials (ERP) and multivariate segmentation.
Epochs containing artefacts were discarded by semiautomatic inspection with an allowed
maximum/minimum amplitude of + 200 LV and voltage steps no higher than so uV per sampling.
Channels with a high proportion of outliers (kurtosis criterion: z > 6) were replaced by a linear

interpolation of their neighbour electrodes (M = 1.8 interpolated channels).

Event-related potentials

Averages of the epochs representing our events of interest were calculated separately for each
participant. For terminations, the event onset was time-locked to the first unexpected random digit,
whereas extensions were defined with the onset time-locked to the first unexpected sequential digit.
Checkpoints were defined as points in time at which we hypothesised an incoming regular stimulus
to be checked for cither a termination (i.e. a check occurring during the ongoing sequence) or an
extension (i.e. a check at the regular end) of the ordered sequence. Due to their unambiguous
characteristic and temporal distinctiveness, digits at the fourth position of every long extended
sequence were defined as sequential standard trials. Likewise, digits at the fourth position of every
random sequence were sampled as 7andom standard trials. Finally, grand averages across participants

were calculated for all events of interest.
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Using the Mass Univariate ERP Toolbox (Groppe et al., 2011), we employed a two-stage approach to
assess reliable ERP differences between conditions: First, we restricted our analyses to specific time
frames and electrodes for stringent testing of our hypotheses. In a second step, we performed a whole-
brain analysis including all time points to increase sensitivity. In each case, ERPs from the respective
conditions were submitted to a repeated measures cluster mass permutation test (Bullmore et al.,
1999) using a family-wise significance level of a. = .05. Repeated measures #-tests were performed for
each comparison using the original data and sooo random within-participant permutations of the
data. For each permutation, all #-scores corresponding to uncorrected p-values of p = .05 or less were
formed into clusters. The sum of the #scores in each cluster defined the ‘mass’ of that cluster and the
muost extreme cluster mass in each of the soor sets of tests was used to estimate the distribution of the

null hypothesis.

Multivariate segmentation

We used the Cartool software package (available via www sites.google.com/site/cartoolcommunity)
for a segmentation of event-related EEG data sets into topographic maps. This procedure was first
introduced by Lehmann and colleagues (1987) to describe what they termed functional microstates,
meaning brief time periods of stability in otherwise fluctuating field configurations. More generally,
this segmentation allows the assessment of spatial ficld characteristics and their temporal dynamics
(see Brunet et al,, 2011). As these topographic ERP analyses consider information from all electrodes
(i.c. the field configuration as a whole), they offer a multivariate approach to investigating effects

between time periods or experimental conditions without a priori selection.

The methodology behind topographic ERP analyses has been described in great detail (see Murray et
al., 2008 for an excellent step-by-step tutorial) and is briefly outlined here. Based on the so-called

AAHC (atomize and agglomerate hierarchical clustering) algorithm, Cartool first iteratively
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generated clusters of ERP topographies to identify template maps separately for each experimental
condition. A cross-validation criterion was then used to determine which number of template maps
optimally described the group-averaged ERDPs (i.e. how many template maps were needed to
maximise explained variance in the data). Finally, the optimal number of cluster maps per
experimental condition was fitted back to the original data, allowing us to compare onset and

duration of the same template maps across conditions.

Single-trial analyses: event-specific surprise

In addition to global context effects of uncertainty, single-trial behavioural and physiological
correlates of CPs and PEs conceivably depend on how much information is carried by respective
stimuli. For single-trial analyses of reaction times and ERPs, we modelled event-specific surprise
following the notion of an ideal Bayesian observer (see Harrison et al., 2006). Surprise /(x;) was

defined as the improbability of event x; i.c.

I(x;)) = —Inp(x;)
with
) n} +1
Xi) = ————
piXi Zk n,l{ + 1

where n} denotes the total number of occurrences of outcome j (terminated, regular, extended) up
to the current observation 7 relative to the sum of all past observations (with k& for all possible

outcomes).
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3.4 Results

Behavioural results

EEG session

All participants showed an overall high level of performance with a mean Pr score of Apr = 0.90
(8D = 0.06) during the EEG session, indicating good attentiveness throughout the experiment. Mean
Pr scores did not differ significantly between experimental blocks ({7, 248) = 0.03, p = .999) or as a

function of block uncertainty (1(29) = 1.58, p = .139, see Fig. 3-2A).

The repeated-measures ANOVA yiclded a significant main effect of expectation compliance on
offsetlatency (K2, 58) = s1.54, p <.oo1). Post-hoc pairwise r-tests revealed participants’ button releases
to be significantly slower after terminated (M = 619.48 ms, SD = 96.55 ms) than after regular (M =
532.81ms, SD = 99.74 ms, fdr-adjusted p = .003) as well as after extended sequences (M = 346.68 ms,
SD = 219.35 ms, fdr-adjusted p < .oo1). The difference between extended and regular sequences was
significant as well (fdr-adjusted p < .oo1, sce Fig. 3-2B). This pattern of offset latencies fully replicated
the findings from our previous fMRI study (see Kluger & Schubotz, 2017). Neither the main effect
of uncertainty (£{1, 29) = 0.05, p = .821) nor the interaction term of uncertainty X expectation
compliance (K2, §8) = 1.72, p = .187) reached statistical significance, suggesting that participants were
able to discriminate regular from manipulated sequences regardless of the respective uncertainty level.
The number of misses (#(29) = -1.89, p = .068) and falsc alarms (129) = o0.10, p = .923) did not differ

significantly between high and low uncertainty blocks (see Fig. 3-2A).
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Figure 3-2. (A) Mean count of false alarms (FA) and misses per block as well as mean PR score as a function of
uncertainty. (B) Mean offset latencies for terminated, regular, and extended sequences as well as mean onset latencies for
learned and new cue colours during post-measurement. ** = p < .01, ** = p < .001

Post-measurement

Participants performed equally well during the post-measurement (Mpr = .90, SD = 0.05) as they
had during the EEG session. The post-measurement was conducted in order to assess cue learning: If
participants had learned the association of cue colours and prospective ordered sequences over the
course of the training and the EEG session, they could be expected to respond more quickly to
sequences beginning with established cue colours than to those starting with new colours during the
post-measurement. Indeed, the corresponding rtest confirmed a significant difference between
learned and new cue colours (#(29) = -2.47, p = .01, one-tailed): Participants exhibited a shorter

reaction time to learned cue colours (M = 788.02 ms, SD = 168.00 ms) than to new cue colours just

introduced during the post-measurement (M = 844.59 ms, SD = 172.31 ms; see Fig. 3-2B).

Performance-based subgroup analyses

Based on participants’ reaction times at onset during the post-measurement, the sample was median-
splitinto one group that had shown a gain in response speed following the learned cue colours (gain)
and another group that had not (o gain, see Fig. 3-3A). The gain group showed a significantly higher
difference between reactions to new and learned cue colours (M = 178.54 ms, SD = 106.62 ms) than

did the no gain group (M = -45.40 ms, SD = 82.24 ms, £26.64) = 6.29, p < .oo1, one-sided).
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The rationale behind comparing the two subgroups’ behavioural performance was that a stronger
association of cue colour and sequence length (as reflected by a pronounced gain in response speed
during post-measurement) should entail distinct response patterns at the end of regular and
manipulated sequences. We repeated the offset latency ANOVA separately for gain and no gain
groups and found the overall main effect of expectation compliance to be present in both groups
(gain: 2, 28) = 30.15, p < .001; no gain: /{2, 28) = 28.23, p < .oo1; see Fig. 3-3B). Notably, only the
gain group showed a significant interaction of expectation compliance and irreducible uncertainty
(F(2, 28) = 7.98, p = .002): Button releases at the end of extended sequences occurred significantly
carlier when uncertainty was low (M = 221.16 ms, SD = 328.87 ms) than when it was high (M = 333.75

ms, SD = 252.23 ms, /(14) = 2.90, p = .012).
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Figure 3-3. (A) Individual gains in reaction time (defined as the difference in reaction time following new minus learned
cues) during post-measurement. Positive values indicate quicker button presses following learned cues. Blue dotted line
depicts Mdnpiff = 78.70 ms. Participants were consequently median-split into a gain group (blue) and a no gain group
(red). (B) Upper panel: Mean offset latencies as a function of expectation compliance for gain (blue) and no gain group
(red). Significant differences only shown for high vs low uncertainty for the sake of clarity (see Fig. 3-2B for differences
between levels of expectation compliance). Lower panel: Correlations between offset latency and trial-specific surprise
value of sequential extensions for both groups. ** = p < .ot
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By definition, extensions were on average more surprising under low uncertainty due to their low
presentation rate in these blocks. Importantly, however, event-specific surprise values of extensions
also fluctuated under high uncertainty (albeit to a lesser extent). Thus, the reported uncertainty effect
on the gain group’s responses after extended sequences might be generalised across uncertainty levels
in such a way that more surprising extensions — regardless of global contextual features — evoked
shorter offset latencies in the gain group: If excess reliance on cue information had in fact determined
the behavioural effect found for the gain group, these participants should have responded equally
fast to locally surprising extensions irrespective of global uncertainty. Corroborating this hypothesis,
we found a significant negative correlation of stimulus-bound surprise and offset latency after
extended sequences for the gain group (/72) = - .29, p = .013) but not for the no gain group (1(72) =
.06, p = .617). The difference between the two correlation coefficients was found to be significant (Z

= 2.1I, p = .017, one-tailed).

An intuitive explanation for earlier releases following highly surprising extensions would be that the
gain group notonly released the button more quickly, but also more often prematurely: Conceivably,
the more stable the cue information had been learned, the more likely would the response button be
released at the expected sequence end rather than at the actual end. We assessed two additional
questions with regard to more specific distinctions in behaviour: First, we hypothesised the gain
group to more frequently respond prematurely to extended sequences, i.c. at the ‘'would-be” end of
the sequence had it not been extended. Recall that unexpected extensions occurred at the sequential
positions where — based on the cue information — a non-sequential digit was expected. Accordingly,
as illustrated in Figure 3-4, we compared the two groups’ button releases within the interval of -1000
(onset of the unexpected sequential digit) and soo ms (offset of the first non-sequential digit) around

the end of extended sequences. Supporting our hypothesis, the gain group was found to have a

87



significantly higher number of releases within the [-1000, 500] ms time frame than the no gain group
(#(15) = 22.28, p < .001, one-sided; see Fig. 3-4A). The group difference in incremental releases per 100

ms window was also found to be significant (#(15) = 2.35, p = .o17, one-sided).
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Figure 3-4. (A) Mean count of button releases during the experiment up to selected offset latencies for gain (blue) and
no gain group (red). Shown here for an exemplary short extended sequence (length of 7 digits), the gain group was found
to release the response button more frequently at offset latencies between -1000 and +s00 ms (i.e. between the onset of
the unexpected sequential digit [red frame] and the offset of the first non-sequential) following extended sequences.
Dotted lines and bars depict mean offset latencies for regular sequences per group + 2 SEM. (B) Similarly, shown here for
a short regular sequence (length of s digits), the gain group was found to release the response button more frequently at
offset latencies between -s00 and +s00 ms (i.c. between the onset of the last sequential digit and the offset of the first
non-sequential digit) following regular sequences. Dotted lines and bars depict mean offset latencies for extended
sequences per group * 2 SEM.

Second, stronger expectations by means of more accessible cue information within the gain group
could conceivably lead to a similar pattern of early responses following regular sequences. The gain
group could therefore be expected to more frequently release the response button within a brief

interval of £ 500 ms around the end of regular sequences. Responses during the last sequential digit
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(i.e. offsetlatency between -s00 and o ms) would reflect an anticipatory release of the response button
whereas responses during the first non-sequential digit (o — soo ms) would reflect a quick detection
of the sequence end. Both anticipatory and quick releases after the end of a regular sequence were
hypothesised to be positively associated with the degree to which the colour-length association had
been learned. Fittingly, the gain group was found to have a significantly higher number of releases
within the £ 500 ms time frame than the no gain group (#10) = 9.47, p < .oo1, one-sided; see Fig.
3-4B). The group difference in incremental releases per 100 ms window was found to be marginally

significant ((10) = 1.81, p = .05, one-sided).

EEG results

Event-related potentials

PE -STD

Based on our hypotheses, we first tested prediction errors and sequential standards for reliable
differences in the P300 time frame. We analysed all time points between 300 and 600 ms (1350
comparisons in total) from two subsets of electrodes: one parieto-central subset (CP1, CPz, CP2, P1,
Pz, P2) to detect a posterior P3b component and a fronto-central subset (F1, Fz, F2) controlling for
anterior P3a effects. Supporting our hypothesis, we found a significant P3b over the parieto-central
electrodes peaking around 388 ms (Fig. 3-5A).

Subsequently, all time points between o and 6oo ms were included in a two-sided whole-brain
analysis to assess reliable differences exceeding our hypotheses (18600 comparisons in total). In
addition to the reported P3b effect, we found a significant P6oo component with a right-lateralised

parietal scalp distribution peaking around soo ms (Fig. 3-5A).
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Figure 3-s. (A) Significant ERP differences between prediction errors and sequential standards included a parieto-central
P3b (left) as well as a right-lateralised P6oo component (right). P3b topography shows the frontal and parietal subsets of
electrodes used for the analysis (bottom left). Significant clusters are marked in white. (B) ERP differences between
checkpoints and sequential standards were equally reflected in significant P3b (left) and P6oo components (right).

CP -STD

Like PEs, checkpoints are probabilistic, highly informative sequential positions with an immediate
relevance for behaviour. Therefore, one would expect a certain degree of similarity between PE and
checkpoint ERPs when compared with deterministic, behaviourally non-informative standard trials.
ERDPs from checkpoints and sequential standards were submitted to a one-sided analysis including all
time points between 300 and 600 ms (1350 comparisons in total) and the two clectrode clusters
described above. The analysis revealed a pattern very similar to previous prediction error ERPs,
including both a significant posterior P3b (peaking around 422 ms) and a right-lateralised P6oo
(peaking around ss4 ms, Fig. 3-sB). Notably, P3b and P6oo peak latencies thus occurred slightly
earlier for prediction errors than for checkpoints.

Since strategic adaptation of CP processing as a function of context uncertainty was one of the central

objectives of the previous fMRI study, we subsequently split the analysis to separately assess high and
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low uncertainty checkpoint ERPs. P3b and P6oo were found for checkpoints in both uncertainty
conditions (Fig. 3-6). Interestingly, while the P3b component was virtually identical in both latency
and scalp distribution, we found subtle differences regarding the P6oo: At the group level, the
activation peak occurred ~50 ms earlier and slightly more frontally for high (s00 ms at CP4) than for

low uncertainty checkpoints (554 ms at P6, see Fig. 3-6).

P3b P600

ERP (nV)

low

difference (uV)

ERP (V)

high

difference (V)

Figure 3-6. Grand averaged ERDPs of low (top row) vs high uncertainty checkpoints (bottom row) and sequential
standards. Checkpoints elicited significant P3b (left) and P6oo components (right) irrespective of the uncertainty level.
Note that, while uncertainty did not modulate P3b scalp distribution or peak latency, the P6oo elicited by high
uncertainty checkpoints showed an earlier peak and a slightly more frontally distributed topography.

Recall that we observed an carlier P3b peak for PEs (388 ms) than for low (426 ms) and high
uncertainty CPs (418 ms). In contrast, P6oo peak latencies were identical for PEs and high uncertainty

CPs (soo ms) and earlier than for low uncertainty CPs (554 ms). This pattern of ERP results suggests

a close functional relationship of PEs and (particularly high uncertainty) CPs (see Fig. 3-sA and 3-6).
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This relationship and its variation under uncertainty were the main objective of our subsequent

single-trial and multivariate segmentation analyses (see below).

PE - CP

Given the reported conceptual and functional similarities between PE and CP, their direct contrast
was meant to reveal the correlate of expectation violation definitive of PE. We hypothesised this
mismatch to be reflected in an enhanced N4oo component. Accordingly, we included all time points
between 300 and 500 ms in a one-sided whole-brain analysis (6262 comparisons in total). PEs were
found to elicit a significantly enhanced N4oo over parieto-central electrodes peaking around 418 ms
(Fig. 3-7). No additional significant components were found in the subsequent whole-brain analysis

including all time points between o and 600 ms (18600 comparisons in total).
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Figure 3-7. The direct comparison of prediction errors and checkpoints revealed a significant N4oo component peaking
around 418 ms over parieto-central electrodes. Bottom panel shows component evolution over time.
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Multivariate segmentation

Cartool’s meta-criterion showed that group-averaged ERPs of CPs, PEs, and STD were optimally
described by a set of 12 topographic template maps (TM). Figure 3-8 shows the temporal progressions
of these topographies for each condition. Visual inspection suggested notable differences between
conditions within two main time frames. First, following a virtually simultaneous onset of fronto-
centrally distributed TM 1 (around 204 ms), PEs and high uncertainty CPs exhibited a sustained
frontal cluster (TM 2, 284 — 326 ms) after transitioning through a more global TM 12 (Fig. 3-8A).
Whereas this frontal shift was not found for low uncertainty CPs, it was even more pronounced for
STD (i.e., with a higher amplitude and an earlier onset). After fitting the group-level template maps
onto individual subject data, one-sided z-tests confirmed a significantly greater global field power of
TMa2 for STD compared to PEs ({13.08) = .91, p = .039) and CP HIGH (#(14.83) = 1.83, p = .044).
Similarly, onsets of TMz2 occurred significantly earlier for STD than for CP HIGH (£20.86) = - 1.9s,

p = .033). The comparison of STD and PEs was marginally significant (#(15.42) = - 1.67, p = .057).

Second, ERP time courses showed differential topographic as well as temporal configurations during
alater time frame (starting at around 360 ms). PEs and both CP conditions shared a frontal-to-parietal
shift (TM 3 — 5) with particular differences in cluster onset and duration (Fig. 3-8B). In contrast,
sequential standard trials showed a distinct ongoing frontal topography with a slight dominance of
left hemisphere sources (TM 9, 406 — 540 ms). Group-level onset and duration for the reported

topographies are listed in Table 3-1.
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Figure 3-8. Global field power (GFP) of group-averaged ERPs for prediction errors, checkpoints under high/low
uncertainty, and sequential standard trials time-locked to stimulus onset. Coloured segments within the area under the
curve depict distinct topographic configurations (template maps, TM) as revealed by hierarchical clustering. Note that

the CP LOW curve was flipped for illustrative purposes only and did not differ in polarity.

Table 3-1. Group-level onset and duration of selected template maps for PE, high/low uncertainty checkpoints, and

sequential standard trials. Time frame for grand average ERP analysis [-100, 6oo] ms.

TM class Condition

PE CP HIGH CPLOW STD
TM 2
Onset (ms) 284 284 - 236 | 368
Duration (ms) 42 42 - 94 | 38
TM 3
Onset (ms) 326 | 360 360 370 330
Duration (ms) 12|78 62 48 38
TM 4
Onset (ms) 438 422 418 -
Duration (ms) 34 50 72 -
TM s
Onset (ms) 472 472 328 | 490 -
Duration (ms) 104 76 42|70 -
TM 9
Onset (ms) - - - 406
Duration (ms) - - - 134
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TM 11

Onset (ms) 204 204 206 202
Duration (ms) 38 48 30 34
TM 12

Onset (ms) 242 252, 240 -
Duration (ms) 42 32 88 -

3.5 Discussion

Predicting events of everyday life, our internal model of the world is constantly compared to sensory
input we perceive. Prediction errors induced by unexpected events are deemed particularly
informative in that they instigate learning through model updating. We show here that information
is equally sampled from expected events at particularly relevant checkpoints, suggesting that under
uncertainty, model-affirmative events similarly prompt recourse to the internal model. Both
checkpoints and prediction errors showed a significant P3b component when compared to sequential
standards, indexing the relative (im)probability of CP and PE occurrence. Conversely, the direct
comparison of CPs and PEs revealed a significant N4oo component as the mismatch correlate elicited
solely by prediction errors. Combined with findings from behavioural and functional microstate
analyses, CP characteristics highlight the significance of informative reference points for abstract

predictive processing, raising intriguing questions for future research.

Functional Characteristics of Checkpoints

In order to establish a more precise characterisation of checkpoints, they have to be related to and
dissociated from two other event types: First, since CPs are regular events, they share the expectedness
of sensory input with sequential standards. In contrast to these standards, however, checkpoints are

probabilistic and therefore informative with regard to task context and behavioural requirements.

95



Second, PEs are equally informative but do carry a mismatch signal that requires behavioural
adaptation in opposition to the internal model.

As hypothesised, the significance of CPs and PEs as particularly meaningful points in time was
reflected in a joint P3b component compared to least informative standards. Often discussed as an
index of enhanced information transmission and allocation of resources (Humphrey & Kramer,
1994; Kok, 2001), P3b is well suited to reflect exploitation of information at these sequential positions.
More precisely, an incoming stimulus is evaluated in context of previous stimuli by comparing it to
information from working memory (Polich, 2003; Polich & Criado, 2006). Such monitoring is
immediately beneficial for stimulus classification and — where required - transforming this
information into action (Nieuwenhuis et al., 2005; Verleger et al., 2005). These proposals fit well with
central findings from the original fMRI study in which we found enhanced activation at CPs under
high (vs low) contextual uncertainty. We interpreted these effects as an iterant evaluation of model
information retrieved from working memory, pointing towards a strategic adaptation of predictive
processing to contextual statistics (Kluger & Schubotz, 2017). Notably, the observed activation
pattern included the temporo-parietal junction (TPJ), a hypothesised cortical source of the P3b
(Donchin & Coles, 1988). Common ERP components and the similarities in functional microstates
thus further illuminate the processing of CPs and PEs as highly informative events, suggesting that
positions of potential and actual prediction errors are being exploited in a similar way.

It remains the key difference between CPs and PEs that only the latter violated cue-based predictions.
Therefore, despite the similarities reported above, CPs and PEs will eventually be processed
differently once consequences of the actual stimulus come into effect. Supporting our initial
hypothesis, the mismatch signal for PEs (vs CPs) was reflected in an N4oo component. N4oo effects
have typically been reported when words mismatched semantic expectations shaped by previous

context information (e.g., Kutas & Federmeier, 2000). Closely related to the present paradigm,
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centro-parietal N4oo effects following incorrect (vs correct) solutions in arithmetic tasks (e.g.,
Galfano et al,, 2004) point towards a more general process independent of stimulus modality.
Accordingly, Kutas & Federmeier (2011) discuss the N4oo as an index of conceptual representations
which — when contextually induced predictions are violated — may need to be refined. Such adaptive
processes are conceivably reflected by components occurring even later than the PE-related N4oo,
e.g., ERDPs related to subsequent digits ‘confirming’ the initially surprising stimulus. Future research
could make use of later time frames to further distinguish prediction errors and checkpoints with
regard to the respective consequences they entail.

To summarise, CPs are informative points in time which, despite a lack of unexpected input, show
close functional similarities to canonical PEs. Our findings suggest that information from particular
sequential positions, irrespective of the actual outcome, is used for evaluation and/or updating of
internal models. Importantly, while sensory input at CPs complied with the more likely expectation,
their sequential positions were tagged by the statistical structure inherent in the stimulus stream.
Previous fMRI results have shown CPs to be exploited particularly in highly uncertain contexts,
conceivably in order to solve ambiguity with regard to upcoming sensory information and efficiently
adapt behaviour. Overall, the functional profile of checkpoints conceptually relates to bortleneck
states (Botvinick, 2012; Solway et al., 2014) from the realm of hierarchical reinforcement learning:
These states are passages or transition points between larger sets of states, effectively forming natural
subgoals in hierarchical representations of behaviour (Moradi et al., 20125 Simgek & Barto, 2009).
Similarly, the sequential positions of CPs and PEs mark informative transition points between
predictable and non-predictable (random) states. Depending on whether or not the presented
stimulus complied with cue-based expectations, checkpoints and prediction errors are supposedly

used for model evaluation and updating, respectively.
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Implications for Predictive Processing

Combined ERP and microstate findings of the present study revealed considerable similarities
between the representations of CPs and PEs. On a broader scale, this suggests overlapping roles of
CPs and PEs in predictive processing. Given that PE-based model updating has been established to
be fundamental for associative learning (den Ouden et al., 2009), CPs could similarly be used for
model evaluation. Clearly, expectation-compliant information (as observed at CPs) does not call for
corrective model updating. It seems unlikely, however, that potentially critical information extracted
from CPs would not be used to evaluate the validity of model statistics on-line. Particularly for the
estimation of higher level statistics, the number of regular outcomes at critical time points is no less
instructive than the number of PEs. Support for this proposition comes from carlier studies using
digit sequences in abstract predictive processing. Kithn and Schubotz (2012) found a distinct frontal
correlate of regular, model-compliant events at sequential positions where statistically rare breaches
of expectancy had previously been observed. As the actual sensory input neither violated model-based
predictions nor called for behavioural adaptation, these frontal responses reflected increased weight
of bottom-up signals driving potential model updating solely based on statistical regularities.
Another study (Trempler et al., 2017) manipulated the requirement to either ignore or respond to
two different expectation violations. Again, violations that could be ignored ('drifts’) did confirm the
internal model, whereas violations that required a response (‘switches’) prompted corrective model
updating. The pattern of brain activation suggested a two-step neural response to these events,
starting with joint processing of stimulus discrimination followed by distinct correlates of

behavioural responses prompted by the respective violation type.

In line with these previous findings, we suggest information from CP and PE time points to be

evaluated irrespective of the actual outcome (distinguishing both events from STD), especially under
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uncertainty. Successive model adaptation is induced only in case of unexpected stimuli
(distinguishing PEs from CPs). As the temporal resolution of fMRI did not allow for the inclusion
of standard trials in the original study, it remains an intriguing question for future research to
determine how context (in)stability influences the expectation and processing of these informative
events.

In addition to effects of context uncertainty, behavioural subgroup analyses suggested inter-
individual differences in cue learning as a determining factor for CP/PE processing: The more
strongly participants had learned the cue-length association, the more often they showed early
responses at the end of a sequence. Depending on which sequence was observed, this response pattern
had diverging implications on behavioural efficiency: In case of regular sequences, early releases
during the last sequential digit showed how strong anticipation of the sequence ending spurred fast
and efficient responses. Critically, however, the very same anticipation led some participants to
erroneously respond at the ‘would-be’ end of extended sequences. One explanation could be that
(overly) successful cue learning triggered a consistent prediction of sequence length (“Five digits after
green”) irrespective of context-dependent violations. This way, information from CPs (in regular
sequences) or PEs (in extended sequences) would not be exploited, as indicated by the negative
correlation between event-specific surprise and offset latency. Overall, these results suggest that
participants with increased knowledge of cueing information strongly (and sometimes falsely) relied
on these inidal cues, virtually disregarding potentially informative transition points during the
sequence. In other words, excess reliance on cue information led to less attention being given to these
transition points. More formalised accounts of predictive processing have postulated attention to
control the involvement of prior expectations at different levels (Friston, 2009). Specifically,
attention is conceptualised as a means to increase the weight (or gain) of neural responses coding error
signals, making them more eligible to drive learning and potential behavioural adjustments. Strict
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adherence to cue information conceivably impedes allocating attentional resources to CP/PE time
points and, consequently, model adaptation. One promising direction for future studies would thus
be to assess the interplay of bottom-up and top-down dynamics underlying information processing

at these points in time.

Limitations and Future Directions

The main aim of the present study was to exploit the temporal benefits of EEG for an extension of
previous fMRI results. In order to warrant a high degree of comparability between the two studies,
we chose a full replication of the experimental paradigm. As a consequence, it remains a limitation of
the present study that half of the CPs required a response whereas the other half did not (for
discussion, see Kluger & Schubotz, 2017). Therefore, one central direction for current studies is to
reduce the number of PE types, effectively ensuring behavioural relevance of all CPs. Furthermore,
there are several promising analyses beyond the scope of this paper which would not have been ideal
for the current ERP epochs (-100 ms to 600 ms). Going forward, specifically re-epoching the data to
include a longer pre-stimulus period would allow ERP and time-frequency analyses of anticipatory
CP/PE processing as a function of uncertainty. Relatedly, the microstate analyses presented here
motivate a more in-depth multivariate assessment of STD, CP, and PE representations, extending
our understanding of similarities and differences between them. For example, STD trials should be
reliably discriminable from CPs and PEs already during the pre-stimulus period, reflecting the
anticipation of task-relevant information that can be obtained from the latter. Thus, representations
of CPs and PEs should be similar during the pre-stimulus period but distinct during later periods
reflecting actual outcome processing. Learning about the time course and potential uncertainty
modulation of these comparisons will provide a more comprehensive account of the factors driving

abstract prediction.
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3.6 Conclusion

Checkpoints are probabilistic, cue-compliant events informing predictive processing. Their
functional profile closely resembles that of canonical prediction errors, indicating similar roles of CPs
and PEs in abstract prediction. Both types of events presumably serve as reference points providing
behaviourally relevant information, the central distinction being whether the respective outcome
violates the internal model (PE) or not (CP). We suggest that despite the expected input observed at
checkpoints, information at these particular positions is exploited on-line in order to adapt
behaviour. Intriguing questions remain with regard to underlying network dynamics and their

potential modulation as a function of uncertainty.
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4.1 Abstract

While prediction errors have been established to instigate learning through model adaptation, recent
studies have stressed the role of model-compliant events in predictive processing. Specifically, so-
called checkpoints have been suggested to be sampled for model evaluation, particularly in uncertain
contexts.

Using electroencephalography (EEG), the present study aimed to investigate the interplay of such
global information and local adjustment cues prompting on-line adjustments of expectations. Within
a stream of single digits, participants were to detect ordered sequences (i.e., 3-4-5-6-7) that had a
regular length of five digits and were occasionally extended to seven digits. Extensions could be
unexpected or indicated by incidental colour cues.

Local exploitation of cue information was reflected in significant pattern decoding of cues vs non-
cues using pattern classification. Global modulation of checkpoint processing as a function of
uncertainty was likewise reflected in significant decoding of high vs low uncertainty checkpoints. In
line with previous results, both analyses comprised the P3b time frame as an index of excess
information sampled from probabilistic events.

Accounting for cue information, an N4oo component was revealed as the correlate of locally
unexpected (vs expected) outcomes, reflecting effortful integration of incongruous information.
Finally, we employed representational similarity analysis (RSA) to compare the fit of a global model
(disregarding local adjustments) and a local model (additionally considering cue information). Results
showed significant correlation of both models to neural data with a better fit of the global model at

later latencies (400 — 700 ms).

103



4.2 Introduction

One of the central faculties of the human brain is to predict upcoming events based on internal
models of the world. Incoming sensory information is constantly compared to model-based
predictions and resulting mismatches - termed prediction errors (PE) - are used to continuously
update the model for future reference (Friston, 2005; Mumford, 1992). Consequently, as such
unexpected events are particularly informative, the importance of PE for associative learning through
model adaptation has long been established (Bastos et al., 2012; Den Ouden et al,, 2009). Recent
studies have stressed the role of probabilistic events which carry behaviourally relevant information
but do not indicate a mismatch (Kithn & Schubotz, 2012; Kluger et al., submitted; Trempler et al.,
2017). In contrast to model adaptation instigated by PE, these critical points in time have been
suggested to serve outcome-independent model evaluation. On-line exploitation of model-compliant
sensory input at so-called checkpoints (CP) has been shown to be modulated by higher-order context
statistics such as irreducible uncertainty (Kluger & Schubotz, 2017): In a highly uncertain
environment, additional resources are allocated to the processing of CP to resolve ambiguity
regarding the validity of the internal model. Notably, we were able to show that this effect was not
merely driven by event-related surprise at CPs.

A subsequent EEG study (Kluger et al., submitted) revealed further functional characteristics of CP,
demonstrating both electrophysiological commonalities with and distinctions from PE. When
compared to fully predictable standard trials, both event types showed a significant P3b component,
marking the joint (im)probabilistic - and therefore, informative - nature of CP and PE in accordance
with the component’s functional significance (Mars et al., 2008; Seer et al., 2016). The direct
comparison of the two revealed a significant N4oo component to signal a predictive mismatch

exclusively induced by PEs. In sum, these findings illustrate two important aspects of predictive
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processing: First, CP appear to take on a similar, but not identical role as PE in resolving local
ambiguity regarding model validity. Second, the extent to which CP are exploited to evaluate the
internal model is modulated by higher-order parameters such as environmental uncertainty. These
findings indicate that CPs have the potential to play a central role in predictive processing and are
thus worth a more thorough determination, especially in relation to PEs.

Building on the results reported so far, the present EEG study aimed to address the potential
influence of learned local contingencies on predictive processing. Normally, CP and PE are
informative due to their probabilistic nature, i.e. their occurrence is unknown before it is actually
observed. However, these critical events can conceivably be rendered uninformative by local cues
reliably indicating a certain outcome - much like a priority road sign telling drivers not to slow down
at a particular crossing. We employed a modification of the paradigm from Kluger et al. (submitted)
to assess both the electrophysiological signature of these local cues as well as their influence on
processing of expected and unexpected outcomes.

Trained participants performed a serial pattern detection task in which they were to press and hold a
response button whenever they detected an ordered digit sequence (e.g. 3-4-5-6-7) within an
otherwise pseudorandom stream of coloured single digits. Ordered sequences had an expectable
length of five digits but were occasionally extended to be seven digits long. This way, the sixth
position could either contain a random digit denoting the regular (i.e., expected) end of the sequence
(REG) or an unexpected sequential digit indicating an extension (EXT; see Fig. 4-1). Relative
presentation rates of REG and EXT were probabilistically modulated by blockwise manipulation of
irreducible uncertainty (De Berker et al., 2016; Payzan-LeNestour & Bossaerts, 2011). Crucially, some
sequences contained colour-coded adjustment cues (AC) at the third position. These cues (AC+)

provided excess information regarding the continuation of the sequence, reliably indicating a
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sequential extension (p = .75) and thus effectively overriding expectations based on the global task
structure.

Using a similar experimental paradigm without adjustment cues, our previous EEG study (Kluger et
al., submitted) had revealed a significant N4oo component for the direct comparison of PE and CP.
In other words, events that violated cue-based expectations (PE) distinctly elicited an N4oo when
compared to informative events containing model-compliant sensory information (CP). Since the
present study comprised adjustment cues (AC) incidentally prompting an on-line shift in model-
based expectations, both REG and EXT events could now be locally unexpected as a function of
preceding cue information: As AC reliably indicated sequential extensions (EXT+), regular endings
following an AC (REG+) were rendered unexpected (see Fig. 4-1B). Conversely, in sequences without
AC, regular endings (REG-) were the locally expected outcome and extensions (EXT-) were
unexpected. Thus, we aimed to replicate previous findings from the direct contrast of expected and
unexpected sequence endings within the N4oo time frame (Kluger et al., submitted).

Furthermore, we used multivariate pattern classification of event-related potentials (ERP) to conduct
two analyses on local vs global modulations: First, it was one aim of the present study to assess
functional characteristics of the newly introduced adjustment cues. Conceivably, when compared to
non-informative third position trials (AC-), predictive information provided by adjustment cues
(AC+) could manifest in an electrophysiological signature similar to the one reported by Kluger et al.
(submitted) for both CP and PE. As our previous study had revealed a joint P3b component to reflect
the informativity of both CP and PE, we hypothesised the classifier to reliably decode AC+ and AC-
trials within the P3b time frame.

Second, we aimed to validate global effects of CP processing as a function of high vs low uncertainty
from our initial fMRI study (Kluger & Schubotz, 2017). Consequently, we sampled regular endings

of sequences that did not contain an adjustment cue (REG-), as these events were the precise
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equivalent of CP from earlier studies. Consolidating previous findings from fMRI and EEG, we
hypothesised significant classifier accuracy of CP high vs CP low within the P3b time frame (300-500

ms).

Finally, we applied representational similarity analysis (RSA; Kriegeskorte et al., 2008) to test the
explanatory power of competing theoretical models relating the representational structures of critical
events (AC, CP, PE) to one another. To that end, we devised two competing binary model
dissimilarity matrices (DSMs) to predict the empirical representational similarity of event classes in
the EEG data. A global model categorically assumed high similarity within and high dissimilarity
between the sampled event classes (AC+/- vs REG+/- vs EXT+/-) and thus represented global
statistics acquired by means of statistical learning (“Sequences are usually five digits long”). In
contrast, a local model was set up to reflect these adjustments in expectations due to local information:
For sequences containing an adjustment cue (AC+), extensions were no longer unexpected (as in the
global model) but rather the expected outcome. In these cases, regular sequence endings (REG+) —
otherwise the most probable outcome of a sequence — violated the most recent set of expectations
based on the adjustment cue (see above). Consequently, we assumed high similarity of events that
violated these potentially adjusted predictions following an adjustment cue (REG+, EXT-) in

contrast to those that complied with the adjustment cue (REG-, EXT+).
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4.3 Material and methods

Participants

A total of 30 neurologically healthy, right-handed volunteers (25 female) at the age of 24.8 £ 3.46 years
(M £ SD) participated in the study for payment or course credit. Participants were recruited from
the university’s volunteer database and had (corrected-to-) normal vision. Written informed consent
was obtained from all participants prior to the start of experimental procedures. Experimental

standards complied with the local Ethics Committee of the University of Miinster.

Stimulus material

Participants watched pseudorandomly coloured single digits (o — 9) presented for soo ms in the
centre of a light grey computer screen. Presentation frequencies for all colours and digits were equally
distributed both within and across experimental blocks of approximately six minutes. Each block
contained ordered sequences in which the previous digit was continually increased by one (Fig. 4-1A).
Ordered sequences had a regular length of five digits and were embedded in random trials with no
discernible relation between consecutive digits. In order to balance sequential starting points across
digits, the ascending regularity necessarily included the o character and continued in a circular fashion

after the figure 9 (e.g. 8 —9 -0 —1-2).
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Figure 4-1. (A) Exemplary trial succession and time frame of the corresponding response for ordered sequences. (B)
Experimental manipulations and resulting transition probabilities between trials. Bold framing indicates events of
interest for EEG analyses; red framing indicates relatively unexpected events. (C) Top: Mean offset latencies for regular
and extended sequences as a function of adjustment cueing and irreducible uncertainty (solid bars = low, hatched bars =
high). For significance of main effects, please see main text. Bottom left: Schematic of sampling premature and quick
button releases for uncued (REG-) and cued regular sequences (REG+). Bottom right: Mean count of releases within [-
500, 500] ms for REG- and REG+ sequences. Error bars show standard error of the mean (SEM). AC = adjustment cue,
REG = regular, EXT = extended, *** = p < .o0L

The first digit of every ordered sequence was displayed at 150% of the usual font size, serving as an
explicit omset cue. Importantly, digit colours at the third position of each sequence were used to vary
expectations regarding its continuation. Each participant was unknowingly assigned one fixed colour
that served as an implicit adjustment cue (AC): Presentation of the third sequential digitin AC colour
(AC+ trials) reliably indicated an extension of the respective sequence by two digits (pExT | AC+ = .75,
PREG | AC+ = .25). Conversely, when the third sequential trial was presented in any colour but the AC

colour (AC- trials), extensions were rare (PEXT | AC- = .25, P REG | AC- = .75; see Fig. 4-1B). AC colours

did neither occur at any other sequential position nor during random trials.
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Finally, the composition of regular and extended sequences within a particular block was varied across
blocks. This way, the irreducible uncertainty of a block was set to be either low or high (Fig. 4-1B).
Low uncertainty blocks could be seen as statistically stable regarding the expected sequence length
whereas highly uncertain blocks provided a less stable statistical context. To ensure constant AC
validity, high uncertainty blocks necessarily contained a higher percentage of adjustment cues than
low uncertainty blocks.

The experiment was programmed and run using the Presentation 18.1 software (Neurobehavioral

Systems, San Francisco, CA, USA).

Task

Participants were instructed to press and hold the left button of a response box with their right index
tinger whenever an onset cue marked the beginning of an ordered sequence. At the end of an ordered

sequence, participants were asked to release the response button as quickly as possible.

Experimental procedures

The study was conducted on two consecutive days. On the first day, participants completed a training
session to provide them with implicit knowledge of the adjustment cues and the underlying statistical
structure of the experiment. The training consisted of one high and one low uncertainty block with
a total duration of approximately 13 minutes (including a one-minute break). On the second day,
participants completed the EEG session which consisted of eight blocks (four blocks of each
uncertainty level) and a total duration of approximately 56 minutes (including a one-minute break
after each block). Participants were comfortably sitting on a chair in a darkened, sound-dampened
and electrically shielded EEG booth. Experimental procedure and task during the EEG session were

otherwise identical to the training session.
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Behavioural data analysis

Statistical analyses of behavioural responses were performed in R (R Foundation for Statistical
Computing, Vienna, Austria). First, correct and incorrect responses were aggregated separately for
each participant. Incorrect responses were further divided into misses (no response over the course of
a sequence) and false alarms (response occurring without presentation of sequential trials).
Participants’ overall performances were assessed via the discrimination index Pr (probability of
recognition; Snodgrass & Corwin, 1988).

Offset latency was calculated as reaction time relative to the onset of the first random trial after a
particular sequence. Reaction times occurring either before the go-cue or more than 1500 ms after the
end of the sequence were excluded. Repeated-measures analyses of variance (ANOVA) and paired #-
tests were used to assess potential differences in offset latencies as a function of expectation

compliance, adjustment cues, and irreducible uncertainty.

EEG data analysis

EEG data acquisition and data preprocessing

Scalp EEG was recorded from 62 active Ag/AgCl-electrodes mounted in an actiCAP snap electrode
cap (Brain Products, Gilching, Germany) using the BrainVision Recorder software (Brain Products,
Gilching, Germany). All scalp channels were measured against a ground electrode at position FPzand
referenced against FCz during recording. Two addidonal electrooculogram (EOG) electrodes were
applied next to and below the right eye for the detection of horizontal and vertical eye movements.

EEG was recorded at a sampling rate of 1 kHz with recording filters set to 0.1 — 1000 Hz bandpass.

EEG preprocessing was conducted in EEGLAB (Delorme & Makeig, 2004). Data segments
containing experimental breaks were discarded prior to independent component analysis (ICA).

Resulting components distinctly reflecting eye movements were subsequently rejected manually
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(mean = 1.80 components) using the SASICA toolbox (Chaumon et al., 2015). Data were then filtered
with a 0.1 Hzlow cut and 30 Hz high cut filter and recalculated to common average reference. A time
frame of [-200, 800] ms was defined for the analysis of eventrelated potentials (ERP). Epochs
containing artefacts were discarded by semiautomatic inspection with an allowed
maximum/minimum amplitude of £ 200 wV and voltage steps no higher than so uV per sampling.
Channels with a high proportion of outliers (kurtosis criterion: z > 6) were replaced by a linear

interpolation of their neighbour electrodes (mean = 2.13 interpolated channels).

Event-related potentials

Averages of the epochs representing events of interest were calculated separately per participant. The
third trial of every ordered sequence was sampled to compare trials with and without the learned
adjustment cues (AC+ vs AC-). Since ordered sequences had a regular length of five digits, the
subsequent digit was critical with regard to expectation compliance: For regular sequences, this
position contained the first random digit and marked the end of the ordered sequence (REG). For
extended sequences, this position contained the sixth sequential digit and marked the extension of
the ordered sequence (EXT). Both outcomes were further subdivided to reflect whether an
adjustment cue had been presented at the third position (REG+, EXT+) or not (REG-, EXT-).

Grand average ERPs across participants were calculated for all events of interest.

For stringent hypothesis testing, ERP analyses were restricted to specific time frames. Using the Mass
Univariate ERP Toolbox (Groppe et al., 2011), ERPs from the respective conditions were submitted
to a repeated measures cluster mass permutation test (Bullmore et al., 1999; family-wise significance
level oo = .05). Repeated-measures #-tests were performed for each comparison using the original data
and 5000 random within-participant permutations of the data. For each permutation, all #-scores

corresponding to uncorrected p-values of p = .05 or less were then bound into clusters. The sum of
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the #-scores in each cluster defined the “mass” of that cluster and the most extreme cluster mass in
each of the soor sets of tests was used to estimate the distribution of the null hypothesis.
Attempting to replicate previous N4oo findings for expectation violations, we directly compared
locally unexpected (EXT-, REG+) and expected outcomes (EXT+, REG-) within the N4oo time

frame (UNEXP vs EXP, 300 — 500 ms).

Multivariate classification analyses

Multivariate classification was carried out in Matlab using the CoOSMoMVPA toolbox (Oosterhof et
al., 2016). To increase signal-to-noise ratio (SNR), EEG time series were first downsampled to 100 Hz
(see Carlson et al., 2013). SNR and classifier performance were further increased by continuously
averaging n = 4 trials from the same respective categories before decoding (Grootswagers et al., 2017;
Isik et al,, 2013). Classification was then performed separately for each 10 ms bin by means of a
temporal searchlight analysis approach. Specifically, a linear discriminant analysis (LDA) classifier
was trained and tested on trials from two categories (e.g., AC+ and AC- trials) using a leave-two-out
cross-validation scheme. This way, classification analyses yiclded time courses of decoding accuracy
with 10 ms temporal resolution within the interval of [-200, 800] ms. Threshold-free cluster
enhancement (TFCE; Smith & Nichols, 2009) with default parameters was used to determine periods
of significant decoding accuracy (with a fixed chance level of p = .50 for pairwise decoding). As
implemented in CoSMoMVPA, permutation testing with 10,000 null iterations and subsequent

thresholding at Z > 1.96 (p < .05) was used to correct for multiple comparisons.

With regard to functional event signatures, two comparisons were the focus of pairwise decoding
analyses. First, we assessed the classifier’s performance decoding AC+ from AC- trials over the ERP
time course (see Fig. 4-1B). Third-position trials containing an adjustment cue (AC+) provided excess

information with regard to the continuation of the sequence, effectively overriding expectations

113



based on the global task structure. Exploitation of this particular cueing information should translate
to distinct electrophysiological correlates when compared to non-cue trials at the same position
(AC-). As we had previously reported P3b effects for the comparison of model-compliant,
particularly informative events with non-informative equivalents (Kluger et al., submitted), we

hypothesised significant classifier accuracy of 4C+ vs AC- within the P3b time frame (300-500 ms).

Our second comparison concerned decoding of checkpoints (CP) within the same P3b time frame.
The previous finding of a CP-induced P3b component as an index of excess information (see above)
raised the intriguing question of whether this potential is modulated by global parameters such as
context uncertainty. In the absence of adjustment cues within the original paradigm, our initial fIMRI
study had established amplitude effects of CP processing as a function of high vs low uncertainty
(Kluger & Schubotz, 2017). Consequently, we attempted to decode CP under high vs low uncertainty
within the new experimental paradigm. To this end, we sampled regular endings of sequences that
did not contain an adjustment cue (REG-), as these events were the precise equivalent of CP from
earlier studies. Consolidating previous findings from fMRI and EEG, we thus hypothesised

significant classifier accuracy of CP high vs CP low within the P3b time frame (300-500 ms).

Representational Similarity Analysis

Whereas the decoding analyses described so far have allowed us to detect category-specific
information in the EEG signal, RSA (Kriegeskorte et al., 2008) provides a framework to test
hypotheses about the underlying representational structure of activity patterns. Information carried
by a given representation (e.g., of event classes) can be quantified in so-called representational
dissimilarity matrices (DSMs). Following the assumption that events with distinct representations
are fairly easy to decode (and vice versa), these matrices characterise event representations based on

their (dis-) similarities among one another (for review, see Haxby et al., 2014). For hypothesis-based
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model comparison, multiple hypothetical candidate DSMs can be devised a priori to predict the
empirical similarity structure found in the data. By correlating model and empirical DSM, one can
then assess the degree to which the model-inherent structure does indeed exist in the activity patterns

(in other words, the explanatory power or fit of the respective model DSM).

Two binary model DSMs were set up to predict the empirical representational similarity of event
classes in the EEG data (Fig. 4-3B). The first model DSM (termed global model) categorically assumed
high similarity within and high dissimilarity between the sampled event classes (AC+/- vs REG+/-vs
EXT+/-) and did not account for potential adjustments made in response to incidental adjustment
cues. In contrast, the second model DSM - termed local model - assumed high similarity of events
that violated potentially adjusted predictions following an adjustment cue (REG+, EXT-) in contrast

to those that complied with the adjustment cue (REG-, EXT+).

4.4 Results

Behavioural results

Participants showed an overall high level of performance with a mean Pr score of Mpr = .97 (SD =
.02) during the EEG session, indicating excellent attentiveness throughout the experiment. The
repeated-measures ANOVA yielded significant main effects of all three factors on offset latency
(expectation compliance: K1, 29) = 53.63, p < .o0n adjustment cueing: K1, 29) = 19.20, p < .00I;
irveducible uncertainty: F(i, 29) = 4.74, p = .003). Neither interaction term reached statistical
significance (all p > .254). First, replicating behavioural findings from earlier studies (Kluger &
Schubotz, 2017; Kluger et al., submitted), a post-hoc #-test revealed significantly quicker button
releases after extended (M = 403 ms, SD = 147 ms) than after regular sequences (M = 567 ms, SD =

77 ms; {29) = - 7.32, p < .oor1). Second, participants released the response button significantly quicker
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when irreducible uncertainty was low (M = 473 ms, SD = 98 ms) than when it was high (M = 497
ms, SD = 104 ms; #(29) = - 4.38, p < .oor). Finally, significantly shorter offset latencies were found for
sequences that contained an adjustment cue (M = 480 ms, SD = 104 ms) than for those that did not

(M = 490 ms, SD = 97 ms; #(29) = - 2.18, p = .038, see Fig. 4-1).

Building on analyses of an earlier study (Kluger et al., submitted), we assessed anticipatory and
particularly quick reactions to regular sequence endings as a behavioural marker of adjustment cue
recognition. Following event definitions of previous work, these reactions were defined as button
releases during the last sequential and the first non-sequential digit (i.c., offset latency + soo ms, sce
Fig. 4-1C). Since the adjustment cue reliably indicated sequential extensions, participants should
respond less frequently to REG+ (i.e. unexpected regular endings) than to REG- sequences (expected
regular endings) in this time frame after they successfully learned the adjustment cue. A paired #-test
supported this hypothesis, revealing significantly fewer responses for REG+ (M = 13.20, SD = 8.40)
than for REG- sequences (M = 68.07, SD = 40.25) within the [-500, s00] ms interval (#29) = 9.27, p

<.ool, see Fig. 4-1).

Event-related potentials

UNEXP - EXP

Building on previous EEG results (Kluger et al., submitted), we first aimed to replicate findings of an
N4o00 component for the direct comparison of unexpected and expected outcomes. Accordingly, we
included all time points between 300 and soo ms in a one-sided whole-brain analyses (6262
comparisons in total). As hypothesised, unexpected outcomes (EXT-, REG+) were found to elicita

significant N4oo over parieto-central electrodes peaking around 442 ms (Fig. 4-2).
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Figure 4-2. The direct comparison of unexpected (EXT-, REG+) and expected outcomes (EXT+, REG-) revealed a
significant N4oo component peaking around 442 ms over parieto-central electrodes. Difference curve includes M = STD
of individual data, bottom panel shows component evolution over time.

Multivariate classification

AC+ vs AC-

In a first classification analysis, we trained the classifier to decode third-position events that contained
an adjustment cue (AC+) from those that did not (AC-, see Fig. 4-1B). Group-level classification
analysis revealed temporal clusters with significant decoding accuracy between 140 - 310 ms as well as
between 330 — 420 ms (Fig. 4-3A). Intriguingly, the second cluster particularly supported our
hypothesis regarding the P3b time frame for this comparison. In addition, two brief significant
clusters were found from 570-590 ms and from 770-80o ms. However, since these time frames already

fell within the presentation of the next stimulus, these results should be interpreted with caution.
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CP high vs CP low

Extending the narrative of previous studies (see Kluger et al., submitted) on modulation by context
statistics, the second classification analysis concerned checkpoints (CP) under high and low
uncertainty, respectively. As the present experimental design featured locally informative adjustment
cues, regular sequence endings with no prior adjustment cue (REG-) immediately corresponded to
CP events sampled in previous studies (Kluger & Schubotz, 2017; Kluger et al., submitted).
Accordingly, we trained the classifier to decode these CP in high uncertainty contexts from those in
low uncertainty contexts. As hypothesised, group-level classification analysis revealed significant
temporal clusters within the P3b time frame (360-380 ms). A second small cluster was found for the

time frame between 440-450 ms (Fig. 4-3A).
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Figure 4-3. (A) Group-level decoding accuracies over time. Shaded areas indicate significant temporal clusters. (B) Top:
Model DSMs predicting representational similarity in the EEG data based on distinct event characteristics. Globally (left)
and locally (right) unexpected events are marked in red. Bottom: Group-level correlations of both model DSMs with the
empirical DSM. AC = adjustment cues, CP = checkpoints, REG = regular endings, EXT = sequential extensions.
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Representational Similarity Analysis

We employed searchlight RSA to compare two binary dissimilarity matrices (DSMs) modelling
representational similarity of event classes in the EEG data. Both the global and the local model were
found to be significantly correlated with the empirical DSM over the entire time course of [-200,
8oo] ms (Fig. 4-3B). While a statistical comparison of model DSMs in RSA remains difficult
(Kriegeskorte & Kievit, 2013; Thirion et al., 2015), the global model clearly had a better fit to the EEG
data than the local model later in the time series (around 400-700 ms). The descriptive comparison
of the two model DSMs thus suggests that the global event structure acquired through statistical
learning took precedence over on-line information conveyed by intermittent adjustment cues. In
other words, statistical learning of event categories (REG, EXT) was not cancelled out by temporary
shifts in expectations but remained the strongest predictor of overall similarity in EEG activation

patterns.

4.5 Discussion

Predictive brain processing vitally relies on top-down hierarchical models continuously matched
against incoming sensory information. In case of deficient model assumptions, mismatch signals
termed prediction errors (PE) are propagated upstream to instigate model updating for future
occasions. Recent fMRI and EEG studies (Kluger & Schubotz, 2017; Kluger et al., submitted) have
demonstrated exploitation of information provided by model-compliant events (checkpoints, CP),
particularly in contexts of high uncertainty. Building on previous work highlighting such global
modulations in predictive processing, the present study was conducted to assess the influence of
locally available information. Therefore, we introduced adjustment cues which interfered with the

learned statistical task structure, effectively calling for a flexible on-line adjustment of expectations.
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Multivariate classification analysis revealed that adjustment cues could be reliably decoded from
uninformative events at the same position within the P3b time frame. Moreover, events that were
unexpected globally (according to task structure) or locally (as indicated by adjustment cues) elicited
a mismatch-related N4oo component when compared to expected events. Combined with
behavioural data, these findings demonstrate that local cueing information was efficiently exploited

to adapt to current task requirements.

Aside from on-line adjustments prompted by local cues, global uncertainty was found to modulate
the functional signature of checkpoints: Consolidating previous evidence from fMRI (Kluger &
Schubotz, 2017) and EEG (Kluger et al., submitted), checkpoints were distinctly processed under high
(vs low) uncertainty within the P3b time frame, as indicated by significant multivariate classification
accuracy. Finally, representational similarity analysis (RSA) was used to compare two dissimilarity
models representing global and local contingencies, respectively. While both models were found to
be significantly correlated with the empirical dissimilarity matrix, the global model was found to fit
the neural data better at a later time frame (400 — 700 ms). Conceivably, higher cognitive operations
reflected in this time frame are more likely to incorporate global information acquired through long-

term statistical learning.

Local information prompts on-line adjustments

It was one of the main aims of this study to assess the influence of two separate sources of information
in predictive processing. First, in the present experimental context, global task structure and
transition probabilities are acquired through statistical learning, starting with the training session.

Higher-order information also comprised different levels of irreducible uncertainty, that is, how
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frequently implicit expectations regarding sequence length (“... usually five digits long”) were
violated by sequential extensions. Secondly, however, local information was introduced in the form
of adjustment cues reliably indicating a specific outcome (i.e., an extension of that sequence). This
information thus modified the statistically learned contingencies and called for a rapid adjustment of
expectation in an ongoing sequence.

Effective exploitation of adjustment cues was reflected in behavioural response patterns at regular
sequence ends: Participants responded less frequently to unexpected regular endings (REG+) within
a time frame of £ 500 (compared to regular endings, REG-). This time frame was used in a previous
study to mark anticipatory and particularly quick reactions, indicating behavioural facilitation effects
of cue recognition (Kluger et al., submitted). In the present study, the preceding adjustment cue had
reliably indicated an extension, rendering the globally more probable regular ending locally
improbable. Recognising adjustment cue information, participants were conceivably less confident
to prepare an anticipatory or quick release of the response button. This finding fits well with previous
results consistently showing response slowing for sequences that - much like present REG+ trials -

ended earlier than indicated by the preceding cue (Kluger & Schubotz, 2017; Kluger et al., submitted).

On the neural level, two key findings provided critical insight into the role of adjustment cue
processing: First, supporting our hypothesis, ERP analysis revealed a significant N4oo component
forlocally unexpected (vs expected) sequential events. Critically, unexpected events comprised REG+
and EXT- trials, thus accounting for adjusted expectations due to cue informationr. This finding
replicates results from an earlier study (Kluger et al., submitted) in which we established N4oo as the
proper mismatch correlate in sequential prediction. The N4oo component has been reported to be

elicited by a multitude of sensory events and varies in amplitude as a function of event-bound surprise

' Note that expected (REG-, EXT+) and unexpected (REG+, EXT-) event classes were defined by means of a weighted
average of trials, precluding ERP effects to be caused by mere differences in trial numbers.
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in language (Rabovsky et al., 2018; Szewczyk & Schriefers, 2018) and arithmetic problems (Galfano et
al., 2004; Niedeggen et al., 1999). More generally, it is discussed as a modality-independent index of
conceptual representations which need revision in light of violations (for review, see Kutas &
Federmeier, 2011). In sum, our interpretation of N40o0 as a correlate of locally induced mismatches
further corroborates the component’s role in integrating incongruous information.

Second, as hypothesised, multivariate pattern classification revealed significant decoding of AC+ and
AC- trials within the P3b time frame. In the closely related paradigm of our previous study (Kluger
et al., submitted), we were able to show P3b as the joint correlate of probabilistic, informative events
irrespective of their outcome, namely checkpoints and prediction errors. We interpreted this finding
as an index of excess information use in accordance with previous work showing that P3b is by no
means a mere mismatch detector, but rather facilitates adequate responses following behaviourally
relevant stimuli (Nieuwenhuis et al., 20115 Verleger et al., 2005). A very similar interpretation was
evident for adjustment cues in the present paradigm: Information gained from adjustment cues
modified global contingencies and facilitated preparation of the adequate response (i.c., most

probably keeping the finger on the response button for an extended sequence).

Adjustment cues (AC+) thus bear a striking conceptual resemblance to checkpoints (CP) defined in
previous studies: In both cases, model-compliant sensory input of probabilistic events can be
exploited to evaluate the predictive model in the absence of a prediction error. Critically, as reflected
by significant decoding within the P3b time frame, this was not the case for uninformative third-trial
events (AC-). Sensory input at these positions was model-compliant but did not provide excess local
information, making AC- trials comparable to non-informative standard trials.

Given the conceptual similarities of checkpoints and adjustment cues, it was interesting to see global
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effects of contextual uncertainty on CP processing also comprising the P3b time frame, spurring

promising questions for future research (see Limitations and future directions).
Global effects of contextual uncertainty

To assess the effect of irreducible uncertainty on checkpoint processing, we once again employed
multivariate pattern classification for decoding of CPs under high and low uncertainty, respectively.
In order to increase comparability between studies, we restricted the present analysis to checkpoints
as they were defined in earlier work, namely regular endings of sequences that did not contain an
adjustment cue (REG-). Supporting our hypothesis, we found clusters of significant decoding
accuracy within the P3b time frame. This finding considerably adds to carlier results from two
directions: First, as mentioned above, our previous EEG study revealed P3b as the correlate of excess
information gain at checkpoints, effectively separating it from non-informative standard trials
(Kluger et al., submitted). Second, a previous fMRI study had established a functional network
exhibiting increased neural activity for CP processing under high (vs low) irreducible uncertainty
(Kluger & Schubotz, 2017). Notably, this network prominently included the temporo-parictal
junction (TPJ), a conceivable cortical source of P3b (Donchin & Coles, 1988). Altogether, the present
tinding suggests a modulatory influence of contextual uncertainty on information exploitation at
checkpoints which translates to distinct correlates within the P3b time frame: As high uncertainty
blocks were defined by a higher proportion of extended sequences, validity of the initial model (*...
usually five digits long”) was reduced in these blocks. Therefore, sites of supposed sequence endings
were particularly informative whether a motor response was in fact required (REG-) or not (EXT-).
In line with accounts of contextual updating ascribed to both P3b (Kimura et al., 2010; Verleger et
al., 2016) and its suggested source in TPJ (Geng & Vossel, 2013), we thus interpret the present

uncertainty effect as a correlate of excess information being exploited to estimate global context
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features and adapt behaviour accordingly. This closely relates to our proposal of stepwise processing
of sequential input, evaluating model validity at CP as informative reference points (Kluger &
Schubotz, 2017).

It is worth noting that, since AC+ trials reliably indicated extensions, high uncertainty blocks
necessarily contained a higher absolute number of adjustment cues than low uncertainty blocks to
ensure constant cue validity (see Fig. 4-1B). In other words, whereas the global portion of extended
sequences was higher in these blocks, local probabilities after the fifth sequential position remained
unchanged. The finding of significant checkpoint decoding under high vs low uncertainty thus
suggests that local information did not fully cancel out global contingencies and that the role of CP
as informative reference points should be even more evident in contexts without local adjustment

cues (see Limitations and future directions).

Representational similarity in predictive processing

Representational similarity analysis of a local and a global model DSM revealed significant correlation
with neural data for both models. The apparent pre-eminence of the global model in a later time
frame (400 - 700 ms), however, leaves room for discussion and motivates further research. Critically,
the two models differed with regard to which events were jointly classified as unexpected: The local
model reflected adjusted probabilities as a function of on-line cues, grouping REG+ and EXT-
occurrences as locally unexpected events. In contrast, the global model did not account for any
adjustments but rather modelled all extensions (EXT+, EXT-) as similar and as distinct from regular
endings (REG+, REG-).

The differential modelling of unexpectedness in the model DSMs as well as the late timing of the
difference in model fit strongly suggest these RSA results to be related to the N4oo finding reported

above: While locally unexpected events could be reliably decoded from expected events in the
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preceding classification analysis, the higher fit of the global DSM shows that - across all event classes
- late potentials reflected an even higher (dis-)similarity of globally unexpected (vs expected) events.
In other words, whereas local information was undoubtedly exploited for on-line adjustments in
prediction and behaviour, it did not fully overwrite statistically learned global contingencies.
Fittingly, data from previous N4oo studies revealed that when information from two different levels
(such as word- and sentence level) is available, higher-level context effects tend to take precedence
over lower-level ones (Kutas, 1993; van Petten, 1993). Indeed, frequently re-learning by overriding
global probabilities seems quite costly in terms of computational efficiency. Instead, we may establish
a global situational model (in this case reflecting the expectable sequence length) which can be locally
modified - but not overturned - in the light of additional information. In line with interpretations of
N4o00 as an index of information integration (which is more effortful for incongruous input, see
above), our findings overall indicate that the effort of integration is invested in a model of global

contingencies rather than representing local fluctuations.

Limitations and future directions

The aim of the present study was to investigate the interplay of local and global information in
predictive processing. To this end, we employed local adjustment cues which were incidentally
presented to interfere with statistically learned, global contingencies. In order to maximise frequency
for the events of interest, we were not able to analyse sequential standard trials due to their close
temporal proximity to other sampled events. Given the significant decoding of AC+ and AC- within
the P3b time frame, a comparison of each event class with non-informative sequential standards
would add considerably to the understanding of the functional role of adjustment cues. Conceivably,
AC+ and CP as informative, model-compliant events should elicit a P3b component when compared

to standard trials. In contrast, AC- trials - due to the lack of excess information - should be more
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similar to non-informative standard trials and therefore not be reflected in a P3b.

In a similar vein, manipulating contextual uncertainty irrespective of adjustment cues would allow
us to further understand the extent to which checkpoint information is exploited across
environments. It would thus be revealing to assess CP processing in an experimental paradigm which

includes blocks of high and low uncertainty both with and without adjustment cues.

4.6 Conclusion

Model-compliant events have previously been established as critical reference points informing
predictive processing in the absence of prediction errors. A similar functional role on the local level is
now suggested for a different class of model-compliant events: Accounting for information from
local adjustment cues, we were able to replicate a significant N4oo component as an index of
mismatch-induced model adaptation. Furthermore, using multivariate pattern classification,
sequential positions providing excess local information could be reliably decoded from those that did
not within the P3b time frame. Global effects of irreducible uncertainty on checkpoint processing
remained, as reflected by significant classification of high vs low uncertainty checkpoints in the same
time frame. Overall, representational similarity of a global model was found to fit the neural data
better than a local model, suggesting that adjustments reflected by late ERPs (e.g., N4oo) are made
to a higher-level model of global contingencies. Intriguing research questions remain with regard to
the precise interplay of local vs global information as well as the functional relationship of adjustment

cues and checkpoints.
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5. General discussion

5.1 General summary

The three studies presented in the previous chapters aimed to successively illuminate central aspects
of abstract predictive processing. Broadly, we intended to build a functional profile of model-
congruent and -incongruent event processing and assess the extent to which exploitation of
informative events varies as a function of local and global parameters.

To start with, study 1 set out to pursue two questions: First, we aimed to assess the neural
underpinnings of qualitatively distinct non-reward prediction errors. Using fMRI and a sequential
pattern detection task, we were able to show differential frontoparietal components for premature
terminations (inferior frontal gyrus) and unexpected extensions (superior frontal sulcus, posterior
cingulate cortex, and angular gyrus). In line with previous research, these findings were interpreted
to distinctly reflect specific rule violations (terminations) or an attentional reorienting process in
order to resume the internal model (extensions), respectively. Second, we investigated predictive
processing in variably uncertain contexts. Recurring to open questions regarding predictive efficiency
raised in the beginning, it was our hope to comprehend how top-down predictions are strategically
adapted to highly uncertain contexts. To this end, we proposed so-called checkpoints as particularly
informative reference points during a sequence: At these sequential positions, prediction errors could
potentially occur, but in fact did not. Therefore, checkpoints were conceptualised as probabilistic
(and thus informative) events which did not violate the internal model, making them a promising
candidate to inform model validity under uncertainty. Supporting this hypothesis, the direct contrast
of high vs low uncertainty checkpoints revealed increased activation in a right-lateralised
frontoparietal network comprising inferior frontal gyrus and temporoparietal junction (TPJ).

Corroborating previous accounts linking TPJ function to contextual updating, we suggested this
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pattern of uncertainty-related excess activation to indicate strategic adaptation of predictive
processing to unstable environments: High contextual uncertainty presumably resulted in stepwise
prediction of upcoming sequential input, iteratively using checkpoint information for model
evaluation. Findings from Eigenvector centrality mapping suggested that this adaptation of
predictive strategy may be conducted by means of enhanced functional connectivity between
frontoparietal circuits and the parahippocampal area.

Exploiting the temporal benefits of EEG, it was the central objective of study 2 to further characterise
the functional profile of checkpoints. Specifically, we aimed to elaborate ERP correlates of
conceptual commonalities and distinctions between checkpoints and prediction errors. First, when
compared to non-informative standard trials, both checkpoints and prediction errors are informative
in their probabilistic occurrence and may be used in similar ways to evaluate or adapt the situational
model. We found this joint quality to be reflected in a P3b component for both checkpoints and
prediction errors (vs STD, respectively). Second, it remained the fundamental distinction between
these two event classes that prediction errors violated the internal model whereas sensory input at
checkpoints did not. Fittingly, we were able to show a significant N4oo as an index of the mismatch
signal induced solely by prediction errors (vs checkpoints). Overall, findings from study 2 highlighted
checkpoints as informative, model-compliant reference points exploited for model evaluation.

As we had already established the influence of global context features (i.e., uncertainty) on
checkpoint processing in study 1, the question remained to what extent local factors potentially
modulated predictive processing. Naturally, this implicated intriguing questions with regard to the
interplay of local vs global information gain. Therefore, study 3 used a variation of the first two
studies’ paradigm which now involved incidental adjustment cues. These cues reliably indicated
extensions (i.e., otherwise unexpected sequence endings) and, by doing so, locally interfered with the

global statistical task structure. Using ERP analysis and multivariate classification, we were able to
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consolidate previous findings from two directions: First, taking adjustment cue information into
account, we replicated a significant N4oo for locally unexpected vs expected sequence endings (cf.
study 2). Similarly, extending P3b findings from study 2, exploitation of cue information was
reflected in significant decoding accuracy of adjustment cues vs non-informative analogues within
the P3b time frame. Second, adding to modulatory effects of context uncertainty from study 1,
classification analysis revealed significant decoding of high vs low uncertainty checkpoints within the
P3b time frame.

Finally, representational similarity analysis showed that within the time frame of 400 - 700 ms,
similarities between event-related potentials were better represented by a global model reflecting
overall task contingencies (compared to a local model reflecting on-line changes therein).
Accordingly, while functional and behavioural data conclusively demonstrated recognition and
exploitation of cue information for on-line adjustments, global contingencies fundamentally
remained the frame of reference. Overall, these findings thus not only bring together individual
results from all three studies, but raise compelling questions regarding the mutual influence of local
and global information in predictive processing.

In what follows, I will first reconcile key takeaways from studies 1 to 3 in order to argue the bigger
picture of non-reward prediction errors and model-compliant information in predictive processing.
Relatedly, I will then discuss different scales at which information from a variety of events may be
exploited and how this affects predictive efficiency. Finally, I will critically reflect on limitations of

studies 1 to 3 and suggest future directions before concluding this thesis.
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s.2 Implications on non-reward prediction errors

While a central role of prediction errors for model updating is widely agreed upon, functional
characterisation of non-reward prediction errors has merely attracted little attention. Study 1 aimed
to provide a functional distinction of two qualitatively different kinds of abstract prediction errors,
namely sequential terminations and extensions. To maximise computational efficiency in predictive
processing, model adaptations due to prediction errors have to be precise, directed adjustments of
model parameters. This is particularly true when current situational contexts demand immediate
behavioural responses, as was the case in the paradigm of study 1: Terminations called for an
unexpectedly early release of the response button whereas extensions required participants to
unexpectedly continue pressing the button.

Our finding of inferior frontal gyrus / BA44 activation for terminations (vs extensions) adds to a rich
body of literature of IFG involvementin signalling violations of expected regularities across domains,
e.g. language (Friederici & Kotz, 2003), actions (Wurm & Schubotz, 2012), and music (Maess et al.,
2001). Conversely, the network we report for extensions (vs terminations) comprised superior frontal
sulcus and angular gyrus which are jointly taken to reflect memory-directed reorientation and/or
updating of attention (Gottlieb, 2007; Kincade et al., 2005; Schubotz et al., 2012). Overall, we
interpret these results to indicate an unexpected resumption of the internal model in the face of
surprising sequential digits.

In order to subsequently characterise checkpoints and prediction errors in distinction to one another,
study 2 conflated both terminations and extensions into one PE category. The direct comparison of
prediction errors and checkpoints revealed a significant N4oo component evoked by PE. N4oo has
been linked to mismatch signals in semantic tasks (reviewed in Kutas & Federmeier, 2000),

recognition memory (reviewed in Friedman & Johnson, 2000), and the arithmetic domain (e.g.,
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Niedeggen et al., 1999), eventually leading to a more general description of N400 as a reflection of
conceptual representations which need updating (Federmeier & Laszlo, 2009; Kutas & Federmeier,
2o11). In line with this framing of N4oo, we interpreted findings from study 2 to reflect mismatch-
induced model updating. Intriguingly, results from study 3 further advanced this interpretation.
Here, prediction errors were once again aggregated for an ERP analysis of unexpected vs expected
events. Importantly, however, this categorisation included local contingency changes due to
adjustment cues: As these cues reliably indicated sequential extensions, globally expected events (i.e.,
regular endings) would become locally unexpected and vice versa. We found a significant N4oo
component for globally (i.c., uncued extensions) and locally (i.c., cued regular endings) unexpected
outcomes when compared to expected events. Comparing these unexpected events to studies 1 and 2,
cued regular endings from study 3 paralleled previous terminations (i.e., less sequential input than
expected) whereas uncued extensions corresponded to previous extensions (i.c., longer sequential
input than expected). While prediction errors in the first two studies violated global contingencies
acquired through statistical learning, consistent N4oo results for violations of global and local
contingencies from study 3 highlight the component’s greater involvement in denoting
representations in need of refinement or updating. The apparent independence of informational
sources further supports one of the central notions of predictive processing, namely that prediction
errors prompt model adaptations on various time scales ranging from rapid perceptual inference to
slower perceptual learning (Clark, 2013).

In sum, we were able to establish a functional distinction of sequential terminations and extensions
in study 1, reflecting respective adaptation towards behavioural consequences. When aggregated,
prediction errors uniformly evoked a mismatch-related N4oo component, irrespective of the time
scale on which contingencies were violated (see study 3). In the following sections, I will address the

role of model-compliant information and how it benefits predictive efficiency across time scales.
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5.3 Model-compliant information in predictive processing

So far, the three studies outlined in the previous chapters have established converging roles of two
types of model-compliant information in predictive processing: First, checkpoints were initially
introduced in study 1 as reference points within a sequence which were particularly informative in
highly uncertain contexts. In other words, when statistically unstable environments lowered
confidence in model validity, downstream predictive codes would be strategically adapted to use
checkpoints for stepwise model evaluation. Critically, since sensory input at checkpoints did not
violate model-based predictions, adaptation in response to contextual uncertainty was clearly not
induced by mismatch signals.

Second, adjustment cues were employed in study 3 to provide reliable local information regarding
sequence continuation, thus interfering with global statistical structures. As reported above, we were
able to reliably decode adjustment cues from non-cues at the same sequential position, particularly
within the P3b time frame. While the interplay of local and global information deserves separate
attention (see 5.4 Predictive efficiency across time scales), joint results from all three studies provide

critical insight into functional characteristics of model-compliant events in predictive processing.

A key role in understanding these characteristics falls to the P3b as the common denominator of
exploiting informative events. P3b has consistently been reported for informative, task-relevant
stimulus evaluation (Huang et al,, 2015; Katayama & Polich, 1998; Nicuwenhuis et al., 2011).
Critically, and in opposition to several predictive processing accounts, our findings emphasise that
stimuli do not necessarily have to violate model assumptions to be informative. Previous studies have
shown P3b to be evoked by an informative sequence of standard trials acting as a ‘secondary target’
(Fogelson et al., 2009) and even in the absence of stimuli if the omission was informative

(Nieuwenhuis et al., 2011). Relatedly, when we aimed to distinguish informative checkpoints from
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perceptually identical but non-informative standard trials in study 2, a hypothesised P3b component
emerged as the index of excess information provided by checkpoints. The parallel comparison of
prediction errors vs standard trials revealed a strikingly similar P3b component for PE, emphasising
related roles for checkpoints and prediction errors in predictive processing. Based on accumulated
findings of studies 1 and 2, we suggested model evaluation as the checkpoint-induced counterpart to
model adaptation widely ascribed to prediction errors (Clark, 2013; Rao & Ballard, 1999): Uncertainty-
related activation within TPJ, a suggested cortical source of P3b (Mengotd et al., 2017; Volpe et al,,
2007), had established checkpoints as context-sensitive points of reference in study 1, presumably
reflecting their exploitation for stepwise processing (see above). In addition to increased TPJ
activation for high (vs low) uncertainty checkpoints, study 1 had also shown heightened functional
connectivity of parahippocampal cortex during epochs of high uncertainty. Consequently, we
suggested stepwise processing in unstable environments to rely on model information retrieved from
working memory. This interpretation gains substantial support from previous work declaring P3b a
marker of working memory operations initiated in the hippocampal formation whose updated
output is then transmitted to parietal cortex (Knight, 1996; Squire & Kandel, 1999).

Finally, Study 3 further refined our understanding of P3b as an index of evaluative information use
in light of global uncertainty modulation. Significant multivariate pattern decoding of high vs low
uncertainty checkpoints within the P3b time frame provided the missing link between fMRI and
EEG findings from studies 1 and 2. Furthermore, replicating the logic of the CP vs STD comparison
from study 2, we were able to reliably decode newly introduced adjustment cues from non-
informative equivalents. Like checkpoints, adjustment cues provided critical, task-relevant
information with regard to the continuation of the respective sequence - a long-standing, central
factor of influence on P3b amplitude (Goldstein et al., 2002; Patel & Azzam, 2005). Overall, P3b

appears to be evoked by processing of excess information from model-congruent and -incongruent
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outcomes, irrespective of the time scale on which this information is used: Checkpoints were shown
to be related to higher-level contextual features (i.e. global uncertainty), whereas adjustment cues
indicated short-term, local changes of contingencies. Prediction errors, which also elicited a P3b when
compared to standard trials, can prompt model adaptation on a variety of time scales (Clark, 2013).
As the temporal scope of P3b has been shown to range from stimulus-bound surprise (Mars et al,,
2008; Bennett et al., 2015) up to maintenance of broader context information (Kimura et al., 20105
Polich, 2007), we suggest model-compliant events to inform predictive processing on an equally

variable time scale.

To summarise, while potential benefits of model-compliant information are oftentimes overlooked
in predictive processing accounts, the three studies presented here draw a coherent picture of how
non-error events are used for model evaluation. Consistent findings of P3b and its involvement in
transmitting information between (para-)hippocampal areas and TPJ demonstrate the component’s
role in model evaluation across time scales: While information from adjustment cues was exploited
to learn short-time contingency changes on-line, checkpoints were informative with regard to
broader contextual features. This way, both local and global sources of information appear to be

exploited to inform predictive processing for the sake of predictive efficiency.
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5.4 Predictive efficiency across time scales

It is one of the core merits of the predictive processing framework to provide a comprehensive
account of computational efficiency in brain function. As highlighted in the introduction, its
hierarchical structure allows parsimonious comparisons of model predictions and sensory
information at every stage of the processing hierarchy, effectively reducing bottom-up signal to
unexplained prediction errors (see 1.2 The predictive brain). These mismatch signals prompt model
updating on different time scales: Automatic adjustments of probabilistic representations at the next
highest level allow for rapid perceptual inference whereas the very structure of the internal model
may be updated for a better fit on future occasions (Clark, 2013).

This error-bound conceptualisation is indisputably well-suited to explain model adaptation
following  both  locally  unexpected events and global contingency  changes.
Extending the narrative of predictive efficiency, this dissertation aimed to examine how top-down
predictive codes may be strategically adapted to varying contexts and how different sources of
information would be used in the process.

In addition to prediction errors, two classes of model-compliant events emerged as significant
reference points informing predictive processing. First, checkpoints were established as points in time
where model-compliant information was exploited for stepwise evaluation of model validity under
high uncertainty (see study 1). Based on the pattern of uncertainty-related fMRI results, we suggested
such stepwise predictive processing to be rooted in iterative evaluation of model information
retrieved from working memory within the (para-)hippocampal cortex. Supposedly, thisinformation
is then transmitted to parietal cortex (angular gyrus / TP]) to inform appropriate updating of
contextual information. Consistent P3b results for checkpoints from studies 2 and 3 substantially

corroborated this interpretation, as P3b has been linked to both contextual updating (Kimura et al,,
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2010; Polich, 2007) and information transmission from hippocampal areas to TP] (Knightetal., 1989;
Verleger et al.,, 1994; Yamaguchi & Knight, 1992).

The second class of non-error events used to inform predictive processing were adjustment cues
presented during an ongoing sequence. As described in more detail above, these cues interfered with
the global task structure by providing reliable on-line information with regard to the outcome of
respective sequences. Just as prediction errors and checkpoints, adjustment cues were found to evoke
distinct potentials within the P3b time frame (compared to non-informative equivalents), as revealed
by multivariate pattern classification in study 3.

Although intriguing research questions remain to be addressed in future studies (see below), it is
worth considering the implications of joint P3b findings for both model-congruent (checkpoints,
adjustment cues) and -incongruent events (prediction errors) on a variety of time scales. P3b has long
been established as an index of effortful, evaluative processing of particularly informative events
(Dien et al., 2004; Goldstein et al., 2002; Huang et al., 2015; Katayama & Polich, 1998). Providing
exploitable information was indeed the common denominator of CP, AC+, and PE, as all
corresponding analyses throughout studies 2 and 3 compared informative events to non-informative
counterparts.

Critically, P3b did neither depend on model-compliance (see above) nor the temporal scope on which
the information was used: Modulations due to global contextual features (i.e., checkpoints vs
standard trials, study 2) were equally reflected within the P3b time frame as short-term, local changes
in contingencies (i.e., informative adjustment cues vs non-informative equivalents, study 3).
In light of our previous proposal that model evaluation makes use of model-compliant information
in uncertain environments (see study 2), it scems intuitive that iterative validation of the internal
model is not limited to either local or global information. As is the case for error-induced model

adaptation, the overall hierarchical organisation of predictive processing implies that model
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evaluation too can occur at different levels of the processing hierarchy. Empirical studies have
highlighted this multi-level organisation by demonstrating distinct error signals for the violation of
local probabilities and global rules (Wacongne et al, 2o11; cf. Bekinschtein et al., 2009). In other words,
similar to the paradigm of our third study, the authors were able to distinguish processing of
unexpected from expected mismatch signals. Therefore, representational similarity analysis from
study 3 was particularly designed to provide a comprehensive account of how local and global
information is weighted in the experimental context (see 5.5 Critical reflection for considerations of
potential influence factors).

As described earlier, RSA model comparison revealed a better fit of a model reflecting global
statistical contingencies than the one modelling local changes. This finding corroborates a
fundamental notion of hierarchical predictions, namely that global models always rank higher than
local expectations in predictive processing. Once a global set of rules has been acquired as a frame of
reference - in our studies, by means of statistical learning - local deviations from this global model are
quite literally ‘exceptions to the rule’. With respect to computational efficiency, it appears
considerably less effortful to propagate occasional error signals upstream than to develop highly
detailed model assumptions on principle. This marks a critical distinction regarding the time scale of
model adaptation: While rapid, low-level adaptation occurs automatically when even a single
unexpected stimulus is perceived, broader changes to model assumptions require integration of
multiple mismatch occurrences over time.

Balancing computational costs and benefits of maintaining highly specified internal models vs
committing prediction errors is particularly relevant in contexts where model validity is uncertain.
The stepwise processing account we proposed in study 1 provides a highly efficient solution regarding
model specificity in uncertain environments: As participants had completed a training session prior
to the experiment, they were (albeit implicitly) aware of variably uncertain contexts. When

37



uncertainty was high, checkpoints emerged as reference points whose model-compliant information
was exploited for model evaluation. In other words, rather than preparing a separate model for the
changed contingencies in high uncertainty contexts, original full-length predictions were segmented
into smaller portions and incrementally evaluated at checkpoint positions.

Underscoring the precedence of global over local information, study 3 showed successful multivariate
decoding of checkpoint potentials under high vs low uncertainty. This finding is quite instructive in
that local information from adjustment cues could have indeed cancelled out the functional
significance of checkpoints altogether: Extensions were in fact more frequent under high (vs low)
uncertainty, but were still reliably preceded by adjustment cues. Therefore, when no adjustment cue
was presented’, local probabilities of extensions were factually identical in high and low uncertainty
contexts (see Fig. 4-1, panel B). Distinct behavioural and functional indices of adjustment cue
information notwithstanding (see study 3), differential processing of high vs low uncertainty
checkpoints thus demonstrates how global models are - to a certain extent - shielded against
energetically costly refinement. Conceivably, the circumstances of eventual global changes to the
internal model are subject to modulation by a variety of parameters, some of which will be addressed

below.

!t is critical to recall that study 3 only sampled checkpoints from sequences which did not contain an adjustment cue at
the third sequential position. This was the only way to a) ensure that original, global task contingencies were still in place
and b) maximise applicability of transferring the concept of checkpoints established in the first two studies into the new

paradigm of study 3.
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5.5 Critical reflection

The three studies presented in this thesis were conceptualised to highlight select aspects of predictive
processing with a focus the way in which model-compliant information may be exploited similarly
to prediction errors. Despite careful planning, neither of the studies comes without its limitations —
some only apparent in hindsight — and a few points deserve critical reflection.

One issue to consider is the interplay of surprise and uncertainty. As the two measures are naturally
correlated, we set up a parametric surprise regressor in the GLM of study 1 to assess net effects of
higher-order uncertainty on checkpoint processing. While study 2 employed an identical replication
of the paradigm in every respect?, the mass univariate approach we consistently applied throughout
studies 2 and 3 did not allow for an equivalent analysis. One way to address the influence of stimulus-
bound surprise on event-level P3b amplitudes is by means of trial-by-trial analyses (e.g., Bennett et
al., 20153 Mars et al., 2008). As such additional analyses were beyond the scope of studies 2 and 3, it
remains an important objective for future efforts to illuminate differential contributions of single-
trial surprise and higher-level context uncertainty.

Relatedly, we would have liked to examine in more detail the influence of irreducible uncertainty on
reported potentals evoked by adjustment cues and checkpoints in study 3. Due to constraints on the
duration of the EEG measurement, we were unfortunately not able to include a sufficient amount of
trials to allow these analyses. For example, it would be highly instructive to see whether distinct
potentials of adjustment cues vs non-informative equivalents vary as a function of context statistics.
Potential interactions of adjustment cue exploitation and contextual uncertainty would further
underscore the functional similarities of adjustment cues and checkpoints: Conceivably, adjustment

cue positions, like checkpoints, are of particular interest under high uncertainty to assess whether any

2 Note that study 2 contained more experimental blocks (i.e., a higher overall trial count) than study 1 due to the longer
duration of the EEG measurement (vs fMRI).
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turther information can be gained locally. In a similar vein, it would have been instructive to be able
to include uncertainty as a factor in the global and local model DSM of the RSA analysis. This would
allow us to model even more detailed relations between the events of interest, for example with regard
to how functionally similar checkpoints or adjustment cues are under high vs low uncertainty.
Finally, RSA results from study 3 give reason to fruitful speculation regarding the distinction of local
and global information. As outlined above, better model fit of the global model corroborated how
hierarchical principles in predictive processing rank higher order assumptions over local ones. In
other words, local information, in this case provided by on-line adjustment cues, does not overwrite
learned global contingencies. However, itis worth considering the experimental circumstances under
which these results were obtained and how they may vary in everyday life. As discussed earlier, local
information prompting short-term updating is initially the exception to an established set of rules.
This global frame of reference is somewhat robust to structural changes, as it would be highly
effortful to maintain an unnecessarily complex model at any time. Only if expectation violations are
encountered repeatedly over time does slower learning occur in the form of higher-order model
adaprtation.

Conceivably, however, such changes may be spurred by a number of motivational as well as cognitive
parameters. For example, participants learned both local probabilities and global uncertainty changes
implicitly. While consistent response patterns throughout all three studies demonstrated behavioural
indices of successful learning, explicit instructions regarding adjustment cues would certainly increase
the prominence of such informative events. Just as a priority road sign explicitly indicates short-term
changes of global rules (Yield to the right’), allocation of attentional resources towards explicitly
instructed cues would facilitate their integration into model assumptions.

From a motivational point of view, it is worth noting that participants were exclusively driven by

intrinsic motivation. In the absence of reward, one could argue that incentives to feel involved in task
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performance were rather low. While the focus on non-reward prediction errors was a critical novel
feature of all three studies, the question remains to what extent available information is used as a
function of personal commitment — either because correct predictions prompt rewarded responses
or because, as exemplified in study 1, avoidance of prediction errors prevents harmful consequences
like dropping a fridge in the hall. Much like explicit instructions, personal investment (as is often the
case in everyday life) may very well lead to increased attention towards informative events regardless

of model-compliance and, therefore, to differential neural signatures.

5.6 Future directions

Some critical objectives for subsequent efforts have already been outlined in the discussion sections
of all three studies. Especially since study 3 has provided first insight into the functional similarities
of both model-congruent and —incongruent events, future studies should aim to extend our
understanding of the parameters modulating the exploitation of model-compliant information.

Further research is needed for a more detailed characterisation of adjustment cues. While study 3 has
demonstrated differential processing of informative vs non-informative cue positions, it would be
revealing to assess the extent to which these positions are processed differently from non-informative
sequential standards: Even if no cueis presented, the poz‘em‘ml information gain at respective sequence
positions may be sufficient to single out these events compared to deterministic standard trials. This
kind of functional prominence, in turn, conceivably depends on how vital potendal information
from cue positions would be in the current task context. A similar logic lead to the discovery of
checkpoints in study 1: Cast as sites of potential prediction errors, checkpoints were highly

informative in uncertain environments which compromised confidence in model validity.
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Consequently, the more instructive adjustment cues are, the more resources could will presumably
be allocated to sequential positions from which such information could potentally be gained,
irrespective of the actual outcome. To this end, future studies should assess neural correlates not only
in response to, but also leading up to, these events. Upcoming efforts should assess expectations prior
to potentially informative sequential positions by means of pre-stimulus ERPs or time frequency
analyses. One promising candidate marker of information expectation is the stimulus-preceding
negativity (SPN; see Mnatsakanian & Tarkka, 2002), a slow potential shown to increase in amplitude
prior to the presentation of particularly informative events (Moris et al., 2013). It remains to be
examined whether potential cue positions are preceded by correlates of increased expectations when
compared to non-informative standard trials. In a similar vein, as distinct components of predictive
processing have been suggested to be transmitted by separate oscillatory rhythms (e.g., Arnal &
Giraud, 2012), assessment of pre-stimulus differences in the power of - and y-frequency bands would
considerably add to the understanding of adjustment cue and checkpoint processing.

Finally, much like study 1 demonstrated the influence of context uncertainty on the exploitation of
checkpoints, intriguing questions remain with regard to which factors supposedly modulate pre-
stimulus expectation of potentally informative cue positions. As suggested above, one promising
variation would be to decouple context uncertainty and adjustment cue validity in an effort to make

cue information particularly vital under high uncertainty.
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5.7 Conclusion

In this dissertation, I presented three studies designed to illuminate how both model-congruent and
—incongruent information is used to maintain computational efficiency in predictive processing. A
culmination of fMRI and EEG findings highlighted the benefits of checkpoints (CP) for stepwise
processing in contexts where confidence in full-length predictions was compromised due to high
irreducible uncertainty. Checkpoints were subsequenty shown to share central functional
characteristics with prediction errors (PE), in that both events provided vital, highly task-relevant
information (compared to sequential standard trials). Distinct event-related potentials were shown
for joint information provided by checkpoints and prediction errors (P3b) and for the mismatch
signal evoked only by PE (N400). We concluded that checkpoint information is used for context-
induced model evaluation whereas prediction errors instigate model adaptation.

Finally, on-line task-relevant information provided by adjustment cues (AC) was found to be
exploited similarly to checkpoints, but on a different time scale: While checkpoints emerged as a
function of global changes in uncertainty, adjustment cues provided local model-compliant
information. Representational similarity analysis corroborated the primacy of global over local
information in predictive processing, raising intriguing questions for future research regarding the

variation of model-compliant event processing across time scales.
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