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ABSTRACT

Predicting future locomotion based on intrinsic data serves many
purposes, including optimizing the utilization of physical space in
virtual reality environments and enhancing the control of electronic
aids for patients with motor impairments. However, predicting hu-
man locomotion intentions proves challenging due to the inherent
difficulty arising from the highly complex and nonlinear interac-
tions among the relevant parameters. Deep neural networks offer
a significant advantage over conventional approaches in addressing
this challenge. We treat this task as a time series prediction problem
and compare LSTM networks to transformer models. A distinctive
aspect of our work is our approach’s emphasis on eye movements
as a central feature, contributing to its novel predictive capabilities.
Besides gaze data, we evaluate the addition of EEG as a data source
for this prediction task to be used in brain-computer interfaces. To
achieve this, we conducted two data collection experiments in cus-
tom virtual environments that feature different tasks utilizing joy-
stick control. We present these novel datasets in conjunction with
this work. The results demonstrate that gaze data proves to be a
valuable tool for locomotion prediction in different contexts, even
when there is not a strong and direct connection between gaze and
future waypoints. Transformer models were able to achieve better
performance than LSTM networks, and we conclude that success-
ful prediction across diverse situations requires datasets containing
a wide range of movement scenarios.

Index Terms: Virtual Reality, Eye Tracking, Eye-Tracking, Loco-
motion, LSTM, Transformer, Path Prediction, Machine Learning,
Deep Learning, Gaze.

1 INTRODUCTION

In the extended reality (XR) domain, the convergence of human-
computer interaction and immersive environments has opened up
new avenues for user engagement and exploration. One of the key
challenges in this context is understanding and predicting a user’s
future movements. In Virtual Reality (VR), successfully antici-
pating and interpreting user movements in the virtual realm holds
significant promise for improving VR experiences and developing
more intuitive and responsive systems. In Augmented Reality (AR),
the ability to predict the locomotion intentions of a user can be help-
ful for control interfaces of machinery or robotic aids. For exam-
ple, an intriguing opportunity arises from incorporating a predictive
model into the control system of an electronic wheelchair for pa-
tients with motor impairments. In such a device, prediction of the
user’s intention could be used to move the wheelchair in the respec-
tive direction and AR could play a crucial role as a visualization in-
terface, presenting real-time predictions directly in the user’s field
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of view, providing users with a transparent and immediate under-
standing of the wheelchair’s anticipated movements. The interplay
between predictions and AR visualization establishes a symbiotic
loop: the user’s cognitive intentions guide the wheelchair’s move-
ments, and the resulting actions are seamlessly displayed in the aug-
mented environment. This integration not only holds promise for
improving wheelchair navigation but also opens up new possibili-
ties for inclusive and adaptive technologies. Prioritizing user com-
fort, autonomy, and safety in various mobility scenarios becomes a
focal point.

A contemporary paradigm in trajectory prediction involves the
utilization of artificial neural networks. In the area of time series
prediction, a particular focus lies on recurrent neural networks and
transformer neural networks. In the domain of human motion pre-
diction, recurrent neural networks, such as Long Short-Term Mem-
ory networks (LSTMs), have gained prominence [43, 13, 57, 46, 8].
LSTMs, introduced by Hochreiter and Schmidhuber [22], exhibit
the ability to retain and selectively forget information over extended
sequences, making them particularly adept at modeling sequen-
tial dependencies. This ability to manage long-range dependencies
makes LSTMs well-suited for tasks where understanding tempo-
ral patterns is essential, such as human motion prediction. Applied
to predicting user positions in VR scenarios [11] and controlling
redirected walking [37], LSTMs have showcased their versatility
in capturing intricate spatial and orientational dynamics within dy-
namic environments.

Transformer networks [59], in contrast, focus on attention mech-
anisms rather than iterative memory processes. Transformers cap-
ture global dependencies within sequences by dynamically attend-
ing to relevant parts of the input sequence. This attention-based
approach allows transformers to efficiently model relationships be-
tween distant elements in a sequence, thereby offering advantages
in parallelization and scalability. Among many other areas of appli-
cation, these powerful networks have also achieved success in the
field of human trajectory prediction [16, 61]. While these networks
have not been used for locomotion prediction in VR specifically,
transformers have been successfully applied to forecast motion and
behaviour in VR [10, 40]

For such time series prediction of locomotion the history of loco-
motor data, i.e., prior position or velocities, are the most important
input feature, as human movements are typically smooth. In addi-
tion, gaze plays a pivotal role in motor action, as our eyes naturally
gravitate towards targets of interest to gather essential visual infor-
mation for effective action control [35]. Given that eye movements
often precede other motor actions [36, 20], they serve as valuable
indicators for predicting action intentions [2, 17, 65, 66]. Walkers,
for instance, consistently align their gaze with a target just before
approaching it [25, 14].

However, gaze behavior is multifaceted, extending beyond a sin-
gular focus on ultimate targets. Walkers also direct their gaze
towards obstacles, and when navigating uneven terrain, they fre-
quently glance at the ground a few steps ahead to ensure secure foot
placements [24, 23, 9, 56, 44]. While gaze behavior may not exclu-
sively pinpoint the ultimate target, it provides valuable insights into



waypoints that walkers anticipate using on a short timescale, typi-
cally within the next few steps. One of the aims of the current work
is to see whether gaze can be a useful feature even in situations in
which users are actively scanning their environment and often look
away from the target of their locomotion. To do this, we compare a
navigational task with a visual search task in the scene.

Additionally, eye movements are intricately linked to changes in
direction, with walkers adjusting their gaze inward during curved
trajectories [19, 28]. Eye movements also contribute to decision-
making processes, including choosing between alternative targets
and searching for targets amid distractors [65, 62, 32], showcasing
the adaptability of gaze behavior to varying task demands [58].

In essence, while gaze offers valuable information about future
actions, leveraging this information to predict future locomotion be-
havior poses a complex challenge. Deep learning models emerge
as promising tools for unraveling user intentions and forecasting
locomotion directions, given the intricate interplay of gaze with dy-
namic environmental cues and task-specific demands.

Electroencephalography (EEG) has emerged as a valuable tool
for investigating the neural correlates of locomotion and under-
standing the intricate interplay between the brain and the control
of movement. Research has delved into the connection between
EEG signals and locomotor behavior, shedding light on the neural
processes underlying human mobility [18, 30].

EEG provides insights into cognitive functions associated with
locomotion. Studies have demonstrated that distinct EEG patterns
are associated with different phases of walking, such as the initi-
ation, execution, and termination of gait cycles[60]. EEG signals
correlate with alterations in walking speed, direction, and obsta-
cle avoidance [33]. These patterns offer a window into the neural
mechanisms governing motor planning, coordination, and execu-
tion during ambulation.

1.1 Related Work

Various algorithms utilized gaze data in the prediction of differ-
ent locomotion tasks in VR [65, 17, 21]. Some contemporary ap-
proaches employ deep learning models for predicting future posi-
tions and have shown promise in diverse contexts, such as public
pedestrian traffic [1, 64] and the prediction of future gaze directions
[15, 63, 26, 27, 12]. Redirected Walking is a classic paradigm in
VR, where the displayed path is different from the actual path [49].
When a virtual reality user encounters the boundaries of their phys-
ical environment, it can disrupt the immersive experience. To ad-
dress this issue, redirected walking methods aim to guide the users
along a different walking path by altering the virtual environment
causing users to unknowingly adjust their direction and speed of
movement. Robust path prediction can be very helpful here as it
allows planning and applying the manipulation in advance. Deep
Learning models for locomotion prediction in redirected walking
have gained recent success, showing that locomotion prediction in
VR is a worthwhile endeavor [11, 54, 7, 29, 45]. Gaze can be a
valuable feature here [5, 54, 6, 7]. Even for the objective of loco-
motion intention prediction specifically, gaze has been proven to be
a valuable feature for algorithms [41]. Another application for mo-
tion prediction in VR is gesture classification. Gesture classification
uses head-mounted displays (HMDs) to recognize body actions and
head gestures [69, 68, 67, 38].

Transformer networks have been successfully employed for hu-
man trajectory forecasting in different context, especially pedes-
trian behaviour [16, 64]. Alternatively transformer networks and
LSTMs can be combined [61].

EEG data based locomotion prediction has been used to con-
struct brain-computer interfaces (BCIs) for assistive devices, espe-
cially wheelchairs [48]. Deep Learning architectures like LSTMs
have been successfully employed here [42]. EEG data has not been
used for locomotion prediction in VR. However, Kritikos et al. have

used LSTM models to forecast arm movements in VR [34].

1.2 Aim of this work
The objective of this study is to forecast individuals’ intended lo-
comotion intention. The research will specifically concentrate on
sequence-to-sequence long-term prediction, recognizing that the
navigational success of a control system is contingent on user feed-
back grounded in long-term prediction. We disregard lower limb
activities, emphasizing an immersive perspective facilitated by data
acquired through a Virtual Reality (VR) headset. This methodology
transcends conventional screen-based applications, such as video
games, by closely aligning with sensory-motor loops pertinent to
vehicular operations, including cars or wheelchairs.

We will evaluate four key questions:

1. The first aspect of our investigation involves assessing the po-
tential enhancement of deep neural networks through the in-
corporation of eye-tracking and EEG data as additional fea-
tures. In the context of wheelchair control, predictive mod-
els leveraging eye-tracking and EEG data offer unique value,
particularly for individuals with limited motor abilities. This
evaluation focuses on improving locomotor behavior predic-
tions and navigation target forecasts, aiming to contribute to
advancements in assistive technologies.

2. For the second question, we undertake a comparative evalu-
ation of two distinct datasets. The first dataset promotes a
varied spectrum of locomotion and eye movements, allow-
ing users to freely select locomotion targets. In contrast, the
second dataset imposes stricter constraints on locomotion by
providing predetermined paths and, simultaneously, adds a
concurrent visual search task that prompts eye movements
towards objects in scene that are not related to the locomo-
tion. Our objective is to evaluate these datasets on both per-
formance and generalizability metrics. By assessing how well
the predictive models perform on each dataset and how effec-
tively they generalize to the other scenarios, we aim to discern
the impact of dataset characteristics on the overall robustness
and applicability of the models.

3. The third aspect of this work builds upon the evaluation new
features and of these two distinct datasets. We want to com-
pare the value of additional eye-tracking features for our
model in the two datasets separately. While the first tasks al-
lows for relatively unconstrained eye movements that should
be tightly coupled with intended locomotion goals, the second
dataset forces the users to redirect their gaze and attention to-
wards a non-locomotor task.

4. For the last aspect, we plan to evaluate the Long Short-Term
Memory (LSTM) and transformer models, both in relation to
each other and against simpler prediction approaches. This
comparative analysis is essential for identifying potential ad-
vantages inherent in different architectural designs. The deci-
sion to explore LSTM and transformer models is motivated by
their prominence in sequence-to-sequence time series predic-
tion tasks, aligning with our primary objective of predicting
individuals’ intended movements

2 DATA ACQUISITION

Two data collection experiments were conducted in order to acquire
a suitable amount of training data for specific locomotor situations.
Both datasets used for this work were obtained from Virtual Re-
ality joystick experiments conducted together. All raw data files
are freely available online. The forest experiment can be found at
https://osf.io/ney6v/. The course and visual search double
task experiment can be found at https://osf.io/4g9pw/.

https://osf.io/ney6v/
https://osf.io/4g9pw/


Figure 1: Screenshots from the virtual environments of the data col-
lection experiments (a) The forest experiment (b) The course and
visual search double task experiment

2.1 Participants
Twenty healthy participants (twelve female) completed the experi-
ment. Their age ranged from 18 to 50 years (M = 24.4, SD = 7.09).
The experimental procedures were approved by the Ethics Commit-
tee of the University of Muenster and all participants gave informed
written consent. Four participants were left-handed and everybody
had normal or corrected to normal vision. The participants were
naı̈ve to the intents of both experiments. Participants could be re-
warded either by course credit or money (C10 per hour).

2.2 Materials
The virtual environment was presented in an HTC Vive Pro Eye
HMD with a resolution of 1440×1600 pixels per eye, a frame rate
of 90 Hz and a field of view of 110 degrees. Six Vive Lighthouses
2.0 were used to create a tracking area of 6×11 m. The virtual
environment was built with Unity3D and was running with an Intel
Core i9 processor and an NVIDIA GTX2080 graphics card.

The EEG was a 32-channel wet electrode mobile and wireless
EEG produced by Brainproducts. An Easycap recording cap with a
1020 montage was used.

2.2.1 Eye Tracking Quality
For the Vive Pro Eye, the manufacturer HTC reports a spatial ac-
curacy of 0.5°–1.1°. The accuracy seems to fall in that range for
the central region of the field of view, but can be larger in the pe-
riphery [52, 50]. The peripheral regions are rarely used, thus the
average accuracy seems to fall around or below 2° [54, 50] and
there is evidence, that this accuracy remains stable over the course
of an experiment [54]. The device exhibits eye tracking data delays
between approximately 50 ms [55] and 60 ms [52]. All in all, these
errors and delays are small enough to extract general directions as
we want in this work.

2.2.2 Sensor Synchronization
To develop a model suitable for real-time application, we had to
synchronize sensors with inherently different measurement laten-

cies as they would be in a real-world scenario. Utilizing Lab-
StreamingLayer, we live streamed EEG data to Python while con-
currently streaming Virtual Reality data, including the Vive eye
tracking data obtained in Unity, to Python. These timings were
then used to construct the datasets.

2.3 Procedure

Prior to each experiment, participants received detailed task in-
structions, and demographic data was collected. The electrode cap
was positioned, connected, and the impedance of all electrodes was
verified. After applying electrode gel, participants wore a head-
mounted display over the electrode cap. The participants were
seated on a chair with the joystick in front of them. For every
participation, the eye tracking was calibrated and checked with a
custom validation tool. This process was repeated up until the val-
idation showed a sufficient eye-tracking calibration. To create a
controlled environment, ensure the cleanest possible eye-tracking
data and minimize the potential for motion sickness, subjects were
instructed to maintain a stable head position using a chin rest. The
participants were instructed to control the joystick with their main
hand. They could freely choose their preferred grip style.

2.3.1 Forest Task

In the first experiments, participants could freely move through a
virtual forest environment. The forest was randomly auto-generated
with new parts appearing if the world border was getting closer than
75m. The forest environment contained a slightly uneven ground,
a set of similar trees and red balls that could symbolise fruits (see
Fig. 1 (a)). These balls appeared in four variations: low on ground
level, high on a tree, on a plant between these low and high points,
and as a double ball on a plant. The occurrence rate of these four
variations was identical.

The participants aim was to gather red balls. This could be done
by steering close to a ball up until the ball would turn grey in 2
meters distance. Once a ball was grey, the participants could gather
it by releasing the joystick or putting it back to the rest position. A
ball that was gathered would turn white and could not be gathered
again.

The environment and task were designed to allow a diverse set of
navigation paths, including turning, backwards navigation and ob-
stacle avoidance, while still allowing for the occurrence of natural
behaviour. While it was the objective to gather the balls, no target
number or speed requirements were given. Instead, the participants
should move smoothly. No instructions regarding gaze behaviour
were given. Participants were free to choose different gaze and
movement targets in this environment.

2.3.2 Course Task

In the second experiment, participants were following a black path
while counting blue stripes on grey cylinders. Participants used the
joystick to navigate a minimalist virtual environment along a pre-
defined path (see Fig. 1 (b)). These black navigation paths were
generated by concatenating walking paths from the Microsoft Geo-
life dataset [70, 72, 71]. The first path was oriented to lay right in
front of the participant. The last known orientation was used when
concatenating two paths. The subjects were instructed to follow the
paths but were not instructed to follow them as close as possible.

Gray cylindrical objects were placed randomly on both sides of
the virtual path in 2 meters distance to the path. These objects had
either two or three dark blue lines, with the majority featuring two
lines. While following the path, the participants also had to count
the amount of objects with three lines that appeared on the sides.
There could be up to four objects with three lines. This was the
visual search task that had to be solved simultaneously with the
navigation task, resulting in a division of attention and visual tar-



Figure 2: A visualization of the full model architecture including all
features. Blue shows Eye-Tracking. Light brown shows positional
information. Green shows EEG information. The pink model repre-
sents the transformer architecture. For the LSTM, there would be a
replacement here.

gets. The distance between the objects varied relative to the random
paths. Most spacings were between 3 and 4 meters.

Each participant followed five distinct paths within the VR envi-
ronment, with a gray cylinder featuring six lines marking the end-
point for virtual locomotion. The double task experiment was de-
signed to force the participants to make a diverse set of eye move-
ments, aiming both at future waypoints and at the individual ob-
jects. The choice of locomotion targets was more restricted here
and visual attention was required for non-movement targets as well.

3 PREDICTION MODEL

Using these two datasets, we constructed prediction models with
the aim of forecasting future locomotion intentions, specifically fu-
ture locomotion trajectories. Both datasets accounted for approxi-
mately half of the data (52.7% for the forest experiment and 47.3%
for the course and visual search experiment). Different types of
models were built, but the same preprocessing was applied each
time.

3.1 Preprocessing
We binned the motion and eye data into 60ms steps. For each pre-
diction, we used 30 input points (1.8s) and 70 output points (4.2s).
All positional data was transformed to a unifying reference frame.
The origin of the coordinate system was reset to the point of pre-
diction. The forward axis (sagittal) was set to the yaw orientation
at the point of prediction. The lateral axis was built orthogonally
to the yaw orientation at this point. Finally, we calculated veloc-
ities between each time step for both axes separately. These two-
dimensional velocities enable a homogeneous input and output for
the model.

The 70 output points consisted of the two-dimensional velocity
in future time steps. The input consisted of 3 types of features: two-
dimensional velocity of 30 past time steps, the history of yaw and
pitch eye-tracking measurements, the preprocessed EEG features
(see Fig. 2). Finally, all data was z-score normalized (standard-
ized). After excluding data with missing values, 294,840 input-
output-pairs were obtained.

3.1.1 EEG Preprocessing

First, the 500 Hz EEG was downsampled to obtain 450 4ms EEG
values for our 1.8 second input. These were corrected with the
channel mean of one input sequence and filtered with a High-pass
filter of 1 Hz and a low-pass filter of 80 Hz. 80 Hz was chosen as the
monitor refresh rate of the HMD was 90Hz creating an artifact. The
EEG was z-standardized and extreme outliers beyond 4 standard
deviations were clipped.

On the filtered signal, time frequency analysis was conducted
using multitaper for the spectral density estimation. The minimum
frequency was 1 Hz, while the maximal frequency was 30Hz. We
obtained 5 frequency estimates for the 1.8s history of data, each one
360ms after one another.

Our aim was to create a model that would be able to perform
online in a real-time scenario. Thus, complex preprocessing steps
like independent component analysis (ICA) filtering were not pos-
sible. Nevertheless, we created a dataset where ICA was used to
filter artefacts to obtain a better understanding of the EEG compo-
nents. This dataset could not be used online. We employed the help
of the ICLabel classifier [39] to automate the process and exclude
artifacts such as eye blink, muscle, and movement activity.

3.2 Architecture
We compare different types of approaches to the temporal nature of
this data and to determine the most accurate model. These include
basic autoregression, RNNs and Transformer models.

To process the EEG data for our deep learning models, we trans-
form the 450 4ms time steps to 30 60ms timesteps. This matches
the sampling length of the velocities, that we use for input, output
and eye data, we employed two one-dimensional convolutional lay-
ers with a ReLU activation function. The first convolutional layer
has a kernel size of 5, 32 input channels and 22 output channels.
The second has a kernel size of 3, 22 input channels and 12 output
channels. We use two linear layers with sigmoid activation func-
tions to change the temporal size to 30 and the feature size to 8.

The 48 features of 30 time steps are then either processed by an
LSTM or a transformer network. To prevent overfitting on the first
and easy to predict second, ensemble modeling was employed. The
first 15 of the 70 Outputs of the deep neural network Y NN were
mixed with autoregression results Y AR according to a weighted av-
erage with linearly changing weights:

Yi =
15− i

15
·YNN

i +
i

15
·YAR

i for i = 1,2, . . . ,15. (1)

The Transformer architecture consist of a linear embedding layer
with 48 input and output dimensions a positional encoding layer
and the transformer itself with 4 attentional heads, 2 encoder layers
and 2 decoder layers and a feedforward dimension of 24. We pre-
dict 70 outputs corresponding to 4.2 seconds. Figure 2 depicts this
architecture.

The LSTM has a feature size of 48 and a 0.1 dropout rate. Our
LSTM model had 48 hidden units. The output of the LSTM layer
went through a dropout layer (p = 0.1) [53] resulting in the final
linear dense layer with two outputs, one for each label coordinate
and 70 time steps.

We used adam as the optimizer [31]. The learning rate was set
to 4e−5 and to prevent overfitting, a weight decay of 5e−6 was
applied. The model was trained for 30 epochs using a batch size of
128. Then the epoch with the lowest validation error was selected.

3.2.1 Cost function

Forecasting velocities for each time step provides a consistent and
reliable outcome, as each step within the time sequence maintains
a comparable magnitude. Typically, we also input velocities for a
navigation system like a joystick (as opposed to positions).



However, for the cost function we want to accumulate those ve-
locities and compare positions. If a critical turn is predicted a little
too early or a little too late, this is much better than if it is entirely
overlooked. If we fail to predict a critical turn and compare veloc-
ities, we might only notice an error in the immediate timestep in
which the turn occurs. If we compare positions, the error becomes
evident in every subsequent timestep. Using positions in the cost
function enables more stable long-term predictions. Thus, we cal-
culate the cumulative sum of all velocities and compare outputs and
labels. Due to the higher variance of larger distances, steps further
away from the initial positions would cause larger errors. Thus, we
weight each step by the inverse of the step number.

Pi =
i

∑
k=1

Vk ∗∆t (2)

E =
N

∑
i=1

1
i
((Px,i −Pxtrue,i)

2 +(Pz,i −Pztrue,i)
2) (3)

The predicted arrays of velocities Vx and Vz will be compared
with the true arrays of velocities Vx and Vz. First, we use the cumu-
lative sum to get to an array of positions. Then we get the squared
differences between true and predicted. Lastly we sum it all up for
the total error.

3.3 Evaluation
To prevent the overlap of input sequences between the training and
test sets and ensure the model’s generalizability to new data, group-
level cross-validation, specifically leave-one-out cross-validation,
was implemented. Prior to training, both features and labels under-
went z-standardization. In employing this cross-validation method-
ology, individual prediction errors were computed for each partici-
pant. Furthermore, to assess whether a model surpasses a reference
model, a significance test was used to obtain more informative re-
sults than a simple comparison of average errors.

To distill a singular value for our predicted sequence that facili-
tates comparison, a quadratic function ax+bx+ c was fitted to the
error function. It was ensured that each fit achieved an R² above
97%. Subsequently, the fitted a and b values were compared for
our significance test.

Addressing the issue of non-independence between individual
results due to overlapping training and test sets in the cross-
validation process, the method proposed by Nadeau and Bengio
[47] was employed to correct for this. Consequently, the paired
t-test with the Nadeau and Bengio correction was utilized.

However, it is important to approach the results of these sig-
nificance tests with caution, as highlighted by concerns raised by
Bouckaert and Frank [4] regarding the replicability of test methods
dependent on the data partitioning in the cross-validation process.

The chosen alpha level for statistical significance was set to 0.05.
However, to avoid barely significant spurious findings, we will only
consider a difference significant if both fit parameters reach that al-
pha level. All tests were two-sided. The assumption of normally
distributed data was verified through a Shapiro-Wilk test [51] con-
ducted beforehand. The Benjamini-Hochberg correction [3] was
applied to the p-values of the multiple tests comparing different fea-
tures to avoid underestimation of the p-value due to multiple testing
for both tested parameters.

To provide an estimate of prediction performance we calculated
normalized errors between the true values (labels) and the predic-
tions, i.e. we divide the mean squared errors by the mean squared
distance traveled for each of the predicted time steps. This gives an
estimate that is relative to the distance the subjects had moved.

For comparison, we also present an autoregression model for all
70 steps, to check whether our deep learning architectures beat this
simple technique. For reference, we also show a null model which
just predicts the average velocity for every step of the way.

Figure 3: The normalized prediction error of the different models
over the time course of 4.2 predicted seconds. Error bars denote
between-subject standard errors.

Table 1: Table of the prediction errors at the very last time step after
4.2 seconds. The lower models are all transformer models. Between-
Subject Standard Deviations in Brackets.

Model Normalized Mean Squared Euclidean / Absolute
Error [%] Error [m²] Error [m]

Transformer 11.49 (2.40) 5.55 (1.03) 1.91 (0.19)
LSTM 12.59 (2.46) 6.08 (1.01) 2.46 (0.20)

Autoregression 15.52 (3.05) 7.48 (1.19) 5.35 (0.87)
Mean 21.64 (4.03) 10.39 (1.33) 7.72 (1.08)

just Position 13.35 (3.02) 6.43 (1.21) 2.52 (0.24)
just Eye 15.38 (2.86) 7.40 (1.01) 2.71 (0.19)

just EEG 17.26 (2.90) 8.31 (0.99) 2.88 (0.17)
Eye + EEG 15.59 (2.96) 7.51 (1.09) 2.73 (0.20)

Position + EEG 12.65 (2.62) 6.09 (1.06) 2.04 (0.20)
Position + Eye 11.35 (2.43) 5.47 (1.00) 1.91 (0.18)

4 RESULTS

The participants traveled a mean distance of 6.41 meters in the out-
put sequence length of 4.2 seconds. The average movement speed
was 1.62 m/s. Tab. 1 shows the final prediction errors for different
models and different metrics at the end of the output sequence after
4.2 seconds.

4.1 Architecture

After 4.2 seconds the transformer proved superior with a normal-
ized error of 11.49% on average (the absolute error was 1.91 m; the
squared error was 5.55 m²) compared to the LSTM with 12.59%
(the absolute error was 2.46 m; the squared error was 6.08 m²).
The transformer network gave a more accurate prediction for each
participant and each time step. The autoregression (normalized
error 15.52%) gave a worse prediction for each participant and
each time step. The intercept model only reached a normalized
error of 21.64% after 4.2 seconds. A significant difference was
found when comparing the transformer model with the LSTM net-
work for the fit parameters a (t(19) = −2.13, p = 0.023) and b



Figure 4: The normalized prediction error of models using different
feature combinations over the time course of 4.2 predicted seconds.
Error bars denote between-subject standard errors.

(t(19) =−3.05, p = 0.003).
Fig. 3 depicts the normalized errors of these architectures.

Around the 2-second mark, the error of the LSTM model appears to
rise more rapidly. This trend is less evident in other error metrics.

The transformer model used 0.881 million floating point opera-
tions (FLOPs) per call and had 15.242 parameters. The presented
LSTM was larger with 1.732 million FLOPs and 24.356 parame-
ters.

As the transformer network proved to outperform other archi-
tectures for every following result, the transformer architecture was
being used for all following models. For this full model, the within-
subject standard deviations went from 3.03% in the first time step
to 16.30% in the last time step which corresponds to 0.59 cm in the
first time step to 1.35 m in the last time step.

4.2 Features

After 4.2 seconds, the models using all features (normalized error
= 11.49%) and only position and eye-tracking (normalized error =
11.35%) were very close in performance. No significant difference
was achieved when comparing these two models for the fit param-
eters a (t(19) = 0.85, p = 0.20) and b (t(19) =−0.19, p = 0.43).

The models using only position (normalized error = 13.35%)
performed worse, while the model using position and EEG data
came in between (normalized error = 12.65%). We can compare
the model with all features with the model only using positional and
EEG data to check for the impact of EEG data. A significant differ-
ence was found for the fit parameters a (t(19) =−5.61, p < 0.001)
and b (t(19) = 5.05, p < 0.001). The model with eye data was con-
sistently better beginning 360 milliseconds after the time of pre-
diction. The same is true, when comparing the best performing
model with positional and eye-tracking information to the model
only using positional and EEG data for the fit parameters a (t(19) =
−7.05,< 0.001) and b (t(19) = 5.40, p < 0.001). This model with
just positional and eye data was consistently better than the model
with positional and EEG data beginning 240 milliseconds after the
time of prediction.

Models without positional information were much worse after

Figure 5: The normalized prediction error of models using different
feature combinations at the last time step after 4.2 predicted sec-
onds. Error bars denote between-subject standard errors.

4.2 seconds. The model only using eye-tracking data (normalized
error = 15.38%) beat the model only using EEG (normalized error
= 17.26%). The model using both eye and EEG data came very
close (normalized error = 15.59%). No significant difference was
achieved when comparing the model only using eye-tracking infor-
mation and the model using EEG data as well for the fit parameters
a (t(19) =−0.87, p = 0.20) and b (t(19) = 1.07, p = 0.18).

The difference in performance between different feature combi-
nations measured with the normalized Errors is shown over time in
Fig. 4. The accumulated errors at the last time-step are additionally
depicted in Fig. 5.

4.2.1 EEG as an Input

While the addition of EEG data did not improve the models based
on eye and on eye and positional data, with a normalized error of
12.65% after 4.2 seconds, the model using position and EEG data
predicted future paths significantly more accurately than the model
using only positional data (normalized error = 13.35%) for both the
fit parameters a (t(19)= 3.07, p= 0.005) and b (t(19)=−3.02, p=
0.005). The model with EEG data was consistently better from start
to end of the 4.2 second time window.

To investigate which EEG channels were being used, we calcu-
lated the absolute weights of the EEG channel in the input of the
first convolutional network layer, where the filtered EEG channel
data stream went into. Figure 6 shows a projection of the EEG chan-
nels. Notably large weights could be observed at the electrodes, that
were placed right above the eyes.

Lastly, we tested how the model based on ICA-cleaned data
compared to the model using only our standard EEG data. With
a normalized error of 22.49% it proved to be worse than the al-
ready poor performance of the model using only filtered and trans-
formed EEG data (normalized error = 17.26%). This relationship
proved to be statistically significant for both the fit parameters a
(t(19) = 5.70, p < 0.001) and b (t(19) =−4.72, p < 0.001).

4.3 Generalization

To compare our datasets we calculated the errors for the forest
and the course experiment without using the other dataset. After
4.2 seconds the normalized error in the forest task was 11.43%
while the error in the course experiment was 11.58% The results
over time are almost identical Fig. 7 a). No significant difference
was achieved when comparing both models for the fit parameter b



Figure 6: Left: A visualization of the 32 EEG electrodes. Yellow de-
notes high average absolute weights in the first convolutional layer of
the full network. Blue denotes low average absolute weights. Right:
a projection onto the head of a person. Darker parts indicate high
weights in the first layer.

(t(19) = 1.17, p = 0.13, for a: t(19) = −2.09, p = 0.02). In or-
der to evaluate generalization, we also trained two models only us-
ing one of the two datasets and calculated the error in the other
unseen experiment. For the model that was trained on the course
the error after 4.2 seconds in the forest experiment was 16.19%
For the model that was trained on the forest the error after 4.2
seconds in the course experiment was 13.32% Fig. 7 b). The
difference between these two model variants was statistically sig-
nificant for the fit parameters a (t(19) = 6.39, p < 0.001) and b
(t(19) =−4.66, p < 0.001).

4.4 Eye Movements in different Experiments

Evaluating the models without eye-tracking data, we get a normal-
ized error of 12.71% in the forest task and a normalized error of
12.64% in the course experiment. Figure Fig. 7 a) provides an
illustration. As stated, adding eye data to the models the errors
are similar as well (11.43% and 11.58% ). No significant differ-
ence was achieved when comparing the ratios of errors between
both models with and without eye-tracking data for the forest and
course task for the fit parameters a (t(19) = 0.41, p = 0.34) and b
(t(19) =−0.72, p = 0.24).

5 DISCUSSION

In this study, we conducted an evaluation of various features and
sequence-to-sequence models aimed at predicting locomotion in-
tentions within the context of steering in Virtual Reality. We
demonstrated that accurate predictions of human locomotion paths
can be achieved without external information, relying solely on in-
trinsic data.

Firstly, we wanted to evaluate the impact of different features.
The integration of eye-tracking data significantly enhanced predic-
tion accuracy. The model combining the history of positional data
with eye-tracking information yielded significantly smaller errors
than the model only relying on positional information. This result
further adds to the existing literature that employs eye-tracking as
a pivotal feature for locomotion prediction [65, 17, 21, 54, 6]. This
prominent result is not unexpected, as human gaze precedes loco-
motion targets and contains directional information before actions
are performed [36, 20].

While the EEG device data was a valuable addition to the history
of positional data, it was not able to provide further benefits when
combined with eye-tracking features. Given this result and the fact
that the usage of EEG channels that seems to value lateral frontal
electrodes (see Fig. 6), we hypothesize that eye artifacts contained
in the EEG data were a major information source. An EEG inadver-
tently measures the moving polarized retina. Given that we wanted

Figure 7: The normalized prediction error of the model over the time
course of 4.2 predicted seconds. On the left, we compare an eval-
uation on the forest with an evaluation on the course. In addition to
that we show the performance of models without access to eye data.
On the right, we show the generalization of a model that was only
trained on the forest experiment to the course experiment and vice
versa. Error bars denote between-subject standard errors.

to only rely on preprocessing steps that can be performed live, pre-
cise removal of eye muscle artifacts is very difficult. The model
results that make use of an ICA-filtered EEG data stream perform
substantially worse. This further adds to this notion. Deep Learn-
ing models are a black box, which makes it hard to answer this with
certainty, but we provide some indications that eye muscle activ-
ity was responsible for the increase in prediction accuracy of the
model with positional and EEG data compared to the model with
only positional information. Potentially this also means, that EOG
measurements could replace infrared camera based eye tracking in
this context.

Secondly, we measured the prediction accuracy and generaliza-
tion performance of two datasets that differed in the constraints im-
posed on locomotion and eye movements. Despite these different
constraints, the course and forest experiment provided similar pre-
dictability, as the errors of the main model are almost identical in
both experiments. When we looked at generalization, however, the
model trained on the forest was much better in predicting the course
than the other way around (see Fig. 7). Thus, the generalization
performance of the model that was trained on the forest was much
better. This improvement likely results from a more balanced and
comprehensive set of motions achievable in the forest task, facili-
tating superior model generalization.

For our third question, we looked at the improvement due to the
inclusion of eye-tracking data for both datasets separately. The ad-
dition of eye-tracking features to the model is advantageous for
both datasets. The results are very similar here. This means that
gaze contains valuable information even in more restricted settings.
The second experiment features a double task in which subjects not
only had to follow a path but also solve a visual search task. Appar-
ently, there is still enough statistical structure in the link between
eye movements and locomotion to be picked up by the model.

Lastly, our findings indicate the superiority of the transformer
architecture over a more computationally expensive LSTM predic-
tion. The primary transformer model, incorporating all features, ex-
hibited consistently lower errors across all 70 time steps within our
4.2-second time course. Notably, both deep learning architectures
surpassed autoregression in performance, highlighting their predic-
tive capabilities. The efficiency of the transformer architecture may
stem from its attentional mechanisms, particularly advantageous for
handling features like eye-tracking, which exhibit abrupt changes
during events such as saccades rather than linear progression.

These findings collectively contribute valuable insights into en-



hancing the accuracy and understanding the underlying mecha-
nisms of locomotion intention prediction in Virtual Reality.

In our predictive modeling, we utilized features related to users’
bodily movements and the direction of their gaze. These features
pertain specifically to the perspective of the user, known as egocen-
tric features, and did not encompass information regarding the sur-
rounding environment. Although it might seem intuitive to include
environmental factors to enhance predictive accuracy, we intention-
ally confined our analysis to egocentric features. This decision was
driven by our objective to develop a system capable of predicting lo-
comotion across diverse environments in a generalized manner. By
not incorporating environmental layout information, our model can
be applied across different virtual reality (VR) settings and even ex-
tended to non-VR environments, provided accurate measurements
of input features are available. This includes to augmented or ex-
tended reality scenarios, where obtaining environmental data may
be challenging.

5.1 Limitations
Since our motion data was collected using a joystick, the generaliz-
ability of our findings to real walking scenarios could be restricted.
Our primary emphasis was on virtual motion and locomotor impair-
ments, aligning the joystick data domain with our research objec-
tives. Predicting walking paths with a model that used joystick data
as the ground truth for training could lead to compromised perfor-
mance and vice versa.

Given that our motion data was acquired using a joystick, the
applicability of our work to real walking has some limitations. We
wanted to focus on virtual motion and locomotor impairments and
thus this domain joystick data gives as a higher applicability. If a
model that was trained on with joystick data as ground truth is being
used for walking path predictions, the performance can suffer and
vice versa. While observing healthy behavior is necessary to define
the target behavior of a model, only patient data can provide defini-
tive insights into real-world usability. Future work should therefore
incorporate a study of patients with mobility impairments.

In this study, we employed standard implementations of trans-
former and LSTM models. It is plausible that a more intricate
approach could yield further enhancements in prediction accuracy.
Moreover, expanding the dataset to encompass a more diverse range
of environments might contribute to refining model training.

For EEG as a feature, the quantity of data used in our study might
have hindered its efficacy in revealing complex and subtle relation-
ships with deep learning. Notably, when compared to positional
and eye-tracking features, EEG data provides a substantially greater
number of features at a higher sampling rate. This discrepancy in
data dimensions warrants consideration in interpreting the results.

Nevertheless, we applied these models to two distinct tasks.
While our results highlight successful generalization with the for-
est task, the application of these findings to a broader context may
require careful consideration of task-specific nuances and complex-
ities.

5.2 Applications
The applications of models developed in this study extend to both
virtual reality (VR) environments and real-world / augmented real-
ity scenarios. For real-walking VR interfaces prediction of locomo-
tor intention holds promise for collision avoidance and redirected
walking [11, 54, 45], contributing to a safer and more immersive
virtual experience. For joystick-based navigation predicting the fu-
ture position of a user within the subsequent frames could serve to
augment methodologies aimed at optimizing rendering for applica-
tions such as video games. In interactive video games predictions
like these could also be used to modify the scene, for example to
populate it with objects relevant to the game. For interactive co-
operative scenarios, predictions of where a partner is headed could

Figure 8: A screenshot of a pseudo-online run of the model showing
a possible visual interface.

also provide real-time feedback to an online collaborator. Particu-
larly, in cooperative scenarios involving two individuals, knowing
what the other person intends to do would be advantageous. For
this, a visual interface could be developed that presents the part-
ners predicted future directory graphically as, for example in Fig. 8
(Videos can be found in the Supplemental Materials).

Such an interface, along with the prediction of locomotor in-
tention, could also be useful in augmented reality scenarios. One
application on which we are currently working is in assistive loco-
motor devices for patients with motor disabilities. The implemen-
tation of prediction models could significantly enhance the control
of electronic wheelchairs for paraplegic individuals, for example
by steering the wheelchair automatically in the predicted direction,
or by gently subserving joystick control in the predicted direction.
AR interfaces (similarly visualized as in Fig. 8) would then provide
feedback to the user and establish a communication loop between
the system and the user. This interaction would foster trust and en-
ables precise control, creating a symbiotic relationship between the
predictive system and the user.

In conjunction with our research, we introduce two novel
datasets derived from distinct VR experiments. The forest task
dataset captures a diverse array of locomotor actions within a
pseudo-natural setting, while the course task dataset forces a com-
plex set of eye behavior. We envision that these datasets will con-
tribute to the growing repository of public VR datasets, fostering
collaborative research endeavors and serving as valuable resources
for future investigations in the field.

6 CONCLUSION

Eye-tracking data proved to be a valuable feature for locomotion
prediction, even in the absence of gait and steps. This is also true
when gaze and locomotion targets are not tightly linked. Successful
generalization requires datasets encompassing diverse movement
scenarios. Transformer networks emerged as superior to LSTM
networks for locomotion prediction.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF. Videos of a
pseudo-online run of the model are available at https://osf.io/
6xnzf. A second video shows different possibilities of visualiza-
tion. The forest experiment can be found at https://osf.io/
ney6v/. The course can be found at https://osf.io/4g9pw/.
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