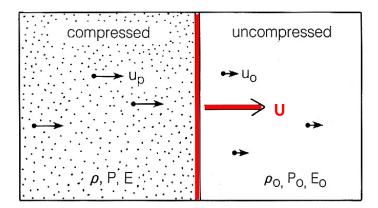

MSc - Planeten & Sonnensystem Impaktprozesse WS 12/13


Stoßwellenphysik

Kraterbildung

A. Deutsch

Parameter for material description

u = particle-, U = shock wave velocity (Stoßwellengeschwindigkeit)

 ρ = density, P = pressure, E = internal energy

Jump conditions → Rankine-Hugoniot equation

Stoßfront

Dynamische Stosswellen sind Kompressionswellen mit einer Amplitude, die über die elastische Grenze des durchlaufenen Materials hinausgeht.

Die elastische Grenze (HEL = Hugoniot Elastic Limit) ist der geringste Stress, der permanente Veränderungen verursacht (Grenze elastisches - plastisches Verhalten).

Es handelt sich nicht um Kompressionswellen mit periodisch veränderlicher Amplitude, daher ist auch der Ausdruck Stoss- oder Schockfront korrekter.

Stoßfront

Diskontinuität

des Druckes p,

der Dichte ρ , und

des spezifischen Volumens $V = 1/\rho$,

der Partikel-Geschwindigkeit u*, mit der die Materie hinter der Stoßwelle mit der

(Stoßwellengeschwindigkeit U), fließt und

der inneren Energie E

(d.h., Energie pro Masseneinheit)

u* "Nachströmgeschwindigkeit"

(Rankine-) Hugoniot-Gleichungen

Erhaltung von Masse [1]

$$\rho_0 U = \rho_1 (U - u) \tag{1}$$

Dichte = ρ , Partikelgeschwindigkeit = u, Stosswellengeschwindigkeit = U

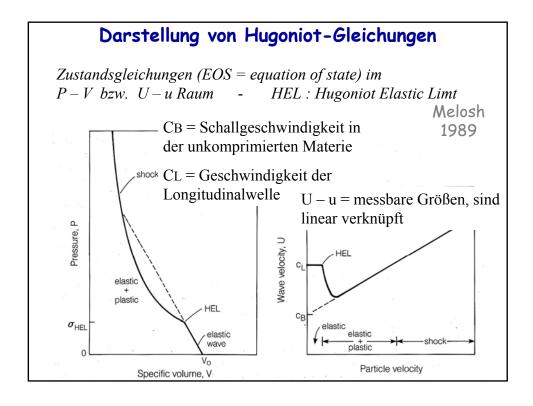
Impulserhaltung [2] (2. Newton'sches Gesetz)

$$P_1 - P_0 = \rho_0 U u \tag{2}$$

Druck = P

Energieerhaltung [3]

$$P_1 u = 1/2 (\rho_0 U) u^2 + \rho_0 U (E_1 - E_0)$$
 [3]


Gesamtenergie in geschockter bzw. ungeschockter Materie= E_1 bzw. E_0

Einsetzen / Umformen → "Hugoniot"-Gleichung
! grundlegend in der Stoßwellenphysik!

$$E_1 - E_0 = P_1 \frac{1}{2} (P_1 - P_0) (V - V_0)$$
 [4]

korreliert Energie E, spezifische Volumina V und Druck P

[1] - [4] = Sprungbedingungen ("jump conditions") an der Stossfront.

HEL = Hugoniot Elastic Limit

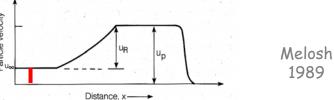
Unterhalb von HEL (materialabhängig $0.1 \ge 20$ GPa) gibt es nur eine elastische Welle, darüber folgt ein elastischplastischer Bereich sowie der Hochdruckbereich (irreversible Änderungen der Materialparameter).

Elastisch – plastischer Bereich

In dichten Gesteinen (allgemein: in spröden Festkörpern) bewirken diese Wellen Bruchdeformation, in Sedimenten wird der Porenraum drastisch reduziert bzw. geschlossen (P < 4 GPa).

In den Materialwissenschaften sind vor allem elastisch bzw. elastisch-plastische Verformungen von Interesse!

Stosswellengeschwindigkeit


Diese ist immer größer als die Schallgeschwindigkeit in der nicht komprimierten, ruhenden Materie vor der Stoßfront aber geringer als die Schallgeschwindigkeit in der komprimierten Materie hinter der Stoßfront.

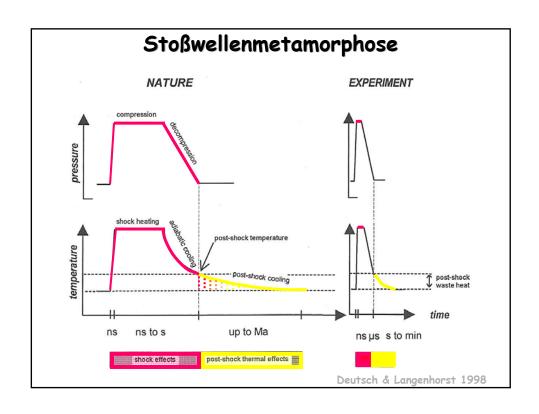
Partikelgeschwindigkeit (Nachströmgeschwindigkeit)

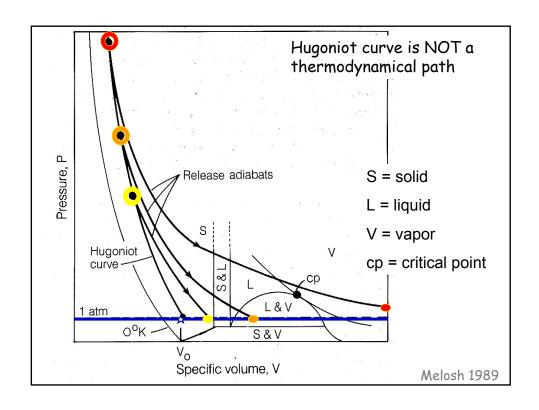
Diese ist immer geringer als die Stosswellengeschwindigkeit der Welle. Der Vektor der Partikelgeschwindigkeit ist parallel zur Fortpflanzungsrichtung der Stosswelle.

Entlastung

- An freien Oberflächen hat das Material eine Partikelgeschwindigkeit von $\mathbf{u}_{p} + \mathbf{u}_{r} \sim 2 \mathbf{u}_{p}$. $u_p = Partikelgeschwindigkeit parallel zur Stoßwelle$
 - u_r = Partikelgeschwindigkeit parallel zur Entlastungswelle
- Da beide Geschwindigkeiten nicht identisch sind, weist das Material nach der Entlastung noch eine Partikelgeschwindigkeit *auf* (d.h., befindet sich nicht im Ruhezustand).
- Diese residuale Geschwindigkeit spielt bei der Kraterbildung Exkavation und Auswurf eine wesentliche Rolle

1989


Entlastung


Reflexion der Stosswellen an freien Oberflächen \rightarrow Entlastungswellen (release – rarefraction wave) = Druckwellen, deren Geschwindigkeit $\mathbf{U_r}$ höher ist als jene der Stosswelle \mathbf{U} .

Free surface approximation - velocity doubling rule

Trifft eine ebene Stosswelle auf eine freie Oberfläche, wird sie als Entlastungswelle reflektiert, der Druck an der freien Oberfläche geht gegen Null.

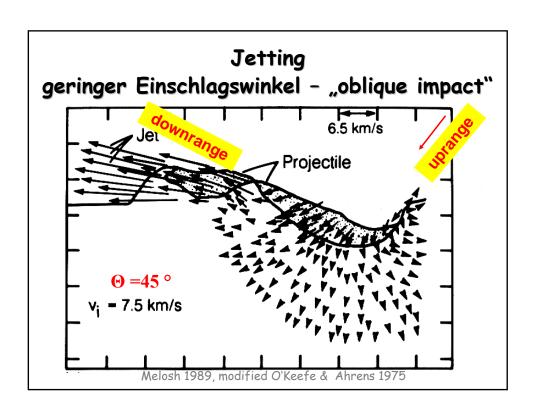
vfs = velocity free surface
$$u_p / u_r \sim 1 \implies v_{fs} = 2 u_p$$

Stoßwellenphysik Kraterbildung

Stadien der Kraterbildung

- · Kontakt und Kompression
 - Energietransfer Projektil → Target
 - Erzeugung Ausbreitung von Stoßwellen
- · Exkavation (Auswurf)
 - Wachstum der vorübergehenden Kraterhohlform (transient cavity TC),
 - Entlastung
- · Modifikation der TC

künstliche Einteilung – es handelt sich um einen kontinuierlichen Prozess


Kontakt und Kompression

- Energietransfer Projektil => Target ("beaufschlagtes Material")
- Erzeugung Ausbreitung von sphärischen Stoßwellen
- Abbremsung des Projektils bedingt durch den Widerstand, den das Target der Durchdringung entgegensetzt

Kontakt und Kompression

- Energietransfer Projektil => Target
- Ausbreitung von sphärischen Stoßwellen
- Abbremsung des Projektils
- Jetting
- Stagnation des Projektils (EDOZ)

EDOZ = effective depth of zero

Kontakt und Kompression

- Energietransfer Projektil => Target
- · Ausbreitung von sphärischen Stoßwellen
- · Abbremsung des Projektils
- Jetting
- · Stagnation des Projektils (EDOZ)
- Ausbreitung der Stoßwelle im Projektil und im Target \Rightarrow akustische Fluidisierung

EDOZ = effective depth of zero

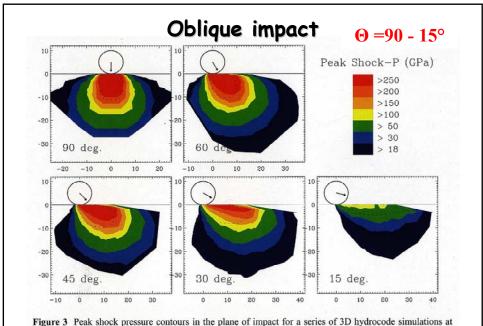
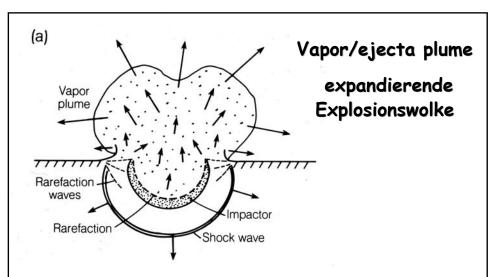
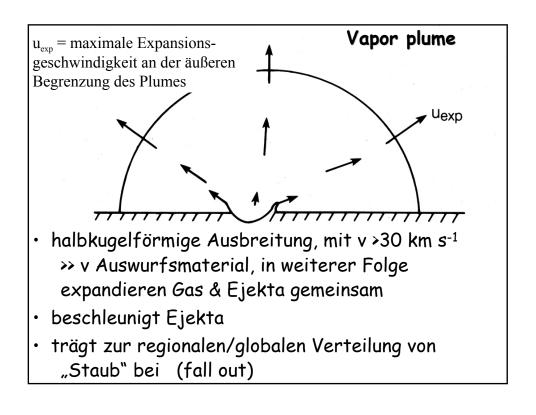


Figure 3 Peak shock pressure contours in the plane of impact for a series of 3D hydrocode simulations at various impact angles. *Dashed black line* represents the isobaric core. The projectile, 10 km in diameter, is shown for scale. *Vectors* illustrate the direction of impact. From Pierazzo & Melosh (2000b).


Kontakt und Kompression

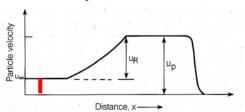
• Ausbreitung der Stoßwelle im Projektil und im Target \Rightarrow akustische Fluidisierung


Exkavation (Auswurf)

- · Wachstum der vorübergehenden Kraterhohlform
- · Kompression des Materials im Krateruntergrund
- Wechselwirkung Stoßfront & Entlastungswellen
- ballistischer Auswurf
- · Explosionswolke (vapor plume)
- Entlastung, Schmelz-/Brekzienbildung

- entsteht am Ende des Kontaktstadiums als Folge der Entlastung von Projektil / Target
- enthält Gas, u.a. Silikatgas (T > 15 000 K), Schmelze, Gestein, Minerale (Staub), Projektil + Target

K-Pg (K-T)
boundary
65 Ma
Geulhemer Berg Maastricht NL



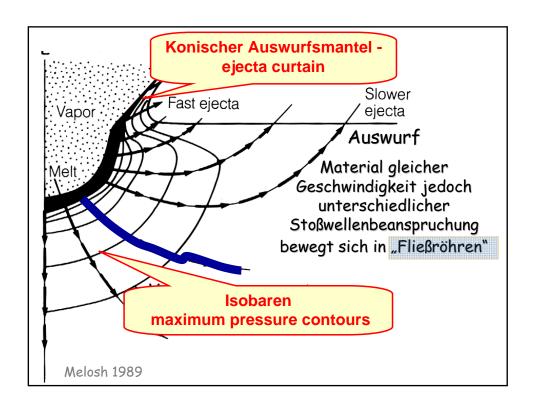
Sudbury ejecta 1.85 Ga Gunflint Range, Minesota U.S.A.

Auswurf I

- "Residual velocity" \approx 1/3 bis 1/5 \textit{u}_{p} , in Abhängigkeit von
 - · der Entfernung vom Impaktzentrum
 - Materialparametern (Hugoniotgleichungen)

Die residuale Geschwindigkeit spielt bei der Kraterbildung – Exkavation und Auswurf eine wesentliche Rolle

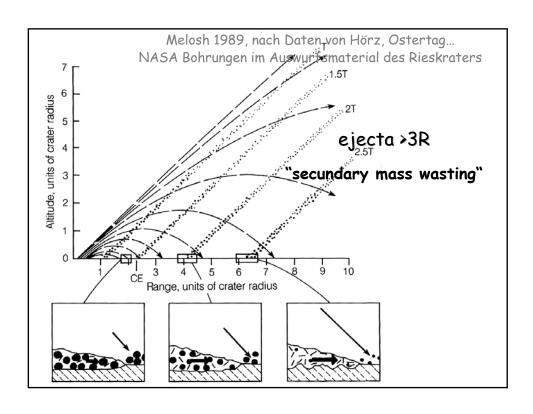
Melosh 1989

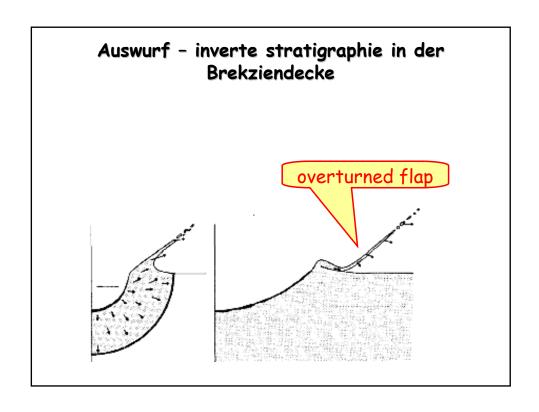

 u_p = Partikelgeschwindigkeit parallel zur Stoßwelle

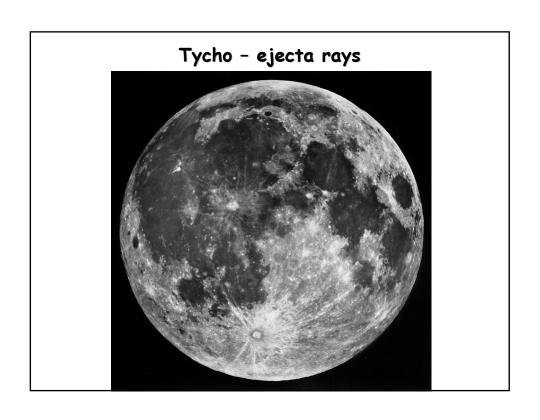
Auswurf I

- Partikelgeschwindigkeit **up** \approx 1/2 Impaktgeschwindigkeit (**vi**) \Rightarrow Geschwindigkeit des Exkavationsflusses \approx 1/6 bis 1/10 **vi** d.h., bei **vi** = 18 km s⁻¹ \Rightarrow Exkavationsfluss < 3 km s⁻¹ (weniger als die Schallgeschwindigkeit in den meisten Gesteinen)
- Die große Geschwindigkeits- Δ erlaubt eine vollkommen getrennte Behandlung: Die Stoßfront ist lange weg, bevor der Auswurf erfolgt!

Auswurf II

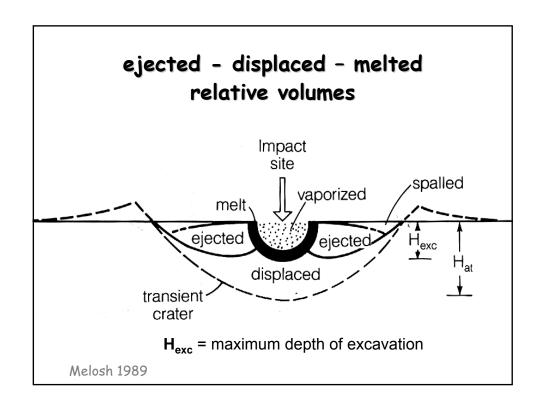

- Die Partikel bewegen sich nicht radial vom Impaktzentrum weg, da Entlastungswellen von der freien Oberfläche ins Target zurücklaufen.
- Der zentro-symmetrische Exkavationsfluss (excavation flow) ist im
 - · oberen Kraterbereich auswärts und nach oben,
 - unteren Kraterbereich nach unten und außen gerichtet.
- Der Exkavationsfluss führt zu einer schüsselförmigen Depression, der "vorübergehenden Kraterhohlform" (transient cavity TC).

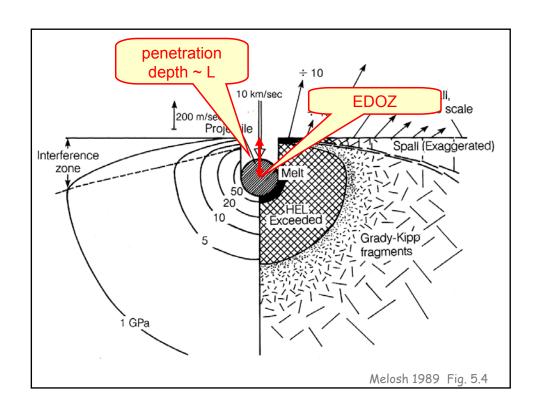


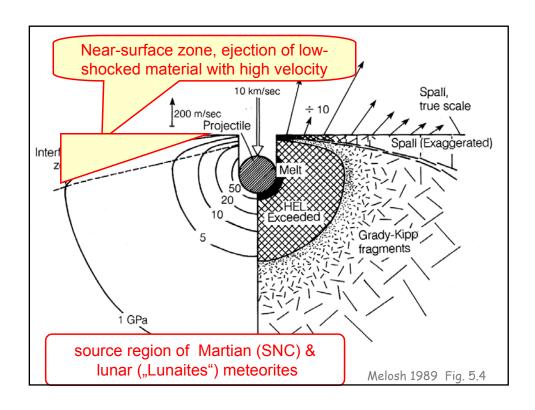

Auswurf III

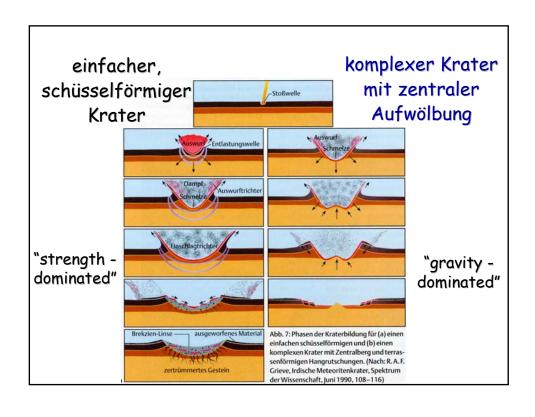
- Aufgrund der hohen Exkavationsgeschwindigkeit (weit vom Einschlagszentrum noch einige 100 m s⁻¹) wird ein Teil des zerbrochenen Materials in eine Zone außerhalb des Randes des endgültigen Kraters ausgeworfen (ejecta blanket).
- Die äußere Begrenzung der kontinuierlichen Auswurfsdecke liegt bei ~3 R.
- Zudem gibt es strahlenförmigen Auswurf (ejecta rays), der weit über 3 R hinaus reicht.

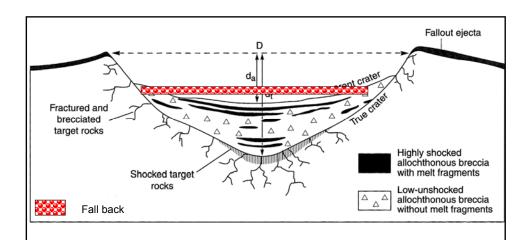
R = Radius des modifizierten Kraters

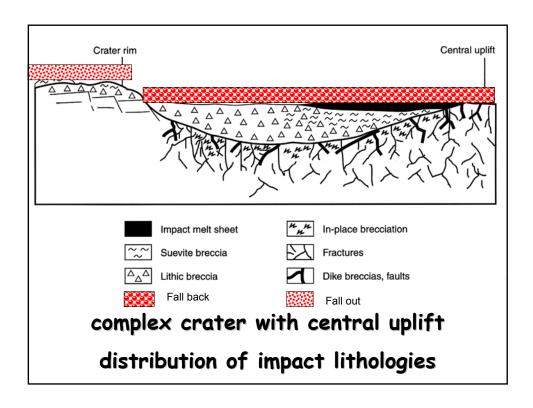





Auswurf III


- Aufgrund der hohen Exkavationsgeschwindigkeit wird ein Teil des zerbrochenen Materials in eine Zone außerhalb des Randes des endgültigen Kraters ausgeworfen (ejecta blanket).
- Im unteren Bereich ist die Zugspannung der Entlastungswelle weniger. Das fragmentierte Material bildet die "Displaced Zone" im Krater (Brekzien).
- Nahe der Oberfläche ist die Residualgeschwindigkeit sehr hoch (velocity of the free surface), es kommt zur Spallation (Abplatzen von Material).





Modifikation der vorübergehenden Kraterhohlform

- Schwerkraftbedingte Massenbewegungen bewirken Kollaps der transienten Kraterhohlform
- · Bildung des endgültigen, modifizierten Kraters mit
 - Zentralberg (central peak) bzw. zentralem Hügel (central mound), evtl. mit
 - zentraler Vertiefung (central pit) oder/und
 - Ringbergen (ring wall)
 - Ringgraben/-trog (annular trough)
 - terrassiertem Rand

simple bowl-shaped crater distribution of impact lithologies

