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1 Introduction

Complex pattern spontaneously appear in a wide range of complex systems of various
scale across many fields or research and technology. Although nature holds countless
examples, like dunes and ripples in the sand of deserts [NO93] or complex vegetation
patterns [vHMSZ01], many of these phenomena had not been understood for a long period
of time. Some topics of research, like turbulent flows, have been investigated for a very long
time, but still remain a true challenge to scientist today. It has turned out that patterns
typically form as a result of the combination of nonlinear effects and dissipation in complex
systems. They are all collective phenomena that occur in high-dimensional systems and
form out of the additional interactions of countless degrees of freedom, requiring unique
theoretical considerations [Hak83].

Among other patterns, the formation of localized structures is encountered in many
dissipative systems. They form through the interplay of the gains and losses of energy
in a given system [AA08]. In nonlinear optics, localized light emitting structures have
been encountered in the optical cavities of lasers. So-called cavity solitons (CSs) are a
particular interest in optical the research community. The term describes areas of the ac-
tive medium of an optical cavity that are lasing while the surrounding medium does not.
Cavity solitons exist in the transverse section of broad area lasers. With the advances
in semiconductor technologies, a special kind of wide-aperture semiconductor lasers has
drawn a lot of attention in recent research. They are called Vertical Cavity Surface Emit-
ting Lasers (VCSELs). They are relatively easy to produce and offer the chance of realizing
many aspiring technologies, in particular for broadband data transmission and all-optical
logic [PBC+08, TVPT09]. In particular, by controlling the formation of localized lasing
structures, it would be possible to send spatially patterned signals through optical fibers,
thereby increasing the transmittable information per pulse by several orders of magnitude
[BTB+02, GBGT08, EGB+10].

Mathematical models for wide-aperture lasers, in particular VCSELs, have been exten-
sively studied by theoreticians in recent years. For example, the addition of an absorber
section in the optical cavity leads to more complex behavior of the cavity solitons. In
particular, it can lead to the existence of differently shaped cavity solitons in a bistable
regime [VRFK97]. Depending on the ratio of the reaction time scales of gain and absorber
sections, the systems can develop dynamic instabilities of the cavity solitons like breathing
[FVKR00], intensity oscillation [Ern88, BPT+05] and drift [PTL+10]. Such parameters
are, however, not always easy to access in an experimental setup. In order for the devel-
opment of devices for technological applications, additional ways should be found to be
able to influence the spatio-temporal behavior of the system.

Recent attention has turned to how the behavior of VCSELs can be influenced by
means other than changing the material properties of the optical cavities and the amount
of power that is supplied and absorbed. A promising concept are feedback control loops,
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1 Introduction

which have proven their potential of controlling the behavior of a system. They are used
in many electronic applications today [UAJS03, SAJ+03]. A particular form of feedback
control is time-delayed feedback. This can be applied to VCSELs by the introduction of
an external cavity. A part of the output beam is reflected back into the optical cavity,
where it interferes with the cavity light. Phase and intensity of the reflected light and the
optical cavity are shifted proportionally to the travel time, i.e., the optical length of the
external cavity. A related way is mode-locking via an external fiber loop [AHP+16].

Time-delayed optical feedback can induce a drift motion of the cavity solitons in both
passive nonlinear cavities [TVPT09, TAVP12] and under homogeneous optical injection
[PVG+13, PT10, VPG+14]. Recently, time-delayed feedback has been shown to induce a
period doubling route to chaos in a VCSEL with a saturable absorber [Pan14]. The the-
oretical treatment of time-delayed feedback models is challenging because purely analytic
means are very limited. Advanced numerical schemes have to be applied to predict and
analyze a systems behavior when subjected to time-delayed feedback.

Within this thesis, we will investigate a model system for a VCSEL with a saturable
absorber section subjected to time-delayed feedback using bifurcation analysis, direct nu-
merical simulations and numerical path continuation methods. The path continuation
software packages AUTO-07P [DKK91a, DKK91b] and DDE-BIFTOOL [ELR02], as well
as custom simulation code will be used to analyze the different forms of behavior the
system exhibits. For both the homogeneous and localized stationary lasing states, it will
be shown that the time-delayed feedback induces complex spatio-temporal dynamics, in
particular a period doubling route to chaos, quasiperiodic oscillations and a multistability
of the stationary solutions.

This thesis is organized as follows: Chapter 2 provides information about the model
system at interest. Chapter 3 will investigate the structure of the stationary solution.
Chapter 4 presents details about direct numerical simulations and their results. Chapter
5 deals with the analysis of the dynamics, using DDE-BIFTOOL. Chapter 6 will give a
summary of the thesis and some prospects for further investigations.
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2 Model system

A particular system we are interested in is a VCSEL with saturable absorption subjected
to time-delayed feedback (TDF) [Pan14]. It consists of a gain section and an absorber
section, sandwiched between two distributed Bragg reflectors (DBRs), that form an optical
resonator. A structure of this kind can be build on a semiconductor wafer and thus extends
in the plane transverse to the optical cavity. Coherent light is emitted perpendicular to
the transverse plane. Therefore, the system can be considered as a wide-aperture laser.
In this thesis, a model for a VCSEL subject to TDF will be considered. The TDF is
implemented as one round trip in an external cavity in a self-imaging configuration, i.e.,
the diffraction in the cavity can be neglected [Roz75, LK80]. Figure 2.1 shows a schematic
of the setup in question. The TDF introduces additional parameters that may be used to
control the behavior of the system, e.g. by moving the external mirror.

The dynamics of a broad-area VCSEL with saturable absorption subject to TDF can
be described by the following set of dimensionless equations:

∂tE =
[
(1− i α)N + (1− i β)n− 1 + i∇2

⊥
]
E + η ei ϕE(t− τ), (2.1a)

∂tN = b1
[
µ−N (1 + |E|2)

]
, (2.1b)

∂tn = b2
[
−γ − n (1 + s |E|2)

]
, (2.1c)

where E = E(r⊥, t), r⊥ = (x, y) is the slowly varying mean electromagnetic field envelope,
N = N(r⊥, t) is related to the gain section carrier density and n = n(r⊥, t) to the absorber
section carrier density, respectively. The field E is scaled to the output beam, described
by the -1 in the field evolution. Time is scaled to the photon lifetime, b1 and b2 describe
the relative timescales of the gain and absorber section to the field. Space is scaled to the
distance a photon travels during the photon lifetime. Further, µ is the normalized injection
current in the gain section, while γ is a measure for the absorption. The constants α and
β are the line-width enhancement factors of gain and absorber material that cause a
frequency shift ω of the lasers fundamental frequency. The absorber is characterized by
the saturation parameter s that describes how easily the absorber saturates. The effect of
diffraction on the light inside the optical cavity is described by ∇2

⊥. The model system is
assumed to be flat, i.e., only the transverse spatial dimensions are considered. Diffusion
of light and the carriers are neglected for being small compared to the diffraction. The
TDF is characterized by the feedback strength η, the delay time τ , as well as the feedback
phase ϕ. The feedback strength η describes how much of the delayed light is reflected
back into the optical cavity. The delay time τ denotes the time for one round-trip of
light through the external cavity. The feedback phase ϕ is a pure phase multiplying the
delayed field E(t− τ). After one round trip, the delayed signal has accumulated a relative
phase difference to the field in the optical cavity, which has evolved further for once the
delay-time τ . For a constant frequency shift the phase difference is ωτ . In general, the
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Figure 2.1: Schematic of a VCSEL with saturable absorption and an external cavity im-
plementing TDF.

frequency shift depends on the field amplitude at any one point in time. Note that ϕ is
not a necessary parameter to describe the system, but it can be used to virtually change
τ by a small amount, which is numerically convenient, see section 4.1. A small change in
τ will not allow additional temporal modes to appear in the external cavity, but change
the phase with which the delayed signal is coupled back into the optical cavity. The value
of τ in this thesis corresponds to an experimentally reasonable external cavity length on
the order of a few centimeters.

In the absence of the TDF, i.e., for η = 0, the system has a trivial homogeneous steady
state

E = 0, N = µ, n = γ, (2.2)

and a non-trivial homogeneous lasing solution (HLS)

E = |E|eiωt, N =
µ

1 + |E|2 , n =
γ

1 + s|E|2 . (2.3)

One can show, that the trivial solution is unstable for pump rates µ beyond the lasing
threshold [BPT+05]

µth = 1 + γ. (2.4)

From the lasing threshold the non-trivial HLS appears in a sub-critical pitchfork bifurca-
tion. This leads to a region of bistability situated between a fold of the nontrivial HLS
branch at

µfold =

(√
s− 1 +

√
γ
)2

s
(2.5)

and the lasing threshold µth. Depending on the ratios of the carrier time scale b1 and b2, the
nontrivial HLS can also undergo an Andronov-Hopf bifurcation. In the bistability region
localized lasing structures or cavity solitons (CSs) exist in one or two spatial dimensions.
Their solution branch also originates in a sub-critical pitchfork bifurcation at the lasing
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threshold µth, with a bistable region, similar to the HLS [BPT+05]. The CSs can show
breathing, drift and complex oscillatory dynamics [PTL+10, FVKR00].

Complex spatio-temporal behavior of CSs can be induced through TDF in a related
system, where the carriers are assumed to react instantaneously [PVGY16]. Recently a
period doubling route to chaos with two windows of chaos induced by TDF was reported
for both cavity solitons and continuous waves in [Pan14]. This is particularly interest-
ing for applications in high-frequency opto-electronics [BTB+02, GBGT08, EGB+10]. In
particular, the TDF may be used to induce a strong modulation of the signal amplitude
at a high modulation frequency. The TDF-induced chaos can potentially be used for
high-frequency random bit generation.

In this thesis, the spatio-temporal dynamics of the model system (2.1) will be investi-
gated, using the following set of parameter values on a domain of size L:

α = 2, β = 0, b1 = 0.04, b2 = 0.02, µ = 1.42, γ = 0.5, s = 10, τ = 100, L = 100.

The influence of the TDF parameters on the dynamics will be investigated up to a feedback
strength of η = 2% and on the whole period of the feedback phase ϕ.
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3 Stationary solutions

We will now try to analyze the structure of the stationary solutions of the system without
the use of advanced numerical continuation schemes specific to delay differential equations,
which will be the topic of chapter 5. This chapter will make ample use of the standard path
continuation software AUTO-07P [DKK91a, DKK91b], as well as analytic calculations.

Indeed, we will show that for stationary solutions the model equations take the form of
an algebraic problem or a boundary value problem, for the spatially homogeneous and 1d
case, respectively. Here, stationary means that the complex phase of the slowly varying
mean electromagnetic field envelope uniformly rotates in time, while the spatial profile is
maintained. Note that the intensity is the only quantity influencing the carrier evolution.

3.1 Numerical path continuation

We want to determine the solution structure of a given dynamical system for a chosen
control parameter. Steady states of any dynamical system are characterized by the fact
that all the governing differential equations are equal to zero at the steady states. They
can be found by means of direct numerical simulations only if they are stable. To analyze
the full solution structure of a system, one needs to find the unstable steady states as well.
An effective method to do so is to use the Newton method for finding roots, which can be
directly applied to the differential equations that have to be zero. In principle one could
compute the solution branches this way, by finding all solutions on an interval governed
by the control parameter. A problem arises when there are multiple solutions. The
Newton method may converge to any of the solutions, depending on the initial condition,
potentially causing a discontinuity in the resulting branch of solutions. This problem
can be solved by so the so-called pseudo-arclength path continuation method. It creates a
guess for the next steady state by approximating the tangential vector along the computed
branch based on the last step of the continuation, both in the control parameter and the
system variables. This procedure is called a predictor step and it is followed by a so-called
corrector step, which performs the Newton method on both the state of the system and the
control parameter, referred to as the free continuation parameter. Setting the parameter
free is necessary to follow any folds of a given branch. In this way, the initial condition
is always close to the correct solution and the computed series of points represents a
connected branch of solutions. For this thesis, the path numerical continuation software
packages AUTO-07P [DKK91a, DKK91b] and DDE-BIFTOOL [ELR02] version 3.0 are
used.
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3.2 Continuous waves

3.2 Continuous waves

First we consider the plane-wave solutions of the system, especially the case of vanishing
wavenumber k = 0, which corresponds to the spatially homogeneous system. They are
called spatially homogeneous lasing solutions (HLS) or continuous waves (CWs). It is the
only aspect of the system, for which purely analytic means suffice. Out of convenience,
the algebraic problem capabilities of the AUTO package were used for calculating most of
the data presented in the figures of this section.

3.2.1 Stationary CW solutions

For now the TDF term in equation (2.1a) will be neglected, i.e., η = 0. As an ansatz, we
assume the system is in a stationary state:

E = |E| ei(kx−ωt), ∂t|E| = 0. (3.1)

Here, k is the wavenumber and ω the frequency shift of a CW. The corresponding steady
carrier densities are:

N =
µ

1 + |E|2 , n =
−γ

1 + s |E|2 . (3.2)

When substituting the ansatz and the carrier densities into the field evolution (2.1a), we
are left with a single complex differential equation for the electric field E. This process
is called adiabatic elimination, because it is equivalent to saying the carriers equilibrate
instantaneously, whenever the field changes [Hak83]. It yields[

µ (1− i α)

1 + I
− γ (1− i β)

1 + s I
− 1 + i(ω − k2)

]
E = 0, I = |E|2. (3.3)

For this equation to be equal to zero, either the field itself or the evolution term in brackets
must be equal to zero:

E = 0 ∨ 0 =
µ (1− i α)

1 + I
− γ (1− i β)

1 + s I
− 1 + i(ω − k2). (3.4)

In the absence of the delay term, the trivial solution E = 0 becomes unstable beyond
the lasing threshold µth = 1+γ = 1.5, i.e., when the induced current overcomes the output
beam power and the absorption, see figure 3.1.

For the non-trivial solutions, we separate the real and imaginary part of equation (3.3):

0 =
µ

1 + I
− γ

1 + sI
− 1, (3.5a)

ω = k2 +
αµ

1 + I
− β γ

1 + sI
. (3.5b)

This kind of algebraic problem can be continued with the AUTO package, but it can be
easily solved analytically as well. The equation for the real part leads to a quadratic

7



3 Stationary solutions

1.35 1.40 1.45 1.50 1.55 1.60

Pump rate µ

−0.05

0.00

0.05

0.10

0.15

F
ie

ld
in

te
ns

it
y
|E
|2

Stable trivial solution
Unstable trivial solution

Figure 3.1: The trivial stationary solution of the model system (2.1) for the mean elec-
tromagnetic field envelope E = 0. It becomes unstable beyond the lasing
threshold µ = 1.5.

equation that can be solved for I:

I = −p±
√
p2 − q, (3.6a)

p =
1

2s
[1 + s− s µ+ γ] , (3.6b)

q =
1

s
[1− µ+ γ] . (3.6c)

The frequency shift ω for any field intensity I is then determined by the equation (3.5b)
for the imaginary part.

The intensity of the CW solutions for η = 0 and their corresponding frequency shift for
k = 0 are shown in figure 3.2. It is a C-shaped curve originating at the lasing threshold µ =
µth and can be attributed to a subcritical pitchfork bifurcation [BPT+05]. The solutions
are unstable where the slope of the intensity is negative. In the spatially homogeneous
system, the part with positive slope is stable, however, in a spatially extended system
they are unstable to modulation (cf. subsection 3.2.4). Note that ω is lower for higher I.
The frequency shift corresponding to the trivial solution can be calculated as the limit for
I → 0:

ω = k2 + αµ− β γ

s
. (3.7)

3.2.2 Effective phase

In the presence of the TDF term, we can still assume that the system (2.1) has nontrivial
stationary CW solutions. However, these will now be modified by the TDF term. The
ansatz from subsection 3.2.1 yields the following:

eiϕE(t− τ) = eiϕ|E| e−iω(t−τ) = ei(ωτ+ϕ)|E| e−iωt. (3.8)

Since the intensity stays constant, the delayed field only differs in phase. In this situation
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Figure 3.2: (Left panel): The intensity |E|2 of the non-trivial stationary solutions of (3.3)
as a function of the pump rate µ. It forms a C-shaped curve originating from
the lasing threshold µ = µth in a subcritical pitchfork bifurcation. Negative
slope is unstable, positive slope is stable in the spatially homogeneous system.
(Right panel): Frequency shift as a function of the pump rate µ for k = 0.
Higher intensity corresponds to a lower frequency shift. The frequency corre-
sponding to the trivial solution is drawn as the limit for I → 0 (cf. equation
(3.7)).

the frequency shift is constant, so the phase difference of the delayed signal is ωτ + ϕ.
Equation (3.3) then becomes:

0 =

[
µ (1− i α)

1 + I
− γ (1− i β)

1 + s I
− 1 + iω + η ei(ωτ+ϕ)

]
E. (3.9)

To deal with the equation subjected to TDF, we first introduce a new parameter ϑ,
called the effective phase:

ϑ = (ω τ + ϕ) mod 2π. (3.10)

This effective phase has been introduced to analyze a similar model for a wide aperture
laser with saturable absorber subject to TDF in [PVGY16, PYVG14]. Using (3.10) equa-
tion (3.9) reads

0 =

[
µ (1− i α)

1 + I
− γ (1− i β)

1 + s I
− 1 + iω + η eiϑ

]
E. (3.11)

In this form, the TDF term is no longer a function of τ . Hence, we can use it to analyze
the effect of the delay strength η in a more detailed manner. Equation (3.6) gets modified
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Figure 3.3: A manifold of possible CW solutions of the system in the (µ, |E|2)-plane, in-
duced by TDF. All solutions lie in between the blue curves for fully constructive
and destructive interference, i.e., ϑ = 0 on the left and ϑ = π on the right,
drawn for η = 1%. The center curve in cyan represents solutions unaffected
by TDF, at ϑ = 0.5π or ϑ = 1.5π.

accordingly:

p =
1

2s

[
1 + s− s µ− γ

1− η cosϑ

]
, (3.12a)

q =
1

s

[
1− µ− γ

1− η cosϑ

]
. (3.12b)

From the last equation, we obtain the manifold of all possible stationary solutions of the
system for a given delay strength η. It forms a band-like structure, as can be seen in figure
3.3. The left and right borders of the manifold are obtained for ϑ = 0 and ϑ = π, i.e., fully
constructive or destructive interference of the delay signal, respectively. Qualitatively, the
C-curve for the case of η = 0 gets shifted to the left or right, depending on η and ϑ. It
only minimally changes its shape.

Note that for ϑ = π, there exists a critical delay strength ηc, such that the border of
the manifold passes the pump rate µ = 1.42. An alternative way of looking at it, is that
the argument of the square root in equation (3.6) becomes negative. For the considered
parameter set this threshold is ηc ≈ 4.12039%. For η beyond that point, there is not
sufficient pump rate available to maintain a nontrivial HLS for or a growing interval of ϑ.
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Figure 3.4: Graphical scheme to find solutions satisfying (3.14) for a fixed delay time,
obtained for different delay strengths η. From equation (3.14b), the intensity
can only be found as a function of ω, shown in blue. The left and right hand
side of equation (3.14a) are plotted in red and green, respectively. Whenever
they intersect, a solution appears. For higher feedback strength the number
solutions increases.
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3 Stationary solutions

3.2.3 Solutions for fixed τ = 100

We now deal with the actual model system at interest, i.e., for τ = 100. From equation
(3.3) we see, that the following equation is fulfilled for any stationary solution:

ik2 =

[
µ (1− i α)

1 + I
− γ (1− i β)

1 + s I
− 1 + iω + η ei(ωτ+ϕ)

]
E. (3.13)

Separating the real and imaginary part yields

k2 = ω − αµ

1 + I
+

βγ

1 + sI
+ η sin(ωτ + ϕ), (3.14a)

0 =
µ

1 + I
− γ

1 + sI
− 1 + η cos(ωτ + ϕ). (3.14b)

Because of the presence of the TDF term, both equations (3.14a) and (3.14b) depend on ω,
so the second equation can be solved for I only as a function of ω. Solutions for arbitrary
parameter values can be obtained implicitly or graphically. Exemplary results for k = 0
are shown in figure 3.4 for τ = 100 and ϕ = 0. The r.h.s. of equation (3.14a) is plotted
in green for a certain range of ω. Whenever it intersects with the red line for a chosen
k2 (l.h.s. of equation (3.14a)), the corresponding value of the intensity, plotted in blue, is
a desired solution, see figure 3.4 for η = 0 and η = 0.5%. Note that additional solutions
appear with increasing η, see figure 3.4 for η = 1% and η = 2%.

The solutions form a snaking curve, which indicates a series of saddle-node bifurcations.
Figure 3.5 shows the branches for the intensity and frequency shift of the CW solutions,
calculated for τ = 100, η = 1% and ϕ = 0. The positions and density of the folds are
influenced by all of the three delay parameters. To generate the data, the system was
treated in AUTO as an algebraic problem for k = 0.

3.2.4 Linear stability

To conclude the analysis of the stationary CW solutions, we will determine their linear
stability. For that purpose, E is separated into its real and imaginary part in the model
equations (2.1), E = Er + iEi:

∂tEr =
[N + n− 1]Er +

[
αN + βn−∇2

]
Ei

+η [cos(ϕ)Er(t− τ)− sin(ϕ)Ei(t− τ)]
, (3.15a)

∂tEi =

[
−αN − βn+∇2

]
Er + [N + n− 1]Ei

+η [cos(ϕ)Ei(t− τ) + sin(ϕ)Er(t− τ)]
, (3.15b)

∂tN = b1
[
µ−N (1 + E2

r + E2
i )
]
, (3.15c)

∂tn = b2
[
−γ − n (1 + sE2

r + sE2
i )
]
. (3.15d)

A small fluctuation around the stationary solution modulated in the transverse plain
δEr(x, t)
δEi(x, t)
δN(x, t)
δn(x, t)

 = eλ t+ikx


δEr
δEi
δN
δn

 (3.16)
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Figure 3.5: (Left panel): Intensity |E|2 as a function of the pump rate µ of the branch
of CW solutions, calculated for η = 1%, τ = 100, ϕ = 0. The delay induced
stationary solutions form a snaking curve, indicating a series of saddle-node
bifurcations.(Right panel): Frequency shift ω as a function of the pump rate
µ of the branch of CW solutions, calculated for η = 1%, τ = 100, ϕ = 0.

is assumed to grow at a rate λ. The system can then be linearized around the spatially
homogeneous stationary state (Er0, Ei0, N0, n0) with the corresponding frequency shift ω0:

λ δEr =

[
N0 + n0 − 1 + η cos(ϕ+ ω0τ)e−λτ

]
δEr + [Er0 + αEi0 ] δN

+
[
αN0 + βn0 + k2 − η sin(ϕ+ ω0τ)e−λτ

]
δEi + [Er0 + βEi0 ] δn

, (3.17a)

λ δEi =

[
−αN0 − βn0 − k2 + η sin(ϕ+ ω0τ)e−λτ

]
δEr + [Ei0 − αEr0 ] δN

+
[
N0 + n0 − 1 + η cos(ϕ+ ω0τ)e−λτ

]
δEi + [Ei0 − βEr0 ] δn

, (3.17b)

λ δN = [−b1N02Er0] δEr + [−b1N02Ei0] δEi +
[
−b1(1 + E2

r0 + E2
i0)
]
δN, (3.17c)

λ δn = [−b2n0s2Er0] δEr + [−b2n0s2Ei0] δEi +
[
−b2(1 + sE2

r0 + sE2
i0)
]
δn. (3.17d)
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Figure 3.6: Dispersion relation for the growth rate of modulation fluctuations on the sta-
tionary CW solutions. They are unstable to modulation for any wavenumber.
The presence of TDF does not change the qualitative behavior.

This leads to a transcendental eigenvalue problem, since λ appears in an exponential factor
in the delay terms:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ+N0 + n0 − 1

+η cos(ϑ)e−λτ
αN0 + βn0 + k2

−η sin(ϑ)e−λτ
Er0 + αEi0 Er0 + βEi0

−αN0 − βn0 − k2

+η sin(ϑ)e−λτ
−λ+N0 + n0 − 1

+η cos(ϑ)e−λτ
Ei0 − αEr0 Ei0 − βEr0

N02Er0 N02Ei0

λ

b1
+ 1

+E2
r0 + E2

i0

0

n0s2Er0 n0s2Ei0 0

λ

b2
+ 1

+sE2
r0 + sE2

i0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (3.18)

Solving the eigenvalue problem numerically for different k yields a dispersion relation
λ(k), which has been solved as an algebraic system in AUTO. The determinant is simply
calculated for k with λ as the system variable. The result is shown in figure 3.6, for different
η and ϑ. The stationary CW states are unstable to modulation for any wavenumber and
the delay does not cause any qualitative changes [BPT+05].
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3.3 Cavity solitons

3.3 Cavity solitons

This section will deal with the localized lasing structures called cavity solitons (CS), that
appear in the model system (2.1), in a similar fashion to the previous section 3.2. The
main difference will be, that the spatially extended system can not be formulated as an
algebraic problem. However, the 1d case can be formulated as a boundary value problem
(BVP). Again, the software package AUTO-07P will be used for the numerical analysis, as
it features most of its algebraic problem capabilities for the bifurcation analysis of BVPs
as well.

3.3.1 CSs as BVP

Similar to the case of CWs, we use an ansatz for a stationary solution with constant
frequency shift ω, only this time the electromagnetic field is a function of space:

E(x, t) = A(x) e−iωt. (3.19)

Here, A(x) is the corresponding complex valued amplitude of the field. It is substituted
into the model equation (2.1). The resulting expression is then set to zero and rearranged
in order for the Laplace operator to stand on the left hand side. The equation then reads:

∂xxA = i

[
µ (1− i α)

1 + |A|2 − γ (1− i β)

1 + s |A|2 − 1 + iω + η ei ϑ
]
A. (3.20)

Here, the carriers N and n have been adiabatically eliminated, as before for the CWs (cf.
section 3.2) and the effective phase ϑ is introduced in the same way as in equation 3.10.
This leads to the following system of first order ordinary differential equations:

∂xAr = LArx, (3.21a)

∂xAi = LAix, (3.21b)

∂xArx = L

 µ αAr −Ai
1 +A2

r +A2
i

− γ βAr −Ai
1 + s

(
A2
r +A2

i

)
−ωAr +Ai − η (Ai cosϑ+Ar sinϑ)

 , (3.21c)

∂xAix = L

 µ αAi +Ar
1 +A2

r +A2
i

− γ βAi +Ar

1 + s
(
A2
r +A2

i

)
−ωAi −Ar + η (Ar cosϑ−Ai sinϑ)

 , (3.21d)

with the real and imaginary part of the amplitude Ar and Ai and their spatial derivatives
Arx and Aix. This system can be treated as a BVP in AUTO, using ω as an eigenvalue of
the system, i.e., an extra free continuation parameter, that has to be found together with
the four fields describing A for any set of the parameters. The domain size L of the system
must be introduced as a scale factor, because AUTO treats the system on an interval [0, 1],
that would represent the time in a dynamical system [DKK91a, DKK91b]. In order for

15



3 Stationary solutions
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Figure 3.7: Exemplary stationary CS profile of the model (2.1), calculated for η = 0. The
phase of the electromagnetic field E is chosen so that the imaginary part of E
is zero at the center of the CS.

the problem not to be algebraically underdetermined, an additional fifth condition must
be introduced. Appropriate boundary conditions are discussed in the next subsection.

As an example for the electromagnetic field profile of the CSs, figure 3.7 shows the
solution for η = 0, with the complex phase equal to zero at the peak of intensity.

Figure 3.8 shows the branches of both CS and CW stationary solutions without TDF.
Both behave very similarly. The main difference is that the frequency shift of the solitons
bends upwards shortly beyond the lasing threshold µ = 1.5. In this regime, no stable
isolated solitons appear, since the homogeneous solution is unstable. One can see, that
the existence of a minimum frequency shift has an interesting effect on the solutions,
however, when the TDF is strong (cf. subsection 3.3.4 and figure 3.14). The reason for the
minimum is, that the peaks of the unstable solitons become very high for large µ. This
also means steep slopes and therefore strong diffraction.

3.3.2 Phase symmetry

The way the AUTO package tries to find solutions poses an issue. Since there are solutions
of the system shifted in space or phase, but otherwise equivalent, the program must
be kept from finding these. Otherwise it may never changes the actual continuation
parameters. Therefore, the existing symmetries of the system have to be artificially broken.
As mentioned in the previous section there are five conditions to be defined. There are
several possible combinations of boundary and integral conditions to achieve the same
result, but the presented set proved to be the most numerically stable. The first two
boundary conditions are Arx = 0 and Aix = 0. They fix the position of the maxima of Ar
and Ai at the domain boundary, thereby breaking the translational symmetry in space.
The second and third condition are periodic boundary conditions for Ar and Ai. The
last boundary condition is Ar = Ai, locking the phase of the electromagnetic field E. All
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3.3 Cavity solitons
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Figure 3.8: Branches of stationary CS solutions (in red) compared to their CW counter-
parts (in blue), for η = 0. (Left panel): The intensity |E|2 is shown as a
function of the pump rate µ. (Right panel): The frequency shifts as a function
of the pump rate µ. The frequency shift of the CSs turns up shortly be-
yond the lasing threshold µ = µth, as the diffraction overcomes the line-width
enhancement.

non periodic boundary conditions were defined at the left boundary. Figure 3.9 shows the
starting solution for η = 0 that fulfills these conditions.

Another way to break the phase shift symmetry, is to separate the amplitude and phase
profile of the field, as was demonstrated for a similar system in [VRFK97]. There, because
of the phase invariance, only the spatial derivative of the phase profile is relevant and is
introduced as a system variable:

A(x) = a(x)eiϕ(x), (3.22a)

q = ∂xϕ, (3.22b)

k =
1

a
∂xa, (3.22c)

f(|A|2) =
(1− iα)µ

1 + |A2| −
(1− iβ)γ

1 + s|A2| − 1. (3.22d)

Using this ansatz, the number of system variables can be reduced to three:

∂xa = ak, (3.23a)

∂xq = −2qk + Re[f(a2)] + η cos(ϑ), (3.23b)

∂xk = −ω + q2 − k2 − Im[f(a2)]− η sin(ϑ). (3.23c)
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3 Stationary solutions
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Figure 3.9: The starting solution for η = 0, used in the package AUTO for the continuation
of CSs. It fulfills the five boundary conditions explained in subsection 3.3.2.
The left end of the domain interval is shown, the right end is symmetric for
the amplitude components and antisymmetric for their derivatives.

3.3.3 Implicit method

CS solutions for the system (3.21) can not be found graphically, as for the CWs (cf. sub-
section 3.2.3 and figure 3.4). For a given η the manifold of stationary solutions can be
represented by continuing branches for different values of ϑ. Once the manifold is cal-
culated for some fixed η, a representation of the actual solution branch can be obtained
implicitly, for any values of τ and ϕ. The manifold has to be calculated with high reso-
lution, however, for this technique to yield accurate results. This is shown in figure 3.10.
There, actual solutions for fixed τ are represented by black dots. One can see that the solu-
tion branch performs several turns and folds around a tube shaped manifold of solutions,
giving rise to multistability of the CSs. Thereby the parts of the branch with positive
slope are unstable. Note that low frequency shift corresponds to high field intensity, i.e.
the unstable slopes of the intensity are negative. In the presented way, the properties of
the multistable solutions can be studied geometrically, using the effective phase (3.10). In
particular, one can show that the number of multistable solutions grows linearly with τ
[PVGY16].

3.3.4 Explicit method

The stationary CS solutions of the system (3.21) can be continued with AUTO for fixed
τ , after re-substituting the r.h.s. of the effective phase (3.10). Figures 3.11, 3.12 and 3.13
show the branches for feedback strengths of 0.5%, 1% and 2%, respectively. The other
delay parameters, τ = 100 and ϕ = 0, are fixed. Overall, the behavior of the CSs is similar
to that of the CWs. With higher η the solution manifold widens. At some point around
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Figure 3.10: The tube shaped manifold for CSs, calculated for different ϑ at η = 0.5%.
The black dots indicate particular solutions from the implicit condition (3.10)
for τ = 100 and ϕ = 4.75, for the value of ϑ on their respective branch. The
chosen ϕ is close to a saddle-node bifurcation at µ = 1.42.
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Figure 3.11: (Left panel): Branches of CSs (in red) and CWs (in blue) in the (µ, |E|2)-
plane calculated for η = 0.5%, ϕ = 0 and τ = 100.(Right panel): Branches of
CSs (in red) and CWs (in blue) in the (µ, ω)-plane calculated for η = 0.5%,
ϕ = 0 and τ = 100.

η = 1% the snaking curve of the intensity turns over into a spiral.
Note, that for η = 2%, the frequency shift breaks away from the curve for η = 0, as seen

in the right panel of figure 3.13. The snaking curves above the original minimum become
too wide and connect, as depicted in figure 3.14. This corresponds to the uppermost
solution of the intensity branch being lost. It appears to happen at the same point, where
the chaotic behavior breaks in the direct numerical simulations and the system drops to
the zero solution (cf. figures 4.3, 4.4 and 4.5 of section 4.2). Since the CW frequency shift
continues down, this behavior can be observed only for the CSs. It is an interesting effect
of the delay, as it seems to be caused in conjunction with the solution structure in the
regime beyond the lasing threshold, where the stationary solitons are completely unstable.

Figure 3.15 shows the solutions for τ = 200 at η = 0.5%. The snaking curve fills the
manifold more densely for stronger feedback. Varying ϕ just moves the snaking curve
along the manifold periodically, without significantly changing shape.
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Figure 3.12: (Left panel): Branches of CSs (in red) and CWs (in blue) in the (µ, |E|2)-
plane calculated for η = 1%, ϕ = 0 and τ = 100.(Right panel): Branches of
CSs (in red) and CWs (in blue) in the (µ, ω)-plane calculated for η = 1%,
ϕ = 0 and τ = 100. The width of the solution manifold grows with η.
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Figure 3.13: (Left panel): Branches of CSs (in red) and CWs (in blue) in the (µ, |E|2)-
plane calculated for η = 2%, ϕ = 0 and τ = 100.(Right panel): Branches of
CSs (in red) and CWs (in blue) in the (µ, ω)-plane calculated for η = 2%,
ϕ = 0 and τ = 100. The frequency shift breaks away from the curve, that
corresponds to η = 0
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Figure 3.14: (Left panel): Branches of CSs (in red) and CWs (in blue) in the (µ, ω)-
plane calculated for η = 1%, 2%, ϕ = 0 and τ = 100. (Right panel):
Zoomed in branches of CSs (in red) in the (µ, ω)-plane calculated for η =
0.5%, 1%, 1.5%, 2%, ϕ = 0 and τ = 100. The η = 2% branch no longer
reaches the mimimum of the branch for η = 0. This only happens for CSs.
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Figure 3.15: (Left panel): Branches of CSs (in red) and CWs (in blue) in the (µ, |E|2)-
plane calculated for η = 0.5%,ϕ = 0 and τ = 200. (Right panel): Branches of
CSs (in red) and CWs (in blue) in the (µ, ω)-plane calculated for η = 0.5%,
ϕ = 0 and τ = 200. The solutions fill the manifold more densely for larger τ .
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Figure 3.16: (Left panel): The stationary CW solution branches on the whole period of ϕ
for increasing η from zero to one percent. (Right panel): The stationary CW
solution branches on the whole period of ϕ for increasing η from one to two
percent. Saddle node bifurcations lead to an increasing multistability in the
system.

3.4 Phase instability

This section will analyze the cause of the TDF induced multistability of the system in
question. It will be shown that the TDF leads to an instability of the neutral phase mode,
that is connected to the phase shift invariance. This phase bifurcation causes a saddle-
node bifurcation that is responsible for the multistability of stationary solutions of the
system.

3.4.1 Saddle node bifurcation

Figure 3.16 shows the evolution of the branch of CW solutions in the (ϕ,E2)-plane, when
increasing η. For the given set of model parameters a saddle-node bifurcation has already
happened between η = 0.2% and η = 0.4%, close to ϕ = 4.6. Beyond about one percent
of feedback, the resulting branch forms a loop. For increasing η the number of solutions
increases. At η = 2% there is already a small interval, where up to four potentially stable
solutions exist simultaneously. This CW solution structure will be dealt with in much
more detail in chapter 5, using methods specific for delay differential equations, that can
treat delay induced dynamics, like periodic orbits and their stability. Indeed, for high
delay most of the stationary solutions will have at least one kind of instability.
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Figure 3.17: Bifurcation diagram in the (ϕ, η)-plane showing the saddle-node bifurca-
tion thresholds for CSs and CWs, calculated with AUTO-07P, for τ = 100.
CWs an CSs behave very similarly, in agreement with the direct numerical
simulations.

In AUTO the bifurcations themselves can be continued as well, using multiple con-
tinuation parameters at the same time. Figure 3.17 shows the results of continuing the
delay-induced folds of the stationary CW and CS solution branches. There is only a small
difference for the spatially homogeneous and the 1d system, in agreement with the re-
sults of the direct numerical simulations (cf. section 4.2). The saddle-node bifurcations
are at approximately ϕ = 4.553, η = 0.252% and ϕ = 4.884, η = 0.274%, for CWs an
CSs, respectively. The tips of the cusps, i.e., the delay-parameter values of saddle-node
bifurcations, can, in principle, be found for any set of parameter values, using AUTO.

3.4.2 Phase bifurcation

In order to analyze the observed saddle-node bifurcations in more detail, let us consider
Eqs. (2.1) in a general form

∂tq(x, t) = L(∇)q(x, t) + ηBϕ q(x, t− τ)

with q = (Er, Ei, N, n)T , L(∇) is a nonlinear operator and Bϕ is a rotation matrix with
respect to the phase ϕ. Let q(x, t) = q0(x)e−iωt be a stationary CS solution, satisfying

0 = L(∇)q0 + iωq0 + η ei ϑ q0. (3.24)

In order to analyze the stability of the localized CS solutions q0(x) in the presence of TDF
term, we linearize the last equation in q0(x) and arrive at the transcendental eigenvalue
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3.4 Phase instability

problem: (
L′(q0)− λ I + ηBϑ e

−λ τ
)
ψ = 0 , (3.25)

where ψ is an eigenfunction, corresponding to the eigenvalue λ, L′(q0) is the linearization
operator and I is the identity matrix. Due to translational and phase shift symmetries
of the system (2.1), the linearization operator L′ possesses two neutral eigenvalues corre-
sponding to a pair of eigenmodes ψ0: even phase shift eigenfunction ψph = iq0 as well
as odd translational mode ψtr = ∂xq0. Both drift and phase bifurcations occur when the
eigenvalue corresponding to the corresponding neutral mode becomes doubly degenerate
with geometric multiplicity one. Hence, in the vicinity of the bifurcation point

λ = 0 + ε, ψ = ψ0 + εψ1, ε� 1

with some unknown function ψ1. Substituting this ansatz into Eq. (3.25), expanding the
resulting equation into power series in ε and collecting the first order terms in ε one obtains(

L′(q0) + ηB
)
ψ1 = (I + η τ B)ψ0 .

This existence of a non-trivial solution of this equation is equivalent to the following
solvability condition: < ψ†0| (E + η τB)ψ0 >= 0, where ψ†0 is a neutral eigenfunction of
the adjoint operator L′† and < · | · > denotes the scalar product defined in terms of full
spatial integration over the considered domain. The solvability condition leads to the
general expression for the onset of phase (drift) bifurcation [PVGY16]:

ητ = − < ψ†0|ψ0 >

< ψ†0|Bψ0 >
.

Note that both drift- and phase-bifurcation thresholds tend to zero in the limit of large
delay times. While in the case of the drift-bifurcation, a pitchfork bifurcation takes place,
the phase-bifurcation corresponds to a saddle-node bifurcation, where a pair of solutions
merge and disappear. Note that this fold condition follows directly from Eq. (3.10) and
can be written as

dω

dϑ
=

1

τ
. (3.26)

Indeed, by differentiating Eq. (3.24) with respect to ϑ one obtains(
L′(q0) + iω + ηeiϑ

) ∂q0

∂ϑ
= −dω

dϑ
ψph − ηBψph .

The solvability condition for this equation is equivalent to the aforementioned expression
for the onset of phase bifurcation

η = −
< ψ†ph|

dω

dϑ
ψph >

< ψ†ph|Bψph >
,

where ψ0 = ψph. That is, the multistability of CSs caused by TDF is induced by the local
saddle-node phase bifurcation of the localized CS solution [GSTP16].
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Figure 3.18: Threshold of the phase bifurcation of the CW solutions, calculated in the
(η, ϑ)-plane. The loop occurs due to the connection of the upper and lower
part of the C-shaped solution branch by shifting ϕ.

To see when equation (3.26) is fulfilled, we form an expression, that can be continued
in AUTO. We simply differentiate

ω =
αµ

1 + I
− βγ

1 + sI
− η sin(ϑ) (3.27)

with respect to ϑ and subtract
1

τ
:

0 =

[
− αµ

(1 + I)2
+

sβγ

(1 + sI)2

]
∂I

∂ϑ
− η cos(ϑ)− 1

τ
, (3.28a)

∂I

∂ϑ
= −∂p

∂ϑ
±

2p
∂p

∂ϑ
− ∂q

∂ϑ
2
√
p2 − q

, (3.28b)

∂p

∂ϑ
=

1

2s

sµ− γ
(1− η cos(ϑ))2

η sin(ϑ), (3.28c)

∂q

∂ϑ
=

1

s

µ− γ
(1− η cos(ϑ))2

η sin(ϑ), (3.28d)

where I fulfills equation (3.6) and p and q fulfill equation (3.12). This expression can now
be treated as an algebraic problem. Figure 3.18 shows the result of the continuation for
the spatially homogeneous system. It can be interpreted as the threshold of multistability
in terms of the effective phase. The loop is related to the fact, that the upper and lower
part of the branches from the previous sections 3.2 and 3.3 are connected. Specifically,
by shifting ϕ for some periods, any point from one part can be brought to the other part
smoothly. How many periods are necessary is dependent on τ . Note that the peak of the
loop is exactly at ϑ = π and η = ηc (see subsection 3.2.2). The curve is a good opportunity
to check the consistency of the continuations of AUTO and DDE-BIFTOOL (cf. figure
5.13), because the TDF is fully described by the two continuation parameters, that the
curve was continued in.
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4 Direct numerical simulations

4.1 Numerical method

Since the model equation (2.1a) is a partial differential equation, space has to be dis-
cretized in order to get a system of ordinary differential equations, that can be calculated
numerically. Here, an equidistant discretization with spatially periodic boundary condi-
tions was used in 1d. The diffraction term was calculated using spectral differentiation,
i.e., by multiplication with minus the wavenumber squared in Fourier space [Boy01]:

∇2q(x) = F−1
[
−k2F [q(x)]

]
, (4.1)

where F is the Fourier transform, k is the wavenumber and q(x) is a function in space.
The discretized equations are coupled through the derivative obtained by this method.

There are several proven schemes for direct numerical simulations of differential equa-
tions to choose from, however, for time-delayed equations, some additional considerations
have to be made. To handle the time-delayed part of the equation, one has to keep infor-
mation about the past evolution of the system. The most straight forward way of doing
so is to have an array of data containing past states, that the system has gone through at
known points in time. Given sufficient random access memory, one may simply save the
system variables at every step of the simulation and keep them until they are further in
the past than the longest delay time. This will maximize available information, to ensure
optimal accuracy. Since the system evolution depends on the delay data, in general one
would have to define data for one delay time τ as an initial condition. For the system
in question, it can be left at zero, however, because the system is dissipative. As long as
the initial field intensity is in an adequate range of the control parameters, it will quickly
converge to a state that depends only on the parameter values, not the initial condition.

The interesting choice here is, whether to a use a constant or an adaptive time step.
Every simulation step requires the state of the system exactly one τ ago. With adaptive
time-stepping, however, the saved states of the system will, in general, not line up correctly.
That means one would have to interpolate using available states. The point of adaptive
time-stepping is to step as far as possible, while maintaining a given accuracy. The problem
with this approach arises, when simulating an interval of time using small steps. There is
obviously no guarantee that the corresponding delayed states have been computed with
comparable step size. Whenever this discrepancy is high, the accuracy of interpolation
will be low. Additionally, this issue will affect a relatively high number of computation
steps. Avoiding this by choosing a small maximum step size defies the aspired advantage of
adaption. With constant time-stepping no interpolation is needed. Therefore, the classical
4th-order Runge Kutta method was chosen for this thesis, as it offers good accuracy, speed
and stability. Other possible schemes include split-step stepping and semi-implicit methods
[PTV93].
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4 Direct numerical simulations

The delay data can be addressed by simply carrying a counter index modulo the size of
the array in the time dimension, i.e., τ divided by the time-step, which must be an integer
value. As a consequence, for an arbitrary value of τ , the step size must be compatible.
This is one of the reasons for introducing a delay-phase parameter ϕ in equation (2.1), as
a small change in τ can be considered equivalent to a corresponding change in ϕ. That is,
the step size can be chosen freely, as τ only needs to be close to any value at interest.

All simulations start off a simple initial condition roughly equal to the stationary solution
without delay. For a short time, the mean electric field envelope is held constant for the
carrier densities to adapt, before the full delay simulation starts.

Figure 4.1 shows a result of a typical direct numerical simulation. Here, space-time plots
of the field intensity |E|2 for the 1d case are shown for τ = 100, ϕ = 0.5π and different
values of η. These were calculated on a mesh of 512 points. The higher resolution requires
a smaller time-step of 0.01 to ensure numerical stability. At ϕ = 0.5π, the systems shows
a period doubling route to chaos. The space-time plots show cavity solitons exhibiting
different characteristic oscillatory behaviors, i.e., stationary, oscillation, period doubling
and chaos, for η = 0, 0.5%, 1%, 1.5%.

4.2 Numerical results for fixed feedback phase

During all simulations done within this thesis, the solitons never move in space. Therefore,
tracing the intensity I at the peak of the solitons is a good way of describing their temporal
behavior. Every 20τ of a typical simulation, this trace is analyzed. If the trace has
a standard deviation smaller than some small constant, the system is assumed to have
reached a stationary solution and the last value is saved. If this is not the case, the
extrema of the trace can be used to characterize the dynamics. For a periodic orbit,
the extrema are alternating minima and maxima, all of which, have the same value,
respectively. During a simulation this means, they form clusters, which can be detected
by a small standard deviation of both the minima and maxima. Period doubling orbits
will have two minima and maxima each and therefore, four clusters can be detected. In
principle this goes on for all powers of two. If any of the aforementioned states is detected,
its characteristic intensity values are saved and the program terminates. Otherwise, the
simulation continues. If the program has not terminated after 200τ , the extrema of the
last trace are saved, corresponding either to a torus orbit or chaotic dynamics. Often a
torus orbit has two components with two incommensurable frequencies and two distinct
amplitudes. In this case the resulting picture looks like two bulbs, randomly filled with
dots. A torus can, however, appear as just one large area of dots. Very high maxima, i.e.,
spikes in the time line, are a clear identifier of chaotic behavior. Otherwise the distinction
between a torus orbit and full chaos can be difficult with the presented method. Figure 4.2
shows the first time trace of a simulation for η = 1%, ϕ = 0.5π and τ = 100. The system
quickly goes onto a period doubling orbit. The next time series would only contain data
on this orbit. Its extrema will form four distinct clusters and the program will terminate,
saving the mean values of the respective extrema.

Plotting the calculated minima and maxima of the field intensity against a control
parameter yields the bifurcation diagrams in this section. They were calculated with 128
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Figure 4.1: Space-time plots of numerical 1d field intensity |E|2 of the model system (2.1)
calculated at different values of η, showing stationary behavior, oscillation,
period doubling, and chaotic oscillations. Other parameters are τ = 100 and
ϕ = 0.5π.
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Figure 4.2: The time trace of the intensity at the peak of a CS in a direct numerical
simulation of the model system (2.1) calculated at η = 1%, ϕ = 0.5π and
τ = 100. The system goes onto a period doubling orbit.
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4 Direct numerical simulations

grid points and a time-step of 0.05. Note that in the diagrams only dots are drawn, never
lines. Each one consists of 1000 simulations with a constant increment of η. They all
start at the same initial condition. There are two main features of the dynamics, a period
doubling route to chaos and multistability, both of which will be discussed in detail in the
following paragraphs.

Figure 4.3 shows the resulting bifurcation diagram for a delay time τ = 100 and a
feedback phase of ϕ = 0. At η = 0, a stationary CS forms. The height of this stationary
solution changes slowly when increasing the feedback strength η. At about η = 0.3% an
Andronov-Hopf bifurcation occurs. In the bifurcation diagram the stationary branch splits
in two, as the intensity now oscillates between two values. These limits of the periodic
orbit move further apart with increasing η. At about η = 0.75% the branches split again in
a period doubling bifurcation. Shortly after, there is another period doubling, followed by
a transition into chaos. The behavior is a characteristic route to chaos by period doubling
and is induced solely by the TDF. Interestingly, at about η = 1.2% a new stable branch
appears inside the chaotic region. It is significantly higher than the original branch, but
roughly points at the same intensity originally observed at η = 0. It then goes on, through
a similar route to chaos as the first branch, i.e., there are two windows of qualitatively
similar behavior, which points to a possible multistability of the system induced by the
feedback. Beyond about η = 1.9% the 1d system falls to the homogeneous zero solution.
Note that the resulting bifurcation diagram resembles a Feigenbaum diagram, typically
obtained by a period doubling route to chaos [AFHF15].

For comparison the same calculations have been done for the spatially homogeneous
system without the diffraction term. This corresponds to the spatially homogeneous in-
tensity of plane waves solutions in the transverse plane. These are unstable to modulation,
however, as was shown in subsection 3.2.4. In principle one observes the same dynamical
behavior as for CSs. The stationary CS solutions were already shown to be closely re-
lated to their CW counterparts in section 3.3. One interesting difference is, however, that
the spatially homogeneous system does have non-zeros solutions beyond 1.9% of feedback
strength.

However, the bifurcation diagrams depend on the feedback phase ϕ. An example was
calculated for ϕ = 0.5π and is presented in figure 4.4. One can see that there is no
multistability for this feedback phase. The systems shows an isolated period doubling
route to chaos. The η values of the bifurcations are shifted with respect to the values
shown in figure 4.3.

The feedback phase ϕ has a strong influence on the dynamical behavior of the system.
In particular for a range of ϕ, the saddle-node bifurcation responsible for the multistability
happens before oscillatory dynamics are induced. This is most pronounced at ϕ = 1.48π,
which is close to the first saddle-node bifurcation determined in subsection 3.4.1. The
corresponding diagram is depicted in figure 4.5. Here, the multistability is very pronounced
over a broad range of η. The system chooses between the two branches, or their respective
orbits, with similar probability.
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Figure 4.3: Bifurcation diagram of the extrema of the CS peak intensity (in red) and the
corresponding homogeneous lasing solution intensity (in blue) of the system
(2.1) as a function of the feedback strength η calculated for τ = 100 and ϕ = 0.
A period doubling route to chaos is observed in two separate windows. Both
types of solutions show the same qualitative behavior.
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Figure 4.4: Bifurcation diagram of the extrema of the CS peak intensity (in red) and the
corresponding homogeneous lasing solution intensity (in blue) of the system
(2.1) as a function of the feedback strength η calculated for τ = 100 and
ϕ = 0.5π. A single period doubling route to chaos is observed. Both types of
solutions show the same qualitative behavior.
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Figure 4.5: Bifurcation diagram of the extrema of the CS peak intensity (in red) and
the corresponding homogeneous lasing solution intensity (in blue) of the sys-
tem (2.1) as a function of the feedback strength η calculated for τ = 100
and ϕ = 1.48π. The system shows multistability of the stationary branch.
Additionally to the period doubling route to chaos on one branch, a torus bi-
furcation is observed on the other branch. Both types of solutions show the
same qualitative behavior.

4.3 Results for fixed feedback strength

Bifurcation diagrams using ϕ as a control parameter, keeping η fixed, can be obtained
in a similar way, as in the previous section. They show the strong effect of ϕ on the
system behavior from a different point of view, that is closely related to what one would
expect to see from varying τ . Figures 4.6, 4.7 and 4.8 show such diagrams of the spatially
homogeneous system for increasing feedback strength, calculated for fixed τ . At η = 0.2%,
the stationary CW solutions are slightly modulated, depending on the feedback phase. At
η = 0.3%, first saddle-node bifurcation has already occurred (cf. subsection 3.2.3). The
system is multistable on a small interval of ϕ. At η = 0.35%, a periodic orbit has appeared
on an interval of ϕ. The multistabiliy is growing broader. At η = 0.65%, the interval of
periodic orbits has grown broad. A cyclic-fold (fold on limit cycle) is beginning to form.
At η = 0.75%, torus and period doubling orbits have formed on small intervals. At η = 1%
the torus and period doubling orbit are large and the cyclic-fold has occurred. The tips of
the torus structure are at a different value than the periodic orbit close to it. This is more
pronounced at the low part of the orbit. The features of the diagrams in this section will
be explained in more detail using the continuation package DDE-BIFTOOL in the next
chapter 5.
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Figure 4.6: Bifurcation diagrams of the extrema of the CW intensity (in blue) of the system
(2.1) as a function of ϕ calculated for different values of η and τ = 100. (Top
panel): Stationary CW solutions are modulated slightly, for η = 0.2%. (Middle
panel): Multistability of stationary CW solution, for η = 0.3%. (Bottom
panel): Periodic orbits appear on an interval of ϕ, for η = 0.35%.
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Figure 4.7: Bifurcation diagrams of the extrema of the CW intensity (in blue) of the system
(2.1) as a function of ϕ calculated for different values of η and τ = 100. (Top
panel): Interval of periodic orbits is wide for, η = 0.65%. A cyclic-fold (fold
on limit cycle) begins to form. (Bottom panel): Torus and period doubling
orbits appear at η = 0.75%. The cyclic-fold is imminent.
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Figure 4.8: Bifurcation diagram of the extrema of the CW intensity (in blue) of the system
(2.1) as a function of ϕ calculated for η = 1% and τ = 100. Torus an period
doubling orbits are large. The tip of the torus is situated higher than the
periodic orbits, i.e., a cyclic-fold has appeared.
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5 Delay-induced dynamics

As was demonstrated in the previous chapter, the system (2.1) subjected to TDF develops
complex dynamical behavior. This chapter will focus on the analysis of these dynamics,
using the Matlab continuation package DDE-BIFTOOL [ELR02]. DDE-BIFTOOL is a
numerical branch continuation software, developed for delay differential equations. It
can determine solution branches, their stability and underlying bifurcations, not only for
steady states, but for periodic orbits as well. The algorithms used, are not compatible with
the BVP technique used in AUTO for dealing with 1d dynamical systems. To deal with
spatially extended systems like (2.1), finite differences should be applied, i.e., a number of
equations, each coupled to the ones for neighboring discretization points. Unfortunately,
the memory demand and computation time of DDE-BIFTOOL proved not to scale well
with a large number of system variables, see chapter 6. As we have shown, that CSs
dynamics is similar to CWs, CWs are discussed in the following.

5.1 Delay continuation

The current Version 3.0 of DDE-BIFTOOL comes with an extension for systems with
rotational symmetry, that can be used do deal with the phase symmetry of the system at
interest. It is implemented by a rotation matrix, similar as in subsection 3.4.2, and an
extra free continuation parameter to account for the artificial symmetry-breaking, same
as with the AUTO package in subsection 3.3.2. The next section will go into more details
about this particular matrix. Conveniently, there exists an extensive demo for the Lang-
Kobayashi equation [LK80], which is a closely related, albeit simpler, model for laser
dynamics with optical delayed feedback. The provided demo has offered an excellent
starting point for this thesis.

Figures 5.1, 5.2 and 5.3 show CW solution branches for (2.1), for τ = 100 and different
values of η, calculated with DDE-BIFTOOL. They show a rather complete picture of the
solution structures at the same values of η, that were used for the figures 4.6, 4.7 and
4.8 in section 4.3, showing the corresponding direct numerical simulation results. First an
initial stationary solution is brought to the respective value of η. This is then continued
on the full interval of ϕ. DDE-BIFTOOL has man utility functions to go on from here,
e.g. the stability can be calculated along the branch. After that, the type of bifurcations
can be easily determined by counting the number of unstable eigenvalues in the obtained
eigenvalue spectra. Wherever the stability changes, a bifurcation point can be calculated.
These can be continued themselves using an additional free continuation parameter, similar
to AUTO (see section 5.3). Around a Hopf bifurcation point the software can build a
periodic orbit of small radius. It can then be continued in one parameter. The stability of
a branch of periodic orbits can be calculated, using Floquet theory [Tes12], see section 5.2
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5.2 Stability of periodic orbits

for details. Changes in stability can again be used to build bifurcation points for periodic
orbits, that can be continued.

Figure 5.1 shows the intensity |E|2 of the CW solutions as a function of ϕ for η = 0.2%,
η = 0.3% and η = 0.35% in the top, middle and bottom panel, respectively. For η = 0.2%
the delay only modulates the stationary state, which is drawn as dots. At η = 0.3%
the unstable connection between the two folds of the saddle-node bifurcation is shown
in red. At η = 0.35%, part of the stationary branch has become unstable between two
Andronov-Hopf bifurcation points, indicated in cyan. The periodic orbits are plotted by
green circles at the minima and maxima of their respective time profiles. Figure 5.2 shows
the intensity |E|2 of the CW solutions as a function of ϕ for η = 0.65% and η = 0.75%
in the top and bottom panel, respectively. At η = 0.65%, the periodic orbits and the
corresponding instability on the stationary branch cover almost the full interval of ϕ. In
addition a cyclic-fold (fold on limit cycle) begins to form. At η = 0.75%, the interval has
grown broader than 2π, the branches overlap. Small sections of the periodic orbits have
become unstable as well. These instabilities correspond to a period doubling bifurcation,
shown in cyan and a torus bifurcation in magenta, respectively. Finally, figure 5.3 shows
the intensity |E|2 of the CW solutions as a function of ϕ for η = 1%. The cyclic-fold has
appeared. The corresponding periodic orbits are drawn in red. The color-coded capital
letters ’A’, ’B’, ’C’ and ’D’ indicate periodic orbits, that are exemplary of the different
states of the branch solution. These will be analyzed in further detail in the following
section.

5.2 Stability of periodic orbits

The stability of periodic orbits is determined by complex-valued Floquet multipliers. A
Floquet multiplier is an eigenvalue of the inverse fundamental matrix [Tes12]. If Floquet
multipliers exist outside the unit circle, the corresponding periodic orbit is unstable. When
a complex pair of Floquet multipliers crosses the unit circle, a torus (secondary Hopf)
bifurcation occurs. Real Floquet multipliers crossing plus or minus one indicate cyclic-
folds (fold on limit cycle) or period doubling (flip) bifurcations, respectively (cf. section
5.2 of [BKNG09]). In general, there has to be a real Floquet multiplier at plus one. For
a set of numerically calculated Floquet multipliers, this fact can be used to estimate the
achieved accuracy.

Figures 5.4, 5.5, 5.6 and 5.7 show the profile of the periodic orbits obtained with DDE-
BIFTOOL, indicated by the labels ’A’, ’B’, ’C’ and ’D’ in figure 5.3, and their respective
Floquet multipliers. The profiles for the labels ’A’, ’B’ and ’C’ are unstable due to a
torus bifurcation, a cyclic-fold and a period doubling bifurcation, respectively. The profile
corresponding to the label ’D’ is stable. Note that all system variables have to be periodic
for continuation of periodic orbit in DDE-BIFTOOL.

Note that the profiles of periodic orbits in DDE-BIFTOOL are not equal to what one
obtains from direct numerical simulations. Figure 5.8 shows the corresponding profile at
the same parameters as the profile of the stable periodic orbit corresponding to the label
’D’. One can see that the carrier densities and the field intensity are the same profiles
obtained with DDE-BIFTOOL. However, the real and imaginary part of the electromag-
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Figure 5.1: Intensity of CW solutions of equation (2.1) as a function of ϕ, calculated for
different values of η in DDE-BIFTOOL. (Top panel): The modulated station-
ary branch (in black), for η = 0.2%. (Middle panel): The connection of the
two folds of the first saddle node bifurcation (in red), for η = 0.3%. (Bottom
panel): Part of the branch is Hopf-unstable, drawn in cyan, for η = 0.35%.
The minima and maxima of the corresponding stable periodic orbits are drawn
as green circles.
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Figure 5.2: Intensity of CW solutions of equation (2.1) as a function of ϕ, calculated for
different values of η in DDE-BIFTOOL. (Top panel): The periodic orbits exist
at almost all ϕ, for η = 0.65%. A cyclic-fold begins to form. (Bottom panel):
Some of the orbits have become unstable at η = 0.75%. Cyan indicates period
doubling and magenta indicates a torus bifurcation.
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Figure 5.3: Intensity of CW solutions of equation (2.1) as a function of ϕ, calculated for
η = 1% in DDE-BIFTOOL. A cyclic-fold has appeared, with the correspond-
ing periodic orbits drawn (in red). The labels ’A’, ’B’, ’C’ and ’D’ indicate
exemplary orbits, that are discussed in section 5.2.
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Figure 5.4: (Left panel): The time profile of the periodic orbit indicated by the label ’A’ in
figure 5.3, for the system (2.1), calculated in DDE-BIFTOOL. (Right panel):
The Floquet multipliers of the periodic orbit indicated by the label ’A’ in
figure 5.3, calculated in DDE-BIFTOOL. The periodic orbit is unstable due
to a torus bifurcation, i.e., there exists a complex pair of Floquet multipliers
outside the unit circle.
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Figure 5.5: (Left panel): The time profile of the periodic orbit indicated by the label ’B’ in
figure 5.3, for the system (2.1), calculated in DDE-BIFTOOL. (Right panel):
The Floquet multipliers of the periodic orbit indicated by the label ’A’ in
figure 5.3, calculated in DDE-BIFTOOL. The periodic orbit is unstable due
to a cyclic-fold, i.e., there exists a real Floquet multipliers larger than one.
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Figure 5.6: (Left panel): The time profile of the periodic orbit indicated by the label ’C’ in
figure 5.3, for the system (2.1), calculated in DDE-BIFTOOL. (Right panel):
The Floquet multipliers of the periodic orbit indicated by the label ’A’ in
figure 5.3, calculated in DDE-BIFTOOL. The periodic orbit is unstable due
to a period doubling bifurcation, i.e., there exists a real Floquet multipliers
smaller than minus one.
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Figure 5.7: (Left panel): The time profile of the periodic orbit indicated by the label ’C’ in
figure 5.3, for the system (2.1), calculated in DDE-BIFTOOL. (Right panel):
The Floquet multipliers of the periodic orbit indicated by the label ’A’ in figure
5.3, calculated in DDE-BIFTOOL. The periodic orbit is stable, i.e., no Floquet
multipliers exist outside of the unit circle.

netic field E oscillate much faster than the periodic orbit itself, which takes the roll of
an envelope. Furthermore, they are not periodic at the boundaries of the profile. This is
irrelevant for the evolution of the intensity |E|2 and the carrier densities N and n, because
of the phase shift symmetry of the system (2.1).

The rotation matrix used in the extension of DDE-BIFTOOL for systems with rotational
symmetry enables DDE-BIFTOOL to treat the model equations (2.1). This matrix is a
function of a phase value, which is implemented as a parameter that describes an angular
velocity, related to the frequency shift ω. This parameter can than be multiplied by the
time step for stationary solutions, or by the time period for periodic orbits. In the latter
case, ω can be considered as the mean value of the actual angular frequency of the system
over the time of one period. In both cases the rotation matrix negates the fact that
E rotates its phase over time, if ω has the right value. Note that in this thesis, ω has
always been used as the extra free continuation parameter, that is required because of
the rotational symmetry. With another free parameter, continuations for fixed ω are also
possible. Figure 5.9 shows both the ω parameter in DDE-BIFTOOL and the frequency
shift in the direct numerical simulation, for the profiles shown in figures 5.7 and 5.8. The
current frequency shift is the time derivative of the complex phase of E. Note that if
DDE-BIFTOOL would use the actual frequency shift as a function of time, i.e., the real
and imaginary part of E would be constant for the time profiles.
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Figure 5.8: Profile of the periodic orbit a from direct numerical simulation, calculated
at the same parameters as figure 5.7. The real and imaginary part of the
electromagnetic field E oscillate much faster, within an envelope corresponding
to the intensity profile |E|2. Only the intensity and carrier densities N and n
are periodic at the profile boundaries. This effect is connected to the phase
symmetry of the system.

0 10 20 30 40 50 60

Time t

2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50

F
re

qu
en

cy
sh

if
t
ω

ω numerics
ω biftool

Figure 5.9: The frequency shift ω in the direct numerical simulation and in DDE-
BIFTOOL, calculated for the profile in figures 5.7 and 5.8.
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5 Delay-induced dynamics

5.3 Delay-induced bifurcations

Any stationary solution or periodic orbit close to a bifurcation can be corrected by DDE-
BIFTOOL, to match the precise solution or orbit at the bifurcation point. Bifurcation
points obtained in this manner, can be continued using an additional free continuation
parameter. The folds and Hopf bifurcation points of the stationary solution, as well as
the cyclic-fold, period doubling and torus bifurcations of the periodic orbits, have been
continued in the (η, ϕ)-plane, for fixed τ = 100. The resulting bifurcation diagram is
shown in figure 5.10. For the stationary solutions, the folds of the saddle-node bifurcation
are drawn in green and the Andronov-Hopf bifurcation in red. For the periodic orbits,
the cyclic-fold is drawn in cyan, the period doubling bifurcation in blue and the torus
bifurcation in yellow. In figure 5.11 the different parts of the (η, ϕ)-plane are colored to
indicate the respective instability boundaries, reduced to an interval of ϕ of 2π. Note that
the torus bifurcation connects the stationary fold and the cyclic-fold. On the fold curve
there is a point, where the Hopf bifurcation curve touches it tangentially. Looking at the
stationary solution branch in figures 5.1, 5.2 and 5.3 one can observe, that the left fold
continues to move to lower values of ϕ for increasing η, while the Hopf bifurcation moves
toward the fold. At some point, the Hopf point moves across the fold and then continues
along the unstable part towards the right fold. This is why the Hopf bifurcation curve
and the fold curve touch, but do not cross each other. The torus continuation does not
go across this point and the continuation steps get very small, close to it. It is unclear,
whether this is due to the torus instability itself, or rather because the periodic orbit has
zero radius at the Hopf bifurcation. The continuation behaves the same way close to the
cyclic-fold. The periodic orbits have three unstable Floquet multipliers beyond this point.
Again, it is not clear why the continuation of the bifurcation point does not go further. The
direct numerical simulations show, however, that the system is already chaotic at these
parameter values. One can see, that increasing η leads to complex temporal behavior of
the homogeneous lasing solution, including multistability and coexistence of stationary
states with periodic and aperiodic dynamics. Figure 5.11 shows the bifurcation structure
reduced to one full interval of ϕ. Areas are colored depending on the instabilities present
for the respective TDF parameters.

The analysis of the stationary solutions and the direct numerical simulations have
demonstrated a close relation between the dynamical behavior of CWs and CSs. In order
to compare the CSs to the CWs, the Andronov-Hopf thresholds for the CSs have been
determined by direct numerical simulations. For this, a simulation is started close to the
stationary solution. The intensity of a time series is analyzed, for whether the initial os-
cillations are decaying towards a stationary solution, or building up to a periodic orbit. If
they are decaying, η is increased for a new time series, until the amplitude of the oscillation
is growing. The corresponding value of η is then saved as the Hopf threshold. Figure 5.12
shows a continued Hopf branch for CWs and values for the corresponding Hopf thresholds
of CSs. One can see, that the CS Hopf thresholds behave similar to the CW Hopf branch,
but are shifted with respect to each other.

Finally, in order to check the consistency of the results obtained with DDE-BIFTOOL
and AUTO, the branch of the stationary fold is plotted against ωτ +ϕ in figure 5.13. This
corresponds to the continuation in ϑ in AUTO and the result from continuing the analytic
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Figure 5.10: Bifurcation diagram in the (ϕ, η)-plane for the model system (2.1), calculated
with DDE-BIFTOOL. Stationary fold is shown in green and Hopf threshold
in red. Periodic orbit cyclic-fold is in cyan, period doubling in blue and torus
bifurcation in yellow. The relative shapes and positions share some similarity.
The torus branch connects the fold with the cyclic-fold.
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Figure 5.11: Bifurcation diagram in the (ϕ, η)-plane, reduced to an interval of 2π for the
model system (2.1), calculated with DDE-BIFTOOL. Stationary fold is shown
in green and Hopf threshold in red. Periodic orbit cyclic-fold is in cyan,
period doubling in blue and torus bifurcation in yellow. The relative shapes
and positions share some similarity. The torus branch connects the fold with
the cyclic-fold. Areas are colored to indicate the instability boundaries.
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Figure 5.12: Hopf thresholds for CSs from direct numerical simulations and CW Hopf
branch from continuation. CWs and CSs behavior is similar.

condition for the phase instability (3.28), shown in Figure 3.18. One can see, that all three
methods yield identical results.
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Figure 5.13: The branch of the stationary fold plotted as a function of ωτ + ϕ, i.e., the
effective phase (3.10). It is identical to figure 3.18, showing the result for the
analytic condition for the phase instability (3.28).

5.4 Comparison of continuation and simulations

Figures 5.14, 5.15 and 5.16 show the data of 4.6, 4.7 and 4.8 plotted together with the data
of figures 5.1, 5.2 and 5.3, for comparison. The analysis with DDE-BIFTOOL matches the
direct numerical simulations perfectly, except for a very small offset in the feedback phase.
This discrepancy may be due to differences in the underlying computational algorithms in
Matlab.

47



5 Delay-induced dynamics

−6 −4 −2 0 2 4 6

Feedback phase ϕ

0.20

0.22

0.24

0.26

0.28

0.30

M
in

m
ax

of
|E
|2

−6 −4 −2 0 2 4 6

Feedback phase ϕ

0.20

0.22

0.24

0.26

0.28

0.30

M
in

m
ax

of
|E
|2

−6 −4 −2 0 2 4 6

Feedback phase ϕ

0.15

0.20

0.25

0.30

0.35

M
in

m
ax

of
|E
|2

Figure 5.14: Intensity of CW solutions of (2.1) as a function of ϕ, calculated for different
values of η. Data from direct numerical simulations is plotted together with
the solution structure from DDE-BIFTOOL, for comparison. (Top panel):
Same data as in top panels of figures 4.6 and 5.1, for η = 0.2%. (Middle
panel): Same data as in middle panels of figures 4.6 and 5.1, for η = 0.3%.
(Bottom panel): Same data as in bottom panels of figures 4.6 and 5.1, for
η = 0.35%.
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Figure 5.15: Intensity of CW solutions of (2.1) as a function of ϕ, calculated for different
values of η. Data from direct numerical simulations is plotted together with
the solution structure from DDE-BIFTOOL, for comparison. (Top panel):
Same data as in top panels of figures 4.7 and 5.2, for η = 0.65%. (Bottom
panel): Same data as in bottom panels of figures 4.7 and 5.2, for η = 0.75%.
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Figure 5.16: Intensity of CW solutions of (2.1) as a function of ϕ, calculated for η = 1%.
Data from direct numerical simulations is plotted together with the solution
structure from DDE-BIFTOOL, for comparison. Same data as in figures 4.8
and 5.3.
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6 Conclusions and outlook

In this thesis, we have investigated the solution and bifurcation structure of a model system
for a wide-aperture laser with saturable absorption induced by time-delayed feedback
(TDF). The TDF has been shown to induce a series of saddle-node bifurcations via a
phase instability, leading to a multistability of the stationary CWs and CSs of the system,
that have been continued with AUTO-07P [DKK91a, DKK91b]. In particular, we have
shown that in the presence of TDF, the branches of CSs and CWs fill the surface of the
solution tube in the parameter space, which is filled densely with increasing delay time.
In addition, a period doubling route to chaos and quasiperiodic dynamics, both induced
by TDF, have been observed in direct numerical simulations. A strong dependence of the
respective bifurcations on the feedback strength and feedback phase has been pointed out.
The results of the direct numerical simulations have been analyzed in more detail with the
delay-specific numerical path continuation Matlab package DDE-BIFTOOL for the CW
case. Qualitatively the CSs exhibit an equivalent behavior as the CWs.

Note that without feedback, the model system exhibits only stationary behavior for the
parameters considered in this thesis. The dynamics appear to be purely induced by the
TDF. However, at other parameters, e.g. for different ratios of the carrier time scales b1
and b2, the system shows oscillatory behavior or traveling solutions when not subjected
to TDF. By introducing feedback in this case, the oscillation or drift can be suppressed
on a certain interval of the feedback phase. Considering both cases, the effect of feedback
can be interpreted as the stabilization or destabilization of Hopf modes intrinsic to the
system. A delay differential equation is mathematically equivalent to a one-dimensional
partial differential equation. The interval that the equation is parameterized on can be
interpreted as time or as space. Both cases lead to an infinite-dimensional solution space,
which gives rise to a continuous spectrum of eigenvalues. Whether the chaos is induced
solely through the delay or is based on inherent modes destabilized by it, is still not
understood to a large extend.

As we mentioned in the previous chapter, DDE-BIFTOOL was developed for delay
differential equations. However, in principle DDE-BIFTOOL can be used for spatially
extended systems by discretizing the system using finite differences. This was done suc-
cessfully for the continuation of periodic orbits of localized solitons oscillating in space
around an inhomogeneity in a 1d Swift-Hohenberg model with TDF [TSTG16]. DDE-
BIFTOOL turned out to scale badly with system size, however, in both computation time
and memory requirement. The practical limit for contemporary desktop hardware is about
64 grid points. For the system analyzed in this thesis, this would mean only 16 grid points,
because it consists of four separate fields. Unfortunately this is not enough to accurately
resolve the CSs on an appreciable domain. The CSs have to be relatively far apart, oth-
erwise they attract and interact with each other. Therefore the domain size must be wide
enough for a soliton to have a long tail close to the homogeneous background. This poses
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6 Conclusions and outlook

much less of a problem for the Swift-Hohenberg system, where solitons like to arrange
next to each other, i.e. the domain size can be on the order of the soliton width, which is
favorable for good resolution.

In this thesis, calculations were performed on a one-dimensional domain. With appro-
priate continuation software, e.g. pde2path [UWR14], future investigations may be done
for the 2d case, which provides a good starting point for further analysis.
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stabilization of high-frequency oscillations in semiconductor superlattices by
time-delay autosynchronization. Phys. Rev. E, 68:066208, Dec 2003.

[TAVP12] M. Tlidi, E. Averlant, A. Vladimirov, and K. Panajotov. Delay feedback
induces a spontaneous motion of two-dimensional cavity solitons in driven
semiconductor microcavities. Phys. Rev. A, 86:033822, Sep 2012.

[Tes12] Gerald Teschl. Ordinary Differential Equations and Dynamical Systems.
American Mathematical Society, 2012.

[TSTG16] F. Tabbert, C. Schelte, M. Tlidi, and S. V. Gurevich. Delay-induced oscil-
lations of localized structures in a spatially inhomogeneous swift-hohenberg
model. submitted, 2016.

[TVPT09] M. Tlidi, A. G. Vladimirov, D. Pieroux, and D. Turaev. Spontaneous motion
of cavity solitons induced by a delayed feedback. Phys. Rev. Lett., 103:103904,
2009.

[UAJS03] J. Unkelbach, A. Amann, W. Just, and E. Schöll. Time-delay autosynchro-
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	Introduction
	Model system
	Stationary solutions
	Numerical path continuation
	Continuous waves
	Stationary CW solutions
	Effective phase
	Solutions for fixed =100
	Linear stability

	Cavity solitons
	CSs as BVP
	Phase symmetry
	Implicit method
	Explicit method

	Phase instability
	Saddle node bifurcation
	Phase bifurcation


	Direct numerical simulations
	Numerical method
	Numerical results for fixed feedback phase
	Results for fixed feedback strength

	Delay-induced dynamics
	Delay continuation
	Stability of periodic orbits
	Delay-induced bifurcations
	Comparison of continuation and simulations

	Conclusions and outlook

