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Kurzzusammenfassung

Mithilfe des Phasenfeld-Kristall-Modells (PFC-Modell, auch konservierte Swift-Hohenberg-
Gleichung genannt) lassen sich Übergänge zwischen flüssigen und kristallinen Zuständen
verhältnismäßig einfach auf mikroskopischer Ebene beschreiben. Menzel und Löwen [Phys.
Rev. Lett. 110, 055702 (2013)] haben das PFC-Modell mit Elementen der Toner-Tu-Theorie
für selbstangetriebene Teilchen kombiniert und ein Modell für Kristallisation in aktiver Ma-
terie entwickelt. Dabei können aktive Kristalle als Schwärme mit sehr hoher räumlicher
Ordnung interpretiert werden. Im Rahmen des resultierenden aktiven PFC-Modells untersu-
chen wir lokalisierte und periodische Zustände, das heißt kristalline Cluster beziehungsweise
räumlich ausgedehnte, periodische Kristalle. Als Folge der Aktivität können kristalline
Zustände eine Drift-Instabilität durchlaufen und unter Beibehaltung ihrer räumlichen Struk-
tur in bewegte Zustände übergehen.

Basierend auf linearen Stabilitätsanalysen, Zeitsimulationen und numerischer Kontinuie-
rung stellen wir eine detaillierte Analyse der Bifurkationsstruktur von ruhenden und bewegten
Zuständen im aktiven PFC-Modell vor. Auf diese Weise können wir zum Beispiel untersu-
chen, wie Aktivität das geneigte homokline Snaking von stationären lokalisierten Zuständen,
das für das passive PFC-Modell beschrieben ist, verändert. Ein besonderer Schwerpunkt
liegt dabei auf dem Einsetzen von Bewegung. Hier können wir zeigen, dass es entweder durch
eine Drift-Pitchfork- oder eine transkritische Drift-Bifurkation erfolgt. Ein entsprechendes
allgemeines analytisches Kriterium wird hergeleitet.

Die Analyse des Modells wird in einer und zwei räumlichen Dimensionen durchgeführt.
Morphologische Phasendiagramme, die die Resultate der verschiedenen Analysemethoden
verbinden, präsentieren Existenzbereiche verschiedener Lösungsarten. In 2d untersuchen wir
außerdem, wie Aktivität die Kristallstruktur mit Übergängen von Hexagonen zu Rauten-
und Streifenmustern beeinflusst.

Nach der Betrachtung von individuellen Lösungen des aktiven PFC-Modells untersuchen
wir, wie zwei oder mehr bewegte lokalisierte Zustände wechselwirken. Hierfür werden nu-
merische Kollisionsexperimente durchgeführt. Es zeigt sich, dass eine kritische minimale
Weglänge notwendig ist, um die Anzahl der kollidierenden lokalisierten Zustände zu erhalten.

Schließlich werden zwei weitere Modelle für aktive Musterbildung vorgestellt, die den
Selbstantrieb wie im aktiven PFC-Modell durch ein Polarisationsfeld implementieren. Durch
die Analyse von ruhenden und bewegten Lösungen kann eine eingeschränkte Universalität
des hergeleiteten Kriteriums für das Einsetzen der Bewegung gezeigt werden. Es ist unter
anderem bei linearen Evolutionsgleichungen für die Polarisation gültig.

Die umfangreiche Analyse des vergleichsweise einfachen PFC-Modells für aktive Kristalle
und Schwarmbildung erlaubt uns, ein allgemeines Verständnis der beobachteten Multista-
bilitäten, Hystereseeffekte und Schwellenwerte für qualitative Veränderungen zu gewinnen.
Diese Analyse kann als Referenz für zukünftige Studien detaillierterer und realistischerer
Modelle für aktive Kristalle dienen.
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Abstract

The phase-field-crystal (PFC) model (or conserved Swift-Hohenberg equation) provides a
simple microscopic mean field description of the transition between fluid and crystalline states.
Combining it with elements of the Toner-Tu theory for self-propelled particles, Menzel and
Löwen [Phys. Rev. Lett. 110, 055702 (2013)] obtained a model for crystallization in active
systems. Those active crystals can be regarded as swarms of high spatial order. Within
the resulting active PFC model, we study the occurrence of localized and periodic states,
i.e., crystalline clusters and spatially extended crystals, respectively. Due to the activity,
crystalline states can undergo a drift instability and start to travel while keeping their spatial
structure.

Based on linear stability analyses, time simulations and numerical continuation of the fully
nonlinear states, we present a detailed analysis of the bifurcation structure of resting and
traveling states in the active PFC model. This allows us, for instance, to explore how the
slanted homoclinic snaking of steady localized states found for the passive PFC model is
amended by activity. A particular focus lies on the onset of motion, where we show that
it occurs either through a drift-pitchfork bifurcation or a drift-transcritical bifurcation. A
corresponding general analytical criterion is derived.

The analysis is carried out for the model in one and two spatial dimensions. Morphological
phase diagrams with regions of the existence of various solution types are presented merging
results from all applied analysis tools. In 2d, we study how activity influences the crystal
structure with transitions from hexagons to rhombic and stripe patterns.

Having studied individual solutions of the active PFC model, we explore how two and
more traveling crystallites interact by performing numerical collision experiments. A critical
minimal free path is necessary to preserve the number of colliding localized states.

Finally, two more models for active patterns are presented implementing activity as done
in the active PFC model. Analyzing resting and traveling solutions, a certain universality
of the derived criterion for the onset of motion can be demonstrated.

The in-depth analysis of the simple PFC model for active crystals and swarm formation
provides a clear general understanding of observed multistabilities, hysteresis effects and
thresholds for qualitative changes of behavior. This study can serve as a reference for future
analyses of more detailed models for active crystals.
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1 Introduction

1.1 Active matter and crystallization

The formation of patterns has always been a fascinating phenomenon. Regular spatial,
temporal and spatio-temporal patterns universally occur in nature with examples rang-
ing from physical, chemical and biological systems to geological and even social systems
[BB99, Lam98, Pis06]. When classifying macroscopic physical systems, one can distinguish,
on the one hand, passive systems that are normally closed and develop towards thermody-
namic equilibrium. The resulting structures can show spatial patterns, like, e.g., crystalline
structures. Usually they are related to self-assembly as typical structure lengths directly result
from the properties of individual constituents. On the other hand, there are active or out-of
equilibrium systems that are open and develop under permanent energy flow. There, struc-
tures are self-organized and dissipative, i.e., typical structure lengths result from transport co-
efficients [CH93]. One example are systems composed of active particles. Active particles like
bacteria, animals or artificial micro-swimmers [WN07, RNS+99, SSG+06, Sum10] are able to
transform different forms of energy into self-propelled directed motion [MJR+13, BDLL+16].
They use various energy sources to drive an internal motor mechanism and represent out of
equilibrium systems driven by a continuous energy flow. Artificial micro-swimmers, for in-
stance, turn chemical energy [HJR+07] or radiation like light [PSS+13, JYS10] or ultrasound
[WCHM12] into an actively driven, self-propelled motion. Also, vibrated granular media in
confined geometries are employed as good model systems for certain aspects of active matter
[UMS96, AT03, WHD+13, NMR06].

In non-equilibrium systems with a large number of active particles, intriguing collective
phenomena arise. In particular, short- and long-range interactions between individual par-
ticles result in alignment mechanisms that can cause directional ordering (so-called polar
ordering) and synchronized motion of the self-propelled particles [UG11, GYU11]. The re-
sulting collective modes of motion are often referred to as swarming [MJR+13]. Figure 1.1
impressively illustrates the polar ordering of a school of sardines. Without a leader, the
swarm is aligned and moves as an entity in a collective motion. An example of a terrestrial
swarm is given in the right panel of Fig. 1.1. A large number of sheep flock together. In
their center, the sheep form a hole to avoid close distances to possible threats, e.g., a shep-
herd. Animals often form swarms for a better protection from predators. Further proposed
functions include social interaction [AC85], enhanced foraging [PJK83, PL14] and increased
efficiency of motion as often observed for birds [Fis95].

One of the most famous approaches to collective motion is the Vicsek model [VCBJ+95],
where each individual particle adopts to the average direction of motion of particles in
some neighborhood and in the presence of noise. In general, depending on the specific
interactions between particles, their density and strength of driving (called in the following
activity) one observes different regimes of clustering, ordering and motion that one may,
in analogy to equilibrium behavior, call gas, liquid, liquid-crystalline and crystalline states
[BDLL+16, MVC18]. Much recent attention focused on an actively driven condensation
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1 Introduction

Figure 1.1: (left) School of sardines showing polar ordering. Reprinted with permission from
[MJR+13], c©APS (2013). (right) Flock of sheep avoiding a shepherd. Reprinted
with permission from [CK14], c©The Royal Society (2014).

phenomenon, the motility-induced phase separation between a gaseous and a liquid state
that is purely due to self-propulsion [GTL+15, SSW+15, CT15].

However, for certain particle interactions and/or at quite high densities, active particles can
also form crystalline ordered states, in particular, resting [TK02, TK05] or traveling [PSS+13,
TCBP+12, PWL15, GTD+18] patches with nearly crystalline order [TTR05]. Figure 1.2
shows examples of crystalline structures formed by different bacteria. In the left panel,
rotating cells of Thiovulum majus, a very fast and smoothly swimming, large and nearly
spherical bacterium with flagella [GSB+06], are attracted to each other due to flow fields
created by their rotation and bacterial crystals form. The connected cells can pull nutrient-
rich water towards the swarm by collective motion of flagella [PL14].

The center panel depicts an inverse honeycomb structure with marine bacteria colonizing
the bright areas. The right panel illustrates nematic order of elongated Myxobacteria cells
(yellow), that can often be found in soil. Myxobacteria usually travel in swarms and glide
possessing no flagella [MMYZ10].

These “active crystals” [ML13, MOL14] (called “flying crystals” in [TTR05] and “living
crystals” in [PSS+13, MSAU+13, BDLL+16]) have properties that differ from passive crys-
talline clusters [SBML14, BBK+13]. The activity due to self-propulsion can change the
critical temperature and density at which crystallization sets in or can even be necessary
for crystalline clusters to emerge. Besides, activity can induce organized translational and
rotational motion [TCBP+12, RBH13, GTL+15, GTD+18]. Patches of rotating cells of
Thiovulum majus as depicted in Fig. 1.2(left) can also rotate as a whole.

Many particle-based models are studied that show resting, traveling and rotating, active,
crystalline and amorphous clusters [EE03, REESG08, MSAU+13, NKEG14] as well as cluster-
crystals [Men13, DLHG17]. For instance, a systematic study of the interplay of a short-range
attraction and self-propulsion in Brownian dynamics simulations shows that clusters form
at low activity (due to attraction) as well as at high activity (motility-induced) with a
homogeneous active fluid phase in between [RBH13].

Besides discrete models like Vicsek’s, there exist many continuum models for active matter
[TTR05, MJR+13, Men15, RKBH18]. An important example is the Toner-Tu model of

2



1.1 Active matter and crystallization

Figure 1.2: (left) Rotating cells of Thiovulum majus form a bacterial crystal. Individual
cells glow bright in dark-field illumination. Scale bar: 10µm. Reprinted with
permission from [PWL15], c©Oxford University Press (2015). (center) Sulfidic
marine sediment with veil formed by marine vibroid bacteria. Bacteria colo-
nize the bright areas forming an inverse hexagonal pattern. Scale bar: 0.5 mm.
Reprinted with permission from [TK05], c©APS (2005). (right) Myxobacterial
swarm in nematic order. Reprinted with permission from [MJR+13], c©APS
(2013).

swarming [TT95, TT98]. It represents a generalization of the compressible Navier-Stokes
equations of hydrodynamics to systems without Galilei invariance, i.e., with preferred ve-
locities. Recently, a simple active phase-field-crystal model (aPFC) has been proposed that
describes transitions between the liquid state, on the one hand, and resting and traveling
crystalline states, on the other hand [ML13]. It combines elements of the Toner-Tu theory
and the (passive) phase-field-crystal model (PFC). The PFC model, or conserved Swift-
Hohenberg equation (cSH), is an intensively studied microscopic mean field model for the
dynamics of crystallization processes on diffusive time scales [ELW+12].

The PFC model was introduced by Elder and coworkers [EKHG02] and is applied for
passive colloidal particles but also used for atomic systems [TGT+09, ERK+12]. Mathemat-
ically, it corresponds to the conserved Swift-Hohenberg equation [TAR+13] in the form of a
continuity equation. In contrast to the PFC model, the regular Swift-Hohenberg (SH) equa-
tion represents non-conserved dynamics [EGU+19]. It is the standard equation for pattern
formation close to the onset of a monotonous short-wave instability in systems without a con-
servation law, e.g., a Turing instability in reaction-diffusion systems or the onset of convection
in a Bénard system [CH93]. The cSH equation was first derived as the equation governing
the evolution of binary fluid convection between thermally insulating boundaries [Kno89].
In the PFC context, recent derivations from classical Dynamical Density Functional Theory
(DDFT) of colloidal crystallization can be found in Refs. [ELW+12, ARTK12, ARRS19]. In
the course of the derivation, the one-particle density of DDFT is shifted and scaled to obtain
the order parameter field of PFC. For brevity, in the following we refer to it as “density”.
Figure 1.3 depicts a typical density field in the crystalline phase as obtained by PFC models.
It is taken from the original paper by Elder et al. [EKHG02] introducing PFC modeling.

Both, SH and PFC models, represent gradient dynamics on the same class of energy
functionals [EGU+19]. However, in the active PFC model the coupling between density and
polarization (quantified by the activity parameter coupling the two fields) breaks the gradient
dynamics structure. Therefore, sustained motion is possible. Note that non-variational
amendments of the standard non-conserved SH equation are also studied and can also show

3



1 Introduction

Figure 1.3: PFC models describe crystals in terms of a one-particle density. Here, a snapshot
of the density field is given in gray scale. Several grain boundaries and defects
in the hexagonal structure can be spotted. Reprinted with permission from
[EKHG02], c©APS (2002).

traveling states, though with different onset behavior [KT07, HK11, BD12].

Up to now, the active phase-field-crystal model has mainly been employed to study the
linear stability of the liquid state with respect to the development of resting and traveling
crystalline patterns and in the study of domain-filling resting and traveling crystals by direct
time simulations in different geometries [ML13, MOL14, CGT16, PVWL18].

The main purpose of the present work is to investigate resting and traveling, periodic
and localized states and the related transitions as described by the active phase-field-crystal
model. Our aim is to present a detailed analysis of the underlying bifurcation structure that
can serve as a reference for future similar analyses of other models describing active crystals.
This shall allow one to develop a clearer understanding of observed multistabilities of states,
hysteresis effects and critical threshold states for the occurrence of qualitative changes.

Here, a particular focus is on the transitions from resting to traveling states that will
turn out to occur at drift-pitchfork bifurcations and drift-transcritical bifurcations. Drift-
pitchfork bifurcations are widely studied in the literature and occur in many systems [FDT91,
GGGC91]. This includes the onset of motion of self-aggregating membrane channels [LNH06],
drifting liquid column arrays [BFL01], chemically-driven running droplets [JBT05] and
traveling localized states in reaction-diffusion systems [SOGBP97, Pis01, GBM+04]. The
onset of motion for localized structures is studied, for instance, in Refs. [KM94, OGBSP98,
BZB01, AASC96] while Refs. [MOL14, Osi96, PVWL18] focus on domain-filling patterns.

In the PFC and aPFC models, spatially localized states correspond to finite crystalline
patches (i.e., patches of periodic states) that coexist with a liquid background (i.e., a ho-
mogeneous state). A great variety of resting localized states has been analyzed in detail
for the PFC model in Ref. [TAR+13] where detailed bifurcation diagrams are given in the
case of one spatial dimension (1d) while the two (2d) and three (3d) dimensional cases are
investigated via direct numerical simulations. An example of a bifurcation diagram in 2d is
given in [EGU+19]. We expect such resting localized states (i.e., resting crystalline patches)
to exist also for the aPFC model at least at small values of the activity parameter similar
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1.1 Active matter and crystallization

Figure 1.4: From left to right: vegetation patterns (Northern Negev, Israel). Reprinted with
permission from [MGvH+04], c©Elsevier (2004). Solitons on magnetic fluids.
Reprinted with permission from [RB05], c©APS (2005). Optical solitons in
alkali metal vapor. Reprinted with permission from [SFAL00], c©APS (2000).
Time series of oscillons in colloidal suspension. Reprinted with permission from
[LHA+99], c©APS (1999).

to the clusters observed at small activity in [RBH13]. Increasing activity brings the system
further out of equilibrium and we expect that the localized states begin to travel. However,
we also expect that activity might destroy the crystalline patches as it increases the typical
temperature for crystallization.

In general, localized states are experimentally observed and modeled in various areas
of biology, chemistry and physics [Mur93, Mei82, CRT00, Kap95, BK06]. Examples (cf.
Fig. 1.4) range from localized patches of vegetation patterns [MGvH+04], local arrangements
of free-surface spikes of magnetic fluids closely below the onset of the Rosenzweig instability
[RB05] and localized spot patterns in nonlinear optical systems [SFAL00] to oscillating
localized states (oscillons) in vibrated layers of colloidal suspensions [LHA+99].

In the context of solidification described by PFC models, localized states are observed
in and near the thermodynamic coexistence region of liquid and crystal state. Crystalline
patches of various size and symmetry can coexist with a liquid environment depending on
control parameters as mean density and undercooling [RATK12, TAR+13, EGU+19]. For
instance, increasing the mean density, the crystals are enlarged as further density peaks
(or “bumps”, or “spots”) are added at their borders. Ultimately, the whole finite domain is
filled and the branches of localized states terminate on the branch of space filling periodic
states. Within their existence region, the localized states form “snaking” branches in the
bifurcation diagram [BK07, BKL+09]. An important difference between conserved systems
like the PFC model and non-conserved systems like the SH model is that the snaking curves
of localized states are slanted [TAR+13, BCR08, Daw08, LJBK11, PAC+17] and straight
[Kno16, BK07, ALB+10, LSAC08], respectively. Note that besides mass conservation also
boundary conditions can influence the type of snaking [KAC09].

We use the active phase-field-crystal model to explore how slanted snaking of localized
states as a characteristic feature of pattern-forming systems with a conserved quantity is
amended by activity. This includes the question when and how resting localized states start
to travel and whether and how they are destroyed by activity. Furthermore, it is explored if
also traveling localized states can exhibit the generic slanted snaking.

Besides the bifurcation structure, we investigate the interaction of active crystallites.
A helpful and common interpretation of spatially extended patterns is to regard it as a
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1 Introduction

superposition of spatially localized units, interpreted as “particles”. Since particles interact
when encountering each other, we explore the interplay in ensembles of active localized states.
By collisions of traveling states, we determine a general scattering behavior and a critical
free path necessary for fully elastic collisions.

Having obtained an extensive description of active crystals and crystallites in the active
PFC model, we raise the question how other pattern forming models react to activity
implemented by a coupled polarization field. We sketch two more models for active patterns
by introducing an active Swift-Hohenberg-type model and an active Cahn-Hilliard (CH)
equation [CH58, Cah65]. The two models are chosen to study a non-conserved model
(SH) and an additional prominent model with a conserved dynamics (CH). Besides the
paradigmatic Swift-Hohenberg equation, the Cahn-Hilliard equation is a basic model for
phase separation and decomposition dynamics [CH58, Cah65]. Results are compared to the
active PFC-framework.

The main purpose of this thesis is to provide an in-depth analysis of a simple model for
active crystals and swarm formation in order to develop a clearer general understanding of
observed multistabilities, hysteresis effects and thresholds for qualitative changes of solutions.
This study can serve as a reference for future analyses of more detailed models for active
crystals.

1.2 Outline

The thesis is organized as follows: Chapter 2 introduces phase-field-crystal modeling and its
theoretical background. Furthermore, the derivation of the active PFC model and numerical
approaches are presented. Chapter 3 analyzes the linear stability of the uniform state
(liquid state) and offers a first morphological phase diagram. Then, chapters 4 and 5 employ
numerical continuation techniques to determine bifurcation diagrams for resting and traveling
periodic states (crystal) and localized states (crystallites coexisting with liquid). The mean
density and the activity parameter act as main control parameters. In particular, we study
the onset of motion where resting states undergo a drift instability and start to travel while
keeping their spatial structure. An analytical criterion for the drift bifurcation is derived
and numerically verified. Note that chapter 4 deals with crystalline states in one spatial
dimension (1d), while chapter 5 investigates the active PFC model in 2d.

The bifurcation diagrams provide suitable parameters for collision trials. Chapter 6 studies
the interaction of localized states focusing on numerical scattering experiments. In chapter 7,
two more models for active patterns are stated and analyzed. We introduce an active Swift-
Hohenberg equation and an active Cahn-Hilliard equation and study resting and traveling
solutions. Finally, we conclude the thesis in chapter 8 by offering a summary and an outlook.
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2 The Active Phase-Field-Crystal Model

In this chapter, we first schematically outline the basic concept of the passive phase-field-
crystal (PFC) model and present its derivation from dynamical density functional theory
(DDFT) as done in the review [ELW+12]. The review offers an extensive overview of concepts
and applications of the PFC method. Besides, [ARRS19] provides additional insights into
the derivation of PFC models and consequences of employed approximations.

Secondly, also on the basis of DDFT, the active PFC model is derived following the
approach in [MOL14].

2.1 Phase-field-crystal modeling

Since its introduction by Elder and coworkers in 2002 [EKHG02], PFC models have proven
to be an efficient method for modeling crystalline self-organization and solidification with
particle resolution. The method contains the essential physics for transitions between liquid
and crystalline states and can be regarded as a simple microscopic mean field description for
various crystallization and freezing phenomena.

Mathematically, the PFC model corresponds to the conserved Swift-Hohenberg equation
(cSH) [TAR+13]. The fairly simple free-energy functional from which it is obtained is
of Swift-Hohenberg type [CH93] with essentially only one control parameter (setting an
effective temperature). Despite the small number of parameters, PFC models exhibit a
rather complex phase diagram and can even reach a quantitative level for specific applications.
However, designing materials with specific properties from PFC computations has not been
accomplished yet [ELW+12].

Even though PFC modeling has been linked to DDFT, initially it was proposed as a phase-
field theory (PF) with incorporated microscopic material properties. Figure 2.1 illustrates
to which level of granularity DDFT, PFC and PF modeling correspond.

The next sections schematically present how PFC models can be derived from classical
DDFT and its static correspondent DFT.

2.1.1 Density functional theory

DFT describes crystallization on particle level by treating it as a classical interacting many-
body system. Starting from effective particle interactions, free-energy functionals and
particle-particle correlations are calculated. These energy functionals provide a starting
point for PFC approaches that can be regarded as more coarse-grained models in comparison
with DFT.

As Fig. 2.1 illustrates, classical DFT is a microscopic theory. It describes liquids in
equilibrium, with the only input being particle correlations and thermodynamic conditions.
The central idea is to express the free energy of the many-particle systems as a functional of
a one-particle density. In the scope of DFT, all quantities are static.
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Figure 2.1: Schematic levels of granularity and corresponding models. The starting point
of the hierarchy of theories are classical particles subject to Brownian motion
governed by Langevin equations. cf. [ELW+12]

In detail, DFT describes a system of N classical particles at position ri (i = 1, . . . , N) by
the microscopic one-particle density ρ(r). Thermodynamic conditions of the problem are set
by the temperature T and the chemical potential µ. ρ is given by

ρ(r) =

〈
N∑
i=1

δ(r− ri)

〉
(2.1)

with 〈.〉 denoting a normalized canonical ensemble average.
The theory is based on the pioneering work in the context of quantum physics of Hohenberg

and Kohn [HK64] (for which Kohn won the Nobel Prize in chemistry in 1998) stating that
there exists a unique grand canonical free-energy functional Ω(T, µ, ρ(r)) of the one-particle
density that is minimized at equilibrium, i.e.,

δΩ[T, µ, ρ(r)]

δρ(r)
= 0. (2.2)

The functional is unknown, however, and needs to be approximated. It is usually expressed
in terms of the Helmholtz free-energy functional F [T, ρ(r)] which is connected to Ω by a
Legendre transformation:

Ω[T, µ, ρ] = F [T, ρ]− µ
∫
V

dr ρ(r) = F [T, ρ]− µN. (2.3)

The functional derivative (2.2) follows as

δΩ

δρ
=
δF
δρ
− µ (2.4)

and δF/δρ = µ at equilibrium. F is usually decomposed into into three contributions

F [T, ρ] = Fid[T, ρ] + Fexc[T, ρ] + Fext[T, ρ], (2.5)

where Fid corresponds to the ideal gas free energy. It is exactly known and reads

Fid[T, ρ] = kBT

∫
V

dr ρ(r)(ln(Λ3ρ(r))− 1), (2.6)
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2.1 Phase-field-crystal modeling

with kB being Boltzmann’s constant and Λ = h/
√

2πmkBT (mass m, Planck’s constant
h) being the thermal de Broglie wavelength. The last term Fext in Eq. (2.5) incorporates
contributions from an external potential and is not discussed here as it usually neglected in
derivations of PFC theory.

Fexc corresponds to the free energy exceeding contributions from the ideal gas. It contains
all correlations from interactions between particles. As expected, it is not known in general
and has to be approximated. In a first step, an expression for Fexc is obtained by a functional
Taylor expansion around a uniform reference density ρref . The expansion is carried out in
∆ρ = ρ(r)− ρref and yields

Fexc[T, ρ] = F (0)
exc[ρref ] +

∞∑
n=1

∫
dr1...

∫
drn

1

n!

δnFexc[T, ρ(r)]

δρ(r1)... δρ(rn)

∣∣∣∣∣
ρref

n∏
i=1

∆ρ(ri) (2.7)

being formally still exact. We can identify n-th order direct correlation functions as

c(n)(r1, .., rn) ∝ δnFexc[T, ρ(r)]

δρ(r1)... δρ(rn)
(2.8)

in the expansion (2.7). There, the zeroth order term is constant and, hence, can be dropped
since only (functional) derivatives are taken into account. The same holds for the first-
order term (n = 1) that turns out to be constant due to the isotropy of the bulk fluid and
corresponding translational and rotational symmetries.

Truncating the expansion (2.7) at second order and assuming that the pair correlation
c(2)(r) ≡ c(r) only depends on the relative distance between two particles results in

Fexc[T, ρ] = −kBT

2

∫
dr1

∫
dr2 c(r1 − r2)∆ρ(r1)∆ρ(r2). (2.9)

Equation (2.9) is known as Ramakrishnan-Yussouf theory [RY79]. To evaluate the approxi-
mation, the pair correlation c needs to be specified; various expressions for it can be found
in the literature [vRBMF95].

Having established the basic concept of DFT, next, the dynamics of a time-dependent
one-particle density ρ(r, t) is studied.

2.1.2 Dynamical density functional theory

In DDFT, the one-particle density depends on time: ρ(r, t). The theory describes the time
evolution of ρ for a non-equilibrium system of N interacting classical particles. The central
equation of DDFT is given as the conserved dissipative dynamics

∂tρ(r, t) = ∇ ·
[
(kBT )−1M(ρ)∇δF

δρ

]
. (2.10)

Equation (2.10) is a generalized deterministic diffusion equation (also referred to as a general-
ized Fick’s law of diffusion) and corresponds to a continuity equation. The latter guarantees
the mass-conserving character of the dynamics. The spatial integral over ρ (equal to N)
is conserved. M(ρ) is the mobility and usually taken as M(ρ) = Dtρ with Dt being the
translational diffusion coefficient.
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2 The Active Phase-Field-Crystal Model

Applying suitable boundary conditions, it can easily be shown that the Helmholtz free
energy decreases monotonically with time, i.e., dF/dt ≤ 0, and at equilibrium (∂tρ = 0 and
dF/dt = 0) it follows

δF
δρ

= µ (2.11)

as already seen in the static case of DFT (Eq. (2.4)). Of course, equilibria still correspond
to extreme values of the grand canonical free-energy functional Ω.

Note that the key equation of DDFT, Eq. (2.10), can be derived from Langevin equations
modeling the stochastic motion of isotropic colloidal particles in an incompressible liquid in
the Stokes limit. This derivation can be found, e.g., in [ELW+12] and is not discussed here.
Next, we use equations from DFT and DDFT to sketch the derivation of PFC models.

2.1.3 Derivation of PFC models

Despite the presented approximations, DFT and DDFT achieve a high level of exactness
in describing crystallization phenomena microscopically. As Fig. 2.1 shows, PFC modeling
incorporates further coarse-graining.

The PFC approach is derived in two steps by various approximations whose consequences
are studied in detail in [ARRS19]. Here, only a general scheme of deriving PFC models
is sketched by first deducing a free-energy functional from DFT. Second, the equation of
motion is derived on the basis of DDFT.

Free energy

Deriving a free-energy functional for PFC models follows three basic steps:

1. Introduce a new order parameter field describing the deviation from the reference
density.

2. Taylor-expand the free energy in terms of this order parameter field (assuming small
density deviations).

3. Gradient-expand the correlation functions in the excess free-energy functional.

The new dimensionless order parameter ψ(r) is defined as the relative deviation from the
reference density ρref (that was introduced at Eq. (2.7)).

ρ(r) = ρref(1 + ψ(r)) (2.12)

where ψ(r) is assumed to be small. Next, ψ(r) is introduced into the Helmholtz free energy
F as given in Eq. (2.5) and a Taylor expansion in ψ(r) is performed.

For the ideal gas part of the free-energy, one finds

Fid[T, ψ(r)] = F (0)
id (T ) + ρrefkBT

∫
dr

(
ψ +

ψ2

2
− ψ3

6
+
ψ4

12

)
, (2.13)

where the expansion keeps terms up to the fourth order of ψ. They are necessary for a
stable crystalline phases, i.e., to have well defined minima at finite values of ψ. Note that

the constant term F (0)
id is again irrelevant as only derivatives of F are evaluated.
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2.1 Phase-field-crystal modeling

The excess free-energy part is approximated by a gradient expansion. Recall that it only
includes pair correlations c(2)(r1, r2) following Ramakrishnan-Yussouf theory (cf. Sec. 2.1.1).
For two spherical particles at distance r it is

c(2)(r1, r2) = c(2)(r1 − r2) = c(2)(r). (2.14)

With this correlation, Fexc from Eq. (2.9) becomes a convolution. Its non-locality is tackled
by a gradient expansion of c(2)

c(2)(r) = c
(2)
0 − c

(2)
2 ∇2 + c

(2)
4 ∇4 +O(∇6) (2.15)

with gradient expansion coefficients c
(2)
2i . Odd terms have to vanish due to the symmetry of

pair-correlations: c(2)(r) = c(2)(−r) = c(2)(r). The gradient expansion can also be regarded
as a Taylor expansion in Fourier space around k = 0. From this point of view, the origin

of the minus sign of c
(2)
2 is obvious. Again, terms up to fourth order are needed for stable

crystalline phases.

The gradient expansion yields

Fexc[ψ(r)] = F (0)
exc(ρref)−

ρref

2
kBT

∫
dr(a1ψ

2 + a2ψ∇2ψ + a3ψ∇4ψ) (2.16)

with suitable coefficients ai containing the direct pair correlation c(2). The constant term is
again dropped.

Collecting the contributions Fid and Fexc results in the free-energy functional

F [ψ(r)] = ρrefkBT

∫
dr

(
b1ψ

2 + b2ψ∇2ψ + b3ψ∇4ψ − ψ3

6
+
ψ4

12

)
(2.17)

with rescaled coefficients bi (cf. [ELW+12]). Further scaling (ibid.) finally yields the original
dimensionless Swift-Hohenberg-type free-energy functional as introduced in [EKHG02]

F̃PFC[ψ̃(r)] =

∫
dr̃

{
ψ̃

2

[
ε+ (k2

0 +∇2)2
]
ψ̃ +

ψ̃4

4

}
. (2.18)

Summarizing and physically speaking, ψ̃ is an effective particle density and ε an effective
temperature. The wave vector k0 measures the characteristic length scales of the crystalline
phase. It will be set equal to one throughout this thesis.

Dynamics

Having specified the free energy, dynamical equations of motion can be determined. Recalling
the key equation from DDFT (2.10) and approximating the mobility M(ρ) to be constant
by M = Dtρref , after suitable rescaling, the equation of motion reads

∂tψ̃(r, t) = ∇2 δFPFC

δψ̃
,

= ∇2
{[
ε+

(
1 +∇2

)2]
ψ̃ + ψ̃3

}
. (2.19)
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2 The Active Phase-Field-Crystal Model

Equation (2.19) is the dynamical equation that will also form the core of the density equation
of the active PFC. We refer to this model as the passive PFC model.

Since Eq. (2.19) is a continuity equation, the total density is conserved

1

V

∫
drψ̃(r, t) = ψ̄ (2.20)

with mean density ψ̄. In the course of this thesis, we refer to this as a conserved system or
synonymously as a system with conserved dynamics.

2.2 Derivation of the active PFC model

Having linked PFC modeling to DFT and having systematically derived the passive PFC
model Eq. (2.19), we next present a derivation of the active PFC model. Based on DDFT
(Sec. 2.1.2), the derivation follows Menzel and colleagues in [MOL14].

The active PFC (aPFC) model describes self-propelled particles. The particles can ex-
change momentum with the environment. This holds for swimming particles in the Stokes
limit as required for deriving DDFT from Langevin equations on particle level and obviously
for active agents on a planar solid ground.

Due to an active drive of magnitude v, individual particles move. The direction of motion
is given by the unit vector u. Hence, the one-particle density now also depends on a direction:
ρ(r,u, t). Restricting space to two dimensions, we can express u in terms of a single angle
θ. As done to formulate the key equation of DDFT (2.10), a general equation of motion for
the density can be obtained from Langevin equations. As in [WL08], the result reads

∂tρ(r,u, t) = ∇ · D̃t ·
(

(kBT )−1ρ∇δF̃
δρ

)
+ D̃r∂θ

(
(kBT )−1ρ∂θ

δF̃
δρ

)
−∇ · D̃t ·

(
ρvu/D̃||

)
.

(2.21)

On account of possible anisotropy, the translational diffusion coefficient is extended to a
diffusion tensor by D̃t = D̃||uu + D̃⊥(1 − uu). D̃r in the second term of Eq. (2.21) sets
the rotational diffusion. The last term originates from the self-propulsion of particles. It is
proportional to the strength of propulsion v.

In the next steps, Eq. (2.21) is simplified before the free energy is specified and dynamical
equations for the order parameter are obtained.

First, the average density is determined in order to obtain a reduced particle density:

ρ̄ =
1

V S

∫
du

∫
dr ρ(r,u, t), (2.22)

where S is the surface area of the unit sphere and V the volume of the considered system. In
this system, ρ̄ is conserved over time. Next, the orientational dependency is eliminated by

ρ̄φ̃(r, t) =
1

S

∫
du ρ(r,u, t)− ρ̄. (2.23)

u is integrated out and, after subtracting the mean density, we are left with the modulation
ρ̄φ̃(r, t) around ρ̄.
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2.2 Derivation of the active PFC model

Now a polarization field P̃(r, t) is introduced by evaluating the first orientational moment
of ρ(r,u, t). For technical reasons it is also scaled by ρ̄.

ρ̄P̃(r, t) =
n

S

∫
du ρ(r,u, t)u (2.24)

with spatial dimension n ∈ {1, 2}. The right-hand side of Eq. (2.24) makes clear that P̃ is
a measure for the local orientational order of the directions u of the active driving of the
individual particles. Strong polarization arises where particles are aligned.

The one-particle density is now expanded in terms of its u-dependency. The expansion
(methodically similar to a multipole expansion) yields

ρ(r,u, t) = ρ̄+ ρ̄φ̃(r, t) + ρ̄u · P̃(r, t) +O(u2). (2.25)

The first term is the constant spatial and oriental mean density and the second term incor-
porates spatial dependency by the modulation around ρ̄. The last term considers directional
dependency and corresponds to a projection onto the polarization that can be regarded as the
mean orientation at r. Higher order terms of u are neglected. This expansion is plugged into
Eq. (2.21). Calculating Fourier modes in terms of the angle θ of the obtained equation yields
dynamical equations for the reduced density and polarization. In detail, u is expressed as
exp(iθ) and the equation is integrated over θ (after a multiplication with exp(−iθ) to obtain
the second equation). These equations significantly further simplify under the assumption
of an isotropic translational diffusion, i.e.,

D̃|| ≈ D̃⊥ ≈ D̃, (2.26)

and the assumption of constant mobility, M(ρ) = D̃ρ̄ . Then the dynamical equations read

∂t(ρ̄φ̃) =
D̃ρ̄

2πkBT
∇2 δF̃

δ(ρ̄φ̃)
− v

2
∇ · (ρ̄P̃), (2.27)

∂t(ρ̄P̃) =
D̃ρ̄

πkBT
∇2 δF̃

δ(ρ̄P̃)
− D̃rρ̄

πkBT

δF̃
δ(ρ̄P̃)

− v∇(ρ̄φ̃). (2.28)

Lastly, the free-energy functional needs to be specified. For the crystallization part, a slightly
amended PFC energy function is used:

F̃PFC[φ] =

∫
dr

{
φ

2

[
a∆T + λ(q2

0 +∇2)2
]
φ+

u

4
φ4

}
, (2.29)

where it is φ = φ̄+ ρ̄φ̃ and parameters a, λ, ∆T and u are specifying the influence of various
energetic contributions. F̃PFC encodes the crystallization process with uniform liquid-like
states on the one hand and crystalline states on the other.

The polarization is governed by

F̃P̃[P̃] =

∫
dr

{
C̃1

2
(ρ̄P̃)2 +

C̃2

4

[
(ρ̄P̃)2

]2
}

(2.30)

incorporating ideas of Toner and Tu [TT95, TT98].
A more detailed discussion of the employed free-energy functionals can be found in the next

section. There, we also present the final dynamical equation following extensive rescaling
along the lines of [MOL14]. φ̃(r, t) is rescaled to a new density modulation ψ(r, t) and P̃(r, t)
is rescaled to P(r, t).
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2.3 Governing equations

The local state variables of the aPFC model as introduced in Ref. [ML13] are the scalar
order parameter field ψ(r, t), r ∈ Ω̃ ⊂ Rn (called in the following “density”) where Ω̃ denotes
the considered domain with volume V , and the vectorial order parameter field P(r, t) (called
in the following “polarization”) that describes the local ordering and direction of the active
drive. The field ψ(r, t) is conserved, i.e.,

∫
Ω̃ drψ = 0 is constant in time, and specifies the

modulation about the mean density ψ̄ that itself encodes the deviation from the critical
point [ELW+12]. The field P(r, t) is non-conserved. The uncoupled dynamics of ψ(r, t) and
P(r, t) correspond to a purely conserved and a mixed non-conserved and conserved gradient
dynamics on an underlying free energy functional F [ψ,P], respectively. The functional
contains no terms mixing the two fields and the coupling is purely non-variational, i.e., no
part of it can be written as a gradient dynamics. The coupling keeps the conserved character
of the ψ-dynamics, i.e., the evolution of ψ follows a continuity equation ∂tψ = −∇ · j where
j is a flux. The non-dimensional evolution equations rescaled from Eqs. (2.27) and (2.28)
are [ML13]

∂tψ = ∇2 δF
δψ
− v0∇ ·P, (2.31)

∂tP = ∇2 δF
δP
−Dr

δF
δP
− v0∇ψ (2.32)

where v0 is the coupling strength, also called activity parameter or strength of self-propulsion.
Physically speaking, P is subject to translational and rotational diffusion with Dr being the
rotational diffusion coefficient. The functional F [ψ,P] is the sum of the standard phase-
field-crystal functional FPFC[ψ] Eq. (2.18) [EKHG02, EG04, ELW+12] and an orientational
part FP[P]

F = FPFC + FP (2.33)

with

FPFC[ψ] =

∫
dr

{
1

2
ψ
[
ε+

(
1 +∇2

)2]
ψ +

1

4
(ψ + ψ̄)4

}
(2.34)

and

FP[P] =

∫
dr

(
C1

2
P2 +

C2

4
P4

)
. (2.35)

The functional (2.33) encodes the phase transition between liquid and crystal state [ELW+12].
It contains a negative interfacial energy density ( ∼ |∇ψ|2) that favors the creation of
interfaces, a bulk energy density and a stabilizing stiffness term (∼ (∆ψ)2) – this can
be seen by partial integration. The parameter ε encodes temperature. Namely, negative
values correspond to an undercooling of the liquid phase and result in solid (periodic) states
for suitable mean densities ψ̄, whereas positive values result in a liquid (homogeneous)
phase. The functional (2.35) with C1 < 0 and C2 > 0 allows for spontaneous polarization
(pitchfork bifurcation at C1 = 0). However, in most of our work we avoid spontaneous
polarization using positive C1 > 0 and C2 = 0 as also done in most of the analyses of
Refs. [ML13, MOL14, CGT16]. With C1 > 0 diffusion reduces the polarization.

Determining the variations of Eqs. (2.33) and (2.35) and introducing them in the governing
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equations (2.32) we obtain the dynamical equations

∂tψ = ∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}− v0∇·P, (2.36)

∂tP = C1∇2P−DrC1P− v0∇ψ. (2.37)

Throughout this thesis, we study resting and traveling solutions of these equations in the
spatially one-dimensional and two-dimensional case with a special emphasis on the onset of
motion.

2.4 Numerical approach

The aPFC model (Eqs. (2.36) and (2.37)) is an example of a system of nonlinear partial
differential equations (PDEs) whose exact solutions can usually not be found by analytical
calculations. Apart from the trivial state (discussed in chapter 3), solutions of such systems
have to be obtained by numerical methods. In this section, we outline two numerical
techniques used in this thesis to study solutions of the aPFC model: time simulations and
parameter continuation. Besides, the last section deals with numerical stability analysis we
employ to study the linear stability of found solutions.

Time simulations are a fundamental tool to study the temporal behavior of a system
starting from given initial conditions. Within PFC modeling, for instance, the crystallization
of an unstable under-cooled liquid starting from a small perturbation (like a crystal nucleus)
can be observed in time simulations. Continuation, on the other hand, is able to follow
converged steady or stationary states in parameter space. In this way, one can construct
complete bifurcation diagrams including branches of unstable solutions. Unstable solutions
are usually not accessible by time simulations. Both methods are sketched in the following.

2.4.1 Time simulations

The aPFC model consists of two coupled (nonlinear) PDEs: Eqs. (2.36) and (2.37). The
temporal evolution of the two spatially extended order parameter fields is governed by spatial
derivatives. In order to solve PDEs numerically and to evaluate the spatio-temporal behavior
of the fields, first, they have to be discretized in space. A finite spatial grid (often also called
mesh) and suitable boundary conditions (BC) are needed. Second, spatial derivatives have
to be approximated. Finite difference methods (FDM) or finite element methods (FEM) are
two widely used numerical approaches for this approximation. We briefly introduce FDM
that we use for the numerical stability analysis (cf. Sec. 2.4.3), while FEM are not discussed
here. For details on these methods see, e.g., [PS05].

An alternative to FEM and FDM are spectral methods, where spatial derivatives are
evaluated in Fourier space. We briefly introduce a pseudo-spectral scheme that is employed
in all time simulations presented in this thesis.

Having established a spatial discretization, BC and an approximation for spatial derivatives,
the last step is to advance the solutions in time from initial values using a time-stepping
scheme. Various implicit and explicit schemes exist, details can be found, e.g., in [But16].
We use a semi-implicit Euler method that is also sketched in the following.
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Spatial discretization and approximation of derivatives by finite differences

The first step of numerically solving PDEs like Eqs. (2.36) and (2.37) is to discretize the
system. The discretization transforms PDEs into a (usually large) set of ordinary differential
equations (ODEs). Here, we schematically present this discretization and the method of
finite differences. Note that this section mainly follows [Bes06].

All models we investigate have the structure

∂tuj(x1, .., xd, t) = Fj(u1, ..., uN , x1, .., xd), j = 1, ...,K, (2.38)

where functions Fj are usually nonlinear and can contain arbitrary partial derivatives w.r.t
xi. The index d corresponds to the number of spatial dimensions. Here, it is d ≤ 2.

In this section, for the sake of simplicity, we reduce the system of PDEs (Eq. (2.38)) to
one equation and also keep space one dimensional:

∂tu(x, t) = F (u, ∂xu, ∂xxu, .., x). (2.39)

Equation (2.39) is to be solved on an interval of length L, i.e., 0 ≤ x ≤ L. Then, the PDE
is reduced to a finite system of ODEs by introducing discrete grid points xi, where

xi = (i− 1)∆x, with ∆x = L/(N − 1) (2.40)

and evaluating u on the grid:

u(x, t)→ u(xi, t) ≡ ui(t), i = 1, ..., N. (2.41)

The spacing of grid points can be equidistant or also adaptive.
Next, spatial derivatives are approximated by difference quotients as

∂xu
∣∣∣
xi

=
u(xi + ∆x)− u(xi)

∆x
+O(∆x2) =

ui+1 − ui
∆x

+O(∆x2), (2.42)

also called forward finite difference, or alternatively symmetrically centered

∂xu
∣∣∣
xi

=
ui+1 − ui−1

2∆x
+O(∆x2). (2.43)

For higher order derivatives, respective stencils can be found in the literature [Bes06]. Stencils
specify the weights of neighboring uj used to calculate a higher order derivative. After
discretizing the PDE and approximating spatial derivatives by finite differences, one obtains
an explicit point-wise algebraic expression for the temporal evolution at each grid point with
couplings to certain neighboring points.

Spectral methods

An alternative to approximating spatial derivatives by finite differences are spectral methods.
The idea is to transform the PDE into Fourier space and benefit from the fact that spatial
derivatives transform into products with the wave vector. A drawback are nonlinearities
that have to be solved as computationally expensive convolutions. Using the highly efficient
algorithm fast Fourier transform (FFT) [CT65], it turns out to be computationally cheaper
to calculate nonlinearities in real space and undertake transformations back and fourth. This
method is called pseudo-spectral.
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2.4 Numerical approach

Consider the PDE (2.39) and separate linear and nonlinear operators of the right-hand
side:

∂tu(x, t) = F (u, ∂xu, ∂xxu, .., x, t) = L(u(x, t)) +N (u(x, t)). (2.44)

The linear part may contain linear functions or linear differential operators. N denotes a
nonlinear operator that, e.g., includes powers of u or nonlinear differential operators like
(∂xu)2. Fourier transforming Eq. (2.44) yields

∂tũ(k, t) = L̃(ũ(k, t)) + FT [N (u(x, t))], (2.45)

where FT [.] and tildes indicate transformed fields and operators and k is the corresponding
wave vector.

During numerical simulations, the whole problem is treated in Fourier space. However,
due to smaller computational costs, FT [N ] is transformed back to real space where N (u) is
evaluated efficiently. Afterwards the result is transformed to Fourier space at cost scaling
with N logN for N grid points. Convolutions in Fourier space would involve, e.g., at least
N2 operations for convoluting FT (u2) = ũ ∗ ũ and even more operations for higher order
nonlinearities.

Results from time simulations shown in this thesis are obtained by a pseudo-spectral
method and a semi-implicit Euler method for time-stepping which is briefly explained in the
next paragraph.

Time stepping

The last necessary step for time simulations is the iteration of time. Time is discretized by
steps ∆t

tn = n∆t, n ∈ Z, (2.46)

that can be of constant size or adapted to the dynamics.

Commonly, time-stepping methods are classified as explicit or implicit methods. Explicit
methods calculate u(ti+1) directly from u(ti). In contrast, implicit methods find the next u
by solving an equation involving both u(ti+1) and u(ti). Obviously, implicit methods require
additional computing and are, in general, more complicated to implement. Yet, they usually
exhibit better numerical stability [Bes06].

The semi-implicit Euler scheme that we employ for time simulations of the aPFC model
in this thesis is a combination of both methods. Using the notation of Eq. (2.44) and
approximating ∂tu again by a difference quotient, it reads

u(ti+1)− u(ti)

∆t
= L(u(ti+1)) +N (u(ti)). (2.47)

For the linear (and invertible) part, we use an implicit method, while the rest of the right-
hand side is evaluated explicitly. This may seem rather arbitrary at first glance, but the
corresponding error is of order O(∆t) and the method is well justifiable as it increases the
numerical stability [Bes06].

Most of our simulations start from a homogeneous state with small random perturbations,
integrating Eqs. (2.36) and (2.37) in Fourier space forward in time.
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2 The Active Phase-Field-Crystal Model

2.4.2 Continuation in parameter space

Time simulations are helpful to study the temporal behavior of systems. They provide an
insight into the transient of a system and are particularly utile when the system shows
time-dependent dynamics as, e.g., oscillations. However, systems often converge towards
steady states without any temporal evolution. If the transient dynamics is not of interest,
instead of integrating forward in time, numerical path continuation [DWC+14, KOGV07,
Kuz10, EGU+19] can be applied to solve the stationary problem and compute steady states
for large ranges of control parameters.

Note that this schematic description of numerical continuation mainly follows explanations
in [Tri18] and [Wil16]. Setting time derivatives to zero, the model at hand can be expressed
by

du

dt
= F(u, λ) = 0. (2.48)

In this (usually nonlinear) set of equations, u is the solution array and λ is the control
parameter to be varied. The solution array contains all order parameters, such as, e.g., for
the aPFC model, the density field ψ and the polarization P on the employed spatial grid
points.

Continuation methods are based on the fact that any solution u0 for a corresponding
parameter λ0 is part of a so-called solution branch. This branch is a unique continuum of
solutions. According to the implicit function theorem small changes in λ only result in a
slightly changed solution. Constraints are an invertible Jacobian J = ∂ujFi(u, λ) and that
F and J are smooth near (u0, λ0). If these mild conditions on the partial derivatives are
fulfilled, then there exists a family of solutions u(λ) in some neighborhood of (u0, λ0). A
precise formulation of the theorem can be found, e.g., in [KP12]. The strategy of continuation
methods is to follow the solution u along the solution branch for varying control parameter λ.

The procedure works as follows: Starting from a known solution u0 at λ0 a guess ũ1 for
the solution u1 at λ1 = λ0 + ∆λ is predicted. The prediction step can, e.g., be a tangential
extrapolation as indicated in Fig. 2.2. The starting point (u0, λ0) is often an analytical
solution or obtained by sufficiently converged time simulations. The second step is to correct
the guess ũ1 until it solves Eq. (2.48) to an arbitrary exactness. The corrected solution
u1 is obtained by Newton’s method [Deu04]. According to the implicit function theorem,
Newton’s method converges if ∆λ is small enough. The size of ∆λ can be dynamically
adapted during the continuation to ensure efficient computations.

Figure 2.2 illustrates a drawback of natural parameter continuation. The procedure fails at
folds of the solution branch. Changes of direction of λ cannot be realized by the method. How-
ever, with pseudo-arclength continuation [Kel79] solution branches can be followed around
folds. Arclength continuation, also referred to as Keller method, introduces an additional
independent parameter to the problem. The parameter s represents an approximated ar-
clength along the branch. The system is rewritten and parametrized by s: u(λ(s)). Then,
the new Jacobian does not diverge at folds and the correction step is performed at fixed s.
Hence, the procedure enables changes of the direction of λ.

In order to guarantee unique solutions, occurring symmetries of the system under study
have to be broken. The aPFC system (Eqs. (2.36), (2.37)), for instance, is translationally
invariant. There exists a continuum of solutions with identical profiles just shifted in space.
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Figure 2.2: Natural parameter continuation following a family of solutions ui on a solution
branch. Starting from a known solution u0 at a given parameter λ0, the solution
is tangentially extrapolated in a prediction step. The resulting prediction ũ1 is
corrected by iterative Newton steps at constant λ1. As the tangential construction
suggests, the procedure of natural parameter continuation fails at saddle-node
bifurcations where the branch folds.

An integral condition can break this symmetry and guarantee the uniqueness of u.

0 =

∫
Ω̃

dx
∂ui−1

∂x
(ui − ui−1) (2.49)

keeps the projection of the step to the i-th solution onto the translation mode of the previous
solution at zero.

In conclusion, numerical continuation provides an efficient technique for obtaining whole
families of solutions. In contrast to time simulations, also branches of unstable solutions are
accessible. That is often beneficial or even necessary for a full understanding of the model.

In chapter 4, the software package AUTO07P [DKK91, DOC+12] is employed to obtain
steady states of the aPFC model in one spatial dimension. For the continuation of solutions in
2d (chapter 5), the MATLAB package PDE2PATH [UWR14] is used. Note that PDE2PATH
uses FEM to approximate spatial derivatives, while AUTO07P uses a spatial collocation
method.

2.4.3 Numerical linear stability analysis

Since, in general, numerical continuation does not specify the stability of solutions, a numeri-
cal linear stability analysis (LSA) can help to determine corresponding stabilities. Linearizing
Eq. (2.44) about a solution u0 yields the eigenvalue problem

∂tδu
∣∣∣
u0

= L(u0)δu = σδu (2.50)
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2 The Active Phase-Field-Crystal Model

with eigenvalue σ for the growth of a small perturbation δu. Approximating spatial derivatives
in L by finite differences as previously explained transforms Eq. (2.50) into a linear algebraic
eigenvalue problem that can be solved by standard routines.

We use this method to determine the linear stability of steady states in 1d obtained by
AUTO07P. PDE2PATH is intrinsically capable of determining linear stabilities of PDE
solutions.

20



3 The Liquid State and its Linear Stability

In this chapter, we construct a morphological phase diagram of the active PFC model. By
considerations about the linear stability of the trivial solution, we can distinguish between
the uniform liquid state and resting and traveling crystals in the plane spanned by activity
v0 and mean density ψ̄.

Note that this chapter has been published in

[OGT18] L. Ophaus, S. V. Gurevich and U. Thiele. Resting and traveling localized
states in an active phase-field-crystal model. Phys. Rev. E, 98:022608,
August 2018.

3.1 Morphological phase diagram

The trivial solution of the aPFC model (Eqs. (2.36) and (2.37)) is the homogeneous, uniform
state that represents the liquid phase where on diffusive time scales the probability of finding
a particle is uniform in space. In analogy, we also call the uniform state (ψ0,P0) = (0,0)
of the present aPFC model “liquid phase”. Although it exists at all parameter values, for
ε < 0 it is only stable at high |ψ̄| and at lower |ψ̄| becomes unstable w.r.t. coupled density
and polarization fluctuations. However, in the context of colloidal particles the region ψ̄ > 0
is unphysical [TAR+13] and we focus on ψ̄ < 0 where the liquid state is stable at low values
of ψ̄ (high |ψ̄|) while the crystalline state is stable at high ψ̄ (low |ψ̄|). To determine the
linear stability of the homogeneous state, Eqs. (2.36) and (2.37) are linearized in small
perturbations (δψ, δP) about (0,0) yielding

∂tδψ = ∇2
(
ε+ 3ψ̄2 +

(
1 +∇2

)2)
δψ − v0∇ · δP, (3.1)

∂tδP = ∇2 (C1δP)−DrC1δP− v0∇δψ. (3.2)

We restrict our analysis to one spatial dimension, expand the spatial dependency of the
perturbation into decoupled harmonic modes and, in consequence, use the exponential
ansatz δψ(x, t), δP (x, t) ∝ exp(ikx+ λt) in Eqs. (3.1) and (3.2) to obtain the eigenvalues

λ± =
1

2
(L1(k) + L2(k))± 1

2

√
(L1(k)− L2(k))2 − 4v2

0k
2 (3.3)

where

L1(k) = −k2
(
ε+ 3ψ̄2 +

(
1− k2

)2)
(3.4)

L2(k) = −k2C1 −DrC1. (3.5)
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Figure 3.1: (a) Morphological phase diagram of the active PFC model in the 1d case in the
plane spanned by activity v0 and mean concentration ψ̄ as obtained by linear
and nonlinear analysis. The remaining parameters are ε = −1.5, C1 = 0.1,
C2 = 0.0 and Dr = 0.5. Labels I to VI in (a) indicate parameters for which
the real part of the dispersion relation λ(k) is shown in (b) with solid (dashed)
lines corresponding to real (complex) eigenvalues. In (a) gray shading indicates
the linearly unstable region where Re(λ(k)) > 0 for a band of wavenumbers
k. There, periodic (crystalline) patterns are formed. The analytically obtained
curved solid and horizontal dashed black lines indicate the onset of the monotonic
and oscillatory finite wavelength instability, respectively. For the coinciding red
lines the critical wavenumber is approximated as kc ≈ 1. The gray-shaded
region of the linearly unstable homogeneous (liquid) phase is separated by the
vertical dashed blue line into regions where stable resting (light gray) and stable
traveling (dark gray) crystals are found in the fully nonlinear regime. The thin
dotted black and dot-dashed red lines indicate changes in the primary bifurcation
behavior and indicate where the (then unstable) resting crystals cease to exist
(see Sec. 4.2). (cf. [OGT18])
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3.2 Drift velocity of crystals from LSA

We investigate the stability of (ψ0, P0) = (0, 0) in the (ψ̄, v0)-plane and determine the
boundary, where the largest real part of an eigenvalue λ crosses zero at a finite critical
wavenumber kc, i.e., a maximum of the dispersion relation Re(λ(k)) touches zero. This can
either occur with a zero or with a finite imaginary part corresponding to unstable modes that
result in the development of a resting or traveling crystalline state (i.e., spatially-periodic
solution), respectively. Setting Re(λ) = 0 and substituting k2 = z gives a cubic equation
for z. Considering Cardano’s method and the desired number of roots, we are able to find
analytical expressions for the stability boundaries in both cases.

The results are presented in Fig. 3.1(a). The white area at low ψ̄ corresponds to a
linearly stable liquid phase, whereas the gray shading marks regions where the liquid phase
is unstable w.r.t. spatially periodic perturbations. The dashed horizontal line (red and
black) at ψ̄ ≈ −0.67 separates the linearly stable liquid phase and a traveling crystal. It
is independent of activity v0, as can be seen in Eq. (3.3). There, v0 only appears in the
(then negative) discriminant and therefore only influences Im(λ), i.e., the drift velocity c
of the perturbation modes. The upwards curved black line that separates white and light
gray regions at low activity (v0 < 0.15) indicates the stability border of the liquid phase
related to a purely real eigenvalue, i.e., a monotonic instability. Alternatively to Cardano’s
method, the critical wavenumber can be approximated by kc ≈ 1 as used in Ref. [CGT16].
This approximation gives the red lines in Fig. 3.1(a). The resulting stability border cannot
be distinguished by eye from the exact results indicating a well justified approximation.

Corresponding dispersion relations are displayed in Fig. 3.1(b) showing Re(λ) of the
leading two eigenvalues with solid (dashed) lines for real (complex) eigenvalues. The roman
numbering corresponds to labels in the stability diagram 3.1(a). Case I shows a dominant
(i.e., at the maximum) instability mode that is real (i.e., monotonic), and likely results in a
resting crystal. However, with increasing activity v0 the “bubble” of real eigenvalues around
the maximum shrinks. At the codimension-2 point (case II) this bubble shrinks to zero
and the marginally stable eigenvalue at the maximum becomes complex. Considering the
maximum of the dispersion relation, a pitchfork bifurcation becomes a Hopf bifurcation with
infinite period exactly at point II, where the lines meet. Case III then shows a dominant
mode that is complex (i.e. oscillatory, finite period), and likely results in crystallization into
a traveling crystal. Cases IV to VI give further qualitatively different dispersion relations. In
particular, points V and VI illustrate the important change in the character of the dominant
mode at k ≈ 1 from monotonic to oscillatory. Case IV is located on the thin dotted black
line in Fig. 3.1(a) that marks where the minimum of Re(λ) touches zero. The dot-dashed red
line is the corresponding approximation obtained by assuming the minimum of Re(λ) to be
at kmin = 1. Crossing this line does not influence the linear stability but changes the number
of expected primary bifurcations. Accordingly, in Fig. 4.1 (that represents a horizontal cut
through Fig. 3.1(a) at ψ̄ = −0.5), at v0 ≈ 0.34 the branch of the (then unstable) resting
crystals ends in a subcritical bifurcation.

3.2 Drift velocity of crystals from LSA

As discussed above the two phase boundaries in Fig. 3.1(a) between the liquid phase and,
respectively, stable resting and stable traveling crystals collide in point II. From there, the
boundary between fully nonlinear resting and traveling crystals continues nearly vertically
upwards (blue dashed line). This separating line cannot be determined by the present linear
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3 The Liquid State and its Linear Stability

considerations and is obtained by numerical continuation of fully nonlinear states. The
resulting dashed blue line marks the onset of crystal motion and confirms Ref. [CGT16],
where a similar straight line in a different parameter plane was deduced from direct time
simulations. Note that to the right of the vertical line, there is a region where resting crystals
still exist as unstable steady states.

Comparing the velocity clin of the dominant linear mode and the fully nonlinearly deter-
mined drift velocity c allows us to rate how well the linear analysis performs. Fig. 3.2(a)
shows that close to but above the liquid-solid boundary at ψ̄ = −0.67 (Fig. 3.1), the linear
(dashed black line) and the fully nonlinear results (dot-dashed orange line) coincide in the
onset of motion and the drift velocity in the entire v0-range. However, in the nonlinear
regime at ψ̄ = −0.5, Fig. 3.2(b) shows that there is a considerable offset in the onset of
motion. Yet, at high activities v0 the linear and nonlinear velocities still converge. The
nonlinear drift velocity c corresponds to the branch of traveling crystals shown in Fig. 4.1.
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Figure 3.2: Velocity clin of the dominant linear mode (black dashed line) and drift velocity c
(orange dot-dashed) of fully nonlinear moving crystals in dependence of activity
v0 for (a) ψ̄ = −0.67 and (b) ψ̄ = −0.5. Remaining parameters are as in
Fig. 3.1. The speed clin corresponds to Im(λ)/k, i.e., clin = Im(λ) for k =
1, where the eigenvalue λ is obtained from the linear stability analysis of the
homogeneous state. The velocity c of the fully nonlinear traveling crystals is
determined by numerical continuation. (a) In the linear regime close to the
onset of crystallization clin and c coincide. (b) Deep in the unstable regime, clin

does not provide a suitable approximation for the onset of motion of the crystal.
However, clin and c approach each other at high v0. (cf. [OGT18])
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4 Active Crystals and Crystallites in One
Spatial Dimension

In this chapter, we study spatially modulated solutions of the active PFC model in one spatial
dimension. Spatially extended, periodic solutions represent crystals. Spatially localized states
(LS) that coexist with the uniform liquid are often termed crystallites.

Having determined the limits of the linear stability of the liquid phase in chapter 3, we
use numerical continuation techniques to determine bifurcation diagrams for resting and
traveling crystals and crystallites. We employ the activity v0 and the mean density ψ̄ as
the main control parameters and briefly discuss the influence of the remaining parameters
of the model. In addition, oscillatory states and their origin in Hopf bifurcations are discussed.

Note that results presented in this chapter have in large parts been published1 in

[OGT18] L. Ophaus, S. V. Gurevich and U. Thiele. Resting and traveling localized
states in an active phase-field-crystal model. Phys. Rev. E, 98:022608,
August 2018.

4.1 The aPFC model in 1d

Restricting space to one dimension (1d), the active PFC model (Eqs. (2.36) and (2.37)) with
a linear equation for the polarization (i.e., C2 = 0) reads:

∂tψ = ∂xx

{[
ε+ (1 + ∂xx)2

]
ψ +

(
ψ̄ + ψ

)3}− v0∂xP, (4.1)

∂tP =C1∂xxP −DrC1P − v0∂xψ. (4.2)

In 1d, P becomes a scalar quantity. It indicates the strength and sense of polarization.

4.1.1 Steady and stationary states

To investigate steady and stationary states (where the latter are steady states in a comoving
frame that moves with velocity c) we consider Eqs. (4.1) and (4.2) with ∂tψ = −c∂xψ and
∂tP = −c∂xP . Hence, positive velocities c correspond to a propagation to the right. Then
Eq. (2.36) can be integrated once and we obtain the coupled fifth- and second-order ordinary
differential equations

0 = ∂x

{[
ε+ (1 + ∂xx)2

]
ψ +

(
ψ̄ + ψ

)3}− v0P + cψ − J, (4.3)

0 =C1∂xxP −DrC1P − v0∂xψ + c∂xP, (4.4)

1Secs. 4.1-4.4 closely follow [OGT18] and contain figures and text from there. c©APS (2018).
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4 Active Crystals and Crystallites in One Spatial Dimension

where the integration constant J represents a flux. We emphasize that for resting states the
velocity c is equal to zero . For traveling states it represents a nonlinear eigenvalue that has
to be determined along with the solution profile.

Beside the trivial steady state (ψ = 0, P = 0) there exist spatially-modulated states (ψ =
ψ(x), P = P (x)) that solve Eqs. (4.3) and (4.4). We will determine their bifurcation diagrams
employing continuation techniques. In the treated special case of C2 = 0 (cf. Eq. (4.2)), for
periodic states one may integrate the linear Eq. (4.4) over one period ` and finds

∫
` dxP (x) =

0. As
∫
` dxψ(x) = 0 by definition, Eq. (4.3) implies J = 0. Note that as ψ(x) is the deviation

from the mean ψ̄, for J = 0 the flux of material is given by cψ̄. Note that the system is
invariant under the transformation (ψ, P, x, c)→ (ψ,−P,−x,−c). In the case of ψ̄ = 0, also
the symmetry (ψ, P, x, c)→ (−ψ,−P, x, c) holds.

Throughout the bifurcation analysis of active crystals and active LS in 1d, we will keep
the following parameters fixed:

ε = −1.5, C1 = 0.1, C2 = 0.0, Dr = 0.5. (4.5)

Their influence is briefly discussed in Secs. 4.7, 4.6 and 4.8 at the end of this chapter.

4.1.2 Numerical continuation in 1d

In the spatially one-dimensional case, we employ numerical path-continuation techniques
[KOGV07, Kuz10, DWC+14, EGU+19] bundled in the package AUTO07P [DKK91, DOC+12]
to determine steady (c = 0) and stationary (c 6= 0) periodic and localized solutions of
Eqs. (4.3) and (4.4) on a domain of size L. The techniques allow one to follow branches of
solutions in parameter space, detect bifurcations, switch branches and in turn follow the bifur-
cating branches. The pseudo-arclength continuation implemented in AUTO07P is also able
to follow branches when they fold back at saddle-node bifurcations. It allows us to determine
the entire bifurcation diagram. In the literature the method is extensively applied to the SH
equation [BK06, MBK10, BD12] and PFC-type models [Thi10, RATK12, TAR+13, SAKR18].
To our knowledge, continuation has not yet been applied to the aPFC model. For details on
numerical continuation see Sec. 2.4.2.

To use AUTO07P, our system of Eqs. (4.3) and (4.4) is transformed into a seven-
dimensional dynamical system (with x being the independent variable with seven periodic
boundary conditions). A phase condition that breaks translational invariance and a constraint
that controls the volume are included as integral conditions (cf. Refs. [TKG14, EGU+19]
for examples of using such conditions for several related equations). This implies that in
each continuation run beside the main control parameter one has two further parameters
that have to be adapted. Here, we use either the mean density ψ̄ or the activity v0 as main
control parameter while velocity c and flux J are adapted.

The resulting bifurcation diagrams are given in terms of the L2-norm of the solution array
that we use as main solution measure. It is defined by

||ψ, P ||2 =

√√√√ 1

L

∫ L

0

7∑
i=1

a2
i dx (4.6)

where the ai stand for the elements of the solution array

(ψ, P ) = (ψ, ∂xψ, ∂xxψ, ∂xxxψ, ∂
4
xψ, P, ∂xP ). (4.7)
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4.2 Periodic states

4.2 Periodic states

In the standard PFC model (Eq. (4.1) with v0 = 0), at sufficient distance from the critical
point (ε sufficiently negative or ψ̄ < 0 sufficiently large) the transition from the liquid state
(uniform solution) to a crystalline state (periodic solution) corresponds to a first order liquid-
solid phase transition with a parameter region – limited by the binodal lines – where the two
states coexist [TAR+13]. As ψ is a conserved quantity this does not automatically imply
that one has a subcritical bifurcation from the homogeneous to the periodic solution branch.
For a detailed discussion of this intricate point see the conclusion of Ref. [TAR+13].

As the aPFC model is non-variational, here, the transition between the states does not
correspond anymore to a thermodynamic phase transition, i.e., arguments based on a free
energy do not hold anymore. Furthermore, now also the activity v0 may be used to induce
the transition. In particular, for the parameters of Fig. 3.1 at ψ̄ approximately between
−0.71 and −0.67 increasing v0 beyond the solid line melts the resting crystal. More striking
is the behavior at higher densities (in Fig. 3.1(a) for ψ̄ above −0.67). As illustrated in the
bifurcation diagram Fig. 4.1, there, increasing v0 does not destroy the resting crystal but
results in the onset of motion at a critical activity vc ≈ 0.15 (corresponding to the vertical
dashed line in Fig. 3.1(a)), i.e., in a transition from a stable resting to a stable traveling
crystal.

Specifically, for the resting crystals, Fig. 4.1(a) shows that with increasing activity the
norm of ψ monotonically decreases while, in contrast, the amplitude of the polarization field
(see inset) first increases from zero (at v0 = 0) until at some v0 = vc its norm equals the
one of ψ. There, the branch of traveling crystals bifurcates and the resting crystals become
unstable and ultimately cease to exist (after further undergoing a Hopf bifurcation) at about
v0 = 0.34 where the branch ends in a subcritical pitchfork bifurcation on the branch of
homogeneous states. As mentioned in section 3.1, this bifurcation corresponds to point IV
in Fig. 3.1. There, a double real eigenvalue of the linear stability problem of the liquid state
crosses zero indicating a bifurcation of the uniform state. For a discussion of oscillatory
states associated with the Hopf bifurcation see section 4.5.2 .

At vc, a drift-pitchfork bifurcation [Fri05] occurs, i.e., a real eigenvalue crosses zero (see
stability analysis in section 4.3.3) and two branches of moving periodic states (i.e., traveling
crystals) emerge from the branch of resting crystals. An analytical condition for drift
bifurcations is derived in section 4.4.

The two bifurcating branches with the same norm are related by the symmetry (ψ, P, x, c)→
(ψ,−P,−x,−c) and the velocity close to the bifurcation is c ∝ (v0−vc)

1/2. The individual so-
lutions on the emerging branches do not anymore have the symmetry (ψ, P, x)→ (ψ,−P,−x)
of the resting crystal states (i.e., zero crossings of P do not anymore coincide with the position
of the peak maxima of ψ). Instead, for the traveling crystals, the individually practically
unchanged ψ(x) and P (x) profiles are shifted w.r.t. each other. The profiles keep their
spatial periodicity and always move with a constant drift velocity. The velocity |c| increases
monotonically for v0 > vc, the spatial phase shift between profiles of ψ and P decreases
monotonically. Indeed, for v0 � 1 one finds c ≈ ±v0 and ψ(x) ≈ ±P (x). Typical density
and polarization profiles are given in Fig. 4.1(b).

Studying the spatial phase shift ∆ between the two fields in detail, Fig. 4.2 reveals a power
law between ∆ and v0. The phase shift ∆ is evaluated by tracking the positions of a peak
of ψ and of the nearest peak of P . To fulfill the symmetry (ψ, P, x)→ (ψ,−P,−x), the two
profiles of a resting crystal need ∆ = `/4 (cf. Fig. 4.1(b)(I)). For traveling crystals, with
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Figure 4.1: Resting and traveling crystals as a function of activity v0 in the one-dimensional
aPFC model. (a) The solution profiles of the periodic crystalline states are char-

acterized by the L2-norms of ψ, ||ψ||2 =
√

1
L

∫ L
0 ψ2dx, and P (inset). Branches

of resting structures are shown in dashed gray, while traveling crystals are in
dot-dashed orange. At a critical value of vc ≈ 0.15 (indicated by circles), the
resting crystal is destabilized and starts to move. The spatial periodicity remains
unchanged. (b) depicts parts (3 times period `) of the profiles of the structures
at points indicated by roman numbers in (a). Crystals I and II are close to the
onset of motion. Profile III shows an active crystal at a high activity of v0 = 10.0
beyond the range of (a). The drift velocity c of the moving crystals increases
monotonically with v0 as shown in Fig. 3.2(b). Note that the spatial phase
shift ∆ between ψ and P changes for traveling crystals (on the orange branch)
when varying v0, highlighted by vertical lines. ψ̄ = −0.5, L = 100, remaining
parameters are as in Fig. 3.1. (cf. [OGT18])
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Figure 4.2: (a) Spatial phase shift ∆ between ψ and P of a traveling crystal as a function
of activity v0. The shift is indicated by vertical lines in Fig. 4.1(b). ∆ decreases
monotonically with v0 resulting in a monotonically growing drift velocity |c|
(inset) above the onset of motion at vc ≈ 0.15. For resting crystals with zero
net polarization, peaks of ψ coincide with zeros in P . Resting crystals exhibit
a spatial phase shift of a quarter of one spatial period `. The crystal closely
matches this value at vc. (b) Logarithmic scales reveal a power law. Fitting ∆/`
by f(x) = bxa (dashed blue) with v0 as x for v0 ≥ 0.5 gives a ≈ −1.005, i.e.,
∆ ∝ v−1

0 . Parameters as in Fig. 4.1

increasing v0, ∆ is rapidly falling from this value. In Fig. 4.2(b) logarithmic scales of the
axes exhibit that ∆ and v0 are related by a power law. Fitting the corresponding straight
line for v0 > 0.5 by minimizing the weighted sum of squared distances (∆− f(v0))2 results
in f(v0) ∝ v−1

0 . The exact exponent reads 1.00544 ± 7.8e − 05 with asymptotic standard
error [You15].

The numerical results are consistent with analytical estimates for the shift. From continu-
ation, we know that for sufficiently large v0

ψ(x) ≈ P (x+ ∆) (4.8)

= P (x) + ∆∂xP (x) +O(∆2) (4.9)

and

P (x) ≈ ψ(x−∆) (4.10)

= ψ(x)−∆∂xψ(x) +O(∆2). (4.11)
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4 Active Crystals and Crystallites in One Spatial Dimension

Plugging this into the steady state equations for ψ and P (Eqs. (4.3) not integrated and
(4.4)) one obtains

0 =∂xx

{[
ε+ (1 + ∂xx)2

]
ψ(x) +

(
ψ̄ + ψ(x)

)3}
− v0∂xψ(x) + v0∆∂xxψ(x) + c∂xψ(x), (4.12)

0 =C1∂xxP (x)−DrC1P (x)− v0∂xP (x)− v0∆∂xxP (x) + c∂xP (x). (4.13)

In the sum of (4.12) and (4.13), we can identify the stationary states and corresponding
zeros and end up with

0 =v0∆∂xxψ(x)− v0∆∂xxP (x) (4.14)

holding at any v0 > vc.
Substituting P (x) by ψ(x−∆) again, yields after linearization in ∆

0 = v0∆2∂xxxψ(x). (4.15)

This has to hold for large v0 implying that

v0∆2 −→ 0 (4.16)

for v0 →∞, i.e.,

∆ ∝ v−n0 (4.17)

with n > 1/2. The numerically obtained exponent n ≈ 1 satisfies this inequality.

4.3 Localized states

As for the passive PFC model, where the described phase transition between liquid and crystal
state is of first order for sufficiently negative ε, one finds that in the transition region patches of
liquid state and crystal state may coexist. In the PFC model this corresponds to the existence
of a broad variety of spatially localized states (or crystallites) that in 1d were numerically
analyzed in Ref. [RATK12, TAR+13] (for selected 2d results see [EGU+19, TFHE+19]). Next,
we systematically explore how the bifurcation structure of these crystallites is amended by
activity. We investigate if and to what extent the phenomenon of slanted homoclinic snaking
[BKL+09] is changed by finite values of activity. Do traveling localized states arise due to
self-propulsion? Can motion also be induced by changes in the mean concentration?

Following former works, we classify the localized states according to their spatial symmetry
[BK06, TAR+13] and their drift velocity [ML13]. There are two kinds of resting localized
states (RLS) that have a parity (left-right) symmetry in the ψ-component and an inversion-
symmetric polarization: (ψ(x), P (x)) = (ψ(−x),−P (−x)). The symmetric localized patches
can either have a ψ-peak or ψ-trough at the center, resulting in an odd or even number
of peaks, respectively. We call them “odd states” (RLSodd) and “even states” (RLSeven).
Beside spatially symmetric states, resting asymmetric localized states exist that have no
parity symmetry. We refer to them as RLSasym. In the PFC model, the RLS states form an
intricate slanted snakes-and-ladders structure [TAR+13]. Traveling localized states have a
nonzero drift velocity and are called TLS. For TLS, the above symmetries in ψ and P are
not preserved.
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Figure 4.3: Slanted homoclinic snaking of resting symmetric steady states (drift velocity
c = 0). Shown is the L2-norm of the steady states in dependence of the mean
concentration ψ̄. The active drive is fixed at v0 = 0.16475 > vc. The steady
localized states bifurcate subcritically from the periodic solution with n = 16
peaks (dashed gray line). The light (dark) blue line represents resting localized
structures with a peak (trough) in the middle, RLSodd (RLSeven). Both lines
ultimately terminate on the n = 16 periodic state. Beside the spatially extended
crystal with n = 16 peaks, there are solutions with n = 15 and n = 17 peaks
(dashed green lines). Remaining parameters as in Fig. 4.1. (cf. [OGT18])
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in Fig. 4.11. Remaining parameters as in Fig. 4.3. (cf. [OGT18])
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4.3 Localized states

4.3.1 Bifurcation structure

Figure 4.3 gives the bifurcation diagram for periodic and localized states of the aPFC
model (Eqs. (4.3) and (4.4)) for fixed finite activity v0 ≈ 0.16 > vc employing the mean
density ψ̄ as control parameter. It illustrates the main characteristics of the resting crystallites
(steady localized states) and their snaking path towards a spatially extended crystal that fills
the whole considered domain. The appearance of the bifurcation diagram is similar to the
one obtained for the conserved Swift-Hohenberg equation (passive PFC) [TAR+13], note, in
particular, the slanted snaking that also occurs for other systems with conserved quantities
[BCR08, Daw08, LJBK11, TAR+13]. The liquid state with solution measure ||ψ, P ||2 = 0 is
destabilized when ψ̄ is increased above a critical mean concentration ψ̄c ≈ −0.66, coinciding
with point II in Fig. 3.1(a). For the employed domain size of L = 100, three branches of
periodic states bifurcate from the uniform state. The dashed gray and dashed green lines
correspond to periodic structures with n = 15, 16 and 17 ψ-peaks. Slightly beyond the
primary bifurcation, the periodic state with n = 16 is destabilized and two branches (light
and dark blue) emerge in a subcritical secondary bifurcation. Fig. 4.4 gives a zoom of this
region. The two branches correspond to the resting odd and even localized states, respectively.
Both branches undergo a series of saddle-node bifurcations where their stabilities change
(cf. Fig. 4.5 and subsection 4.3.3). The odd and the even branch of symmetric RLS are
connected by many branches of asymmetric RLS that are given in Figs. 4.4 and 4.5 as
dashed black lines, but are not included in Fig. 4.3.

Each pair of saddle-node bifurcations adds a couple of peaks to the localized crystalline
patch that, in consequence, enlarges until ultimately the whole domain is filled with the
crystalline state and the branches of localized states terminate on the n = 16 branch
of periodic states. Because of the conserved character of the density ψ the density of the
coexisting uniform state is not constant but changes with the increasing size of the crystalline
patch. This results in the slanted snaking structure, i.e., the loci of subsequent saddle-node
bifurcations do not form straight vertical lines in Fig. 4.3 but drift towards larger ψ̄. Increasing
the domain size, adds more ’undulations’ to the slanted snaking structure and the relative tilt
between subsequent saddle-node bifurcations becomes smaller, however, without changing
the overall tiltedness.

A qualitatively new feature of the solution structure of the aPFC model are the branches
of traveling localized states (TLS) shown as dot-dashed orange lines in Figs. 4.4 and 4.5.
The TLS drift with a constant velocity c. Their ψ profiles look quite similar to the one of
RLS, the left-right symmetry is broken, though. Crossing the onset of motion, the P profile
loses its inversion symmetry and approaches the phase and shape of ψ. Typical profiles of
RLS and TLS are presented in Fig. 4.6. The branches of TLS bifurcate in drift-transcritical
bifurcations from the branches of asymmetric RLS and in drift-pitchfork bifurcations from
the branches of symmetric RLS. An analytical condition for the detection of the drift
bifurcations is derived in Sec. 4.4. This criterion holds for both types of drift bifurcations.

The branches of TLS connect the snaking branches of symmetric RLS like rungs. They
may connect two ’sub-branches’ of the same symmetry like the two lower orange branches in
Fig. 4.5 as well as branches of RLSodd and RLSeven like the orange branch with the highest
norm in Fig. 4.5. TLS of small extension (one or two peaks, i.e., the ones in Fig. 4.4) exist
in a broad range of mean density ψ̄. Because of their similar profiles, the norm of RLS and
TLS is almost equal and the branches seem to nearly coincide in the lower part of Fig. 4.4.

Similar to the case of periodic states, also for RLS an increase of the activity v0 at fixed ψ̄

37



4 Active Crystals and Crystallites in One Spatial Dimension

0.2

0.4

0.6

0.8

1

1.2

0 0.3 0.6 0.9 1.2 1.5

||ψ
,P

|| 2

v0

0

0.05

0.1

0.14 0.16 0.18

|c|

v0

Figure 4.7: Bifurcation diagram of resting and traveling localized states giving the L2-norm
as a function of the active drive v0. The mean concentration is fixed at ψ̄ = −0.75.
Resting solutions are indicated by blue (left-right symmetric states) and dashed
black (asymmetric states) lines, moving states are dot-dashed red and orange.
The traveling single peak exists up to high values of v0 ≈ 1.6. Inset: Velocity |c|
of the traveling single peak as a function of v0. At a critical value of vc ≈ 0.16 the
transition from resting to a traveling linearly stable one-peak LS occurs. Black
dots (red dashed lines) give the results of direct numerical simulations (numerical
continuation). The moving state corresponds to the long finger in the large panel.
Its upper half is stable (right part of orange branch in inset). The remaining
parameters are ε = −1.5, C1 = 0.1 and Dr = 0.5 as in Fig. 4.1. (cf. [OGT18])
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may result in a transition to TLS. Fig. 4.7 gives a typical example of a bifurcation diagram
using ψ̄ = −0.75. Thereby, the threshold value for the onset of motion slightly differs for
the various RLS (inset of Fig. 4.7). All discussed TLS have density and polarization profiles
that are steady in corresponding comoving frames.

Recall that the onset of motion coincides with a symmetry breaking related to a spatial
shift between the density and the polar ordering profiles. The density peaks are shifted away
from the zeros of P , resulting in a nonzero value when integrating ψ times P over the width
of a peak. Above the critical activity vc, the left-right symmetry of the density profile is also
broken. The same holds for the inversion symmetry of the polarization. As described above
and shown in Fig. 4.6 at large v0 the P profile approaches the position and shape of ψ. In
fact, the norm of ψ and P are equal for traveling structures.

Beside path-continuation we also employ direct time simulations of Eqs. (2.36) and (2.37)
to investigate the TLS. In particular, we track the traveling single density peak over time
and determine its velocity. This confirms the continuation results as shown in the inset of
Fig. 4.7. The two orange dot-dashed lines in the inset correspond to the long nose of traveling
one-peak states in the main panel. The upper branch of this nose is stable, losing its stability
at the fold at v0 ≈ 1.6. The lower branch is unstable and corresponds to the left orange
branch in the inset. Its onset of motion is at a slightly smaller value of v0 as compared to
the stable one. For the particular value of mean concentration ψ̄ shown in Fig. 4.7, localized
states consisting of more than one peak only appear to exist in a fairly narrow range of v0

around vc. The dot-dashed red line in Fig. 4.7 that corresponds to broader TLS with a few
peaks wiggles about an almost vertical line before terminating on the blue branch of four
connected resting peaks. The region of existence of the TLS is studied via fold continuation
in the next section. Note that the velocities of all these different traveling structures are
very similar.

4.3.2 Fold continuation

A two-parameter continuation allows one to track the loci of various bifurcation points in a
two parameter plane [DKK91]. Here, we follow the loci of (i) the saddle-node bifurcations
that mark the points where stable and unstable one-peak and two-peak TLS annihilate and
(ii) the drift bifurcations where TLS emerge from RLS in the parameter plane spanned by
activity v0 and mean density ψ̄. This allows us to determine the area of existence of these
localized states in the (v0, ψ̄)-plane.

The result is displayed in Fig. 4.8(a) where drift and saddle-node bifurcations are marked
by black solid lines and orange dot-dashed lines, respectively. The plot has to be carefully
interpreted as the various bifurcations can be located on different branches in the bifurcation
diagrams. To facilitate this we have marked the two values ψ̄ = −0.71 and ψ̄ = −0.78
by horizontal gray lines and provide the corresponding one parameter bifurcation diagrams
as Fig. 4.8 (b) and (c) (also cf. Fig. 4.7). There, the bifurcation points are highlighted by
symbols, that also mark the fold continuation lines in (a).

Fig. 4.8 proves that traveling localized states are a generic solution of the active PFC
model as they occur in an extended region of the parameter plane. In fact, the values of v0 at
the saddle-node bifurcations that limit their existence diverge at ψ̄ = −0.74 and ψ̄ = −0.69
for one- and two-peak TLS, respectively. We numerically follow their position up to v0 = 103.
Note that for ψ̄ = −0.71 the fold of the one-peak TLS has already moved far outside of the
displayed v0-interval. At this ψ̄, the two-peak TLS exists up to v0 ≈ 0.38 while at ψ̄ = −0.78
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Figure 4.8: (a) Two parameter continuation of the loci of the drift bifurcations (black solid
lines) and of the saddle-node bifurcations (orange dot-dashed lines) of the one-
and two-peak TLS. (b) and (c) Corresponding one parameter bifurcation dia-
grams at fixed values of ψ̄ marked by gray horizontal lines in (a). Blue branches
correspond to RLS, and dot-dashed orange branches correspond to TLS. The
drift bifurcations are marked by circles, and the saddle-node bifurcations are
indicated by orange symbols. For increasing mean concentrations, the interval of
v0 in which moving LS exist (onset of motion up to fold) grows and ultimately
the activity value at the fold diverges, i.e., TLS exist for arbitrarily high activities.
(cf. [OGT18])
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Figure 4.9: Black lines: Real part of eigenvalues obtained from numerical LSA with a finite
difference method. The black dashed (dotted) lines indicate a complex (real)
eigenvalues. Orange line: Real eigenvalue from continuation. As expected, two
neutrally stable modes with Re(λ) = 0 are found (translation mode and volume
mode). One mode is destabilized at vc ≈ 0.161, the detected onset of motion.
At vc, the mode coincides with the spatial derivative of the localized state and
corresponds to a translation. (cf. [OGT18])

its range of existence is smaller. All drift bifurcations are quite close to v0 = 0.15 with only
small variations between different localized states and with ψ̄. This makes an interpretation
of the corresponding diagram region challenging.

Roughly speaking, one-peak [two-peak] TLS exist in the lower part of Fig. 4.8(a) in the
area between the nearly vertical blue solid lines and the dot-dashed line marked by the
filled circle [square] while in the upper part of Fig. 4.8(a) they exist in the area between the
dot-dashed line marked by the filled triangle and the one marked by the filled circle [square].
Remember that in (b) the filled circle has left the displayed interval of v0. The uppermost
unmarked dot-dashed line in Fig. 4.8(a) is related to three-peak TLS and will here not be
further discussed.

4.3.3 Linear stability

Up to here we have discussed bifurcation diagrams and existence regions of various states.
Although general knowledge about bifurcations allows one to develop quite a good idea
about the stability of the various solutions, it is important to explicitly determine the linear
stability. The obtained detailed information then permits us to predict which states can
persist in experiments or direct numerical simulations (the linearly stable states) and which
states may only appear as (possible long-lived) transients. These are given by the unstable
states that represent saddles in function space, as they might first attract time-evolutions to
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Figure 4.10: Linear stability of localized states. Light and dark blue lines: RLSodd and
RLSeven. Dashed black: Asymmetric RLS. Dot-dashed orange: TRS. Stable
steady states are indicated by − signs and plotted as heavy lines. For unstable
states, the number of + signs gives the number of unstable eigenmodes with
Re(λ) > 0. (a) Continuation of v0, ψ̄ = −0.75. Symmetric RLS lose their
stability in drift bifurcations at v0 ≈ 0.16 and TLS become stable. Asymmetric
RLS are always unstable. (b) Continuation of ψ̄, v0 = 0.16475. LS are created
in a subcritical bifurcation, branching off from the periodic branch (dashed
gray, more periodic branches in dashed green). Note that vertical cuts at the
respective values of v0 of (b) in (a) and of ψ̄ vice versa correspond to each other.
(cf. [OGT18])
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then repel them into well defined directions corresponding to the eigenvectors of the most
unstable eigenvalues.

For the analysis, Eqs. (2.36) and (2.37) are linearized in small perturbations δψ and δP
about a one-dimensional steady state (ψ0(x), P0(x))T to obtain

∂tδψ = ∂xx

(
ε+ 3(ψ̄ + ψ0)2 + (1 + ∂xx)2

)
δψ − v0∂xδP, (4.18)

∂tδP = ∂xx (C1δP )−DrC1δP − v0∂xδψ. (4.19)

In the case of uniformly moving states (ψ0, P0)T = (ψ0(x+ ct), P0(x+ ct))T , a comoving
frame term is added to the right-hand side. Assuming exponential growth of the perturbation,
i.e., δψ = ψ1 exp(λt) and δP = P1 exp(λt) we have to solve the linear eigenvalue problem:

L (ψ0, P0)

(
ψ1

P1

)
= λ

(
ψ1

P1

)
, (4.20)

where the linear operator L (ψ0, P0) is defined by the right-hand side of Eqs. (4.18) and (4.19)
[it is explicitly given below in Eq. (4.30)].

We are not able to pursue an analytical solution of the linear problem because already the
steady states ψ0(x) and P0(x) are obtained by numerical continuation. Instead, we discretize
the steady states equidistantly in space, i.e., employ a finite difference method to transform
(4.20) into a standard linear algebraic eigenvalue problem that we solve employing standard
numerical routines.

The black lines in Fig. 4.9 give an example of a calculated eigenvalue spectrum in de-
pendence of the activity. Shown are the real parts of the leading ten eigenvalues for the
branch of one-peak RLS that in Fig. 4.10 is stable at v0 = 0.1. The dotted lines indicate
purely real eigenvalues whereas the three dashed lines indicate complex eigenvalues. The
largest eigenvalue is real and crosses zero at a critical activity of vc ≈ 0.161 where the
drift-pitchfork bifurcation occurs, as discussed in detail in Sec. 4.4. The obtained vc well
agrees with the value we obtain through the numerical continuation of the one-peak TLS
that detects the drift-pitchfork bifurcation (as a fold) at the same value. Note that in the
discretized eigenvalue problem the zero crossing has to be obtained by extrapolation as the
relevant eigenvalue ’interacts’ with one of the two zero eigenvalues, in this way ’blurring’ the
crossing. This is related to the problem of level repulsion or avoided crossing (von Neumann-
Wigner theorem [vNW93]). To prevent the blurred zero crossing, we also solve Eq. (4.20) by
numerical continuation [Thi15]. The eigenvalue we obtain in this way is given by the orange
line in Fig. 4.9. It confirms the finite difference calculations and perfectly matches vc.

Two zero eigenvalues exist for all v0 and represent neutrally stable modes that are related
to the symmetries of the model. One of them represents a translation mode that occurs
because Eqs. (2.36) and (2.37) are invariant with respect to translation and, therefore, exhibit
the neutral eigenmode of translation, often called Goldstone mode of translational symmetry.
In addition, an infinitesimal change in the mean concentration ψ̄ does also result in another
solution of the equations, i.e., the second mode with zero eigenvalue is a neutral volume
mode or Goldstone mode of symmetry with respect to mass change.

Calculating the eigenfunction that is destabilized shows that at vc the mode matches
the spatial derivative of the investigated localized peak. The derivative corresponds to an
infinitesimal shift of the position of the peak and, therefore, to the Goldstone mode of
translational symmetry. This fact indicates that the onset of motion is indeed due to a drift
bifurcation.
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4 Active Crystals and Crystallites in One Spatial Dimension

A typical result of a systematic stability analysis is shown in Fig. 4.10, where (a) represents
an enlargement of a part of the bifurcation diagram in Fig. 4.7 and (b) is the lowest part
of the snakes-and-ladders structure. The branches of linearly stable and unstable states are
indicated by “-” and “+” signs, respectively. The number of “+” signs gives the number
of unstable eigenmodes. Linearly stable states are represented by heavy lines, indicating
that in (a) in the considered parameter range one has stable one- and two-peak RLS and
TLS with regions of multistability of (i) one- and two-peak RLS at low activity, (ii) one-
and two-peak TLS at slightly larger activity and in between (iii) a very small region where
one-peak TLS and two-peak RLS are both linearly stable. In the considered case all the
eigenvalues that cross the imaginary axis are real, although stable complex eigenvalues do
occur (see dashed lines in Fig. 4.9). Note that Fig. 4.10(a) shows more bifurcations than are
followed in Fig. 4.8(a).

Studying Figs. 4.10(b) and 4.5 in detail one finds that - despite the similar shape of the
snake and ladder - the stability of the RLS differs from the one found for the PFC model
[TAR+13]: there the symmetric RLS change their stability as the branches snake along,
while the asymmetric RLS are always unstable. Here, however, the stable symmetric RLS
are already destabilized before the saddle-node bifurcation is reached as the TLS emerge
at the drift-pitchfork bifurcation, i.e., their range of linear stability is diminished. Since
v0 = 0.16475 > vc in (b) most of the resting branches are unstable. At a drift-transcritical
bifurcation the asymmetric RLS also acquire an additional unstable mode as compared to
the case of PFC. For activities lower than vc the picture is very similar to the one of the
passive PFC model.

Figure 4.11 enlarges a detail of Fig. 4.10(a): the drift-transcritical bifurcation where
moving states branch off the asymmetric resting state composed of two density peaks of
different height. As already the resting state is asymmetric, the two sub-branches emerging
at the drift bifurcation are not related to each other by symmetry, but intrinsically differ.
Hence, in this case the creation of the TLS corresponds to a drift-transcritical bifurcation,
different from the drift-pitchfork bifurcations in which the symmetric RLS lose their stability.
The transcritical bifurcation does not coincide with the fold of the (red) TLS branch and its
stability changes twice close to the drift bifurcation. Accordingly, in Fig. 4.10(a) the two
sub-branches of TLS seem to have the same stability before and after crossing the resting
asymmetric state. There is another the drift-transcritical bifurcation on the asymmetric
branch in Fig. 4.10(b).

4.4 Drift instability: onset of motion

Next, we discuss the numerically found drift bifurcations more in detail and derive a specific
simple analytic condition that allows one to detect drift bifurcations for a class of models
that includes the aPFC model. The analytical criterion for the onset of motion is valid for
the encountered drift-pitchfork and drift-transcritical bifurcations. It can also be extended
to two spatial dimensions.

4.4.1 Velocity expansion

We consider the one-dimensional version of the model (2.36) and (2.37) in a comoving
frame with coordinate x′ = x+ ct, time t and velocity c. Note that positive velocities now
correspond to a drift to the left, in contrast to the formerly used definition in Eqs. (4.3) and
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Figure 4.11: Drift-transcritical bifurcation. Enlargement of Fig. 4.10(a). The asymmet-
ric RLS (dashed black, +) acquires an additional unstable mode (++) in a
drift-transcritical bifurcation. The moving double bump (dot-dashed red line)
changes its stability in the transcritical bifurcation and at the nearby fold. All
shown branches are linearly unstable. (cf. [OGT18])
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(4.4). For simplicity of the signs in the expansion, the direction of c is changed here. We
use (ψ0(x), P0(x))T to denote a steady solution, i.e., with c = 0. Assuming there are only
small corrections (ψ̃i, P̃i)

T to the steady state when changing parameters close to the drift
bifurcation, we introduce a velocity expansion

ψ = ψ0(x) + c
[
ψ̃1(x) + cψ̃2(x) + c2ψ̃3(x) + . . .

]
, (4.21)

P = P0(x) + c
[
P̃1(x) + cP̃2(x) + c2P̃3(x) + . . .

]
. (4.22)

Plugging in the expansions (up to order c2) in the dynamic equations (Eqs. (2.36) and (2.37))
leads to

c ∂x

(
ψ0 + cψ̃1 + c2ψ̃2

)
= ∂xx

[(
ε+ (1 + ∂xx)2

)(
ψ0 + cψ̃1 + c2ψ̃2

)
+
(
ψ̄ + ψ0 + cψ̃1 + c2ψ̃2

)3
]

− v0∂x

(
P0 + cP̃1 + c2P̃2

)
, (4.23)

c ∂x

(
P0 + cP̃1 + c2P̃2

)
= (∂xx −Dr)

[
C1

(
P0 + cP̃1 + c2P̃2

)
+ C2

(
P0 + cP̃1 + c2P̃2

)3
]

− v0∂x

(
ψ0 + cψ̃1 + c2ψ̃2

)
. (4.24)

By equating coefficients of cn, we find for c0

0 = ∂xx

[(
ε+ (1 + ∂xx)2

)
ψ0 +

(
ψ̄ + ψ0

)3]− v0∂xP0, (4.25)

0 = (∂xx −Dr)
(
C1P0 + C2P

3
0

)
− v0∂xψ0, (4.26)

i.e., we recover the equations for the resting base state. To linear order in c we obtain

∂xψ0 =∂xx

[(
ε+ (1 + ∂xx)2

)
ψ̃1 + 3

(
ψ̄ + ψ0

)2
ψ̃1

]
− v0∂xP̃1, (4.27)

∂xP0 = (∂xx −Dr)
(
C1P̃1 + 3C2P

2
0 P̃1

)
− v0∂xψ̃1, (4.28)

a linear system for ψ̃1 and P̃1. We write Eqs. (4.27) and (4.28) in matrix form

∂x

(
ψ0

P0

)
= L(ψ0, P0)

(
ψ̃1

P̃1

)
(4.29)

with the same linear operator L already employed in (4.20):

L(ψ0, P0) =

(
∂xx

[(
ε+ (1 + ∂xx)2

)
+ 3

(
ψ̄ + ψ0(x)

)2] −v0∂x

−v0∂x (∂xx −Dr)
(
C1 + 3C2P0(x)2

) ) .
(4.30)

In the following, we focus again on the case of a linear equation for P , i.e., C2 = 0, which
is a necessary constraint for the derivation of the criterion for the onset of motion. We notice
that the top left component of (4.30)

L11(x) = ∂xx

[(
ε+ (1 + ∂xx)2

)
+ 3

(
ψ̄ + ψ0(x)

)2]
= ∂xx [−LSH(ψ0(x))] (4.31)

is the product of a Laplacian (due to mass conservation) and the linearized operator from a
Swift-Hohenberg equation with cubic nonlinearity. This fact will turn out to be very helpful
when forming the adjoint operator L†. With C2 = 0, L22 = (∂xx −Dr)C1 is self-adjoint.
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4.4 Drift instability: onset of motion

4.4.2 Translational symmetry and Goldstone modes

Adding its first spatial derivative to the base state corresponds to a small shift in the position
of the state. Since the aPFC model is translationally invariant,

∂x

(
ψ0

P0

)
=

(
G1

G2

)
≡
(
ψG
PG

)
(4.32)

can be identified as a neutral eigenfunction with eigenvalue zero, often referred to as the
Goldstone mode G of the translational symmetry. Thus,

L ∂x
(
ψ0

P0

)
= LG = 0. (4.33)

Equation (4.33) can also be derived by explicitly plugging in the shifted steady state
(ψ0(x+ ∆), P0(x+ ∆))T . Expanding the right-hand side (denoted as f) of the evolution
equation in ∆x yields

∂t

(
ψ0(x+ ∆)
P0(x+ ∆)

)
= f

(
ψ0(x+ ∆)
P0(x+ ∆)

)
(4.34)

= f

(
ψ0(x)
P0(x)

)
+ L

(
ψ0(x)
P0(x)

)
∂x

(
ψ0(x)
P0(x)

)
∆ +O(∆2) (4.35)

= 0. (4.36)

The time derivative is zero as we consider a steady state, the same holds for f of the unshifted
steady state. Since ∆ 6= 0 by definition

G = ∂x

(
ψ0

P0

)
(4.37)

with eigenvalue 0 follows. Alternatively, one can differentiate the right-hand side by x and,
as it does not depend explicitly on space, end up with the same result after applying a chain
rule.

A typical destabilization occurs when the real part of an eigenvalue crosses zero as param-
eters of the system are being changed. We now consider the case that the imaginary part
also equals zero, so that the corresponding eigenfunctions of L can be expressed by a linear
combination of the Goldstone modes. The second Goldstone mode mentioned in Sec. 4.3.3
is the volume mode that does not interfere in the drift bifurcation. At the bifurcation point,
a real eigenvalue crosses the imaginary axis, i.e., an additional neutral mode exists. In con-
sequence, the system of eigenfunctions of the null space of the linear operator is incomplete
and must be supplemented by a generalized neutral eigenfunction [GBM+04]. This function
is called the propagator mode P, defined by

LP = G. (4.38)

It is exactly the occurrence of P that marks the destabilization, i.e., the onset of motion.
Using the Fredholm alternative [Eva10], one finds that Eq. (4.38) can be solved iff

〈G†|G〉 = 0, (4.39)

where G† is the neutral eigenfunction of the adjoint operator L† with the same spatial
symmetry as G. The scalar product 〈·|·〉 is defined as a full spatial integration over the
considered domain. The values of a set of control parameters for which Eq. (4.39) is fulfilled
corresponds to the bifurcation point.
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4.4.3 The adjoint linearized operator

Let G† be the adjoint neutral eigenfunction, i.e.,

L† G† = 0. (4.40)

Equation (4.29) corresponds to

G = L
(
ψ̃1

P̃1

)
(4.41)

showing that (ψ̃1, P̃1)T is a generalized neutral eigenfunction P. To find G† = (ψ†G , P
†
G)T we

determine the adjoint operator

L† =

(
−LSH ∂xx v0∂x
v0∂x C1 (∂xx −Dr)

)
(4.42)

using (AB)† = B†A†, the self-adjointness of ∂xx and LSH, the relation ∂†x = −∂x, and
(v0, C1, Dr) ∈ R.

4.4.4 Determining the adjoint eigenfunctions

Componentwise the adjoint problem reads

0 = −LSH ∂xxψ
†
G + v0∂xP

†
G (4.43)

0 = v0∂xψ
†
G + C1 (∂xx −Dr)P

†
G (4.44)

Comparing Eq. (4.43) to the steady state equation for ψ (4.3) with J = 0 and c = 0 and
employing a simple chain rule

0 = ∂x
δF
δψ

(ψ0)− v0P0 (4.45)

= −LSH∂xψ0 − v0P0 (4.46)

suggests

∂xxψ
†
G = ∂xψ0, (4.47)

∂xP
†
G = −P0 (4.48)

Integrating yields

ψ†G(x) =

∫ x

0

(
ψ0(x′) + C

)
dx′ + D, (4.49)

P †G(x) = −
∫ x

0
P0(x′)dx′ + F (4.50)

with constants C, D, F. Eq. (4.44) is consistent with this neutral adjoint eigenfunction.
Substituting gives

v0ψ0 − C1(∂xx −Dr)

∫
P0(x)dx = const. (4.51)

which is true as can be seen by integrating the steady state equation for P , Eq. (4.4).
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Figure 4.12: Onset of motion. (a) L2-norm of steady states in dependence of v0 for fixed
ψ̄ = −0.75. The blue branch corresponds to a RLS with one bump. The RLS
are destabilized at two respective vc and start to travel with drift velocity c.
The traveling odd LS is indicated by the dashed orange branch. (b) Solvability
condition Eq. (4.55) ||ψ0||22 − ||P0||22 (blue) of the RLS and velocity |c| (dashed
orange line) of TLS vs. activity v0 showing perfect agreement of the two
approaches. (cf. [OGT18])
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4.4.5 Solvability condition

Applying all results, the solvability condition (4.39) reads

〈G†|G〉 = 〈ψ†G |ψG〉+ 〈P †G |PG〉

= 〈
∫ x

0

(
ψ0(x′) + C

)
dx′ + D|∂xψ0〉

− 〈
∫ x

0

(
P0(x′) + E

)
dx′|∂xP0〉 (4.52)

= −〈∂x
(∫ x

0

(
ψ0(x′) + C

)
dx′ + D

)
|ψ0〉

+ 〈∂x
∫ x

0

(
P0(x′) + E

)
dx′|P0〉 (4.53)

= −〈ψ0|ψ0〉+ 〈P0|P0〉 = 0. (4.54)

⇔ 0 = ||ψ0||22 − ||P0||22, (4.55)

where we have employed a partial integration and used 〈C|ψ0〉 = C
∫ L

0 ψ0dx = 0, since ψ is
the modulation around the fixed mean density. The same holds for the integral over P0 as
explained in section 4.1.1. For all TLS, we have found the onset of motion perfectly matches
the zero crossing of ||ψ0||22 − ||P0||22.

A particular example is given in Fig. 4.12. Panel (a) shows a part of the bifurcation
diagram Fig. 4.7. The solid blue branch corresponds to the RLS with a single density peak
that loses its stability in a drift-pitchfork bifurcation at vc. The emerging traveling bump
(upper dot-dashed orange line) is linearly stable (cf. Fig. 4.10(a), the lower orange branch
is unstable). In the lower panel, Fig. 4.12(b), we plot the difference of the squared norms
as employed in Eq. (4.55). In addition, we also display the velocity of the emerging TLS
(dot-dashed orange). The two zero crossings of ||ψ0||22 − ||P0||22 occur at exactly the same
values of v0 as the onsets of motion. The second root is due to the lower unstable branch
of TLS that bifurcates at a slightly lower activity. Notice that the criterion for the onset of
motion, Eq. (4.55), also holds for the drift-transcritical bifurcation.

4.5 Morphological phase diagram

Collecting all previous results, we can construct a morphological phase diagram of the
regions of existence of resting and traveling crystalline and localized states. Having obtained
various bounds of existence by linear stability analysis and two-parameter continuation we
can restrict the parameter space of interest and compare results from time simulations with
analytical results and results obtained by numerical continuation.

4.5.1 Resting and traveling crystals and LS

Figure 4.13 gives a condensed overview of the range of existence of resting and traveling
crystals and various types of crystallites. A zoom into the v0-range close to the onset of
motion can be found in Fig. 4.14. The colored area marks where spatially modulated states
exist in the plane spanned by activity v0 and mean density ψ̄. The color coding corresponds
to the number of density peaks that evolve in the periodic domain of L = 100 ≈ 16Lc
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Figure 4.13: Morphological phase diagram for the active PFC model. The liquid state
refers to a uniform density phase with zero peaks (white). Different crystalline
structures exist in the colored areas. The color code distinguishes their spatial
expansion in terms of the number of density peaks. Resting and traveling LS
exist in the regions marked in blue with cluster sizes ranging from a single
peak (light blue) up to sizes that almost fill the whole domain (dark blue). The
domain size is L = 100 allowing for a maximum of 16 stable peaks. Periodic
patterns (green) fill the entire domain reaching the number of 16 density bumps.
The horizontal white lines (curved solid line and straight dashed line) give limits
of the linear stability of the liquid phase (cf. Fig. 3.1). The vertical dotted
line marks the onset of motion where resting states undergo a drift-pitchfork
bifurcation. The onset of motion for LS is determined by tracking the onset of
one-peak TLS by two-parameter continuation. Black lines correspond to the
folds of resting (solid) and traveling (dashed) one-peak LS. They denote the
limits of existence of one-peak LS as obtained from numerical continuation. As
initial conditions for the underlying time simulations for the color coding, one
density peak is randomly placed on a background of white noise, the polarization
has random initial conditions around P = 0. Note that the number of density
peaks is the median from a time series of counted peaks, as also oscillatory
states arise in some small parameter ranges (see Sec. 4.5.2). Increments between
simulations: ∆v0 = 0.04, ∆ψ̄ = 0.016. Remaining parameters as in Fig. 4.1.
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Figure 4.14: Zoom of Fig. 4.13 into v0-range close to the onset of motion. Steps in different
shades of blue colors illustrate the gradual growth of LS for increasing ψ̄ re-
flecting the slanted snaking of branches of LS. Increments between simulations:
∆v0 = 0.003, ∆ψ̄ = 0.008.

and Lc = 2π. As initial conditions for the underlying time simulations, one density peak
is randomly placed on a background of white noise, the polarization has random initial
conditions around P = 0. White regions correspond to the liquid state with ψ = 0 and no
peaks. Spatially extended states fill the entire domain with 16 peaks (green). The curved
solid white line and the horizontal dashed white line represent the limits of the linear stability
of the liquid as determined in chapter 3. The lines are the same as given in Fig. 3.1. In
the vicinity of this limit, localized states (blue area) coexist with the liquid state. The LS
consist of clusters sized between a single peak (light blue) and large LS that almost fill the
whole domain (dark blue).

The area of existence of LS is bounded by the loci of the folds of the resting and the traveling
one-peak LS that reach the lowest values of ψ̄. Their position is tracked by two-parameter
continuation and is depicted as black lines. The solid and dotted black lines correspond to
the fold of the resting one-peak LS and to the fold of traveling one-peak LS, respectively, cf.
Sec. 4.3.2 for details. Similar two-parameter continuation is employed to track the onset of
motion where resting states undergo a drift-pitchfork bifurcation. The vertical dotted white
line marks the onset of motion for crystals. The lower part of the seemingly vertical line in
the area of LS (ψ̄ < −0.69) represents the position of the drift-pitchfork bifurcation of the
one-peak LS.

The color coding and counted density peaks are results from time simulations for different
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parameter combinations. Each pixel corresponds to a time simulations with random initial
conditions. To stimulate the growth of localized patches, one density peak in the shape of
a Gaussian with oscillatory tails (∝ exp(−x2/5) cos(x)) is placed at a random position in
the considered domain L. After a sufficiently long transient, the number of density peaks is
counted for a period of time and its median is used for the creation of the phase diagram. The
median is used because it always yields a whole number of peaks. In a small parameter range
oscillating LS arise. This novel type of oscillatory states in the aPFC model is discussed in
Sec. 4.5.2.

The phase diagram points out how remarkably well results from time simulations match
the existence bounds predicted by parameter continuation. The diagram condenses large
parts of the results for active crystals and active LS in the one-dimensional PFC model.

Figure 4.14 enlarges the area of traveling LS close to the onset of motion and depicts the
results from time simulations on a finer grid in parameter space. Vertical cuts through the
phase diagram correspond to a continuation in the mean density ψ̄ for fixed v0. These cuts
reveal the gradual growth of LS for increasing ψ̄. Moreover, Fig. 4.14 illustrates once more
how well the black lines from fold continuations limit the area of existence of resting LS and
(for larger parts of the shown v0-interval) traveling one-peak LS.

4.5.2 Oscillatory states

Evaluating all different solution types appearing in the phase diagram in Fig. 4.13 in depth,
we describe an additional class of non-resting localized states: oscillatory states. For certain
mean densities close to the limit of the linear stability of the uniform phase, we detect Hopf
bifurcations of the resting localized states at values of v0 lower than vc where the drift sets
in: vHopf < vc. Here, branches of oscillating states bifurcate.

Figure 4.15 depicts an exemplary bifurcation diagram for oscillatory states. The diagram
is constructed combining results from numerical continuation and time simulations. Unfortu-
nately, it turned out to be impossible to follow the emerging branch of oscillating states with
the employed continuation tool. That is why data from time simulations are incorporated.

The bifurcation diagram depicts the norm of a localized four-peak LS as a function of
activity v0. At low activity, the LS is at rest. Figure 4.15(b) shows a resting solution profile
(blue). At about vHopf ≈ 0.16, the continuation scheme detects a Hopf bifurcation and time
simulations at slightly larger v0 exhibit oscillating LS (dark red). The four-peak structure
(Fig. 4.15(b)(II)) is oscillating back and forth without a net drift velocity. Figure 4.16(a)
depicts a space-time plot of this oscillatory four-peak LS without net drift at vHopf < v0 < vc.
At vc ≈ 0.167, closely above vHopf , a drift bifurcation occurs on the branch of resting LS, cf.
inset of Fig. 4.15(a). There, the unstable branch of purely traveling four-peak LS (dotted
gray in inset) without any oscillations emerges. Note that the main panel in Fig. 4.15(a)
does not include the branch of traveling four-peak LS since they only exist in a very narrow
range of v0 (cf. inset). As in Fig. 4.7, the branch ends on the branch of resting three-peak LS
which is also not included. In addition, the extension of the one-peak branch is not shown
to keep the focus on oscillatory states.

According to time simulations, the drift instability also occurs on the branch of oscillating
states. Hence, the oscillatory LS without a net drift only exist in a very narrow range of
activity. Time simulations reveal the onset of a net drift as, close to vc, the norm ||ψ||2
suddenly increases indicating a jump onto another branch. Corresponding solutions (III)
show a rather intricate combination of the destabilized modes of oscillation and translation.
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Figure 4.15: (a) Bifurcation diagram of four-peak LS obtained by continuation (gray dashed
line) and time simulations (solid lines): The norm ||ψ||2 is shown as a function
of v0. A Hopf bifurcation is detected at vHopf ≈ 0.16 and oscillatory states
(dark red) emerge. The branch of resting states undergoes a drift instability at
vc > vHopf . Hopf and drift bifurcation of the RLS are marked by black circles.
The branch of oscillatory states undergoes a fold bifurcation at v0 ≈ 0.28 and
traveling one-peak LS (orange) emerge in the time simulation. The inset enlarges
the bifurcation structure around the bifurcation points. Following the branch
of drifting oscillatory states in negative v0-direction (light red branch in inset)
reveals a hysteresis and the subcritical nature of the drift bifurcation on the
oscillating branch. The branch of purely traveling four-peak LS (gray dotted,
unstable, only shown in inset) emerges in the drift bifurcation on the branch
of RLS. (b) Solution profiles from loci marked in upper panel. (I) Resting
state. (II) oscillates back and forth without a net drift, c = 0. Note that
P is mirrored for the second half of oscillation period (see next Fig. 4.16 for
space-time plots). (III) The envelope of the four-peak LS drifts with a steady
velocity c = vgroup < vphase. Individual peaks travel faster than the envelope
and vanish at the tip of the LS. At the rear of group, new peaks come into
existence (cf. Fig. 4.16(b)). (IV) Traveling one-peak LS. Directions of motion
are indicated by arrows. Domain: L = 100. Parameters: ψ̄ = −0.68, ε = −1.5,
C1 = 0.1, C2 = 0.0 and Dr = 0.5.
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Figure 4.16: Space-time plots of oscillatory states. (a) vHopf < v0 = 0.164 < vc, four-peak
LS oscillates back and forth, no net drift. (b) v0 = 0.25 > vc, oscillation and
drift superpose. Two different velocities c = vgroup < vphase are visible. (a) and
(b) correspond to II and III in Fig. 4.15(b).

They do not simply superpose which would lead to a drifting oscillating state. In fact, the
envelope travels with a steady group velocity being equal to the net drift velocity c. The
individual density peaks, however, exhibit a greater velocity vphase. The difference in the
two speeds leads to an oscillation within the entity of the LS. Figure 4.16(b) presents a
space-time plot of the density profile of this kind of oscillatory state. At high activity of
v0 > 0.28 the branch of oscillatory four-peak LS folds back (Fig. 4.15(a)) and a traveling
one-peak LS (b, IV) emerges in time simulations.

The inset in Fig. 4.15(a) enlarges the bifurcation structure around the bifurcation points.
Following the branch of drifting oscillatory states in negative v0-direction (light red branch)
reveals a hysteresis and the subcritical nature of the drift bifurcation.

Using data from previous large-scale time simulations for Fig. 4.13, a phase diagram of
oscillatory drifting states is constructed by evaluating oscillations in the detected number
of density peaks. Figure 4.17 summarizes where oscillatory states with a net drift can be
found in the (v0, ψ̄)-plane.

4.6 Diffusion arrests motion

Having discussed the influence of activity v0 and mean density ψ̄ in detail, next, we briefly
investigate the effect of changes in the remaining model parameters. Since our interest mainly
focuses on the onset of motion, we employ a two-parameter continuation to track the the
critical activity for traveling solutions. First, we vary the diffusion coefficient C1 for the
polarization P .

Figure 4.18 reveals that the onset of motion depends linearly on the diffusion of P . C1

scales the critical activity for a drift. This is expected as it also scales the whole evolution
equation (4.2) for P . At low diffusion, motion sets in at low values of activity. In the absence
of diffusion, there is no critical activity. Resting crystals do only exist at v0 = 0 and traveling
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4 Active Crystals and Crystallites in One Spatial Dimension

Figure 4.17: Area of existence of oscillatory states as a function of v0 and ψ̄. Data from
time simulations with same initial conditions and parameters as in Fig. 4.13.
Oscillations without a net drift only appear in a very narrow range of v0 that
is not resolved here, cf. Fig. 4.15(a). Gray lines indicate the linear stability
of the liquid phase. Black lines limit the area of existence of one-peak LS.
Vertical lines denote the onset of motion of selected states. All lines only serve
as guidance in the parameter plane.

solutions arise for any v0 > 0.

If, on the other hand, diffusion is too strong, motion can be completely suppressed. vc

might reach values too high to allow for traveling states since resting crystals decay at a
finite v0. As vc only slightly varies for different solutions, results for vc of periodic states
as depicted in Fig. 4.18 are also valid for LS. The folds of most resting LS for instance are
located around v0 ≈ 0.2 for parameters used here. If vc exceeds this value, no drifting LS
will appear. The resting LS melt before motion can set in. Resting crystals cease to exist at
v0 ≈ 0.35 (cf. Fig. 4.1(a)).

4.7 Temperature and the onset of motion

Second, we consider the influence of the temperature-like parameter ε on the onset of motion
of crystals. We find that even though ε has a strong influence on the stability of the liquid
phase and ε < 0 is necessary for solidification and crystalline states, vc does practically not
depend on it. Figure 4.19 shows that vc remains almost unchanged for varying temperatures.
The crystal used for the two-parameter continuation corresponds to the periodic solution
in Fig. 4.1 at ψ̄ = −0.5. As expected from phase diagrams in the (ψ̄, ε)-plane (see, e.g.,
[ML13]), the crystal melts around ε ≈ −1.2.
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Figure 4.18: Two-parameter continuation of the onset of motion in the plane spanned by
diffusion constant C1 and activity v0. The position of the critical activity for
traveling crystals vc is tracked. ψ̄ = −0.5, remaining parameters as in Fig. 4.1.

4.8 Spontaneous polarization

So far, a linear equation has been used for the temporal evolution of the polarization P . Via
C2 = 0 and C1 > 0 spontaneous polarization is suppressed and diffusion always equilibrates
P . Only gradients in ψ cause growth in the polar order.

For C2 > 0 and C1 < 0, the unpolarized state P = 0 is unstable and polarization can
emerge spontaneously. A net driving of the crystalline structures then arises for any non-
vanishing coupling between the fields, v0 > 0. There is no threshold activity vc that has to be
exceeded for migration. For spontaneous polarization, the drift velocity c grows proportional
to v0.

Following former approaches [ML13, MOL14, PVWL18] we avoid spontaneous polarization
and concentrate on the case C1 > 0 and C2 = 0. It exhibits a richer solution behavior where
resting states occur besides traveling states resulting in an intricate bifurcation structure.
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Figure 4.19: Two-parameter continuation of the onset of motion in the plane spanned by
temperature ε and activity v0. The position of the critical activity for migration
vc is tracked for the crystal state. The temperature-like parameter ε has only
a small influence. As expected, the crystal at low ψ̄ = −0.5 melts at ε ≈ −1.2
marked by the circle. C1 = 0.1 and also remaining parameters as in Fig. 4.1.
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5 Active Crystals and Crystallites in Two
Spatial Dimensions

In chapter 4, we have gained an extensive overview of different solutions types arising in
the one-dimensional active PFC model, their connections via various bifurcations and the
influence of control parameters. As a next step, we expand the physical space to two
dimensions (2d).

In nature, collective motion often effectively occurs in 2d. Tissue cells, bacteria and
amoebae crawl on substrates while ungulates like gnu or sheep display herding and organize
in two-dimensional swarms. In the context of artificial active matter, e.g., colloidal particles
swimming on the surface of a liquid can form two-dimensional crystals [PSS+13].

We investigate how two-dimensional active crystals described by the aPFC model evolve
from single localized states (LS) to spatially extended states (crystals) under the influence
of activity. As in chapter 4, we focus on mean density ψ̄ and activity v0 as main control
parameters. The activity parameter v0 will turn out to have a major influence not only on
the transition from resting to traveling states but also on the structure of 2d crystals and
pattern selection.

5.1 The aPFC model in 2d

Initially, we recall from Sec. 2.3 the kinetic equations for the conserved scalar density ψ and
the polarization field P in two spatial dimension :

∂tψ = ∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}− v0∇ ·P, (5.1)

∂tP = C1∇2P−DrC1P− v0∇ψ, (5.2)

with activity parameter v0, mean density ψ̄, temperature-like parameter ε and diffusion
coefficients C1 and Dr. For details see Sec. 2.3.

5.1.1 Steady and stationary states

The equations for steady and stationary states in 2d (where stationary states are states
that are steady in a comoving frame moving with velocity c) with ∂tψ = −(c · ∇)ψ and
∂tP = −(c · ∇)P read

0 =∇2
{[
ε+

(
1 +∇2

)2]
ψ +

(
ψ̄ + ψ

)3}− v0∇ ·P + c · ∇ψ (5.3)

0 =C1∇2P−DrC1P− v0∇ψ + (c · ∇)P. (5.4)

Once more, we stress that the velocity c = |c| is equal to zero for resting states. For traveling
states, c has to be determined alongside the solution profiles.
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Figure 5.1: Structures that are reflection-symmetric w.r.t. the x-axis are computed on the
colored area [0, Lx]× [0, Ly/2] with periodic boundary conditions in x-direction
and Neumann conditions for ψ and Px in y-direction at y = 0 and Ly/2. For Py
Dirichlet boundaries apply there with Py = 0. Then only motion in x-direction
is allowed and structures remain vertically pinned. For the visualization of
solutions, the entire domain Ωexp = [0, Lx]× [−Ly/2, Ly/2] is used (indicated by
colored and gray regions).

5.1.2 Numerical continuation in 2d

Similar to our approaches to the aPFC model in 1d, we employ numerical parameter contin-
uation to determine steady (c = 0) and stationary (c > 0) periodic and localized solutions
of Eqs. (5.3) and (5.4). For the 2d problem, we use the MATLAB package PDE2PATH
[UWR14]. Like AUTO07P for 1d problems, PDE2PATH allows us to follow branches of
solutions in parameter space, detect bifurcations, switch branches and in turn follow the
bifurcating branches. A phase condition that breaks translational invariance and a constraint
that controls the volume are included as integral conditions. This implies that in each contin-
uation run beside the main control parameter one has two auxiliary parameters that have to
be adapted. Again, we use the mean density ψ̄ or the activity v0 as main control parameters
while the velocity c and a Lagrange multiplier for the volume constraint are the auxiliary
parameters that are adapted. For details on numerical continuation see Sec. 2.4.2.

Since 2d computations are much more expensive and time-consuming as compared to
1d problems we make use of the symmetries of the fields ψ and P = (Px, Py)

T to reduce
computational efforts. If not differently stated in the caption of respective figures, all
computations were carried out only for half of the shown solution profiles. In Fig. 5.1,
the colored area Ω = [0, Lx] × [0, Ly/2] marks the part of the domain on which actual
computations are performed. The entire solution profile is then obtained by exploiting the
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5.2 Localized states

following symmetries:

ψ(x, y) = ψ(x,−y), Px(x, y) = Px(x,−y), Py(x, y) = −Py(x,−y),

where y = 0 corresponds to the horizontal line separating the colored and gray areas. The
expanded area used for visualization and classification of the solutions is Ωexp = [0, Lx] ×
[−Ly/2, Ly/2] with volume or area V = Lx Ly. From the linear stability analysis of the
uniform state in chapter 3, we know that at onset only the unstable mode kc = 1⇔ Lc = 2π
grows.

Next, we define the boundary conditions (BC) of Ω = [0, Lx] × [0, Ly/2]. In order to
pin the solutions such that the applied symmetries are conserved, we use Neumann BC in
y-direction for ψ and Px. According to its symmetry, Py is kept zero at y = 0 and y = Ly,
i.e. these are Dirichlet BC. Combined the BC in y-direction read

∂yψ(x, y = 0, Ly/2) = 0, ∂yPx(x, y = 0, Ly/2) = 0, Py(x, y = 0, Ly/2) = 0

at y = 0 and y = Ly/2. In x-direction, periodic BC are applied for all three fields.
Due to the chosen BC, the y-component cy of the drift velocity c always remains zero.

This implies that crystalline structures have to be orientated such that the desired drift, e.g.,
as observed in time simulations or experiments, is in x-direction, i.e., cx 6= 0.

Besides the rectangular geometry, we make use of a hexagonal domain when discussing
the passive PFC model and the phenomenon of slanted snaking of branches of steady LS.
There, the numerical continuation is done for a triangular domain, namely, a right angle
triangle with a hypotenuse of the side length of the hexagon and Neumann boundaries for
ψ. In the passive case, Px and Py remain zero. The triangle defined by the vertices at
(x, y) = 2π(0, 0), 2π(0, 3) and 2π(1, 3/

√
3) is one twelfth of the entire domain as pictured in

Fig. 5.3. Note that the equilateral triangles found in the hexagon have a height of Lc = 2π
and a side length of La = 2√

3
Lc = 4π√

3
.

All resulting bifurcation diagrams are given in terms of the L2-norm of the obtained density
profile that we use as main solution measure. In 2d, it is defined by

||ψ||2 =

√
1

V

∫
V
ψ(r)2d2r (5.5)

with area V and r = (x, y)T ∈ V ⊂ R2.
In addition to numerical continuation, we perform numerical time simulations employing

the same pseudo-spectral method with semi-implicit Euler steps as employed for the aPFC
model in 1d. For details see 2.4.1.

5.2 Localized states

As known from the passive PFC model [TAR+13] and from our results in one spatial dimen-
sion, we can identify a transition region where patches of liquid state and crystalline state
coexist. In the vicinity of the linear stability threshold of the liquid state (cf. Sec. 3.1), a
broad variety of spatially localized states (LS or crystallites) exists.

By employing numerical continuation of Eqs. (5.3) and (5.4), we explore the bifurcation
structure of active crystallites in 2d. How do (active) crystallites grow in the plane as a

61



5 Active Crystals and Crystallites in Two Spatial Dimensions

function of mean density ψ̄? Which influence has the activity parameter v0? Do traveling
states arise as in one spatial dimension? Do traveling LS exhibit the same slanted snaking
as resting LS do?

5.2.1 Passive PFC model: slanted snaking

We start by constructing bifurcation diagrams as a function of the mean density ψ̄ for the
passive PFC model. The passive PFC model is restored by v0 = 0 resulting in uncoupled
Eqs. (5.3) and (5.4) and P = 0 for all times. For the studies of LS in 1d, we used the
parameter set given in Eq. (4.5). These parameters have to be slightly amended and three
different combinations of parameters are used throughout the studies of two-dimensional
active crystals and LS.

Figures 5.2 and 5.3 depict the typical slanted snaking of the branches of LS on their path to
a spatially extended crystal. For both bifurcation diagrams, the continuation in ψ̄ is started
with the uniform state of ψ = 0 again referred to as liquid state (gray branch). At a critical
density close to ψ̄ = −0.6, the trivial state is destabilized and a branch of periodic solutions
of hexagonal order bifurcates (black branch). In contrast to the one-dimensional periodic
pattern shown in Fig. 4.3 (corresponding to stripes in 2d), the bifurcation is a transcritical
bifurcation. We did not follow the other part of the emerging branch that corresponds to so-
called cold hexagons or down-hexagons. In contrast, the 1d pattern emerges in a supercritical
pitchfork-bifurcation.

As expected, a secondary bifurcation is detected on the branch of periodic states close to
the primary bifurcation. On the rectangular domain as used for Fig. 5.2, the bifurcating
branch (blue lines) corresponds to localized hexagonal crystallites. Similar to the 1d case
(discussed in Sec. 4.3), the branch undergoes a series of folds while whole layers of density
peaks are added. At each fold, the stability of the branch changes. Solid lines correspond to
stable solutions and dotted lines indicate unstable solutions. Eventually, the branch of LS
ends on the branch to the spatially extended crystal and the entire domain is filled by the
crystalline state. Henceforth, the crystal is stable. Again, due to conservation of ψ, the loci
of subsequent saddle-node bifurcations form lines slanted towards higher ψ̄. Since the model
is passive with v0 = 0 and, hence, P = 0, no traveling states can exist and all solutions are
at rest.

Figure 5.3 presents a similar bifurcation diagram obtained from continuation on a hexago-
nal domain. In contrast to the rectangle used in Fig. 5.2, a rotationally symmetric solution
(red line, also cf. Fig. 5.3(I)) emerges at the secondary bifurcation. This type of LS has been
termed target solution. Its branch is tracked until interactions with the Neumann boundaries
of the triangular computation domain are not negligible anymore. Apparently, the hexagonal
geometry favors the emergence of target-like solutions as it is closer to a rotational symmetry
than the previously used rectangle.

The snaking branch of LS (blue line) bifurcates in a tertiary bifurcation from the branch of
target solutions. This bifurcation is actually imperfect due to numerical grid effects. However,
in Fig. 5.2, this cannot be seen by eye. The crystalline patch of hexagonal order enlarges,
until, ultimately, the hexagonal domain is completely filled and the branch terminates on
the branch of the periodic crystal (black line). As the hexagonal domain is of larger area
than the rectangular one of Fig. 5.2, more density peaks fit into it and the snaking path of
the LS consists of more undulations.

For Figs. 5.2 and 5.3, the temperature-like parameter ε is increased from the value ε =
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5.2 Localized states

Figure 5.2: (left) Bifurcation diagram of homogeneous, periodic and localized steady state
solutions of the passive PFC model in 2d as a function of the mean density ψ̄.
The solutions are characterized by their L2-norm ||ψ||2. (Un)stable solutions are
shown as (dotted) solid lines. The liquid phase (gray line with norm zero) is
destabilized at ψ̄ ≈ −0.55 and an unstable branch of periodic patterns (black
line, cf. IV) emerges. In a secondary bifurcation, a branch of LS (blue line) is
created. After various folds causing alternating stabilities, the branch terminates
on the branch of the periodic patterns. (right) Selected solution profiles ψ(r)
at loci labeled (I-IV) in the left panel. Rectangular domain of size 2La × 4Lc

with La = 4π/
√

3 being the side length of a hexagon/triangle and Lc = 2π the
critical wavelength and height of triangles. Parameters: ε = −0.98, v0 = 0.
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5 Active Crystals and Crystallites in Two Spatial Dimensions

Figure 5.3: (left) Bifurcation diagram for the passive PFC model computed on a hexagonal
domain. Shown is the norm ||ψ||2 as a function of the mean density ψ̄. Gray:
liquid phase with norm zero. Black: periodic pattern (cf. IV). Dark red: target
solution (cf. I). Blue: LS. In a primary bifurcation, the liquid is destabilized and
the branch of periodic crystal emerges. Rotationally symmetric localized target
solutions are created in a secondary bifurcation. The square marks where inter-
actions of the target solution and Neumann boundaries are no longer negligible
and the continuation is stopped. The snaking branch of LS bifurcates in a ter-
tiary bifurcation from the target solutions. (right) Solution profiles ψ(r) at loci
indicated by (I-IV). Hexagonal domain with side length 3La and La = 4π/

√
3

being the side length of an individual triangle. Parameters are as in Fig. 5.2.
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Figure 5.4: Suppressed snaking: At low values of ε = −1.5, passive LS do not exhibit slanted
snaking but rather grow towards elongated stripe-like structures. In contrast to
ε = −0.98 (cf. Figs. 5.2 and 5.3) crystalline patches do not grow by adding layers
of density peaks. Rectangular domain of size 2La × 2Lc. Note that the result
of an elongating LS are also obtained on larger domains and is independent of
possible interaction due to periodic boundaries. Remaining parameter: v0 = 0.

−1.5 used in our analyses of the 1d model to ε = −0.98 as employed in former studies
[ML13, MOL14, PVWL18]. At ε = −1.5, the localized density peak does not grow into a
patch of hexagonal order but rather elongates and forms stripe-like patterns. Apparently,
hexagons are not stable in this region, but stripes are. Figure 5.4 visualizes this particular
behavior as function of ψ̄. In order to exclude effects of boundaries, the continuation was
carried out on various domains with the same result of an elongating density peak. In
contrast to all other solution profiles shown in this chapter, ψ(r) in Fig. 5.4 is not computed
on half of the depicted domain and mirrored, but (I)-(III) depict the actual obtained solution
profiles. Here, the density peak is placed in the middle of the computational domain in order
to avoid a possible influence of the boundaries.

Next, we move on to the active PFC model and investigate the influence of activity v0.
By continuations in ψ̄ at v0 = 0, we produce various LS whose response to activity is then
studied. As explained in Sec. 5.1.2, we use a rectangular domain and symmetries of the ψ
and P to use the continuation on a reduced-size domain. In Sec. 5.2.4, we return to slanted
snaking and study to what extend snaking is modified by activity. In particular, we study
the bifurcation structure of traveling states as a function of ψ̄.
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5.2.2 Active PFC model: onset of motion

We now systematically explore how LS in 2d respond to increasing activity by employing the
activity v0 as main control parameter. From results obtained for LS in one spatial dimension,
as depicted, e.g., in Fig. 4.7, we expect transitions from resting to traveling LS (RLS and
TLS, respectively) associated with a symmetry breaking between the two fields ψ and P, as
centers of density peaks are shifted w.r.t. +1 defects in P at a critical activity vc.

For resting crystals, P points downwards gradients of ψ, hence, leading to a defect at the
center of the density peak, similar to the vector field a monopole would cause. These defects
are termed +1 defects (cf. Fig. 5.6(a)).

Figure 5.5 shows a typical bifurcation diagram as a function of v0. A stable one-peak
LS at rest (represented by a solid blue line) undergoes a drift-instability at vc ≈ 0.15. The
detected vc is practically the same as found for LS in 1d, since all parameters that control
P are set to the same values as in Sec. 4.3.1. The traveling one-peak LS (orange branch)
is stable up to values of v0 ≈ 0.24 where the branch folds back to smaller v0. Unstable
branches are given as dotted lines. The drift velocity c of the TLS increases as

√
v0 − vc as

previously observed. Due to larger grid effects in 2d (we use an adaptive grid), the onset
of motion is not perfectly sharp in c (cf. Fig. 5.5). Since the derived criterion for the onset
of motion (Sec. 4.4) can be extended to two spatial dimension without loss of generality,
tracking ||ψ||22 − ||P||22 reveals a zero crossing at vc helping us to identify drift bifurcations.

Taking a closer look at the onset of motion reveals the symmetry breaking in 2d between
ψ and the vector field P at sufficiently large coupling. Centers of density peaks are shifted
with respect to the +1 defects in P as depicted in Fig. 5.6. In 1d, the shift was w.r.t to
zeros of Px (cf. Figs. 4.1 and 4.2), now it is w.r.t. topological defects in the polarization
field. For resting states, averaging P over the area of a single density peak gives zero. Above
vc, a net orientation of P emerges and traveling crystals or crystallites come into existence.
In Fig. 5.6(b), the net polarization points to the left leading to a negative drift velocity c.
The direction of the shift and the resulting sign of the velocity are random. Both directions
correspond to the branch of traveling solutions.

If ψ̄ is chosen too low, i.e., too close to the solid-liquid transition, activity can also melt
crystallites before motion sets in. This is what happens to the resting two-peak LS. Besides
the one-peak LS from Fig. 5.5, also a LS consisting of two bound density peaks coexist with
the homogeneous phase at the fixed mean density of ψ̄ = −0.9.

However, the branch of the resting two-peak LS as shown in Fig. 5.7 does not reach far
enough in v0 to fulfill the criterion for the onset of motion and activity melts the structure be-
fore the drift starts. The position of the fold is at v0 ≈ 0.14 < vc. Close to the fold, there is a
subcritical pitchfork bifurcation. Here, the steady asymmetric solutions (dotted black branch,
cf. Fig. 5.7(right) central panel) bifurcate off from the blue branch that corresponds to solu-
tions with a left-right symmetry in ψ(r) (upper and lower panels). Note that the dotted black
line represents a double branch of two different asymmetric solutions related by a reflection
at the central vertical line: [ψ(x, y), Px(x, y), Py(x, y)]↔ [ψ(−x, y), −Px(−x, y), Py(−x, y)].
At ψ̄ = −0.9, all two-peak solutions are unstable.

Yet, when increasing ψ̄ to -0.8, also the two-peak LS start to move. Due to the additional
spatial degree of freedom and a structure at rest that is not rotationally symmetric, the
overall picture changes rather drastically. Figure 5.8 summarizes the intricate bifurcation
structure of the two-peak crystallite at ψ̄ = −0.8. The complicated structure is disassembled
into Figs. 5.9 and 5.10 shedding light on the different emerging branches of TLS.
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Figure 5.5: (left) Bifurcation diagram of resting and traveling one-peak LS at mean concen-
tration ψ̄ = −0.9. The L2-norm is given as a function of activity v0. Resting
solutions are indicated by blue lines, traveling states by orange lines. Branches
of (un)stable states are plotted in (dotted) solid lines. At vc ≈ 0.15, the stable
resting LS undergoes a drift pitchfork bifurcation and a branch of traveling states
emerges. The region of existence of the TLS is limited by a fold at v0 ≈ 0.24.
Panels on the right: (top) Selected solution profile ψ(r) at v0 = 0.1 showing only
the central part of the domain. (center) Drift velocity c vs. v0. Above vc ≈ 0.15,
the velocity increases ∝ √v0 − vc. Deviations from a sharp onset of motion are
due to grid effects. (bottom) The difference ||ψ||22 − ||P||22 crosses zero at the
onset of motion. Note that, in the left panel, ||ψ||2 times the area V is plotted for
clarity. Norms of LS tend to have very small values on large domains. Domain
size: V = Lx × Ly = 60 × 30. Remaining parameters are ε = −1.5, C1 = 0.1,
C2 = 0 and Dr = 0.5.
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Figure 5.6: Detailed view of density field ψ(r) (color coded) and polarization P(r) given
as white arrows. (a) depicts a one-peak LS at rest (v0 = 0.13). The density
maximum coincides with the +1 defect of the polarization field. Averaging P
over the peak shows zero net polarization. (b) depicts a traveling one-peak LS at
higher activity (v0 = 0.22 > vc). Peak maximum and location of the +1 defect of
P are shifted w.r.t. each other breaking the symmetry of (a). The shift induces
a net polarization to the left. This leads to a net propulsion and the crystallite
travels to the left with c ≈ −0.19. Only a part of the domain used for numerical
continuation is shown. Remaining parameters as in Fig. 5.5. For the vector field
P of a spatially extended crystal see Fig. 5.18.

Interestingly, its drift can occur parallel and also perpendicular to the orientation of the
dumbbell shaped two-peak LS – the latter stretching to higher values of v0. Figure 5.9 depicts
branches of TLS moving parallel to the orientation of the elongated LS while Fig. 5.10 shows
the branches of TLS moving orthogonal to the long axis of the LS.

The elongated two-peak LS is connected to the rotationally symmetric one-peak solution
as marked in Fig. 5.10(III). This point also marks a fold. The branch of stable resting
one-peak LS (solid gray line) folds and the LS emerges towards a two-peak LS. In fact, all
(symmetric) resting LS in Fig. 5.8 correspond to one single branch, similar to the result for
the snaking branches as a function of ψ̄. The branches of one-peak LS (moving and resting)
are given in light gray with solid (dotted) lines for (un)stable states.

Unfortunately, as at the lower mean density of ψ̄ = −0.9 (Fig. 5.7), also here all two-peak
LS are unstable. Admittedly, this makes understanding the bifurcation structure of the
active two-peak LS a problem of rather academic nature.

At vc ≈ 0.15, various TLS emerge at drift bifurcations marked in Figs. 5.9 and 5.10 by
black circles. TLS moving parallel to their long axis (Fig. 5.9) do not reach activities as
high as TLS moving orthogonal to their long axis. Two branches of TLS originate in a
drift-transcritical bifurcation on the branch of resting asymmetric states (black). Due to
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Figure 5.7: (left) Bifurcation diagram of resting two-peak LS at a low density of ψ̄ = −0.9:
L2-norm of ψ as a function of activity v0. (right) Selected density profiles ψ(r).
From top to bottom, they correspond to the upper half of the blue branch, the
black branch of asymmetric solutions and the lower half of the blue branch. The
blue branch represents solutions with a left-right symmetry. All solutions are
unstable (dotted lines). In contrast to the one-peak LS, only resting two-peak
LS exist. The fold of the symmetric states is located at v0 < vc ≈ 0.15 and no
traveling states come into existence. Parameters and domain size as in Fig. 5.5.

the lack of a left-right symmetry of the density profile, each direction of the drift results
in a single branch. Hence, for asymmetric states, the drift bifurcation is not a pitchfork
bifurcation but a transcritical bifurcation. TLS of the upper branch move to the left with the
larger density peak at their tip (cf. Fig. 5.9(III)). The second branch that emerges (bending
towards lower norms) corresponds to TLS with a slightly smaller density peak at the tip (II).
Both branches of TLS terminate on the branch of resting symmetric LS (blue) in respective
drift pitchfork bifurcations (marked by circles).

Note that on the scale of Fig. 5.9 the bifurcation occurring on the branch of asymmetric
RLS does not exhibit the typical shape of a transcritical bifurcation as both branches of
TLS seem to bifurcate towards larger v0. We believe that one of them undergoes a fold
very close to the transcritical bifurcation. A similar behavior was observed for transcritically
bifurcating TLS in 1d. Figure 4.11 in chapter 4 depicts this case. Grid effects make it very
hard to remain on branches of RLS and lead to rather blurred onsets of the drift velocity c
vs. v0. However, with the help of the derived onset criterion, we are able to determine the
exact loci of drift bifurcations (lower panels of Fig. 5.9).

Note that the state on the unstable branch of asymmetric RLS (dotted black) grows
towards a stripe-like structure with a small density bump at its head when leaving the range
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Figure 5.8: Summary of bifurcation diagram for a dumbbell shaped two-peak LS showing the
L2-norm of ψ as a function of v0. Blue lines indicate branches of resting symmetric
LS, black stands for resting asymmetric LS. At v0 ≈ 0.15, states traveling in
different directions (orange branches) emerge in various drift bifurcations. See
Figs. 5.9 and 5.10 for explanatory details and selected solution profiles. Thin
gray branches correspond to resting and traveling one-peak LS. Domain size:
V = 60× 30. ψ̄ = −0.8. Remaining parameters are as in Fig. 5.5.

of Figs. 5.8 and 5.9 at the top. The branch does not have any stable sections.

Figure 5.10 explores the branches of traveling two-peak LS that move orthogonal to their
long axis. Here, the picture is simpler. As for the traveling one-peak LS, a branch of TLS
stretches between two drift bifurcations highlighted by black circles. Panels on the right
show selected density profiles.

Overall, the bifurcation structure of traveling two-peak LS is much more intricate than the
one of the single-peak LS. Also, we have seen that increasing ψ̄ from -0.9 to -0.8 drastically
changes the bifurcation structure. Figure 5.11 illustrates how drift bifurcations and TLS
come into existence by showing a series of four bifurcation diagrams for increasing values of
mean density ψ̄. Between ψ̄ = −0.67 and -0.65 a pair of drift bifurcation is created. Their
origin coincides with the fold of the branch of resting states (blue lines) as two-parameter
continuations shows (cf. Fig. 4.8). For increasing ψ̄, the region of existence of TLS grows as
the fold of their branch moves to higher values of v0. The threshold activity for migration vc

stays practically constant. Consistent results were obtained by extensive fold continuations
in 1d. Note that, in Fig. 5.11, ε = −0.98 in contrast to previous figures with ε = −1.5.
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⇒

⇐

Figure 5.9: Onset of motion parallel to the long axis of two-peak dumbbell-shaped LS. Main
panel: bifurcation diagram of two-peak LS giving the norm of ψ vs. activity
v0. On the right, selected solution profiles ψ(r) at loci labeled (I-IV) are shown.
Blue branches correspond to resting symmetric LS with a left-right symmetry in
ψ as shown in panel I. The black branch denotes resting asymmetric solutions,
cf. panel IV. The resting two-peak LS are destabilized w.r.t. parallel motion in
drift bifurcations at vc ≈ 0.16, marked by black circles. Orange branches indicate
traveling LS (II and III). III travels with the larger density peak at its tip, for II it
is the opposite. (Dotted) solid lines correspond to (un)stable solutions. Note that
again all two-peak LS are unstable. The asymmetric solution is destabilized in a
transcritical drift bifurcation marked by a circle on the black branch. Here, two
branches of TLS (orange) with opposite drift velocities emerge. Due to the lack
of symmetry in ψ, they do not correspond to the same solution as for symmetric
LS. The lower panels show velocity c vs. v0 and the criterion ||ψ||22− ||P||22, that
crosses zero at the respective onsets of motion. Parameters and domain size as
in Fig. 5.8.
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⇐

Figure 5.10: Onset of motion perpendicular to the long axis of the dumbbell-shaped two-
peak LS. Main panel: bifurcation diagram giving the norm of ψ vs. activity
v0. On the right, selected solution profiles ψ(r) at loci labeled (I-IV) are shown.
Line styles, symbols and parameters as in Fig. 5.9. The resting two-peak LS
changes its shape towards the fold at point III evolving into a one-peak LS.
The resting two-peak LS belongs to the same branch as the resting one-peak LS
whose branches are given in light gray. Stable resting and traveling one-peak
LS correspond to solid lines. At two drift-pitchfork bifurcations (marked by
circles), the resting LS are further destabilized and start to travel. The motion
is perpendicular to the orientation of the LS. The small panels show velocity c
vs. v0 and ||ψ||22 − ||P||22 crossing zero at the two drift bifurcations.
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Figure 5.11: A sequence of bifurcation diagrams shows how traveling states come into exis-
tence with increasing mean density ψ̄. Shown is the norm of resting one-peak LS
(blue) and traveling LS (orange) vs. activity v0. The mean density ψ̄ increases
from top left to bottom right. Two drift pitchfork bifurcations emerge at the
fold of the branch of RLS. At higher ψ̄, the range of existence of TLS expands to
larger v0 and the positions of drift-pitchfork bifurcations separate further. The
onset of motion is always at vc ≈ 0.15. Solid (dotted) lines represent (un)stable
solutions. Parameters: ε = −0.98, C1 = 0.1, C2 = 0 and Dr = 0.5.

With various TLS obtained by continuation in v0, we next give a parameter map with a
morphological phase diagram before returning to bifurcation diagrams as a function of the
mean density ψ̄ and investigating the phenomenon of slanted homoclinic snaking for active
crystallites at v0 > 0 in Sec. 5.2.4.

5.2.3 Morphological phase diagram

Before discussing the bifurcation structure as function of ψ̄ in detail and changing the
temperature-like parameter ε to allow for snaking, we conclude the discussion of active
crystallites at ε = −1.5 by presenting a large scale morphological phase diagram in the
parameter plane spanned by v0 and ψ̄. The phase diagram is determined numerically by
counting peaks of ψ(r, t) after a sufficiently long transient. To favor the creation of LS,
six density bumps are placed at random positions on the homogeneous phase marginally
perturbed by white noise. For the polarization P, we choose a randomly perturbed trivial
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Figure 5.12: Morphological phase diagram for the active PFC model in 2d. Different states
are characterized by the total number of density peaks formed in the domain.
The rectangular domain is of size 8Lc × 7La with La = 4π/

√
3 and Lc = 2π.

A total number of 56 density peaks of hexagonal order fit into the domain.
Horizontal white lines (solid and dashed) give limits of the linear stability of
the liquid state. The vertical dotted line marks the onset of motion. Black
lines give the position of the fold of resting one-peak LS (solid) and of traveling
one-peak LS (dotted). The color coding results from time simulations. The
liquid state refers to a uniform density phase with zero peaks (white). Resting
and traveling LS exist in the regions marked in blue with cluster sizes ranging
from a single peak (light blue) up to sizes that almost fill the entire domain
(dark blue). Spatially extended, periodic hexagonal patterns are indicated in
green (56 peaks). Above v0 ≈ 0.3 in the regime of traveling crystals, the number
of peaks decreases again as hexagonal patterns are transformed towards stripe
patterns and each ridge is only counted as one peak. Here, some blue pixels
appear in the green area. Remaining parameters are ε = −1.5, C1 = 0.1,
C2 = 0 and Dr = 0.5 as used throughout Sec. 5.2.2. Increments: ∆v0 = 0.035,
∆ψ̄ = 0.0125. See Fig. 5.13 for a zoom and profiles.
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Figure 5.13: Details of the phase diagram for the active PFC model at low activities. Color
coding, lines and parameters as in Fig. 5.12. Selected converged solutions
profiles ψ(r) (I-V) correspond to loci labeled in the phase diagram. Arrows
indicate direction of motion. (I) Resting hexagons close to the transition to
stripes. (II) Traveling hexagons. (III) Traveling cluster of hexagonal order. (IV)
Resting LS. (V) Traveling LS. Increments: ∆v0 = 0.02, ∆ψ̄ = 0.025.
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state P0 = 0 as initial conditions.

The domain with periodic boundaries has a size of 8Lc × 7La with La = 4π/
√

3 being
the side length of a hexagon/triangle and Lc = 2π the critical wavelength at the onset of
crystallization. Lc is the height of triangles found in the hexagonal pattern. This domain
size results in a maximal number of 56 density peaks in a periodic array (cf. Fig. 5.13(I)).

In Fig. 5.12, periodic states with around 56 density peaks are displayed in green, whereas
LS exist within the blueish area. The white area without any density peaks corresponds to
the liquid state ψ(r) = 0. The white lines mark limits of the linear stability of the liquid
phase. The vertical white lines follow the onset of motion at vc (note vc ≈ 0.15 independent
of ψ̄). The limits of existence of LS are determined by a two-parameter continuation of their
fold (for 1d fold continuation cf. Fig. 4.8). The black lines give the position of folds of resting
one-peak LS (solid black) and of traveling one-peak LS (dotted black). The position of the
saddle-node bifurcations of 2d TLS shifts again backwards towards smaller values of v0 at
v0 ≈ 0.7. This is a major difference to one-peak TLS in 1d, that exist up to arbitrarily high
v0.

The time simulations indicate large areas of existence of various active LS (blueish area).
The size of LS ranges from single density peaks (light blue) to patches of LS almost filling
the entire domain (dark blue). For selected solution profiles ψ(r) see Fig. 5.13. The phase
diagram also illustrates how hexagonal periodic states change their shapes towards stripe
patters resulting in a lower number of density peaks (Fig. 5.13(I)). For stripe patterns each
ridge is only counted as a single density peak. Close to the limit of linear stability of the liquid
state, large patches of localized crystalline order coexist with the uniform state (Fig. 5.13(III)).
Resting LS (v0 < 0.15, left of the vertical dotted line denoting the onset of motion) exist
at low values of ψ̄ ≈ −1.05. Increasing activity melts most of these LS (ψ̄ < −0.8) and the
v0-range of existence becomes smaller for higher values of ψ̄. Higher v0 also favors traveling
crystals that fill the entire domain. Namely, above the linear stability threshold of the liquid
state, around ψ̄ = −0.65, the blue range shrinks for increasing vc < v0 < 0.6 and loses
ground to green areas.

As in the 1d case, we observe that traveling periodic states exist at arbitrarily high activities
and do not melt as most of the LS do for increasing self-propulsion.

5.2.4 Snaking of active crystallites

In this section, we explore in detail the bifurcation structure as a function of mean density
ψ̄ of resting and traveling active crystallites. Having analyzed the slanted snaking of passive
LS (Sec. 5.2.1) and the bifurcation structure of active LS in 1d (Sec. 4.3.1), we now want to
answer the question how the snaking of LS in two spatial dimension is influenced by activity
and how TLS respond to varying ψ̄.

The value ε = −1.5 of the effective temperature turns out to be too low to support
continuous snaking branches and it suppresses the snaking path of passive LS (cf. Fig. 5.4).
Most likely they become disconnected pieces. That is why we increase the temperature to
ε = −0.98 as done for passive crystallites in Sec. 5.2.1. In addition, this value is also employed
in [ML13] where the aPFC model was introduced. There, diffusion is set to C1 = 0.2 leading
to vc ≈ 0.3 (cf. Sec. 4.6). The high diffusion causes many crystallites to melt before motion
can set it. Therefore, we stick to C1 = 0.1 as used in the previous sections. Then, the
threshold for migration is vc ≈ 0.15.

Figure 5.14 depicts the bifurcation diagram at v0 = 0.151 slightly above vc. Activity is
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Figure 5.14: Bifurcation diagram showing slanted snaking of resting and traveling LS as a
function of the mean density ψ̄. Activity is fixed at the relatively low value
v0 = 0.151 > vc allowing for the coexistence of resting and traveling states.
(Un)stable solutions are given as (dotted) solid lines. Labels (I)-(IV) indicate
the loci of profiles of stable traveling LS shown on the right. The liquid phase
(gray line) with norm zero is destabilized at ψ̄ ≈ −0.53 and a branch of traveling
periodic patterns (dark red) emerges. Close to the first primary bifurcation,
also a branch of resting crystals (black) emerges in another primary bifurcation.
In secondary bifurcations on those branches, resting and traveling LS (blue
and orange), respectively, bifurcate. Since v0 > vc, all resting solutions are
unstable. The inset illustrates the small separation of the branches in terms
of their norm. The lower panel depicts the drift velocity c vs. ψ̄. The mean
density has no strong influence on c. Note that, as c < 0, all TLS move to the
left. Rectangular domain of size 2La × 4Lc. Parameters: ε = −0.98, C1 = 0.1,
C2 = 0, Dr = 0.5.
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Figure 5.15: Bifurcation diagram of traveling crystal and LS as a function of the mean
density ψ̄. Activity is fixed at v0 = 0.18. Due to high activity, no resting states
exist. Traveling LS (orange) bifurcate from the traveling crystal (dark red) and
exhibit slanted homoclinic snaking. The liquid state (gray) coexist with TLS.
The patches of TLS (I)-(III) grow by adding density peaks and terminate on the
periodic pattern (IV) once the entire domain is filled. Labels (I)-(IV) indicate
the loci of the selected density profiles. The bottom right panel depicts the
drift velocity c as a function of ψ̄. ψ̄ only has a small influence on the velocity
of the TLS. The drift velocity of the crystal (dark red) is nearly independent
of ψ̄. Domain size and remaining parameters as in Fig. 5.14.
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large enough to allow for TLS. Still, it is not beyond the folds of RLS, i.e. small enough to
keep branches of (unstable) RLS in existence. The overall picture is similar to the slanted
homoclinic snaking found for passive LS. The branches of LS bifurcate from periodic solutions
that emerge in primary bifurcations from the destabilized liquid state. Besides the resting
crystal (Fig. 5.14, dotted black branch), there is a branch of traveling spatially extended
patterns (red). Both crystals are of hexagonal order and their norms only slightly differ. The
inset in Fig. 5.14 enlarges a part of the branches close to the fold, illustrating their small
separation.

In a secondary bifurcation, the resting and traveling LS branch off from the resting and
traveling periodic solutions, respectively. Since activity is beyond the threshold for migration,
all RLS (blue branch) are unstable as indicated by dotted lines. The TLS exhibit the typical
alternation of stable and unstable states. Just like the branches of periodic solutions and since
v0 ≈ vc, resting and traveling solutions are not largely separated in terms of the L2-norm.

The lower panel of Fig. 5.14 visualizes the drift velocity c of the respective solutions as a
function of ψ̄. Evidently, RLS (blue) and the resting crystal (black) have c = 0. The velocity
of the traveling crystal (red) rises slightly as the crystal grows. In contrast to the main panel,
here it is easy to see how the TLS branch off from the traveling periodic solution. All in all,
the drift velocity c does not strongly depend on ψ̄.

The same holds at v0 = 0.18 as shown in Fig. 5.15. The bottom right panel reveals that c
does nearly not depend on the mean density ψ̄. Because v0 = 0.18 is beyond the positions
of the folds of RLS, resting solutions have disappeared. As also observed at smaller v0, the
TLS (orange) emerge in a secondary bifurcation from the branch of the traveling crystal
(red). For increasing ψ̄, the TLS enlarge by adding density peaks and, ultimately, the whole
domain is filled by crystalline structure. Here, the branch of LS terminates on the branch of
the periodic solution (cf. Fig 5.15(IV)). In contrast to the passive snaking, the growth of
the LS does not happen by adding layers of density peaks. The broken symmetry at v0 > vc

seems to favor a growth by single density peaks as panels (I) and (II) show. The different
growth is reflected by more undulations of the snaking branch as compared to the passive
snaking in Fig. 5.2.

Overall, we can state that, first, the mean density ψ̄ does not have a strong influence on
the drift velocity c. Second, the bifurcation structure of TLS as a function of ψ̄ is different
for LS (2d) at ε = −0.98 as compared to LS (1d) at ε = −1.5 (cf. Fig. 4.3 and following).
At ε = −1.5, there is no continuously snaking branch of TLS starting and terminating on
the branch of traveling crystals. Branches of one-dimensional TLS at ε = −1.5 are rather
branching off from RLS, while at ε = −0.98, there is no connection between the branches
of RLS (of hexagonal order) and TLS (also hexagonal patches) when varying ψ̄. Hence,
changes in the mean density cannot directly induce drift instabilities (although a suitable ψ̄
is necessary for drift instabilities to occur when varying v0). And rather unexpected (when
taking 1d results as a guide), the branch of TLS at ε = −0.98 exhibits slanted homoclinic
snaking as observed for RLS in the passive system and in active ones at small v0. We do not
expect the spatial dimensions to play a role, here. Most likely, this is an effect solely due to
the effective temperature ε.
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5.3 Periodic States

In two spatial dimensions, different periodic patterns can be distinguished. Besides stripes
that can be regarded as the two-dimensional extension of the periodic states determined in
1d (Sec. 4.2), the aPFC model exhibits hexagonal patterns and also rhombic structures. In
this chapter, we analyze periodic states that emerge in the two-dimensional aPFC model
and, in particular, study their bifurcation structure.

5.3.1 Crystal structure and activity v0

The original passive PFC model exhibits crystalline hexagonal patterns in certain ranges of
temperature ε and mean density ψ̄. Changing the mean density can lead to transitions to
stripes [TAR+13]. These transitions can also be induced by the activity v0. In the original
paper [ML13] introducing the aPFC model, numerical time simulations show with increasing
v0 a transition from a resting hexagonal pattern to traveling hexagons. A further increase
leads to a transition to traveling rhombic patterns and, ultimately, to traveling stripes.
Snapshots from time simulations at certain values of v0 and the same set of control parameters
as in [ML13] are shown in Fig. 5.16. They reproduce previously made observations.

The domain is of size 6Lc × 5La with critical wavelength Lc = 2π and side length La =
4π/
√

3 of emerging hexagons accounting for 30 density peaks in hexagonal order. At v0 = 0,
resting hexagons are orientated parallel to the y-axis and perfectly match the aspect ratio of
Lx and Ly. As v0 is increased the wave vector and geometry of the formed pattern change.
The whole crystalline pattern reacts by a rotation in the periodic domain (cf. Fig. 5.16(a),(b)).
Due to the periodic boundaries, in this way it can adjust its position such that dominant
wave vectors fit into the domain.

Rhombic (Fig. 5.16(c)) and stripe patterns (d) orient themselves parallel to the y-axis as
Lx is a multiple of Lc = 2π. Following the drift-instability at vc ≈ 0.3, these patterns travel
with a constant speed c while keeping their spatial periodicity. White arrows indicate the
direction of motion. Stripes always travel perpendicular to their orientation. Also hexagons
and rhombuses show distinct directions of motion. Therefore, the patterns have to be correctly
orientated when employing numerical continuation with the particular boundary conditions
discussed in Sec. 5.1.2. The boundary conditions only allow for motion in x-direction.

5.3.2 Pattern selection and bifurcation structure

From time simulations in previous studies [ML13, MOL14], it is known that the activity
parameter v0 does not only lead to a transition from resting to traveling patterns, but also
strongly influences the crystal structure. Next, we use numerical continuation to investigate
if the different patterns are connected via bifurcations and how patterns are selected.

Starting with the steady state solution of a resting hexagonal pattern at v0 = 0 in a
suitable domain, we follow the branch of hexagonal crystals in v0. Figure 5.17(I) illustrates
the chosen domain. Its aspect ratio corresponds to the ratio between the height Lc and
the side length La of the equilateral triangles within in the hexagon. The hexagons are
orientated with one edge parallel to the direction of motion observed in time simulations
close to the onset of motion (cf. Fig. 5.16). Due to the employed boundary conditions (see
Sec. 5.1.2 for details) only motion along the x-axis is possible.

The resulting bifurcation diagram is depicted in the main panel of Fig. 5.17. The branch
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Figure 5.16: Snapshots of periodic density patterns ψ(r) for increasing activity v0 from nu-
merical time simulations. From (a) to (d) values of v0 are (0.25, 0.3, 0.8, 1.5).
Domain size: 6Lc × 5La with critical wavelength Lc = 2π and side length La.
Simulations reproduce the previous observation [ML13] of a transition from
(a) resting hexagonal crystals to (b) traveling hexagons. For higher activities
the pattern consists of (c) traveling rhombic cells and, eventually, (d) traveling
stripes. The respective direction of motion is indicated by white arrows. Re-
maining parameters are ψ̄ = −0.4, ε = −0.98, C1 = 0.2, C2 = 0 as employed in
Ref. [ML13].
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Figure 5.17: Hexagonal patterns in the 2d aPFC model. Main panel: bifurcation diagram
showing the L2-norm of ψ as a function of v0. Resting hexagons (blue branch)
are stable (solid line) until a drift-instability occurs at vc ≈ 0.3. A branch of
stable moving hexagons (orange) bifurcates. Its drift velocity c is given in the
lower left panel. The lower right panel shows that ||ψ||22 − ||P||22 crosses zero
at the drift bifurcation. On the right: Selected solution profiles ψ(r) at loci
labeled (I-IV). Profiles (II-IV) move to the right. Domain size: V = 3La× 4Lc.
Parameters as in Fig. 5.16.
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Figure 5.18: Detailed view of density field ψ(r) (color coded) and polarization P(r) as white
arrows. (a) depicts a hexagonal crystal at rest (v0 = 0.25). The density peaks
coincide with the +1 defects of the polarization field. Averaging P over single
peaks shows zero net polarization. (b) depicts a traveling crystal at higher
activity (v0 = 0.4 > vc). Peak maximums and locations of the +1 defects of P
are shifted w.r.t. each other breaking the symmetry of (a). The shift induces
a net polarization to the right. This leads to a net propulsion and the crystal
travels to the right with c ≈ 0.3. Parameters and domain size as in Fig. 5.17.

of resting hexagons is given in blue, whereas the traveling hexagonal pattern corresponds to
the orange branch. At a critical activity of vc ≈ 0.3, the resting pattern is destabilized in a
drift-pitchfork bifurcation. The left bottom panel shows the characteristic growth of the drift
velocity c. Close to the drift instability it is c ∝ √v0 − vc. The resting state is unstable for
v0 > vc and eventually decays to the uniform liquid phase. The second small panel depicts
how the criterion ||ψ||22 − ||P||22 crosses zero at the onset of motion. Note that the onset of
motion at vc ≈ 0.3 corrects earlier studies [ML13] and confirms the critical activity found in
[PVWL18].

Four selected solution profiles ψ(r) (I)-(IV) correspond to loci marked in the main panel.
The density profiles illustrate how the hexagonal order of the crystal is preserved for increasing
v0. However, the individual density peaks change their shape from circular bumps towards
oval and even rectangular peaks, cf. Fig. 5.17 (III) and (IV). The branch of traveling
hexagons is stable up to very high values of activity, in other words, we did not detect a
destabilizing bifurcation on the branch.

Figure 5.18 gives details on the symmetry breaking associated with the onset of motion of
the hexagonal pattern. The density field ψ(r) is given as a color map and the polarization
field P(r) is indicated by white arrows. (a) depicts the two fields for a resting crystal. As
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discussed for LS in Sec. 5.2.2 for resting states, centers of density peaks coincide with +1
defects of P. One of the corresponding symmetries is broken beyond the onset of motion.
The topological defects of P are shifted w.r.t to the peaks of ψ. Hence, when averaging the
polarization over a density peak, a net polarization and drift emerge. Figure 5.18(b) shows a
moving hexagonal crystal with a positive net polarization. In the red area of the maximum
of ψ, more arrows point to the right than to the left and, thus, the crystal moves to the right
as an entity.

For the next bifurcation diagram Fig. 5.19, the orientation of the hexagon is rotated by
90◦, i.e., the drift is forced to occur perpendicular to the an edge of the hexagon. The
domain size is adapted to match the hexagons by switching the lengths of Lx and Ly from
Fig. 5.17. As in Fig. 5.17, the resting hexagonal pattern (blue branch) is destabilized in a
drift-pitchfork bifurcation. The exact value reads vc,⊥ = 0.3015 as compared to vc,‖ = 0.3008
in Fig. 5.17. The slightly larger threshold is in agreement with results from time simulations
where the drift parallel to an edge (cf. Fig. 5.17) is found for motion at the onset. Black
circles highlight drift bifurcations in the main panel of Fig. 5.19. Besides stable resting
hexagons, an unstable resting stripe pattern exists in this setup (red branch). The resting
stripes undergo a drift bifurcation at vc ≈ 0.3, too.

In contrast to traveling hexagons moving parallel to an edge (Fig. 5.17), here, traveling
hexagons do not exist at arbitrarily high v0. To be specific, the branch terminates on the
branch of travelling stripes (horizontal orange line) in a supercritical pitchfork bifurcation
and does not continue towards arbitrarily high v0 as in Fig. 5.17. Even before reaching it,
the branch loses stability at about v0 = 0.6. Along this branch, the crystal continuously
changes from traveling deformed hexagons (Fig. 5.19(II)) to traveling modulated stripes
(III). The horizontal branch of moving stripes confirms results for periodic states in one
spatial dimension that also keep a constant norm just shifting the relative positions between
ψ(x) and P (x) for changing v0 (cf. Fig. 4.1). Eventually, the traveling stripes gain stability
at about v0 = 1.5 after undergoing various bifurcations (not shown). At v0 = 1.5, random
initial conditions evolve into drifting stripes in numerical time stepping. Note that vertical
stripes do not fit into the domain of Fig. 5.17 as Lx is not a multiple of Lc = 2π.

Even though, time simulations show a different direction at the onset of motion of the
traveling hexagons, the detected branch of modulated stripes (Fig. 5.19(III)) corresponds
to a solution type that arises within large scale parameter scans presented in Sec. 5.3.3. In
addition, continuation confirms that resting stripes are unstable for all values of v0 as time
simulations suggested. Since time simulations also point to rhombic patterns, we additionally
exploit a square domain. Fig. 5.20 illustrates how the branch of moving squares (orange)
becomes stable at about v0 ≈ 0.7 – again in perfect agreement with traveling squares observed
in time simulations (cf. Fig. 5.16 (c)). Traveling squares branch off from the unstable resting
states and after a fold extend to higher values of v0. Again, the utilized domain favors the
investigated pattern and allows for stable traveling squares at seemingly arbitrarily high
activity.

Finally, Fig. 5.21 combines the results from continuation runs on different domains. Around
practically identical values about vc = 0.3, all resting crystals undergo drift instabilities. As
for the resting states at small v0, only hexagons (blue branch) are stable (solid line). Traveling
squares and traveling stripes gain stability at higher values of v0 that are in perfect agreement
with numerical time simulations. Numerical continuation suggests that different traveling
crystals coexist and the considered domain and its aspect ratio seems to select the moving
pattern.
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Figure 5.19: Onset of motion perpendicular to edge and continuous deformation of hexagonal
patterns. Main panel: bifurcation diagram showing the norm of ψ as a func-
tion of v0. The blue (red) branch corresponds to resting hexagons (stripes), cf.
panel I (IV). At about v0 ≈ 0.3 the resting hexagonal pattern starts to migrate
perpendicular to an edge. Black circles indicate drift-pitchfork bifurcations and
orange branches denote patterns in motion. The moving hexagonal pattern (II)
is deformed towards modulated stripes as v0 is increased, cf. panel (III). The
horizontal branch corresponds to moving stripes as shown in (IV). Velocities
point in x-direction. On the right: Selected solution profiles ψ(r) at loci la-
beled (I)-(IV). Profiles (II)-(IV) move to the right. Domain size: 4Lc × 3La.
Parameters as in Fig. 5.16.
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Figure 5.20: Square patterns in the 2d aPFC model. Main panel: bifurcation diagram
showing the norm of ψ as a function of v0. Black (orange) branches correspond
to resting (traveling) squares with solid (dotted) lines indicating (un)stable
solutions. For the employed parameter set (same as in Fig. 5.16), resting squares
are unstable. After the branch of moving squares undergoes a series of folds,
traveling squares gain stability at v0 ≈ 0.7. They seem to exist at arbitrarily
high activities. For increasing v0, the crystal keeps its rhombic order. However,
the circular shape of individual density peaks changes. On the right: Selected
solution profiles ψ(r) at loci labeled (I)-(IV). Domain size: 2

√
2Lc × 2

√
2Lc,

where Lc = 2π is the side length of a square and
√

2Lc its diagonal.
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5.3 Periodic States

Figure 5.21: Combined bifurcation diagrams of resting and traveling periodic states showing
the L2-norms of ψ as a function of v0. Blue branches correspond to hexagons,
black branches to squares and red branches to stripes. Solid (dotted) lines
indicate (un)stable solutions. Domain sizes and aspect ratios vary for the
different branches. At practically identical values of vc ≈ 0.3 all resting crystals
undergo drift instabilities. Different traveling states coexist at large activities.
The aspect ratio of the employed domain selects the shape of the crystal and
determines its stability. Parameters as in Fig. 5.16.
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5 Active Crystals and Crystallites in Two Spatial Dimensions

5.3.3 Morphological phase diagram

In order to complete the picture of crystalline states and the influences of v0 and ψ̄, we
again perform numerous time simulations and construct a morphological phase diagram in
the (v0, ψ̄)-plane for the parameter set employed in this section. The time simulations are
carried out in the same way as previously described in Sec. 5.2.3 and again LS and various
periodic states are distinguished in terms of the number of peaks of ψ(r). The resulting
phase diagram is shown in the main panel of Fig. 5.22.

The used parameter set from Ref. [ML13] includes a high diffusion of C1 = 0.2 – twice
the value we used in the 1d analysis and in Sec. 5.2.2. The high diffusion leads to, first,
a higher vc ≈ 0.3 (cf. vertical dotted line) and, second, suppresses the existence of LS for
increasing activity (no blue areas for v0 > 0.5). The green crystalline area exhibits density
fields with more than 56 peaks for high activities. Here, solution profiles show traveling
rhombic patterns (Fig. 5.22(II)) with smaller wavelength as the hexagonal states. Thus, more
peaks fit into the considered domain. Approaching higher mean densities towards ψ̄ = −0.4
the rhombic patterns transform into stripe patterns. However, the stripes are still sufficiently
modulated to account for a high number of peaks as Fig. 5.22(III) depicts. Accordingly, the
number of counted density peaks does not decrease.

Figure 5.22 gives a detailed overview of arising active crystals and crystallites for the
parameter set from [ML13]. It also evidences a neat interplay of numerical continuation and
time simulations as results from fold continuation (black lines) nicely border the area of
existence of LS.
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Figure 5.22: Morphological phase diagram for the aPFC model accompanied by selected
density profiles at loci labeled (I)-(V). Large panel: Different states are char-
acterized by the total number of density peaks formed in the domain. The
rectangular domain is of size 7La × 8Lc. White lines give limits of the lin-
ear stability of the liquid state. Black lines from fold continuation border the
existence of resting one-peak LS (solid) and traveling one-peak LS (dotted,
terminated where it folds back). The vertical white line marks the onset of
motion. Color coding and density peaks from time simulations. The liquid
state refers to a uniform density phase with zero peaks (white area). LS exist in
the regions marked in blue. Periodic hexagonal patterns (green) fill the domain
with 7 · 8 = 56 density peaks (I). Around v0 > 1 the number of peaks slightly
increases as resting hexagonal patterns (I) are transforming towards traveling
rhombic patterns (II) with a smaller wavelength allowing for more density peaks.
Arrows indicate the direction of motion. At even higher v0, traveling stripe
patterns (III) arise. They are modulated such that individual peaks can still be
found on each ridge and the number of density peaks does not drop. (IV) and
(V) give examples of resting LS coexisting with the liquid phase. Remaining
parameters are ε = −0.98, C1 = 0.2, C2 = 0 and Dr = 0.5 as in [ML13].
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6 Interaction of Active Crystallites

A helpful and common interpretation of a spatially extended pattern is to regard it as a
superposition of spatially localized units, commonly referred to as particles. Particles do
interact when they reach a certain distance and encounter each other. Having obtained an
extensive description of individual localized states in terms of their bifurcation structure and
existence regions in parameter space, we next explore the interaction between two and more
localized states.

6.1 Collision experiments

A simple way to determine how particles interact is to study collision kinematics. As a
first step, we will examine two colliding one-peak LS in one spatial dimension. Due to the
periodic boundaries of the considered domain, collisions will repeatedly occur. By studying
the outcome of collisions, we can distinguish different types of interaction between traveling
crystallites that approach one another. As before, main control parameters to be varied
between the individual simulations are the activity v0 setting mainly the velocity of the
colliding crystallites and the mean density ψ̄.1

6.1.1 Two colliding crystallites

We place two identical traveling one-peak LS with opposite drift velocities on a one dimen-
sional domain of length L and integrate this setup (cf. Fig. 6.1) forward in time. During
each of these numerical scattering experiments, all parameters, especially v0 that determines
the velocity of the collision partners, remain constant. The domain has periodic boundaries
and, hence, collisions occur repeatedly. If the colliding LS are regularly spaced, L/2 equals
the free path λ between two collisions.

A generic type of interaction between two bodies is an elastic collision. In a perfectly
elastic collision, the kinetic energy is conserved and there is no net conversion into other
forms of energy. Two bodies encounter each other and are reflected.

Figure 6.2 illustrates an elastic collision process between two LS by a number of snapshots
from time simulations. The density peaks approach each other with steady velocities (t < 40),
seem to merge for a moment into a single resting peak when clashing (t = 55) and are
eventually reflected by the collision partner (t > 60). Their velocity has switched sign, but
keeps its magnitude. The inclination of the trajectories of the two LS in the space-time plot
(Fig. 6.3(a)) reveals that the LS are not slowed down by the collision. Also their density
profile regains its original shape prior to the collision (t > 90). As long as the colliding
crystallites have enough space to recover from the previous collision before the next one

1Please note, that Johannes Kirchner did similar studies on the scattering behavior of active LS in the
aPFC model for his Master’s thesis in 2017 [Kir17]. Minor parts here may seem to overlap with results
he obtained. In fact, the time steps used there in the simulation of collisions proved to be too large and
the present results provide a correction.
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Figure 6.1: Setup of scattering experiments. Two traveling one-peak LS with opposite drift
velocities are placed on a domain of size L, here L = 200. The two initial LS
correspond to the same solution family of the stable traveling one-peak LS (cf.
Sec. 4.3.1). The two collision partners only differ in the sign of their polarization
P and, hence, the sign of their drift velocity c. Arrows indicate the direction
of motion. The domain has periodic boundary conditions leading to a regular
repetition of fully elastic collisions with a free path of λ = L/2 between two
collisions.

(periodic BC), the number of collision partners is conserved. The recovery time corresponds
to a critical free path that needs to be exceeded (see Sec. 6.1.3 for details).

The main control parameters v0 and ψ̄ strongly influence the outcome of a collision.
Figure 6.3 shows space-time plots of four different examples. In Fig. 6.3(a), the spatial
density profile of two elastically colliding LS as depicted in Fig. 6.2 is plotted versus time
t. Note that t increases downwards. Figure 6.3(b) demonstrates an inelastic collision where
the reflected crystallites fade away. As compared to the elastic collision, the mean density is
slightly lower, going from (a) ψ̄ = −0.7 to (b) ψ̄ = −0.75. At the lower mean density (b), the
perturbation by the collisions is large enough to leave the basin of attraction of the stable
traveling one-peak LS and the traveling crystallites decay towards the uniform liquid state
ψ = 0 that is also linearly stable in this parameter region.

The collision outcomes drastically change when the velocity of the LS is lowered by
decreasing the activity v0 from 0.5 in Figs. 6.3(a) and (b) to values close to the onset
of motion at vc ≈ 0.16. The low velocities of the collision partners lead to merging and
oscillating crystallites. In (c) (v0 = 0.2), the colliding LS do not scatter, but rather come
to rest for an extended period of time (250 < t < 500) and eventually start drifting as a
single LS. In a transient phase (500 < t < 800) before merging into a single density peak,
we observe one of the oscillatory state described in Sec. 4.5.2. In particular, it shows two
density peaks where group velocity and drift velocity differ and c = vgroup < vphase. The
parameters are consistent with the area of existence of oscillating states in Fig. 4.17. The
velocity of the ultimately evolving single LS is the same as of the initial collision partners.
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6.1 Collision experiments

t = 0 t = 25 t = 40

t = 45 t = 50 t = 55

t = 60 t = 70 t = 90

Figure 6.2: Snapshots taken at different times t of the density profile ψ(x) of two colliding
one-peak LS with opposite velocities. Arrows indicate the direction of motion.
The peaks approach each other with a steady velocity. The impact at t = 55 is
followed by a reflection of the LS. The LS completely recover from the collision
and regain their original height of ψ. A space-time plot of this collision is given
in Fig. 6.3(a). Parameters: v0 = 0.5, ψ̄ = −0.7 and ε = 1.5, C1 = 0.1, C2 = 0,
Dr = 0.5.
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Figure 6.3: Space-time plots of the density field ψ(x) (color coded) of two colliding one-peak
LS. Time increases from top to bottom. (a) v0 = 0.5, ψ̄ = −0.7. Elastic
collisions occur repeatedly due to periodic boundaries. The drifting crystallites
are reflected after the impact. They keep a steady velocity and have enough
space to recover between collisions. Directly after a collision, their amplitude in
ψ is significantly decreased. (b) v0 = 0.5, ψ̄ = −0.75. At lower mean densities,
the perturbation by the collision is large enough to detach the stable one-peak
LS from their basin of attraction resulting in a decay towards the uniform liquid
state ψ = 0. (c) v0 = 0.2, ψ̄ = −0.75. At lower activities and lower corresponding
drift velocities, the LS do not scatter. They come to a halt (250 < t < 500)
before starting to drift with an oscillation (500 < t < 800). Eventually, one of
the two density peaks fades away and a single density peaks evolves traveling as
fast as prior to the collision (t > 800). (d) v0 = 0.163, ψ̄ = −0.71. At even lower
activity, the LS drift back and forth, seemingly attracting and repelling each
other. Collisions do not occur. Domain size: L = 100. Remaining parameters
as in Fig. 6.2.
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Figure 6.4: Parameter map of elastic collisions (colored area) as a function of activity v0 and
mean density ψ̄ for a free path of λ = L/2 = 100 with domain size L. Within the
green area, elastic collisions take place. The white area marks parameter values
at which collisions are inelastic and the number of colliding LS is not conserved.
The horizontal dashed line at the top marks the limit of the linear stability of the
background uniform state the drifting LS are embedded in. The nearly vertical
dotted line denotes the onset of motion of one-peak LS and the lower bound of
existence of TLS. Increments between simulations: ∆v0 = 0.006, ∆ψ̄ = 0.00125.
Remaining parameters as in Fig. 6.2.

In fact, it is the same solution.

As a last example of the rich outcome of collisions, Fig.6.3(d) presents two crystallites
that oscillate back and forth. The activity is further lowered to v0 = 0.163 and the LS have
no net drift velocity. They seem to attract and repel each other. In fact, no collision takes
place but the LS avoid close contact.

6.1.2 Elastic collisions

Next, we explore larger parameter spaces of v0 and ψ̄ and determine where elastic collisions
take place. Again we place two traveling one-peak LS equally spaced on a domain of size L
resulting in a free path of L/2 between collisions. For each set of (v0, ψ̄), time simulations
are performed and finally a parameter map of the region where elastic collisions occur is
created.

Figure 6.4 presents the result of such large scale time simulations for a one-dimensional
domain of size L = 200. The greenish colored region marks where the collision partners
are reflected when colliding and recover their original shape with opposite velocities. The
horizontal dashed line marks the limit of the linear stability of the uniform state. At
higher mean densities ψ̄ spatially modulated perturbations grow everywhere. The uniform
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6 Interaction of Active Crystallites

Figure 6.5: Parameter map of elastic collisions (colored areas) as a function of activity v0

and mean density ψ̄ with different free paths λ between collisions. In the colored
areas, the number of colliding LS is conserved. The light gray lines mark the
limits of the linear stability of the uniform phase that is surrounding the drifting
LS. The dotted black lines limit the area of existence of traveling one-peak LS.
They are obtained by two-parameter continuation. Colliding crystallites need a
free path of about λ = 50 to recover from the impacts. For smaller free paths,
i.e., domain sizes, collisions are inelastic (white area) and the crystallites fade
away. For λ = 25 (black region) almost no elastic collisions occur anymore.

background state is unstable and patterns form. We do not perform time simulations for
larger values of ψ̄.

The nearly vertical dotted line in Fig. 6.4 marks the onset of motion of one-peak LS
and, thus, the lower bound of existence of the collision partners. It was obtained by a two-
parameter continuation of the drift-pitchfork bifurcation. Regarding the parameter map, we
notice a rather sharp transition at v0 ≈ 0.28 where fully elastic collisions set it. For values
of v0 lower than this, the colliding crystallites spend too much time in the collision process
and perturbations from it are too large to let them recover. Higher v0, i.e., faster crystallites
and less time during the actual impact are necessary for elastic collision and a conservation
of the collision partners.

Second, mean densities need to exceed values of ψ̄ ≈ −0.73 for this type of scattering.
The two-parameter continuations in Sec. 4.3.2 revealed that traveling LS exist up to higher
values of activity v0 for increasing ψ̄. We can observe this tendency here, too.

6.1.3 Free path and recovery

In order to complete our studies of elastic scattering, we examine the influence of the mean
free path λ. By gradually dividing the domain size in half, we can determine a minimal mean
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6.2 Gas of colliding crystallites

free path that the colliding crystallites need to recover from the perturbation of a collision.
Starting from L = 400 and two regularly spaced LS being equivalent to λ = 200 we reduce
the domain to L = 200, L = 100 and L = 50. Figure 6.5 reveals that for L = 50 (small black
area at the head of the figure) most of the region of elastically colliding LS has vanished.
The gray-blue area marks the region in which the two colliding LS are preserved on L = 100,
i.e. λ = 50. For a free path of λ = 100 (greenish area) we restore the results from Fig. 6.4.
For even larger domains (λ = 200, gray) the region grows only slightly towards lower ψ̄. The
relatively sharp boundary at v0 ≈ 0.3 does only weakly depend on the size of the free path.
Overall, a free path of about λ ≥ 50 seems necessary for elastic collisions and a conservation
of the number of colliding bodies.

6.2 Gas of colliding crystallites

Based on our results for the elastic scattering of active crystallites we can construct a larger
volume with a preserved number of colliding “particles“, that could be termed a ”gas“ of
crystallites. Figure 6.6 demonstrates that a minimal free path is crucial for the conservation
of the LS. For a number of 12 equally spaced one-peak LS (Fig. 6.6(a),(b)) with alternating
velocities, the domain L = 600 provides sufficient space to recover from the impacts. A free
path of λ = 50 gives all peaks enough space to regain their original height and survive the
consecutive collisions. Figure 6.6(b) enlarges a time range and shows the regular pattern of
collisions and free paths in ψ(x) vs. time.

In Fig. 6.6(c),(d) the initial positions of the crystallites are randomly shifted from their
regular spacing. The random spacing corresponds to the same average spacing above the
critical λ but results in smaller distances between certain collisions. Accordingly, some of the
LS cannot fully recover between consecutive collisions and decay into the uniform background.
From 12 initialized LS only 4 survive the scattering. All of them travel in the same direction.
Figure 6.6(d) zooms into the first half of the time range. LS that experience multiple clashes
in short times have soon faded away.

This implies that the state of a stable gas is not possible as a mechanism for the creation
of individual peaks out of the uniform background is missing.

6.3 Scattering behavior in 2d

As a closing section of this chapter, we give a brief outlook on the behavior in two spatial
dimensions. The scattering behavior in 2d is not systematically examined, the presented
simulations shall rather serve as a starting point for future studies.

Nonetheless, the snapshots shown in Fig. 6.7 provide interesting insights into the scattering
behavior of LS that travel on a surface. The experiment is initialized with six randomly
placed one-peak LS that drift with a steady velocity c ≈ 0.15 according to an activity of
v0 = 0.2. The number of colliding crystallites is conserved, but in contrast to the scattering
in 1d, clusters of multiple LS are soon formed that move as entities. Especially, an equilateral
triangle seems to correspond to a stable configuration. Bound states of two density peaks
can also be observed. Due to the additional spatial degree of freedom, the clusters can
rotate and drift. Rotational modes seem to become active at parameter values close to the
drift-instability.
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Figure 6.6: (a) Space-time plot of a stable ”gas“ of traveling one-peak LS on a large domain
with L = 600. Twelve one-peak LS are equally spaced on the domain resulting
in a free path of λ = 50. (b) shows a zoom into the final 500 time units of (a).
(c) The 12 particles are initially randomly shifted from the regular spacing. Due
to smaller distances and shorter times between collisions, the majority of LS
decays after a number of collisions. (d) depicts the first 1000 time units of (c).
Eventually, four LS with the same direction of motion emerge as a stable state.
v0 = 0.5, ψ̄ = −0.7 and remaining parameters as in Fig. 6.2.
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6.3 Scattering behavior in 2d

Up to t = 100 (Fig. 6.7) most LS travel as single one-peak structures. However, between
60 < t < 100 we can observe the formation of a traveling bound state in the shape of a
triangle. At t = 80, a third density peak approaches two peaks that have been drifting as a
bound state since t = 40. The third peak is linked to the structure at the middle of the two
peaks. The formed triangle is stable for a long period of time (cf. t = 720) until, eventually,
the remaining LS are ”collected“ and added to the bound state.

After a long transient and multiple collisions, a single cluster has emerged (cf. Fig. 6.7,
t = 4000). Within the cluster, the density peaks are placed in a hexagonal pattern. A white
arrow in Fig. 6.7 (t = 4000) indicates its direction of motion. The arrow is perpendicular to
one side of the equilateral triangle at the tip of the cluster. Before this direction emerges,
rotational modes are visible and the direction of the collective drift changes a few times.

Active particles often exhibit dynamical clustering. where particles form extended clusters
that move as one entity. In experiments as in [BBK+13], where carbon-coated colloidal
Janus particles dispersed in a mixture of water and lutidine and propulsion speed is varied
by changing the laser illumination, the formation of clusters is a dynamical process and they
do also break up. In our 2d time simulations of ensembles of LS in the active PFC model,
we could, however, not observe that clusters split up again when once formed. Nonetheless,
our observations may serve as a starting point for future investigations of, e.g., distribution
of cluster sizes as a function of the drift velocity c or the onset of rotational modes.
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Figure 6.7: Time series of snapshots of the density profile ψ(x, t) with six traveling LS.
Respective times t are given in the panels. Boundary conditions are periodic.
Up to t = 80, collisions are mostly elastic and collision partners are reflected. A
traveling two-peak LS can be spotted at t = 40. At 80 < t < 100, a third density
peak joins the cluster forming a traveling triangle. The triangle configuration is
drifting for a long period of time, until, eventually, all LS form a single cluster
(t = 4000). Its direction of motion is indicated by a white arrow. Note that for
all t, all LS are in motion. Domain: Lx = 8La, Ly = 7Lc, v0 = 0.2, ψ̄ = −0.8
and remaining parameters as in Fig. 6.2
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7 Towards Other Models for Active Patterns

After extensive studies of the active PFC model, we raise the question how other pattern
forming models react to a coupled polarization field and activity. Instead of following a
formal derivation of these models, we rather state two examples by coupling the vector field
P to the passive models in the same way as derived for the active PFC model.

In particular, we investigate different solution types, the onset of motion and demonstrate
the universality of the derived criterion for the drift instability. The models we investigate are
an active version of the Swift-Hohenberg equation (SH) and an active Cahn-Hilliard model
(CH). The two models are chosen to study a non-conserved model (SH) and an additional
prominent model with a conserved dynamics (CH).

The Swift-Hohenberg equation often serves as a paradigm for pattern-forming systems
[CH93] while the Cahn-Hilliard equation is a basic model for phase separation and decom-
position dynamics [CH58, Cah65].

7.1 Active Swift-Hohenberg equation

7.1.1 The model

Using the same free energy functional as in Eq. (2.33) and identical coupling terms between
the two fields we can amend the active PFC model towards an active Swift-Hohenberg-type
model. By dropping the outer Laplacian in the dynamic equation for the density ψ (replacing
it by a minus sign), the mass conservation is removed. The model then reads

∂tψ = −δF
δψ
− v0∇ ·P, (7.1)

∂tP = ∇2 δF
δP
−Dr

δF
δP
− v0∇ψ (7.2)

with

F = Fpfc + FP (7.3)

as before. Executing the variations and restricting space to one dimension yields

∂tψ =−
{[
ε+ (1 + ∂xx)2

]
ψ +

(
ψ + ψ̄

)3}− v0∂xP, (7.4)

∂tP =C1∂xxP −DrC1P − v0∂xψ (7.5)

with the main control parameters activity v0. Note that the density is not fixed anymore
and that ψ̄ is not a control parameter. It remains in the model for the sake of convenience.
ε sets the temperature. Patterns emerge at ε < 0. C1 and Dr control the diffusion of the
polarization.
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Figure 7.1: (a) Bifurcation diagram of a five-peak LS in the active SH model from time
simulations: ||ψ||2 as a function of activity v0. The resting density peaks (cor-
responding to the blue branch) shrink minimally as v0 is increased. In contrast,
the polarization P grows from zero to a comparable height as peaks of ψ (inset).
The circle marks the drift-pitchfork bifurcation. Branches of traveling LS are
denoted in orange. At around v0 = 0.23, the traveling LS successively loses
peaks until a uniform state (black) is reached. (b) shows profiles at loci labeled
in (a) of a resting LS (blue) and a traveling LS (orange). I: v0 = 0.04 and II:
v0 = 0.2. (c) The drift velocity c grows monotonically with v0. Parameters:
ψ̄ = 0.9, ε = −1.5, C1 = 0.1, C2 = 0, Dr = 0.5, L = 100.
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7.1 Active Swift-Hohenberg equation

7.1.2 Resting and traveling patterns

Similar to former analyses, we track steady states (ψ0, P0) of Eqs. (7.4) and (7.5) while
varying the activity parameter v0. Figure 7.1 depicts the corresponding bifurcation diagram
and selected solution profiles from time simulations of the underlying evolution equations.
The time simulations are carried out via a pseudo-spectral method for spatial derivatives
(implying periodic boundary conditions) and a semi-implicit Euler time-stepping method.

Using the example of a localized five-peak solution (cf. Fig. 7.1 (b)), time simulations
reveal an onset of motion at a threshold of vc ≈ 0.15 and a monotonically growing drift
velocity c for v0 > vc. As seen for active crystallites within the active PFC model, the spatial
profile of ψ does not significantly change its shape when varying v0. Here, its norm ||ψ||2
(Fig.7.1 (a)) stays almost constant. The polarization P , on the other hand, grows from zero
to peaks of the same order of magnitude as ψ. Since it is modulated around P = 0, its norm
remains smaller as ||ψ||2 (cf. inset). At the onset of motion, density peaks are not equally
negatively and positively polarized anymore and a shift in the relative positions of ψ and
P leads to a net polarization and the onset of a drift. At the critical activity of vc ≈ 0.15,
the LS starts to travel with a steady drift velocity c. The velocity grows approximately as
c ∝ √v0 − vc. The same observation was made for drift-pitchfork bifurcations in the active
PFC model (cf. Sec. 2.3). The resulting direction of the drift in the simulations is random.
It depends on the direction of the relative shift between ψ and P and the sign of the resulting
polarization of the pattern.

At around v0 = 0.23, the traveling five-peak LS loses stability and the state drops onto
a branch of traveling four-peak LS. At slightly higher v0, the state evolves to a traveling
three-peak LS. For increasing v0, the LS loses its peaks successively, until, eventually, it melts
at v0 ≈ 0.24. After four small plateaus that correspond to traveling four-peak LS, three-peak
LS, two-peak LS and one-peak LS, respectively, the spatial modulation of the state has
completely decayed. The system reaches a homogeneous state of ψ0 ≈ −1.8795. Since there
are no gradients in ψ anymore, the polarization decays to P0 = 0. The homogeneous state
of ψ0 ≈ −1.8795 can analytically be calculated by evaluating −(ε+ 1)ψ0 − (ψ0 + ψ̄)3 = 0.

As in the active PFC model, the less peaks a LS consists of, the wider is the range of
existence in terms of v0. However, the difference in v0 is almost vanishing, here. All this
occurs in a very small v0-range. Note that the widest of the four small levels in Fig. 7.1 (a)
corresponds to traveling two-peak LS.

7.1.3 Onset of motion

Using analogous considerations as in Sec. 4.4 about the system’s translation symmetry and
a corresponding Goldstone mode we are able to derive a criterion for the onset of motion for
this active model with a non-conserved density field.

Linearizing the right-hand side of the evolution equations (7.4) and (7.5) about a steady
state (ψ0, P0)T one obtains the operator

L(ψ0, P0) =

(
−
[(
ε+ (1 + ∂xx)2

)
+ 3

(
ψ̄ + ψ0(x)

)2] −v0∂x

−v0∂x C1 (∂xx −Dr)

)
(7.6)

=

(
LSH −v0∂x
−v0∂x L22

)
(7.7)

for the evolution of the perturbations.
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Figure 7.2: Onset of motion for an active Swift-Hohenberg equation in 1d: Norms ||∂xψ0||22−
||∂xP0||22 (blue) and drift velocity c (dark-red, dotted) of a five-peak LS as a
function of activity v0. The resting LS is destabilized at vc ≈ 0.15 and starts to
travel with c. The solvability condition Eq. (4.55) ||∂xψ0||22 − ||∂xP0||22 crosses
zero at the drift bifurcation. It remains zero for the traveling LS (v0 > 0.15). c
grows monotonically for increasing v0. The bifurcation diagram is constructed
with results from time simulations and only depicts stable branches. Parameters
as in Fig. 7.1.

The corresponding neutrally stable Goldstone mode of translation is denoted as G. In
order to evaluate 〈G†|G〉 that crosses zero at the onset of the drift (find details in Sec. 4.4),
we need to determine the adjoint linearized operator L† and its neutrally stable eigenfunction
G†, i.e., L† G† = 0. The adjoint operator reads:

L† =

(
LSH v0∂x
v0∂x L22

)
. (7.8)

The equations for the neutrally stable adjoint eigenmode G† = (ψ†G , P
†
G)T are then

LSHψ
†
G + v0∂xP

†
G = 0 (7.9)

v0∂xψ
†
G + L22P

†
G = 0. (7.10)

Differentiating w.r.t. x the steady state equations for (ψ0, P0)T restores the equation of
the Goldstone mode of translation:

LSH∂xψ0 − v0∂xxP0 = 0 (7.11)

−v0∂xxψ0 + L22∂xP0 = 0. (7.12)
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Comparing Eqs. (7.9) and (7.10) with (7.11) and (7.12) results in

ψ†G = ∂xψ0 (7.13)

P †G = −∂xP0. (7.14)

We can now evaluate the solvability condition setting the criterion for the onset of motion:

〈G†|G〉 = 〈ψ†G |ψG〉+ 〈P †G |PG〉 (7.15)

= 〈 ∂xψ0|∂xψ0〉 − 〈∂xP0|∂xP0〉 = 0 (7.16)

⇔ 0 = ||∂xψ0||22 − ||∂xP0||22. (7.17)

Tracking the difference of the norms of the spatial derivatives ||∂xψ0||22−||∂xP0||22 reveals a
perfect match of its zero crossing and the onset of motion. Figure 7.2 shows how the difference
decreases until reaching zero where the drift (vc ≈ 0.15, velocity shown in dotted dark-red)
sets in. As observed for the active PFC model in one spatial dimension, the difference of the
norms stays zero for traveling states. The bifurcation diagram is constructed by the direct
time simulation of Eqs. (7.11) and (7.12) and, hence, does not show the unstable branch of
resting solutions. The derived criterion also holds for periodic structures (not shown).

Recall that for the aPFC model with conserved dynamics, the condition reads 0 = ||ψ0||22−
||P0||22 (Eq. (4.55)) in contrast. The difference of the norms of the fields itself is zero at the
onset of motion.

7.2 Active Cahn-Hilliard model

As a second prominent model, we investigate an active version of the Cahn-Hilliard (CH)
model [Cah65]. The CH equation describes the process of phase separation in a binary
mixture as a fairly simple phenomenological macroscopic mean-field continuum model. Two
components spontaneously decompose and form coexisting domains that purely consist of
one type of the components.

The well-studied model has many applications in fields ranging from complex fluids, soft
matter physics and many industrial applications like Langmuir-Blodgett transfer [LKG+12,
KT14, WTG+15]. It is regarded to capture the dominant paradigms of phase separation
dynamics.

7.2.1 The model

The Cahn-Hilliard (CH) equation has the form of a conservation law where the dynamics of
a scalar concentration-like order parameter φ is expressed as the divergence of a flux. The
equation can be written as gradient dynamics with an underlying free energy functional FCH

that is minimized by the decomposition of a binary fluid [CH58, Lan92].

FCH[φ] =

∫
dnr

[
1

2
(∇φ)2 − 1

2
φ2 +

1

4
φ4

]
(7.18)

The two minima of FCH at φ = ±1 represent the two phases.
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time simulations: ||φ||2 as a function of activity v0. The resting pattern (I)
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In contrast, the polarization P grows from zero to peaks of the same amplitude
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√
2 being

the dominant mode obtained from LSA of the trivial solution.
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7.2 Active Cahn-Hilliard model

The model is now amended by the same coupling to a polarization P as previously derived
for the active PFC model. Also the evolution equation for P remains unchanged. An active
CH equation with F = FCH + FP then reads

∂tφ = ∇2 δF
δφ
− v0∇ ·P, (7.19)

∂tP = ∇2 δF
δP
−Dr

δF
δP
− v0∇φ. (7.20)

Restricting the physical space to one dimension and carrying out the variations yields

∂tφ =∂xx
(
φ3 − φ− ∂xxφ

)
− v0∂xP, (7.21)

∂tP =C1∂xxP −DrC1P − v0∂xφ. (7.22)

We note that the coupling preserves the conservation of φ and its dynamics can still be
expressed as the divergence of a flux. For simplicity, we have scaled out further control
parameters (such as mobility etc.) in the CH equation and use the simple version above.

7.2.2 Resting and traveling patterns

Following former approaches we want to study steady and stationary states (φ0, P0)T , where
stationary states are steady states in some comoving frame with velocity c. Again, we are
particularly interested in the onset of motion and traveling states with c 6= 0. For that
purpose we integrate Eqs. (7.21) and (7.22) forward in time (same methods as in 7.1.2 with
random initial conditions and periodic boundaries) and construct a bifurcation diagram from
the simulation data for different values of activity v0.

Figure 7.3 (b)(I) depicts a typical profile of the concentration φ. The fluid has decomposed
into two phases with φ ≈ +1 and φ ≈ −1, respectively. The values of the two extrema
have decreased due to the coupling to P . The domain size is chosen as L = 2π/kmax, where
kmax = 1/

√
2 is the wavenumber of the dominant mode in the dispersion relation from the

linear stability analysis of the trivial solution.
For v0 > 0, a polarization P forms. Once again, we notice the symmetry between the

two fields for resting states: peaks and dips in φ coincide with zero crossings of P making
each density bump equally positively and negatively polarized. The symmetry (ψ, P, x)→
(ψ,−P,−x) holds w.r.t. the center of the density peak (and dip). Hence, integrating P over
the width of a density peak (dip), i.e. the net polarization, is zero.

The amplitude of P grows monotonically with v0 whereas the norm of φ decreases as the
activity is increased. At a critical vc ≈ 0.14, the symmetry between P and φ breaks. A
net polarization emerges, the drift sets in and we follow a branch of moving states (orange
branch/profile in Fig. 7.3). As observed before, the traveling pattern has a constant norm
as the profiles keep their shape and only shift their relative position. The drift velocity c
(Fig. 7.3(c)) grows monotonically with activity v0. The drift pitchfork bifurcation is marked
by a black circle.

7.2.3 Onset of motion

The introduced active CH model is translationally invariant. For steady states (φ0, P0)T we
can deduce a neutrally stable Goldstone mode that shifts the solutions, G = (∂xφ0, ∂xP0)T .
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7 Towards Other Models for Active Patterns

In order to derive a criterion for the drift instability, we again need to find G†, the kernel of
the adjoint linearized operator L†. Linearizing Eqs. (7.21) and (7.22) around a steady states
leads to

L(φ0, P0) =

(
∂xx

(
−∂xx − 1 + 3φ0(x)2

)
−v0∂x

−v0∂x C1 (∂xx −Dr)

)
. (7.23)

Following all steps from subsections 4.4.3 and 4.4.4 one finds

L†(φ0, P0) =

( (
−∂xx − 1 + 3φ0(x)2

)
∂xx v0∂x

v0∂x C1 (∂xx −Dr)

)
. (7.24)

This is the same structure as for the active PFC model and the adjoint eigenfunctions are
also spatial integrals over the steady states (times -1 for one component) and the solvability
condition (4.39) reads

〈G†|G〉 = 〈ψ†G |ψG〉+ 〈P †G |PG〉
= −〈ψ0|ψ0〉+ 〈P0|P0〉 = 0 (7.25)

⇔ 0 = ||ψ0||22 − ||P0||22, (7.26)

as found for the conserved dynamics of the active PFC model (cf. Eq. (4.55)). Equation (7.26)
holds at the onset of motion. Following ||ψ0||22 − ||P0||22 for the steady states computed by
the time simulations reveals indeed a perfect match in its zero crossing and the onset of the
drift. Figure 7.4 depicts the results.

After the onset of the drift, φ(x) and P (x) of the traveling pattern remain unchanged,
only shifting their relative position. That is why the difference of the norms stays constantly
zero for v0 > vc ≈ 0.14.

7.3 Universality of the criterion for the onset of motion

The two examples suggest that the derived criteria for the onset of motion hold for any
continuum model in which the two fields are symmetrically coupled via −v0∇. And indeed we
only employed two constraints: Firstly, the active model must fulfill a translation symmetry.
Secondly, when linearized, the diagonal elements of L need to be either self-adjoint or for
models with conserved dynamics read ∂xx times a self-adjoint operator for the first element,
i.e. L11 = ∂xxLself−adjoint. Note that a non-linear equation for P results in an operator that

is not self-adjoint, i.e., L†22 6= L22 and not fulfilling the conditions.
In the first case for non-conserved models as the active SH model, ||∂xψ||22 − ||∂P||22 = 0

holds at the onset of motion. For models with conserved dynamics (active PFC, active
CH), ||ψ||22 − ||P||22 crosses zero where the drift sets in. And even though, the equations
were derived for one-dimensional models for simplicity, the criteria also hold in two spatial
dimensions. Without loss of generality, the derivation can be extended to 2d.
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8 Summary and Outlook

We have in depth studied the bifurcation structure of the active phase-field-crystal model in
one and two spatial dimensions. After discussing the linear stability of the liquid (homoge-
neous) state with respect to monotonous and oscillatory modes in chapter 3, we have briefly
discussed the existence and stability of stable domain-filling resting and traveling crystalline
(periodic) structures in 1d. In the one-dimensional case (chapter 4), our main focus has been
on crystallites (crystals of finite extension) that correspond to stable and unstable localized
states of different symmetries. We have analyzed how the classical slanted snakes-and-ladders
structure (slanted homoclinic snaking) known from the phase-field-crystal model [TAR+13]
is amended by activity. In particular, we have shown that increasing activity, one finds a
critical value for the onset of motion of the various localized states and of the domain-filling
crystal. Using the mean concentration ψ̄ as the control parameter we have found that travel-
ing states emerge either through drift-pitchfork bifurcations of the resting parity (left-right)
symmetric localized states or through drift-transcritical bifurcations of resting asymmetric
localized states that form the rungs of the snakes-and-ladders bifurcation structure. In 1d,
at the employed parameter values, these traveling localized states always occur within the
ψ̄-range limited by the snaking branches of resting localized states.

Note that this onset behavior differs from the case of the non-variational Swift-Hohenberg
equations as studied in [HK11]. There, at any value of the driving parameter in front of the
non-variational term, all asymmetric states drift and all symmetric states are at rest. Here,
however, the coupling of the two fields allows for resting asymmetric states even at a finite
activity parameter and moving states emerge through drift bifurcations that are not present
(in any form) in the variational limit.

The second investigated main control parameter has been the activity. Here, the general
tendency is that an increase in activity suppresses the resting localized and periodic states.
Resting LS ultimately annihilate in saddle-node bifurcations at critical activities that are
of a similar magnitude for all studied states. Resting periodic states, in contrast, vanish
in a supercritical pitchfork bifurcation on the homogeneous state. In other words, activity
eventually melts all resting crystalline structures as the driving force overcomes the attractive
forces that stabilize the equilibrium crystals and crystallites that exist in the reference system
without activity. This corresponds to the melting of equilibrium clusters by activity observed
in the Brownian dynamics simulations of Ref. [RBH13] for self-propelled particles with
short-range attraction.

However, at values of the activity below this melting point, branches of resting states show
drift bifurcations for suitable diffusion and mean densities. There, branches of traveling
states emerge that may exist in a small range of activity or even extend towards infinite
activity (in 1d) as we have shown by numerical two-parameter continuation of the relevant
bifurcations. In other words, depending on parameters, although activity may melt traveling
crystallites, there are extended parameter regions where this is not the case. In fact, we
have found that although a high activity melts most traveling localized states, i.e., traveling
crystalline patches, this is not the case for traveling periodic states, i.e., traveling domain-
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filling crystals. They can be driven with arbitrarily high activity and then show high
corresponding drift velocities. We believe that this is most likely the case because the
periodicity of the domain-filling crystals is fixed, while the traveling localized states naturally
adapt their peak spacing. This additional degree of freedom could make them less stable.
Note that the found crystallites are not related to the motility-induced clusters discussed,
e.g., in [GTL+15, SSW+15, CT15]. The latter effect has not yet been found in an active PFC
model as they are mainly considered to study how equilibrium crystallization is amended
by activity. It should be further investigated whether it may also describe motility-induced
clustering, especially when allowing for spontaneous polarization (C1 < 0, C2 > 0).

Furthermore, we have investigated the region of existence of traveling localized states
and have shown that they are generic solutions for extended regions of the plane spanned
by mean concentration and activity. Whereas extended traveling localized states of three
and more peaks quickly vanish into the homogeneous background, narrow localized states
(one and two density peaks) can be driven at quite high activities where they reach high
velocities. This does not seem to be the case in the non-variational systems studied in
[HK11, BD12]. Therefore, a future comparative study of the present system, the systems
studied in [HK11, BD12] and the ones reviewed and discussed in [KT07] would be beneficial.

A main focus has been the onset of motion that occurs at a critical activity which only
slightly depends on the particular size of localized state in terms of density peaks. We have
considered drift instabilities for the system of two coupled equations where one represents a
mass-conserving dynamics of a density-like quantity and the second one is a linear equation
for the polarization. Also, the non-variational coupling of the two equations is linear. Under
these conditions, we have derived a general criterion for the onset of motion. Namely, the
zero crossing of the difference of the squared norms of the two steady fields (||ψ0||22 − ||P0||22)
marks the onset of motion for all localized and extended crystalline states. The criterion
holds for both types of drift instabilities that occur in the aPFC model: drift-pitchfork
bifurcations and drift-transcritical bifurcations and may be used to determine the critical
strength of activity that is needed for collective traveling states. As shown later, the criterion
also applies to other models of active patterns that fulfill the described constraints. What
needs further clarification is the question of whether such a simple criterion can be derived
for more complicated active models that do more faithfully model specific properties of the
experimental systems and of the particular active particles at hand.

Besides results from numerical continuation, we have employed numerous time simulations
to construct morphological phase diagrams in the plane spanned by mean concentration and
activity. These condense many results and demonstrate the powerful interplay of continuation
methods and time simulations as results from fold continuations nicely border the existence
regions obtained by time simulations. In certain regions of the parameter plane, we have
observed a novel type of solution of active crystallites, namely oscillatory states. Their origin
in a Hopf bifurcation has been discussed. Oscillatory states also undergo a drift instability
resulting in a intricate state with differing phase velocity and group velocity. Physically
speaking, this corresponds to a state where parts of the crystals vanish into the liquid
background while at the other end of the crystal new crystalline structure is created.

The chapter dealing with crystals and crystallites in 1d has been closed by discussing the
influence of the remaining model parameters. The effective temperature has turned out to
only play a minor role in the transition from resting to traveling states. The diffusion of
polarization, in contrast, directly influences the critical activity for motion. Fold continuation
has revealed the expected linear relation between the threshold activity for motion and a
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regions of existence of resting and traveling LS. For details see Fig. 5.22.

diffusion coefficient. High diffusion can even completely suppress the drift instability of
resting LS. Spontaneous polarization without any threshold for motion has been briefly
discussed as well.

Due to additional degrees of freedom, the bifurcation structure of active crystallites in
2d (chapter 5) has proven to be much more complicated. Besides translation modes, also
rotational modes can be destabilized and the particular direction of the drift w.r.t. the
symmetry axes of the LS has to be taken into account. A rotational symmetric one-peak LS
has shown many similarities to the 1d case, while a less symmetric dumbbell shaped two-peak
LS has turned out to be unstable for any non-vanishing value of activity. For the employed
value of the effective temperature, in 2d, the active crystallites exhibit slanted homoclinic
snaking. Resting LS as well as traveling LS have shown the same behavior of an undulating
branch. The LS, whether resting or traveling, are enlarged until they fill the entire domain
and terminate on the periodic resting and traveling solution, respectively. Their branches do
neither interfere nor are they torn apart like at lower values of the effective temperature.

In 2d, the activity parameter also strongly influences the crystal structure of space fill-
ing, fully periodic solutions. We have found a multistability region for traveling hexagons,
traveling rhombuses and traveling stripes. Here, finite size effects as the aspect ratio of
the employed domain control the pattern selection. As done for the 1d case, information
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from time simulations and continuation are compressed in morphological phase diagrams.
Figure 8.1 contains many results and is shown as a summary, here. It also demonstrates the
impressive capability of fold continuation to predict limits of existence of various solutions
found in time simulations.

After studying individual solution types of the active PFC model, we have conducted
numerical collision experiments of traveling LS to determine generic interactions between
active crystallites. We have identified different collision outcomes and determined a parameter
map of fully elastic collisions that preserve the number of colliding density peaks. A minimal
free path between collisions has been experimentally deduced. Due to its considerable size, a
stable gas of colliding density peaks has not been found for random initial conditions without
equal spacing.

Having extensively discussed the active PFC model, we have stated two more models
for active patterns. By using the same implementation of activity, namely the coupled
polarization field, we have introduced an active version of the non-conserved Swift-Hohenberg
equation and of the Cahn-Hilliard equation. Within both models, we have identified resting
and traveling solutions. Criteria for the onset of motion that are derived similarly as for the
aPFC model have turned out to be valid for these models as well, emphasizing its universality.

Finally, we highlight a number of questions that merit further investigation. Our main aim
has been to establish an overview of the rather involved overall bifurcation structure that is
related to the onset of motion in continuum models of active crystals. As experimental studies
often focus on the collective behavior of many interacting clusters [TCBP+12, GTL+15,
GTD+18], it should be investigated further whether it is possible to derive statistical models
from single cluster bifurcation studies as the present one. Such a methodology has recently
been presented for ensembles of sliding drops [WTE+17]. We hope that the provided study
will serve as a reference for other such analyses of more detailed models for active crystals.
Here, we have focused on a rather simple coupling of concentration and polarization and
have also excluded spontaneous polarization. The obtained results regarding the onset of
motion should also be compared to related results regarding the bifurcation structure of
other more realistic models of active matter. This will allow one to develop a clearer general
understanding of observed multistabilities of states, hysteresis effects and thresholds where
qualitative changes occur.
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