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Kurzzusammenfassung

In der vorliegenden Arbeit werden verschiedene Phänomene theoretisch untersucht, welche in Zu-
sammenhang mit Instabilitäten von dünnen Flüssigkeitsfilmen, Tropfen oder Flüssigkeitskämmen
auf festen Substraten stehen. Der Großteil der in der Arbeit verwendeten Modelle basiert dabei
auf der sogenannten Dünnfilmgleichung. Hierbei handelt es sich um eine nichtlineare, partielle
Differentialgleichung, welche die Dynamik des Höhenprofils einer partiell benetzenden viskosen
Flüssigkeit auf einem festen Substrat beschreibt. Die Dünnfilmgleichung hat die mathematische
Struktur einer Gradientendynamik auf einem effektiven Grenzflächen-Hamiltonian. Letzterer
modelliert sowohl die Grenzflächenenergie der Grenzfläche zwischen Flüssigkeit und Gas, als
auch, mit Hilfe eines sogenannten binding potential, die Benetzbarkeit des Substrates.
Im ersten Teil der Arbeit erläutern wir das Onsagersche Variationsprinzip, welches einen
vielseitigen Variationsformalismus mit großer Relevanz für die Theorie weicher Materie und
insbesondere dünner Flüssigkeitsfilme darstellt. Des Weiteren zeigen wir eine Herleitung der
Dünnfilmgleichung mit besonderem Augenmerk auf dem Variationsprinzip, welches den hydro-
dynamischen Gleichungen zu Grunde liegt.
Im zweiten Teil der Arbeit wird zunächst eine Dünnfilmgleichung verwendet, um Plateau-
Rayleigh Instabilitäten von Flüssigkeitskämmen auf chemisch streifenförmig vorstrukturierten
Substraten zu untersuchen. Hierbei werden insbesondere Instabilitäten von zwei wechselwirken-
den Flüssigkeitskämmen betrachtet. Für die Instabilität einzelner Flüssigkeitskämme werden
Ergebnisse der Dünnfilmgleichung mit entsprechenden Ergebnissen aus kinetischen Monte-
Carlo- (KMC) Simulationen qualitativ, jedoch systematisch, verglichen. Als einen ersten
Schritt hin zu einem quantitativen Abbilden von KMC Simulationen auf ein Modell ähnlich der
Dünnfilmgleichung, zeigen wir des Weiteren ein neues numerisches Verfahren zu Berechnung
eines binding potential aus einer Dichtefunktionaltheorie (DFT).
Im dritten Teil der Arbeit werden verschiedene Phänomene diskutiert, die in Zusammenhang
mit Frontpropagation von Instabilitäten in Flüssigkeitsstrukturen stehen. Hier untersuchen
wir zunächst die Ausbreitung von Instabilitäten in dünnen Flüssigkeitsfilmen auf horizontalen
Substraten mit Hilfe einer marginalen Stabilitätsanalyse. Auch die Propagation von Plateau-
Rayleigh Instabilitäten von Flüssigkeitskämmen wird mit Hilfe dieser Methode analysiert. Des
Weiteren wird ein Modell für dip-coating mit partiell benetzenden Flüssigkeiten eingeführt. Im
Rahmen dieses Modells diskutieren wir einen speziellen Lösungstyp, welcher einer periodischen
Ablagerung von Flüssigkeitsstreifen parallel zum Meniskus entspricht. Diese zeitperiodischen
Lösungen werden in Zusammenhang mit der zuvor erwähnten Frontpropagation von Instabi-
litäten sowie mit Hilfe von numerischer Kontinuierung theoretisch analysiert.
Im letzten Teil der Arbeit stellen wir zwei verschiedene Methoden zur grobkörnigen Be-
schreibung von verschiedenen Phänomenen im Kontext getriebener Tropfen vor. Zum Einen
modellieren wir die in großskaligen Zeitsimulationen eines Dünnfilmmodells gefundene Ver-
gröberungsdynamik in einem Ensemble von rutschenden Tropfen mit Hilfe einer verallgemei-
nerten Smoluchowski-Koagulationsgleichung. Letztere beschreibt die zeitliche Entwicklung der
Tropfengrößenverteilung. Die Gleichung baut auf Informationen aus der Pfad-Kontinuierung

v



Kurzzusammenfassung

einzelner rutschender Tropfen auf und ermöglicht insbesondere eine quantitative Modellie-
rung der Zeitentwicklung der Anzahl von Tropfen im Ensemble.
Das zweite betrachtete System besteht aus einem Tropfen einer partiell benetzenden Flüssigkeit
auf einem rotierenden Zylinder. In Abhängigkeit von der Rotationsgeschwindigkeit des Zy-
linders kann der Tropfen entweder durch die Schwerkraft gepinnt sein oder, mit einer eigenen Ge-
schwindigkeit, angetrieben durch den Zylinder, rotieren. Ausgehend von einer Dünnfilmgleichung
für dieses Modellsystem leiten wir eine gewöhnliche Differentialgleichung für die Position des
Tropfens ab. Diese Differentialgleichung ist für den Grenzfall sehr kleiner Verformungen des
Tropfens durch die Gravitation gültig und zeigt hier eine bemerkenswerte Übereinstimmung mit
Ergebnissen aus der Kontinuierung und Zeitsimulationen des entsprechenden Dünnfilmmodells.
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Abstract

In the present thesis, we theoretically investigate a number of phenomena related to instabilities
of thin liquid films, drops and ridges on solid substrates. Most of the considered models are
based on the so-called thin-film equation. Here, this equation is a nonlinear partial differential
equation for the time evolution of the height profile of a viscous partially wetting liquid on
a solid substrate. Furthermore, the thin-film equation has the mathematical structure of a
gradient dynamics on an effective interface Hamiltonian, which models the liquid-gas interfacial
energy and, in terms of a so-called binding potential, also the wettability of the substrate.
In the first part, we review Onsager’s variational principle as a general variational formalism
which is highly relevant for soft matter modeling and, in particular, thin-film models. With an
emphasis on the variational principle underlying the basic hydrodynamic equations, we then
review the derivation of the thin-film equation.
In the second part, a thin-film model is then employed to investigate Plateau-Rayleigh instabil-
ities of ridges on stripe-prepatterned substrates with a special focus on coupled instabilities of
two adjacent liquid ridges. Results of the thin-film modeling of the instability of a single ridge
are compared qualitatively but in a systematic way with corresponding results from kinetic
Monte Carlo (KMC) simulations. As a first step towards a quantitative mapping of KMC to
a thin-film type model, we present a novel numerical approach to the extraction of a binding
potential from a microscopic density functional theory (DFT).
In the third part, we discuss phenomena related to the propagation of instabilities of liquid
structures. We first apply a marginal stability analysis to the spreading of dewetting instabilities
into linearly unstable flat films of small film height and to the propagation of Plateau-Rayleigh
instabilities of ridges on substrates. We then introduce a model for dip-coating employing a
partially wetting liquid, which exhibits spinodal dewetting for small film heights. Here, we
investigate a particular solution type corresponding to deposition of a periodic array of liquid
ridges at and parallel to the meniscus. These time-periodic solutions are investigated in terms
of a theoretical analysis relying on the aforementioned phenomenon of front propagation and
additionally through path continuation of time-periodic solutions.
In the final part, we present two different coarse graining procedures for the description of
different phenomena occurring for driven droplets. For the modeling of coarsening in a large
ensemble of sliding droplets as observed in large scale simulations of a thin-film model, we for-
mulate an augmented Smoluchowski coagulation equation for the time evolution of the droplet
size distribution. This equation relies on information obtained from numerical continuation
of individual sliding droplets and is able to quantitatively reproduce the time evolution of the
number of droplets. The second considered system is a droplet of partially wetting liquid on a
rotating cylinder. Depending on the rotation speed, the droplet is either pinned on the lower
part of the cylinder due to gravity or depinned and co-rotating with the cylinder, though at
its own speed. Starting from a thin-film model, we formulate an ordinary differential equation
for the position of the droplet. This order parameter equation is valid in the limit of a small
influence of gravity on the deformation of the droplet and shows remarkably good agreement
with results from continuation and numerical time simulation of the thin-film model.
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1 Introduction

Liquid structures which exhibit a free surface, e.g., a liquid-gas interface, are ubiquitous not
only in nature and technology but also in our daily lives. One important subclass of these
structures are liquids on solid surfaces.1 Equally common are instabilities of such liquids: On a
daily basis, we experience the breakup of rivulets flowing in the kitchen sink or intricate patterns
resulting from the rupture and retraction of liquids (dewetting) which were cast intentionally
or unintentionally on a solid surface. A deeper understanding of such instabilities might not
only gratify our curiosity, but is also crucial for their control in technological systems. For
instance, in the process of coating surfaces, dewetting is typically not desirable, while in other
circumstances surfaces are treated specifically for the purpose of being repelling to water or
other liquids. Furthermore, the control of the motion of liquid droplets on surfaces is important
in a technological context, e.g., in microfluidic devices.

1.1 Capillarity and Wettability
The present thesis is concerned with liquids that are in good approximation free of inertia.
Physically speaking, we are considering liquids and systems, for which the so-called Reynolds
number Re = uL

ν � 1. Here, u and L are characteristic velocity and length scales and ν is the
kinematic viscosity of the liquid [LL91]. In a free surface geometry on a solid substrate, the
dynamics and the statics of these liquids are dominated by energetic quantities. The energy
which is directly related to the geometry of the free surface is the interfacial energy of the
liquid-gas interface. The interfacial energy per area of the interface is called surface tension.
Effects of surface tension of the liquid-gas interface are often referred to as phenomena of
capillarity [dGBWQ04]. The minimization of the surface energy of a free surface reduces, for
a constant surface tension, to a minimization of the surface area. The tendency of free surface
liquids to perform such a minimization is the basic idea behind important classic theories for
the shape, motion and instabilities of the liquids. One example is the classical theory by J. A.
F. Plateau [Pla73] and by Lord Rayleigh [Str78] for the breakup of liquid jets into droplets.
When a liquid is in contact with a solid and especially for the case where a three phase (solid-
liquid-gas) contact line is present, it is not the liquid-gas interfacial energy that is minimized
but the combination of liquid-gas, solid-liquid and solid-gas interfacial energies. This brings us
to the concept of wettability. By a simple geometrical argument, one finds that the equilibrium
contact angle θeq resulting from a minimization of the aforementioned energies is given by the
famous Young-Dupré law [Doi13]:

γlgcos(θeq) = γsg − γsl, (1.1)

where γlg, γsg and γsl are the liquid-gas, solid-gas and solid-liquid surface tensions, respectively.
Typically, a liquid that exhibits an equilibrium contact angle 0◦ < θeq < 180◦ is denoted as

1 In the following, we will adopt a more technical nomenclature, and will often not talk of solid surfaces but
rather of substrates.
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1 Introduction

partially wetting (cf. FIG. 1.1). The remaining extreme cases are completely wetting (θeq = 0◦)
and non-wetting liquids (θeq = 180◦). In this thesis, we are concerned with the case of partially
wetting liquids exhibiting a small equilibrium contact angle.

θeq

completely wetting partially wetting non-wetting

Figure 1.1: Sketch of different wetting scenarios.

1.2 Levels of Description and Methods
In this thesis, several different levels of description are employed to model liquids on substrates.
A variety of methods accounts for different scales involved in the considered phenomena. We
now shortly review important approaches that are typically used in the modeling of such liquid
structures. A part of these approaches is also discussed in the present thesis as will be clarified
in the outline in §1.3.
The most detailed level of description employed in soft matter modeling is formed by particle
based numerical simulations like atomistic or coarse-grained molecular dynamics (MD) sim-
ulations [KN17, SW09, KLRD06, TMTT13, IT07, KPB02], and kinetic Monte Carlo (KMC)
simulations [LMW+12, RRGB03, SHR05, CSA17b]. There are different reasons why the mod-
eling of liquids on substrates on the level of particles might be of interest: On the one hand,
as we will shortly discuss in §3.2.3, a purely hydrodynamic treatment of mesoscopic or macro-
scopic amounts of liquids that exhibit a moving three-phase contact line is problematic. Here,
particle-based simulations give further insight into the processes on the microscopic scale that
are relevant at the contact line (cf. [QWL+09]). On the other hand, the entirety of the liquid
structure of interest might be on a sufficiently small scale motivating a comparison of continuum
modeling to results from particle-based simulations. This is the case, e.g., for the modeling
of the experiments described in [WC12, WDW+11] which are the motivation for the work
outlined in Chap. 4.
The averaged features of stochastic particle-based models can be captured by density functional
theory (DFT) for the equilibrium case [HTA17, Eva79] and also, as developed in the two recent
decades, for dynamically evolving systems close to equilibrium (DDFT) [CSA17a, AR04, MT99].
These are thermodynamic theories which rely on the formulation of a Helmholtz free energy
or grand potential, which is a functional of the local density of particles.
Based on a thermodynamic model, the wetting behavior of liquids on solid substrates can be
described by the so-called binding potential, which corresponds to an excess energy associated
with the local adsorption (or film height) on the substrate. Such binding potentials are par-
ticularly important for the description of the contact line region and can be extracted from
microscopic theories [TMTT13] and, in particular, from DFT [HTA17].
Once a binding potential is found, the statics and dynamics of liquid structures that are suffi-
ciently shallow can be modeled based on an effective interface Hamiltonian [HTA15, MBKP14],
which combines interfacial energies of the liquid-gas interface and wetting energies (encoded in

2



1.3 Outline of the Thesis

the binding potential) and is typically a functional of a height function describing the liquid-gas
interface in a Monge representation. The statics of liquid structures can be calculated by a
(constrained-) minimization of the effective interface Hamiltonian, while their dynamics can be
modeled as a gradient dynamics on the latter.
A special case of gradient dynamics on an effective interface Hamiltonian is the so-called thin-
film equation [ODB97, Mit93, CM09, Thi07, Thi10]. This equation is derived from macroscopic
hydrodynamics and can be supplemented by the aforementioned binding potential. The funda-
mental assumption for the derivation of the thin-film equation is that the height of the liquid on
the substrate varies only slowly and a long-wave approximation (also often referred to as lubri-
cation approximation) can be employed. In this case and for sufficiently low Reynolds numbers,
the solving of the thin-film equation represents an alternative to full scale hydrodynamic simu-
lations, where Stokes equations have to be solved in combination with a free boundary problem
resulting from the modeling of the liquid-gas interface. Variants of the thin-film equation,
which is a partial differential equation (PDE) describing the time evolution of the local height
of the liquid on the substrate, constitute the major part of the models discussed in the present
thesis. Although we are able to model dynamics and instabilities of liquids on a macroscopic
scale by numerical time simulations (NTS) of the thin-film equation, further coarse-grained
models are still desirable. These can be statistical models, like a Smoluchowski-type equation
for ensembles of droplets or order parameter equations for the motion and deformation of single
droplets.
Since the majority of the models treated in this thesis are nonlinear PDEs, a numerical approach
is inevitable. The general numerical approach we chose is twofold. On the one hand, we conduct
numerical simulations of the time evolution, where we employ the generic finite element frame-
work DUNE PDE-Lab [BHM10, BBD+08b, BBD+08a]. On the other hand, much information
about the systems under consideration can be obtained by the investigation of the steady state
solutions and their bifurcations. Therefore, we also employ numerical path continuation, which
is an efficient tool to track solutions and bifurcations in parameter space [DWC+14, EGU+18].
Here we use the software package AUTO-07p [DOO12, DKK91a, DKK91b]. Results obtained
by numerical continuation can then also be used for further semi-analytical approaches and
statistical modeling.

1.3 Outline of the Thesis

In Chap. 2 , we are concerned with Onsager’s variational principle as a general theoretical
concept which allows for the formulation of a variety of dynamical equations in the overdamped
limit. Its usefulness in the context of soft matter has been recently pointed out and reviewed in
[Doi11, Doi12]. It can be seen as an extension of variational principles based on energies in the
static case to the dynamical case through the consideration of energy dissipation. In particular,
we discuss the use of Onsager’s variational principle for coarse graining (cf. [Doi15]) and the
formulation of general model equations in pattern formation theory based on the principle.
In Chap. 3, we first elaborate how the hydrodynamic equations of a two-phase fluid on a
solid substrate can be formulated based on Onsager’s variational principle. We then out-
line a derivation of the thin-film equation which inherits a variational structure from the
hydrodynamic equations and is thus a gradient system. Furthermore, generalizations of the
thin-film equation are introduced, which are of importance in the subsequent parts of the thesis.

3



1 Introduction

In Chap. 4, the thin-film equation is employed to investigate Plateau-Rayleigh instabilities of liq-
uid ridges on chemically prepatterned substrates. Motivating experiments [WDW+11, WC12]
exhibit ridges which are on a very small scale (∼ 100 nm height) and we therefore compare
results from thin-film modeling with kinetic Monte Carlo simulations in a qualitative, yet
systematic way. As a first step towards the quantitative mapping of KMC simulations to
gradient dynamics on an interface Hamiltonian, we then present a novel numerical method
for the extraction of a binding potential from a mean field DFT relevant for the statistically
averaged KMC model.
In the subsequent chapter, we analyze a specific mode of growth of instabilities in liquids
on solid substrates, namely the propagation of instability fronts. These are discussed in the
framework of a so-called marginal stability analysis of pulled fronts, a concept which is well
established in pattern formation theory. Additionally, we discuss time-periodic solutions that
can be found in a dip-coating geometry with simple liquids and a destabilizing binding potential.
Here, one boundary of the parameter space region were time-periodic solutions, corresponding
to line deposition at and parallel to the meniscus, emerge can be related to results from the
investigation of pulled instability fronts.
In the final chapter, we discuss two different coarse graining approaches for the description
of driven liquids. In the first part of the chapter, we formulate a statistical model for the
coarsening of sliding droplets. The model relies on information obtained from the numerical
continuation of individual droplets. In the second part, we derive a simple order parameter
equation describing the pinning and depinning of a liquid droplet on a rotating cylinder. In this
context, we once again return to Onsager’s variational principle and its benefits for compact
derivations of reduced dynamical equations.

4



2 Onsager’s Variational Principle

Pioneered by P. de Fermat with his famous principle in geometrical optics (Fermat’s principle
[LL66a]), the use of variational or extremal principles is widespread in theoretical physics
[Bas07]. Well known extremal principles in a static (or equilibrium) context are, e.g., the
Rayleigh-Ritz principle [Rit09] employed in quantum mechanics and the Gibbs-Boguliubov prin-
ciple in equilibrium thermodynamics [HTA14]. The most prominent example for a variational
principle in a time-dependent context is the principle of least action which is intimately related
to the Lagrangian formulation of classical mechanics [LL66b].
In this chapter, we discuss Onsager’s variational principle for dissipative systems which arises in
overdamped classical mechanics but also in the description of thermodynamic order parameters
close to equilibrium, as is demonstrated in [Ons31a, Ons31b]. We first show how the principle
is obtained in classical mechanics [Doi15, Gla05], then discuss a more general formulation as
well as its relation to gradient dynamics and finally focus on coarse graining of dynamical
equations based on the variational principle: As in the case of, e.g., the Rayleigh-Ritz principle,
Onsager’s variational principle can be conveniently used to obtain approximations through the
formulation of parametrized ansatz functions. This has been recently pointed out in [Doi15]
and previously also in [Gla05].
In the formulation of the variational formalism (§2.1.2-§2.2.2), for reasons of clarity, a dis-
crete, finite set of order parameters is considered (as also in, e.g., [Doi11]). Applications
of the principle are then shown for spatially extended systems. In the first part (§2.1-§2.2)
of the present chapter, we mainly reproduce and sometimes elaborate ideas presented in
[Doi16, Doi15, Doi12, Doi13, Gla05], an application of the coarse graining procedure is then
shown for two prototype pattern-forming systems in §2.4.

2.1 Introduction of Onsager’s Variational Principle

2.1.1 Lagrangian Formalism and Rayleigh’s Dissipation Function

We start with a short review of the Lagrangian formulation for a mechanical system with
constraints and under the influence of friction [Gol80]. More specifically, we consider a N -
particle system subject to conservative forces Fi, constraint forces Fc

i and friction forces (with
friction coefficients γi) such that Newton’s equations of motion for the positions {ri ∈ R3, i =
1 . . . N} read:

mir̈i + γiṙi = Fi + Fc
i , i = 1 . . . N. (2.1)

We now introduce generalized coordinates {qj , j = 1, . . .M ≤ 3N} in accordance with the
constraints on the system, i.e., which parametrize, in the space spanned by the physical particle
positions {ri}, a submanifold on which the constraints on the system are fulfilled.
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2 Onsager’s Variational Principle

We proceed to project Newton’s equations (2.1) onto an infinitesimal displacement of the system
tangential to the constraint manifold (often termed virtual displacement):

N∑
i=1

(mir̈i + γiṙi − Fi − Fc
i ) · δri = 0, where δri =

M∑
i=1

∂ri
∂qj

δqj . (2.2)

Physically speaking, d’Alembert’s principle now states that the overall work done by the
constraint forces along such displacement vanishes identically:

N∑
i=1

Fc
i · δri = 0. (2.3)

Making use of the identity ∂ri
∂qj

= ∂ṙi
∂q̇j

, it can be seen by some straightforward calculation (cf.
[Gol80]) that

M∑
j=1

(
d
dt
∂L
∂q̇j
− ∂L
∂qj

+ ∂D
∂q̇j

)
δqj = 0, (2.4)

where we introduced the Lagrangian

L := K − V =
N∑
i=1

1
2miṙ2

i − V, with Fi = −∇iV, (2.5)

with the kinetic energy K and the potential V as well as the Rayleigh dissipation function
[Str94]

D :=
N∑
i=1

1
2γiṙ

2
i =

M∑
j=1

1
2 γ̃j({qi})q̇

2
j . (2.6)

Finally, for the case of holonomic constraints, i.e., if each variation δqi is independent from the
others, from (2.4) the Lagrangian equations of motion including friction forces are obtained:

d
dt
∂L
∂q̇j
− ∂L
∂qj

+ ∂D
∂q̇j

= 0, for j = 1, . . .M. (2.7)

Some remarks are in order concerning the introduction of the Rayleigh dissipation function to
incorporate terms stemming from friction into the Lagrangian formalism:
While the Lagrangian equations of motion without dissipative forces are associated with a
variational (extremum) principle, namely Hamilton’s principle of least action, this is in general
no longer the case for the set of equations (2.7). However, as will be discussed next, a different
variational principle arises for the case of overdamped systems. Furthermore, as for the conser-
vative Lagrangian equations, the extended Lagrangian formulation allows for a convenient way
to rewrite the equations of motion for a given equivalent set of generalized coordinates, i.e., for
all sets of coordinates qi which can be varied independently and fully describe the system in
accordance to the constraints, the equations of motion have the form (2.7). This property of
the Lagrangian formulation, which persists even when an extremum principle is missing proves
very useful for practical calculations as is discussed for mechanical systems in [Min15].
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2.1 Introduction of Onsager’s Variational Principle

In the case of overdamped systems, i.e., for mi
γi
� 1, the contribution stemming from the kinetic

energy of the system can be neglected and equations (2.7) reduce to

∂V

∂qj
+ ∂D
∂q̇j

= 0, for j = 1, . . .M. (2.8)

By introducing the function

R = d
dtV +D =

M∑
j=1

∂V

∂qj
q̇j +

M∑
j

1
2 γ̃j({qi})q̇

2
j , (2.9)

these equations can be reformulated as (cf. [Gla05])

∂R
∂q̇j

= 0, for j = 1, . . .M, (2.10)

which is a special case of Onsager’s variational principle which we will now discuss in general.

2.1.2 Onsager’s Variational Principle and Gradient Dynamics

Consider a set of variables X = (X1, . . . , XN ) describing a nonequilibrium system such that
their time evolution can be written as1 [Doi13]:

Ẋi = −ξ−1
ij (X) ∂E

∂Xj
, for i = 1, . . . N, (2.11)

where E is the energy of the system, ξ = (ξij)i,j=1,...N is the dissipation matrix2, which in
general depends on X, and ξ−1 is the inverse of ξ. We now require the dissipation matrix ξ
and thus also its inverse to be symmetric and positive definite for all values of X:

ξijyiyj > 0, for all y ∈ RN , and ξij = ξji, i, j = 1, . . . N. (2.12)

With the definition of the Rayleighian

R := ∂E

∂Xi
Ẋi + 1

2ξijẊiẊj =: d
dtE +D (2.13)

where D is the dissipation function, the evolution equation (2.11) can then be recast in the
variational form

∂R
∂Ẋi

= 0, for i = 1, . . . N, (2.14)

since

∂

∂Ẋi

(
∂E

∂Xν
Ẋν + 1

2ξµνẊµẊν

)
= ∂E

∂Xi
+ 1

2(ξµiẊµ + ξiνẊν) = ∂E

∂Xi
+ (ξµiẊµ). (2.15)

1 In the following, we use Einstein’s sum convention, i.e., we sum over all indices appearing twice in one
expression.

2 We assume the dissipation matrix to be invertible. If this is not the case, we can diagonalize the matrix
and consider the dynamics of the complement of its kernel.
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2 Onsager’s Variational Principle

The time evolution of nonequilibrium state variables of the form (2.5) with the condition (2.12)
was shown by L. Onsager to be highly relevant for nonequilibrium thermodynamics. In the
context of his seminal work [Ons31a, Ons31b], the symmetry of the matrix ξ is known under
the term of Onsager reciprocal relations. In [Ons31a, Ons31b], L. Onsager also points out
the fact stated above that the positive definiteness and symmetry of ξ implies a variational
principle. Not only in the context of classical mechanics and of nonequilibrium thermodynamics,
governing equations can often be written in the form (2.5),(2.12), but also for hydrodynamic
systems in the highly viscous limit. The formulation of hydrodynamic model equations based
on Stokes equation will be subject of Chap. 3. The relevance of the variational principle for
the formulation of model equations in soft matter physics in general was recently emphasized
in [Doi11], where various examples are given, part of which will also be shown in the present
chapter.
From a geometric point of view, the dissipation matrix ξ can be interpreted as a metric tensor
associated with the symmetric bilinear form [Gla05]

〈Y,Z〉ξ(X) := ξij(X)YiZj . (2.16)

The right hand side of equation (2.11) is then the negative gradient of the energy E induced
by the metric tensor:

Ẋi = − (∇ξE)i = −ξ−1
ij (X) ∂E

∂Xj
. (2.17)

Equation (2.11) is therefore a gradient dynamics on the energy E with respect to a gradient
corresponding to a, in general, non-euclidean geometry specified by the dissipation function.
As it is in general the case for gradient dynamics, the energy E is always decreasing in time
until a fixed point of the system (i.e., an equilibrium) is reached.

2.2 Coarse Graining Based on Onsager’s Variational Principle
2.2.1 Equivalence to a Projection Approach
We will now discuss the formulation of reduced dynamical equations based on the variational
principle (2.14). The efficiency of the variational principle for coarse graining is outlined
in detail in [Doi15], its relation to a Galerkin-type reduction is shown in [Gla05]. Here, we
first show the general Galerkin-type reduction, following [Gla05] and then discuss the coarse
graining procedure based on a perturbed energy function as a possible guide to identifying
good approximating coarse-grained variables.
The use of variational principles for the calculation of approximations is a common concept in
theoretical physics. One prominent example is the use of the Rayleigh-Ritz variational principle
for the approximate calculation of eigenfunctions and eigenvalues of Schrödinger’s equation.
The basic approach is typically to formulate parametrized ansatz functions and then perform
variations only with respect to the small set of parameters. For the dynamical system (2.14) a
corresponding approach is to use the following ansatz:

X(t) = X0(q(t)), where X(t) ∈ RN and q(t) ∈ RM , M < N, (2.18)

i.e., to formulate a parametrized ansatz for the dynamical solution, where the time dependence
is assigned exclusively to the parameters (or coarse-grained variables). The time evolution of
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2.2 Coarse Graining Based on Onsager’s Variational Principle

the coarse-grained variables q is then obtained through the variational principle by evaluation
of

∂R0
∂q̇i

= 0, for i = 1, . . .M, where R0(q, q̇) := R
(

X0(q), d
dtX0(q)

)
. (2.19)

The variation with respect to q̇i in equation (2.19) is in fact a projection of the original set
of equations (2.14) evaluated at (X, Ẋ) = (X0, Ẋ0) onto a direction tangential to the reduced
manifold specified by ∂X0

∂qi
:

∂R0
∂q̇i

= ∂X0j
∂qi

∂R
∂Ẋj

∣∣∣∣∣
(X0,Ẋ0)

= 0. (2.20)

In terms of the equivalent gradient systems formulation, the reduction amounts to [Gla05]

q̇j

〈
∂X0
∂qi

,
∂X0
∂qj

〉
ξ(X0)

= −∂X0j
∂qi

∂E

∂Xj

∣∣∣∣∣
X0

= −
〈
∂X0
∂qi

, ∇ξE|X0

〉
ξ(X0)

(2.21)

⇔ q̇ = −∇ζE(X0(q)). (2.22)

Here, ζ = ζ(q) is the so-called induced metric tensor on the restricted submanifold specified
by X0(q) and reads

ζij =
〈
∂X0
∂qi

,
∂X0
∂qj

〉
ξ(X0)

= ξµν
∂X0µ
∂qi

∂X0ν
∂qj

. (2.23)

Through (2.21), we recognize that performing the variation of the Rayleighian R with respect
to the reduced variable qi is equivalent to inserting the ansatz (2.18) into (2.11) and then,
subsequently, projecting the resulting equation onto the mode ∂X0

∂qi
with respect to the metric

ξ(X0). Furthermore, the resulting reduced equations are obviously still a gradient system,
where now the gradient of the energy is evaluated according to the metric ζ(q) induced by the
restriction to the submanifold.

2.2.2 Quasistatic Approximations
While it is now shown that the coarse graining through a reduced variation is a convenient way
to perform a Galerkin-type approximation [Gla05], an open question remains how to choose
a good parametrized ansatz (2.11). The basic assumption behind the ansatz (2.11) is the
existence of a slow manifold [Hak04], such that the system exhibits a separation of timescales,
where it relaxes quickly onto the slow manifold and then slowly follows the latter approximately
until it reaches a steady state [Gla05]. We now outline the special case (which will however be
relevant in §6.2.3) where the overall energy can be written as

E = E0 + εE1, where ε� 1, (2.24)

where a continuous family of minima X0(q) of the energy E0 is known and εE1 is treated as a
perturbation.3 We consider the ansatz

X(t) = X0(q(τ)) + εX1(τ), where τ = εt, (2.25)
3 Note that the relevant quantity for the perturbation is the gradient of E1 and not the absolute value, thus

we also assume that ∇E1 is of the same order of magnitude as ∇E0.
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2 Onsager’s Variational Principle

accounting for the fact stated above that we assume the system to move on a slow timescale τ
on the submanifold given by the steady solution family of the unperturbed system and allowing
for small correction terms εX1. After introducing this ansatz in the Rayleighian (2.13), we get

R =1
2ε

2ξµν (X0) ∂X0µ
∂qi

∂X0ν
∂qj

q̇iq̇j + ε
∂E0
∂Xi

∣∣∣∣
X0

Ẋi︸ ︷︷ ︸
=0

+ε2 ∂2E0
∂Xi∂Xj

∣∣∣∣∣
X0

∂X0j
∂qµ︸ ︷︷ ︸

∂
∂qµ

(
∂E0
∂Xi

∣∣∣
X0

)
=0

q̇µX1i+ (2.26)

+ ε2 ∂E1
∂Xi

∣∣∣∣
X0

X0i
∂qj

q̇j + h.o.t., (2.27)

where the time derivatives are taken with respect to τ . With the variational principle ∂R0
∂q̇i

= 0,
where R0 is the truncated leading order Rayleighian, we obtain

q̇ = −∇ζE1(q) (2.28)

which is valid consistently in leading order and independent of the perturbation X1.

2.3 Onsager’s Variational Principle in Soft Matter and Pattern
Formation

As explained in the introduction to the present chapter, up to this point we have introduced the
concept of the variational principle (2.14) for discrete, finite dimensional systems. However, the
variational principle can also be fruitfully employed to formulate and approximate evolution
equations for spatially extended systems, which are of great interest in soft matter systems and
in the theoretical description of pattern formation in general. Obviously, extended systems
exhibit subtleties concerning i.e. boundary conditions, these will be discussed for each system
individually whenever they arise.

2.3.1 Particle Diffusion and DDFT
To start with a concrete physical example, following [Doi16, Doi11], we consider a system of
colloidal particles with local nondimensional number density %(x, t) undergoing overdamped
Brownian motion subjected to an external potential Vext in a nondimensional Volume Ω ⊂
Rn, n ∈ {1, 2, 3} with boundary ∂Ω. The energy minimized over time in this system for the case
of low densities % (and thus negligible particle interactions) is the free energy Fid stemming
solely from entropic contributions and the external potential [MT99]:

Fid[%] =
∫
Ω

kBT%(x, t) (ln(%(x, t))− 1) + %(x, t)Vext(x, t) dx , (2.29)

with the Boltzmann constant kB and the temperature T of the system. In order to formulate the
equation of motion in the form of the variational principle (2.14), we have to find a convenient
“velocity-type” variable. The most straightforward choice would be to consider %̇, however, when
defining the locally averaged particle velocity v(x, t) via

%̇ = −∇ · (%v) , (2.30)
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2.3 Onsager’s Variational Principle in Soft Matter and Pattern Formation

we obtain a physically intuitive expression for the dissipation function of the system:

D = 1
2

∫
Ω

ξ(%)v2 dx , (2.31)

where ξ(ρ) is a per volume friction coefficient dependent on the local density %(x, t). Note that
(2.30) implies mass conservation of the system. By virtue of Green’s identity [BSMM12], the
rate of change of a general free energy functional F due to its dependence on % reads:

d
dtF =

∫
Ω

δF [%]
δ%(x, t) %̇(x, t) dx = −

∫
Ω

∇ · (%v)δF
δ%

dx =
∫
Ω

%v · ∇δF
δ%

dx −
∫
∂Ω

δF
δ%
%v · dS

︸ ︷︷ ︸
=0

.

(2.32)

In (2.32), we assume vanishing particle fluxes %v on the boundary of our volume Ω. With the
Rayleighian R = D + d

dtF , we obtain4

δR
δv = 0⇒ v = −%

ξ
∇δF
δ%

(2.33)

For F [%] = Fentr[%], a vanishing external potential (Vext = 0) and ξ(%) = γ%, with γ being the
friction coefficient of a single particle, we finally end up with the well known diffusion equation:

%̇ = D∆%, with D = kBT

γ
. (2.34)

Note that the diffusion constant is defined consistently with the well-known Einstein relation
[Ein05], when we consider a colloidal suspension of spherical particles of radius R in a liquid
of viscosity η, where γ = 6πηR. When retaining the same functional form of the dissipation
function but extending the free energy functional F based on equilibrium density functional
theory (DFT) to include particle interaction terms (so-called excess free energy contributions),

F [%] = Fid[%] + Fex[%], (2.35)

with (2.33), the evolution equation for the density % takes the form of the well established
dynamical density functional theory (DDFT) of fluids [MT00, MT99, AE04]:

%̇(x, t) = ∇ ·
(
%(x, t)
γ
∇ δF [%]
δ%(x, t)

)
. (2.36)

If the interaction of the particles is sufficiently local and without external potential, the overall
free energy functional F = Fid + Fex takes the form

F =
∫
Ω

σ

2 (∇%)2 + f(ρ) dx , (2.37)

which is well known from Cahn-Hilliard theory of phase separation [CH58, Cah59]. Here, the
first summand in the integral corresponds to an interfacial free energy density, whereas the
second summand is a local free energy density.

4 Here and in the following, we use the shorthand notation δG[u]
δu(x) :=

(
δG[u]
δu1(x) , . . . ,

δG[u]
δun(x)

)T
for a functional

G[u] dependent on a n-dimensional vector of continuous variables u(x).
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2 Onsager’s Variational Principle

2.3.2 Conserved and Non-Conserved Order Parameter Equations
The basic model equation in DDFT (2.36) is a special example of an order parameter equation,
which exhibits mass conservation.5 A more general form of such equations for a set of N scalar
order parameter fields u(x, t) ∈ RN , x ∈ Ω ⊂ Rn, n ∈ {1, 2, 3} which are locally conserved
reads [WTG+15]6

u̇(x, t) = ∇ ·
(

Q(u)∇δF
δu

)
, where Q(u) ∈ RN×N (2.38)

The matrix Q is in general a nonlinear function of the order parameters u but has to be
always positive definite and symmetric in order to allow for a formulation of (2.38) in terms
of Onsager’s variational principle. The free energy functional F may depend on higher-order
derivatives than in the case of (2.37), an example is the Swift-Hohenberg free energy functional
which will be discussed in the next section.
While the variational principle (2.33) for the colloidal particle diffusion and DDFT is formulated
in terms of the physically intuitive local mean velocity, the natural variables for the formulation
of the Rayleighian associated with (2.38) are the fluxes defined via

u̇(x, t) = −∇ · J, i.e., u̇i(x, t) = −∇ · (Jui), i = 1, . . . , N (2.39)

The Rayleighian and variational principle corresponding to (2.38) in terms of these fluxes are
given by

R = D + d
dtF = 1

2

∫
Ω

〈
J,Q−1(u)J

〉
dx +

∫
Ω

〈
∇δF
δu ,J

〉
dx ,

δR
δJ = 0, (2.40)

where in this case 〈, 〉 denotes the combined (or successive) inner product in the space of order
parameters and in the n−dimensional position space.7
A less involved non-conserved gradient-type order parameter equation commonly encountered
for spatially extended systems reads:

u̇(x, t) = −Q(u) δF [u]
δu(x, t) . (2.41)

Here, the equivalent variational principle is simply formulated in terms of the variable u̇, given
a symmetric and positive definite matrix Q:

R = D + d
dtF = 1

2

∫
Ω

u̇TQ−1(u)u̇ dx +
∫
Ω

δF
δu u̇ dx ,

δR
δu̇ = 0. (2.42)

For a single order parameter, a constant matrix Q and a free energy functional F of the type
(2.37), this results in the well known Allen-Cahn equation or real Ginzburg-Landau equation
[AC79]. In practice, also a combination of conserved and non-conserved order parameter
equations occurs, e.g., in the modeling of evaporative thin liquid films [Thi10].

5 For example, in the case of (2.36), d
dt

(∫
Ω
%(x, t) dx

)
= 0, for v = 0 on ∂Ω.

6 Here, the divergence and Nabla operators act component-wise, i.e., on each order-parameter component
separately. In index notation, (2.38) reads: u̇i = ∂xν (Qij∂xν δFδuj ).

7 For example,
〈
∇ δF
δu ,J

〉
= Jui · ∇ δF

δui
.
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2.4 Variational Derivation of Amplitude Equations

2.4 Variational Derivation of Amplitude Equations
A well-established coarse graining procedure for pattern forming systems which exhibit the
formation of stripes or more involved structures is the derivation of so-called amplitude equations
which approximate the spatio-temporal evolution of the structures close to the corresponding
instability threshold [vHHvS94]. Typically, the derivation involves a multiscale expansion near
the threshold which gives successively the leading order solution in terms of harmonic modes
and then the spatiotemporal evolution of amplitudes of the latter through the evaluation of
solvability conditions [Pis06]. Here, we show an alternative derivation of the amplitude equations
for both the standard and the conserved Swift-Hohenberg equation [SH77, MC00] based on the
coarse graining outlined in §2.2. As the solvability conditions amount to projections of the
superordinate equations, in the light of §2.2.1 it is not surprising that the resulting equations
are equivalent in both approaches.

2.4.1 Swift-Hohenberg Equation
The classical Swift-Hohenberg equation is a prototype equation for pattern formation close
to a steady short-scale instability [CH93] which was first derived in [SH77]. In one spatial
dimension, it is given by

∂tu = εu− (∂2
x + q2

c )2u− u3, (2.43)

where ε is the bifurcation parameter for the stripe-forming instability and qc is the wave number
of the stripes at onset. In fact (2.43) is of type (2.41) or (2.42), respectively, with Q(u) ≡ 1
and a free energy functional given by

F = 1
2

∫ [(
∂2
x + q2

c

)
u
]2
− εu2 + 1

2u
4 dx . (2.44)

We will now derive reduced amplitude equations for the Swift-Hohenberg equation (2.43) by
calculation of reduced functionals D and F . Following the scaling presented in [vHHvS94], we
perform the following modulated harmonic mode ansatz close to the instability threshold ε = 0
(i.e. 0 < ε� 1):

uhm(x,X, T ) = ε1/2A(X,T )eiqcx + c.c., T := εt, X := ε1/2x (2.45)

More precisely, we insert (2.45) in the free energy functional (2.44) and obtain:

F [uhm] =ε−1/2 1
2

∫ [
ε2
(
i2qc∂XA(X,T )eiqcx + c.c.

)2
− ε2

(
A(X,T )eiqcx + c.c.

)2
]

dX

+ ε−1/2 1
2

∫
ε2 1

2
(
A(X,T )eiqcx + c.c.

)4
dX + h.o.t.. (2.46)

The free energy functional is now approximated by means of a slowly varying amplitude ap-
proximation [CG09]. Thereby, we drop all terms of the form∫

g(X)e±inqcx dX ≈ 0,where n ≥ 1. (2.47)

Thus, the free energy functional F [uhm] reduces to

F [uhm] ≈ ε3/2 1
2

∫
8q2
c (∂XA∂XA∗)− 2|A|2 + 3|A|4 dX . (2.48)
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In a similar manner, the dissipation functional D can be approximated when the plane-wave
ansatz 2.45 is inserted:

D[uhm] =
∫

(∂tuhm)2 dx = 1
2ε

5/2
∫ (

∂TA(X,T )eiqcx + c.c.
)2

dX (2.49)

≈ ε5/2
∫
|∂TA(X,T )|2 dX . (2.50)

Generally speaking (also with respect to the straightforward generalization to 2 and 3 dimen-
sions), the products of harmonic modes where the wave vectors add up to zero are retained in
the slowly varying amplitude approximation shown above. We emphasize that the asymptotic
approximation is done with the equations resulting from the variational principle in mind. We
are now in the position to derive the dynamical equation for the amplitudes directly from the
variational principle. Our reduced variables are henceforth (A, ∂TA) and (A∗, ∂TA∗). For both,
the variational principle should hold independently. Instead of writing down the variation of
the reduced Rayleighian, we directly employ the equivalent form, which is valid consistently in
leading order in ε:

δD
δ(∂TA) + ε

δF
δA

= 0 (2.51)

δD
δ(∂TA∗)

+ ε
δF
δA∗

= 0. (2.52)

Here, the factor ε in the second summand of (2.51) and (2.51) stems from the introduction of
the timescale T = εt. Finally, we identify (2.52) as the well known amplitude equation for the
spatio-temporal evolution of A(X,T ) (cf. [vHHvS94]):

∂TA = 4q2
c∂XXA+A− 3|A|2A. (2.53)

Note that by performing the approximations shown for the free energy functional F and for
the dissipation integral D, we can formally approximate the Rayleighian functional R in one
single consistent order in ε, higher order terms would result in higher order contributions to
(2.51) and (2.52).

2.4.2 Conserved Swift-Hohenberg Equation
Following [MC00], we consider the mass-conserving equation, which is known as the phase-field
crystal (PFC) equation [ELW+12] or the conserved Swift-Hohenberg equation [TAR+13]:

∂tu = −∂xJ = ∂2
x

(
δF
δu

)
= −∂2

x

(
ε ru− (q2

c + ∂2
x)2u+ su2 + u3

)
, (2.54)

where ε is a smallness parameter as in the previous section and (r, s) are parameters of order
O(1). The free energy functional F corresponding to (2.54) is given by

F = 1
2

∫ [(
∂2
x + q2

c

)
u
]2
− εru2 + 2s

3 u
3 + 1

2u
4 dx . (2.55)

This is the same energy functional as (2.44), except for the cubic contribution parametrized by
the factor s and the factor r which has been introduced for better comparability with results
from [MC00]. (2.54) can be written in the variational form (2.38) when the corresponding
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Rayleighian R is constructed from the free energy (2.55) and from the following dissipation
functional resulting from a mobility Q = 1:

D = 1
2

∫
J2 dx = 1

2

∫  x∫
∂tu(x′, t) dx′

2

dx . (2.56)

As for the case of the non-conserved Swift-Hohenberg equation (2.43), we perform a multiscale
ansatz based on harmonic modes with the critical wave number qc. In order to account for the
mass conservation, the ansatz is now more involved, and reads [MC00]:

uhmc(x,X, T ) = ε1/2A(X,T )eiqcx + εC(X,T )e2iqcx + c.c.+ εB(X,T ), (2.57)
where A(X,T ), C(X,T ) ∈ C, B(X,T ) ∈ R.

The large time and length scales are given by (X,T ) = (ε1/2x, εt) This ansatz can be inserted
in the free energy functional (2.55) which is then truncated at order O(ε3/2). We furthermore
employ again the slowly-varying amplitude approximation (2.47) and therefore only retain
contributions, for which the harmonic modes combine to a constant factor. The truncated free
energy is given by

F [uhmc] = ε3/2
∫
−r |A|2 + 4q2

c |∂XA|
2 + 1

2q
4
cB

2 + 9q4
c |C|2+

+3
2 |A|

4 + 2s |A|2B + s(A2C∗ +A∗2C) dX (2.58)

Note that the free energy functional can be written in one single consistent order O(ε3/2).
In order to deduce the dynamics of the order parameters (A,B,C), we proceed to insert the
ansatz (2.57) in the dissipation functional (2.56). The dissipation functional is truncated at
order O(ε5/2):

D[uhmc] =ε−1/2

2

∫  x∫ (
ε3/2∂TA(X ′, T )eiqcx′ + ε2∂TC(X ′, T )e2iqcx′ + c.c. (2.59)

+ε2∂TB(X ′, T )
)

dx′
]2

dX (2.60)

=ε−1/2

2

∫ ε3/2∂TA(X,T ) 1
iqc
eiqcx + c.c.+ ε3/2

X∫
∂TB(X ′, T ) dX ′

2

dX + h.o.t.

(2.61)

=ε5/2
∫
− 1
q2
c

|∂TA(X,T )|2 + 1
2

(∫ X

dX′ ∂TB(X ′, T )
)2

dX + h.o.t. (2.62)

In our approximation of the dissipation functional, we used the following iterable identity
obtained through integration by parts:

x∫
g(X ′)einqcx′ dx′ = g(X) 1

inqc
einqcx − ε1/2

x∫
∂X′g(X ′) 1

inqc
einqcx

′ dx′ . (2.63)

Note that the truncated dissipation functional does not contain any contributions of the order
parameter C(X,T ). As before, we can now directly deduce the dynamical equations from the
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2 Onsager’s Variational Principle

variational principle. However, since the contributions of C(X,T ) to D are only of order O(ε3),
in our approximation

δD
δ(∂TC) + ε

δF
δC

= δD
δ(∂TC∗)

+ ε
δF
δC∗

= 0 (2.64)

⇒ δF
δC

= δF
δC∗

= 0. (2.65)

From equation (2.65), we obtain

9q4
cC + sA2 = 0⇔ C = −sA

2

9q4
c

, (2.66)

which we can insert in the truncated free energy functional (2.58) to end up with a reduced
free energy functional independent of C(X,T ):

F [uhmc] = ε3/2
∫
−r |A|2 + 4q2

c |∂XA|
2 + 1

2q
4
cB

2 + 2s |A|2B + 1
2

(
3− 2s2

9q4
c

)
|A|4 dX .

(2.67)

We can then finally deduce the leading order dynamical equations for A(X,T ) and B(X,T )
from the variational principle:

δD
δ(∂TA∗)

+ ε
δF
δA∗

= δD
δ(∂TB∗)

+ ε
δF
δB∗

= 0 (2.68)

⇒ ∂TA = −q2
c

δF
δA∗

= q2
c

(
rA+ 4q2

c∂XXA−
(

3− 2 s
2

9q4
c

)
|A|2A− 2sAB

)
(2.69)

∂TB = ∂XX
δF
δB

= ∂XX
(
q4
cB + 2s |A|2

)
. (2.70)

These equations are in agreement with the corresponding results obtained in [MC00].

2.5 Conclusion
In the present chapter, we have introduced Onsager’s variational principle, as recently discussed
by M. Doi et al. and K. Glasner et al.. One main focus of the presentation has been the use
of the variational principle for the derivation of coarse-grained equations. Here, as it has been
previously done in [Gla05], we have shown that the coarse graining by a variational principle
restricted to a lower dimensional parameter set of parametrized ansatz functions is equivalent
to a projection procedure. This equivalence will also be shown explicitly in §6.2.3 for a model
system in the context of hydrodynamics. For now, we have illustrated the aforementioned
equivalence by the derivation of amplitude equations for both the standard and the conserved
Swift-Hohenberg equation, leading to the same results as those obtained by a projection method
(cf. [vHHvS94, MC00]).
Given this equivalence, it is of course an interesting question whether the variational principle
has specific advantages over the commonly used methods for the case where one deals with
equations which can be written in terms of Onsager’s variational principle. One obvious
advantage is that the structure of the underlying equation remains clear: One explicitly
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2.5 Conclusion

calculates approximate energy and dissipation functions (or functionals) and obtains the coarse-
grained equations as a variational principle. As compared to common projection techniques
this might even offer the opportunity to approximate the dissipation and the energy by different
ansatz functions parametrized by the same parameters, based on different standards concerning
the quality of the approximations.
The second advantage of the variational procedure is that given one is in the position to
calculate the coarse-grained Rayleighian, the derivation is more compact than an equivalent
derivation by projection. However it is not always straightforward to write down the coarse-
grained Rayleighian as a function of the coarse-grained variables only. Finally, we have to
emphasize that the coarse graining by the variational principle as presented in the present
chapter requires the a priori choice of adequate ansatz functions and is not an adequate means
for an order by order asymptotic approximation of the initial equations.
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3 The Thin-Film Equation

In this chapter, we discuss the formulation of model equations for viscous liquid films on
substrates in terms of variational principles. In the first part, we introduce the Stokes equations
and boundary conditions for the solid-liquid and the liquid-gas interface through the variation
of a corresponding Rayleighian (cf. [QWS06, XQ17]). In the second part of the chapter,
we reduce the system of equations and demonstrate that asymptotically, for a long-wave or
thin-film geometry, the full hydrodynamic Rayleighian can be reduced to a Cahn-Hilliard-type
Rayleighian. Then, the latter is a functional of the local film height (and corresponding fluxes).
The resulting reduced equation is the well known thin-film equation.1 Finally, we introduce
variants and generalizations of the thin-film equation which are employed in this thesis.

3.1 Stokes Flow of a Viscous Liquid on a Solid Substrate
3.1.1 Stokes Equations from a Variational Principle
The rate of dissipation of energy in an incompressible viscous liquid with dynamic viscosity η
is given by [LL91]:

d

dt
E = −η2

∫
dx

(
∂ui
∂xj

+ ∂uj
∂xi

)2

. (3.1)

In the over-damped limit, the constituting equations for the flow of the liquid can be written in
terms of an Onsager type variational principle [Doi13, QWS06]. The corresponding Rayleighian
RStokes consists solely of a Rayleigh dissipation function D = −1

2
d
dtE and a constraint term

imposing the condition

∂ui
∂xi

= 0 (3.2)

for the incompressibility of the liquid through a local (space-dependent) Lagrangian multiplier
p(x):

RStokes = η

4

∫
dx

(
∂ui
∂xj

+ ∂uj
∂xi

)2

−
∫

dx p(x)∂ui
∂xi

. (3.3)

The variation of RStokes with respect to the components of the velocity field and to the La-
grangian multiplier reads:

δRStokes = −
∫

dx η
∂

∂xj

(
∂uj
∂xi

+ ∂ui
∂xj

)
δui +

∫
dx ∂p

∂xi
δui −

∫
dx ∂ui

∂xi
δp

!= 0, (3.4)

1 For similar derivations of the thin-film equation based on Onsager’s variational principle, cf., e.g., [XTQ15,
XDD16].
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3 The Thin-Film Equation

where Green’s theorem, neglecting boundary terms, and the symmetry of the energy dissipation
functional was used. The variation with respect to each component of the velocity field and to
the Lagrangian multiplier must vanish independently, which results in the well-known Stokes
equations for incompressible fluids:

η∇2u = ∇p, ∇ · u = 0. (3.5)

The Lagrangian multiplier p is identified as the pressure field in the liquid.

3.1.2 Viscous Liquid with a Liquid-Gas Interface on a Solid Substrate

ΩL

ΩG

∂ΩSL

∂ΩLG

nSL

n

tSL

t

Figure 3.1: Sketch of a two-phase flow on a curved solid substrate with definitions of the normal
and tangential vectors as well as the different volumes and interfaces necessary for
the formulation of the governing equations.

In the previous subsection, we have discussed how the Stokes equations can be written in
terms of a variational principle. Next, we consider a two-phase fluid (i.e., liquid and gaseous
phase) on a solid substrate. It is assumed that the flow in both phases is given by the Stokes
equation, the two phases are immiscible and the velocity field is continuous at the interface
of the two fluids. A sketch of the considered geometry with respective definitions is shown in
FIG. 3.1. Note that the solid-liquid interface is not necessarily flat. While the solid-liquid
interface is assumed to be static, the liquid-gas interface may move. In order to relate the
interface motion to the flow field, we formulate the so-called kinematic boundary condition,
which essentially defines the interface. Given the velocity vLG of the liquid-gas interface, the
kinematic boundary condition states

(u− vLG) · n = 0 on ∂ΩLG, (3.6)
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3.1 Stokes Flow of a Viscous Liquid on a Solid Substrate

with n denoting the normal vector on the liquid-gas interface ∂ΩLG. The no-penetration
boundary condition

u · nSL = 0 on ∂ΩSL (3.7)

at the solid-liquid interface can be seen as a special case of a kinematic boundary condition for
an immobile boundary. In (3.7), nSL is normal to the solid-liquid interface ∂ΩSL.
We now formulate a Rayleighian, such that the variational principle of the latter gives the full
remaining set of bulk and interface2 equations describing the system in the overdamped limit.
The Rayleighian consists of the following contributions:

1. Viscous energy dissipation in the liquid and the gaseous phase3:

Rdiss = ηL

4

∫
ΩL

dx
(
∂ui
∂xj

+ ∂uj
∂xi

)2

+ ηG

4

∫
ΩG

dx
(
∂ui
∂xj

+ ∂uj
∂xi

)2

. (3.8)

2. Constraint terms enforcing the incompressibility condition in both phases:

Rconstr. = −
∫

ΩL

dx pL(x)∂ui
∂xi
−
∫

ΩG

dx pG(x)∂ui
∂xi

. (3.9)

3. Rate of change of energy associated with the liquid-gas interface ∂ΩLG (cf. [Tom00]):

RLG = −
∫

∂ΩLG

dS σuini
∂nj
∂xj

, (3.10)

where σ is the interfacial tension of the liquid-gas interface.

4. Dissipation due to slipping of the liquid at the solid-liquid interface (see [QWS06] for
details):

Rslip =
∫

∂ΩSL

dS ηL

2ls
(tSL
i ui)

2
, (3.11)

where t is a normalized vector tangential to ∂ΩSL.

We proceed by performing the variation of the full Rayleighian

RSLG = Rdiss +Rconstr. +RLG +Rslip (3.12)

2 The equations on the interfaces are also referred to as boundary conditions.
3 Here and in the following, the indices L and G are used to denote the liquid and gaseous phase, respectively.

In principle, two different velocity fields uG, uL have to be introduced, however we omit the indices for
these fields, since it is always specified by the domains which velocity is meant. On the interfaces both
fields are equal by virtue of the continuity condition.
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3 The Thin-Film Equation

with respect to the flow field u in ΩL, ΩG as well as on ∂ΩSL, ∂ΩLG and with respect to the
pressure fields pG, pL. Unlike for the case of the bulk Stokes equations in §3.1.1, boundary
terms arising when Green’s theorem is employed are not neglected4:

δRdiss+δRconstr. =
∑

k∈{L,G}

−ηk

∫
Ωk

∇2ui δui + ∂pk
∂xi

δui − δpk
∂ui
∂xi


+

∫
∂ΩLG

dS ηLnj

(
∂ui
∂xj

+ ∂uj
∂xi

)
δui −

∫
∂ΩLG

dS ηGnj

(
∂ui
∂xj

+ ∂uj
∂xi

)
δui

−
∫

∂ΩLG

dS pLniδui +
∫

∂ΩLG

dS pGniδui +
∫

∂ΩSL

dS ηLn
SL
j

(
∂ui
∂xj

+ ∂uj
∂xi

)
δui, (3.13)

δRLG+δRslip = −
∫

∂ΩLG

dS σ
∂nj
∂xj

niδui +
∫

∂ΩSL

dS ηL

ls
tSL
j ujt

SL
i δui, (3.14)

Requiring all the variations with respect to the components of the velocity field and the pressure
to vanish independently in the bulk domains and on the interfaces results in the following set
of equations:

1. Incompressible Stokes equations in the bulk for both the gaseous and the liquid phase:

ηL,G∇2u = ∇pL,G, ∇ · u = 0 in ΩG,L. (3.15)

2. Stress-free boundary conditions at the liquid-gas interface (including surface tension
effects):

τ L · n− τG · n = (σ∇ · n) n on ∂ΩLG. (3.16)

3. Navier Slip boundary condition at the solid-liquid interface [QWS06]:

ηL

ls
tSL · u = −ηL (tSL · ∇ (nSL · u) + nSL · ∇ (tSL · u)) , on ∂ΩSL. (3.17)

In (3.16), the stress tensors [LL91] in the liquid and the gaseous phase were introduced:

(
τG,L

)
ij

:= −pG,Lδij + ηG,L

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (3.18)

The boundary condition (3.17) is obtained through a projection of the corresponding boundary
terms onto the tangential direction tSL. The set of equations (3.15)-(3.17) which is entirely
encoded in the Rayleighian (3.12) form together with (3.6), (3.7) and the continuity condition
on ∂ΩLG the full set of equations necessary to describe the two-phase viscous Stokes flow on a
solid substrate [ODB97, Köp11].

4 The boundary terms from the variation of (3.9) at the solid-liquid interface vanish by virtue of (3.7)
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3.2 Long-Wave Reduction and the Thin-Film Equation

3.2.1 Monge Parametrization of the Liquid-Gas Interface

h(x)

x

z

n t

Figure 3.2: Sketch of a liquid film on a flat solid substrate in two dimensions. The free liquid-gas
interface is fully described by a height function h(x).

We now focus on a particular geometry for the problem discussed in the previous section, where
the solid liquid interface is flat and the solid-gas interface can be described by a height function
h(x) (cf. FIG. 3.2). In the following, the system is considered in 2D, the generalization to 3D
is straightforward. The unit vectors n, t normal and tangential to the liquid-gas interface can
be expressed through the height function h(x), where x ∈ [0, L] as

n = 1√
1 + (∂xh)2

(−∂xh, 1)T , t = 1√
1 + (∂xh)2

(1, ∂xh)T . (3.19)

The normal velocity of the interface vn = vLG · n is given by [XTQ15]

vn = 1√
1 + (∂xh)2

∂th (3.20)

and the kinematic boundary condition can be expressed as

∂th = uz − ux∂xh. (3.21)

Furthermore, we now assume that both pressure and viscous dissipation can be neglected in
the gaseous phase. The Rayleighian (3.12) reduces to

RSLG =1
4

L∫
0

dx
h(x)∫
0

dz ηL

(
∂ui
∂xj

+ ∂uj
∂xi

)2

+
L∫

0

dx σ(−∇ · n) (uz − ∂xh ux)

∣∣∣∣∣∣
z=h

−
L∫

0

dx
h(x)∫
0

dz pL∇ · u +
L∫

0

dx ηL

2ls
u2
x

∣∣∣∣∣∣
z=0

. (3.22)
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3 The Thin-Film Equation

3.2.2 Long-Wave Approximation

The equations resulting from the variation of the Rayleighian (3.22) can be further reduced by
employing the so-called long-wave or lubrication approximation [ODB97]. Here, a nondimen-
sionalization is performed and assuming that typical lengthscales in direction longitudinal (here
x-direction) are much larger than typical lengthscales orthogonal to the substrate (z-direction)
a smallness parameter ε is introduced. The employed scaling is given by (cf. [Köp11, ODB97]):

ε = h0
l0
, z = h0z̃, x = l0x̃ = h0

ε
x̃, h = h0h̃, L = l0L̃, uz = h0

t0
ũz,

ux = l0
t0
ũx = h0

εt0
ũx, p = ηL

t0ε2 p̃, ls = h0 l̃s, RSLG = ηLh
2
0

t20ε
3 R̃SLG, Ca = ε−3 l0ηL

t0σ
. (3.23)

The non-dimensionalized Rayleighian (3.22) is truncated at leading order in the smallness
parameter ε and reads after dropping the tildes:

RLW =1
2

L∫
0

dx
h(x)∫
0

dz
(
∂ux
∂z

)2
−

L∫
0

dx Ca−1(uz − ∂xh ux) ∂xxh

∣∣∣∣∣∣
z=h

(3.24)

−
L∫

0

dx
h(x)∫
0

dz pL∇ · u +
L∫

0

dx u2
x

2ls

∣∣∣∣∣∣
z=0

Note that no velocity variable (neither in the bulk nor on the interfaces) was eliminated
completely. The variational principle applied to (3.25) gives the following set of equations
[ODB97]:

∂2ux
∂2z

= ∂pL

∂x
,
∂pL

∂z
= 0, ∂ux

∂z
= 0

∣∣∣∣
z=h

, pL = −Ca−1∂xxh
∣∣∣
z=h

,
∂ux
∂z

= ux
ls

∣∣∣∣
z=0

,∇ · u = 0.

(3.25)

These equations can be integrated5 by taking advantage of (3.7) which results in the following
velocity:

ux(z) = ∂x
(
−Ca−1∂xxh

)(z2

2 − hz − lsh
)
. (3.26)

From the incompressibility condition and the kinematic boundary condition (3.21), we obtain

∂th = −∂xJx, where (3.27)

Jx :=
h∫

0

dz ux (3.28)

which describes in combination with the result (3.26) the motion of the interface as a PDE for
the local height h. However, by inserting (3.26) into (3.25), the inherited variational structure

5 Cf. [ODB97] for details.
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of the equation of motion for the interface can be highlighted directly: By straightforward
integration, it is seen that

1
2

L∫
0

dx
h(x)∫
0

dz
(
∂ux
∂z

)2
+

L∫
0

dx u2
x

2ls

∣∣∣∣∣∣
z=0

= 1
2
(
∂x
(
−Ca−1∂xxh

))2
(
h3

3 + lsh
2
)

(3.29)

= 1
2

L∫
0

dx J2
x

(
h3

3 + lsh
2
)−1

. (3.30)

Thus, the Rayleighian (3.25) can be rewritten in the form

RLW = 1
2

L∫
0

dx J2
x

(
h3

3 + lsh
2
)−1

+
L∫

0

dx ∂xJxCa−1∂xxh, (3.31)

where we make use of the identity ∂xJx = −uz(x, z = h) + ∂xh ux, which follows directly from
the incompressibility condition. Finally, when defining the mobility function M(h) and the
interfacial energy functional F [h] according to

M(h) := h3

3 + lsh
2, F [h] = FCap[h] :=

L∫
0

dx Ca−1

2 (∂xh)2 , (3.32)

it is seen that the evolution equation for the film height as given by the variational principle
formulated in terms of the flux Jx in combination with (3.27) belongs to the previously discussed
class of conserved order parameter equations (2.38):

RLW = 1
2

L∫
0

dx J2
x

M(h) −
L∫

0

dx ∂xJx
δF
δh
,

δRLW

δJx
= 0, ∂th = −∂xJx. (3.33)

The resulting thin-film equation for the local film height is readily generalized to two dimensional
substrates and then reads

∂th = ∇ ·
(
M(h)∇δF

δh

)
. (3.34)

The gradient dynamics structure of (3.34) is, as already emphasized, directly inherited from
the variational principle underlying the Stokes equation with its boundary conditions.

3.2.3 Generalizations of the Thin-Film Equation
In the previous subsection, the thin-film equation (3.34) has been derived from a long-wave
approximation of Stokes flow on a substrate including surface tension of the liquid-gas interface
only. We did neither consider other energetic contributions nor the presence of a three phase
contact line (liquid-solid-gas). A three phase contact line corresponds to a region where h→ 0.
One observes that if the flux at the contact line is non-vanishing, i.e., whenever the contact line
is moving, the dissipation integral in the Rayleighian (3.33) diverges in the case of a no-slip
model (ls = 0). This corresponds to the well known moving contact line singularity, which was
first pointed out in [HS71].
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As an alternative to the inclusion of slip, a well-established approach to eliminate the contact
line singularity is the inclusion of energetic contributions stemming from the interaction of
the liquid with the solid as well as from the interaction of the solid-liquid and the liquid-gas
interface. This interaction energy f(h) depends on the local height of the liquid film and is
termed binding-, wetting- or disjoining potential. Its concept will be discussed in more detail
in §4.4. The thin-film equation is augmented through the inclusion of a wetting potential in
the energy functional F :

F [h] =
∫
Ω

dx 1
2 (∇h)2 + f(h) (3.35)

⇒ ∂th = ∇ ·
(
M(h)∇

(
−∇2h+ f ′(h)

))
. (3.36)

In the context of a regularization of the moving contact line singularity, the wetting potential
can be chosen such that it exhibits a stable minimum at a small film height (typically in the
range of a few nanometers) which is then a lower bound to the film height everywhere in the
system if additionally f(h) → ∞ for h → 0. In other words, regions which are considered as
non-wetted macroscopically are in this modeling approach covered by an ultrathin adsorption
layer (or precursor film). As thus, mathematically, h never vanishes, no singularity arises at
the henceforth apparent contact line. A common expression for a non-dimensional wetting
potential which gives rise to an adsorption layer reads [Pis01]:

f(h) = − 1
2h2 + 1

5h5 . (3.37)

Note that the non-dimensional form of 3.37 implies a particular choice of the time and length-
scales (for details, cf. [Köp11]). This wetting potential will be employed throughout this thesis.
A further generalization of the thin-film equation is obtained by including gravitational effects.
The thin-film equation for a liquid on a plate oriented in x-direction which is inclined by an
angle 6 α with respect to the plane perpendicular to the gravitational force of magnitude g (cf.
FIG. 3.3 a)) is given by

∂th(r, t) = ∇ ·
[
M(h)∇

(
−∇2h+ f ′(h)

)
+ χ(h)

]
, (3.38)

where χ(h) = g
h3

3
(
∇h+α

)
, α = (α, 0)T, M(h) = h3

3 . (3.39)

This equation was derived in [PP00] in combination with a specific binding potential and
subsequently employed in, e.g., [TNB+02, TVN+01b] for the modeling of sliding liquid drops
on inclined substrates. Model equations of type (3.38) supplemented by boundary conditions
modeling a dip-coating geometry are also discussed in [WZC+16, TGT14, GTLT14] and will
be employed in Chap. 5. As discussed in [EWGT16], (3.38) can be formally written in the
gradient dynamics form (3.34). However, in this case, the functional F reads:

F [h] = FIncl[h] =
∫
Ω

1
2 (∇h)2 + f(h) + 1

2gh
2 + ghαx dx (3.40)

where, in contrast to the previously discussed functionals, the integrand in FIncl depends
explicitely on the space variable x. Finally, in the derivation of the thin-film equation in §3.2.2,

6 The angle α corresponds to the rescaled system, whereas the physical inclination is α̃ = εα
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hx
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h(x)
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Figure 3.3: (a) Sketch of a liquid film on a flat solid substrate which is inclined w.r.t. the plane
orthogonal to gravity by an angle α. (b) Sketch of a cylinder coated by a liquid.
The surface of the cylinder is parametrized by the angle θ.

we only considered a flat substrate. For the flow of viscous liquid films on a cylindrical surface,
a long wave approximation can be performed for film heights that are small in comparison to
the radius R of the cylinder and the following scaled equation is obtained (for the 1D case):

∂th = ∂θ
(
h3∂θ

[
−∂θθh− h+ Bo cos(θ) + f ′(h)

])
. (3.41)

In (3.41), the local height h is a function of the angle θ (cf. FIG. 3.3 b)). The effect of
gravitation is also included and parametrized by the so called Bond number Bo= (R3ρg)/(h0σ),
which quantizes the ratio of the influences of gravity and surface tension. Here, ρ is the density
of the liquid, σ its surface tension and h0 is a typical height scale (for details concerning the
scaling employed in (3.41), cf. [Thi11]). The energy functional corresponding to (3.41) reads:

FCyl[h] =
2π∫
0

1
2
[
(∂θh)2 − h2

]
+ f(h) + Bo cos(θ)h dθ . (3.42)

The general lubrication approximation for liquids on cylindrical substrates is introduced in
[Mof77, Puk77]. In the present form, i.e., with the inclusion of a binding potential f , (3.41)
was first introduced in [Thi11]. The non-flat geometry is accounted for in the long-wave
approximation through the quadratic second summand in (3.42). Recently, in [vTH18], a new
long-wave theory for liquids on a cylinder has been derived in the framework of Onsager’s
variational principle by inclusion of higher order curvature corrections in the energy functional.
In Chap. 6, we will employ (3.41) with an additional advection term for the description of a
droplet of partially wetting liquid on a rotating cylinder.

27





4 Instabilities of Liquid Ridges on
Heterogeneous Substrates - Thin-Film
Modeling and Comparison to KMC

4.1 Introduction and Experiments
The Plateau-Rayleigh instability, which is a transversal instability of elongated (liquid) struc-
tures leading to the formation of droplets, is a well known phenomenon in fluid dynamics
[dGBWQ04] occuring for, e.g., liquid jets, filaments, and similar systems.
In recent experiments, a Plateau-Rayleigh type instability turned out to be important for
structured depositions of organic molecules on prepatterned substrates [WDW+11, WC12].
The goal of the experiments was to coat gold-stripe-prepatterned regions of the substrate in
a regular manner. More specifically, in [WDW+11], the authors consider the deposition of
DtCDQA (an organic molecule relevant for light emission applications such as OLEDs) on SiO2
substrates partially covered with Au lines of varying width. At an average coverage height
of the entire substrate of 50 nm, they observe three different morphological structures on the
stripe-prepatterned substrate: As a desirable morphology from a application-oriented point
of view, regular molecule ridges on top of Au prepattern can be found. However, droplets
of DtCDQA on the bare SiO2 are also observed. Finally, for large amounts of molecules on
a single prepattern stripe, bulges are formed, corresponding to droplets which are situated
mainly on the bare substrate and are distorted by the underlying prepattern stripe (cf. FIG.
4.1). The authors of [WDW+11] infer the shape of the droplets and ridge cross sections from
AFM measurement of height and width of the respective structures and come to the conclusion
that the structures are of spherical cap type. Furthermore, in [WDW+11], W. Wang et al.
conclude from the shape of the structures that the molecules behave liquid-like on the substrate.
The contact angles are measured by AFM and values between 10◦ and approximately 20◦ are
obtained.
Given the assumptions of the liquid-like behavior and the small contact angles, a modeling
of the dynamics of the structures on the prepatterned substrate by a thin-film equation is
reasonable.1 In the following, we present results from the modeling by a thin-film equation and
discuss the comparison with, and the mapping of simulations obtained from a particle-based
kinetic Monte Carlo algorithm.

1 Cf. [HLH+15, Hon13] for previous work on thin-film modeling of ridge instabilities motivated by the
experiments in [WDW+11, WC12]. The focus in [HLH+15, Hon13] is on the instability of a ridge on a
single prepattern stripe and different transport mechanisms during the instability. The thin-film model
employed in the mentioned literature is very similar to the one investigated in the present chapter.
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

Figure 4.1: AFM picture of structures formed on prepatterned substrate with varying width of
the Au-stripes on the SiO2 substrate. One observes droplets on the bare substrate,
as well as bulges on the prepattern stripes. The wavelength of the bulges increases
with increasing width of the prepattern stripes. Picture reproduced with permission
from [WDW+11], c© WILEY-VCH Verlag GmbH & Co. KGaA.

4.2 Thin-Film Modeling

4.2.1 Model Binding Potential

In order to model a substrate which is chemically patterned, we introduce a binding potential
which is spatially modulated and has the general form [TBH+17, MRD08, HLH+15]

fpre(h,x) = fhom(h) · [1 + ρg(x)] , (4.1)

where the parameter ρ fixes the strength of the prepattern and fhom is given by (3.37). For
two locations x1,2 on the substrate, g(x1) < g(x2) implies that according to the model binding
potential, at x1, the substrate is locally more wettable than at x2.2 Motivated by the experimen-
tal setup in [WDW+11, WC12], we focus on prepattern geometries which are translationally
invariant in one spatial dimension (stripe geometry). In particular, the general form of the
modulation function g employed in the following reads:

g(x) = g(x) = 1
2

2n∑
j=1

(−1)jtanh
(
x− xj
ls

)
, (4.2)

where the steepness of the transitions between more and less wettable domains occuring at the
positions {xj} is given by the parameter ls which we fix to ls = 3.0 in the present chapter. A
plot of the modulation function g for the exemplary case of two prepattern stripes is shown in

2 the relation of the binding potential to the apparent equilibrium contact angle is discussed in §4.2.3
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4.2 Thin-Film Modeling

FIG. 4.2. The model equations employed for the thin-film modeling in the present chapter are
then given by (3.36) with the binding potential (4.1):

∂th = ∇ ·
(
M(h)∇

(
−∇2h+ f ′pre(h, x)

))
with M(h) := h3

3 . (4.3)

Note that we choose the mobility function M(h) as obtained for the no-slip case (cf. §3.2.2).
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Figure 4.2: Plot of the modulation function g given by (4.2) for the case of two stripes with
individual width w and distance d from each other.

4.2.2 Numerical Methods
We shortly outline the numerical methods employed for thin-film type equations in the present
and the subsequent chapters. In order to investigate the nonlinear PDE model equations, we
conduct numerical time simulations (NTS) and, for the calculation of steady states, numerical
path continuation.
The NTS are performed building on the generic finite element framework DUNE PDELab
[BHM10, BBD+08b, BBD+08a], employing bilinear ansatz functions on a rectangluar grid. For
the time-stepping, we use an implicit second order Runge-Kutta algorithm [Ale77]. In order to
implement the equations in question in the finite element framework employing bilinear ansatz
functions, they have to be written in a weak formulation such that no derivative of second
order or higher appears for the fields and test functions. In order to achieve this, we have to
introduce a splitting of the thin-film type equations. For example, for the thin-film equation
(3.36) on a domain Ω, the following splitting is employed (cf. [Wil16]):

∂th = −∇ · (M(h)∇w) ; w = ∇2h− f ′(h), (4.4)

resulting after integration by parts in the following weak formulation with an arbitrary test
function ϕ:

0 =
∫
Ω

ϕ∂th dx −
∫
Ω

M(h)∇w · ∇ϕ dx +
∫
∂Ω

ϕM(h)∇w · dS (4.5)

0 =
∫
Ω

(
−w − f ′(h)

)
ϕ−∇h · ∇ϕ dx +

∫
∂Ω

ϕ∇ · dS. (4.6)
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

Note that the gradient dynamics structure of the thin-film equation suggests a natural splitting
and weak formulation. Boundary conditions can be implemented in the boundary integrals
in (4.5) and (4.6). For so called no-flux boundary conditions (∇h · dS = ∇w · dS = 0), the
boundary integrals vanish. For more details on the employed finite element method, we refer
to [Wil16].
In contrast to the NTS discussed above, numerical continuation of steady state solutions
allows for the calculation of stable and unstable steady state solutions of the considered
evolution equations. Here, solution branches are followed in parameter space, employing
specific algorithms like, e.g., pseudo-arclength continuation that are able to track solution
families along folds, e.g., saddle-node bifurcations. For details on continuation techniques, we
refer to [DKK91a, DKK91b]. In the present thesis, we employ the software AUTO-07p [DOO12]
which allows for the implementation of 1D steady state equations of PDEs as boundary value
problems (BVPs). Here, the spatial discretization is adaptive. Furthermore, the software allows
for the detection of local bifurcations, branch switching and two-parameter continuation of, e.g.,
fold points. In addition, for ODEs, also the continuation of time-periodic solutions is possible.
For tutorials on the continuation of equations from soft matter theory with AUTO-07p, we
refer to [TKG14].3

4.2.3 Steady State Solutions

First, we are interested in steady state solutions h0 of (4.3) for one spatial dimension of the
substrate (on a domain Ω = [0, L]). Obviously, these solutions are also steady states in 2D,
when they are continued in the second spatial direction (here y-direction). Their stability in
the 2D case will be the topic of the next subsection.
We consider (4.3) with periodic boundary conditions on a domain [0, L]. The steady state
equation obtained by setting ∂th ≡ 0 can be integrated once with a vanishing integration
constant due to the boundary conditions. Upon the second integration, we obtain a constant
that we denote as the chemical potential µ [PP00, Pis04]:

−∂xxh+ f ′pre(h, x) = µ. (4.7)

This latter constant is directly related to the mass in the system, in fact (4.7) is also obtained
through the requirement that the energy functional F given by (3.35) with f = fpre is minimized
under the constraint that a certain mean mass m = 1

L

∫ L
0 dx h(x) is contained in the system:

δF
δh
− µ δ

δh

 L∫
0

dx h−m

 = 0⇔ (4.7). (4.8)

In this sense, µ is a Lagrangian multiplier for a mass constraint.
In FIG. 4.3, we show bifurcation diagrams for droplets (or ridges) on homogeneous substrates
(i.e., ρ = 0) for fixed mean mass: Starting from a flat film solution, the domain size L is
increased (FIG. 4.3 (a)). The droplet solution branch bifurcates subcritically at a domain size

3 Part of the continuation codes employed in the present thesis were adapted based on codes made available
in the context of [TKG14].

32



4.2 Thin-Film Modeling

Lcrit = 2π/
√
f ′′(m), where m is the flat film height (or equivalently the mean mass). As a

solution measure, the following quantity is employed:

N [h, ∂xh] =

√√√√√ 1
L

L∫
0

dx h2 + (∂xh)2. (4.9)

The droplet solution corresponding to the uppermost branch (cf. solution II in FIG. 4.3 (b))
shall be shortly discussed in more detail (cf. [GW03]): At the boundaries of the domain, the
solution is approximately given by a flat film of height ha defined by

µ = f ′(ha). (4.10)

The value of ha corresponds to the finite domain adsorption layer height, for L→∞ follows
µ→ 0, and given (4.10) one obtains ha as the minimum of the binding potential in this limit.
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Figure 4.3: (a) Bifurcation diagram showing the norm of the solutions vs. the length of the
domain with fixed average mass. The droplet solution type II shown in (b) emerges
subcritically from the flat film (cf. [TVN01a]).

In the core region of the droplet, the height becomes significant enough for the contribution of
the binding potential to be neglected. The steady state equation then reduces to

µ = −∂xxh⇔ h = −µx
2

2 + C (4.11)

and a parabola type solution is obtained. In the intermediate region, the approximate steady
state equation reads [GW03]

0 = −∂xxh+ f(h) (4.12)

and the equilibrium apparent contact angle is obtained as

θeq =
√

2 |f(ha)|. (4.13)
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

Apart from solutions consisting of a single droplet of a given mass, which are stable in 1D, as
implied by the periodic boundary conditions, equidistant arrays of droplets can also be obtained
as (unstable) steady state solutions for sufficiently large system sizes L. For heterogeneous
substrates, a larger set of stable and unstable solutions can be obtained. In §4.2.5, we discuss an
examplary non-trivial case of a heterogeneous substrate with two adjacent prepattern patches,
where the distance d does not correspond to the halflength L/2 of the domain.

4.2.4 Transversal Stability of a Single Ridge
When considering a single liquid ridge on a chemically and topographically homogeneous
substrate, one finds that this structure is always unstable with respect to a Plateau-Rayleigh
type instability [MOR+07]. A system, where a single ridge is placed on a prepattern stripe has
been recently studied in terms of a transversal stability analysis in the framework of the thin-film
equation [TBBB03, MRD08, HLH+15]. In this subsection, we mainly reproduce numerically
some general results found in [MRD08] for our specific choice (4.1) of the binding potential
and formulate a heuristic derivation of the general results based on a different argumentation,
similar to the one employed in [MOR+07].
The NTS shown in this and the two subsequent subsections are performed on a domain
A = [0, L] × [0, Ly] with periodic boundary conditions and a finite element discretization on
a rectangular grid with dx = dy = 1.0. In FIG. 4.4, we show snapshots of a NTS of a bulge
forming transversal instability occuring for a ridge on a single prepattern stripe. For the 2D
case, the mean mass is given by m = 1

LyL

∫
A dx h(x), all parameters can be found in the

caption of FIG. 4.4. The simulation is initialized by a parabola cap of appropriate mass on
top of a homogeneous film which is approximately of the adsorption layer height and small
random noise. Before the transversal instability sets in, the ridge first quickly relaxes to a
almost longitudinally homogeneous ridge, where the cross-section is given by the solution h0(x)
of the 1D version of the steady state equation (4.7).
In order to quantify the linear growth of modulations of the ridge (specified by the 1D steady

state solution h0) in longitudinal (y−direction), the following ansatz can be inserted into
equation (4.3) [TBBB03, MRD08, HLH+15]:

h(x, t) = h0(x) + εh1(x)eiky+β(k)t. (4.14)

Upon linearization in the smallness parameter ε, the following leading order eigenvalue problem
is obtained [MRD08, HLH+15]:

β(k)h1 = L[h0, k]h1, where (4.15)

L[h0, k]h1 =M(h0)(∂xx − k2)
((
−∂xx + k2

)
h1 + f ′′pre(h0)h1

)
+

(∂xM(h0))∂x
((
−∂xx + k2

)
h1 + f ′′pre(h0)h1

)
. (4.16)

The eigenvalue problem (4.16) can be solved numerically employing continuation techniques
(cf. [Hon13] for a detailed description) in order to obtain the dispersion relation β(k) for the
growth of modulations in transversal direction. The two largest eigenmodes of the operator L
are shown in FIG. 4.5 (a). For k = 0, i.e., effectively in the 1D case, the eigenvalues of both
modes converge to β(k = 0) = 0. In the limiting case of k = 0 and ρ = 0, the modes correspond
to Goldstone modes [GW03] as induced by two different symmetries of (3.36): The dominant
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Figure 4.4: Snapshots of a NTS of (4.3) on a domain of L = 160, Ly = 400 with w/L = 0.125,

m = 2.25 and ρ = 0.2. As also in the experimental picture FIG. 4.1, the bulges
formed due to the instability are deformed by reason of the underlying prepattern.

mode corresponds to the translational symmetry in 1D and reads ht
1(k = 0, ρ = 0) = ∂xh0.

The second mode results from another symmetry of (3.36), specifically the one with respect to
mass change and corresponds to hµ1 (k = 0, ρ = 0) = ∂µh0.
The dispersion relations for both dominant modes are shown in FIG. 4.5 (b). The mode hµ1
leads to a periodic redistribution of mass along the ridge in 2D. The mode ht

1 is often referred
to as the zigzag mode [TBBB03, HLH+15]. While the mode ht

1 is always stable, hµ1 is in general
unstable for sufficiently small wavenumbers k and is only stabilized for certain values of ρ,
depending on the mass of the ridge and the prepattern geometry. In [MOR+07] it is shown for
the thin-film equation, that hµ1 is in fact always unstable for the case ρ = 0. The instability
due to this mode will be termed Plateau-Rayleigh instability in the following. In FIG. 4.5, it
can be clearly seen that for the prepattern geometry employed in the respective calculations,
the Plateau-Rayleigh instability is suppressed due to the prepattern above a certain value of ρ.
In the following, we analyze the stability diagram of ridges on a single prepattern stripe in the
parameter space spanned by the mass in the system and the strength ρ of the prepattern. In
doing so, we reproduce a general result obtained in [MRD08] by using a different, more heuris-
tic reasoning (which is similar to the one outlined in [MOR+07] for the case of homogeneous
substrates).
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Figure 4.5: (a) Stationary solution of (4.3) and the two dominant eigenmodes of the linear
operator in (4.16) for ρ = 0.2 and k = 0.005. (b) Dispersion relation for the two
dominant modes at ρ = 0.2, w/L = 0.25, L = 160. Note that the eigenvalue
βt corresponding to ht1 is always negative while hµ1 is unstable for small enough
wavenumbers k. The dispersion relation of the mode hµ1 is shown for ρ = 0.2 and
ρ = 0.8, respectively. For the latter case, the eigenvalue is non-positive and thus a
stabilization due to the prepattern is found (cf. [HLH+15, TBH+17]).

Since (4.3) is a gradient system, its energy functional F is strictly decreasing in time. We
consider now the energy increment δF resulting from a small mass-conserving deviation εh̃
from the stationary solution h0:

δF = ε

∫
A

δF
δh

∣∣∣∣
h0

h̃ dx

︸ ︷︷ ︸
=0

+1
2ε

2
∫
A

f ′′pre(h0, x)h̃2 +
(
∇h̃
)2

dx

︸ ︷︷ ︸
:= δ2F

δh2 :h̃:h̃

+h.o.t, (4.17)

where the first summand vanishes due to the stationarity of F at h = h0 and the mass
conservation constraint on the perturbation h̃. A necessary condition for the linear stability is
therefore that for all perturbations h̃, the remaining two leading order summands given by the
bilinear form δ2F

δh2 : h̃ : h̃ in (4.17) are positive (cf. [MOR+07]):

δ2F
δh2 : h̃ : h̃ > 0. (4.18)
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4.2 Thin-Film Modeling

We consider now a scaled perturbation of the form h̃m = 1
A∂mh0e

iky(= 1
A
∂µ
∂m∂µh0e

iky) and
assume that this perturbation is the first to become unstable. Furthermore, we focus on the
limit k → 0.4 The leading order energy perturbation then reduces to

δ2F
δh2 : h̃m : h̃m = 1

L

L∫
0

dx f ′′pre(h0, x)(∂mh0)2 + (∇∂mh0)2 =
(4.7)

∂µ

∂m

1
L

L∫
0

dx ∂mh0 = ∂µ

∂m
.

(4.19)

Therefore, following this reasoning, the stability threshold is obtained as the set of values of m
and ρ where

∂µ

∂m
= 0. (4.20)

This result is also obtained from a perturbation analysis of the eigenvalue equation (4.16) in
[MRD08]. The derivation shown here is more heuristic but highlights the concept that the
stability limit is encoded in the energy functional.
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Figure 4.6: (a) Chemical potential µ vs. mean mass m for a single drop solution in 1D for
different values of the prepattern strength ρ, obtained by numerical continuation.
A transition from a monotonous dependence of µ on m to a non-monotonous
dependence (cf. [MRD08]) can be seen around ρ ≈ 0.55. For sufficiently high
values of ρ, a set of m for which ∂mµ > 0 is found and delimited by two local
extrema corresponding to the limit of the transversal stability region according to
(4.20). (b) Stability diagram for a single drop with prepattern width w = 0.25L
and L = 160. The stability limit, as calculated by a two-parameter continuation
of the onset of instability obtained from (4.16), is in excellent agreement with the
stability limit calculated according to (4.20).

4 For this case, the perturbation is not mass conserved, however it is instructive as a limiting case.
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In FIG. 4.6 (a), we show the transition of the function µ(m) for different values of ρ exhibiting a
mathematical structure similar to a second order phase transition. Two pinned volumes emerge
above a certain critical value of ρ and delimit the stable region of the ridge. In comparison
to the stability limit obtained from the heuristic argumentation, we show the numerically
calculated stability limit from the continuation (cf. FIG. 4.5 (b)). The stability limit obtained
from the condition (4.20) can be conveniently calculated by a fold continuation. It should be
emphasized that the criterion (4.20) only necessitates an investigation of the energetics of 1D
stationary solutions. The underlying assumptions are that the mass mode hm is the first to
become unstable and the instability is long-wave (i.e., the onset is at k = 0).
We now proceed with an investigation of the stability of a structure on a more involved
prepattern.

4.2.5 Transversal Stability of Two Adjacent Ridges

In general, on a homogeneous substrate (with periodic boundary conditions), no stationary
two-droplet configurations can be found where the distance of the droplets is not equal to the
half of the domain size. However, for a chemically prepatterned substrate, such solutions can
be obtained and an example is given in FIG. 4.7. Analogously to the case of a single ridge,
we now analyze the stability of two such adjacent prepattern stripes. Once again, the ansatz
(4.14) is inserted in (4.3) where now h0 is the stationary two-droplet solution (cf. FIG. 4.7 (a)).
In FIG. 4.7, we show the resulting dominant eigenmodes and their corresponding dispersion
relation for this system.
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Figure 4.7: (a) Stationary solution of (4.3) for two prepattern stripes and the two dominant
eigenmodes of the linear operator in (4.16) for ρ = 0.2, k = 0.005, w/L = 0.2,
d/L = 0.1, L = 200. (b) Dispersion relation for the two dominant modes at ρ = 0.2.
The eigenvalue βas corresponding to has

1 does not vanish in the limit k → 0 (cf.
[TBH+17]).
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4.2 Thin-Film Modeling

The first mode hs
1 corresponds to a simultaneous mass redistribution within both ridges along

the y-direction and is analogous to the mode hµ1 for the case of a single ridge. Accordingly, this
mode is not mass-conserving for k = 0 and its eigenvalue converges to zero in this limit. The
second unstable mode has

1 corresponds to an antisymmetric mass transfer along and between
the ridges. For k = 0, the eigenvalue of this mode has a finite value, acounting for the fact
that the stationary solution h0 is unstable in 1D w.r.t. mass transfer from one droplet to
the other due to the weak interaction of the two droplets (or ridges) through the adsorption
layer. However, for the dominant values of k, both modes have almost identical eigenvalues.
Therefore, in direct numerical simulations, depending on the initial noise, a growth of either
one of the modes or a combination of both can be found (cf. FIG. 4.8). A stabilization of the
mass exchanging mode has

1 in 1D for two droplets is discussed through a detailed numerical
bifurcation analysis in [BKTB02]. Note also the slight asymmetry of the extrema of the mode
has

1 , in contrast to the extrema of the eigenfunction hs
1, which can also be attributed to the weak

interaction of the ridges. If the mode has
1 would correspond precisely to the half-inverted mode

hs
1, a separate growth of instability of one single ridge would be conceivable (corresponding to

a growth of hs
1 ± has

1 ). Due to the asymmetry present in each half-space, this is not possible
for the weakly interacting ridges.
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Figure 4.8: Snapshots of a NTS of (4.3) for two prepattern stripes of individual widthw/L = 0.2
and with ρ = 0.2, d/L = 0.1, L = 200. Both ridges break up simultaneously and
a growth of a combination of the two unstable modes has

1 can be inferred (cf.
[TBH+17]).
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4.2.6 Coarsening and Transversal Instabilities

As shown in detail in [GW03], the coarsening of droplets (or ridges) on a homogeneous substrate
occurs due to two main mechanisms: mass transfer through the adsorption layer and coarsening
through coalescence of neighboring droplets, which are attracted due to the fluxes through the
adsorption layer. While the latter mechanism can be suppressed through heterogeneities on the
substrate, which result in pinning forces, the coarsening through diffusion on the other hand
can play an important role for the stability of liquid structures on prepatterned substrates.
An experimental example is shown in FIG. 4.9, where in the aforementioned deposition ex-
periments [WDW+11], two different spacings between prepattern stripes of different width are
investigated. Independent of the width of the stripes, roughly the same amount of molecules are
deposited, such that the ridge formed on the narrow stripe is transversally unstable. According
to [WDW+11], for the case of the smaller distance between the stripes, diffusion from the
narrow to the wider stripes is fast enough to prevent the transversal instability on the narrow
ones. For a greater distance, the diffusion is less significant and the transversal instability sets
in. While this phenomenon possibly occurs during the deposition process, we investigate the
described mechanism without condensation terms.

Figure 4.9: AFM pictures of structures formed in the deposition experiments [WDW+11] for
two different spacings of the prepattern stripes of different width. For large dis-
tances, the diffusion is too slow to inhibit the transversal instability (cf. (a)),
whereas for small distances (cf. (b)) the diffusion removes enough mass from the
narrow prepattern stripe to stabilize it. Picture reproduced with permission from
[WDW+11], c© WILEY- VCH Verlag GmbH & Co. KGaA.
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4.2 Thin-Film Modeling

In FIG. 4.10, we show the time evolution of the mass over adsorption layer of a ridge on
a prepattern stripe of width w1 = 40, which is growing due to diffusion of mass from an
adjacent ridge on a prepattern stripe of width w2 = 25 for three different distances of the
ridges. The simulations are performed with periodic boundary conditions and a transversal
length L = w1 + w2 + 2d in such a way that a periodic array of prepattern stripes with a
single distance is simulated, the prepattern strength is ρ = 0.93. As expected, the coarsening
rate increases for smaller distances. As a consequence, we also find in 2D simulations for
small distances of the prepattern stripes (cf. FIG. 4.11) a sufficiently fast coarsening for the
suppression of the Plateau-Rayleigh instability of the ridge on the narrow prepattern stripe. In
contrast, for sufficiently large distances (cf. FIG. 4.12) and for approximately the same initial
mass of both ridges, due to the slower coarsening, the instability sets in.5
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Figure 4.10: Time evolution of the mass of the ridge on a stripe of width w1 = 40 adjacent to a
ridge of initially the same mass with a width of w2 = 25 shown for three different
distances of the prepattern stripes (d = 15, 30, 70) and ρ = 0.93. For d = 30,
snapshots of the NTS in 1D are shown together with the prepattern function. The
coarsening rate increases significantly with decreasing distance of the ridges.

5 Obviously, this phenomenon heavily depends on the initial noise, in the NTS shown in FIG. 4.11 and FIG.
4.12, respectively, the noise amplitude on the initial parabola caps is chosen as ∆hnoise = 0.2. However, the
qualitative and systematic effect of the distance on the coarsening rate is robust.
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Figure 4.11: Snapshots of a 2D NTS of two ridges on prepattern stripes of widths w1 = 40 and
w2 = 25 in a distance d = 15 on a domain with L = w1 + w2 + 2d and Ly=400.
For each snapshot, we show the full 2D field and additionally a cross section of the
height field with the corresponding prepattern function g(x) at y = Ly/2. In this
simulation, the coarsening outruns the transversal instability and no formation of
bulges is observed.
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Figure 4.12: Snapshots of a 2D NTS with the same prepattern widths as in FIG. 4.11 but
with a distance d = 70 on a domain with L = w1 + w2 + 2d and Ly = 400. The
coarsening towards the ridge on the broader prepattern stripe occurs on a larger
timescale and the transversal instability on the ridge on the narrow stripe sets in.
Note that the diffusion continues in spite of the transversal instability.
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

4.3 Comparison of Kinetic Monte Carlo Modeling and Thin-Film
Modeling6

Subject of this section is a systematic comparison of simulations of Plateau-Rayleigh instabilities
based on a kinetic Monte Carlo (KMC) algorithm and results obtained for the already introduced
thin-film equation.7 The presentation in this section mostly follows along the lines of [TBH+17].
In the subsequent section, approaches for the quantitative mapping are discussed.

4.3.1 KMC Modeling
Experimentally, the behavior of the organic molecules in [WC12, WDW+11] is interpreted as
liquid-like. However, due to the small scales of the structure in question, a modeling of the
deposition process and subsequent relaxation (e.g., instabilities of ridges) of the molecules by an
approach which is less coarse-grained than the thin-film equation is of interest. Two commonly
encountered microscopic modeling approaches for molecules on substrates are molecular dy-
namics (MD) simulations [KLRD06] and KMC simulations (cf. [CSA17b]). Here, we focus on
KMC simulations, which have successfully been employed in the modeling of the experimental
systems in question [LMW+12].
The KMC model considered in this work is based on a lattice gas Hamiltonian which gives
the energy associated with an occupation of the three dimensional lattice. In particular, the
Hamiltonian for a system of a single particle type on a substrate with prepattern regions reads:

H = −εpp
1
2
∑
i,j
f(rij)pipj − εpg

1
2
∑
i,j
h(rij)pigj − εps

1
2
∑
i,j
h(rij)pisj. (4.21)

The binary values of pi, gi, si ∈ {0, 1} indicate whether the lattice site i = (ix, iy, iz) is occupied
by a particle ((pi, si, gi) = (1, 0, 0)), corresponds to a part of the substrate without prepattern
((pi, si, gi) = (0, 1, 0)), corresponds to a prepatterned part ((pi, si, gi) = (0, 1, 0)) or, finally, is
empty ((pi, si, gi) = (0, 0, 0)). Obviously, the occupation of a lattice site by a particle or by
the substrate is mutually exclusive. The pair interaction energies for different occupations of
interacting sites are given by εpp, εpg and εps. The interaction length between substrate and
particles and of the particle-particle interaction is specified by the function f = h. The value
rij is the distance between the lattice sites specified by i and j, respectively. For simulations
shown in the present section, interactions up to the third nearest neighbor (common corner)
are considered:

rij/a 0.0 1.0
√

2
√

3 >
√

3
f(rij) 0.0 1.0 1.0 0.5 0.0

While the occupation of the lattice sites by the substrate is kept constant for obvious reasons,
the occupation state of the remaining lattice sites by particles is simulated dynamically based
on the so-called Kawasaki dynamics [Kaw72]: At each time step ∆t of the KMC algorithm,

6 The work presented in this section is a collaboration with Oleg Buller. The KMC simulations have been
conducted by O. Buller, whereas the NTS and analysis of the thin-film model has been carried out by W.T..
The systematic comparison has been elaborated in close cooperation and the work was jointly published in
[TBH+17].

7 In contrast to the results in the previous section, we use a slightly different prepattern function than (4.2):

g(x) = 1.0 +
2n∑
j=1

(−1)jtanh((x− xj)/ls).
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4.3 Comparison of Kinetic Monte Carlo Modeling and Thin-Film Modeling

each particle does a random trial move onto one of the nearest neigbour sites. If this site is
empty, the move is evaluated according to the so-called Metropolis criterion [MRR+53]. The
Hamiltonian for the configuration given the move is effectuated is compared to the previous
value of the Hamiltonian. If the move decreases the energy, it is accepted. If the energy
increases by ∆H, the move is accepted with a probability given by [MRR+53]

PMetropolis = e−∆H/kBT . (4.22)

An important property of Kawasaki dynamics is the conservation of the number of particles in
each time step. From a thermodynamic point of view, at equilibrium, this corresponds to the
canonical ensemble, in contrast to the grand canonical ensemble, where the chemical potential
fixes only the mean of the stochastically varying particle number.

4.3.2 Plateau-Rayleigh Instabilities in the KMC Model - Comparison to
Thin-Film Modeling

As already mentioned, the instability of ridges on stripe-prepatterned substrates as observed in
the KMC model shall be compared systematically with corresponding results for the thin-film
model. As initial conditions for the NTS of the thin-film model, we use 1D profiles continued
in the second dimension of the substrate and subjected to small random noise. However, the
choice of appropriate initial conditions for the KMC model is less obvious.
We pursue the following procedure: First, a density profile of a droplet on a 2D lattice (1D
substrate) is calculated by averaging over 2000 realizations of occupation fields after relaxation
to a droplet. An example of a resulting density field is shown in FIG. 4.13. Then, along
the longitudinal direction, for each ”slice” of the ridge, i.e., for y = 0, . . . , Ly−1, we generate
an individual particle configuration by assigning the appropriate fixed number of particles to
the lattice in accordance with the probabilities given by the density field. For this purpose,
we employ the following algorithm: We iterate randomly over all lattice sites which are not
occupied by the substrate. Whenever the lattice site is empty, a particle is placed on it with a
probability corresponding to the density p = ρ(x, z) at the site. In contrast, whenever the site
is already filled with a particle, this particle is removed with the complementary probability
p = 1− ρ. This procedure is iterated until the desired number of particles is placed on the grid.
The transversal instability of the ridge is now observed in direct simulations according to the
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Figure 4.13: Density field obtained by averaging over 2000 realization of particles forming a
droplet after relaxation in the KMC simulations. This density field is employed
to generate initial conditions for the ridge. Figure reproduced from [TBH+17].
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

KMC algorithm described in §4.3.1 and can be compared to results from thin-film modeling.
The different parameter sets employed for the KMC simulations shown in the following are

set εpp/kBT εps/kBT εpg/kBT

P1 1.0000 0.5000 0.7000
P2 0.6250 0.3125 0.4375

In order to obtain a measure for the time evolution of the instability, we calculate the absolute
values of the Fourier modes of the fields integrated in x−direction. More precisely, for the
KMC model, we consider 8

|FT [my](ky, t)| =

∣∣∣∣∣∣
Ly−1∑
ny=0

my(ny, t)e
−2πinyky

Ly

∣∣∣∣∣∣ , my(ny, t) =
∑
nx,nz

P (nx, ny, nz), (4.23)

whereas for the thin-film model, the analogous quantity reads

|FT [my](ky, t)| =
∣∣∣∣∫ my(y, t)e

−2πi kyy
Ly dy

∣∣∣∣ ,my(y, t) =
∫
h(x, y, t)dx. (4.24)

These quantities can be seen as measures for the mass redistribution along the longitudinal
direction due to the Plateau-Rayleigh instability. The time evolution of |FT [my]| for the three
first modes (ky = 1, 2, 3) is shown for the KMC and the thin-film model in FIG. 4.14, combined
with snapshots of the corresponding simulation. Although the time evolution for the KMC
model is obviously noisy, a clearly exponential growth of the dominant mode can be identified
for both models. In particular, the exponential regime reaches well beyond the stage of the
breakup which would be considered as nonlinear by inspection of the snapshots (cf. FIG. 4.14
(b), (d)).
This extended regime of exponential growth allows for a convenient measurement of the growth
rate of the instability in the KMC model and thus for a partial extraction of the dispersion
relation from the simulations. To do so, we restrict the longitudinal size Ly of the simulation
domain and measure the quantity |FT [my]| for the dominant mode. The growth rate β is then
obtained by an exponential fit (i.e., with a fit function f(t) = aeβt). For each wavenumber ky,
all simulations are averaged that have a fit error below 3%. In this way, an averaged growth
rate 〈β〉(ky) is obtained. In FIG. 4.15 results for the averaged dispersion relation for the two
parameter sets P1 and P1 and for prepattern stripe widths w = 10 and w = 14 are shown
for the KMC model in comparison to dispersion relations for two different prepattern stripe
widths in the thin-film model (cf. [TBH+17]). In the thin-film and the KMC model, a smaller
width of the prepattern stripe results in larger maxima of the dispersion relation which are
found at higher wavenumbers. This is in qualitative agreement with the experimental findings
shown in FIG. 4.1.
For the KMC model, higher temperatures (parameter set P2) equally result in larger growth
rates of the transversal instability. Due to the nondimensional form of the thin-film equation
(4.3) a change of temperature is not investigated explicitely. However, the following reasoning
shows the qualitative consistency: A higher temperature manifests itself in a decreased value
of the viscosity η. Considering the scaling used in §3.2.2 one finds that the physical growth
rate is inversely proportional to the viscosity, and thus increases with the temperature.

8 Here, P (nx, ny, nz) denotes the occupation state.
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Figure 4.14: (a), (c): Time evolution of the first three Fourier modes for the transversal insta-
bility of a single ridge on a prepattern stripe as obtained by simulations of the
thin-film equation and by KMC modeling, respectively. (b), (d): Corresponding
snapshots, illustrating the unexpected extend of the exponential growth regime
for the dominant mode in both modeling approaches. Figure reproduced from
[TBH+17].
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4.4 Towards a Mapping of KMC to Effective Interface Models
The reduction of a stochastic KMC model to a deterministic effective interface model (similar
to the thin-film equation) necessitates two fundamental steps. First, the stochastic model has
to be mapped to a deterministic model for the average density field.
Subsequently, a dimensional reduction of the mean field model has to be performed in order to
obtain for a N = 1, 2 dimensional substrate a model for the local effective interface height of
the liquid film from a theory for the density on the (N + 1)-dimensional domain. This coarse
graining steps can first be attempted for static solutions in a statistical sense but a similar coarse
graining for the dynamical evolution of the mean interface building on the results for the static
solutions is finally desirable. In the present section, we first discuss a novel numerical approach
for the dynamical coarse graining of density dependent energy functional which encode static
solutions of the density field and demonstrate it on a simple density functional theory (DFT)
relevant for the mean field description of the KMC model. Here, our presentation follows along
the lines of [BTA+17]. Additionally, we shortly discuss a possible direction for the mapping of
a mean field dynamical equation to a dimensionally reduced effective interface model based on
numerical results from the reduction of the energy functional.

4.4.1 Thermodynamics of a Liquid Film on a Solid Substrate – The Binding
Potential

In order to introduce the general concepts of the binding potential and of the effective interface
Hamiltonian, we first consider a general thermodynamic model for the density of a single
particle type in a fixed two-dimensional domain A. The generally nonhomogeneous equilibrium
density field %(x) is obtained in the canonical ensemble by minimization of a Helmholtz free
energy FH[%] with a mass constraint implemented by a Lagrangian multiplier µ. With respect
to the density field, the equilibrium state is given by a minimum of the thermodynamic grand
potential [HTA14]

Ω2D = FH − µ
∫
A

dx %(x). (4.25)

Even without interaction with a solid wall, for adequate Helmholtz free energies FH, below
a critical temperature Tc, it is energetically favorable for the system to form domains of low
density %g (gas phase) and high density %l (liquid phase) as compared to a single phase of
homogeneous average density in the whole domain. The value of the chemical potential for
this case of phase separation is denoted by µ = µcoex. More specifically, we now consider a
rectangular domain A = [0, Lx] × [0, Lz] and introduce a solid wall to the system at z = 0
with interaction energies such that the wall is (partially) wetting i.e., a liquid film or droplet
is formed in contact with the wall. In order to describe the system energetically based solely
on the shape of the liquid-gas interface along the wall, it is convenient to define two energetic
quantities based on one dimensional density profiles with or without the solid wall. Since the
overall chemical potential is fixed at µ ≈ µcoex, for sufficiently large domains A, all 1D profiles
have to be considered at this particular value of the chemical potential.
To quantify the energetic contribution of the liquid-gas interface itself, we define the liquid-gas
surface tension γlg as:

γlg = Ω[%lg]− Ω[%g], (4.26)
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

where Ω[%lg] is the effective 1D grand potential of a 1D density profile with a liquid-gas
interface. Accordingly, Ω[%g] is the 1D grand potential9 of a constant density profile with
density %g. Considering now a system with a solid wall interacting with the particles, a pure
liquid phase in contact with the wall described by the density field %sl approaching %l for large
enough values of z is deformed close to the wall. The energy associated with this deformation
can be quantified by the solid liquid surface tension γsl. Finally, for a density profile %slg[h]
exhibiting a liquid-gas interface at a given effective distance h from the wall, an excess grand
potential contribution due to the finite value of h is given by the so called binding potential or
effective interface potential g(h) [BTA+17, HTA15]:

g(h) = Ω[%slg[h]]− Ω[%sl]− γlg, (4.27)

and approaches zero as h → ∞. Note that the effective distance of the liquid-gas interface
from the wall can be described more generally by the so-called adsorption Γ which is related
to an effective film height by:

Γ :=
Lz∫
0

%slg(x)− %g dz =: (%l − %g)h. (4.28)

After defining these energetic quantities based on 1D density profiles, the minimization of
the grand potential in the domain A can now approximately be reduced to a minimization
of the following effective interface Hamiltonian FIH with respect to the height function h(x)
[BTA+17, HTA15]:

FIH[h] =
∫
g(h) + ξγlg dx , (4.29)

where ξ =
√

1 + (∂xh)2 ≈ 1 + (∂xh)2/2 is the interface metric which can be approximated by
the latter expression for a long wave geometry (cf. §3.2.2). While the surface tension γlg can
be readily extracted (numerically) from 1D equilibrium density profiles, the calculation of the
binding potential g is not straightforward. It necessitates the calculation of density profiles
with a specified adsorption. In general, such profiles are nonequilibrium states in 1D. However,
the adsorption constraint can not be enforced by a Lagrangian multiplier, since this would alter
the chemical potential which has to be kept at µ = µcoex to ensure that the density profiles
approach %g for z →∞.
In the following subsections, we first introduce a simple lattice gas DFT which can be em-
ployed for the mean field description of the KMC model described in §4.3.1. Subsequently, we
exemplarily demonstrate on this DFT a novel numerical approach to the calculation of the
binding potential based on the nudged elastic band algorithm.

4.4.2 Lattice Gas DFT

The equilibrium mean field density corresponding to KMC models such as the one introduced
and employed in §4.3 can be described for sufficiently large systems (i.e., particle numbers)
by thermodynamic mean field theories. We formulate a modified version of the Hamiltonian

9 Here, Ω[%g] = Ω[%l], since we consider the system at coexistence
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(4.21) with arbitrary particle-particle interactions via εi,j and including interaction with a
homogeneous substrate through the wall potential Vi:

H = − 1
2
∑
i,j
εij pipj +

∑
i
Vi pi. (4.30)

One of the simplest mean field approximations of the grand potential corresponding to (4.30)
can be derived based on the Gibbs-Boguliubov inequality [HTA14] and reads

Ω2D[{%i}] = kBT
∑
i,j

[%i ln(%i) + (1− %i) ln(1− %i)]−
1
2
∑

i

∑
j
εi,j%i%j +

∑
i
%i(Vi − µ). (4.31)

Here, εi,j and Vi are directly inherited from the KMC Hamiltonian (4.30). In FIG. 4.16,
a solution of an iterative minimization of the lattice DFT grand potential is shown10. The
solution corresponds to a droplet formed at the wall, while the inset shows a 1D density profile
at a fixed position on the wall.
In the following, for the calculation of the binding potential in a finite domain, we employ an
effective 1D version of (4.31) with nearest neighbor particle-particle interaction as well as an
effective self-interaction of the particles, stemming from the mapping of the 2D grand potential:

Ω[{%i}] = kBT
Lz∑
i=1

[%i ln(%i) + (1− %i) ln(1− %i)]−
1
2

Lz∑
i=1

Lz∑
j=1

εij%i%j +
Lz∑
i=1

%i(Vi − µ). (4.32)

The wall potential is set as

Vi = −εωi−3 for i ≥ 1, (4.33)

i.e., it is algebraically decaying throughout the whole domain and at (i = 0) it is formally set
to V0 =∞ which accounts for the solid wall. In the following, we adopt the notation % = {%i}
for a discrete density profile specified by the densities %i on all lattice sites i = 1, . . . , Lz.
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Figure 4.16: Equilibrium of the 2D lattice DFT (4.31) corresponding to a droplet of liquid
density ρl in contact with the wall. As an inset, we show a density profile obtained
from a cross section of the droplet. (Cf. [BTA+17])

10 See [HTA14] for details on the minimization algorithm.
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4.4.3 NEB Approach to the Calculation of Binding Potentials11

For the DFT grand potential (4.32), a numerical method for the calculation of the binding
potential is outlined in [HTA15, HTA17]. This method is based on an iterative Picard opti-
mization with the introduction of a self consistent fictitious potential enforcing a constraint on
the adsorption Γ =

∑Lz
i=1

(
%i − %g

)
without altering the chemical potential, i.e., such that the

calculated profiles approach %g far away from the wall. Furthermore, in [HTA15], this method
is used to calculate fit functions with corresponding fit parameters and finally to successfully
compare profiles calculated from an effective interface Hamiltonian (4.29) with density fields
of corresponding droplets obtained as minima of the 2D lattice gas DFT.
We now present a novel approach to the calculation of the binding potential which we then
substantiate by comparing its results to the results obtained from the aforementioned fictitious
potential approach.
The method is based on the so-called nudged elastic band (NEB) algorithm which was also
previously employed in [Lut08] for the calculation of energy barriers for droplet nucleation from
an oversaturated gas phase. In the case of droplet nucleation, a constraint on the mass of the
droplet similar to the adsorption constraint has to be satisfied without altering the chemical
potential (cf. [Lut08, AE11]). The NEB algorithm is a double-ended chain of states method
[HJJ02, HJ00] which can be used to calculate saddle points and steepest descent paths on a
free energy landscape. The basic idea is to fix two end points on the free energy landscape and
then initialize an adequate number of intermediate points.
Upon an independent minimization of each intermediate point, the chain of points would ob-
viously collaps to minima of the free energy. The idea of the NEB algorithm is to inhibit the
optimization process from having this effect by introducing artificial elastic forces between the
points of the chain, parallel to the latter. Let us specify the algorithm as implemented for
our specific problem: In our case, obviously the grand potential function Ω[%] at coexistence
(µ = µcoex) acts as the free energy landscape. The chain of points which is subject to opti-
mization is a sequence of density profiles %I = {%Ii }, I = 1 . . . P. Adequate end points for our
purpose are a homogeneous density field %g at the bulk gas phase and a profile %wl of the liquid
phase in contact with the wall which can be calculated as a minimum of Ω and corresponds to
the maximal adsorption in our finite system:

%0 = %g, with %g
i = %g for i = 1, . . . , Lz, Γ(%g) = 0, (4.34)

%P+1 = %wl, with Ω[%wl] and %wl
Lz ≈ %l. (4.35)

We now have to formulate initial guesses for the intermediate points of the chain corresponding
to profiles with increasing adsorption. Here, we choose a set of profiles {%I} with:

%Ii = 1
2(%g − %l)tanh (iσ − aILz) + 1

2 , (4.36)

where the parameter aI controls the position of the interface and thus the adsorption.
Finally, in order to define the elastic forces acting between two adjacent profiles, a measure of

11 The work presented in this subsection is a collaboration with Oleg Buller (Institute for Physical Chemistry,
Münster) and Andrew Archer (Loughborough University). The numerical approach based on the NEB
algorithm has been elaborated in close cooperation and the implementation has been conducted based on a
code written by O. Buller. The results for the ficticious potential approach have been obtained based on
a code made available by A. J. Archer. The work was jointly published in [BTA+17], our presentation in
this subsection follows along the lines of [BTA+17].
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distance has to be formulated. In our case, we set the elastic forces proportional to the metric
induced by the the L2 norm:

∣∣∣(%I+1 − %I
)∣∣∣2 =

Lz∑
i=1

(
%I+1
i − %Ii

)2
. (4.37)

An appropriate minimization algorithm is now employed on the overall force vector for all
points of the chain. For each point, the force vector consists of the parallel component of
the elastic force and the perpendicular component of the force resulting from the free energy
landscape (i.e., from the grand potential). The overall force vector reads [BTA+17]:

FNEB = {F 1
NEB, . . . ,F

P
NEB}, with F I

NEB = P ‖F I
elastic + P⊥F I

FE. (4.38)

Here, P ‖ and P⊥ are projection operators onto the direction parallel and perpendicular to
the chain, respectively. For details concerning the formulation of the elastic force we refer
to [HJ00]. As minimization algorithm, geometric optimization with direct inversion in the
interactive subspace (GDIIS) is used (cf. [CP84]).
Note that the NEB algorithm is in fact an algorithm for the calculation of steepest descent paths
(SDPs) connecting minima and the equally calculated saddle points. The concept of a SDP
depends on a metric specified for the formulation of the gradients but the saddle points and
minima found by the algorithm are nonetheless independent of the metric. Here, we calculate
the steepest descent path with respect to the Euklidean metric. While we have no formal
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Figure 4.17: Left: Comparison of binding potentials as functions of the adsorption Γ calculated
by the NEB algorithm, the fictitious potential approach [HTA15] and the steepest
descent paths obtained from a simulation of the pseudo-dynamics (4.39). Right:
Comparison of density profiles obained from the NEB and the fictitious potential
approach at given specific values of the adsorption Γ denoted by A,B,C in the
left plot. All results for two different wall interaction energies are in excellent
agreement. Figure reproduced from [BTA+17].
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

argument why this specific SDP gives the best approximation for the constrainted minima
at a specified adsorption, the result can be very successfully compared to binding potentials
obtained for the same system employing the aforementioned fictitious potential approach. Thus,
the obtained binding potentials can be successfully employed for the construction of interface
profiles in good agreement with the DFT. In FIG. 4.17, we show a comparison between
results obtained by the NEB algorithm described above and the fictitious potential approach
for two different values of the wall interaction energy εω. The binding energies and the profiles
(exemplarily shown on the right of FIG. 4.17) are in excellent agreement for both algorithms.
In addition, in order to verify whether the NEB algorithm correctly give the SDP, we show the
SDPs as calculated by pseudo-dynamics given by

%̇ = −∂Ω
∂%

, (4.39)

starting from the profiles %0 and for the case of βεω = 0.6 equally from the saddle point with
small perturbations to each direction.

4.4.4 Outlook: Mapping of Mean Field Dynamics to Effective Interface Dynamics

To coarse-grain the average dynamics of the liquid-gas interface of a KMC model as the one
described in §4.3, the first step (which is already rather tedious) is to formulate adequate mean
field dynamical equations. Approaches for lattice gas dynamics are discussed in [PB92, Mon08,
GPDM03, ART10, CSA17a]. In [Mon08, GPDM03, CSA17a] ODEs for the evolution of the
density on a lattice are considered, and it is pointed out in [Mon08] that the there derived
ODEs correspond to a finite difference version of a Cahn-Hilliard- (or DDFT-) type dynamics.
In [PB92] and also in [ART10], a continuum PDE for the density field is employed. The general
form of a continuum theory for the dynamics of the density field %(x) (excluding the density
on the solid wall) found in the aforementioned literature reads:

∂t%(x, t) = ∇ ·
(
M(%)∇ δΩ[%]

δ%(x, t)

)
. (4.40)

In particular, in [PB92], this equation is supplemented by no-flux boundary conditions at the
wall as well as a boundary condition corresponding to an Allen-Cahn type relaxation of a
surface energy functional.
Given an adequate evolution equation of the form (4.40), the next step would be to extract
a coarse-grained (dimensionally-reduced) equation for the adsorption Γ. It is reasonable to
assume that the evolution equation for the adsorption is – as the evolution equation for the
density field – of variational form (cf. §2.1) and reads

δREI

δΓ̇(x, t)
= 0, where REI = DEI[Γ, Γ̇] + d

dtFIH[Γ]. (4.41)

The underlying assumption for a reduction to the form (4.41), where FIH is the effective
interface Hamiltonian (4.29), is that the density field %(x, z) at each fixed position x relaxes
fast enough to the constrained extrema %Γ(z) for given adsorptions Γ(x), i.e.

%(x, t) = %Γ(x,t)(z). (4.42)
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4.5 Conclusion

While in the previous subsection, we outlined how the binding potential (and thus the effective
interface Hamiltonian in general) can be obtained numerically from the energetics dependent
on the density field, the discussion of reduced dissipation functionals DEI[Γ, Γ̇] is out of the
scope of the present work. In general, a numerical calculation building on the numerically
known density profiles %Γ(z) which are obtained as a byproduct of the calculation of the binding
potential employing the NEB algorithm, might be promising. However, we emphasize once
again that the calculation of stability limits as done for the transversal stability of ridges in
the context of the thin-film equation does not necessitate the knowledge of the dissipation.

4.5 Conclusion
In the first part of the present chapter, motivated by the deposition experiments discussed
in [WDW+11, WC12], we have investigated a thin-film model for chemically prepatterned
substrates. More precisely, the stability of liquid ridges on prepattern stripes has been discussed
in terms of NTS, as well as numerical and semi-analytical calculations. For a single ridge, we
have highlighted the fact that the transversal stability limit is fully encoded in the energetics of
corresponding 1D steady state solutions (cf. [MRD08]). The stability of two adjacent stripes
has been investigated and dynamical effects of diffusion outrunning transversal instabilities
have been discussed, motivated by experimental findings in [WDW+11]. As illustrated by the
snapshot FIG. 4.18, the established numerical techniques using DUNE-PDELab [BBD+08a,
BBD+08b, BHM10] allow large-scale simulations of the dynamics of liquids on prepatterned
substrates. An interesting topic for future work on the thin-film equation with heterogeneous
binding potential is the investigation of 2D steady states on different prepattern geometries.
Here, one solution type which is also found experimentally in [WC12] corresponds to bridge
states between adjacent prepattern stripes (cf. FIG. 4.18). The numerical study of such 2D
steady states using 2D continuation techniques (cf. [EGU+18]) and focusing on interfacial
energies seems promising.
In the second part of the chapter, a systematic but qualitative comparison of time simulations
of the thin-film equation and simulations based on a KMC algorithm has been shown. Here, we
have mainly focussed on a qualitative comparison of transversal dispersion relations, which are
in good agreement and also qualitatively agree with a phenomenon seen in the corresponding
experiments (i.e., larger dominant wavelength for broader prepattern stripes). Finally, we have
presented a novel numerical approach for the extraction of effective wetting energies from a
DFT and discussed a possible outline for the coarse-graining of KMC dynamics.
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4 Instabilities of Liquid Ridges on Heterogeneous Substrates

Figure 4.18: Rendered snapshot of a NTS of (4.3) with the prestructure function (more wettable
areas are visualized in gold) as employed in §4.3, modeling nine prepattern stripes
on a domain of size Lx × Ly = 600× 600 with a mean film height h0 = 4.0 and
a contrast ρ = 0.2. Note the “bridge” structures formed subsequently to the
transversal instability of the ridges due to coarsening of the bulges.

56



5 Propagation of Instabilities

The instabilities shown in the numerical simulations in the previous chapter (e.g., FIG. 4.4 or
FIG. 4.8) are triggered by perturbations which are extended throughout the entire simulation
domain. Thus, the Plateau-Rayleigh instabilities correspond to a more or less simultaneous
breakup of the entire initial ridge into bulges. In contrast, in the first part of the present
chapter, we investigate a different mode of instability growth, namely the spreading of linear
instabilities starting at localized perturbations. With other words, from the local perturbations,
the instabilities propagate into the linearly unstable steady state. For linearly unstable flat
liquid films and liquid ridges on homogeneous substrates, we show that NTS suggest that
this propagation corresponds to the well-known class of so-called pulled fronts, which denotes
front propagations into linearly unstable states where the front speed is dictated by the linear
dispersion relation [Van03].
In the second part of the chapter, we introduce a more complex geometry, namely the so-
called dip-coating geometry, where a substrate is pulled from a liquid bath at an externally
imposed fixed speed. For this geometry, we discuss a solution type mentioned in [Wil16] but
otherwise not yet described in the literature. This solution type corresponds to the time-
periodic formation of droplets (or ridges in 2D) close to the meniscus. A boundary of the
parameter space region where the latter occurs is related to the aforementioned results for
pulled fronts in liquid films.

5.1 Pulled Fronts in Free Surface Liquids
5.1.1 Pulled Patterning Fronts
The propagation of fronts into linearly unstable states is a well-investigated phenomenon in
nonlinear physics, in particular in the theory of pattern formation. For an extensive review
of the matter, we refer to [Van03]. Here, following [Pis06], we shortly outline the basic idea
behind the concept of the pulled fronts:
Consider an appropriate nonlinear PDE for the spatio-temporal evolution of an order parameter
u(x, t) that has a solution consisting of a linearly unstable steady homogeneous state uus(x) =
uus:1

∂tu(x, t) = N [u], with N [uus] = 0. (5.1)

More specifically, consider a front propagating into the unstable state uus with a constant
propagation velocity c. At the leading edge of the front, the deviation v(x) = u(x) − uus is
sufficiently small to consider the linearization of (5.1) about the steady state:

∂tv = L[uus]v =⇒
ξ:=x−ct

v(ξ, t) =
∞∫
−∞

dk ṽ(k)eikξ+(ick+ω(k))t, (5.2)

1 For simplicity, we consider a 1D geometry. The operator N is a, in general, nonlinear differential operator.
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5 Propagation of Instabilities

where the dispersion relation ω(k) obtained from the linearized operator L is given by

L[uus]eikx = ω(k)eikx. (5.3)

We now assume that the Fourier integral solution in the comoving frame (5.2) can be rewritten
as a path integral in the complex plane (using Cauchy’s integral theorem [BSMM12]) passing
through a saddle point of the argument of the exponential function in (5.2). The integral can
then be approximated by the contribution at the saddle point only and we obtain for large
times t:

v ∼ eikξ+(ick∗+ω(k∗))t, where d
dk (−ck + iω(k))

∣∣∣∣
k=k∗

= 0. (5.4)

We impose that the leading edge solution does not grow or decay in the comoving frame for
long times and thus Re (ick∗ + ω(k∗)) = 0. Together with the condition that the speed is real
valued, the following set of equations defining the saddle point k∗ and the speed c is obtained
[DL83, Pis06]:

Re(ω(k∗))
Im(k∗) = c, (5.5)

Re(ω′(k∗)) = 0, (5.6)
−Im(ω′(k∗)) = c. (5.7)

The above calculation, which is also termed marginal stability analysis (MSA) was first employed
by A.N. Kolmogorov et al. for the calculation of propagation velocity of a front described by the
so-called Fisher equation [KPP37]. For this case, the state invading the unstable homogeneous
steady state corresponds to a stable homogeneous state. The analysis can however also be
employed for pattern forming fronts invading unstable states as shown in [DL83]. A very
similar analysis is even possible for unstable periodic states which are invaded by an instability
front (cf. [Sch17]). Note also that depending on initial perturbations, different fronts than the
discussed pulled fronts may be selected by the system in question. The propagation speed is
then larger than the speed obtained from the marginal stability analysis2.
For the case of pattern forming systems, not only the speed of propagation but also the
wavenumber of the patterns selected behind the moving front is of interest. In order to obtain an
expression for this wavenumber, following along the lines of the argumentation given in [DL83],
we once again inspect the asymptotic leading edge solution (5.4). In the comoving frame, this
corresponds to a wave with wavenumber k∗ and angular frequency Ω := Re(k∗)c+ Im(ω(k∗)).
The angular frequency can be interpreted as the flux of the nodes of the wave. 3 This flux
should be conserved during the transition of the solution from the leading edge to the stationary
pattern left behind the front. Still in the comoving frame of the leading edge, the flux of nodes
of the stationary pattern with wavenumber ks behind the front is given by cks. Thus, the
wavenumber ks reads

ks = Ω
c

= Re(k∗) + Im(ω(k∗))
c

. (5.8)
2 For a thorough discussion of this matter, we refer once again to [Van03] and references therein.
3 Consider a plane wave of the form eikx+iΩt. Then, the phase velocity is given by c = Ω/k and interpreting

the wavenumber as the ”density of nodes”, a flux J of nodes can be written as J = kc = Ω.

58



5.1 Pulled Fronts in Free Surface Liquids

5.1.2 Marginal Stability Analysis for Flat Linearly Unstable Liquid Films4

Let us now consider instability fronts invading linearly unstable homogeneous solutions of
(3.38). In order to calculate the linear asymptotic speed of invasion and the wavelength of the
pattern selected behind the front given by (5.5)-(5.7) and (5.8)5, respectively, we first need to
compute the dispersion relation for a linearization of (3.38) about the flat film. Inserting the
ansatz

h(x, t) = h0 + εeikx+ω(k)t, (5.9)

into (3.38) and dropping all terms of O(ε2), we obtain the dispersion relation

ω(k) = −M(h0)
(
k4 +

(
f ′′(h0) + g

)
k2
)

+ ikαgM ′(h0). (5.10)

We now define

ξ := −(f ′′(h0) + g); η := g
αM ′(h0)
M(h0) ; ω̃(k) := ω(k)

M(h0) = ξk2 − k4 + ηik. (5.11)

The rescaled dispersion relation ω̃(k) and its derivative ω̃′(k) evaluated at complex wavenumbers
k = kr + iKi (note that the derivative is taken considering ω̃(k) as a real function) read:

ω(k) = ξ
(
k2
r + 2kikri− k2

i

)
−
[
k4
r + k4

i − 6k2
i k

2
r + i

(
4kik3

r − 4k3
i kr
)]

+ iηkr − ηki (5.12)

ω′(k) = 2
[
ξ(kr + iki)− 2

(
k3
r + i3k2

rki − 3k2
i kr − ik3

i

)]
+ iη. (5.13)

Here and in the following, the real and imaginary part of the variables are denoted by indices
r and i, respectively. From (5.6), we obtain

k2
r = ξ

2 + 3k2
i (5.14)

and from (5.7) follows

c̃ki
2 = −(k2

i ξ − 6k2
rk

2
i + 2k4

i )−
kiη

2 , (5.15)

whereas (5.5) gives

c̃ki
2 = 1

2
(
(ξk2

r − ξk2
i )− (k4

r + k4
i − 6k2

i k
2
r)− ηki

)
. (5.16)

For the linearly unstable regime (ξ > 0), (5.14)-(5.16) can then be combined to result in

k2
i = ξ

24(
√

7− 1) (5.17)

c̃± = −Im(ω̃′(k)) = −η ± 2
3ξ

3
2

(2 +
√

7
)√√7− 1

6

 . (5.18)

The two different propagation velocities correspond to up- and downstream propagating fronts.
Note that for the case η = 0, i.e., for a non-inclined substrate, we recover the symmetry
|c+| = |c−|.

4 Recently, after the work presented in this subsection and the subsequent one had been carried out, in
[LCK18], a marginal stabiltiy analysis for a thin-film model has been published.

5 A very similar calculation for the Cahn-Hilliard equation is outlined in [Köp11].
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5 Propagation of Instabilities

5.1.3 Propagating Spinodal Dewetting Fronts Without Gravity6

As a first system, let us consider the front propagation into flat liquid films without gravity
effects (3.36). The general results from the previous subsection are readily applied to (3.36) by
setting g = 0 such that, in particular, η = 0. As binding potential, we employ (3.37). Then,
films of all heights h > hlim ≈ 1.25 are linearly unstable, as can be seen by inspection of the
dispersion relation, where a band of unstable wavenumbers 0 < k < kc =

√
−f ′′(h0) is ob-

tained as long as f ′′(h0) < 0 (cf. (5.10)). The breakup of liquid films due to a linear instability
induced by the binding potential is termed spinodal dewetting [Mit93, Pis04, HJM+98] due to
its mathematical similarity to the spinodal decomposition of a binary mixture modeled by the
Cahn-Hilliard equation [Cah65]. A plot of the binding potential and its first derivative can be
found in FIG. 5.1.
We consider NTS of (3.36) in 1D with flat films of varying heights h0 which on the left side
side fall off smoothly but sufficiently sharp to an equilibrium adsorption layer as initial condi-
tions. The NTS are performed on a domain of size L = 6000 for h0 < 4.3 and L = 10000 for
h0 ≥ 4.3. No-flux boundary conditions are chosen on both sides. In order to obtain a ”clean”
propagation front and to prevent breakup of the film ahead of the front due to numerical
noise, we furthermore impose a ”freezing front” ahead of the instability front with a speed
well above the propagation speed of the latter.7 A similar numerical approach was pursued
in [Sch17] in a study of instability fronts in the Cahn-Hilliard system. For small film heights
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Figure 5.1: Left: Binding potential f(h) (3.37) and its first derivative f ′(h). Flat films of all
heights h above the height where f ′(h) is maximal are linearly unstable. Right:
Dispersion relation for flat films described by (3.36) for two different film heights
as given in the legend (below and above the stability limit).

6 Recently, after the work presented in this subsection had been carried out, in [LCK18], a marginal stabiltiy
analysis for a thin-film model has been published.

7 I.e., we impose a location xf moving at a given speed cfreeze such that ∂th(x > xf) := 0. By comparison of
different speeds of the freezing front, it is ensured that the dynamics of the instability front are not altered
by this simulation technique.

60



5.1 Pulled Fronts in Free Surface Liquids

1.5 ≤ h0 < 1.9, we find instability fronts leaving behind a regular pattern of droplets of equal
height, which are unstable w.r.t. coarsening. In fact, for some NTS, a coarsening front can
be seen following the initial instability front. These coarsening fronts are studied in detail in
[Sch17] for the Cahn-Hilliard equation, where the speed of the coarsening fronts is calculated
by an extension of the arguments shown in §5.1.1 towards linearly unstable periodic states.
At h0 ≈ 3.0, this secondary instability grows already close to the leading edge of the front,
such that after initial propagation leaving behind droplets of equal size, quasi-instantaneous
coarsening behind the front sets in and more involved periodic droplet patterns are produced
(cf. FIG. 5.2). Investigating instability fronts for larger film heights, a variety of periodic
patterns can be found. However, independently of the complexity of the deposition pattern
left behind by the front, all fronts found in the NTS propagate to a very good approximation
with a constant speed after an initial transient phase. This can be conveniently seen in the
space-time plots shown in FIG. 5.2.
We proceed to quantify the results from NTS concerning the propagation speed and the deposi-
tion patterns. In order to extract the propagation speed as a function of film height, we define
a level set of the film height sufficiently close to the initial film height h0 and numerically track
the maximal position at which this height is reached (for fronts propagating towards x→∞).
The speed is then obtained by a linear fit of these positions over time. As can be seen in FIG.
5.2 and FIG. 5.3, the thus obtained propagation speed in the NTS is in excellent agreement
with the analytically calculated speed (5.18) for g = 0 (after rescaling). This agreement is
independent of the type of deposition pattern behind the front, i.e., a secondary front is locked
into the primary one.
In FIG. 5.4, we show results of the analysis of deposition patterns produced in the final
stages of the NTS on the limited simulation domain considered. These results are compared to
predictions based on (5.8) where no phase slip is assumed during the transition of the periodic
patterns from the leading edge to the area behind the front. The results shown in FIG. 5.4
have to be taken with a grain of salt, since a further relaxation of the deposition behavior for
larger simulation domains and thus longer propagation times is to be assumed and could be
found exemplarily in extended simulations. Nevertheless, lacking a theoretical prediction of
the stable deposition mode, the results obtained for the limited simulation domain are shown
as an overview of patterning modes which are possibly transient. In particular, in FIG. 5.4,
for different values of h0, we display the different maximal heights of the deposited droplets8

found within one spatial period as well as the wavelength of the latter. The wavelength of the
deposition pattern can be directly compared to the wavelength λs = 2π

ks
, where ks is given by

(5.8) with the respective results obtained in §5.1.2.
The height of the droplets can be compared to results from numerical continuation of the steady
state droplets (cf. §4.2.3), where the system size is set as the wavelength λs and the mean mass
m is adapted as m = h0. For both the wavelength and the droplet height, we find excellent
agreement for small film height h0 < 2.9, where the secondary instability of the deposition
mode is not present. For film heights above the limit h0 ≈ 3.0, the wavelength extracted from
the NTS seems rather unsteady, which can probably be attributed to the analysis of possibly
transient propagation modes. In fact, a certain trend of the wavelength re-approaching the
wavelength λs for increasing film heights might be inferred.

8 As already mentioned, the deposited droplets are unstable to coarsening through diffusive fluxes, therefore
we show the height of the droplets within one of the first spatial period shortly after the passage of the
front.
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5 Propagation of Instabilities

This deserves further investigation, possibly in combination with theoretical predictions con-
cerning the stability of the patterning modes. The deviation of the maximal height of the
droplets from the results assuming no phase slip is found to increase monotonically. This might
be a possible route towards a more common dewetting front which is found for linearly stable
films and corresponds to a so-called dewetting rim [SHJ01], i.e., a droplet (or ridge) invading
the film without detaching from it.
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Figure 5.2: Space-time plots showing NTS of instability fronts found for (3.36) and three
different heights h0 of the initial flat film. Note the nontrivial periodic pattern of
droplets obtained for the two larger film heights. The dashed lines indicate the
speed obtained analytically from the marginal stability analysis (5.18).

63



5 Propagation of Instabilities

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Film height h0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
on

t p
ro

pa
ga

tio
n 

sp
ee

d

A B C

cmarginal

Time Simulations
3500 4000 4500 5000 5500 60000

5

10

h

A

0 1000 2000 3000 4000 5000 60000
5

10
15

h

B

0 1000 2000 3000 4000 5000 6000
x

0
5

10
15

h

C

Figure 5.3: Left: Speed of propagation of spinodal fronts (solid line) calculated by the marginal
stability analysis outlined in §5.1.2 as a function of the height of the initial flat
film in comparison to propagation speeds as obtained from NTS of (3.36) (crosses).
Note that the two speeds are in excellent agreement independent of the complexity
of the deposition pattern behind the leading edge of the front. Right: Snapshots
of NTS showing the different droplet patterns left behind the propagating front for
different film heights.
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Figure 5.4: Analysis of the droplet patterns deposited behind the leading edge of the spinodal
fronts as obtained from NTS. Left top: All maximal heights of different droplets
deposited behind the front as obtained shortly after deposition (all droplet patterns
are unstable to coarsening). The solid line denotes the height of droplets calculated
by numerical continuation of steady states of (3.36) assuming the wavelength of
the deposition pattern obtained from (5.8) as the domain size and a droplet mass
as imposed by the conservation of the mass after passage of the instability front.
Left bottom: Wavelength of the deposition pattern as seen in the late stages of the
propagation on the considered domain size. The solid line shows the wavelength
calculated by (5.8). At about h0 = 3.0, a secondary instability close to the leading
edge is found, such that coarsening directly at the instability front leads to periodic
droplet patterns of greater wavelength than the one predicted by (5.8) assuming
no phase slip. Note that we show results obtained from NTS on a finite domain,
for the cases of h0 > 3.0, a further relaxation of the propagation behavior is to be
expected for longer simulations of the propagating front. Right: Snapshots of NTS
at initial film heights indicated by the vertical dashed lines in the top left panel.
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5 Propagation of Instabilities

5.1.4 Propagating Plateau-Rayleigh Instabilities

In a small series of publications [GNPS96, PZGS98, PG97], R. Goldstein et al. investigated
the propagation of Plateau-Rayleigh instabilities for liquids and vesicles of initially cylindrical
geometry. As a result, they found that some instability fronts associated with the pinching of
droplets from the unstable initial cylindrical structure can be described by a marginal stability
analysis (cf. §5.1.1). Here, we show results of a similar analysis applied to the propagation of
the Plateau-Rayleigh instability of liquid ridges on substrates, an instability which has already
been discussed in §4.2.4. While corresponding experiments with macroscopic liquid ridges
[GDGG07] (cf. FIG. 5.5) were investigated in terms of simulation and linear stability analysis,
e.g., in [DGK09, DG16], to our best knowledge, the instability has not yet been discussed
theoretically as a front propagation problem in the spirit of the works of R. Goldstein et al..

Figure 5.5: Optical images showing snapshots from the time evolution of a propagating Plateau-
Rayleigh instability of a strip of silicon oil on a coated substrate. An equidistant
array of droplets results from the instability. Modeling and theoretical consider-
ations for the experiment can be found in [DGK09, DG16]. Picture reproduced
with permission from [GDGG07], c© Europhysics Letters Association.
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Figure 5.6: Snapshots of a NTS in 2D of (3.36) on a domain of size [0, 200]×[0, 3000]. The initial
ridge is based on a steady 1D drop solution obtained by numerical continuation.
We subject the initial ridge to a localized perturbation at one end. The instability
propagates at approximately constant speed and leaves a well ordered array of
droplets behind.

As in §4.2.4, we consider a liquid ridge, where the cross-section is given by a 1D steady state
h0(x) of (4.3). Analogously to the argumentation in §5.1.1, we now focus on the leading edge
of a propagating front, such that the deviation from the unstable initial state can be described
by a linearization of (4.3). The resulting deviation h̃(x, t) = h(x, t) − h0(x) from the initial
state can be expressed as (cf. (5.2))

h̃(x, t) =
∫

dk h1(x, k)eiky+ω(k)t, (5.19)

where ω(k) is obtained from ω(k)h1 = L[h0, k]h1, with the linearized operator given by (4.16)
and h1 being the dominant unstable eigenmode. Following the same reasoning as in §5.1.1,
we thus obtain (5.5)-(5.7) as constituting equations for the propagation speed, where now the
dispersion relation is the one for the Plateau-Rayleigh instability as discussed in §4.2.4. To solve
(5.5)-(5.7), an analytical expression for ω(k) is needed, whereas in §4.2.4, we only obtained the
dispersion relation numerically. In the following, we focus on ridges on homogeneous substrates,
however, the subsequent calculation can be readily performed for the case of ρ 6= 0 in (4.3).
FIG. 5.7 displays two fits of the numerically obtained dispersion relation for an exemplary
mean mass m = 2.0 of the ridge. While a quartic fit does not perform sufficiently well for
our purpose, a hexic fit gives significantly better results. To obtain the hexic fit, we fix the
locus and the value of the maximum of ω(k) as well as the position of the zero crossing as
defining quantities for the fit parameters. The latter quantities can be obtained readily by
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Figure 5.7: Numerically obtained dispersion relation (black solid line) and corresponding fit
functions for a liquid ridge of mean mass m = 2.0 with a domain size orthogonal to
the ridge of L = 200 (cf. §4.2.4). Note that while the quartic fit (blue dashed) shows
at large wavenumbers a large deviation from the numerical dispersion relation, the
hexic fit (red dotted) performs significantly better.

numerical (fold-) continuation of the dispersion relation. Given a dispersion relation which is a
hexic polynomial in k, we can now solve (5.5)-(5.7) numerically, with the analytically available
solution for a quartic fit as initial guesses. The thus obtained results for the propagation speed
of the Plateau-Rayleigh instability can be compared to results from NTS of (3.36).
For the NTS, we initialize ridges with a cross-section obtained from steady state continuation of
(3.36). The simulations are performed on a domain of Lx × Ly = 200× 3000, on a rectangular
grid with dx = dy = 1.0. In x-direction, we employ periodic boundary conditions, whereas
in y-direction, no-flux boundary conditions are imposed. As for the case of a 1D liquid film
discussed in §5.1.3, a localized perturbation is initialized at one side of the structure by a
smooth but sufficiently sharp transition to approximately the height of the adsorption layer.
In FIG. 5.6, we show snapshots of a simulation of the propagating instability. The front speed
is extracted by a level set method analogous to the one described in §5.1.3. The results for the
front speed are in good agreement with the prediction of marginal stability analysis, employing
the numerical solution of (5.5)-(5.7), assuming that the front is in fact a pulled front (cf. FIG.
5.8). The deviation of the NTS results from the speed obtained from the marginal stability
analysis can be mainly attributed to numerical discretization effects. Here, they could not be
further reduced, due to the numerically very costly 2D simulations (with large domain size
parallel to the ridge).
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Figure 5.8: Shown is the propagation speed of the Plateau-Ralyeigh instability in dependence
of ridge height (hmax is the total height of the initial ridge and ha denotes the
adsorption layer height). The solid line shows the marginal stability result obtained
as numerical solution of (5.5)-(5.7) employing the hexic fit for the dispersion relation.
The crosses indicate speeds obtained from NTS of (3.36) (cf. FIG. 5.6).

5.2 Controlled Dewetting Patterns in a Dip-Coating Geometry9

While up to now, we have only considered the behavior of partially wetting liquids on a resting
substrate without external forcing (passive geometry), in this section, we will discuss results
for an active geometry, namely the dip-coating geometry. In this geometry, a solid substrate
is withdrawn from a bath of simple or complex liquid, normally, to coat the substrate with
the liquid. A sketch is shown in FIG. 5.9. For complex liquids, such as colloidal suspensions
(e.g., [GFS07]) or surfactant laden liquids10 with volatile solvent (e.g., [CLH+07]), recently,
dip-coating was employed to obtain periodic deposits on the substrate (for reviews of deposits
at moving contact lines, see [HL12, Thi14, Lar14]). In the present section, we discuss deposition
of periodic structures that can be found for simple partially wetting liquids11 which exhibit
spinodal dewetting on sufficiently small time scales at small film heights. The presentation in
the present section is very similar to the presentation in [TWGT18].

5.2.1 Steady State Solutions and the Landau–Levich Transition
To model the behavior of a partially wetting liquid in the dip-coating geometry, we consider
(3.38) and include an advection term, modeling the withdrawal of the plate with a speed U :

∂th(r, t) = ∇ ·
[
M(h)∇

(
−∇2h+ f ′(h)

)
+ χ(h)

]
− u · ∇h, (5.20)

where χ(h) = g
h3

3
(
∇h+α

)
; u = (U, 0)T; α = (α, 0)T; M(h) = h3

3 . (5.21)

9 The work presented in this section is a collaboration with Markus Wilczek. The NTS for the dip-coating
geometry were conducted by M. Wilczek, whereas the analysis based on the MSA was done by W.T.. The
continuation results were obtained in close cooperation. The work will be jointly published in [TWGT18].

10 A well-established dip-coating technique employing surfactants is the so-called Langmuir–Blodgett transfer.
11 These periodic structures have first been mentioned in [Wil16].
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The following boundary conditions are employed:

h = h0,∇h = (−α, 0)T ; n · ∇∇2h = 0 at x = 0 (5.22)
n · ∇h = 0; n · ∇∇2h = 0 at x = Lx; n = (1, 0)T (5.23)

h(x, y = 0) = h(x, y = Ly). (5.24)

Here, (5.22) models the transition to the liquid bath, assuming an inclination angle α of the
plate (cf. FIG. 5.9). Equation (5.23) models an outflux of mass at the r.h.s. boundary of the
simulation domain. In y−direction, we assume periodic boundary conditions.

α

U

g

h

y xz

Figure 5.9: Sketch of a dip-coating geometry. A solid plate is withdrawn under an angle α from
a liquid bath. Here, the speed of withdrawal U is kept constant and represents a
main control parameter.

We start by reviewing steady state solutions of (5.20)-(5.22) in 1D, in dependence of the
inclination angle α and the speed of withdrawal U . These solutions have recently been studied
in detail in [Gal15]. An overview of steady state solutions obtained by numerical continuation
for an inclination angle of α = 2.0 is displayed in FIG. 5.10. Here and in the following, the
height h0 in (5.22) is fixed at h0 = 100 and the gravity parameter is chosen as g = 0.001.
For small values of U , no macroscopic film is transferred onto the plate, which is then only
covered by the microscopic adsorption layer (solution V in FIG. 5.10). For large values of U ,
a homogeneous, macroscopic liquid film, the so-called Landau–Levich film, is deposited onto
the substrate (solutions I and II in FIG. 5.10). As suggested by the nomenclature, this film
deposition was first studied by L.D. Landau and B. Levich [LL42] (and also by B. Derjaguin
[Der45]), who derived the following scaling law for the deposited film thickness hf :

hf ∝ U2/3. (5.25)

As seen in FIG. 5.11, the scaling of the thickness of the deposited film holds for sufficiently
large values of U in the framework of the thin-film model.
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Figure 5.10: Bifurcation diagram for steady state solutions of (5.20)-(5.23). Exemplary solu-
tions are denoted by roman numbers and shown in the lower panels. The solid
line corresponds to Landau–Levich type solutions for high values of U (solutions I
and II). At lower values of U , this branch becomes a snaking branch of detached
foot solutions (solution IV). The dashed line corresponds to a different snaking
branch of attached foot solutions (solutions III, IV, cf. [GTLT14, TGT14] for a
detailed analysis of this) and becomes a branch of meniscus solutions, where the
substrate is only wetted by a thin adsorption layer, for U → 0 (solutions V, VI).

71



5 Propagation of Instabilities

10−1

U

100

101

h
f

∝ U2/3
α = 1.5

α = 1.7

α = 1.9

Figure 5.11: Bifurcation diagram obtained by numerical continuation of (5.20)-(5.23), showing
the transferred film height hf (film height at the upper boundary of the domain),
in dependence of U for different inclination angles. For all considered values of
α, hf follows the Landau–Levich scaling ((5.25), blue line) for sufficiently large
values of U (cf. [GTLT14]).

As the thickness of the deposited film decreases with decreasing speed of withdrawal, the
effect of the binding potential (3.37) becomes increasingly important. The binding potential
plays a crucial role for the steady state solutions of low mass at values of U above the range of
U where no macroscopic film is transferred and below the macroscopic Landau–Levich regime.
The transition from the former regime to the latter will be denoted as the Landau–Levich
transition in what follows. As shown in FIG. 5.10, for α = 2.0, the branch of Landau–Levich
solutions is found to be connected to a branch of detached foot solutions (e.g., solution IV in
FIG. 5.10). Those solutions might be related to transient structures found experimentally in
[SZA+08], where the speed of withdrawal is increased from below the Landau–Levich transition
to values above. In roughly the same range of U , where the snaking branch of detached foot
solutions can be computed, a second snaking solution branch is found. This branch corre-
sponds to attached foot solutions (solution VIII in FIG. 5.10) and has recently been discussed
theoretically in [TGT14, GTLT14] and previously in [SADF07].
We now proceed to discuss another solution type present at low values of U , namely space-time
periodic depositions of droplets (1D) or ridges.

5.2.2 Space-Time Periodic Solutions – Phase Diagram and Analysis

When performing NTS of (5.20)-(5.22), for a certain parameter set, where the speed of with-
drawal is not too far away from the Landau–Levich transition, the Landau–Levich solution
turns out to be unstable. In these cases, a solution type which has previously not been discussed
emerges, namely a solution where the deposition of periodic arrays of droplets (or ridges in
2D) occurs (cf. FIG. 5.12).
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Figure 5.12: Time series representing time-periodic solutions found in NTS of (5.20)-(5.22) for
α = 2.0, U = 0.07 (left), U = 0.08 (left) and h0 = 100. The time evolution is
visualized by a vertical shift of the snapshots. Droplets are formed periodically
close to the meniscus and are subsequently advected away from the latter.

To obtain a phase diagram of the stable solution type shown by the system in dependence of
the inclination angle α and the speed U , a parameter study is conducted for two different types
of initial conditions. For one, the NTS are initialized by a steady state Landau–Levich solution,
for the other, a non steady state sharp meniscus profile is employed. As depicted in FIG. 5.13,
the parameter sets for which periodic solutions are found do not completely coincide for the
different initial conditions, which implies bistability and hysteresis of the system.
Employing an analysis very similar to an approach described in [KGFT12], we now try to
quantify semi-analytically the upper boundary of the periodic deposition domain in terms of
the velocity U . It can be observed in the NTS that for values of U above the range where periodic
depositions occur, initial perturbances of the monotonic Landau–Levich solution are advected
away from the meniscus region. We therefore assume that the upper boundary of the patterning
region can be calculated by consideration of the propagation speed of instabilities into the
Landau–Levich solutions. More specifically, since the Landau–Levich solutions converge to a
flat film far away from the bath, we consider the linear propagation speed of pulled fronts into
flat films of height hf as given by the marginal stability analysis described in §5.1.1 and §5.1.2.
Thus, for each speed of withdrawal, a speed c− = M(hf )|c̃−| of propagation towards the bath
can be calculated, where c̃− is given by (5.18) and hf is obtained by numerical continuation
(cf. FIG. 5.11). The upper limit of the patterning regime is then obtained by the condition
(cf. [KGFT12])

g(U) := c−(hf (U))− U = 0, (5.26)

i.e., by requiring that the propagation of the dewetting instability matches the speed of with-
drawal U . The criterion (5.26) can be solved numerically for U for different inclination angles
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α and indeed reproduces very accurately the upper limit of the patterning region found for the
initial conditions given by the Landau–Levich solution in the NTS.
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Figure 5.13: Right: Phase diagram obtained by NTS of (5.20)-(5.22), showing solution types
in dependence of α and U . Full circles, crosses and hollow circles correspond to
flat films solutions, time-periodic solutions and meniscus solutions found when the
NTS is initialized by steady state solutions obtained from numerical continuation
(cf. FIG. 5.10). The gray shaded area depicts the patterning region when sharp
meniscus initial conditions are employed. The solid line shows the relevant zero
crossing of g(U) in dependence of α (cf. (5.26)) and reproduces in very good
approximation the upper bound of the patterning regime for steady state initial
conditions. Left: Visualisation of the criterion (5.26). We show the propagation
speed c− (see (5.18)) of instabilities in the flat Landau–Levich film, calculated
from (5.20)-(5.22) in dependence of U for two different values of α.

5.2.3 Numerical Continuation of Time-Periodic Solutions

To explain the bistability found in the NTS and to further explore the solution structure of
the system (5.20)-(5.22), we proceed by performing numerical continuation of time-periodic
solutions. In order to do so using the tool AUTO-07p, we need to discretize (5.20)-(5.22) in the
spatial variable x to get a system of ODEs. While in [LRTT16], such a spatial discretization is
effectively done using a fast Fourier transform approach, here the discretization is performed
in terms of finite differences.12 Considering stationary solutions, the resulting bifurcation dia-
grams obtained are in reasonably good agreement with the corresponding bifurcation diagrams
obtained by consideration of the systems (5.20)-(5.22) as a BVP in AUTO-07p. However,

12 This approach is also followed in [KT14] for a simplified model for periodic depositions in Langmuir–Blodgett
transfer.
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5.2 Controlled Dewetting Patterns in a Dip-Coating Geometry

due to the large number of degrees of freedom, the continuation of the spatially discretized
system is computationally very costly and we therefore restrict ourselves to a smaller system
size (L=100) and a smaller boundary height (h0 = 40) than in §5.2.1 and §5.2.2. A thereby
obtained bifurcation diagram including time-periodic solution branches is shown in FIG. 5.14.
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Figure 5.14: Bifurcation diagram of (5.20)-(5.22) for α = 2.0, showing the (time-averaged) L2-
norm of stationary and time-periodic solutions. A sequence of Hopf bifurcations
on the Landau–Levich branch (cf. FIG. 5.10) is found which are connected in
pairs by branches of time-periodic solutions. The Hopf bifurcation at the highest
velocity (Umax) gives rise to a branch of time-periodic solutions that terminates in
a global bifurcation on the subbranch corresponding to the detached foot solutions.
In the inset, we show the very good agreement of the loci of Umax for different
values of α with the curve corresponding to the marginal stability analysis criterion
(5.26) employing the Landau–Levich films heights hf obtained by continuation of
the system as a BVP (cf. FIG. 5.11).

As a solution measure, we use the standard L2-norm whenever considering stationary solutions
and a time-averaged L2-norm for time-periodic solutions. Along the solution branch corre-
sponding to Landau–Levich solutions, a sequence of Hopf bifurcations is detected. The Hopf
bifurcation found for the largest value of U is connected to the subbranch of detached foot solu-
tions via a global bifurcation. All the other Hopf bifurcations are connected in pairs by branches
of time-periodic solutions. The overall solution structure associated with the time-periodic
solutions is very reminiscent of the one found for periodic depositions in Langmuir–Blodgett
transfer [KT14], where the authors introduced the term ”harp-like” bifurcation structure.
The Hopf bifurcations at the upper end (i.e., at higher values of U) of the time-periodic solution
branches are all subcritical. In FIG. 5.15, we show the dominant time-periodic branch for
α = 2.5 in more detail and together with snapshots of the solutions.
The subcriticality of the Hopf bifurcation explains the bistability observed in the NTS discussed
in §5.2.2. Furthermore, a closer look at the solutions at different sections of the time-periodic
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Figure 5.15: Top: Dominant branch of time-periodic solutions of (5.20)-(5.22) for α = 2.5
and h0 = 40 found by numerical continuation. Lower panels: Time-series of
exemplary solutions denoted by roman numbers. The time evolution is visualized
by an increasing vertical shift of the solutions for increasing time. Close to the
subcritical Hopf bifurcation, a small oscillation can be seen only at the upper
boundary of the domain (solution I). However, for smaller velocities, droplets are
formed periodically close to the meniscus (solution IV).

solution branch shown in FIG. 5.15 further elaborates the picture of a pinned instability
”trying” to invade the Landau–Levich solution: In very close proximity of the Hopf bifurcation,
the time-periodicity of the solution only affects the solutions at the upper end of the simulation
domain, while the rest is approximately constant in time. At the upper (r.h.s.) end, small
amplitude oscillations about the Landau–Levich film height hf can be seen. Along the upper-
most subbranch of the solution branch in FIG. 5.15, the time-periodic oscillations approach
the meniscus further and further. In fact, the loci of the Hopf bifurcations giving rise to the
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dominant time-periodic solution branch for different inclination angles α agree remarkably well
with the limiting curve calculated from (5.26) with hf (U) being the upper boundary value
obtained from a continuation of (5.20)-(5.22) as a boundary value problem (cf. FIG. 5.11).

5.2.4 2D Simulations

The periodic depositions discussed in the previous subsections correspond to ridges on 2D
substrates. While these are, as mentioned in 4.2.4, unstable w.r.t. Plateau-Rayleigh instabilities
after deposition, these instabilities may occur on time scales significantly larger than the time-
periodicity. An interesting question concerning the behavior of the periodic solutions in 2D is
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Figure 5.16: Top panels: Snapshots of NTS of (5.20)-(5.22) in 2D after relaxation to a time-
periodic state. No transversal instability of the ridges could be seen in the NTS.
Bottom panels: Dewetting fronts in 2D obtained from NTS of (5.20)-(5.21) for
α = U = 0 with no-flux boundary conditions in x-direction and periodic boundary
conditions in y-direction. As initial heights of the flat films, we chose approximately
the heights hf corresponding to the velocities in the top panels. After an initial
propagation time where nearly translationally invariant stripes are formed, a
transversal instability sets in (note that we only show part of the simulation
domain).
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whether a transversal instability at the onset of the patterning region close to the liquid bath
is found. In principle, a transversal stability analysis similar to the one performed in §4.2.4
has to be performed in order to answer this question conclusively. However, such an analysis
for time-periodic solutions is rather involved and we thus restrict ourselves to exemplary NTS
in 2D in the present work. In FIG. 5.16, we show that on a flat substrate (α = 0) without
advection, an instability front propagating into a flat film of height hf (α = 2.0, U = 0.07, 0.08)
eventually becomes transversally unstable. However such an instability could not be observed
for the dip-coating geometry (cf. FIG. 5.16 for a NTS with α = 2.0 and U = 0.07, 0.08).
We therefore infer that the broken isotropy due the the liquid bath in combination with the
advection term leads to a stabilization of the dewetting front in 2D. However, as already
mentioned this conjecture is in need of further theoretical foundation.

5.3 Conclusion
In the present chapter, we have discussed the propagation of instabilities for liquid films and
ridges, applying the concept of pulled, patterning fronts. For flat films showing spinodal
dewetting, the speed of dewetting fronts has been calculated analytically. The patterns behind
the front were shown to be rather intricate for certain initial film heights due to secondary
instabilities acting directly behind the leading edge of the front. Here, a weakly nonlinear
analysis in the comoving frame of the leading edge could give further insight into the structure
formation behind the front.
Furthermore, investigating numerically the propagation of Plateau-Rayleigh instabilities of
liquid ridges on solid substrates, we have been able to show that the process belongs to the
class of fronts discussed in [GNPS96, PZGS98, PG97].
Finally, for the dip-coating geometry, we have discussed a novel solution type of time-periodic
depositions. At onset, these solutions can be interpreted as pulled dewetting fronts invading the
quasi-flat Landau–Levich layer, while being counteracted by the advection. Here, experimental
results concerning this solution type would be of great interest. In order to achieve mesoscopic
periodic depositions experimentally, a further destabilization of the liquid on the plate through
external fields (e.g., electric fields) might be necessary. In addition, the present work should
be of interest for ongoing experimental and theoretical work considering menisci of liquids
subjected to surface acoustic waves (SAW) [MM17, AM16] that act in a similar way as the
plate-withdrawal in the dip-coating geometry.
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In this chapter, we discuss two inherently different coarse graining procedures, each applied
to the modeling of two respective phenomena associated with instabilities of driven liquids on
solid substrates.
First, we present a statistical modeling of the coarsening of ensembles of sliding droplets
on inclined substrates. Here, we formulate a statistical model, adopting and extending the
Smoluchowski coagulation equation [Smo16] and employing information obtained from steady
state continuation of single sliding droplets. The presentation follows along the lines of our
recent work [WTE+17].
In the second part of the chapter, we once again return to the notion of the variational principle
introduced in §2.1. More specifically, we present two different derivations of an order parameter
equation for the depinning of a droplet of partially wetting liquid on a rotating cylinder, where
one of the derivations is based on Onsager’s variational principle (2.14), whereas the other relies
on a projection approach. The resulting order parameter equation is the well-known Adler
equation [Adl46], a prototype equation for SNIPER (saddle-node infinite period) bifurcations
[Str14].

6.1 Statistical Description of Sliding Drop Ensembles1

The coarsening behavior of ensembles of structures like bubbles, droplets or, in general, clusters
of particles is a fundamental research topic in soft matter science. Perhaps the best known
specific type of coarsening is the so-called Ostwald ripening (cf. [Ost97, Ost96]). It can, e.g.,
be observed in the growth of larger crystals in solution at the expense of smaller ones. The first
successful modeling of the diffusive coarsening associated with Ostwald ripening was achieved
by I.M. Lifshitz and V.V. Slyozov [LS61] and independently by C. Wagner [Wag61].
Here, we will discuss the coarsening of liquid droplets on an inclined surface. A review of
particle-based simulations and statistical modeling of the coarsening of droplets on surfaces can
be found in [Mea92a]. In [Mea92b, CRMF89], also ensemble dynamics of liquid droplets on
inclined substrates are discussed, focusing on initially pinned droplets and avalanche dynamics.
In [GW03, GW09, GW08, GORS09], the authors discuss the coarsening behavior of liquid
droplets on flat substrates in terms of coarse graining of the thin-film equation.
Here, we focus on the coarsening behavior of sliding droplets on a solid substrate in absence of
contact line hysteresis and pinning. Such a system is modeled in terms of (3.38)-(3.39).

1 The work presented in this section is a collaboration with Markus Wilczek and Sebastian Engelnkemper.
The bifurcation diagrams were calculated by S. Engelnkemper, the NTS and its analysis (in terms of
extraction of number of droplets and droplet size distribution by KDE) were conducted by M. Wilczek.
The formulation and simulation of the statistical model has been done in close cooperation between M.
Wilczek and W.T.. The work was jointly published in [WTE+17]
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6 Statistical and Analytical Coarse Graining

6.1.1 Statistical Results from NTS and Connection to Bifurcations of Single
Drops

To obtain statistical results for the time evolutions of large ensembles of sliding droplets,
large scale NTS of (3.38)-(3.39) with χ(h) = g h

3

3 α are conducted. We consider a domain of
Lx × Ly = 4000 × 4000 with periodic boundary conditions. The simulations performed for
different inclination angles are initialized by a flat film of height h0 = 2.0 (which is linearly
unstable, cf. (5.10)) and additional uniform noise. After fast initial spinodal breakup of the
thin film, the resulting large ensemble of droplets begins to slide. In this early stage, the
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Figure 6.1: Comparison of snapshots from time evolutions of ensembles of droplets for a hori-
zontal (α = 0, top row) and inclined substrate (α = 1.0, bottom row). We show
NTS of (3.38)-(3.39) with g = 0.001 on a domain of Lx × Ly = 4000× 4000 (only
one quarter of the simulation domain is shown) initialized by a flat film of height
h0 = 2.0. Figure reproduced from [WTE+17], c© 2017 American Physical Society..

average droplet size is related to the most unstable wavelength of the linear instability of the
flat film. In the subsequent time evolution, both, coalescence events and breakup of droplets
into two parts, are observed. Coalescence occurs whenever two droplets meet, a scenario which
is promoted by the fact that droplets of different volumes slide at different velocities. Breakup of
droplets is observed for large droplets. In comparison to smaller, stable droplets, the footprint
of the larger drops exhibit a cusp at their tail.2
To quantify the coarsening behavior, droplet size distributions f̃(V ) are extracted from the
NTS by kernel density estimation (cf. [Wil16] for details). Furthermore, the time evolution
of the overall number of droplets in the NTS is tracked. Considering the dynamics of the
droplet size distribution f̃(V ) shown in FIG. 6.2, the following observation can be made for
all investigated values of α 6= 0: The initial peak of the distributions at low droplet sizes
(related to the most unstable wavelength) disappears swiftly, while a new peak at larger droplet
sizes appears. After some time, the positions of the new maxima of the distributions remain
approximately constant and even the shape relaxes to a quasi-stationary state.

2 For experimental results concerning the pearling instability of sliding drops in relation to a cusp formation,
we refer to [PFL01], a recent numerical study can be found in [EWGT16].
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Figure 6.2: Left: Time evolution of the number of droplets as extracted from NTS of (3.38)-
(3.39) for different inclination angles of the substrate (all other parameters are as
in FIG. 6.1). The dashed line shows a rigorous upper bound for the coarsening
rate for non-inclined substrates [ORS06]. Right: Normalized distribution of droplet
volumes obtained by KDE of NTS at three different times for a time evolution at
α = 1.0. The results were obtained by Markus Wilczek (cf. [WTE+17]).

This saturation behavior is of course also reflected in the time evolution of the number of
droplets, where - as imposed by mass conservation - the number of droplets quickly decreases
as more drops of larger volume are formed. The quasi-stationary distribution is reflected in a
saturation of the number of droplets. In general, it is observed that the coarsening leading to
quasi-stationary distributions for the driven droplet ensembles (α 6= 0) is significantly faster
than for the case of horizontal substrates. For the latter, building on the gradient structure of
(3.36), in [ORS06], a rigorous upper bound for the coarsening rate could be derived. In FIG.
6.2 this upper bound is shown together with the results from NTS. The driving gravity effects
lead to frequent encounters of droplets, and therefore this upper bound is clearly exceeded for
α 6= 0.3
We proceed to discuss the phenomenon of a stationary droplet size distribution in more detail.
As already mentioned, two main effects are responsible for the specific coarsening dynamics (and
thus also for its saturation): The collision of droplets of different speed and the fragmentation
of droplets which have become too large to be stable. An inspection of the bifurcation diagram
of a single sliding droplet in dependence of its volume gives further insight into droplet stability.
In FIG. 6.3, the solution subbranch present at the lowest volumes corresponds to the simple
droplet shape (cf. solution (a) in FIG. 6.3), which is most frequently observed in the NTS at
sufficiently small α. This subbranch ends in a saddle-node bifurcation at a critical volume Vcrit.
Droplets of smaller volumes are stable w.r.t. a pearling instability (cf. [EWGT16] for details)

3 As emphasized in, e.g., [GW03], also on flat substrates, droplets may collide due to motion induced by fluxes
through the adsorption layer (see also [PP04]). This effect is not negligible for the coarsening dynamics.
However, collisions are significantly more frequent for all α 6= 0.
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6 Statistical and Analytical Coarse Graining

leading to the fragmentation. All droplets of larger volume which do not relax to an elongated
droplet type4 (solution (d) in FIG. 6.3) are subject to fragmentation. The upper limit Vcrit is in
close relation (but not equal to) the drop size at the maximum of the droplet size distribution.
This is clearly demonstrated in FIG. 6.4, where for different inclination angles α, the inflection
point of the quasi-stationary distribution is located roughly at Vcrit.
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Figure 6.3: Left: Bifurcation diagram for a single sliding drop in 2D, showing the sliding velocity
in dependence of its volume. Right: Exemplary solutions correspond to different
subbranches of the bifurcation curve in the left panel, as indicated by the labels (a)-
(d). For the ensemble statistics, we are mainly interested in the subbranch of simple
droplets (solution type (a)), which ends in a saddle-node bifurcation at a volume
Vcrit. The bifurcation diagram has been obtained by Sebastian Engelnkemper, cf.
[EWGT16] for details. Figure adapted from [WTE+17], c© 2017 American Physical
Society.

4 This solution type can also be stable and is sometimes found in ensemble simulations (cf.FIG. 6.1). However,
at sufficiently small inclination angles, the solution type is not very frequent in the NTS and we neglect it
in the statistical modeling outlined in §6.1.2.
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Figure 6.4: Shown is a comparison of late stage normalized volume distributions (solid lines) ob-
tained by KDE of the NTS (cf. FIG. 6.2) with corresponding bifurcation diagrams
for single droplets (dashed lines, cf. FIG. 6.3) for three different inclination angles
α. For all cases, the upper inflection point of the quasi-stationary distribution is
located roughly at the bifurcation point Vcrit. (Cf. [WTE+17])
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6.1.2 Statistical Model
While the locus of the maximum of the saturated droplet size distribution could be predicted by a
corresponding bifurcation diagram (cf. FIG. 6.4), a complete statistical description should also
include the coarsening dynamics leading to the saturated state. For this purpose, we formulate
a Smoluchowski-type statistical model based on information from bifurcation diagrams of single
droplets. The Smoluchowski equation [Smo16] is a well known integro-differential equation for
a non-normalized volume distribution function f(V ) = Nf̃(V ), where

N[V,V+dV ] = f(V )dV (6.1)

is the number of entities with a volume in the interval [V, V + dV ]. The classical Smoluchowski
equation only describes coalescence processes. Our minimal model, however, has to include
both the mechanisms of coalescence of two droplets due to different sliding velocities and of
fragmentation of droplets with volumes above Vcrit. Modeling of the coarsening of droplets on
substrates in terms of generalized Smoluchowski equations is also reviewed in [Mea92a] and in
[Mea92b] also fragmentation is considered.
The general form of a Smoluchowski type equation capturing coalescence of pairs of droplets
and fragmentation of individual drops reads [WTE+17]:

∂tf(V, t) = −
∞∫
0

K(V, Ṽ ) f(V ) f(Ṽ ) dṼ

︸ ︷︷ ︸
loss due to coalescence

+
V∫

0

1
2K(Ṽ , V − Ṽ ) f(Ṽ ) f(V − Ṽ ) dṼ

︸ ︷︷ ︸
gain due to coalescence

−
∞∫
0

1
2J(V, Ṽ ) f(V ) dṼ

︸ ︷︷ ︸
loss due to fragmentation

+
∞∫
0

J(Ṽ , V ) f(Ṽ ) dṼ

︸ ︷︷ ︸
gain due to fragmentation

. (6.2)

This equation is best understood as a continuous rate equation (cf., e.g., [Hak04]), where the
kernels J and K give rates of fragmentation and coalescence, respectively in dependence of
the volumina of droplets involved in the respective processes. More specifically, K(V1, V2)
models the rate of collisions of two droplets of volumes V1 and V2, whereas J(V1, V2) models the
rate of fragmentation of a droplet of volume V1 into two droplets, of volumes V2 and V1 − V2.
Conveniently, in our case, nearly all information needed for the formulation of adequate rate
kernels can be obtained from the bifurcation diagrams of single sliding drops (cf. FIG. 6.3):
The rate of collision K(V1, V2) is assumed to be imposed by the mean distance of a droplet in
the ensemble to any other droplets (assuming that the position of the droplets is statistically
independent of their volume) and the velocity difference between two droplets of volumes V1
and V2. We therefore formulate the kernel K(V1, V2) as

K(V1, V2) = 2k1
L
|U(V1)− U(V2)| . (6.3)

Here, L/2 is the average distance of two droplets on the whole domain with periodic boundary
conditions. The sliding velocity U(V ) is found from the bifurcation diagrams to follow a power
law in V and to be linearly dependent on the inclination angle α:

U(V ) = a0αV
β0 (6.4)
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6.1 Statistical Description of Sliding Drop Ensembles

with a0 = 2.2 · 10−4, β0 = 0.569. Thus, a single free parameter k1 is left in the kernel K.5
Slightly less information is available concerning the kernel J . While we are able to obtain the
power law

Vcrit = a1α
β1 , (6.5)

with a1 = 7.18 · 104 and β1 = −1.40 from a large set of bifurcation diagrams for different α, we
have no information on the dependence of the rate of breakup on the resulting combination
of droplet sizes. To avoid unsubstantial bias, we therefore assume a breakup rate that is
independent of the sizes of the droplets resulting from the fragmentation. This rate j is
approached smoothly by a sigmoidal function jσ(V1, Vcrit) = j 1

2

(
1 + tanh

(
V1−(Vcrit+2bV )

bV

))
centered at the critical volume V1 = Vcrit:

J(V1, V2) = j σ(V1, Vcr) Θ (V1 − V2) . (6.6)

Here, Θ (V1 − V2) is the Heaviside function accounting for the fact that no fragment droplet
can be larger than the initial droplet.
With the definitions of the two kernels K and J (cf. FIG. 6.5), the statistical model now
depends in principle only on two free parameters (after fixing the width of the transition in the
sigmoidal function in J). By rescaling time (which does not affect the steady states), this can
be reduced to a single free parameter corresponding to a ratio of fragmentation and coalescence
rates. Note also that with the kernels (6.3) and (6.6), the generalized Smoluchowski equation
(6.2) is mass conserving in a statistical sense, i.e.,

d
dt

∞∫
0

dV V f(V ) = 0. (6.7)
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Figure 6.5: Plot of the kernel functions J and K defined by (6.6) and (6.3).

We perform numerical simulations of (6.2) by discretization of the distribution in volume-space
and explicit Runge-Kutta time-stepping. Taking the distribution obtained by KDE of NTS of

5 This parameter can be interpreted as accounting for laning effects, i.e., for the fact that not all droplets
on the 2D domain interact with each other, but only the ones within a certain range orthogonal to their
sliding direction.
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6 Statistical and Analytical Coarse Graining

the thin-film model at an early stage as initial conditions, the time evolutions of the distribution
and the number of droplets can be compared to results from simulation of (3.38)-(3.39). The
discussed free parameters of the statistical model are fitted employing the NTS for α = 1.
No further fitting is performed for the other considered inclination angles. FIG. 6.6 shows
that the statistical model reproduces all prominent qualitative features of the time evolution
of the distribution function from KDE. More specifically, we find the fast relaxation of the
distribution to a broadened stationary distribution at slightly lower values of V than the critical
volume Vcrit (shown as a dashed line in FIG. 6.6). For the time evolution of the number of
droplets (which can be calculated by integration of f(V )), we find good quantitative agreement
between the KDE and (6.2) for different inclination angles α (as emphasized before, by fitting
only once for the case of α = 1). Both, the rate of decay of the number of droplets and
the time at which the saturation sets in are well reproduced (cf. FIG. 6.7). In the inset in
FIG. 6.7, we further show that rescaling the time axis by the inclination angle α achieves an
approximate collapse of all curves in the decay regime onto a master curve. This collapse is
not only reproduced by the statistical model but can also be explained by it: In the regime of
fast decay of the number of droplets, the coarsening is dominated by collision events. In (6.2),
however, the rate of these events scales linearly in α, since K(α) ∼ |U(α)| ∼ α by virtue of
(6.4).
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Figure 6.6: Comparison of the time evolution of the droplet size distribution f̃(V ) as obtained
from KDE for NTS of the thin-film model (left panel) and from a numerical simu-
lation of the statistical model (6.2). Here, the simulation of the statistical model is
initialized by an early-time distribution obtained from NTS of the thin-film model.
The parameters for the thin-film model are as in FIG. 6.2 and α = 1.0. The
dashed line shows the threshold volume Vcrit (cf. FIG. 6.4). Figure adapted from
[WTE+17].
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6.2 Order Parameter Equation For a Drop of Partially Wetting
Liquid on a Rotating Cylinder

As another model system for driven liquids on solid substrates, we now consider a drop of
partially wetting liquid on a rotating cylinder in 1D. As already implied in §3.2.3, for wetting
liquids, there is a long tradition of studies [Mof77, Puk77, DW99, Kel09, vTH18], however,
for partially wetting liquids, the system was first investigated theoretically in [Thi11]. There,
analogies to the depinning of sliding droplets from heterogeneous substrates as studied, e.g., in
[TK06] are elaborated. In a subsequent work [LRTT16], the bifurcation structure of the system
has been analyzed in great detail, also taking into account solutions which are not droplet-like.
The focus in the present work is on the analytical derivation of an order parameter equation
for the system which holds in the limiting case of small Bond numbers, i.e., for small ratios of
the influences of gravity and surface tension.

6.2.1 Model Equation

In §3.2.3, we have introduced a model equation for a partially wetting liquid on a cylindrical
surface. To model the active rotation of the cylinder, we introduce an advection term into
(3.41) and obtain (cf. FIG. 3.3):

∂th = ∂θ
(
h3∂θ

[
−∂θθh− h+ Bo cos(θ) + f ′(h)

]
− Ωh

)
. (6.8)

We furthermore adopt the scaling from [Thi11] such that the derivative of the binding potential
reads:

f ′(h) = 5
3
β2

0h
2
a

h3

(
1− h3

a

h3

)
. (6.9)

Here, β0 is the macroscopic contact angle of the liquid and ha is the height of the adsorption
layer in the limit of infinite domains (cf. §3.2.3). The constants in (6.8) are the already
introduced Bond number Bo and the nondimensional angular driving velocity Ω. As prescribed
by the geometry of the system, we consider (6.8) on a periodic domain θ ∈ [0, 2π].
In order to obtain steady states, we integrate (6.8) once and write:

−c0 = h3∂θ
[
−∂θθh+ Bo cos(θ) + f ′(h)− h

]
− Ωh (6.10)

⇔ ∂θθθh = −Bo sin(θ) + ∂θ(f ′(h)− h)− Ωh
h3 + c0

h3 , (6.11)

where c0 is a constant, corresponding to the flux in the system. For vanishing driving velocity
and vanishing flux (c0 = Ω = 0), we can integrate (6.11) once more and obtain a steady state
equation analogous to (4.7):

−∂θθh− h+ f ′(h) + Bo cos(θ) = µ (6.12)

In absence of gravity (Bo=0), the core droplet solution6 of (6.12) is however a cut-off cosine
and not a parabola:

−∂θθh− h = µ⇒ h(θ) ∝ cos(θ + φ) + C, (6.13)
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Figure 6.8: Steady state of (6.8) obtained by numerical continuation for ha = 0.1, β2
0 = 2.0,

Bo= 0 and a mean mass m = 1.0. In comparison, we show a fit based on the
steady state equation (6.12) which is valid in the core region. Only in the contact
line region, a deviation is clearly visible.

where φ is an arbitrary phase constant reflecting the translational invariance for Bo=0. In FIG.
6.8, we show a steady state solution of (6.8) for Ω =Bo= 0 and β2

0 = 2.0 in comparison to a
fitted cosine function. For Bo> 0, the stable steady state solution of the system is a droplet
pending on the down-side of the cylinder, i.e., at θ = π.
Taking into account non-vanishing angular driving velocities at a given Bo> 0, two different
scenarios were found in [Thi11] for the droplets: For sufficiently small values of Ω, the pending
droplet is dragged by the rotation from the θ = π position. However, held back by gravity, it
remains pinned at a certain angle θpin. Above a certain threshold velocity Ωcrit, the droplet
depins and starts to rotate with the cylinder. Here, the droplet does not instantaneously follow
the rotation of the cylinder, but depending on the current position exhibits a certain slip with
respect to the surface of the cylinder (cf. FIG. 6.9 for an exemplary NTS of the rotation
dynamics). For small Bond numbers, it was found numerically in [Thi11] that the period T of
the rotation of the droplet diverges as

T ∼ (Ω− Ωcrit)
−1/2 (6.14)

when the threshold driving velocity Ωcrit is approached. It could thus be inferred that the
bifurcation associated with the depinning of the droplet is a global bifurcation commonly
refered to as SNIPER bifurcation [Str14].

6 As in 4.2.3, by core, we mean the region of a droplet where due to a large film height contributions from
the binding potential can be neglected.
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Figure 6.9: Space-time plot of a NTS of (6.8), showing the periodic but strongly nonuniform
motion of a depinned droplet at Ω = 0.16, Bo= 0.1. All other parameters are as in
FIG. 6.8.

6.2.2 First Derivation of the Order Parameter Equation

We now derive an order parameter equation for the position of a single droplet on the rotating
cylinder, valid at angular velocities which are not far above the depinning threshold and for
very small Bond numbers Bo. We therefore assume the two parameters Ω and Bo to be of
order O(ε) with ε� 1. Thus, we formally introduce scaled parameters Ω = εΩ̃ and Bo = εB̃o
in (6.8) but immediately drop the tildes for convenience. In this regime, we conjecture that
the droplet is only weakly (correction of O(ε)) deformed by gravity. The derivation presented
in this subsection is based on a projection approach very similar to the one outlined in, e.g.,
[GW03]. The following ansatz is employed7:

h(θ, t) = h0(θ, τ) + εh1(θ, τ) = h0(θ − η(τ)) + εh1(θ, τ), (6.15)

where h0(θ) solves the equation ((6.11)) on the periodic domain with vanishing gravity (thus
vanishing Bond number Bo and for Ω = 0). For convenience, the solution h0(θ) is chosen such

7 For similar perturbative treatment of a heterogeneity see also, e.g., [LBE12] for front propagation with
heterogeneities or [TSTG17] for optical solitons in an inhomogeneous laser cavity. However, in those cases
the linear operator of the homogeneous system is self-adjoint which is here not the case.
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that h0(π + θ) = h0(π − θ). Furthermore, the slow timescale τ := εt has been introduced.8
Inserting the ansatz in equation (6.8), gives:

−εη̇∂θh0(θ − η) =ε∂θ
(
h0(θ − η)3∂θ

[
−∂θθh1 − f ′′(h0)h1 − h1

])
− εΩ∂θh0(θ − η) + ε∂θ

[
h0(θ − η)3∂θ(Bo cos(θ))

]
+O(ε2)

We now introduce θ̄ = θ−η as a new variable and immediately omit the tildes, all the derivatives
remain unaltered. All terms which were previously identified as O(ε2) are also dropped.

(−η̇ + Ω)∂θh0(θ) =∂θ
(
h0(θ)3∂θ

[
−∂θθh1 − f ′′(h0)h1 − h1

])
+ ∂θ

(
h0(θ)3Bo ∂θcos(θ + η)

)
. (6.16)

Note that h0(θ) is now centered around π once again. We define the linear operator

L[h0]h1 := ∂θ
(
h3

0∂θ
[
−∂θθh1 − f ′′(h0)h1 − h1

])
(6.17)

and perform a projection of (6.16) onto the adjoint translational eigenmode ξ of L which is
given by (cf. [GW03]):

ξ(θ) =
θ∫
π

dθ′ h0(θ′)− hmin

h0(θ′)3 , (6.18)

where hmin denotes the effective adsorption layer height which is reached at θ = 0 for the
solution h0. Equation (6.16) projected onto ξ yields:

(−η̇ + Ω)
2π∫
0

ξ(θ)∂θh0 dθ

︸ ︷︷ ︸
(i)

=ε
2π∫
0

ξ(θ)∂θ
(
h3

0∂θ
[
−∂θθh1 − f ′′(h0)h1 − h1

])
dθ

︸ ︷︷ ︸
(ii)

−
2π∫
0

ξ(θ)∂θ
(
h3

0 Bo sin(θ + η)
)

dθ

︸ ︷︷ ︸
(iii)

, (6.19)

8 The time derivatives denoted by a dot which are used in the following correspond to derivatives with respect
to τ .
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where

(i) :
2π∫
0

θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′∂θ(h0(θ)− hmin))dθ

=

 θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′(h0(θ)− hmin)

2π

0︸ ︷︷ ︸
=0

−
2π∫
0

(h0(θ)− hmin)2

h0(θ)3 dθ =: −D (6.20)

(ii) :
2π∫
0

θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′∂θ
(
h3

0∂θ
[
−∂θθh1 − f ′′(h0)h1 − h1

])
dθ

=

 θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′
(
h3

0∂θ
[
−∂θθh1 − f ′′(h0)h1 − h1

])2π

0︸ ︷︷ ︸
O(ε2)

−
2π∫
0

(h0(θ)− hmin)∂θ
(
−∂θθh1 − f ′′(h0)h1 − h1

)
dθ

︸ ︷︷ ︸
2π∫
0
∂θh0(θ)(−∂θθh1−f ′′(h0)h1−h1)dθ=0

(6.21)

(iii) :
2π∫
0

θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′∂θ
(
h3

0 Bo sin(θ + η)
)

dθ

=

 θ∫
π

h0(θ′)− hmin

h0(θ′)3 dθ′
(
Bo h3

0 sin(θ + η)
)2π

0

−
2π∫
0

h0(θ) Bo sin(θ + η)dθ

=
2π∫
0

h0(θ′)− hmin

h0(θ′)3 dθ′ Bo hmin
3sin

︸ ︷︷ ︸
O(hmin

3)

(η)− Bo
2π∫
0

h0(θ)sin(θ + η)dθ, (6.22)

with

2π∫
0

h0(θ)sin(θ + η)dθ =
2π∫
0

h0(θ)sin(θ)cos(η) + sin(η)cos(θ)dθ = h̃0,1sin(η), (6.23)

where we defined the Fouriermode

h̃0,1 =
2π∫
0

h0(θ)cos(θ) dθ . (6.24)
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6.2 Order Parameter Equation For a Drop of Partially Wetting Liquid on a Rotating Cylinder

Collecting the terms (i),(ii) and (iii), equation (6.19) describing the time evolution of the
position of the droplet becomes 9:

η̇ = Boh̃0,1
D

sin(η) + Ω (6.25)

which is in fact the well known Adler equation [Adl46]. The constant D is defined in (6.20).
Note that this equation is valid up to the order O(ε2).

6.2.3 Second Derivation of the Order Parameter Equation

We will now show that (6.25) can also be derived through the use of the variational principle
(2.14). We thereby give an explicit example for the equivalence of the projection approach and
a variational approach for a quasistatic approximation as discussed in §2.2.2. We first consider
(6.8) without external driving (Ω = 0). It can then be formulated in the following variational
form

Rrot = 1
2

2π∫
0

J2

h3 dθ

︸ ︷︷ ︸
=D

−
2π∫
0

δF
δh
∂θJ dθ , δRrot

δJ
= 0, ∂th = −∂θJ. (6.26)

In the spirit of §2.2.2, the energy functional can be splitted into two contributions :

F =
2π∫
0

1
2
(
(∂θh)2 − h2

)
+ f(h) dθ

︸ ︷︷ ︸
F0

+ε
2π∫
0

Bo cos(θ)h dθ

︸ ︷︷ ︸
F1

. (6.27)

We employ the ansatz h(θ, t) = h0(θ − η(τ)), τ = εt, where h0 is, as before, a solution of
(6.12) for Bo=0 and therefore an extremum of the unperturbed energy F0. We now intend to
formulate a reduced Rayleighian as a function of (θ, θ̇). The dissipation D in dependence of η
can be calculated as

−εη̇∂θh0 = ∂θ

(
h3∂θ

δF

δh

)
⇒ −η̇(h0 − hmin) = h3∂θ

δF

δh︸ ︷︷ ︸
=J

− h3∂θ
δF

δh
|hmin︸ ︷︷ ︸

≈−Bohmin
3sin(η)

(6.28)

with

D = 1
2

2π∫
0

J2

h3
0

dθ. (6.29)

9 We also omitted the first summand in (6.22).
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6 Statistical and Analytical Coarse Graining

Neglecting the second summand of the r.h.s. in (6.28), we now compute

∂

∂η̇
D = ε2η̇

2π∫
0

(h0 − hmin)2

h3
0

dθ

︸ ︷︷ ︸
D

(6.30)

∂F

∂η
= ε

∂F1
∂η

= −εBo
2π∫
0

h0 sin(θ + η) dθ = −εBo h̃0,1sin(η). (6.31)

The coarse-grained variational principle then results in (cf. §(2.2.2)):

ε
∂F

∂η
+ ∂

∂η̇
D = 0⇒ η̇ = Boh̃0,1

D
sin(η) (6.32)

Adding the active advection term Ω to the equation of motion for the position of the droplet
(6.32), we finally obtain the Adler equation for the depinning of the droplet in agreement
with the first derivation §6.2.2 (cf. (6.25)). It is noteworthy that for this second derivation no
knowledge about the adjoint eigenfunction of the non-selfadjoint linearised operator is necessary.

6.2.4 Results of the Order Parameter Equation and Outlook
After calculating h̃0,1 and D numerically from the steady state solution obtained by numerical
continuation (cf. FIG. 6.8), the order parameter equation (6.25) can be treated analytically.10

For the steady states in the pinning regime, we have to solve

Boh̃0,1
D

sin(ηpin) + Ω = 0. (6.33)

For sufficiently small Bond numbers, the resulting pinning angles θpin = ηpin + π coincide
remarkably well with the pinning positions obtained by numerical continuation of (6.11) (cf.
FIG. 6.10). For the time-periodic (depinned) regime, (6.25) can be integrated by separation
of variables [Str14] resulting in the following implicit analytical solution:

t(η) = − 2√
Ω2 − ξ2 arctan

(
−Ω tan(η/2) + ξ√

Ω2 − ξ2

)
+ C where ξ = −Boh̃0,1

D
. (6.34)

This solution exhibits the scaling (6.14) which was found numerically in [Thi11]. Furthermore, it
reproduces the time evolution of the position of the droplets maximum in good approximation
(cf. FIG. 6.11). Note that the main discrepancy is a slight mismatch in the periods. We
have thus shown that for sufficiently small Bond numbers the order parameter equation (6.25)
describes the droplet very well both in the pinned and in the depinned regime. However, for
larger Bond numbers, the critical driving velocities Ωcrit and the deformation of the droplets
increase significantly and the quasistatic ansatz outlined in §6.2.2 and §6.2.3 is not sufficient
anymore. In [Gla05] and more recently also in [MD17], in the context of Onsager’s variational
principle, the authors discuss more elaborated ansatz functions depending on two parameters
which are related to the position and the deformation of a driven droplet.

10 In the following, Bo and Ω will denote the non-scaled values of the Bond number and the driving velocity
in contrast to the scaled parameters introduced in 6.2.2.
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Figure 6.10: (Semi-)analytically calculated (stable and unstable) pinning positions θpin obtained
from the order parameter equation (6.25) in comparison with the pinning position
obtained by numerical continuation of (6.11) for two different Bond numbers Bo.
For Bo= 0.02 barely any deviation can be seen, for Bo= 0.1, the deviation is of
the order of magnitude anticipated in the derivation 6.2.2.
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Figure 6.11: Comparison of NTS results (dashed lines) for the time evolution the maximum
position of a depinned droplet in comparison to the analytical solution (6.34)
(solid lines). We chose Bo=0.1, Ω = 0.16 and the remaining parameters as in FIG.
6.8.
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6 Statistical and Analytical Coarse Graining

While in [Gla05], the approximation outlined for sliding droplets on inclined surfaces is still
of quasistatic type (i.e., the ansatz function is formulated based on a family of extrema of an
unperturbed energy functional), this is not the case in [MD17]. There, to model the deformation
of a droplet, a parabolic ansatzfunction is supplemented by a simple deformation factor. In the
spirit of [MD17], a possible extended ansatz function for the system discussed in this chapter
could be the following function parametrized by three dynamic order parameters:

hh.o.(θ) = m [cos(θ − θc)− cos(a)] (1.0 + δ(θ − θc)) (6.35)

where m fixes the constant mass of the droplet, the position of the droplet is described by
θc(τ), a symmetrical deformation (“broadening”) is described by a(τ) and an asymmetrical
deformation (”tilting”) is captured by δ(τ). The derivation of a three dimensional order
parameter equation based on this ansatz function is a possible path for future work on the
system.11

6.3 Conclusion
In this chapter, we have outlined two different coarse graining procedures for the description of
driven liquids on substrates. For the case of ensembles of sliding droplets, a minimal statistical
model, substantiated by information from bifurcation studies of single droplets, reproduces in
good approximation the coarsening dynamics captured by large scale NTS of the full thin-film
model. There are multiple aspects interesting for future work on the system: As discussed, for
now, the model does not include any information about the breakup probabilities for different
combinations of fragment droplets. These could possibly be obtained by a more detailed analysis
of the large scale NTS and then readily included into the formulation of the corresponding
kernel. However, here, also memory effects could be important, e.g., fragmentation probabilities
that depend on previous coalescence events. Furthermore, at larger inclination angles of the
substrate, the elongated droplet type (cf. FIG. 6.3) is more frequent and thus not anymore
negligible. Effects of their presence thus have to be included in the statistical model for
larger inclination angles. Finally, recently, also large scale NTS of a thin-film model including
condensation have been conducted and statistically analyzed [Eng17]. A modeling of the
statistics of such a system would also be of interest but is highly nontrivial.
In the second part of the chapter, a quasistatic approximation of the dynamics of a droplet on a
rotating cylinder has been outlined based on a projection approach and a variational approach.
The presented approaches are semi-analytical in the sense that a numerically obtained steady
state solution is required. As discussed in §6.2.4, a possible further extension of the approach
would be based on a parametrically deformed core solution. A very important aspect of such
an extension is the appropriate treatment of the dissipation at the contact line. An elaborated
treatment of this problem, possibly in combination with experimental results or information
from microscopic modeling (cf. [QWS06]) would be of great interest also for a larger class of
systems of liquids on surfaces.

11 Note that while employing the numerical steady state solution of (6.11) as in 6.2.3, the dissipation integral
can be calculated without restrictions. The dissipation at the contact line is then regularized by the
adsorption layer approach (cf. 3.2.3). When employing the ansatz function (6.35), one way to regularize
the dissipation is the introduction of a cut-off height hcut > 0 (cf. [Gla05, MD17] for details). This cut-off
height can be seen as a fitting parameter of the approximation.
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7 Summary and Conclusion

In the present thesis, we have investigated phenomena related to different instabilities occurring
for films, drops and ridges on solid substrates in terms of modeling, simulation and theoretical
analysis. From a conceptual point of view, we have thus illustrated by multiple examples
how the combination of numerical continuation, direct numerical simulations and analytical
approaches results in a fruitful symbiosis.
The main focus has been on the so-called thin-film equation, a nonlinear PDE for the time
evolution of the height profile of shallow liquid structures on a solid substrate. This equation
belongs to the class of gradient systems and can be formulated based on Onsager’s variational
principle (cf. e.g., [XTQ15]).
The general introduction of this principle and the derivation of the thin-film equation empha-
sizing the variational structure underlying the hydrodynamic equations has been the topic
of Chap. 2 and Chap. 3 of the thesis. In Chap. 2, we have also elaborated the use of the
variational principle for coarse graining (cf. [Doi15]) and presented a - to the author’s aware-
ness - novel derivation of order parameter equations both for the standard and the conserved
Swift-Hohenberg equation.
In the subsequent chapter, the Plateau-Rayleigh instability of liquid ridges on chemically prepat-
terned substrates has been investigated first in terms of the thin-film equation. We have been
able to reproduce qualitative experimental observations from [WDW+11] and have investigated,
in particular, the growth of coupled instabilities of adjacent ridges. Here, an interesting topic
for future work would be the investigation of 2D structures like bridge states between adjacent
prepattern stripes (cf. [WC12]) through 2D numerical continuation.
Furthermore, results from the modeling of the instability based on the thin-film equation have
been shown to be in good qualitative agreement with corresponding results from KMC simu-
lations. Also in Chap. 4, as a first step towards a quantitative mapping of KMC simulations
to a thin-film type model, we have discussed the concept of the binding potential and a novel
approach to the numerical extraction of the latter from DFT. In future work, the mapping
of dynamics of the KMC model to a DDFT, like, e.g., recently presented in [CSA17a] would
give further insight for the multiscale modeling of liquids on prepatterned substrates. In the
next step, such a DDFT model could be further coarse-grained in order to obtain a gradient
dynamics model on an effective interface Hamiltonian which is in quantitative agreement with
averaged results from KMC.
In the first part of Chap. 5, we have demonstrated the applicability of the concept of pulled
fronts for the theoretical analysis of instabilities which are spreading in shallow free surface
liquids through front propagation. More specifically, we have investigated the front propagation
of spinodal dewetting fronts in flat thin films and the propagation of Plateau-Rayleigh insta-
bilities of ridges on substrates. For both systems a further improved numerical approach, e.g.,
employing an adaptive spatial mesh would allow for a more thorough investigation of the front
propagation, which necessitates large simulation domains. For the case of front propagation
into flat linearly unstable films, a numerical continuation of fronts leaving behind periodic
states would be of great interest.
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7 Summary and Conclusion

In the second part of Chap. 5, we have then discussed pattern formation in a driven system,
i.e., in the dip-coating geometry: Time periodic solutions have been analyzed in terms of nu-
merical time simulations and numerical continuation and an onset of the patterning regime in
parameter space could be related to the analytically calculated propagation speed of instability
fronts into flat films of Landau–Levich film height. Here, an interesting question is whether
the described pattern formation through dip-coating employing simple liquids can be realized
experimentally.
In the final chapter, we have shown two examples for the formulation of coarse-grained dy-
namical equations for driven liquids on substrates. More specifically, in the first part, we
have discussed a statistical model for the coarsening dynamics in a large ensemble of sliding
droplets in terms of an augmented Smoluchowski coagulation equation. Here, coalescence and
fragmentation kernels have been formulated based on results from numerical continuation of
a thin-film equation describing individual sliding droplets. The resulting integro-differential
equation is able to reproduce qualitatively the time evolution of the droplet size distribution
as obtained from numerical time simulations of the thin-film model. The time evolution of the
number of droplets has been reproduced quantitatively for different inclination angles of the
substrate. In Chap. 6, we have already discussed further possible extensions of the statistical
investigation of the coarsening of sliding droplets. However, the general approach of the for-
mulation of a statistical model of many interacting structures based on information obtained
from the numerical continuation of individual structures might also be beneficial for different
nonlinear nonequilibrium systems.
In the second part of Chap. 6, we have shown that for the limit of small Bond numbers, the
pinning and depinning of a droplet of partially wetting liquid on a rotating cylinder can be
described very accurately by an ODE of the form of the well known Adler equation. We have
presented two different derivations of the ODE, and thereby illustrated the equivalence of
a projection approach and a variational approach to the coarse graining of equations which
can be formulated by Onsager’s variational principle. We have thus added a further example
for the formulation of coarse-grained model equations for thin liquids on substrates based on
Onsager’s variational principle. This approach has recently been put forward in a number of
publications [XDD16, MD17, Gla05, MD16, DXZD18] and seems very promising for future
analytical work on viscous liquids on substrates. As discussed in Chap. 6, an inclusion of results
for the dissipation at the contact line obtained from microscopic models into the formalism is
desirable.
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