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Foreword

This work covers recent advances in the Monte Carlo simulation of lattice gauge field
theories containing light fermionic degrees of freedom. This aspect assumes special
relevance in the lattice simulation of QCD, the non-Abelian gauge theory describing
the dynamics of quark color at the basis of strong interactions.

The lattice approach represents the only way to access important quantities in
hadron physics which cannot otherwise be computed by standard analytical tech-
niques. Past lattice simulations of QCD were however confined to unphysically large
values for the up and down quark masses. In nature, these are the two lightest quarks,
with mass much lighter than the typical energy-scale of the underlying theory. The
low-energy dynamics of strong interactions is heavily affected by this feature of QCD
and must be therefore reproduced in an accurate way by simulations; large systematic
errors are otherwise introduced in the final estimates. Unfortunately, the lightness of
the up and down quarks besides being a distinctive feature of QCD also introduces
non-trivial technical difficulties in the simulation process. The simulation of QCD in
realistic conditions emerges as a computational challenge.

A dramatic progress has been witnessed in recent years in this field and now, for
the first time, lattice simulations of QCD with light quark masses near, or even at,
their physical values are possible. At the basis of this important achievement is not
only an increased computing power available for lattice computations, but also, and
this is the main point of this review, a substantial progress in the optimization of the
lattice formulations and of the simulation algorithms. These aspects are considered
in the first part of the review, which focuses on the simulation of QCD with light
up and down quarks, in the original Wilson formulation first (Chapters 1 and 2) and
thereafter in the so-called “twisted mass” formulation (Chapter 3). First simulations
with the inclusion of the heavier strange and charm quarks are reviewed in the last
section of this part.

The second part of the review is dedicated to the simulation of two “exotic” models,
in the sense that they do not find application in the real world. The first is a gauge
field theory characterized by supersymmetry, the supersymmetric Yang-Mills model
(SYM); the second is a modification of QCD in which just one quark species, or
“flavor”, is included, “one flavor QCD”. These two theories are in some sense related:
the first is obtained from the second by replacing the Dirac spinor of the quark with
a Majorana spinor. This affinity can be made more rigorous in a generalization of the
two theories with a large number of colors: an exact equivalence can indeed be proven
in the limit of infinite number of colors.
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As is well known, supersymmetry is expected to play a role in particle physics at
high energies, while it is broken at low energies. Non-perturbative effects in super-
symmetric gauge theories, not accessible to analytical techniques, are nevertheless
relevant since they can provide the necessary symmetry breaking at low energies. The
supersymmetric Yang-Mills model offers a simplified framework in which such non-
perturbative effects can be studied. The relationship between SYM and one flavor
QCD on the other side, could help in understanding non-perturbative mechanisms in
a non-supersymmetric (and therefore less symmetric) theory as QCD.

The simulation of light fermionic degrees of freedom represents a central issue in
this second part of the review as well. Supersymmetry must be softly broken on the
lattice by a small gluino mass and recovered in the limit of a massless gluino. In this
limit the distinctive features of the theory related to supersymmetry, such as specific
patterns in the particle mass spectrum, can be verified. On the basis of the above
mentioned equivalence, “relics” of supersymmetry are expected in one flavor QCD,
with three colors of massless quarks, in particular in the low-lying hadron spectrum.

The following Introduction contains a brief overview on (lattice) QCD and the basics
of its Monte Carlo simulation. We refer to the standard monographs on the argument,
for example [139], for more details about the Wilson lattice formulation of QCD and its
Monte Carlo simulation. The last section of the Introduction presents a brief excursus
on some aspects related to the simulation of light fermionic degrees of freedom, from
which a more extended motivation for the main topic of this review should emerge.

The original publications, on which this review is based, are reported in the Ap-
pendix and are marked in the text with special reference labels ([Alg], [Chi-1], etc.).
Each of the four chapters of this write-up contains an introductory part, which is in-
tended to provide a wider perspective for these works. More space has been devoted
to those aspects which are not (yet) standard in the lattice literature, such as for
example details on the multi-boson simulation algorithm, chiral perturbation theory,
the twisted mass formulation, the main features of SYM and its lattice formulation. A
summary of the main results of the different works is given in specific sections towards
the end of each chapter. A brief overall summary is also given at the end of each part.

The material presented here is the result of a collaboration work. I thank all my
coauthors, the members of the Hamburg-Münster-Rome, qq+q and European Twisted
Mass collaborations for pleasant and stimulating collaboration work. I wish to thank
in particular István Montvay for having introduced me to the challenges of dynamical
simulations and Gernot Münster and all the members of our research group for the
nice work atmosphere at the Institute for Theoretical Physics of the WWU University
of Münster. Last but not least, a special thank goes to my wife Franziska for contin-
uous encouragement and endless patience during the completion of this work.

Münster, May 2008 Federico Farchioni
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Introduction

0.1. From QED to QCD

Quantum field theories based on a gauge principle appear to be extraordinarily suc-
cessful in describing quantum phenomena in high-energy physics. The first, simplest,
and perhaps most striking example is given by Quantum Electro-Dynamics (QED),
the theory of quantum phenomena in electromagnetism. A theory of this kind is
expected to apply for the nuclear or “strong” interactions, too.

As is well known, QED is a quantum field theory characterized, like its classical
counterpart, by gauge invariance and is therefore a gauge theory. The classical La-
grangian density describing photon-electron interactions,1

LQED(x) = − 1

4
Fµν(x)F µν(x) + ψ̄(x) [γµ (i∂µ + eAµ(x)) − m]ψ(x) , (0.1)

is invariant under gauge transformations of the electron and photon fields

ψ(x) → eieα(x) ψ(x) , (0.2)

Aµ(x) → Aµ(x) + ∂µα(x) . (0.3)

The transformation of the electron field can be interpreted as a local, namely depending
upon the space-time coordinate x, transformation under the Abelian group U(1); QED
is an Abelian gauge theory.

A candidate for the underlying fermionic degree of freedom of the nuclear forces was
independently proposed by M. Gell-Mann and G. Zweig in 1964, the “quark” [93, 199].
Particles observed in cosmic rays and collisions, the “hadrons”, could be interpreted
as composite bound states of the strong interactions, formed by two or three quarks,
mesons and baryons respectively. Three flavors of quarks, “up” (u), “down” (d) and
“strange” (s), could explain the approximate multiplet structure of the hadron spec-
trum in the so-called “Eightfold Way” [92, 149] on the basis of symmetry arguments.

Compared with the relatively simple case of electromagnetism, however, strong in-
teractions soon emerged as a theoretically much more challenging problem. Indeed,
nuclear forces appeared to encompass two seemingly contradictory features as confine-
ment and asymptotic freedom. Quarks could not be observed as isolated particles: the
strong interactions “confine” them inside the hadrons; however, as confirmed by a fa-
mous experiment at the Stanford Linear Collider in 1968 [30], the quarks, or spin-1/2

1We use natural units throughout this write-up, for which ~ = c = 1.
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Introduction

“partons”, behave as almost free particles inside the hadrons in high-energy collisions:
in this regime strong interactions become weak. A decisive step towards a fundamental
theory of strong interactions was therefore represented by the discovery made in 1973
by D. Gross, H. Politzer and F. Wilczek,2 that gauge field theories with a non-Abelian
gauge group can account for the mysterious property of asymptotic freedom, and at
the same time make confinement plausible.

In the non-Abelian case, gauge transformations act on an internal quantum number
of the fundamental fields. Already before Gross, Politzer and Wilczek’s discovery, it
was clear that, in order to be able to account for the complete hadron structure by sym-
metry arguments, the quarks had to possess such an “hidden” quantum number [98],
the “color” [85]. Quarks with three different colors fitted into this scenario [100].

The theory of strong interactions emerging from these phenomenological indications
is therefore a non-Abelian gauge theory with an SU(3) gauge group; the quark is
assumed to transform in the fundamental representation of the group. The U(1)
gauge transformation of the electron (0.2) is replaced in the case of the quark field by
a local SU(3) transformation:

ψqi(x) →
3∑

j=1

[

eig0
P8

c=1 αc(x)T c
]

ij
ψqj , i = 1, . . . , 3 , (0.4)

where T c, c = 1, . . . , 8, are the eight generators of SU(3), i, j denote the colors, and g0

is the universal coupling constant of the strong interactions, analogous to the electric
charge in electromagnetism.

The puzzle of the strong interactions was completed with the observation, made
in 1973 by H. Fritzsch, M. Gell-Mann and H. Leutwyler [85], that the gauge field of
nuclear forces, analogous to the four-potential of QED, should transform in the adjoint
representation of the gauge group SU(3). This implies that eight different colors are
associated to it. It is convenient to write in this case the gauge field Aa

µ(x), a = 1, . . . , 8,
in a matrix notation:

Aµ(x) =
8∑

c=1

Ac
µ(x)T c ; (0.5)

the transformations for the matrix field read:

Aµ(x) → g(x)Aµ(x)g−1(x) − i

g0

(∂µg(x))g−1(x) , (0.6)

with
g(x) = eig0

P8
c=1 αc(x)T c

. (0.7)

Observe that (0.6) can be seen as a generalization of (0.3) in the case of a non-Abelian
group. The particles described by the gauge fields, known as gluons, are in analogy
with the photons of QED the carriers of the nuclear forces; they are responsible for
the binding of the quarks inside hadrons.

22004 Nobel laureates in physics.
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0.1. From QED to QCD

We see, therefore, that a fundamental theory of the strong interactions is a theory
of the dynamics of the color quantum number, which assumes here the role of the
electric charge in electromagnetism. In analogy with QED, it is given the name of
“Quantum Chromo-Dynamics” (QCD).

The QCD Lagrangian is the straightforward generalization of the Lagrangian (0.1)
for the case of a non-Abelian gauge group:

LQCD(x) = Lg
QCD(x) +

∑

q=u,d,s,...

Lq
QCD(x) , (0.8)

Lg
QCD(x) = −1

4

8∑

c=1

F c
µνF

c µν , F c
µν(x) = ∂µA

c
ν(x) − ∂νA

c
µ(x) + g0fcdeA

d
µ(x)Ae

ν(x) ,

Lq
QCD(x) =

3∑

i,j=1

ψ̄qi(x) [γµ (iδij∂µ + g0 [Aµ(x)]ij) − mq δij]ψqj(x) .

Peculiar to the non-Abelian case is the presence in the field strength tensor of terms
which are bilinear in the gauge fields and proportional to the structure constants of
the Lie algebra associated with the gauge group fabc; from these terms stem self-
interactions of the gauge fields which have no counterpart in the Abelian case.

We have previously mentioned that quarks are characterized, besides color, by an-
other quantum number, the flavor. It is in the meanwhile clear that six different quark
flavors exist in nature: besides u, d and s, “charm” (c), “bottom” (b) and “top” (t).
Observe that the different quark flavors appear essentially in the same way in the
QCD Lagrangian, the only difference being represented by the mass mq associated
with each flavor. The latter mass is characterized by a pronounced hierarchy; indeed,
one finds (approximately)

mu : md : ms : mc : mb : mt = 1 : 2 : 40 : 500 : 1,700 : 74,000 . (0.9)

The u and d quark masses turn out to be small compared to the typical QCD energy
scale, ΛQCD; this means that the dynamics of the two lightest quarks plays a decisive
role down to the lowest end of the QCD particle spectrum. In opposition, the b and t
quarks are heavy and their role is less pronounced at low energies; the s and c quarks
occupy an intermediate position; in particular the s quark is expected to give a sizeable
contribution to the low-energy dynamics.

The QCD Lagrangian assumes an extra symmetry when some of the quark flavors
become massless. With N0 massless quark flavors, the QCD Lagrangian is invariant
under unitary transformations mixing the different N0 massless flavors with a definite
chirality (chiral multiplet); independent transformations associated to, respectively,
the left-handed (L) and right-handed (R) massless flavors define the chiral symmetry

3



Introduction

group:

SU(N0)L :







ψL
q →

N0∑

q′=1

[gL]qq′ ψ
L
q′

ψ̄L
q →

N0∑

q′=1

ψ̄L
q′ [g

−1
L ]q′q

SU(N0)R :







ψR
q →

N0∑

q′=1

[gR]qq′ ψ
R
q′

ψ̄R
q →

N0∑

q′=1

ψ̄R
q′ [g

−1
R ]q′q

,

(0.10)
where q = 1, . . . , N0 runs over the massless flavors and gL(R) ∈ SU(N0)L(R).

The behavior of the theory at low energies is strongly influenced by the fact that,
in the massless limit, the SU(N0)L ×SU(N0)R chiral symmetry (0.10) is spontaneously
broken by the vacuum state. The chiral symmetry of massless QCD, and the spon-
taneous breaking thereof, allow to draw conclusions about the interactions of the
dominating degrees of freedom at low-energies. These are given by the pseudoscalar
mesons (pions, kaons and eta meson). In the resulting low-energy effective theory,
different properties of these particles, as for example the masses, can be determined
by an expansion in the light u, d and s quark masses, which are assumed to be small,
around the chiral-symmetric case. This analytical approach, known in the literature
as chiral perturbation theory [189, 88], allows in particular to determine the functional
dependence of the meson properties upon the light quark masses, when the latter are
considered as external tunable parameters. As we will see in the following, this in-
formation can be used in lattice QCD in order to extrapolate lattice determinations
in hadron physics, obtained for quark masses heavier than in nature for which simu-
lations are technically feasible, to the physical u and d quark masses. The interplay
between lattice QCD and chiral perturbation theory will be discussed in more detail
in Chapter 2.

0.2. From QCD to lattice QCD

As we have seen, hadrons can be interpreted as bound states of quarks and gluons,
whose interactions are described by QCD. In the quantized theory, hadrons are eigen-
states of the QCD Hamiltonian. The QCD Lagrangian (0.8) contains therefore all
the information required for the determination of hadron properties, once the few free
parameters of the renormalized theory are fixed. These are given by the renormal-
ized quark masses and coupling constant at some given energy-scale; the latter can be
replaced by the more natural QCD mass-scale parameter ΛQCD. The values of these
seven free parameters can be fixed by requiring that QCD predictions fit with the
experimental results for an equal number of hadron properties. A necessary step of
this program is solving QCD, which however turns out to hide formidable difficulties.

One possible approach to the solution of QCD, well known from QED, is based on
an expansion in the coupling constant g0 (weak-coupling perturbation theory). The
method is very successful in QED, where it allows to obtain very precise determina-
tions. The perturbative approach is however not applicable to many relevant hadron
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L

a

Figure 0.1.: Three-dimensional slice of an hyper-cubic lattice.

properties, starting with the masses. For such quantities indeed, QCD predicts a non-
analytical dependence on the gauge coupling, with an essential singularity at g0 = 0: in
this case all the coefficients of the perturbative expansion vanish. Masses are generated
in QCD by a special dynamical mechanism, known as “dimensional transmutation”,
which is inherently non-perturbative.

In a situation in which standard analytical methods fail, numerical methods may
help. As we will see in the following, this is the case in a lattice formulation of QCD. In
the lattice formulation, quark and gluon fields are no longer functions of the continuous
space-time variable x: a four-dimensional Euclidean lattice manifold is introduced

Λ ≡ {x ∈ R
4 : xµ = anµ, nµ ∈ N, µ = 1, 2, 3, 4} (a = lattice spacing) ; (0.11)

similarly to a spin system, particle fields are associated only to sites (or links) of
this lattice. Since we want to deal with a finite number of total degrees of freedom,
we consider here a finite lattice; the lattice size L should be in this case larger than
the typical hadron length scale (see also in the following). Fig. 0.1 shows a three-
dimensional “slice” of a 44 lattice.

0.2.1. The Wilson discretization

We consider here the first lattice discretization of QCD introduced by K. Wilson in
1974 [195]. In this formulation, a quark field is associated to each site of the lattice
Λ; the gauge field Aµ(x) is replaced by a “link variable”, a color SU(3) matrix defined
through the path-ordered exponential of the gauge field along a link of the lattice:

Aµ(x) → Uµ(x) = P exp

{

ig0

∫ x+aµ̂

x

Aµ(x) dxµ

}

∈ SU(3) ; (0.12)

Fig. 0.2 gives a pictorial representation of the lattice quark field and link variables.
With the introduction of the link variables, playing the role of parallel transporters
for gauge transformations, the gauge invariance of QCD can be easily extended to the
discrete case. From (0.6) and the definition (0.12) the transformation property of the
link variables follows:

Uµ(x) → g(x + aµ̂) Uµ(x) g†(x) . (0.13)
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Figure 0.2.: Lattice quark fields and link variables.

The simplest lattice object of the link variables invariant under gauge transformations
is the plaquette variable, namely the color-trace of the product of link variables along
a a × a loop on the lattice (plaquette):

U¤ = U †
ν(x) U †

µ(x + aν̂) Uν(x + aµ̂) Uµ(x) , (0.14)

where µ, ν, µ < ν, define the oriented loop. See Fig. 0.3 for a pictorial representation.
Gauge invariant interactions of the link variables are constructed in terms of the

plaquettes variables U¤; the action associated to the Lagrangian density Lg
QCD(x)

in (0.8), containing the self-interactions of the gluon fields, is replaced on the lattice
by the plaquette action:

∫

dx Lg
QCD(x) → Sg

WQCD = β
∑

¤

(

1 − 1

3
R Tr U¤

)

, β =
6

g2
0

, (0.15)

where the sum extends over all possible lattice plaquettes. Gauge invariance follows
trivially from (0.13). In the limit a → 0, the lattice plaquette action converges to the
gluon action of QCD (in the Euclidean formulation)

Sg
WQCD

a→0−→
∫

dx Lg
QCD(x) =

∫

dx
1

4
F a

µν(x)F a
µν(x) . (0.16)

The construction of the lattice action for the quarks relies on the definition of a gauge
covariant difference operator, replacing the covariant derivative of the continuum:

Dµ[A] ψq(x) ≡ [∂µ − ig0 Aµ(x)] ψq(x) ; (0.17)

on the lattice:

Dµ[A] ψq(x) → 1

a

[
U †

µ(x) ψq(x + aµ̂) − ψq(x)
]
≡ ∇µ[U ] ψq(x) . (0.18)

The fermion lattice action for a single quark flavor reads:

Sq
WQCD = a4

∑

x

ψ̄q(x)
γµ

2
(∇µ + ∇∗

µ)ψq(x) + mq0 ψ̄q(x)ψq(x)

− a
r

2
ψ̄q(x)∇∗∇ψq(x)

︸ ︷︷ ︸

“Wilson term”

, (0.19)
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Figure 0.3.: Lattice plaquette variables.

with

∇∗
µ[U ] ψq(x) ≡ 1

a
[ψq(x) − Uµ(x − aµ̂) ψq(x − µ̂)] .

Observe that the last term in the quark lattice action (“Wilson term”) has no equiv-
alent in the continuum theory. It is needed in order to realize the decoupling, in the
limit a → 0, of unphysical degrees of freedom otherwise present in the lattice theory
(“doublers”). The parameter r can be set arbitrarily in the range 0 < r ≤ 1 with both
signs: each value corresponds to a different lattice formulation of QCD.3

A more explicit expression of the quark lattice action is:

Sq
WQCD = a4

∑

x

1

2a

±4∑

µ=±1

[
r ψ̄q(x)ψq(x) − ψ̄q(x + aµ̂)Uµ(x)(γµ + r)ψq(x)

]

+ mq0 ψ̄q(x)ψq(x) , (0.20)

where we define U−µ(x) ≡ U †
µ(x − aµ̂) and γ−µ ≡ −γµ. Another parametrization,

useful for numerical simulations, only involves dimensionless quantities

Sq
WQCD =

∑

xy

ψ̄L
q (y) Q(q)[U ]yx ψL

q (x) ; (0.21)

ψL
q (x), ψ̄L

q (x) are the dimensionless quark fields

ψL
q (x) = a3/2(mq0a + r)1/2 ψq(x) , ψ̄L

q (x) = a3/2(mq0a + r)1/2 ψ̄q(x) , (0.22)

Q
(q)
yx is the fermion matrix, whose indices run over the sites of the lattice (color and

Dirac indices are implicit):

Q(q)[U ]yx = δy,x − κq

±4∑

µ=±1

Uµ(x) (γµ + r) δy,x+aµ̂ ; (0.23)

3It is normally set to one in lattice computations.
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the dimensionless hopping parameter κq is related to the quark mass parameter mq0

by

κq =
1

2(mq0a + 4r)
. (0.24)

The Wilson term in the quark lattice action (0.19) breaks the chiral symmetry (0.10)
of QCD in an explicit way. Even if the latter is expected to be recovered in the con-
tinuum limit, the symmetry breaking at finite lattice spacing introduces several (un-
wanted) effects in the lattice theory. One of these effects is an additive renormalization
of the quark mass: the (bare) quark mass mq, analogous to the quantity appearing in
the continuum Lagrangian (0.8), is related to the lattice action parameter mq0 by:

mq = mq0 − m0c , (0.25)

where m0c = f(g0)/a is the additive mass renormalization diverging for a → 0.
Another inconvenience deriving from the explicit breaking of the chiral symmetry

in the lattice formulation is represented by large discretization errors, scaling linearly
with the lattice spacing, in physical quantities. In Chapter 3 a slight modification of
the Wilson discretization of QCD will be presented, which alleviates some of these
problems. The fermion action associated to this new formulation is an example of
an O(a) improved action; this is a lattice formulation for which discretization errors
linear in the lattice spacing are absent and only small O(a2) errors remain in lattice
determinations.

After Wilson’s breakthrough, different alternative lattice formulations of QCD have
been devised. Another formulation often applied in lattice computations is the Kogut-
Susskind formulation relying on the so-called staggered lattice fermions [125]. More
complicated lattice discretizations of QCD with an exact chiral symmetry have been
in the meanwhile constructed (Ginsparg-Wilson formulations) [95, 103, 151].

0.3. Monte Carlo simulation of lattice QCD

In the quantized lattice theory, the lattice spacing assumes the role of a regulator of
the ultraviolet divergences typical of a continuum quantum field theory: taking the
continuum limit of the lattice theory corresponds to removing the ultraviolet cutoff
∼ 1/a. The renormalization group governs the dependence of the bare parameters of
the (lattice) theory for fixed physical renormalized parameters. It dictates therefore
how the “bare” gauge coupling g0 should be varied with the ultraviolet cutoff ∼ 1/a
at “constant physics”. The result is a relationship between g0 and the lattice spacing
a which also involves the mass-scale parameter ΛQCD: g0 = g0(aΛQCD).4 By inverting
this relation, one sees that the lattice spacing can be adjusted by properly varying the
bare gauge coupling. Asymptotic freedom of QCD implies that the continuum limit
corresponds to the weak coupling of the lattice theory g0 → 0.

4In a mass independent renormalization scheme this relation does not contain any dependence upon
the quark masses.
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The lattice spacing represents the natural dimensional scale on the lattice and re-
places in this role ΛQCD. Lattice computations deliver results for dimensionful quanti-
ties in units of the lattice spacing. In order to convert the lattice results into physical
units, the lattice scale must be fixed by external input. One possibility for example
is to require that the nucleon mass assumes the experimental value once translated
into physical units; an analogous procedure must be applied to fix the quark masses,
which can be considered as free parameters in the QCD Lagrangian.

The mathematical objects to be computed in the quantum theory in order to get
information about hadron properties, are in general expectation values on the ground
state, namely the vacuum state, of composite operators of the fields. The numerical
techniques to be reviewed in the following are based on the Feynman quantization, in
which these expectation values assume the form of path integrals over the fields. On
a discrete space-time manifold, the Feynman path integrals reduce to ordinary inte-
grals, in which each field attached to a lattice site represents an integration variable.
The total amount of variables in these multiple-variable integrals, proportional to the
number of lattice sites Ns, is typically very large O(106 − 108) and increasing with
the lattice resolution. Only a “Monte Carlo” evaluation of these integrals, with an
attached statistical error, is possible in practice.

0.3.1. Lattice expectation values

The lattice expectation value of a lattice operator OL[U ; ψ̄q, ψq], corresponding to the
vacuum expectation value of a composite operator of the fields in the Euclidean theory,
can be written:

〈OL〉 =
1

N

∫
∏

x∈Λ

∏

µ

dUµ(x)
∏

q=u,d,...

dψ̄q(x)dψq(x) e−SWQCD[U ; ψ̄q, ψq] OL[U ; ψ̄q, ψq]

(0.26)
where the normalization is given by

N =

∫
∏

x∈Λ

∏

µ

dUµ(x)
∏

q=u,d,...

dψ̄q(x)dψq(x) e−SWQCD[U ; ψ̄q, ψq] . (0.27)

The fermion fields, which are Grassmann variables, cannot be included in the simula-
tion in a direct way; however they can explicitly integrated out. The Gaussian integral
over the Grassmann variables delivers (up to trivial factors) the determinant of the
fermion matrix (0.23)

∫
∏

x∈Λ

dψ̄q(x)dψq(x) e
−Sq

WQCD[U ; ψ̄q, ψq] = detQ(q)[U ] ∈ R , (0.28)

the so-called fermion determinant. The result is therefore

〈OL〉 =
1

N

∫
∏

x∈Λ ,µ

dUµ(x)
∏

q=u,d,...

detQ(q)[U ] e
−Sg

WQCD[U ]
Õ[U ] , (0.29)
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where Õ[U ] is an appropriate function of the lattice link variables5. Observe that the
fermion determinant keeps track of the quark dynamics in this effective theory of the
lattice links.

Assuming positivity of the quark measure resulting from the product of the fermion
determinants, the expression on the RHS of Eq. (0.29) can be interpreted as a statistical
expectation value of Õ[U ] with multivariate probability density

P [U ] =
1

N
∏

q=u,d,...

detQ(q)[U ] e
−Sg

WQCD[U ]
, (0.30)

or, equivalently,

P [U ] =
1

N e−Seff [U ] , (0.31)

where
Seff [U ] = Sg

WQCD[U ] −
∑

q=u,d,...

ln
(
|detQ(q)[U]|

)
(0.32)

is the effective action of the link system also including the contribution of the quark
dynamics.

A Monte Carlo evaluation of the RHS of Eq. (0.29) by importance sampling can be
obtained by generating a set of N lattice link configurations (gauge configurations)

{U (i)
µ (x); x ∈ Λ; µ = 1, 2, 3, 4; i = 1, . . . , N} (0.33)

distributed according to the probability (0.30). An unbiased estimator of the RHS
of Eq. (0.29) is given by the average value of Õ[U ] over this set of configurations
(ensemble):

〈OL〉 = 〈Õ[U ]〉|P [U ] ' 1

N

N∑

i=1

Õ[U (i)] ≡ ¯̃O|N . (0.34)

The sample average ¯̃O|N can be assumed to be a Gaussian-distributed stochastic
variable, in which case the statistical error attached to the estimate is inversely pro-

portional to the square root of the sample statistic N : δ( ¯̃O|N) ∼ 1/
√

N . The sign of
the fermion measure cannot be included in the importance sampling, which requires
positivity of the weight function. As we will see in the following in this review, posi-
tivity is only guaranteed in special situations, as for example two quark flavors with
equal mass. This means that in general the sign of the fermion determinant has to be
taken into account explicitly in the final average with potential efficiency loss of the
sampling.

Having found a viable numerical procedure for the estimation of the multiple-
variable integrals, the next problem to face, aiming at a precise determination of
the quantity (0.29), the ultimate goal of a lattice computation, is how to generate in
an efficient way a large number of statistically independent configurations distributed
according to the probability density (0.30). These configurations of the link system
represent the basis for any lattice determination in hadron physics by lattice compu-
tations.

5Build in terms of the inverse fermion matrix (quark propagator).
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0.3. Monte Carlo simulation of lattice QCD

0.3.2. The update

In the case of many degrees of freedom, as the one we are considering here, a Markov
stochastic process turns out to be the most effective method for generating samples of
configurations of the link system. In this approach, one starts from some initial link
configuration {U (0)

µ (x)}, for example the “trivial” configuration

U (0)
µ (x) = 11 , ∀ µ and x ∈ Λ ; (0.35)

a chain of configurations is produced by a stochastic iterative process6

U (i−1)
µ (x) −→ U (i)

µ (x) , (0.36)

or update, characterized by a transition probability

Ptrans[U → U ′] . (0.37)

The set of procedures defining the transition probability (0.37), and resulting in the
so-called simulation algorithm, must be chosen such that the target distribution (0.30)
is left invariant by the update. This latter condition is usually substituted with the
stronger one, but easier to prove, of detailed balance. Under reasonable conditions
on the algorithm, this ensures that, after a transient, the configurations of the lattice
system along the Markov chain are distributed according to the target probability
density.

From Eq. (0.30) it is clear that any approach to this problem must involve some
estimation of the fermion determinant for a given link configuration, which represents
the quark contribution to the link dynamics. An exact computation of the fermion
determinant in the update is however not affordable. Indeed, the fermion matrix is
a huge matrix with order 12 × Ns ' 107 or larger, and the computation should be
repeated many times during the update.

The first solution found to this problem, which will be briefly discussed in the fol-
lowing, is based on the pseudofermion representation of the fermion determinant [191].
In this case, one uses a relation similar to (0.28) but with an integration over bosonic
fields instead

∫
∏

x∈Λ

dφ̄q(x)dφq(x) e−φ̄q(Q
(q)[U ])−1φq = detQ(q)[U ] ; (0.38)

observe that in the case of bosonic fields, the inverse matrix appears in the expo-
nent. The pseudofermion field variables φq(x), φ̄q(x) carry formally the same quantum
numbers of the quark fields but assume ordinary complex values and therefore can be
interpreted as random variables. Eq. (0.38) is at the basis of Monte Carlo methods
with a stochastic evaluation of the fermion determinant, a computationally feasible
task. A different representation, also allowing a stochastic evaluation of the fermion

6Observe that computer-based algorithms cannot be exactly stochastic; the resulting error (bias) is
however normally negligible.

11



Introduction

determinant, is the multi-boson representation [132]. This latter approach solves in a
radical way the problem of the non-locality introduced by the inverse fermion matrix
in the exponent of (0.38); it will be discussed in more detail in Chapter 1.

Due to the huge number of involved degrees of freedom, the computational costs
attached to the update of the lattice system are typically very large. These costs turn
out to increase very fast with the target accuracy of the computation. Two immediate
sources of systematic errors in lattice computations are represented by the finite size
of the four-dimensional domain and by the discretization of the space-time. As one
can intuitively understand, finite-size errors can be kept under control if the lattice
size L is taken to be (considerably) larger than the typical hadron scale ∼ 1 fm (1 fm
= femtometer = 10−15 or “Fermi”). Lattice computations are currently performed
for L ' 2 − 3 fm. On the other side, discretization errors are small if the lattice
spacing a is much smaller than the hadron size; this means normally a . 0.1 fm.
This requires therefore four-dimensional lattices with at least Ns = 160,000 sites and
5,120,000 degrees of freedom, increasing with the lattice resolution.

Another important factor influencing the computational cost of a lattice simulation
of QCD, and we are now approaching the central issue of this review, turns out to be
the lightness of the fermionic degrees of freedom. As a result of different physical and
algorithmic effects, which will be analyzed in some detail in the following, the compu-
tational cost of a simulation increases when the values of the quark masses inserted in
the simulation are reduced (recall that the quark mass can be tuned by changing m0q

in the lattice QCD action (0.19)). Limitations in computational resources confined
past lattice simulations to values of the u and d quark masses much heavier than in
nature and in fact nearer to the physical s quark mass7. As a matter of fact, the
extrapolation of the lattice results to the physical situation where the light quarks
assume their actual masses is affected in this case by large, essentially uncontrolled
systematic errors.

Recently, considerable advance has been achieved in the optimization of the algo-
rithms with a substantial reduction of the simulation costs; new lattice formulations
of QCD have been conceived with small discretization errors. Thanks to these recent
progresses, the lattice community is now for the first time in a position to make real-
istic estimates about the computational costs required for accurate determinations in
hadron physics. The general expectation is that the multi-teraflop8 supercomputers
becoming now accessible to lattice computations will allow to reach this goal.

The next and last section of this Introduction contains an excursus on the aspects
related to the simulation of QCD in physical conditions. The motivation for the inves-
tigation of new simulation algorithms and lattice formulations for QCD and related

7Recall (0.9); as we have seen, the u and d represent in nature the lightest quarks with mq ¿ ΛQCD

and, because of this feature, they are expected to strongly affect QCD dynamics down to low
energies.

8The teraflop is a measure of computing power, corresponding to 1012 floating point operations
per second; a typical scale for lattice computations in realistic conditions is the teraflop year,
corresponding to about 3 · 1019 floating point operations.
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0.4. Simulation of light fermionic degrees of freedom

theories will hopefully emerge.

0.4. Simulation of light fermionic degrees of freedom

Including the dynamics of light fermionic degrees of freedom in lattice simulations
of QCD and related theories turns out to be one of the most challenging problems
in today’s computational physics. The basic difficulties originate from an interplay
between features of the underlying theory (and the lattice version thereof) on the one
hand, and from algorithmic and computational limitations on the other. As a result,
QCD had to be simulated in the past with unphysically heavy masses for the two
lightest u and d quarks, larger than in nature. The systematic effects deriving from
this basic artifact of lattice QCD represented the main source of theoretical uncertainty
in lattice determinations in hadron physics.

The problem of the lightness of the quarks in the lattice simulation has gained more
and more attention from the lattice community in recent years, becoming today one
of the central issues, if not the central issue, of the general discussion. Developments
in computer technique have also played an important role in this context: with the
recent introduction of multi-teraflop supercomputers a substantially larger amount of
computing power is now available for lattice calculations.

At the time of the first lattice simulations of QCD in the early 80’s, the very inclusion
of the dynamics of the quarks was regarded as an almost intractable problem; for a
long time, a popular approach was to consider the light quarks as static (namely
infinitely heavy) and to disregard them tout court from the simulation. This is the
well-known “quenched approximation” [99]. The first problem to tackle at the time of
those first simulations was the high non-locality of the interactions among the lattice
links introduced by the fermion determinant. The latter, we recall, represents the
fermionic contribution to the partition function of the lattice theory, to be included
in the Monte Carlo simulation. The introduction later on of the idea of the stochastic
evaluation of the fermion determinant by pseudofermion auxiliary fields [191] opened
the way to modern Monte Carlo simulations of QCD with full inclusion of the dynamics
of the fermions. The next aspect to face was however the lightness of the simulated
fermions.

We confine the discussion to the case of Wilson fermions described in Sec. 0.2, which
are characterized by special features in the light quark regime. Early simulations with
Wilson fermions only included the two lightest quarks; these are taken for simplicity to
be degenerate, namely with equal masses (Nf = 2 QCD). A simulation algorithm using
pseudofermion fields, applicable and widely applied for simulations of two degenerate
Wilson fermions, is the so-called Hybrid Monte Carlo algorithm (HMC) [62]. In HMC
one considers the lattice links as canonical variables of an appropriate Hamiltonian
function. The transition in the Markov chain is realized by a hybrid Langevin–mol-
ecular-dynamics evolution, in a fictitious time, of the canonical system of the lattice
links and of their conjugate momenta; a final Metropolis correction renders the al-
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gorithm exact. As it turns out, HMC with Wilson fermions9 efficiently updates the
system only for relatively heavy quarks. This fact limited past large-scale simulations
of QCD with Wilson fermions in a region of unphysically heavy u and d quark masses
near the s quark mass10 (see for example [7] and [110]).

A turning point in the discussion within the lattice community was marked in the
Lattice conference held in Berlin in 2001, where a first estimate of the computational
costs attached to simulations with light quarks was attempted. The main conclusion
was that, due to the fast increase of the computational load, the light quark masses
necessary for accurate determinations in hadron physics could not be attained in the
next foreseeable future, even taking into account mid-term evolution in computer
technique (see for example [184]).

Some of the difficulties in the light quark regime originate actually from peculiar-
ities of the Wilson formulation, and in particular from its explicit breaking of the
chiral symmetry at finite lattice spacing. As a consequence of the chirality breaking,
which causes the additive renormalization of the quark mass, the fermion matrix can
become (almost) singular during the Monte Carlo update; this results in large fluctua-
tions of the fermion determinant, which cannot be properly handled by the stochastic
estimate in HMC. A dramatic efficiency depletion and instable behavior in correspon-
dence of special configurations of the lattice links (“exceptional configurations”) is the
consequence.

Another fundamental limitation of past lattice computations of QCD was the ab-
sence of the s quark, which is however expected to contribute at low energies. The
inclusion of the s quark dynamics, another top issue of modern lattice simulations, and
more in perspective physical u and d quark masses with mu 6= md, necessarily requires
going beyond HMC. Indeed, in its first conception, HMC can only accommodate pairs
of degenerate quarks.

In this write-up, different approaches for tackling these new challenges in lattice
QCD will be reviewed. A variety of setups will be considered, including QCD with
one quark flavor (Nf = 1 QCD), with two degenerate light quark flavors (Nf = 2
QCD), with the addition of two heavier s and c quarks (Nf = 2 + 1 + 1 QCD);
moreover a supersymmetric gauge field theory, the N=1 supersymmetric Yang-Mills
theory, will be discussed; here the fermionic degree of freedom, the superpartner of
the gluon (gluino), is described by a Majorana spinor which effectively corresponds to
“half” flavor of quarks.

The first step towards more effective algorithms for dynamical fermions is histor-
ically represented by M. Lüscher’s idea [132] of a multi-boson representation of the
fermion determinant. In opposition to the pseudofermion representation of HMC, the
multi-boson representation produces a local effective action for the system of lattice
links and pseudofermions including the dynamics of the quarks. Thanks to the local-
ity of the action, the instabilities associated to exceptional configurations typical of

9Or modifications thereof with or without O(a) improvement, or additional terms in the gauge
action.

10With pion masses Mπ & 500 MeV.
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HMC are avoided. A large part of the simulations reviewed in this work is based on a
particular variant of Lüscher’s multi-bosonic algorithm developed by I. Montvay: the
Two-Step Multi-Boson algorithm (TSMB) [136]. The latter is specifically optimized
for simulations in the light fermion regime. The first two chapters of this review in
particular will be devoted to simulations of Nf = 2 QCD. In this context TSMB al-
lowed to attain a substantial decrease of the quark masses applicable for simulations
with Wilson fermions.

An important aspect of the simulation of QCD with light quarks is the application
of chiral perturbation theory [189, 88]. Chiral perturbation theory indeed predicts
the dependence of hadron properties upon the light quark masses in a theoretically
well-founded framework and with control over systematic effects, coming essentially
from the neglected higher orders in the chiral expansion. The resulting formulae can
be used to extrapolate the lattice data for hadron properties to the physical point of
the quark masses: light quark masses in the simulation result in small systematic un-
certainties in the extrapolated values. In the present situation, in which the increased
computing power allows for the collection of large statistics, these systematic effects
often represent the main source of uncertainty in the final determinations. Simulations
with light quarks are therefore crucial.

A first check in a simulation with light quarks is, therefore, whether lattice data do
follow predictions from chiral perturbation theory. Another point of view [39, 169] is
that lattice data can provide the needed input for the determination of the unknown
coefficients in the chiral expansions, the so-called Gasser-Leutwyler coefficients. The
knowledge of these quantities is very important in hadron phenomenology, since it
allows to put non-trivial constraints in low-energy hadron physics.

In Chapter 1, TSMB is introduced and preliminary algorithmic tests performed
in [Alg] are reviewed. Simulations of Nf = 2 QCD with light quarks [Chi-1, Chi-
2, Chi-3] are reviewed in Chapter 2; lattice data for the pion sector are compared
with predictions from chiral perturbation theory. In consideration of the rather large
lattice spacings of the simulations in [Chi-1, Chi-2, Chi-3], a ∼ 0.2 − 0.3 fm, lattice
corrections were included in the chiral perturbation theory formulae according to the
so-called “Wilson chiral perturbation theory” [170, 159]. These studies produced early
determinations of the Gasser-Leutwyler coefficients with Wilson fermions.

Designing lattice actions in view of an optimal simulation process for light quarks is
a new trend in modern lattice computations (a typical example in this sense is repre-
sented by the recently introduced fermion actions with “Stout-links” [142]). A minimal
modification of the Wilson action for two degenerate quarks turns out to solve one
fundamental problem of this formulation, namely the possibility for special link con-
figurations of a singular fermion matrix with vanishing fermion determinant. In this
new approach, proposed by R. Frezzotti and others in 1999 [76] and known as “twisted
mass” QCD (TMQCD), an additional chirally twisted mass term is added in the stan-
dard Wilson action for the u-d chiral doublet.11 For non-vanishing “twisted mass”

11This term is obtained by transforming the u-d fields in the mass term of Wilson lattice QCD,
see (0.19), by a chiral transformation of the type (0.10) with N0 = 2.
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the fermion matrix of the two flavor theory is strictly positive, and the determinant
cannot get extremely small in the update. An additional, even more important benefit
of the twisted mass formulation is the “automatic” cancellation of O(a) discretization
errors for all physical quantities when the standard “untwisted” mass is tuned to zero,
namely at maximal twist. TMQCD is expected to ensure small lattice artifacts and
stable simulations within the conceptually simple framework of the Wilson discretiza-
tion and therefore represents a competitive approach for lattice determinations with
small systematic effects.

A program of large-scale simulations with twisted mass fermions has been recently
initiated. These will be reviewed in Chapter 3. In particular, in [tlS-1] a region of
light quark masses could be accessed12, for which chiral perturbation theory formulae
including leading order corrections are supposed to deliver reliable extrapolations to
the physical quark masses. A novel Europe-wide lattice collaboration, the “European
Twisted Mass” (ETM) collaboration was created especially for this purpose.

An important issue emerging when simulating QCD in presence of light quarks is the
phase structure of the underlying lattice theory. In QCD, the latter is tightly related
to the pattern of chiral symmetry breaking. As long as the quarks are sufficiently
heavy for a given lattice spacing, chirality is essentially broken by the quark masses
and the breaking from the Wilson term does not play a primary role: in this case the
phase structure of the continuum theory is reproduced by the lattice theory up to small
O(a) deviations. Thanks to the recent progresses in the numerical simulation however,
regions of parameter space can be now accessed where the chirality breaking of the
discretization potentially drives the phase structure of the lattice theory [122]. The
consequence is a large deviation from the continuum picture: the “Aoki phase” [12]
at strong coupling [108] or, at weak coupling towards the continuum limit [Wil-1], an
unphysical first order phase transition [170] near zero quark mass.

The important question is, therefore, which maximal lattice spacing can support
a program of simulations towards light quark masses with small deviations from the
continuum picture.

This question was addressed in [Wil-1, Wil-2, dbW-1, dbW-2], for different lattice
formulations in the gluon sector. The resulting information allowed to select the
safe regions of parameter space of the lattice theory for the subsequent large-scale
simulations of [tlS-1].

We considered up to now simulations with two degenerate quark flavors where the
dynamics of heavier quarks is neglected. As mentioned above, the inclusion of the
s quark in the simulation is another important issue in today’s lattice simulations of
QCD. A crucial observation from our point of view is that the twisted mass formulation
can also accommodate a doublet of quarks with different masses [82]. The way to
simulations of TMQCD with the inclusion of the s quark is therefore open. Since the
c quark has to be included as well in order to complete the twisted mass doublet with
the s quark, one arrives at Nf = 2+1+1 TMQCD.

First simulations in this setup [tlS-2] will be reviewed. Large-scale simulations

12Corresponding to Mπ ' 300 MeV, with a lattice spacing a ' 0.09 fm.
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within the ETM collaboration are in preparation [42]. An important goal of the
preparatory study [tlS-2] was to provide a feasible setup for tuning the theory to
maximal twist and to the physical values of the s and c quark masses.

The second part of this review is mainly devoted to the problem of the lattice sim-
ulation of a supersymmetric model. Supersymmetry is expected to play a role in
particle physics but, as is well known, is not observed in low-energy phenomenology.
In a theoretically attractive scenario, the mechanism responsible for the (necessary)
breaking of supersymmetry takes place at a energy scale where supersymmetric inter-
actions become strong and therefore non-perturbative. This theoretical expectation
motivates the extensive study of strongly interacting supersymmetric gauge theories
in a lattice framework.

An immediate difficulty in this program is that supersymmetry cannot be preserved
on a lattice (at least not in its original form), so it must be broken in any lattice
formulation; however it can be recovered in the continuum limit similarly to chiral
symmetry in Wilson lattice QCD.

We consider here the case of the N = 1 supersymmetric Yang-Mills theory (SYM).
This is the minimal supersymmetric version of the gauge theory only describing the
self-interactions of gluons (this means, quarks are not included). The fermionic degree
of freedom is given in this case by the gluon superpartner, the gluino, which is described
by Majorana spinor. For reasons similar to those also applying to QCD and extensively
discussed above, supersymmetry must be broken on the lattice by a small gluino mass.
Also in this case, we consider a lattice formulation based on Wilson fermions [49], in
which chirality is also explicitly broken, at finite lattice spacing, by the Wilson term.

We discover here a parallelism with the typical themes of standard simulations of
QCD: the applied techniques and simulations costs are comparable as well. Also in
the case of SYM, the main challenge, with similar difficulties, is the simulation of the
lattice theory for light fermion masses: the supersymmetric case is realized in the limit
of a massless gluino.

SYM presents nevertheless peculiar features which are absent in the familiar example
of QCD. In SYM, indeed, the additional (super)symmetry imposes peculiar patterns
in the hadron mass spectrum: the supermultiplets. The latter represent a fingerprint
of restored supersymmetry in the continuum limit.

SYM represents a natural application target for TSMB, which is flexible in relation
to the spinorial structure of the fermion (as mentioned, Majorana spinors effectively
correspond to “half” Dirac fermion). Actually, the simulation of supersymmetric
models was historically the first motivation for TSMB [136].

In this work, the most recent developments of a long-standing project for the simu-
lation of SYM with the TSMB algorithm are reviewed [SYM-1, SYM-2, SYM-3]. We
concentrate here on the simulation of a simplified version of the theory with two colors
only (namely with color group SU(2)).

A crucial question in the case of Wilson fermions is the simultaneous restoration of
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the chiral symmetry and supersymmetry for massless gluino in the continuum limit.
As shown in [SYM-1], supersymmetry restoration can be studied in a numerical frame-
work by considering the associated supersymmetric Ward identities. The latter put
constraints on expectation values of certain composite operators of the fields; these
constraints can be verified by lattice calculations. The studies [SYM-2, SYM-3] ad-
dress the numerical investigation of the low-lying bound states spectrum, for which,
as mentioned above, supermultiplets are expected in the supersymmetric limit with
massless gluino.
N = 1 SYM presents similarities with a special formulation of QCD where just one

quark flavor is included. In both cases, indeed, a continuous chiral symmetry is absent
due to a quantum anomaly. In fact, one flavor QCD can be obtained from N = 1
SYM just by replacing the Majorana spinor describing the gluino with the Dirac spinor
describing the quark. These similarities find a rigorous framework when one considers
the theories in the limit of infinite number of colors Nc. At the lowest order (planar
level) of the so-called orientifold large Nc expansion [17], the exact equivalence of the
two theories can be proven. One flavor QCD, with three colors, is expected therefore
to contain some “relics” of supersymmetry. The second part of this review will also
cover first numerical simulations of QCD with one light quark flavor [Nf1]. The focus
is in particular on the low-lying bound states spectrum, where relics of supersymmetry
are expected to emerge.
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1. Algorithmic studies

The Hybrid Monte Carlo (HMC) algorithm [62] represented in the past the standard
algorithm for dynamical-fermion simulations of Nf = 2 QCD (u and d quarks with
equal masses). HMC is based on the Hamiltonian evolution of a dynamical system in
which the lattice links Uµ(x) assume the role of dynamical variables. The Hamiltonian
evolution (“trajectory”) is solved after discretization of the fictitious time parame-
ter (“Monte Carlo time”) in a hybrid Langevin–molecular-dynamics setup (we refer
to [139] for an exhaustive discussion of themes related to the Monte Carlo simulation
of lattice theories with fermions). After a transient, the gauge field configurations,
sampled at regular time separations along the Monte Carlo evolution, result to be dis-
tributed with probability density P [U ] ∼ exp{−Seff [U ]}, where the effective action
Seff [U ] (0.32) also includes the contribution of the quarks to the link dynamics, the
fermion determinant.

HMC, in its original formulation [62], is characterized by conceptual clarity and
straightforward implementation, which to some extent explains its popularity in lattice
simulations of QCD with two degenerate Wilson fermions. However, as we will briefly
discuss below, it turns out to be affected by severe limitations in the light fermion
regime and therefore unsuitable for a program of simulations down to small quark
masses. Moreover, it cannot be applied to the general case of a theory with non-
degenerate Dirac fermions, or to fermions with peculiar spin structures. The second
case is relevant for the N=1 supersymmetric Yang-Mills theory (SYM), object of
investigation in Chapter 4 (a brief introduction to SYM is contained in the first three
sections of Chapter 4). The first applies for example to QCD including heavier quarks:
in Chapter 3 a theory with such a flavor structure, namely Nf = 2+1+1 QCD, will
be considered. Another case where standard HMC cannot be applied, also considered
in Chapter 4, is QCD with a single quark flavor.

These limitations of HMC motivate the search for alternative algorithms for simu-
lations of dynamical fermionic degrees of freedom in QCD and related theories.

1.1. Beyond Hybrid Monte Carlo

The basic limitation of HMC to degenerate pairs of Wilson fermions (or quartets of
Kogut-Susskind [125] fermions) can be simply understood by considering the design
of the algorithm. Its inefficiency in the light fermion regime is a less trivial subject
which deserves a separate discussion.

As a matter of fact, HMC turns out to be extremely sensitive to roundoff-error
accumulation along the time evolution. This aspect is critical in the case of light
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fermionic degrees of freedom (see [112] and references therein for an early review on the
topic, for more recent results see also [117, 9, 147]). In extreme cases [114] the HMC
dynamics assumes chaotic features where small deviations from the proper trajectory
of the Hamiltonian time evolution get exponentially amplified (with an associated
Liapunov exponent). In this case the algorithm in no longer exact, as signalled by loss
of reversibility in the Hamiltonian evolution.

A second aspect is related to the discretization of the time parameter in the Hamilto-
nian evolution, which necessarily introduces deviations from the exact classical trajec-
tory. The consequent violation of the energy-conservation at the end of the trajectory
must be compensated in HMC by a Metropolis accept-reject test with acceptance prob-
ability ∼ e−∆E, where ∆E is the energy-variation. It has been observed in [117, 147]
that a critical value of the time step-size exists, above which the dynamics of the
system switches from a (normal) elliptic behavior to a diverging hyperbolic one. In
this case, the energy-conservation violation becomes large and the acceptance rate of
the new link configuration in the Metropolis test very small. The critical step-size de-
pends on the magnitude of the driving force, which increases when the fermion mass
is decreased. This latter feature is especially critical in the case of the Wilson lattice
formulation of fermions, where due to the O(a) breaking of the chiral symmetry, an in-
frared cutoff is missing for the eigenvalue spectrum of the lattice Dirac operator. Even
for non-zero quark masses, the Wilson-Dirac operator can become almost singular
on special configurations (“exceptional configurations”). On these configurations the
fermionic contribution to the driving force in HMC can get extremely large1: “spikes”
are observed in the Monte Carlo time-history of this quantity [147]. As a result, the
acceptance of the Metropolis correction becomes practically zero and the system is
never updated.

In the case of simulations of QCD, the instability of HMC becomes critical for
values of the light quark masses mq below the reference value ms/2 [117, 9, 147],
while “safe” simulations are confined to quite large values (see [7, 8] for representative
simulations in this regime, and [110] for a more recent example). This clashes with an
analysis in chiral perturbation theory in the pseudoscalar meson sector [169]; the latter
indicates that extrapolations to the physical value of the u and d quark masses with
full control over theoretical errors, coming from neglected higher order corrections,
requires simulated light quark masses as light as mq ' ms/5.

In consideration of these limitations, we conclude that HMC cannot really bridge the
gap between lattice QCD in the Wilson setup and nature, where mud ' (3− 5) MeV.

An efficient algorithm in the regime of light fermionic degrees of freedom is of course
also required for lattice supersymmetric models: for example in SYM, supersymmetry
is recovered in the limit of zero gluino mass. As already mentioned, however, HMC
cannot be applied in this case due to more fundamental algorithmic limitations.

Algorithms alternative to HMC can be designed by recurring to a multi-boson repre-
sentation [132] of the fermion measure in the path-integral. The resulting dynamical-
fermion algorithms are radically different from HMC, since they are based on con-

1According to [117] proportionally to 1/mα
f , with α a positive exponent.
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ventional local update techniques. These procedures can be optimized for the case of
light fermion masses and are, due to their locality, free from the instability features of
HMC. In addition, they are flexible in relation to the spin structure of the fermions.
Simulations of Nf = 2 QCD with a multi-boson algorithm [136] will be reviewed in
the present and in the next two chapters, while the case of SYM will be considered in
Chapter 4.

In a different, more recent, line of algorithmic development, the underlying hybrid
Langevin–molecular-dynamics structure of HMC is maintained and different improve-
ments are introduced in order to stabilize and speed-up the algorithm in the light
quark regime [55, 166, 34, 102, 133]. However, these improvements do not really di-
rectly address the problem of the exceptional configurations; the intrinsic limitation
to degenerate flavor pairs also remains. In Chapter 3 we will see how the first of these
two issues can be solved by slightly modifying the Wilson formulation in the fermion
sector. The limitation of HMC to particular flavor configurations can be overcome
by introducing a polynomial expansion in the pseudofermion representation of the
fermion measure (“Polynomial Hybrid Monte Carlo”, PHMC [52, 78]). Applications
of a PHMC algorithm [140] to QCD with a split-mass quark doublet, and to QCD
with a single quark flavor will be considered in Chapters 3 and 4, respectively.

1.2. The Two-Step Multi-Boson Algorithm (TSMB)

A large part of the simulations discussed in this review are based on the Two-Step
Multi-Boson Algorithm (TSMB), a variant of Lüscher’s multi-boson algorithm [132].
TSMB was developed in [136] and successively improved in the course of its practical
applications in the various setups considered in this review. In order to keep the
discussion self-contained, we give in the following a brief account of its main features.

1.2.1. Local update

TSMB is based on the multi-boson representation [132] of the fermion determinant.
In the most general setup considered in [136] the starting point is the relation:

∣
∣(detQ)2α

∣
∣ = det(Q†Q)α ' 1

detPn(Q†Q)
. (1.1)

In the above equation, Q denotes the fermion matrix in the Wilson setup (0.23), or
“Wilson-Dirac operator”, nf = 2α is the number of degenerate fermions of a given
mass present in the theory, and Pn(x) is an order n polynomial approximating the
target function f(x) = x−α:

lim
n→∞

Pn(x) = x−α . (1.2)

Observe that the quantity in the LHS of Eq. (1.1) represents in general only the
absolute value of the fermion measure for nf = 2α degenerate fermions; indeed, the
fermion determinant can be negative implying negative fermion measure for odd nf .
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The relation (1.1) can be expressed in terms of the squared Hermitian matrix Q̃ =
γ5Q since due to the γ5-Hermiticity of the Wilson-Dirac operator γ5Qγ5 = Q† one
has2

Q†Q = Q̃2 . (1.3)

Inserting the root decomposition of the polynomial Pn(x) using explicitly the symme-
try of the roots under complex-conjugation,3

Pn(x) =
n∏

i=1

(
√

x − ρ∗
i )(

√
x − ρi) , (1.4)

into the last term in (1.1) also using (1.3), one obtains

|detQ|2α '
n∏

i=1

1

det(Q̃ − ρ∗
i )(Q̃ − ρi)

=

∫ n∏

j=1

[dΦ̄(j)][dΦ(j)] exp{−
n∑

i=1

∑

xy

Φ̄(i)
y [(Q̃[U ] − ρ∗

i )(Q̃[U ] − ρi)]yx Φ(i)
x } , (1.5)

where the fields Φ
(i)
x , i = 1 . . . n describe n species of bosonic particles carrying the

same quantum numbers of the original fermion fields.
The multi-boson action (1.5) contains interactions between the link variables and

the n species of boson fields with a finite range in lattice units4. Consequently, the
contribution to the total probability density P [U ] given by the last term in (1.1) can
be reproduced by means of conventional local updating procedures.

1.2.2. Polynomial approximation

Lüscher’s original proposal [132], designed for the case f(x) = 1/x (nf = 2α = 2), is
based on Chebyshev polynomials for the approximation (1.2). In this case the maximal
relative error |xPn(x)− 1|∞ (L∞ norm) is minimized for a given n and approximation
interval [ε, λ]. The general scheme of [136], applicable to a generic value of α, relies on
the minimization of the quadratic relative deviation (L2 norm) with a weight w(x):

minimize δ2 , δ2 =

∫ λ

ε

dxw(x) (x−α − Pn(x))2 . (1.6)

It is useful to consider the spectral decomposition of Eq. (1.1) on the eigenvalues
of the Hermitian matrix Q̃2 = Q†Q. In this way, one sees that the limits of the

2A non-Hermitian multi-boson algorithm, in which the argument of the polynomial is the non-
Hermitian fermion matrix Q, can also be conceived [33].

3It is assumed that all roots are complex, which is possible if the polynomial order n is chosen to
be even.

4Observe that the different species do not interact among themselves.
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optimization interval [ε, λ] in (1.6) should be chosen such that the spectrum of the
positive semidefinite Hermitian matrix Q̃2 lies inside it5.

The two minimization criteria with L∞ and L2 norm differ in the way they treat
the approximation errors. The L∞ norm leads to an almost constant error in the
bulk of the spectrum and the location of an optimal value of ε becomes non trivial
in the case of small eigenvalues [33]. The L2 norm criterion (1.6), in opposition, is
characterized by smaller deviations in the bulk at the price of larger errors at the
boundaries of the approximation interval. This is more advantageous for simulations
of light fermions [137].

The general scheme defined by Eqs. (1.1), (1.5) and (1.6) is applicable to a generic
model with fermion measure, in modulus, |det(Q)|2α where α is real and positive.
This includes supersymmetric models (α = 1/4) and, in QCD, a single non-degenerate
quark (for example the s quark, with α = 1/2). Moreover algorithmic improvements
based on the “breakup” of the fermion determinant [101], where fractional powers of
are required, can be easily implemented, see Subsec. 1.2.6.

1.2.3. Noisy correction

In the original conception of the multi-boson algorithm [132], the theory is simulated
with the multi-boson representation of the fermion determinant with a given poly-
nomial order n. The deviations from the canonical probability density of the gauge
ensemble P [U ] ∼ exp{−Seff [U ]} produced by the polynomial approximation for fi-
nite n is corrected in a second step by reweighting the gauge sample when building
the sample averages of the lattice operators. However, how one can easily infer, this
procedure becomes extremely inefficient in the case of light fermions. For small bare
fermion masses, indeed, the associated fermion matrix usually assumes large condition
numbers6. With almost singular matrices, large polynomial orders n are required in
the polynomial expansion (1.1), since the target function diverges at the origin. Large
values of n produce in turn large autocorrelations in the lattice system with n species
of bosons (1.1) and, consequently, a slowing down of the update algorithm [6]

A solution to this problem was put forward in [33] where a Metropolis test in
the update with a better polynomial approximation was proposed. This method is
feasible from the point of view of the computational load, since the correction factor
can be stochastically evaluated by a single noisy estimator while preserving detailed
balance [123] of the update algorithm. Here, a version [136] of the Metropolis test is
considered which is valid in the general case given by (1.1).

The idea is to replace the polynomial approximation (1.2) with a two-step approxi-

mation where a second polynomial P
(2)
n2 (x) corrects for small deviations:

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−α . (1.7)

5An optimal choice turns out to be ε . λmin/3 − λmin/2 [Alg] .
6In the case of a positive semidefinite Hermitian matrix, such as Q̃2, the condition number is given

by the ratio between the largest and the smallest eigenvalue.
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The correction to the fermion measure given by

1

detP
(2)
n2 (Q†Q)

(1.8)

is taken into account by a global Metropolis correction. A random vector η is generated
according to the normalized distribution

P (η) ∼ e−η†P
(2)
n2

(Q̃2[U ])η ; (1.9)

the test configuration [U ′], generated in the local update [U ] → [U ′], is submitted to
a Metropolis test, with acceptance probability7

min {1, A(η; [U ] → [U ′])} , (1.10)

where

A(η; [U ] → [U ′]) = exp
{

−η†P (2)
n2

(Q̃2[U ′])η + η†P (2)
n2

(Q̃2[U ])η
}

. (1.11)

The noise vector η is obtained from a Gauss-distributed vector ηg

η = [P (2)
n2

(Q̃2[U ])]−
1
2 ηg . (1.12)

The inverse square root on the right hand side of (1.12) is again estimated by polyno-
mial approximation. The latter approximation is the only possible source of systematic
errors in TSMB, even if high precision can be easily achieved by choosing the lower
limit of the approximation interval few order of magnitude smaller than ε in (1.6).

The main advantage of this second approximation step is that the order of the poly-
nomial approximation in the local update n1, the first approximation step, can be kept
down to moderate values. The Metropolis step automatically corrects for deviations
from the target distribution during the update. Of course, a poor first polynomial
approximation results in low acceptances for the Metropolis step, so a balance must
be found: an optimal value of n1 corresponds to an acceptance & 50% [Alg].

1.2.4. Measurement correction

For finite values of n2, the correction (1.8) is normally not sufficient to render the
TSMB algorithm exact within the precision of the computer arithmetics, and a third
step is required8. A third polynomial P

(3)
n3 (x) is introduced such that

lim
n3→∞

P (1)
n1

(x)P (2)
n2

(x)P (3)
n3

(x) = x−α , x ∈ [ε′, λ] . (1.13)

7The multi-boson field configuration is always accepted. In this way the storage of the initial con-
figuration is not required; one can easily argue that this procedure does not affect the distribution
of the gauge fields.

8Exactness can be achieved, in the particular case nf = 2, by considering a non-Hermitian version
of the polynomial approximation [33].
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In this case ε′ can be chosen to coincide with zero, in which case the algorithm becomes
exact in the limit n3 → ∞. After reweighting, the expectation value of a quantity A
is given by the unbiased estimator

〈A〉 =
〈A exp {η†[1 − P

(4)
n4 (Q†Q)]η}〉U,η

〈exp {η†[1 − P
(4)
n4 (Q†Q)]η}〉U,η

, (1.14)

where η is a Gaussian noisy vector. Stochastic noise is reduced by increasing the
number of stochastic estimators, while n4 can be easily taken very large, such that
the violation of the detailed balance is below the machine precision. In practice,
reweighting is only needed in the case of exceptionally small eigenvalues. A non-exact
first step of approximation is actually welcome since it enhances, in the dynamical
part of the update, the crossing of topological sectors. These crossings are normally
associated with small eigenvalues of the fermion matrix and therefore suppressed by
the fermion determinant. In the algorithmic studies of TSMB for light fermions, both
in SYM [SYM-1] and in Nf = 2 QCD [Alg], the effect of the reweighting was generally
negligible.

1.2.5. Sign of the fermion measure

Only the absolute value of the fermion measure can be reproduced by Monte Carlo
methods (see Eq. (1.1)). The presence of a sign (or phase) must be taken into account
explicitly in the sample average, with possible cancellation effects. This is potentially
an issue in QCD for an odd number of light unpaired quarks; interesting cases are
Nf = 1 + 1 QCD (non-degenerate u and d quarks), Nf = 3 QCD considered in [69]9,
Nf = 1 QCD considered in [Nf1]; the sign can represent a problem in supersymmetric
models in general, where the Pfaffian of the fermion matrix takes the place of the
determinant (see also Chapter 4, Subsec. 4.3.1). Experiences with SYM [SYM-1],
Nf = 2 QCD [Alg] and Nf = 3 QCD [69] show that the sign change is a rare event
even in presence of relatively light fermions if the lattices are fine enough, but it can
become an issue on coarse lattices and/or with extremely light quark masses.

1.2.6. Optimization

The local part of the update in TSMB consists in a sequence of heat-bath and over-
relaxation sweeps for the gauge and the boson fields. In the case of SYM, heat-bath
cannot be applied for the gauge field since the fermion action is quadratic in the link
variable, see Eq. (4.32) in the following Chapter 4, and the less effective Metropolis
algorithm has to be used10. For details about the general implementation of the TSMB

9The interest in this setup is motivated by comparison with ChPT, see the Introduction to the next
chapter.

10In heat-bath, the new link variable does not depend on the old variable on that site, while this is
the case for the Metropolis algorithm. As a result the autocorrelation length increases by up to
a factor two.
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in SYM and QCD we refer to the publications [35] and [Alg], respectively11.
TSMB can be optimized in various ways. Even/Odd (EO) preconditioning of the

fermion matrix [116] was applied already in [35]. The resulting reduction of the con-
dition number of the fermion matrix by almost a factor two allows to lower the order
of the first polynomial approximation n1 by the same factor.

Global heat-bath in the “approximate” version of [51] (global quasi-heat-bath) was
introduced in [Alg] for the boson fields. A speedup of the algorithm results in this
case from the almost perfect decorrelation of the boson fields. The latter are generally
responsible for long tails in the autocorrelations of measured quantities along the
Monte Carlo history.

Finally, determinant breakup [101] was introduced in [71] and applied in subsequent
simulations with TSMB. In this case the fermion measure is decomposed in the product
of nDB terms

|detQ|2α =

nDB∏

k=1

|detQ|2α/nDB , (1.15)

each of which is expanded according to (1.1). The determinant breakup allows reduces
the fluctuations of the stochastic correction, Eqs. (1.9)-(1.12), with a consequent in-
crease of the acceptance rate. The general setup of the TSMB considered here allows
a straightforward implementation of this technique.

1.3. Simulation tests of TSMB with light

fermions [Alg]

Both QCD and SYM contain light fermionic degrees of freedom, the u and d quarks in
QCD and the gluino in SYM (in this latter case exactly massless in the supersymmetric
limit of the theory). However numerical simulations cannot access the massless limit
of these theories, and in the case of SYM, supersymmetry has to be softly broken with
a Majorana mass term. Simulations can only be performed until a minimal fermion
mass and the physical point must be reached by extrapolation. Even not considering
possible instability phenomena, as the ones outlined in Sec. 1.1, the computational
load of a dynamical-fermion simulation increases dramatically when the masses of the
light fermions are reduced. One factor of this increase is represented by the depleted
performance of a generic simulation algorithm for large condition numbers of the
fermion matrix, which for example in the case of TSMB imply higher orders in the
polynomial approximation12.

An additional difficulty in the light fermion regime emerges in the particular case of
QCD. Here, the massless quark limit corresponds to restoration of the chiral symmetry
and the mass gap of the theory vanishes as an effect of the spontaneous breaking of this
symmetry. For light quarks, the low-energy physics is dominated by almost massless

11For more details, see also [177, 91, 162].
12In the case of HMC, the algorithm providing the solution of the lattice Dirac equation, the typical

problem in the molecular-dynamics evolution, becomes more and more inefficient.
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particles, the would-be Goldstone bosons coming from the spontaneous breaking of
the symmetry. In the case of Nf = 2 QCD, these pseudo-Goldstone bosons can be
identified with the lightest particles of the theory, the pions. The dependence of
physical quantities upon the quark masses can be determined in the framework of
Chiral Perturbation Theory (ChPT) [189, 88]. As we will see in more detail in the
next chapter, ChPT formulae provide a guidance for the extrapolation of lattice data
to the physical value of the light quark masses.

A consequence of the vanishing of the mass gap is the enhancement of finite-size
effects towards the chiral limit (the light pions “do not fit” in the finite volume enclosed
by the lattice). Moreover, and this is the relevant point for the present discussion,
HMC and local algorithms as TSMB have to face a critical slowing down produced
by the light pions, whose Compton wavelength sets the scale for the propagation of
the information throughout the lattice; as a result, the autocorrelation time τ in the
Monte Carlo update increases as an inverse power the quark mass13.

The situation is somewhat alleviated in the case of SYM, where the mass gap persists
in the supersymmetric limit: the dependence of physical observables upon the gluino
mass is expected to be analytic with exponentially suppressed finite size effects for
large lattices. Slowing down is not critical since a diverging length scale in the massless
gluino limit is absent.

We have previously argued that TSMB, by its construction, can support the simu-
lation of very light fermion masses. First experience for light fermions, namely with
large O(105) condition numbers of the fermion matrix, was accumulated for the case
of SYM in [SYM-1]. This situation roughly corresponds to mq ' ms/4 in QCD [69].
In the case of SYM, proper tuning of the algorithm parameters allowed to keep sim-
ulation costs down to low levels for increasing condition numbers (see Chapter 4 and
Subsec. 4.4.4 in particular for a more detailed discussion, also including the physical
setup).

As already argued, the case of QCD is potentially more challenging and the behavior
of the algorithm for light quarks must be carefully tested. An important objective of
the study [Alg] was in particular to estimate the dependence of the simulation costs
upon the quark mass for Nf = 2 QCD with Wilson fermions. Unprecedently light
quarks mq & ms/5 were covered by the simulations, although on a relatively coarse
lattice with a ' 0.27 fm. This region of parameter space is orthogonal to that of
a previous benchmarking of HMC with Wilson fermions [184] with a . 0.1 fm and
mq > ms/2.

Further interesting aspects investigated in [Alg] are the influence of light dynami-
cal quarks on the eigenvalue spectrum of the non-Hermitian fermion matrix and the
comparison of lattice estimates for mesonic quantities with ChPT predictions.

13Assuming random walk for the propagation of the information, one has τ ∼ 1/M2

π ; since M2

π ∼ mq

one concludes τ ∼ m−1

q . This sets a lower limit for the critical exponent τ ∼ m−z
q , z ≥ 1 in the

case of local algorithms.
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1.3.1. Cost figure

The computational “cost” C associated with the production of a a sample of ns inde-
pendent gauge configurations is given by

C = ns · τ (f.p.o.) , (1.16)

where τ (f.p.o.) denotes the autocorrelation time along the Monte Carlo evolution in
terms of the corresponding number of floating point operations. For a given algorith-
mic setup and criterion for the definition of τ (namely which quantity τ refers to), the
“cost figure” C is univocally determined by the simulation parameters. In the sim-
plest setups (including Nf = 2 QCD and SYM) these are given by the lattice coupling
constant β, the hopping parameter κ and the lattice extension in lattice units L/a.
For a given value of L, the parameters β and κ can be replaced by any physical scale
which, expressed in lattice units, fix the position of the lattice model in the parameter
space. Typical dimensionless scales are given for example by the quark mass and the
Sommer scale parameter [176] in lattice units, amq and r0/a. It is generally assumed
that an analytic dependence of τ (f.p.o.) upon these parameters applies. In this case,
Eq. (1.16) can be rewritten (we specialize the discussion to Nf = 2 QCD):

C = F (r0mq)
−zmq

(
L

a

)zL (r0

a

)za

. (1.17)

(F is a proportionality constant). In the above formula, the lattice spacing dependence
of C for fixed L/a is entirely contained in the last factor, and the quark mass appears
in units of the (inverse) Sommer scale parameter. The ratio between the pion and
the ρ meson mass Mπ/Mρ is sometimes used in place of the quark mass (see for
example [184]).

In [Alg] it was argued that a better operational definition of the quark mass is given
by the quantity

Mr ≡ (r0Mπ)2 ; (1.18)

this latter quantity can be more easily determined in a region of light quark masses
where the ρ meson can potentially decay into pions. In terms of Mr, the cost formula
reads:

C = F ′ M−z
r

(
L

a

)zL (r0

a

)za

. (1.19)

An alternative definition of the quark mass is given in the two flavor theory by the
“Partially-Conserved Axialvector-Current” (PCAC) relation:

mPCAC
q ≡ ∂µ〈ψ̄γµγ5

τa

2
ψ(x) O(y)〉

2〈ψ̄ τa

2
γ5ψ(x) O(y)〉 , (1.20)

where O(y) is a suitable composite operator of the quark fields. A dimensionless
quantity can be defined in units of the Sommer scale

µr ≡ r0m
PCAC
q . (1.21)
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Observe that the definition (1.18) reproduces the usual definition of the quark mass
only for asymptotically light quarks masses; on the other side, the connection of (1.21)
with the physical quark mass requires the knowledge of a renormalization factor.

In the case of HMC, the definition of the cost figure in units of the number of
fermion-matrix-vector multiplications instead of floating point operations [77] has the
advantage of being independent of the details of the algorithmic implementation for a
given computer platform; moreover the trivial volume factor (L/a)4 is rescaled away.
In [Alg] this definition of C was adapted to the case of TSMB and chosen for the
estimate of the computational cost14.

TSMB is a complex algorithm with many tunable parameters and therefore an
exact theoretical prediction about the dependence of the cost figure on the simulation
parameters is not available. In the local part of the update, the slowing down for light
quark masses is enhanced by the increased number (n1) of the boson fields required
for the more accurate polynomial approximation. In the most pessimistic case, one
has [6]

τ (updates) ∼ n1/mq . (1.22)

On the other hand, in order to keep the approximation error down to low values, n1

has to be rescaled with mq: n1 ∼ ln V/mq. After restoration of the lattice units, and
neglecting logarithmic volume terms, one gets

τ (f.p.o.) ∼ n1

(
L

a

)4

τ (updates) ∼ 1

(amq)3

(
L

a

)4

, (1.23)

corresponding to zmq
= za = 3 and zL = 4 in the parametrization (1.17). The above

estimate is however incomplete since it does not include the stochastic step of the
Metropolis test. Global updates of the multi-boson fields may also play a role (global
quasi-heat-bath).

1.3.2. Results for the cost figure with TSMB

The study [Alg] is based on simulations on 83 · 16 lattices at a single value of the
lattice spacing a ' 0.27 fm (L ' 2.4 fm). Autocorrelations were measured for the
average plaquette value and for other basic physical quantities as the pion mass Mπ

and decay constant Fπ. An appropriate estimate of the autocorrelation length for non
primary quantities as Mπ and Fπ is obtained by applying the linearization method
proposed in [77] (or “Γ-method” [197]). The traditional procedure based on jackknife
and binning is usually not reliable in the case of marginal statistics.

In order to single out the dependence of the cost figure C upon the quark mass,
see (1.17), the simulation parameters β and κ were tuned to an approximate constant
value of r0/a; the final results were obtained by interpolation at the reference value
r0/a = 1.8. The quark masses range in the region ms/5−ms (Mπ = 300− 900 MeV).

14The simulation costs with TSMB are not dominated by fermion-matrix-vector multiplications. An
“effective” fermion-matrix-vector multiplication number can be however defined and related to
the TSMB parameters of the simulation, see Eq. (13) of [Alg].
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When the average plaquette is used as a reference quantity for the computation
of the autocorrelations, the cost figure (1.19) results to increase towards small quark
masses with a critical exponent z ' 2. This indicates that the additional slowing down
from the increased number of boson fields (see Eqs. (1.22) and (1.23)) is compensated
by the optimization of the algorithm in the non local part of the update. The more
popular parametrization in terms of the ratio between the pion and ρ meson mass,
C ∼ (Mπ/Mρ)

−zπρ , gives zπρ ' 6 in agreement with the estimates of [184] obtained
however for mq > ms/2 and smaller lattice spacings.

One important result of [Alg] is that TSMB displays a stable behavior down to the
smallest tested quark mass (mq ' ms/5). The absolute cost figure for the lightest
quark mass is compatible with the extrapolated value from heavier quark masses with
the HMC algorithm [184]. We recall however that HMC would not be really able to
simulate such small quark masses due to the aforementioned instability problems.

TSMB was tested in [Alg] on rather coarse lattices. Tests of TSMB for smaller
values of the lattice spacing (a ' 0.06 fm in QCD units) and larger condition numbers
O(106) (corresponding in QCD to mq ' ms/4) are available for SYM [SYM-1]. Also
in this case, TSMB displays a satisfactory behavior.

An interesting question is how the cost figure scales with the lattice size [71]. The
order of the first polynomial n1 only increases with the logarithm of the volume (due
to the denser eigenvalue spectrum); further polynomial orders n2 and n3 do not need
to be rescaled at all, as long as the smallest eigenvalue of Q̃2 is unchanged (which
is the case for large enough volumes). So the deviation from the trivial scaling law
with zL = 4 in (1.17) can only come from an increased autocorrelation of the tested
quantity in update units. Comparison with a larger 163 · 32 lattice shows indeed a
volume scaling of the simulation costs compatible, or even slightly below, the zL = 4
scaling law.

1.3.3. Eigenvalue spectrum of the fermion matrix

In the regime of small quark masses, the dynamics of the light quarks is expected to
show up in different contexts. An aspect, which is important also in relation to the
simulation process, is the eigenvalue spectrum of the Wilson-Dirac operator.

A clear effect is observed in the eigenvalue spectrum of the non-Hermitian matrix,
namely a depletion of the number of eigenvalues close to the origin of the complex
plane. This is expected, since configurations with small fermion determinants are
disfavored in the sampling process (recall (0.30)). A special role is played by the real
eigenvalues, which, being unpaired, can assume extremely small values. In particular
the smallest real eigenvalue sets a limit for the lightness of the quark mass in partially
quenched computations, see in the next chapter. Real eigenvalues are also responsible
for the flip of the determinant sign. This is of course an issue only in the case of
unpaired light flavors. An example is given by Nf = 1 QCD, where the determinant
sign plays a special role in connection to a possible phase transition [43], see also
Sec. 4.7 in Chapter 4. In the case of Nf = 2 dynamical fermions considered in [Alg] a
negative determinant sign tuns out to be a rare event even for the lightest investigated
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Figure 1.1.: Fits of the squared pseudoscalar meson mass with the one-loop ChPT formula.
The reported ratio is constant in tree-level ChPT. For the definition of Mr and
µr, see Eqs. (1.18) and (1.21), respectively.

quark mass.
Monitoring the spectrum of the Hermitian (squared) matrix is important in relation

to the algorithmic performance. TSMB tends to stall on configurations with very small
eigenvalues. The representativity of such configurations in the canonical ensemble is
however marginal, as can be verified by measuring the associated correction factors.

1.3.4. Chiral logs?

Effects of the light quarks can also be observed in the functional dependence of hadron
quantities on the quark mass. An interesting case is represented by the pion mass and
decay constant. ChPT formulae for these quantities are characterized at next-to-
leading by a non-analytic dependence on the quark mass, the so-called “chiral logs”.
This feature qualifies the special pattern of chirality breaking in the massless limit of
QCD. More information about ChPT in relation to lattice computations will be given
in the next chapter.

A behavior compatible with next-to-leading ChPT corrections can be observed in
the data of [Alg]. The ratio Mr/2µr reported in Fig. 1.1 taken from [70] is independent
of the quark mass in leading-order ChPT; so, the observed deviation from the constant
behavior can be interpreted as an effect of the chiral logs.

Finite volume effects on the pion mass can potentially play a role in the behavior
of Mr/2µr. In the present case with MπL & 3.4, however, these are expected to be
small. For example for the point at the lightest quark mass, lattice size and pion mass
are L ' 2.2 fm and Mπ ' 300 MeV, respectively; ChPT predicts in this case [40] an
effect for Fπ and Mπ below the statistical precision. Due to the relatively large lattice
spacing, however, discretization errors could play a role: the inclusion of discretization
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effects in ChPT formulae will be discussed in full detail in the next chapter.
The comparison of the data from [Alg] with ChPT predictions is not really simple,

since different quark masses are analyzed at different values of β in that work: this
strategy was motivated by the necessity of keeping r0/a fixed in the cost formula (1.17).
Of course, a better strategy in view of ChPT studies would be to analyze the quark
mass dependence at a fixed value of the coupling constant. In a mass independent
scheme, indeed, the renormalization constants only depend on β and the quark mass
dependence of the hadron quantities is explicit up to an overall renormalization con-
stant. This strategy will be pursued in the next chapter.
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2. Lattice QCD and chiral
perturbation theory

For the reasons explained in the previous chapter, lattice QCD must be presently
simulated for values of the u and d quark masses which are heavier than in nature.
As already mentioned, Chiral Perturbation Theory (ChPT) [189, 88] can provide the
necessary formulae for the extrapolation of the computed physical quantities to the
physical point, where the u and d quarks assume their actual masses.

In ChPT, constraints coming from the (spontaneously broken) chiral symmetry of
QCD are used for establishing relationships among different observables in hadron
physics. The missing information is contained in unknown low-energy constants and
coefficients appearing in the ChPT formulae. The latter can be fixed by additional
input from hadron physics.

For the hadron quantities considered here, the pion mass and decay constant, the
chiral expansion produces power-series in the light quark masses mq (also containing a
non-analytic dependence, the “chiral logs” mentioned in the previous chapter). These
series have (most likely) an asymptotic character. This implies that the accuracy of
the estimates for a fixed quark mass does not necessarily improve when higher order
terms are included in the expansion; on the other hand, this is expected at a given
order of the expansion, if the quark mass mq is reduced to low enough values. The
latter statement may sound rather formal at this level, since in nature the masses of
quarks cannot be varied. However, in lattice QCD mq is a tunable parameter and this
issue must be taken into account when performing the extrapolations.

Due to proliferation of free parameters in the chiral formulae for increasing order
of the expansion, one has usually to rely on the next-to-leading order (NLO) ap-
proximation. In this case, two low-energy constants are relevant, F0 and B0, and
few low-energy coefficients, known in the literature as Gasser-Leutwyler coefficients
(GLC).

As it turns out, the program of closing the ChPT relations involving physical quan-
tities and the light quark masses cannot be completely accomplished, since chiral
symmetry is not able to provide all the required constraints. In particular, at NLO,
transformations of the light quark masses and of some low-energy coefficients can
be found, which leave the ChPT formulae invariant: as noticed by D. Kaplan and
A. Manohar [119], the light quark masses and the low-energy coefficients cannot be
univocally fixed by the phenomenological input.

The above mentioned ambiguity, known in the literature as the Kaplan-Manohar
ambiguity, was actually the first motivation for considering ChPT in the framework
of lattice computations [39, 169]. In lattice QCD, the quark masses can be fixed as
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external parameters, and, therefore, the missing information for determining of the
low-energy coefficients and thus for closing the ChPT relations is provided. Moreover,
since in lattice QCD all quark masses can be in principle lowered to arbitrarily small
values (with some limitations), higher order ChPT corrections can be made negligible.
As we will see, a special lattice technique (partial quenching) can be exploited in order
to enhance the level of information about the quark mass dependence of hadronic
observables.

The values of the GLC, beyond being interesting for themselves, can also be used
for extrapolating the lattice data to the physical point for the light u and d quarks
(the starting point of this discussion). An unsettled issue in this context is the role
of the s quark. In nature the latter is considerably heavier than the u and d quarks
and it is not obvious at all that it can be viewed as “light” (the K and η masses are
not extremely small when compared to the typical cut-off scale of ChPT). In view of
very accurate lattice determinations, the amount of systematic uncertainty injected in
the final estimates by the ChPT formulae used for the extrapolations can potentially
represent an issue. A conservative approach in this sense would be to simulate the s
quark at the physical value of the mass and use chiral formulae for two light quarks for
the extrapolations in the and u and d quark masses. On the other hand, simulation
of the theory very near or even at the physical point for the two lightest quarks seems
to be now at reach.

In Section 2.3 of this chapter, first lattice determinations of the low-energy coeffi-
cients in Nf = 2 QCD will be presented. This represents an approximation of the
physical case where the dynamics of heavier quarks is also involved. The next two
sections will be devoted to a brief overview of ChPT and of its applications in lattice
QCD.

2.1. Chiral Perturbation Theory (ChPT)

Chiral Perturbation Theory (ChPT)1 is an effective theory of the strong interactions
and therefore characterized by an intrinsic energy cut-off, conventionally denoted with
Λχ ' 1 GeV. For energies E < Λχ and up to a given precision O((E/Λχ)n), a finite
number of counterterms must be introduced in the chiral Lagrangian for the com-
putation of physical quantities. In opposition to a fundamental theory, however, the
number of counterterms (and related free parameters) needed for an arbitrary precision
increases indefinitely.

We recall here the few basic assumptions which are at the basis of ChPT.

i) In the case of Nf massless quarks the fundamental underlying theory (QCD) is
invariant under the chiral group

G = SU(Nf )L × SU(Nf )R (2.1)

(see also (0.10), here N0 ≡ Nf ).

1A brief introduction to ChPT can be found for example in [41].
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ii) The vacuum breaks spontaneously the chiral symmetry into its diagonal sub-
group

SU(Nf )L × SU(Nf )R → SU(Nf )V ; (2.2)

the bosonic massless states postulated by the Goldstone theorem are identified
with the octet of the pseudoscalar mesons for Nf = 3 (with the isotriplet of the
pions in the case Nf = 2). For non-vanishing quark masses, these states are not
exactly massless; they are however light compared to the typical hadron mass
scale and dominate the low-energy dynamics of strong interactions.

iii) The masses of the light quarks can be treated as a small perturbation around
the chiral limit.

Since we only consider pion properties, the discussion can be restricted to the sector
of the pseudo-Goldstone bosons.

The interactions among pseudo-Goldstone bosons is the ideal application field of
ChPT; here the discussion is particularly well-defined. The transformation properties
of the fields under the chiral group can be derived from assumption ii); these build a
non linear realization of G [188]. Once the transformation properties are established,
assumption i) can be used to constrain the interaction terms. Chiral invariance forces
the introduction of a growing number of derivatives at higher orders in the chiral La-
grangian: a derivative expansion of the strong interactions is in this way obtained;
correspondingly, the amplitudes of the interactions are expanded in the external mo-
menta p of the mesons: at zero momentum the interactions vanish.

It is convenient to parametrize the meson fields in a flavor SU(Nf ) matrix trans-
forming linearly under G:

U
G−→ g

R
Ug−1

L
. (2.3)

Explicitly:

U(x) = ei
√

2Φ(x)/F0 ,

Φ =
1√
2

8∑

i=1

φiλi =











π0

√
2

+
η8√
6

π+ K+

π− − π0

√
2

+
η8√
6

K0

K− K̄0 −2η8√
6











; (2.4)

in the above formula λi are the Gell-Mann matrices generating SU(3) and the first
free parameter F0 has been introduced, coinciding (as can be a posteriori inferred)
with the decay constant of the pseudo-Goldstone boson in the chiral limit. At leading
order (LO) in the chiral expansion, O(p2), just one term exists2

Lχ
2 =

F 2
0

4
〈∂µU∂µU

†〉 ; (2.5)

2Here and in the following, the formulae appropriate for the Euclidean theory are reported.
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〈· · ·〉 denotes the trace over the flavor indices.
In the case of explicit chiral symmetry breaking by a non-zero quark mass, the chiral

transformations must be supplemented with a transformation of the quark mass matrix
M in order to maintain the invariance under the chiral group (spurion symmetry).
These transformations can be read-off from the (chirality-breaking) mass term in the
QCD Lagrangian

LQCD
M = ψ̄LMψR + h.c. , M = diag(mu,md,ms) ; (2.6)

the required transformations follow:

M G−→ g
L
Mg−1

R
. (2.7)

The most general LO term invariant under this generalized symmetry is

Lχ
2 =

F 2
0

4
〈∂µU∂µU

† − XU † − UX†〉 , X = 2B0M , (2.8)

where B0 is a second arbitrary low-energy constant.
In the Nf = 3 case, twelve terms appear at next-to-leading (NLO) order O(p2) [89];

these can be reduced to eight when external fields describing electroweak interactions
are set to zero and contact terms neglected3:

Lχ
4 = −L1 〈∂µU

†∂µU〉2 − L2 〈∂µU
†∂νU〉〈∂µU

†∂νU〉 − L3 〈∂µU
†∂µU∂νU

†∂νU〉(2.9)

+L4 〈∂µU
†∂µU〉〈X†U + XU †〉 + L5 〈∂µU

†∂µU(X†U + XU †)〉
−L6 〈X†U + XU †〉2 − L7 〈X†U − XU †〉2 − L8 〈X†UX†U + XU †XU †〉 .

The coefficients Li, known in the literature as “Gasser-Leutwyler coefficients” (GLC),
together with the low-energy constants F0 and B0, encode the missing information
from QCD at high energies above the cut-off scale Λχ.

As an example of application of ChPT we take here, and for the different extensions
of ChPT which will be considered in the following, the mass of the pseudo-Goldstone
bosons in presence of Nf light quarks with equal mass [88]. The chiral expansion
delivers in this case a correction to the Gell-Mann–Oaks–Renner formula [94]:

M2/F 2
0 = χ (1 + δNLO, loop) + δNLO, tree + O(χ3) , (2.10)

δNLO, loop =
1

16π2Nf

χ ln
χ

16π2
,

δNLO, tree = 8[Nf (2L6 − L4) + (2L8 − L5)] χ
2 ,

where, in view of the future lattice applications, we have introduced the “dimensionless
quark mass”

χ =
2B0mq

F 2
0

. (2.11)

3In the case Nf = 2 some of the terms are redundant.
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As in any standard quantum field theory, the ultraviolet divergences from the virtual
pseudo-Goldstone boson loops call for renormalization. This means that the GLC
appearing in estimates like (2.10) are renormalized at some (arbitrary) scale4; the above
formula applies to the MS-scheme with renormalization scale fixed at a conventional
value

Li ≡ Lr(µren) ; µren = Λχ ≡ 4πF0 . (2.12)

Observe that the correction to the squared pseudo-Goldstone boson masses coming
from the virtual loops, δNLO, loop, is characterized by the already anticipated non-
analytic dependence upon the quark masses. This important prediction of ChPT,
related to the peculiar pattern of the chiral symmetry breaking, can be verified in
lattice QCD.

2.1.1. Gasser-Leutwyler coefficients from phenomenology

As already briefly mentioned in the introduction to this chapter, due to the Kaplan-
Manohar ambiguity, phenomenological input and ChPT formulae alone are not suf-
ficient to fix all the GLC. This ambiguity derives from an invariance of the NLO
chiral Lagrangian under redefinition of the quark masses and of some low-energy co-
efficients [89]

X → X + δ
16

F 2
0

(detX)X−1

L6 → L6 − δ, L7 → L7 − δ, L8 → L8 + 2δ , (2.13)

where δ is an arbitrary dimensionless parameter. Quantities which, expressed in terms
of GLC and quark masses, are not invariant under (2.13) cannot be fully determined
in ChPT [119].

One of such quantities is the NLO correction to the quark mass ratios. Relations
similar to (2.10), and phenomenological input for the pseudoscalar meson sector, can
in principle put constraints on the quark masses realized in nature. In particular, a
relation can be found between the two quark mass ratios mu/md and ms/md. In order
to pin down the mass ratios themselves, however, the NLO order correction is needed

∆M =
8

F 2
0

(M2
K − M2

π) (2L8 − L5) + chiral logs . (2.14)

Since the combination of GLC contained in ∆M is not invariant under (2.13), this
quantity is affected by the Kaplan-Manohar ambiguity. The value of the ratio mu/md

is theoretically relevant; in particular, the vanishing of the mu would solve the so-
called strong CP problem. (See [20] for a review on the subject. However, see also [46]
for a criticism to this solution of the strong CP problem.)

The example of ∆M shows that chiral symmetry alone cannot, in some cases, fully
constrain physical quantities in hadron phenomenology. One possible solution to this

4In order to keep the notation as simple as possible, we use for these renormalized coefficients the
same notation as for the bare ones appearing in the Lagrangian.

39



2. Lattice QCD and chiral perturbation theory

problem is to introduce some additional information from the fundamental theory of
strong interactions (see [130] for a discussion on this topic). A combination of phe-
nomenological and large Nc constraints can be used for example to fix all the GLC [65].
This additional information is however subject to large theoretical uncertainties, which
spoil the accuracy the determinations. For the GLC needed for ∆M , one obtains in
this way the estimates (see for example [109])

L8 = (0.6 ± 0.3) · 10−3 , (2.15)

L5 = (0.4 ± 0.5) · 10−3 . (2.16)

These values of the GLC imply a small and positive ∆M :

0 < ∆M ≤ 0.13 . (2.17)

On the other hand, a massless u quark requires [39]

L8 = (−0.7 ± 0.3) · 10−3 . (2.18)

implying a large negative NLO correction ∆M . This second scenario is theoretically
disfavored since it implies too large breaking effects of the SU(3) flavor symmetry [130].
However, due to the large uncertainties in the determinations (2.15), the question is
not yet completely settled.

An accurate determination of the GLC is in general important in order to constrain
QCD predictions. The intrinsic systematic errors on ChPT estimates coming from the
neglected NNLO corrections (assuming exact knowledge of the NLO GLC) are gener-
ally smaller than the uncertainties deriving from the present, rather poor, knowledge
of the GLC (a recent review of GLC determinations from phenomenology can be found
in [64]). As we will see in the following in this chapter, lattice QCD can provide the
additional information needed for a determination of the GLC with full control over
systematic errors.

2.2. Gasser-Leutwyler coefficients from lattice QCD

Lattice computations of hadron properties can be used for the determination of the
low-energy constants in NLO ChPT (see [97] for an early discussion). In lattice sim-
ulations the quark mass represents an external parameter which can be arbitrarily
fixed and the Kaplan-Manohar ambiguity, expressed by (2.13), is resolved. In this
approach, the GLC are determined by fitting the light quark mass dependence of the
different hadron properties with the functional form predicted by NLO ChPT.

In the following we briefly discuss the main systematic uncertainties affecting this
methodology. For the regime of moderate quark masses of the simulations considered
here, the systematic effects produced by the finite volume can be kept under control.
On the other side, the contribution of the neglected NNLO corrections in the chiral
formulae can be relevant. As we will see in the following when discussing the numerical
studies, this turns out to be the dominating source of systematic error.
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A separate discussion must be reserved to the lattice discretization effects. Ideally,
the chiral fits should be performed after the extrapolation of the lattice data in the
continuum, where ChPT formulae apply. An alternative procedure consists in fitting
the lattice data at finite lattice spacing and extrapolating the resulting fitted param-
eters in the continuum. This can be improved by including in the chiral formulae the
leading corrections coming from the explicit chirality breaking of the lattice discretiza-
tion. A general discussion of the lattice corrections in ChPT is possible in the so-called
“Wilson chiral perturbation theory”, to be discussed in the following in this section.
Even in this improved approach however, a continuum extrapolation of the fitted pa-
rameters is eventually required, because of the neglected sub-leading discretization
effects. The convergence to the continuum is however faster, with a reduction of the
systematic uncertainties attached to the determinations of the low energy constants.

2.2.1. Partially quenching

The information about the light quark mass dependence of hadron properties is at the
basis of the determination of the GLC from the lattice. As noticed in [39, 169] the
possibility in lattice simulations to assign different masses to valence and sea quarks
allows to enhance this information.

Given a generic lattice operator of the lattice quark fields ψ̄, ψ and the gauge links
U , OL[U ; ψ̄, ψ], its vacuum expectation value can be written (recall the discussion in
Subs. 0.3.1)

〈OL〉 =
1

N

∫
∏

x∈Λ ,µ

dUµ(x)
∏

q=u,d,...

detQ(q)[U ; mq] e
−Sg

WQCD[U ]
Õ[U ; mq] , (2.19)

where the effective operator Õ[U,mq] is a complicated functional of the gauge links,
resulting after the explicit integration over the lattice quark field Grassmann variables.
In (2.19) the dependence of the vacuum expectation value upon the light quark masses
has been made explicit, in a collective notation, for future convenience.

It is possible to compute a generalization of the expectation value (2.19), in which
the valence and sea quarks have different masses; the sea mass is contained in the
fermion determinant contributing to the effective action of the link system, while the
valence mass applies for the effective operator. In formulae:

F(msea,mval) =
1

N

∫
∏

x∈Λ ,µ

dUµ(x)
∏

q=u,d,...

detQ(q)[U ; mq,sea] e
−Sg

WQCD[U ]
Õ[U ; mval] ≡

〈 Õ[U,mval] 〉P [U ;msea] . (2.20)

The most expensive part of a lattice computation is generally represented by the
generation of the canonical ensemble of lattice gauge configurations {U} distributed
according to the multivariate probability density

P [U ; msea] =
1

N
∏

q=u,d,...

detQ(q)[U ; mq,sea] e
−Sg

WQCD[U ]
. (2.21)
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On the other hand, the computation of Õ[U,mval] for each configuration of the gauge
sample is comparably less demanding. This suggests that more information about the
functional dependence upon the light quark masses of the hadron vacuum expectation
value (2.19) can be obtained in a relatively “cheap” way by computing the generalized
version (2.20) for different values of mval at a fixed msea.

If the step from (2.19) to (2.20) is trivial in the effective action formalism exploited
in lattice QCD, it requires more thought at the level of the (continuum) fundamental
theory. Here, the introduction of bosonic ghost quark fields ψ̃q is required in order to
cancel the fermion determinant of the valence quarks [141]. The resulting theory is no
longer unitary. In the case of two valence quarks having masses mV 1, mV 2 and Nf sea
quarks with masses (mS1 , · · · ,mSNf

) for example, one is in presence of an extended

quark multiplet

ψ = (ψqV 1, ψqV 2; ψqS1, . . . , ψqSNf
; ψ̃qV 1, ψ̃qV 2) ; (2.22)

the mass matrix in the generalized QCD Lagrangian is given by

M = diag(mV 1,mV 2; mS1, . . . ,mSNf
; mV 1,mV 2) . (2.23)

The low-energy theory of this generalization of the QCD Lagrangian gives rise to a
“partially quenched” ChPT [26].

As an illustration of this partially quenched ChPT we consider the generalization
of (2.10) with Nf degenerate sea quark masses mS1 = mS2 = . . . = mSNf

= mS and

valence quark masses (mA,mB) [167]:

M2
AB/F 2

0 =
1

2
(χA + χB)(1 + δNLO, loop) + δNLO, tree + O(χ3) , (2.24)

δNLO, loop =
1

16π2Nf

[

(χS − χA)χA ln
χA

16π2
− (χS − χB)χB ln

χB

16π2

] 1

(χB − χA)
,

δNLO, tree = 4Nf (2L6 − L4)χS(χA + χB) + 2(2L8 − L5)(χA + χB)2

(χ is the dimensionless quark mass defined in (2.10)). The basic point when us-
ing (2.24) and analogous partially quenched ChPT formulae is that [39, 169] the quark
mass dependence in the chiral Lagrangian is only explicit, and in particular the GLC
appearing in (2.24) are those of the unitary theory with mval = msea and the same
number of sea quarks Nf .

That the partially quenched analysis provides more information than the standard
one is apparent already in (2.24): in this case, in opposition to the “unquenched”
case (2.10), the combination of GLC (2L8 − L5) can be disentangled from the other
combination (2L6 − L4). Notice that exactly this combination of GLC is required in
order to settle the question of the vanishing of the u quark mass, see (2.14). When
the decay constants are included in the partially quenched analysis as well [105], all
four GLC L4, L5, L6 and L8 can be separately determined.

Another advantage of partially quenching is a faster convergence of the chiral for-
mulae for mval < msea [169]; in particular, NLO corrections below 10% require light
quark masses mq as light as one eight of the physical strange quark mass [169].
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2.2. Gasser-Leutwyler coefficients from lattice QCD

2.2.2. Including lattice artifacts

The artifacts of the lattice discretization introduce corrections in the ChPT formulae.
These corrections can be computed in a systematic way in Wilson ChPT [170, 159].

As shown by K. Symanzik [179], the lattice artifacts of Green functions in Wilson
lattice QCD are described in a synthetic way by a continuum local effective Lagrangian
(LEL) Leff . The latter can be written in form of an expansion in which the lattice
spacing a plays the role of an external expansion parameter:

Leff = Leff
0 + aLeff

1 + a2Leff
2 + · · · . (2.25)

The first, dimension four, term of the expansion Leff
0 coincides with the continuum

QCD Lagrangian LQCD, while further higher dimensional terms account for the lattice
corrections. The residual symmetries of Wilson lattice QCD restrict the possible form
of these operators. Some of them are obtained by multiplying lower dimensional
operators with powers of the quark mass and only produce a renormalization of the
quark mass and of the coupling constant. Since these operators do not introduce a
lattice-specific breaking of the chiral symmetry, they do not generate new terms in the
chiral expansion5.

At O(a) one is left with two operators [173], which on shell reduce to one; this is
the Pauli term

Leff
1 = cSW ψ̄σµνFµνψ . (2.26)

The coefficient cSW is in general a function of the lattice coupling constant and of
the Wilson parameter r. It can be formally promoted to a matrix in flavor space
(analogous to the mass matrix M in Eq. (2.6)), in this way, we see that the pattern of
flavor breaking of the Pauli term is analogous to that of the mass term (2.6), producing
the same breaking terms in the chiral Lagrangian.

O(a2) terms in the effective action (2.25) introduce further breaking parameters [21]
associated with dimension six operators Leff

2 . All these breaking parameters can be
treated as spurion fields with appropriate transformation properties under the chiral
group G (see Sec. 2.1) and the corresponding contributions to the low-energy La-
grangian evaluated in a spurion analysis.

We have now essentially two dimensionless expansion parameters

ε ∼ p2

Λ2
χ

∼ 2B0mq

Λ2
χ

, δ ∼ 2W0a

Λ2
χ

; (2.27)

W0 is a low-energy constant with mass dimension three, related to the discretization
effects, and analogous to B0, whose precise meaning will become clear in a while.

At this point the question arises about the appropriate power counting scheme. If
the magnitude of the breaking effects coming from the lattice discretization is compa-
rable to that of the chirality breaking from the quark mass, synthetically mq = O(a)

5In the case of the quark mass, these lattice artifacts can be reabsorbed in a lattice definition of the
quark mass, see (3.17).
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2. Lattice QCD and chiral perturbation theory

or ε ∼ δ, the correct criterion for collecting terms in the LO and NLO Lagrangian
is [159] (we use the notation LW for the effective low-energy Lagrangian of the Wilson
theory):

LO: LW
2 ∼ O(ε, δ) , (2.28)

NLO: LW
4 ∼ O(ε2, εδ, δ2) .

A different power counting, more appropriate in the case of a small quark mass and
dominating O(a) breaking effects, is [12]

LO: LW
2 ∼ O(ε, δ, δ2) , (2.29)

NLO: LW
4 ∼ O(εδ, δ3) ;

in this case it is assumed mq = O(a2). We will consider here an application of the first
power counting scheme (2.28). In this scheme, the LO and NLO lattice terms only
come from the chirality breaking parameters, since the chiral-symmetric corrections
coming for example from the lattice gauge action, but also from the fermion action,
are O(p2a2) and NNLO.

The generalization of the LO chiral Lagrangian (2.8) is simply obtained by making
the replacement

X → X + R , R = 2W0A , (2.30)

where, in order to highlight the formal analogy with the breaking from the quark mass,
the lattice spacing has been transformed into a matrix in flavor space A, to be set
eventually to A = aI. In this way we get:

LW
2 =

F 2
0

4
〈∂µU∂µU

† − (X + R)U † − U(X† + R†)〉 . (2.31)

New terms appear in the NLO Lagrangian [159, 21]

LW
4 = Lχ

4 + W4

〈
∂µU

†∂µU
〉 〈

R†U + RU †〉 + W5

〈
∂†

µU∂µU(R†U + RU †)
〉

−W6

〈
X†U+XU †〉 〈

R†U+RU †〉 − W7

〈
X†U−XU †〉 〈

R†U−RU †〉

−W8

〈
R†UX†U+h.c.

〉
− W ′

6

〈
R†U + RU †〉2 − W ′

7

〈
R†U − RU †〉2

−W ′
8

〈
R†UR†U + h.c.

〉
, (2.32)

with associated lattice low-energy coefficients Wi, W ′
i (“Wilson Gasser-Leutwyler Co-

efficients”, Wilson GLC).
The main dependence upon the lattice spacing in the NLO Wilson ChPT La-

grangian, O(a) and O(p2a,mqa, a2), is explicit. In particular, the GLC in Lχ
4 are

the ones of the continuum theory. This means that the Wilson ChPT formulae can
be used in order to determine the GLC from (Wilson) lattice data with leading dis-
cretization errors O(m2

qa,mqa
2, a3).

Since the Wilson GLC, as the GLC, contain information about the high energy
details of the underlying lattice theory, their actual value depends on the precise way
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2.2. Gasser-Leutwyler coefficients from lattice QCD

the theory is discretized, the gauge sector included. For example in the case of an O(a)
improved fermion action, the LO Lagrangian coincides with the continuum one and
W4, . . . W8 = 0. Moreover the left-over discretization errors in the physical quantities
are in this case O(mqa

2, a3).
On the other hand, using NLO Wilson ChPT with the unimproved Wilson ac-

tion for the extraction of physical quantities from lattice data is almost equivalent,
from the point of view of the lattice artifacts, to a standard ChPT analysis with a
non-perturbatively O(a) improved action. The only difference in the residual lattice
artifacts is indeed represented by the absence in the latter case of the (presumably
small) O(mn

q a), n ≥ 2, corrections.
It should be recalled at this point that the chirality breaking parameters in the

Symanzik effective action depend in general upon the lattice bare coupling constant
g0 (and the Wilson parameter r), in particular, cSW = cSW (g0, r). This dependence is
in general inherited by the lattice low-energy constant W0 and by the Wilson GLC.
The renormalization group dictates on the other hand a weak dependence of g0 on the
lattice spacing for fixed renormalized theory: at leading order g0 ∼ ln(aΛQCD). This
means that the dependence of the lattice low-energy constants upon g0 can be seen as
a residual, not explicit, dependence of the Wilson ChPT Lagrangian upon the lattice
spacing.

We conclude this introductory section about Wilson ChPT with an example of how
lattice artifacts modify ChPT predictions. In the case of the pseudo-Goldstone boson
mass considered in Eq. (2.10) for example, one gets [21]

M2/F 2
0 = (χ + ρ)(1 + δW

NLO, loop) + δW
NLO, tree + O(χ3, χ2ρ, χρ2, ρ3) , (2.33)

δW
NLO, loop =

1

16π2Nf

(χ + ρ) ln[(χ + ρ)/16π2] ,

δW
NLO, tree = δNLO, tree + 8[Nf (2W6 − W4 − L4) + 2W8 − W5 − L5] χρ +

+8[Nf (2W
′
6 − W4) + (2W ′

8 − W5)] ρ
2 ,

where we define here, in analogy with (2.11), a dimensionless lattice breaking param-
eter:

ρ =
2W0a

F 2
0

. (2.34)

Observe that, due to (2.30), the LO and NLO loop corrections are simply obtained
by making the replacement χ → χ + ρ in the corresponding terms in the ChPT
result (2.10), while the tree-level NLO correction can be trivially derived from the
Lagrangian (2.32) by analogy with the continuum terms. For the sake of the com-
pleteness we also quote the partially quenched result, namely the lattice-corrected
version of (2.24):

M2
AB/F 2

0 = [
1

2
(χA + χB) + ρ](1 + δW

NLO, loop) + δW
NLO, tree + O(χ3, χ2ρ, χρ2, ρ3) ,

δW
NLO, loop =

1

16π2Nf

{
(χS − χA)(χA + ρ) ln[(χA + ρ)/16π2]
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− (χS − χB)(χB + ρ) ln[(χB + ρ)/16π2]
} 1

(χB − χA)
,

δW
NLO, tree = δNLO, tree + 8Nf (W6 − L4) χSρ +

4[Nf (W6 − W4) + 2W8 − W5 − L5] ρ(χA + χB) +

+8[Nf (2W
′
6 − W4) + (2W ′

8 − W5)] ρ
2 . (2.35)

2.3. Determination of the Gasser-Leutwyler

coefficients [Chi-1,Chi-2,Chi-3]

After the theoretical breakthrough of [39, 169], where the potentiality of lattice simula-
tions for the determination of the GLC was realized, several groups started numerical
investigations. In the first paper on the subject [105] (Nf = 2 Wilson formulation in
the quenched approximation) the inclusion of the decay constants together with the
masses in the pseudo-Goldstone boson sector was suggested. These quantities can be
determined on the lattice with extremely high statistical precision. In [105] the advan-
tage of using in the analysis ratios of hadron quantities computed at different valence
(or sea) quark masses, was also pointed out. In the case of the pseudo-Goldstone boson
mass, with Nf degenerate quarks, one may consider for example the combination [105]

RnAB =
M2

AB/(χA + χB)

M2
SS/2χS

. (2.36)

Since the quantities in numerator and denominator are highly correlated, the ratio
RnAB can be determined with high statistical precision for different values of the
valence quark masses mA,B. An additional advantage is that, in a mass independent
renormalization scheme, the renormalization constants (of the quark mass in the above
case) cancel out between numerator and denominator. Mass independent discretiza-
tion effects cancel out, too, see in the following.

We consider here as an example the continuum partially quenched ChPT represen-
tation of the pseudo-Goldstone boson mass ratio [167] (see also [Chi-2])

RnV V = 1+8(ξ−1)χS(2LS8−LS5)+
χS

16π2Nf

[ξ−1+(2ξ−1) log ξ] + NNLO , (2.37)

where ξ denotes the ratio between the valence and the sea quark mass

ξ =
χV

χS

(2.38)

and we have introduced the GLC LSi renormalized at the sea quark mass scale

LSi : µren =
√

2B0mS =
√

χSF0 ; (2.39)

with this choice, the sea quark mass dependence of the chiral logs is reabsorbed in the
renormalization scale6. In the case of Eq. (2.37), the sea quark mass plays the role of

6The LSi are related to the standard GLC Li, renormalized at the scale µ = 4πF0, by a renormal-
ization group transformation, see for example [Chi-1], Eqs. (5-13).
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a reference quark mass, while the valence quark mass is varied (valence quark mass
analysis).

If several quark masses are available, one can choose one of the sea masses (say
the largest one) as reference quark mass and study the mass ratios as a function of
the remaining sea quark masses (sea quark mass analysis). In this case the relevant
formula is (see [Chi-2]):

RnSS ≡ M2
SS/χS

M2
RR/χR

= (2.40)

1 + 8(σ − 1)χR(2NfLR6 + 2LR8 − NfLR4 − LR5) +
χR

16π2Nf

σ log σ + NNLO ,

where now the label R refers to the reference sea quark mass and the ratio σ is defined
as

σ =
χS

χR

; (2.41)

in this case the GLC LRi have been renormalized at the appropriate reference scale

LRi : µren =
√

2B0mR =
√

χRF0 . (2.42)

The two procedures can be of course combined. In the case of p > 1 simulation
points, with mS0 > mS1 > . . . > mSp, one can define several σ variables σ0, . . . , σp.
Taking mS0 as reference quark mass, mS0 ≡ mR, one has of course σ0 ≡ 1, while
a generic valence quark mass for the ith simulation point is related to the reference
quark mass by

mV = ξ σi mR ; (2.43)

the same relation holds for the dimensionless quark masses χV and χR.
The parameters ξ and σ can be easily determined by computing ratios of the ap-

propriate PCAC quark masses (1.20). The left-over parameter χR can be determined
by using the LO formula

χR =
M2

RR

F 2
0

(2.44)

(the NLO correction to the above formula enters at NNLO) and inserting for MRR

the measured value of the pseudo-Goldstone boson mass at the reference quark mass
and for F0 the phenomenological value of F0 = 87 MeV [105]; this procedure however
requires fixing the lattice scale. Alternatively, this is the procedure considered here,
χR can be viewed as an unknown parameter and fitted together with the GLC.

The method proposed in [105] foresees a prior continuum extrapolation of the hadron
ratios at fixed values of χR, ξ, σ.7 After continuum extrapolation, partially quenched
continuum ChPT formulae such as (2.37) can be applied.

7The dimensionless ratios (2.36), and other ratios with different combinations of the quark masses
(for example valence-sea “VS”), are after the continuum extrapolation universal functions of the
dimensionless parameters (χR, ξ, σ).
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The optimal strategy would be to extrapolate the lattice data at a fixed value of the
quark mass. In this way, in particular, one can avoid large lattice artifacts occurring
when the quark mass is lighter than the typical mass scale of the chirality breaking at
finite lattice spacing (χ ¿ ρ). In this regime the phase structure, of the lattice theory
is expected to depart from the continuum one (these aspects will be discussed in more
detail in the next chapter and in particular in Sec. 3.3).

Performing the continuum extrapolation before the chiral fits can be however very
expensive in terms of computing time, especially in the case of light dynamical quarks.
An alternative procedure, which we consider here, consists in fitting the ChPT formu-
lae at fixed lattice spacing.8

As we have seen in the previous section, the application of Wilson ChPT at NLO
allows to reduce the discretization errors in the determination of the low-energy con-
stants to O(m2

qa) in the unimproved theory. The dimensionless lattice scale ρ and the
Wilson ChPT coefficients W4, . . . ,W8, which describe the main lattice artifacts linear
in a, enter as additional fit parameters (see for example (2.33)).

Observe that, since the mass independent cut-off effects cancel out in the ratios,
the primed Wilson GLC do not appear in the corresponding Wilson ChPT formulae.
For light quark masses, it is legitimate to assume that the residual O(m2

qa) corrections
are equivalent to the O(mqa

2) corrections affecting the standard analysis with a (non-
perturbatively) O(a) improved fermion action.

2.3.1. Setup

The analyzes of [Chi-1, Chi-2, Chi-3] are based on sets of configurations (Nf = 2
theory) on lattices with extension in the space direction Ls = 16 and extensions
in the time direction Lt = 16 [Chi-1,Chi-2] and 32 [Chi-3]. Lattice QCD in the
Wilson setup was simulated by the TSMB algorithm in the configuration described
in Sec. 1.2. Two values of β were considered, β = 4.8 in [Chi-1] corresponding to
a(4.8) ' 0.27 fm and β = 5.1 in [Chi-2] and [Chi-3] corresponding to a smaller lattice
spacing a(5.1) ' 0.19 fm. The analysis at β = 4.8 includes only one, fairly light, sea
quark mass mS ' ms/4 (Mπ ' 360 MeV); this point reflects one simulation point
of [Alg], where a behavior of hadron properties in the pseudo-Goldstone boson sector
compatible with ChPT predictions was observed, see discussion in Subsec. 1.3.4. The
simulations of [Chi-2] and [Chi-3] include several values of the quark mass, with mS

ranging between ms/3 and ms/2 (Mπ = 380 − 680 MeV). The simulations of [Chi-3]
differ from those of [Chi-2] for a doubled extension in the time direction, Lt = 32, which
allows for an accurate determination of the hadron quantities; a fourth simulation point
was included at an intermediate value of the quark mass.

The valence analysis includes valence quark masses both lighter and heavier than
the sea mass. On the coarser lattice, ξ (see definition (2.38)) could not be lowered
below the value 0.9 due to the appearance of exceptional configurations. On the finer

8In this case one has to make sure that, at the give regime of quark masses, the phase structure of
the lattice theory still reflects the continuum theory, see also Sec. 3.3.
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lattice and with heavier sea masses, ξ could be lowered down to ∼ 0.5 with a maximal
value ξ ∼ 2.

The physical lattice extension is large in the β = 4.8 simulation, Ls ' 4.5 fm, while
for the β = 5.1 simulations, Ls ' 3 fm. This must be compared with the lightest pion
masses. In the present case, finite volume effects reside in the permille region and can
be safely neglected (see for example Tables 3 and 4 of [40]).

The evaluation of the remaining two main systematic effects, the discretization er-
rors and the contribution from NNLO terms in ChPT, is less straightforward. The
discretization effects can only be estimated by comparing simulations at different lat-
tice spacings and fixed remaining parameters, which is not possible in the present
case. An indirect estimate can be obtained from the evaluation of the breaking terms
in the Wilson ChPT formulae. The latter estimate relies however on the validity of the
lattice-corrected formulae for the given regime of lattice spacings and quark masses.
As we will see in the following section, this second indirect estimate points to small
lattice artifacts. The impact of the NNLO corrections will be estimated by including
a subset of NNLO terms in the chiral fits. The NNLO corrections turn out to be
essential for the quality of the fits in the case of the heavier sea masses.

2.3.2. Strategy

The chiral fits of [Chi-1,Chi-2,Chi-3] include various ratios of pseudo-Goldstone boson
masses and decay constants. We give in the following an overview. In the sea sector:

RnSS =
M2

SS

σM2
RR

, RfSS =
FSS

FRR

. (2.45)

In the valence sector, starting with the single ratios:

RnV V =
M2

V V

ξM2
SS

, RfV V =
FV V

FSS

, (2.46)

RnV S =
M2

V S

ξM2
SS

, RfV S =
FV S

FSS

. (2.47)

In order to better constrain the fits, it is convenient to consider in addition double
ratios in which the dependence on the GLC cancels out:

RRn =
4ξM4

V S

(ξ + 1)2M2
V V M2

SS

, (2.48)

RRf =
F 2

V S

FV V FSS

. (2.49)

The double ratio (2.49) was proposed in [104] with the motivation that it delivers,
within NLO ChPT, a parameter-free prediction of the quark mass dependence in the
pseudo-Goldstone boson sector. The latter can be easily tested against lattice data
(with a negative result in that case of [104]).
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As an illustration, we report the representation in NLO Wilson ChPT of RnV V ,
now also including lattice corrections (compare with (2.37))9; observe that the O(a2)
mass independent corrections cancel out in the ratios:

RnV V ≡ M2
V V

ξM2
SS

= 1 − η
(ξ − 1)

ξ

+8(ξ − 1)χS(2LS8 − LS5) + 8Nf
(ξ − 1)

ξ
ηχS(LS4 − WS6)

+
χS

16π2Nf

(ξ − 1)

ξ
(ξ + η) − χS

16π2Nf

(1 + 2η) log(1 + η)

+
χS

16π2Nf

(2ξ2 − ξ − η + 3ηξ)

ξ
log(ξ + η) , (2.50)

where

η ≡ ρ

χS

=
W0a

B0m
(2.51)

parametrizes the lattice breaking effects.
The Wilson ChPT formula for the double ratio of the pseudo-Goldstone boson

masses reads:

RRn≡ 4ξM4
V S

(ξ + 1)2M2
V V M2

SS

= 1 − η(ξ − 1)2

ξ(ξ + 1)

+
χS(ξ2 + ξ + η + 3ηξ2) log(ξ + η)

16π2Nfξ(ξ + 1)
− χS(2η + 1) log(1 + η)

16π2Nf

−χS(ξ − 1)(ξ + η)

16π2Nfξ
+

8NfχSη(ξ − 1)2

ξ(ξ + 1)
(LS4 − WS6) . (2.52)

In [Chi-2, Chi-3], the ratios (2.45)-(2.49) could not be fitted with satisfactory results
for the whole spectrum of the valence quark masses. Consequently, a subclass of (con-
tinuum) ChPT NNLO corrections, quadratic in the quark masses, had to be included
in the theoretical formulae. These corrections correspond to tree-level diagrams in the
perturbative expansion. In the valence sector, the quadratic corrections introduce two
additional parameters for each ratio. The correction for the ratio X (X ≡ RnV V , etc.)
reads

δNNLO, tree = DX χ2
S + QX χ2

S(ξ − 1)2 . (2.53)

Constraints from ChPT reduce the number of free parameters [Chi-2].
The Wilson ChPT representations of the ratios used in the valence analysis (2.46)-

(2.49) contain two “reference parameters” χR and η, two combinations of GLC, 2L8 −
9See [Chi-2], Eqs. (3-4), (10-11), (12-13) and (22-23), for the Wilson ChPT formulae of all the

considered ratios.
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Table 2.1.: Parameters entering in the NLO chiral formulae for the different ratios
(in boldface the combinations with physical relevance).

Ratio Continuum Lattice Correction
Sea Analysis

RnSS 2L8 + 4L6 − 2L4 − L5 2W8 + 4W6 − 2W4 − W5 − 2L4 − L5

RfSS 2L4 + L5 2W4 + W5

Valence Analysis
RnV V,V S 2L8 − L5 L4 − W6

RfV V,V S L5 -
RRn - L4 − W6

RRf - -

L5 and L5 and the combination, associated with the mass-dependent NLO lattice arti-
facts, L4−W6. In Table 2.1, an overview of the combinations of GLC and Wilson GLC
contained in the NLO chiral representations of the various ratios is given. Observe
that in the valence analysis, due to the cancellation of lattice artifacts in the ratios,
lattice corrections only introduce two additional parameters (η and L4 − W6).

One possible strategy, followed in [Chi-1], consists in determining the combinations
of (Wilson) GLC by performing a sequence of single or double parameter fits. One
starts with determining η and χR from the double ratio RRf (whose Wilson ChPT
representation does not contain additional free parameters, see Table 2.1). The so
obtained values of η and χR are then inserted in the fits for the remaining ratios. The
latter allow to determine the combinations of GLC in the second column (“Contin-
uum”) of Table 2.1.

In [Chi-2, Chi-3], global fits including all the available ratios were performed10. The
quadratic NNLO corrections (2.53) considered in [Chi-2, Chi-3] introduce eight (or
six, considering ChPT constraints) additional parameters in the fits.

2.3.3. Numerical results

Wilson ChPT formulae depend linearly upon all unknown parameters with the excep-
tion of η, see (2.50)-(2.52). As it turns out, the chi-square associated with the (linear)
fits of the remaining twelve parameters is characterized by a weak dependence upon η:
the chi-square presents a swallow minimum in correspondence of a small value η . 0.1
(Fig. 4 of [Chi-3]). This indicates that, in spite of the rather large lattice spacing, the
lattice corrections play a minor role at least within the assumed form of the quark
mass dependence. As a consequence of this observation, lattice corrections were not
included in the fits of [Chi-3].

By contrast, the NNLO corrections play a major role. These are, as expected,

10In [Chi-2] χR was determined from the analysis of RRn.
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Table 2.2.: Overview of the results for the Gasser-Leutwyler coefficients from the hereby
reviewed and other works in the Nf = 2 Wilson setup (sea quark mass analy-
sis).

Ref. a(fm) mq/ms Λ3/F0 Λ4/F0 l̄3 l̄4
[Chi-2] 0.19 0.28 6.51 ± 0.57 22.9 ± 1.5 2.86 ± 0.17 5.38 ± 0.13
[Chi-3] 0.19 0.28 8.21 ± 0.27 21.4 ± 1.5 3.32 ± 0.07 5.24 ± 0.14
[tlS-1] 0.10 0.16 9.66 ± 0.58 14.8 ± 0.4 3.65 ± 0.12 4.52 ± 0.06

Cern [56] 0.08 0.29 7.0 ± 1.7 – 3.0 ± 0.5 –

more relevant for the larger sea quark masses and in the region mV > mS, see Fig. 3
of [Chi-2].

In [Chi-2, Chi-3] several simulations at different quark masses were performed, three
and four respectively, and a sea quark mass analysis was also possible11. Also in this
case, ratios of the meson quantities were considered, see Eq. (2.45); this reduces to
two and three, respectively, the number of available data points.

This sea-quark analysis allows to determine two additional combinations of the GLC,
see Table 2.1. It is convenient to introduce the two universal low-energy scales (see
for example [131]) defined by

Λ3 = 4πF0 exp[−8(4π)2(4L6 − L5 + 2L8 − 2L4)] , (2.54)

Λ4 = 4πF0 exp[2(4π)2(2L4 + L5)] (2.55)

(here the Li are renormalized at µren = Λχ ≡ 4πF0). The fits allow to determine the
dimensionless ratios Λ3,4/F0. In order to be able to compare with other results present
in the literature (for a recent summary, see [129]), it is convenient to translate these
scales into the dimensionless coefficients

l̄3,4 = log(
Λ2

3,4

M2
π

) , (2.56)

where Mπ is the physical pion mass. The physical values of F0 and Mπ are used as an
input for the conversions in (2.54)-(2.56).

An overview of the results is given in Tables 2.2 and 2.3, and in Fig. 2.1. The lattice
convention for the GLC is:

αi = 8(4π)2Li . (2.57)

Results from other determinations present in the literature in the Nf = 2 Wilson
setup are also reported (Del Debbio et Al. [56], Irving et Al. (UKQCD) [109]); we
also report results obtained from a subsequent work [tlS-1], see in the next Chapter.
The reported errors on the determinations of [Chi-1, Chi-2, Chi-3, tlS-1] are statistical
only.

11In this case, due to the low number of points at disposal, quadratic corrections were not included
in the fits.
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Table 2.3.: Overview of the results for the Gasser-Leutwyler coef-
ficients (valence quark mass analysis).

Ref. a(fm) mq/ms α5 2α8 − α5

[Chi-1] 0.28 0.25 1.6 ± 0.3 0.58 ± 0.03
[Chi-2] 0.19 0.28 2.2 ± 0.2 0.76 ± 0.05
[Chi-3] 0.19 0.28 2.1 ± 0.4 0.58 ± 0.05

UKQCD [109] 0.10 0.67 1.2 ± 0.6 0.36 ± 0.24

2.3.4. Discussion

The relative dispersion of the different lattice determinations in Tables 2.2 and 2.3, in
some cases larger than the statistical error, is to be attributed to relevant systematic
effects. Indeed, the collective fit for a given quantity always delivers chi-square/d.o.f. >
2. The observations made in [Chi-2, Chi-3] support the hypothesis that, for the con-
sidered regime of light quark masses, the neglected NNLO contributions in the chiral
expansion could play a major role.12

Nevertheless, all determinations of 2α8 − α5 are compatible with the “standard”
phenomenological value [28] supporting a massive u quark, see Fig. 2.1, lower right
panel. It should be recalled, however, that the dynamics of the s quark was not
included in these lattice simulations.

The main result of the studies [Chi-2, Chi-3] is that, for the analyzed regime of
quark masses (ms/3 ≤ mq ≤ 2ms/3), higher order corrections in the chiral expan-
sion dominate over lattice corrections. A direct verification of this conclusion can be
obtained by considering the quantity

RRn + 2RRf − 3 =

{
NNLO
O(a)

,

which vanishes in the continuum up to NLO order and, therefore, could be either
described by NNLO or O(a) terms. The two fits are shown in Fig. 5 of [Chi-3] for
the lightest sea quark mass. The chi-square of the fit is 1.3 for chiral fits including
some of the NNLO corrections and 7.2 for NLO fits with O(a) corrections. This
indicates that the NNLO corrections dominate. The systematic inclusion of all NNLO
corrections [27] in the fits, however, does not appear to be a viable possibility, since
it would involve too many free parameters.

We conclude that a light quark mass mq ' ms/3 is still outside the domain of
validity of NLO ChPT. This outcome motivates the simulation of lighter quarks. In

12In [150] a similar analysis was performed, in the Nf = 3 staggered-fermion formulation, only for
the pseudo-Goldstone boson masses. For 2α8 −α5 values in the range 0.4− 0.5 were found in the
region of quark masses considered here. For lighter quark masses, the value of 2α8 − α5 tends
to decrease. Since the GLC depend non trivially upon Nf , a quantitative comparison of these
results with the Nf = 2 case is not possible.

53
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the next chapter we will present a different formulation of QCD with Wilson lattice
fermions and new simulations algorithms which allow to make substantial progresses
in this direction. The experience accumulated in the course of these studies will be
useful in future applications with lighter quarks.
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Figure 2.1.: Comparison of lattice and phenomenological determinations of
low-energy constants, from the sea analysis (upper panels) and
from the valence analysis (lower panel)
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3. Simulation of twisted mass QCD
(TMQCD)

In this chapter, a recently discovered phenomenon in Wilson lattice QCD in the regime
of light quarks will be discussed, characterized by the appearance of metastable vacua
in the phase structure of the lattice theory. This feature of the Wilson formulation is
theoretically well understood and related to the explicit breaking of the chiral sym-
metry.

Moreover, a modification of the original Wilson formulation will be introduced,
known as “twisted mass” lattice QCD (TMQCD) [76]. TMQCD solves in a rather
simple way the two main problems of the Wilson formulation, infrared instability and
large cut-off effects, while maintaining the important advantages of simplicity and
theoretical soundness. TMQCD seems therefore to provide a suitable framework for
large-scale simulations of QCD in view of precise determinations in hadron physics.
The first steps taken in this direction will be reviewed in this chapter.

The two above outlined topics of the chapter are actually interrelated: any lattice
simulation towards the chiral limit requires, as a preliminary step, the investigation of
the phase structure of the underlying lattice theory. This investigation turns out to
be easier in the twisted mass formulation due to the presence of an additional tunable
parameter.

3.1. Introduction

As we have seen previously in this review, the lattice simulation of QCD with light
quarks presents several difficulties. In this chapter, a new aspect of the light quark
mass regime in Wilson QCD will be discussed; its relevance in numerical simulations
has only recently been pointed out [Wil-1]. This aspect is actually quite general and
is related to the explicit breaking of chiral symmetry present in any non Ginsparg-
Wilson formulation of lattice fermions. An useful theoretical framework in this context
is provided by chiral perturbation theory with the inclusion of lattice corrections [170].
Wilson chiral perturbation theory applying for the Wilson formulation was discussed
in the previous Chapter.

At finite lattice spacing and for light quarks, the explicit chiral symmetry breaking
can dominate over the soft breaking produced by the quark masses and a faithful
reproduction of the physical phase structure of QCD is not guaranteed in the lattice
theory. In particular, unphysical metastable states can appear. In the case of Monte
Carlo algorithms characterized by local ergodicity, as TSMB and HMC, the link con-
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figuration of the system can fluctuate for a rather long time during the update around
the local minimum represented by a “wrong vacuum”. Another unpleasant implication
of this unphysical regime is that the pion mass cannot be decreased below a certain
minimal value, a potential obstruction for the chiral limit.

As already anticipated, in this chapter a new formulation for lattice fermions,
TMQCD, will be introduced. It is obtained by a slight modification of the Wilson
formulation, which however introduces several substantial improvements. The mod-
ification consists in the introduction of a new (chirally twisted) mass term for the
quarks, which provides the already anticipated infrared regulator for the eigenvalue
spectrum of the Wilson-Dirac operator. The sharp infrared cut-off is expected to be
important in the simulation process and in the measurement of low-energy hadron
quantities, which are known to be affected by the fluctuations in the spectrum of the
Wilson-Dirac operator. In the twisted mass theory the standard “untwisted” mass can
be tuned to zero: in this case the theory is O(a) improved. The improvement follows
from a symmetry of the action and does not require additional improvements of the
operators.

After briefly introducing TMQCD for the Nf = 2 case in Sec. 3.2, the review will
concentrate on the phase diagram with Wilson fermions. In Sec. 3.3, the theoretical
picture will be given. Its numerical verification is contained in [Wil-1, Wil-2, dbW-1,
dbW-2], which will be reviewed in Sec. 3.4. The numerical results about the phase
structure of the lattice theory provided the basis for the large-scale simulations of
Nf = 2 TMQCD of [tlS-1] reviewed in Sec. 3.6. In Sec. 3.5 the methodology for the
numerical determination of the twist angle ω associated with the twisted theory is
explained.

QCD with only two light degenerate quark flavors has been considered until now
in this review. This formulation, however, is just an approximation of the physical
case where also heavier quarks are included. Inclusion of additional quark flavors in
the twisted mass formulation is not completely trivial, since reality of the fermion
action and improvement at maximal twist must be maintained. New flavors have to
be introduced in quark pairs forming isospin doublets. This means that, together
with the s quark, also the next heavier c quark has to be included. In Sec. 3.7 we will
discuss a twisted mass formulation accommodating a split-mass doublet describing the
s and c quarks (Nf = 2+1+1 QCD). First simulations and the preliminary study of
the phase structure of this lattice theory [tlS-2] will be discussed.

3.2. Twisted mass Wilson fermions

The lattice action for two degenerate flavors of twisted mass Wilson quarks, arranged
in the isospin doublet

χ ≡
(

χ1

χ2

)

, (3.1)
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can be written [76]

Sq = a4
∑

x

1

2a

±4∑

µ=±1

[r χ(x)χ(x) − χ(x + aµ̂)Uµ(x)(γµ + r)χ(x)]

+ χ(x)[m0 + iµ0 γ5τ3]χ(x) , (3.2)

where we define as usual U−µ(x) = U †
µ(x − aµ̂) and γ−µ = −γµ, τ3 is the third Pauli

matrix (in flavor space). When comparing with the original Wilson action for the
quark sector, Eq. (0.20), we realize that lattice fermion action (3.2) contains, besides
the standard mass term for a degenerate doublet

m0 χ(x)χ(x)

(m0 will be referred in the following as to the untwisted mass), an unconventional mass
term (twisted mass term)

iµ0 χ(x)γ5τ3χ(x) . (3.3)

An important point to notice here is that, in the continuum limit, the renormalized
theory associated to twisted mass lattice QCD only differs from the corresponding
renormalized theory of (conventional) Wilson lattice QCD by a redefinition of the
fermion fields by an axial chiral transformation [76]. This implies that the two theories
are equivalent in the continuum limit and both are expected to reproduce QCD. In
particular, the isospin and parity breakings introduced by the twisted mass term
disappear in the continuum limit: they represent discretization effects similar to, for
example, breaking of Lorentz invariance present in any lattice version of QCD.

More precisely, the renormalized theory associated to (3.2) may be identified with
QCD if the physical quark fields ψ, ψ̄ are identified according to:

χ → ψ ≡ ei ω
2

γ5τ3 χ , χ̄ → ψ̄ ≡ χ̄ ei ω
2

γ5τ3 , ω = arctan

(
µ

m

)

. (3.4)

The quantities m and µ in the above relations denote the renormalized counterparts
of the untwisted and twisted masses in the continuum limit; these are related to the
lattice Lagrangian parameters (m0 , µ0) by

m = Z−1
S0 (m0 − m0c) (3.5)

µ = Z−1
P µ0 ; (3.6)

here, ZS0 and ZP are the multiplicative renormalization constants of the scalar singlet
and pseudoscalar non-singlet fermion bilinears S0 = χ̄χ, P a = χ̄γ5τ

aχ (a = 1, 2, 3),
respectively; m0c = f(g0)/a is the additive mass renormalization of standard Wilson
lattice QCD.

Another important point to observe here, is that the validity of the identification
stated by Eqs. (3.4)-(3.6) strongly relies on the independence of the renormalization
scheme (defining the renormalized theory) of the actual value assumed by the quark
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masses (including both the untwisted and twisted masses in the twisted theory). Par-
ticularly convenient is the massless scheme, where the renormalization constants are
computed for vanishing quark masses. In this case twisted mass and standard (Nf = 2)
QCD trivially coincide and the renormalization constants in (3.5) can be computed,
for the given value of the lattice coupling g0, in the standard Wilson theory.

The physical quark mass mq is given in the twisted theory by the length of the two-
dimensional vector defined by the two components (untwisted, twisted) of the quark
mass:

mq =
√

m2 + µ2 ; (3.7)

observe that the twist angle ω in (3.4) corresponds to the polar angle associated to
this “mass vector”.

Even if the chiral twist of the quark mass does not change the continuum limit of the
lattice theory, it does have an effect at finite lattice spacing. Indeed, the Wilson term
is not invariant under the chiral transformation (3.4). The two main improvements
introduced in the lattice theory by the twisted mass term will discussed in detail in
the following two subsections.

3.2.1. Positivity of the fermion measure

For µ0 6= 0 the fermion measure resulting from the action (3.2), namely the determi-
nant of the associated fermion matrix, is characterized by a sharp infrared cut-off [76].

The fermion matrix of the twisted mass theory with degenerate quarks can be
written as (see Eq. (3.2))

QTM = Q × 11 + iaµ0 γ5τ3 , (3.8)

where Q is the standard matrix for one flavor of Wilson lattice quarks defined in
Eq. (0.23); 11 is the unity matrix in the two-dimensional flavor space. Starting
from (3.8), one can quite simply derive the following relation for the fermion de-
terminant of the twisted mass theory:

det(QTM) = det
[
(γ5Q)2 + (aµ0)

2
]

, (3.9)

where the determinant on the RHS is computed in the one flavor theory. The above
equation shows that the determinant of QTM is strictly positive for µ0 6= 0, and
consequently eigenvalues with arbitrarily small modulus cannot occur in the spectrum.
This feature of the twisted mass formulation, as discussed previously in this review, is
expected to ensure stability in the dynamical evolution of the lattice system in Monte
Carlo simulations.

3.2.2. O(a) improvement

O(a) improvement applies for the twisted mass theory [80] when the Lagrangian mass
parameter m0 is tuned to the critical value m0c for which the renormalized untwisted
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quark mass vanishes, m = 0, see Eq. (3.5). Improvement holds in this situation for
any value of the twisted quark mass µ, which represents in this case the total quark
mass (see also in the following); however, in a massless renormalization scheme m0c

must be in principle computed, for the given value of g0, in the limit of vanishing
(twisted) quark mass µ → 0. According to (3.4) m = 0 for µ 6= 0 implies ω = π/2,
corresponding to maximal twist.

Summarizing briefly the argument of [80] (see also [79]), for m = 0 the lattice ac-
tion (3.2) enjoys an extra symmetry which protects physical quantities from lattice
corrections with an odd power of the lattice spacing, O(a2k+1), k ≥ 0. This ensures
in particular O(a) improvement of all quantities which can be expressed as expec-
tation values of parity-even (multi)local operators1. The improvement at maximal
twist is “automatic” [80], in the sense that the absence of O(a2k+1) corrections only
relies on the symmetry properties of the lattice action (and of the insertion operators)
and the introduction of further counterterms in the action is not required. This has
to be compared with the standard Symanzik improvement program, where the non-
perturbative determination of the improvement coefficients for each composite field is
necessary [134].

The definition of maximal twist by the vanishing of the renormalized untwisted
quark mass m = 0 results in a natural way from the discussion of the cut-off effects in
the Symanzik expansion [179]. In this expansion, the renormalized continuum coun-
terpart of the quark mass appears. However, in the Wilson formulation of fermions, on
which the twisted mass formulation relies, the untwisted quark mass is not protected
from additive renormalizations due to the explicit breaking of the chiral symmetry2.
This fact introduces an O(a) ambiguity in the definition of the massless limit with
Wilson fermions. The consequence is that only a looser condition m = O(aΛ2

QCD) can
be enforced on the lattice without further action.

As already stated previously in this review, in an ideal approach the chiral extrap-
olation should be performed after the continuum limit. In this way, for fine enough
lattices, the soft chiral symmetry breaking in the lattice action always dominates over
the “sharp” O(a) breaking from the Wilson term. On the basis of a simple dimensional
analysis, one can conclude that the soft breaking introduces corrections of the order
∼ mqΛ

3
QCD, while the lattice breaking corrections ∼ aΛ5

QCD (the proportionality coef-
ficients can be reasonably assumed to be ' 1). The aforementioned “ideal situation”
therefore applies if

mq À aΛ2
QCD . (3.10)

It can be argued [80] that in this regime of quark masses, the lattice ambiguity in
the condition of vanishing untwisted quark mass does not spoil the argument of au-

1Automatic improvement includes all expectation values of parity-even (multi)local operators. Fur-
ther action is required for lattice operators which are not trivially even under parity. An example
is given by the projecting operators for states which are not at rest; in this case, an average over
the two directions of the momentum may be required (parity-average). Observe that vacuum
expectation values of parity-odd operators are in general non-zero and O(a) (even at maximal
twist) as a consequence of the parity breaking of the twisted mass formulation.

2This is instead the case for the twisted component.
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tomatic improvement: the O(a) ambiguity only affects the even cut-off effects in the
lattice spacing (namely O(a2) or smaller). So, any “reasonable” lattice prescription is
acceptable.

Very often however, the condition (3.10) cannot be realized in practice, since it
implies very fine (and large) lattices for the light quark masses required for safe chiral
extrapolations. More realistic regimes of quark masses are

mq ' aΛ2
QCD (3.11)

or even
mq ' a2Λ3

QCD ¿ aΛ2
QCD . (3.12)

In these regimes of quark masses not all prescriptions for maximal twist are equally
good, since some of them may introduce large O(a2) discretization errors in the result-
ing maximally twisted theory. Improvement would be in this case spoiled [13]. These
large discretization errors can be discussed in the Symanzik’s effective Lagrangian
framework by assuming a pion dominance at low-energies [79]. In this approach one
concludes that infrared enhanced cut-off effects O((aΛQCD)2k/µh), 1 ≤ h ≤ 2k can
indeed be produced at maximal twist by the O(a) parity breaking term in the effec-
tive action. In a Wilson ChPT analysis [172] these terms are automatically resummed
delivering infrared finite results [168]. Both approaches agree in the conclusion that lat-
tice corrections become very large as soon as, at maximal twist, µ ' mq = O(aΛ2

QCD).
An effective O(a) improvement, also holding in the regimes of quark masses (3.11),

and even (3.12) [168], is obtained if an “optimal” definition of the critical quark mass
is chosen [13, 168, 79]. For an optimal prescription of maximal twist, the infrared en-
hanced cut-off effects are reduced to O((aΛQCD)2k/µk−1) effects [79]. This suppression
can be understood in Wilson ChPT, where the leading cut-off effects are resummed:
for an optimal prescription the shifted untwisted quark mass incorporating lattice
corrections, see Eq. (3.17) in the following, vanishes with O(a3) precision, while it
vanishes with only O(a) precision [168] with a generic prescription. In the former case
improvement is effective down to quark masses mq & a2Λ3

QCD. As it turns out, the
O(a) improvement breaks down when the quark mass is reduced to a critical value in
the regime (3.12). At this point, as we will see in more detail in the next section, the
phase structure of the lattice theory departs from the picture of the continuum [170].

An optimal prescription for maximal twist in the sense of the above discussion
is obtained by requiring in the twisted theory the vanishing of matrix elements of
operators which are odd under parity in the physical theory [79]. Such a prescription for
tuning to maximal twist in numerical simulations was first proposed in [67] and [dbW-
1] (see also [dbW-2]). Details will be given in Sec. 3.5. This prescription based on
“parity restoration” is equivalent to imposing vanishing of the PCAC quark mass in
the twisted theory (see in the following).

Two different strategies can be at this point conceived for the simulation of the
theory at maximal twist; both turn out to ensure effective automatic improvement:

i) The theory is simulated, for different values of µ0, at m0 = m0c where m0c is the
critical mass extrapolated at µ0 = 0.
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ii) The theory is tuned to maximal twist only for the lightest quark mass µ0,min and
the so obtained value of m0c is used in all simulations at heavier quark masses.

Choice i) is consistent with a massless renormalization scheme, while choice ii) pro-
duces only small deviations in physical quantities ∼ a2µ0,minΛQCD ¿ 1 [79].

The two different prescriptions were tested in quenched simulations [115, 1]; small
lattice artifacts were indeed observed in both cases. The large-scale simulations with
dynamical fermions of [tlS-1], to be described in the following, rely on the procedure
ii).

For completeness, we mention that the question of the optimization of m0c becomes
immaterial if clover improvement [173] is performed in the twisted mass theory. In
this case indeed, the mass independent O(a) cut-off effects in the shifted untwisted
mass are canceled by the improvement term and only residual O(µ2a2) cut-off effects
remain. This strategy, which however requires the tuning of an extra coefficient, was
put forward in [23].

The freedom in the choice of the exact twisted formulation in the valence sector
can be used to simplify the complicated mixing patterns of composite operators in
the lattice theory; this is an important issue for example in the determination of the
parameter BK [81], relevant for the B0 − B̄0 mixing (see also [157] for a different
approach). A simple example of this advantage of the twisted mass theory can be
already found in the unitary formulation given by (3.2): in the (maximally) twisted
theory the physical axial-vector current corresponds to the vector current, for which an
exactly conserved lattice version exists; no lattice renormalization is therefore involved
in the determination of the pion decay constant Fπ.

3.3. The phase structure of lattice QCD with Wilson

fermions

In the continuum, the degeneracy of the QCD vacuum associated to the spontaneous
breaking of the chiral symmetry is resolved by the quark mass, which plays the same
role of an external magnetic field in a ferromagnet. The ground state corresponds to
a local minimum of the potential, which is symmetric in the chiral limit with massless
quarks. The properties of the resulting ground state, the vacuum, depend on the
detailed way the mass term in the QCD Lagrangian deforms the potential of the
theory. In the case of Wilson fermions, which we consider here, the quark mass does
not represent the only source of chirality breaking, since chirality is also explicitly
broken by the Wilson term (recall the discussion before Eq. (3.10)). Consequently,
the phase structure of the lattice theory may depart from the expected continuum
picture in regions of the parameter space in which the explicit breaking is comparable
in size with the soft breaking. In this case, extremely large discretization effects are
introduced in the lattice determinations.

The possible occurrence of such phenomena was realized already at a very early
stage in the theoretical discussion of lattice gauge theories [122]. The existence of

63



3. Simulation of twisted mass QCD (TMQCD)

an unphysical phase for the theory with more than one quark flavor was successively
conjectured by S. Aoki [12] (see also [44]). Aoki’s scenario corresponds to an extreme
situation, in which the QCD vacuum becomes unstable and the true vacuum breaks
both parity and flavor symmetry3. Numerical studies indicate [108] that the Aoki’s
scenario is realized in the strong-coupling regime of the lattice theory. In the more
interesting regime of weak couplings, near to the continuum limit, a milder scenario
is expected to apply. In this case, the lattice theory possesses a QCD-like vacuum,
however additional metastable states, corresponding to local minima of the free energy,
also appear in the phase structure of the theory. Findings in the numerical studies [31,
14, 15] may be interpreted as early evidences for the emergence of this latter scenario
in the regime of light quark masses. Clearly, the knowledge of the phase diagram of
the underlying lattice theory should be the prerequisite for any large-scale simulations
program.

A detailed investigation of the phase diagram of lattice QCD with Wilson fermions
and a twisted mass term was undertaken in [Wil-1, Wil-2, dbW-1, dbW-2, tlS-2]
and [68] in view of large-scale simulations of TMQCD (to be discussed in Sec. 3.6). The
objective of these studies was to map the “safe” region of parameter space, in which the
maximally twisted lattice theory is characterized by truly small O(a2) discretization
errors. In this section, a brief account of the underlying theoretical background is
given. Numerical results will be discussed in the next section.

We stress here that the hereby discussed complications, originating from the inter-
change of the chiral and the continuum limits, are generic for any non Ginsparg-Wilson
formulation which explicitly breaks the chiral symmetry. “Exotic” scenarios are also
possible for example in the case of the staggered fermions [19].

3.3.1. ChPT predictions

Wilson ChPT (discussed in the previous chapter, Sec. 2.2) provides the theoretical
background for the discussion of the phase structure of Wilson lattice QCD [170]. We
illustrate here the application to the standard theory. The inclusion of the twisted
mass term will be considered in the next subsection.

The vacuum of QCD is given by the absolute minimum of the potential, which at
low-energies is assumed to be dominated by the (pseudo) Goldstone bosons. In our
case, Nf = 2, these are given by the pions, whose fields can be parametrized as (see
the definition (2.4))

U = exp

{

i
3∑

a=1

πaσa/F0

}

. (3.13)

On the basis of the vector symmetry (gL = gR in (2.3)), preserved by the Wilson
formulation, one can show that the potential must be a function of the flavor-trace

A =
1

4
Tr(U + U †) , −1 ≤ A ≤ 1 . (3.14)

3In a different interpretation [29], this vacuum corresponds to one of the degenerate vacua associated
to the (continuum) chiral phase transition, see also the discussion in [170].
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In the continuum, the potential is a polynomial in A, of second order up to NLO or
O(m2

q):

V = −c1A + c2A
2 , (3.15)

with c1 = 2F 2
0 B0mq, while the exact expression for c2 = O(m2

q) contains a combination
of Gasser-Leutwyler coefficients.

Inclusion of lattice corrections up to O(a2) in the sense of Wilson ChPT produces
an O(a) shift of the coefficient c1, c1 = O(mq, a), while the coefficient c2 gets O(amq)
and O(a2) corrections: c2 = O(m2

q, amq, a
2).4 After rewriting (3.15) in the convenient

form

V = c2(A − ε)2 + const , ε =
c1

2c2

− 1 ≤ A ≤ 1 , (3.16)

one immediately concludes:

i) for |ε| ≥ 1 the potential has one (absolute) minimum at A = sgn(c1),

ii) for |ε| < 1 and c2 < 0 the potential has an absolute minimum at A = sgn(c1)
and in addition a local minimum at A = −sgn(c1),

iii) for |ε| < 1 and c2 > 0 the potential has one minimum at A = ε .

The scenario i) corresponds to the physical situation. This is what results from con-
tinuum NLO ChPT if the quark mass is not too large and ChPT is applicable (in the
continuum one has ε ∼ 1/mq). Scenarios ii) and iii) can only be realized, for small
quark masses for which the NLO chiral expansion is applicable, if the O(a) corrections
play a major role. Notice that ε is a measure of the size of the LO term when compared
to the NLO correction.

The coefficient c1 gives a possible lattice definition of the quark mass

m′
q ∼ c1 , with m′

q = mq + O(a) . (3.17)

The crucial point is that ε is not necessarily large if m′
q ∼ c1 = O(a2). This situation

occurs when mq = O(a), also implying c2 = O(a2): c1 and c2 are in this case of the
same order of magnitude O(a2) and their ratio ε can be smaller than one. So, in this
regime of quark masses one of the two unphysical scenarios ii) or iii) can potentially
apply, depending on the sign of c2.

Case ii) is the “mild” scenario anticipated at the beginning of this section. Here
the metastable state corresponds to the vacuum appropriate for the opposite sign of
the quark mass m′

q. For m′
q = c1 = 0 the potential is symmetric in A and the two

states with A = ±1 are degenerate as one would expect for vanishing quark masses.
When c1 (or m′

q) changes sign the two vacua are switched. For m′
q = 0, due to O(a)

terms, a different lattice definition of the quark mass, as for example the PCAC quark
mass (1.20), is expected not to vanish. The latter therefore changes sign and has a

4We omit here powers of ΛQCD needed to restore the right mass dimensions.
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Figure 3.1.: Phase structure of twisted mass lattice QCD.

discontinuity at m′
q = 0. Similarly, the pion mass does not vanish at m′

q = 0, while
assumes a (non-zero) minimal value [170]:

(M (min)
π )2 =

2|c2|
F 2

0

= O(a2) . (3.18)

Case iii), less relevant for us, corresponds to the “extreme” scenario of the Aoki
phase. Here |Amin| < 1, which in turn implies Umin 6= 11: the pion field must have a
non-zero vacuum expectation value, see (3.13) and (3.14). This latter scenario seems
to apply in a regime of strong couplings [108] and should not affect lattice simulations
towards the continuum limit.

3.3.2. Adding the twisted mass term

A twisted mass term in the lattice action introduces a third direction µ in the param-
eter space of Wilson lattice QCD, besides the conventional untwisted quark mass and
the coupling constant, or in lattice notation the hopping parameter κ ≡ 1/2(m0 + 4r)
and β ≡ 6/g2

0. The resulting parameter space is therefore three-dimensional as de-
picted in Fig. 3.1. The phase diagram of Wilson lattice QCD in this extended pa-
rameter space was studied within Wilson ChPT in [144, 165, 171]; we report in the
following the main features relevant for the future discussion.

In the continuum limit and for fixed values of the quark mass in physical units,
the twisted mass term just produces a chiral rotation of the vacuum, see Eq. (3.4),
which is immaterial from the point of view of physics. The theory can be “rotated
back” to standard QCD by proper redefinition of the quark fields. Lattice corrections
produce in this case small O(a) deviations if |ε| ≥ 1 (scenario i)). In this “safe” region
of parameter space an effective O(a) improvement can be realized at maximal twist,
with small O(a2) discretization errors, if an optimal definition of maximal twist is
chosen, see the discussion in Subsec. 3.2.2.
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For a given lattice formulation in the gauge sector, the coefficient c2 in (3.15),
whose sign discriminates between the scenario ii) first order phase transition as in
the continuum and iii) Aoki phase, is a function of β. As mentioned above, for low
values of β (strong coupling) scenario iii), c2 > 0, is expected to apply. In this case
the unphysical phase disappears for non-zero twisted mass: it only extends in the
untwisted mass (or κ) direction (this is the blue region in Fig. 3.1).

The case of interest ii), on the contrary, is expected to apply at weak couplings,
on the right in the figure. Here the unphysical first order phase transition at m′

q = 0
(maximal twist) extends in the twisted mass (µ) direction: a critical segment appears,
defined by5

|µ| ≤ µc(β) =
|c2|

B0F 2
0

= O(a2) ; (3.19)

this is the red region in the figure.

The charged pion mass assumes on this segment the minimal value (3.18). The lat-
ter represents the absolute minimum for the charged pion mass in the (κ,aµ)-plane for
fixed β. The neutral pion mass vanishes at the endpoint of the first order phase tran-
sition at κ = κc, |µ| = µc, where the system undergoes, according to this discussion, a
second order phase transition.

3.4. Study of the phase diagram of TMQCD [Wil-1,

Wil-2, dbW-1, dbW-2]

As we have seen in the previous section ChPT predicts, for the Wilson lattice theory,
strong deviations in the phase structure from the continuum picture, when the region
of small quark masses mq = O(a) is entered. ChPT, however, does not predict the
precise region of parameter space affected by the unphysical phases, nor discriminates
between the two possible scenarios ii) and iii) of Sec. 2.1: the sign of the coefficient
c2 is a priori unknown. More in general, it is important to know whether the above
described exotic scenarios apply for values of the lattice spacing and of the quark
masses which are relevant in view of phenomenological applications. Open questions
are the dependence of the phase diagram of the lattice theory upon the lattice spacing
and the impact of the formulation for the gauge sector.

In [Wil-1] a microscopic interpretation for the first order phase transition was given.
According to this interpretation, the phase transition is related to a massive rearrange-
ment of the eigenvalues of the Wilson-Dirac operator in the infrared region. As will
be explained in Subsec. 3.4.4, the introduction of extended loops in the definition of
the gauge action is expected to produce an impact in this region of the Wilson-Dirac
spectrum. Examples already considered in the literature contemplate the introduction
of rectangular loops in the standard plaquette action (0.15); one can define a family

5Due to the symmetry of the lattice action, the sign of µ is irrelevant.
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of lattice gauge actions:

Sg = β

{

b0

∑

¤

(

1 − 1

3
RTrU¤

)

+ b1

∑

rec

(

1 − 1

3
RTrUrec

)}

, (3.20)

where the new variable Urec result from the product of links along a a × 2a lattice
loop; the normalization condition b0 = 1− 8b1 ensures the reproduction of the correct
continuum limit. The Wilson plaquette action corresponds to b1 = 0. An optimal
choice of b1 in view of reduction of lattice artifacts can be obtained in tree-level weak-
coupling perturbation theory. This leads to b1 = −1/12 [192] corresponding to the
tree-level Symanzik improved gauge action (tlSym). An alternative approach relies on
the renormalization group theory: cases considered in the literature are the DBW2
gauge action [181], b1 = −1.4088, and the Iwasaki action [111], b1 = −0.331. The
extension and strength of the unphysical first order phase transition in the resulting
lattice theory will be considered as a further criterion for an optimal choice in the
gauge sector.

3.4.1. Algorithmic developments

Two different simulation algorithms were employed for the study of the phase structure
of Wilson lattice QCD: the TSMB algorithm described in Chapter 1 and a new version
of the HMC algorithm optimized for high efficiency in the light quark regime; this is
a multiple time-scale mass-preconditioned HMC (mtmp-HMC [185]). Cross-checking
results from two different simulation algorithms was important in order to disentangle
possible simulation artifacts from the observed emerging phenomena in the phase
structure.

The TSMB algorithm was already described in Sec. 1.2. The mtmp-HMC algo-
rithm differs from standard HMC of [62] by several improvements including mass-
preconditioning [102] and a multiple time-scales integration scheme [166]. A detailed
description of the algorithm can be found in [185], where a dramatic reduction of the
simulation costs for Wilson fermions in the light quark regime was proven. The com-
parative tests of [Wil-1] show that mtmp-HMC is superior to TSMB in decorrelating
configurations of the system for the considered regime of light quark masses.

This success of mtmp-HMC prompted further algorithmic developments: in [140]
a polynomial version of the HMC algorithm (PHMC [52, 78]) was designed including
the aforementioned improvements. In addition, some advanced features are inherited
from TSMB, as for example the stochastic correction in the update (see Sec. 1.2).
This optimized PHMC algorithm, which can be applied for arbitrary flavor structure,
is a promising starting point in particular for the Nf = 2+1+1 twisted mass formu-
lation including the s and c quarks (to be considered in Sec. 3.7). Applications of an
analogous algorithm in SYM and in Nf = 1 QCD are also in progress [Nf1] [57, 72].
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3.4.2. Wilson plaquette action [Wil-1]

In [Wil-1] first investigations of the phase diagram were performed with the plaquette
action in the gauge sector, evidences for a first order phase transition were collected,
and the identification of the latter with the phase transition predicted by Wilson
ChPT [170] was put forward. The Wilson action was simulated in this case for a
single value of the coupling constant β = 5.2, corresponding to a(5.2) ' 0.15 fm.6

Both the untwisted theory and a non-zero twisted mass aµ0 = 0.01 were considered;
the latter mass corresponds to µ ' 12 MeV in physical units if renormalization factors
are neglected.

Hysteresis cycles. In a preliminary survey, the thermal cycles of the plaquette
as a function of the hopping parameters κ (driving the untwisted quark mass) were
performed for different values of aµ0 on small lattices. Hysteresis phenomena were
observed for small values of aµ0 (Fig. 1 of [Wil-1]). This observation supports a first
order phase transition for µ < µc, as predicted by Wilson ChPT.

Metastability of the plaquette. The metastability of the plaquette was further
investigated on larger 123 · 24 and 163 · 32 lattices. The existence of metastable vacua,
typical of a first order phase transition, was observed. As we have seen in Sec. 3.3,
for a given value of the twisted mass below the critical value (3.19), Wilson ChPT
predicts the existence, in addition to the true vacuum, of a metastable vacuum. The
latter becomes the true vacuum of the theory when the sign of the untwisted mass is
reversed.

The technique for a systematic investigation of the metastable vacua is based on the
observation that the vacuum associated with a negative quark mass is characterized
by smoother gauge configurations (signaled by a larger value of the average plaquette).
So the vacuum associated with the negative (positive) quark mass can be localized by
starting the thermalization from a cold (hot) configuration: the expectation is that the
local update algorithm remains in the metastable vacuum for a while before finding
the true minimum. The two time histories of the average plaquette, from cold and
hot start, are expected to display therefore different plateau values for intermediate
Monte Carlo times, corresponding to the two different vacua. In Fig. 2 of [Wil-2]
examples are shown. The full accomplishment of this procedure can be in practice
very expensive, especially for large volumes where the tunnelling is less probable. As
a matter of fact, the localization of the true minimum is in many cases not possible.
An unpleasant aspect of this situation is that a complete simulation can be performed
in the wrong vacuum.

Minimal pion mass. Further investigated quantities were the charged pion mass
Mπ+ and the untwisted PCAC quark mass. The latter is defined by the PCAC relation,
holding for the charged axial-vector current in the twisted theory, with an appropriate

6The lattice spacing is estimated from the Sommer parameter after chiral extrapolation. However,
due to the metastabilities, a massless renormalization scheme is not really well defined. This
estimate and analogous ones given in the following should be interpreted therefore as indicative
values.
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insertion operator

mPCAC
χ =

∂µ〈χ̄γµγ5
τ+

2
χ(x) χ̄γ5

τ+

2
χ(y)〉

2〈χ̄ τ+

2
γ5χ(x) χ̄γ5

τ+

2
χ(y)〉

(3.21)

(τ± = τ1 ± iτ2). mPCAC
χ provides a lattice definition of the untwisted quark mass

alternative to the rather abstract one of Eq. (3.17).
While decreasing the untwisted quark mass for a fixed twisted mass, a switch of

the vacuum is at some point observed, signalled by the sign change of mPCAC
χ (Fig. 4

of [Wil-1]). Consistently, the pion mass never vanishes but presents a minimum (Fig. 3
of [Wil-1]). These observations again support the picture of a first order phase tran-
sition predicted by Wilson ChPT.

The PCAC quark mass reabsorbs most of the O(a) discretization effects in the
quark mass dependence of the pion mass. In particular for mPCAC

χ = 0 the theory
is at maximal twist and O(a) corrections are absent in physical quantities (as also
confirmed by NLO Wilson ChPT formulae [172]). This is illustrated by Fig. 5 of [Wil-
1], where the pion mass is reported as a function of mPCAC

χ : the extrapolated value of
the pion mass at maximal twist is very small, consistent with the relatively light quark
mass µ ' 12 MeV. This observation has an academic value only, since, due to the
metastabilities, the minimal simulated pion mass is rather large M

(min)

π+ ' 550 MeV:
the chiral point can only be accessed after a rather long extrapolation. According to
Wilson ChPT this value of the pion mass, which depends on the lattice spacing, sets
an absolute lower limit for the lightness of the pion in lattice simulations.

Discussion. Hints for a bulk phase transition in Wilson lattice QCD were previ-
ously found in the Nf = 3 theory [14, 15] and in the Nf = 2 theory at finite tempera-
ture [31]. To what extent these observations are related to the present evidences of a
first order phase transition is however not yet completely clear.

An important question left unanswered by [Wil-1] is how the phase transition scales
with the lattice spacing, and in particular which is the largest lattice spacing suitable
for light quarks and a short chiral extrapolation. Taking for example the benchmark
value Mπ ' 300 MeV, for which NLO ChPT is expected to give accurate predictions,
a maximal lattice spacing ā can be defined by inverting the condition

ā : M
(min)

π+ (ā) = 300 MeV . (3.22)

An answer to this question is given in the study [Wil-2], which will be discussed in
the next subsection.

3.4.3. Scaling of the phase diagram [Wil-2]

In order to probe the lattice spacing dependence of the phase diagram, the analysis
of [Wil-1] was extended in [Wil-2] to a coarser (β = 5.1) and a finer (β = 5.3) lattice.
Altogether the study includes three lattice spacings: a(5.1) ' 0.17 fm, a(5.2) '
0.15 fm, a(5.3) ' 0.12 fm. The scaling test was performed at fixed physical conditions;
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in particular, the parameter aµ0 was varied with β such that µ is roughly constant
' 12 MeV; the lattice extension is L ' 2 fm.

Estimate of the minimal lattice spacing. In Sec. 3.3 a definition of the minimal
pion mass associated to the unphysical first order phase transition was given. This
corresponds to the value assumed by the charged pion mass when the shifted quark
mass m′

q (3.17) vanishes and the potential is symmetric. The precise value of the
hopping parameter for which the two vacua are degenerate cannot be easily established
in practice, however, and this definition cannot be directly implemented in numerical
simulations.

A numerically more accessible, though not completely rigorous, estimate of the mini-
mal pion mass is obtained by determining (by interpolation) the value of κ correspond-
ing to equal values of aMπ+ in the two phases. The so obtained pion mass is taken as
a definition of M

(min)

π+ . This procedure results, for the three lattice spacings considered

in [Wil-2], in the following values: M
(min)

π+ (5.1) ' 740 MeV, M
(min)

π+ (5.2) ' 640 MeV

and M
(min)

π+ (5.3) ' 480 MeV.

The benchmark lattice spacing ā defined in (3.22) can now be obtained by extrap-

olation, assuming on the basis of (3.18) a linear dependence of M
(min)

π+ on a. This
results in ā = 0.072− 0.075 fm, depending on the number of included points (2 or 3).

The given definition of the minimal pion mass M
(min)

π+ is anyway academic: this value
of the pion mass is obtained when the lattice theory is maximally metastable. A more
useful benchmark, in view of the computation of physical quantities by numerical
simulations, is given by the lightest pion mass which can be simulated in absence
of metastable vacua, namely outside the critical region of untwisted quark masses
centered at m′

q = 0. Only positive values of the untwisted mass should be taken into
account in this case, since lattice simulations are usually performed in this region of
quark masses (simulations with negative quark masses are generally subject to larger
fluctuations). This kind of analysis delivers a somewhat larger range for the benchmark
lattice spacing, ā = 0.07− 0.1 fm (the lowest value appears to be more likely than the
highest).

In view of these results, the Wilson plaquette action appears not to be well suited for
lattice simulations in the light quark regime. The largest lattice spacing allowing stable
simulations for light quarks is already rather demanding in terms of computational
load. The finer lattices required for the continuum extrapolation would be even more
demanding.

Scaling test. The work [Wil-2] also contains a scaling test for few elementary
quantities as the charged pion mass and decay constant. Since a (rigorous) chiral
extrapolation of the Sommer parameter is not possible due the metastabilities (see
the footnote to Subsec. 3.4.2), the lattice scale was fixed at a non-zero reference quark
mass by requiring (Mπ+r0)

2 = 1.5. Given a quantity O (pion mass or decay constant)
the dimensionless ratios

RO =
O

O|ref

(3.23)
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were considered. Neglecting the effect of the (small) twisted mass µ, RO is a universal
function of the dimensionless ratio of untwisted quark masses

σ =
mPCAC

χ

mPCAC
χ |ref

. (3.24)

The results reported in Figs. 5, 6 and 7 of [Wil-2] for the functional dependence
of the dimensionless ratios RO upon σ reveal surprisingly small scaling violations.
Due the rather large values of the pion mass Mπ+r0 > 500 MeV, the question arises,
whether these good properties are maintained closer to the chiral limit. Moreover,
the results could be affected by the first order phase transition. It would of course
desirable to perform such a test in absence of metastabilities. As we will see in the
following, this can be realized by using a different formulation in the gauge sector.

3.4.4. DBW2 gauge action [dbW-1, dbW-2]

As already mentioned at the beginning of this section, a gauge action with extended
Wilson loops is expected to improve the behavior of the lattice theory in relation to the
metastabilities. Prior observations [14, 15] indeed indicate reduction of metastabilities
in the case of a RG improved action with a rectangular term (Iwasaki action). We
consider here the DBW2 gauge action.

Simulation. Three values of β were studied with the DBW2 gauge action: β = 0.55
on a 83 · 16 lattice, β = 0.67 on a 123 · 24 lattice and β = 0.74 on a 163 · 32 lattice.
The first lattice is a rather coarse one: a(0.55) ' 0.3 fm, while the two finer lattices
correspond to a(0.67) ' 0.18 fm and a(0.74) ' 0.13 fm respectively. These two
smaller lattice spacings are close to the ones considered for the Wilson gauge action
(a ' 0.12 − 0.17 fm).

Also in this case, both vanishing and non-vanishing twisted masses were studied,
aµ0 = 0.01 (β = 0.67) and aµ0 = 0.0075 (β = 0.74). The value of the twisted mass in
physical units, µ = 0.11 MeV, and the linear extension of the lattice, L ' 2 fm, roughly
match those considered for the Wilson gauge action. The two consistent setups allow
a direct comparison between the Wilson plaquette action and the DBW2 action.

The DBW2 action displays nice properties in the simulation process: smoother
configurations are sampled and small real eigenvalues of the fermion matrix occur less
frequently. This produces a sizeable speed up of the TSMB algorithm even in the
untwisted theory.

In [dbW-2] the optimized HMC algorithm mtmp-HMC described in Subsec. 3.4.1
was compared with TSMB; the former algorithm appears to over-perform the latter
by a factor 10 in computer time, confirming that an optimized HMC algorithm is the
best choice for dynamical simulations in the light quark regime.

Phase transition. The expected improvement of the metastabilities is indeed
observed with the DBW2 gauge action. They are observed in the untwisted runs, see
in [dbW-1] the upper panels of Figs. 4 and 5. However for a non-zero twisted mass
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they disappear already at the moderate lattice spacing a(0.67) ' 0.18 fm, see lower
panels of the figures. A small effect, probably a residuum of a weak phase transition
(or crossover) can be observed in the pion mass. The improvement is impressive, if
one compares with the corresponding case at β = 5.2, compare for example with Fig. 1
of [Wil-2]. For the β = 0.74 case studied in [dbW-2], the relatively small twisted quark
mass already brings the system to a safe region away from the phase transition. This
can be seen in the smooth behavior of the PCAC quark mass in Fig. 4 of [dbW-2].
In the Wilson plaquette case for similar conditions (β = 5.3) the lattice model is still
clearly in the metastable region.

A consistent picture of the results with the Wilson plaquette and DBW2 gauge
actions can be obtained within Wilson ChPT (Secs. 3.3.1 and 3.3.2). In particular,
the extension of the critical segment in the twisted mass direction (3.19) is given by
the coefficient c2, whose size depends on the size of W0 and on a combination of Wilson
GLC [171], see Eqs. (2.30)-(2.32). These quantities depend on the lattice gauge action
and the extension of the critical region is probably reduced in the DBW2 action as an
effect of the rectangular terms.

This is the right place to mention that, those discussed here are very special dis-
cretization effects: the (partial) improvement realized in the case of the potential is
not guaranteed for other important quantities, for example in the gluon sector. This
point will be further considered when discussing the choice of an optimal gauge action
in the light quark mass regime.

Minimal pion mass. In absence of metastabilities, the minimal pion mass ob-
tained at maximal twist corresponds, up to (small) O(a2) corrections, to the contin-
uum value for the given value of mq ≡ µ. In particular, LO Wilson ChPT predicts for
µ > µc for the pion mass

(M
(min)

π+ )2 = 2B0µ + O(a2) (mPCAC
χ = 0 , µ > µc) (3.25)

(inside the critical region for µ < µc the continuum value is exceeded by a factor µc/µ).
So in the present case outside the metastable region, the most appropriate estimate of
M

(min)

π+ is obtained by fitting the lattice data for the pion mass with the Wilson ChPT
formulae; see also in the following in this subsection and Figs. 9 and 10 of [dbW-2].
The results for the two values of β are similar (recall that µ is constant ' 11 MeV

in physical units): M
(min)

π+ = 270 − 280 MeV. This result must be compared with the
much larger values obtained with the Wilson plaquette action in a similar physical
situation (480 MeV and higher, see in Subsec. 3.4.3).

The DBW2 action displays an extremely nice behavior in relation to the metasta-
bilities: already for rather coarse lattices with a ' 0.13 fm, pion masses as small as
Mπ . 300 MeV can be simulated without any influence from the phase transition. In
the case of the plaquette action, we recall, a lattice spacing as small as a ' 0.07 fm is
required.

Chiral fits. Chiral fits have been performed in [dbW-2] on some of the pion
properties in the charged sector, including the mass and decay constant. Differently
from the studies described in Chapter 2, here the investigation is of qualitative nature
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only. The main goal was to verify whether chiral formulae are applicable in the vicinity
of or even across a phase transition, namely in a metastable vacuum. In particular, it
turns out that the parametrization of pion properties in terms of the untwisted PCAC
quark mass mPCAC

χ (3.21) removes most of the discretization effects.
The fits of [dbW-2] include lattice corrections up to O(a) precision. Wilson ChPT

for the twisted formulation was developed in [145, 146, 172, 165]. The expansion of the
pion mass in terms of the PCAC quark mass takes the form (compare with Eq. (2.33)
where the pion mass is parametrized in terms of the continuum quark mass)

M2
π±/F 2

0 = χ +
1

32π2
χ2 ln

χ

(4π)2
+ δW

NLO, tree , (3.26)

δW
NLO, tree = δNLO, tree + 8(2W6 + W8 − 2W4 − W5 − 2L6 − L8 + 2L4 + L5) ρχPCAC ,

where δNLO, tree is the continuum correction given in Eq. (2.10). The dimensionless
quark mass χPCAC (2.11) is in the present case defined in terms the renormalized
untwisted quark mass

m = ZAZ−1
P mPCAC

χ , (3.27)

while in χ the full quark mass is inserted:

mq = Z−1
P

√

(ZAmPCAC
χ )2 + µ2

0 . (3.28)

The formula (3.26) can be used to fit lattice data across the phase transition. The
minimal pion mass in absence of metastabilities can be determined by extrapolating
(or interpolating) to mPCAC

χ = 0. This procedure is particularly interesting in the case
of the simulation points with the Wilson plaquette action of Subsec. 3.4.2, which lie
in the metastable region.

The chiral fits relative to the DBW2 gauge action, given in Table 10 of [dbW-
2], give reasonable values for the physical quantities, even if with large fluctuations
related to systematic effects. The results for the low-energy constant F0 lie in the
range 70 − 80 MeV close to the phenomenological value F0 ' 86 MeV.7 The results
for the low-energy constants Λ3/F0 and Λ4/F0 (see definition (2.54)) lie in the range
7-8 and 17-20 respectively, in agreement with the results of Chapter 2, Table 2.1. The
determination of the low-energy coefficients describing the lattice artifacts is afflicted
with large statistical uncertainties. This indicates that the lattice corrections have
little significance for the basic description of the lattice data (this observation agrees
with the results of Chapter 2).

3.4.5. Tree-level Symanzik improved gauge action

The phase structure of the lattice theory is one important criterion for the choice
of the gauge action for large-scale simulations. As we have seen, a gauge action

7For comparison, the result obtained from the direct determination of the pion decay constant by
Eq. (3.41), to be discussed in the next subsection, is F0 = 76(5) MeV.
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containing a rectangular term with a negative coefficient (b1) has better properties in
this respect. We considered as a benchmark the maximal lattice spacing ā allowing
stable simulations with pions as light as 300 MeV. We found for the Wilson plaquette
action (b1 = 0) ā ' 0.07 fm, and for the DBW2 action (b1 = −1.4088) ā ' 0.13 fm.

The metastabilities should not be however the only criterion for the choice of the
gauge action. In particular, one could be worried about the relatively large coefficient
attached to the rectangular term in the DBW2 action; large scaling violations could be
injected somewhere else. In fact the DBW2 action is suspected of suppressing small size
instantons and therefore of introducing large distortions in the hadron spectrum [54].
Bad scaling behavior for DBW2 was observed in the pure gauge theory in [148]. Finally,
large corrections in weak-coupling perturbation theory were found in [107].

If the phase structure points towards a strictly negative value for b1, some freedom
is left in the range −1.4088 < b1 < 0. A special point in this range is represented by
b1 = −1/12, where the pure gauge theory is improved at tree-level in weak-coupling
perturbation theory [192] (tree-level improved Symanzik action, tlSym). Good scaling
and fast convergence in perturbation theory are in this case expected, but the behavior
in relation to the phase structure has to be checked.

The properties of the tlSym action in relation to the phase structure where studied
in [68]. There, the phase transition was investigated for three values of β, correspond-
ing to a ' 0.1− 0.13 fm. The basic result of this analysis is that for a . 0.1 fm a pion
as light as ∼ 280 MeV can be simulated (µ ' 8 MeV) in absence of metastabilities.
On the basis of this result and of the other aforementioned expected good qualities,
tlSym was taken as the gauge action of choice for the large-scale simulations of Nf = 2
TMQCD at maximal twist, to be discussed in Sec. 3.6.

3.5. Determination of the twist angle ω

[dbW-1,dbW-2]

We recall that the twist angle ω is defined by Eq. (3.4) as the angle of the chiral
rotation transforming, in the continuum limit, the twisted theory back to ordinary
QCD. In [dbW-1, dbW-2] (see also [67]) a methodology was proposed for the numerical
determination of the twist angle from the analysis of certain correlators of the chiral
currents in the twisted mass theory. As we will explain below, this methodology is
based on the requirement that, after the chiral rotation, the chiral currents assume
the expected symmetry properties valid in ordinary QCD.

The physical chiral currents of QCD can be related to the bilinears of the χ-fields
in the twisted mass formulation,

V a
µ (x) = χ(x)

1

2
τaγµχ(x) , Aa

µ(x) = χ(x)
1

2
τaγµγ5χ(x) , (3.29)

by re-expressing the χ-fields in terms of the physical fields ψ (3.4) [76]. In the case of
the charged currents (a = 1, 2) the relation assumes the simple form

V̂ a
µ (x) = ZV V a

µ (x) cos ω + εab ZAAb
µ(x) sin ω , (3.30)
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Âa
µ(x) = ZAAa

µ(x) cos ω + εab ZV V b
µ (x) sin ω . (3.31)

The lattice renormalizations ZV (g0) and ZA(g0) are needed in order to enforce the
correct normalization of the bilinears of the χ-fields8.

As shown in [dbW-1, dbW-2], for a given choice of the lattice parameters m0 and
µ0 the twist angle ω can be determined by requiring that the physical currents V̂ a

µ (x)

and Âa
µ(x) reproduce the correct transformation properties under the symmetries of

(continuum) QCD. Two conditions are required due to the presence in (3.30), (3.31)
of unknown lattice renormalization factors. Considering for example the symmetry
under parity, two possible conditions are:

〈 0 | V̂ +
0 (x) |π−, ~p = 0 〉 = 〈 0 | Â+

i (x) | ρ−, ~p = 0 〉 = 0 . (3.32)

At maximal twist ω = π/2 , the parity of the chiral currents is swapped in the
χ-basis, see Eqs. (3.30) and (3.31), and the first condition in (3.32) reads

〈 0 |A+
0 (x) |π−, ~p = 0 〉 = 0 . (3.33)

The meaning of this condition becomes more transparent if one considers an equiv-
alent condition9

〈 0 |∇µA
+
µ (x) |π−, ~p = 0 〉 = 0 , (3.34)

which is equivalent to imposing vanishing of the untwisted PCAC quark mass (3.21):

mPCAC
χ = 0 . (3.35)

As pointed out in [168, 79], the definition of maximal twist given by (3.33) and the
equivalent condition (3.35) are optimal in the sense of the discussion of Subsec. 3.2.2.

Observe also that Eqs. (3.32) ensure parity restoration in the continuum limit only,
where Eqs. (3.30), (3.31) become exact. At finite lattice spacing, residual O(a) isospin
and parity violations, O(a2) at maximal twist, are expected. The verification of the
relevance of these effects in lattice computations is therefore of utmost importance
(for first studies in the quenched approximation, see [1, 113].

3.5.1. Numerical determination of ω

By inserting Eqs. (3.30), (3.31) into the conditions (3.32), relations involving hadron
correlators and containing the two unknown “auxiliary angles”

ωV = arctan(ZAZ−1
V tan ω) , ωA = arctan(ZV Z−1

A tan ω) (3.36)

are obtained. The two auxiliary angles ωV , ωA can be directly related to ratios of
hadron correlators of the twisted theory (Eqs. (22) and (23) of [dbW-2]); a typical
example of such a determination can be found in Fig. 2 of [dbW-2]. The angle ω

8In a massless scheme, these lattice renormalization coincide with those of standard QCD.
9Equivalence of the two conditions has been verified numerically: see Fig. 3 of [dbW-2].
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is determined, together with the ratio of the renormalization constants ZA/ZV , by
inverting the relations (3.36):

ω = arctan
(√

tan ωV tan ωA

)
,

ZA

ZV

=
√

tan ωV / tan ωA . (3.37)

Fig. 6 of [dbW-1] shows the dependence of ωV upon the untwisted quark mass for
fixed µ0; the sharp, cross-over-like change of the twist angle around maximal twist
ωV = π/2 is probably explained by the nearby phase transition (the twist angle has
a jump across the critical segment and never assumes the value π/2). As one can see
from Table 4 of [dbW-2], one run at β = 0.74 is practically at maximal twist (with
a ' 0.13 fm and Mπ ' 300 MeV).

3.5.2. Renormalization constants

The enlarged parameter space of the twisted mass formulation opens new possibilities
for the non-perturbative determination of the renormalization constants of compos-
ite operators (this also applies for the Nf = 2+1+1 formulation to be discussed in
Sec. 3.7). In a massless renormalization scheme, the latter renormalization constants
are obtained after the chiral extrapolation and coincide with the corresponding renor-
malizations of Wilson lattice QCD.

As noticed in [dbW-1], the dependence of the twist angle upon the untwisted quark
mass allows to determine the ratio ZP /ZS – we have already shown how ZA/ZV can
be determined from the analysis of the twist angle. The twisted mass formulation
also opens a clean channel for the determination of ZV . For µ 6= 0 the bilinear V a

0 (x)
(see (3.29)) projects onto the pion state, and ZV can be obtained by

ZV =
〈0|Ṽ +

0 (x)|π−, ~p = 0〉
〈0|V +

0 (x)|π−, ~p = 0〉 , (3.38)

where Ṽ is the conserved version of the current [32]. At µ = 0 the analogous procedure
has to rely on the noisier matrix elements of the vector current (with spatial indices)
or on more complicated three-point functions. By putting together the above deter-
mination of ZA/ZV and the determination of the absolute normalizations ZV (3.38),
ZA can also be determined [dbW-1, dbW-2].

3.5.3. Physical quark mass and pion decay constant

The physical PCAC quark mass mPCAC
q (not to be confused with the untwisted PCAC

quark mass mPCAC
χ of Eq. (3.21)) and pion decay constants are defined in terms of the

physical currents (3.30), (3.31), which can be determined from the bilinears of twisted
theory once the angle ω is known. One can for example show (Sec. 3.3 of [dbW-2]):

mPCAC
q =

−i

2 sin ω

〈∂∗
µṼ

+
µ (x)P−(y)〉

〈P+(x)P−(y)〉 =
µ0

sin ω
, (3.39)
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while the untwisted PCAC quark mass can be expressed as

mPCAC
χ = Z−1

A mPCAC
q cos ω . (3.40)

Analogously, the pion decay constant Fπ is given by

Fπ = M−1
π 〈0|Â+

0 (x)|π−, ~p = 0〉 = −i(Mπ sin ω)−1〈0|Ṽ +
0 (x)|π−, ~p = 0〉 . (3.41)

By using the conserved current, a determination of the Fπ free of lattice renormaliza-
tions is obtained [84].

The dependence of Fπ upon mPCAC
q is shown in Figs. 7 and 8 of [dbW-2] (diamonds).

Consistently with many observations in the literature, Fπ shows a pretty linear be-
havior for decreasing quark mass10. A (naive) linear extrapolation to amPCAC

q = 0 is
not far from the phenomenological value (F0r0)phen = 0.308:

F0r0(0.67) = 0.333(10) , F0r0(0.74) = 0.274(20) . (3.42)

Observe that these estimates are off maximal twist and consequently not O(a) im-
proved.

At maximal twist, one has ω = π/2 by construction. However in some conditions (for
example in the approach ii) for tuning to maximal twist discussed in Subsec. 3.2.2) the
maximal twist condition cannot be exactly maintained for all simulation parameters.
The deviation from maximal twist can be corrected by “back-rotating” results to
maximal twist using formulae similar to (3.30), (3.31).

3.6. Large-scale simulations of Nf = 2 TMQCD

[tlS-1]

The numerical studies of the previous sections (together with the cited theoretical
works) form the basis for a program of large-scale simulations of twisted mass lattice
QCD in view of accurate determinations in hadron physics.

As stressed already several times in this review, a basic prerequisite for accurate
determinations in lattice QCD are simulations with light quarks. The sharp infrared
regulator of the twisted mass formulation ensures smooth simulations in this regime.
Algorithmic advances (Subsec. 3.4.1) also play a fundamental role. The knowledge of
the main features of the phase structure of the lattice theory for light quark masses
is also important: regions of parameter space of the lattice theory, where lattice data
contain large lattice artifacts, can in this way avoided.

The O(a) improvement of the twisted mass formulation at maximal twist is expected
to reduce systematic uncertainties in the continuum extrapolation. The procedure
for tuning the theory to maximal twist, with small O(a2) effects, is supported by
theoretical arguments and its applicability has been verified in the simulations of
Secs. 3.4 and 3.5,

10The lightest point on the coarse lattice is probably still affected by the nearby phase transition.
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Since the accomplishment of a large-scale simulation program, and of the related
analysis program, calls for substantial human and computational resources, a new
Europe-wide collaboration was founded: the “European Twisted Mass” (ETM) col-
laboration [66]. The first step in the aforementioned program was taken in [tlS-1],
where the maximally twisted theory with two quark flavors was simulated and its ba-
sic properties investigated. Only the simplest quantities in the pion sector are included
in this first study.

The finite-volume effects are expected to become a critical aspect, for L & 2 fm,
in the regime of light quarks when Mπ . 300 MeV. ChPT NLO formulae can correct
for them, however at the price of introducing new systematic effects (which are not
totally under control). The latter can be reduced by involving larger lattices in the
computations.

Further systematic effects come from the neglected s quark in the Monte Carlo.
The size of these effects are a priori unknown. A twisted mass formulation including
the s quark and preserving all the advantages of the Nf = 2 formulation will be
introduced in the last section of this Chapter, Sec. 3.7. The first steps in the numerical
implementation will be presented there.

3.6.1. Simulation and analysis

In [tlS-1] the theory was simulated for one value of β = 3.9 by the mtmp-HMC
algorithm briefly described in Subsec. 3.4.1. (Simulations for one lower and one higher
value of β are under completion and results will soon be published [42].) Five values of
the quark mass were simulated at this value of β (the corresponding lattice parameters
are reported in the first column of Table 2 of [tlS-1]).

The lattice spacing was determined in two ways: from the Sommer scale parameter
r0 [176] extrapolated at the physical value of the light quark mass, giving a ' 0.0958(4)
with input value r0 = 0.5 fm, and from the pion decay constant (see next section),
giving a slightly lower value a = 0.087(1). This latter value results in the estimate
r0 = 0.454(7) fm11. Using the lattice scale from to the r0-calibration, one arrives at
the estimate12 for the lightest quark mass (aµ0 = 0.004): mq ' 8 MeV. This value is
slightly below the reference value of the previous studies with the plaquette and the
DBW2 action (mq ' 11 − 12 MeV).

The theory was tuned to maximal twist at the lightest quark mass aµ0 = (aµ0)min ≡
0.004 by requiring the vanishing of the untwisted PCAC quark mass (3.21); the actual
value

κc(β = 3.9, aµ0 = 0.004) = 0.160856 (3.43)

was determined by interpolation. The effect of the non-vanishing twisted quark mass
in the determination of κc(β) is O(a2ΛQCDµmin). This results in a permille effect, if
the actual values of the parameters (ΛQCD ' 300 MeV) are inserted in the estimate.

11The phenomenological estimate or r0 is affected by large uncertainties.
12Neglecting again the renormalization factor Z−1

P .
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As expected from the previous preparatory studies [68], no signs of metastability
were observed during the simulation, confirming that the covered parameter space is
outside the critical region.

The analysis also included the computation of the pion mass and decay constant.
As a result of smooth simulations with an infrared cut-off in place, extremely precise
determinations of these quantities in lattice units could be obtained, with an accuracy
in the range 5 − 6 permille even for the lightest quark mass, see Table 2 of [tlS-1].

3.6.2. ChPT analysis

The lattice determinations of the charged pion mass and decay constants were fitted
against the predictions of NLO continuum ChPT. In this case, also finite volume
effects [90] were taken into account. These amount to a multiplicative correction of
the infinite volume formula, see (2.10) for the case of the pion; in that notation (mq ≡ µ
at maximal twist)

M2
π(µ, L) = M2

π,NLO(µ)
[

1 +
χ

32π2
g̃1(

√
χF0L)

]2

, χ =
2B0µ

F 2
0

, (3.44)

where g̃1(x) is a dimensionless function; an analogous formula can be written for
Fπ(µ, L). By fitting the lattice data with the NLO chiral formulae, one can match
the quark mass to the physical point µ ≡ µπ where the ratio Mπ,NLO(µ)/Fπ,NLO(µ)
assumes its phenomenological value. The corresponding value of aFπ,NLO(µπ) can be
used to fix the lattice spacing a (the previously quoted value).

As a by-product of this analysis, the low-energy scales Λ3,4, see Eq. (2.54), contained
in the ChPT formulae for Mπ and Fπ could be determined. In terms of the low-energy
constants l̄3,4, defined in Eq. (2.56), the result is

l̄3 = 3.65(12) l̄4 = 4.52(06) , (3.45)

in agreement with previous lattice determinations for light quark masses recently ap-
peared in the literature [129]. A comparison, also including the determinations dis-
cussed in Chapter 2, can be found in Table 2.2 and Fig. 2.1 of that chapter.

We see that the values obtained in Chapter 2 for the chiral fits in the untwisted
theory are not very far form the present ones. In the case of l̄4, however, the light
quarks seem to have a sizeable impact on the lattice estimate, the latter getting into
agreement with the phenomenological one. The works reviewed in Chapter 2 are based
on simulations with Mπ & 380 MeV, for which, we recall, the NNLO corrections in
the ChPT formulae were found to be relevant; see the discussion in Subsec. 2.3.4.

The behavior predicted by the NLO ChPT formulae for the quark mass dependence
of the pion mass is clearly visible in Fig. 2, left panel, of [tlS-1].

3.6.3. Isospin breaking

O(a2) isospin breaking in the twisted mass theory is expected to lift the mass-dege-
neracy between the charged and neutral pion. This effect is maximal in vicinity of
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the phase transition endpoint, where the neutral pion mass vanishes while the charged
pion remains massive, see the discussion near the end of Subsec. 3.3.2.

It is important to quantify the size of this effect. The determination of the neutral
pion mass is particularly awkward in the twisted mass theory, where the neutral pion
correlator contains disconnected diagrams. The computation of the latter diagrams
requires the application of expensive stochastic techniques (analogous to the ones
employed in the next Chapter for the computation of the bound state spectrum of
SYM). In addition to this, the disconnected diagrams are intrinsically noisy and the
precision of the determination of the mass poorer than in the charged case.

For the lightest quark mass the result of the computation is

aMπ± = 0.1359(7) aMπ0 = 0.111(11) , (3.46)

namely about a 10-30 % isospin breaking effect, even if the statistical errors on the
determination of the neutral pion mass are large13. A lighter neutral pion is consistent
with ChPT predictions in the first order phase transition scenario [144, 171] also
confirmed by the numerical studies of Sec. 3.4.

The effect of this mass-split in the numerical determinations in the charged sector
can be understood in ChPT, where the neutral pion enters as a virtual particle. Being
lighter than the charged pion, its impact on the finite size scaling could be larger than
predicted by continuum ChPT where it is assumed to be degenerate with the heavier
charged pion. This shows that O(a2) effects are likely to play a relevant role at least in
the finite volume effects. The inclusion of these corrections in the chiral fits is planned
for future studies [42].

According to a theoretical argument [83], large O(a2) discretization errors in twisted
mass QCD are confined in the neutral pion sector. Therefore the charged pion proper-
ties, and in general all hadron properties outside the neutral pion sector, are expected
to contain small O(a2) errors, as expected from the discussion of subsection 3.2.2. In
the present case of degenerate u and d quarks, the charged pion gives of course the
most accurate determinations in the pion sector.

3.7. First simulations of Nf = 2+1+1 TMQCD [tlS-2]

After simulations with light dynamical u and d quarks, the next step towards realis-
tic simulations of QCD is the inclusion of the s quark. The mass of the s quark is
not extremely large compared to the typical energy scale of QCD and its dynamics
is therefore expected to have an impact down to the lowest end of the QCD energy
spectrum. The s quark is however much heavier than the light u, d quarks (a rough
bound is ms/mud > 12 [198]). The inclusion of the s quark, and possibly of the c
quark (mcharm ' 1.2 GeV [198]), is therefore not expected to substantially increase
the computational cost of the simulations, which as we have seen in Chapter 1 rapidly

13In this case, also (noisy) disconnected diagrams have to be taken into account.
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decreases for increasing quark masses. Similarly, a relatively heavy quark is not ex-
pected to dramatically change the phase structure of the lattice theory (described
in Sec. 3.3).

Including the s quark is however not completely trivial from point of view of the
algorithm; for example, the basic structure of the HMC algorithm, also inherited by
the optimized mtmp-HMC algorithm of the previous sections, foresees even numbers
of degenerate quarks14. More work is required for tuning of the additional parameters
of the lattice action associated with the new degrees of freedom (this aspect will be
discussed in Subsec. 3.7.3).

As shown in [82], the s quark can be accommodated in the twisted mass setup
while preserving reality and positivity of the fermion measure, and O(a) improvement
at maximal twist. As we will show in the next sections, the resulting lattice action,
including u, d, s and c quarks all in principle with different masses, can be simulated
in practice. For the near future, the ETM collaboration will concentrate on the four-
flavor theory with degenerate light quarks, Nf = 2+1+1, where the number of free
parameters is still manageable. The inclusion of (continuum) isospin breaking in
the light quark sector is conceivable and easily applicable in the two flavor theory,
Nf=1+1, while the case of four non-degenerate flavor requires a non trivial additional
study of the parameter tuning.

A suitable HMC-based algorithm for the case of non-degenerate twisted flavors
was developed in [140, 163] and an alternative one has been in the meanwhile com-
pleted [38]. First simulation tests of the Nf = 2+1+1 theory based on the former
algorithm were performed in [tlS-2] and will be reviewed in the following sections (see
also [68]). One of the objectives of [tlS-2] was the investigation, in this new context,
of the phase transition already observed in the Nf = 2 lattice theory at small quark
masses (Sec. 3.4).

A viable scheme for tuning the theory to the desired setup, namely light degenerate
u and d quarks and s and c quarks at the physical point, was proposed in [tlS-2]. The
unitary scheme is considered there, in which the same formulation is adopted in the
valence and the sea sector. This implies that the quark propagator is not diagonal in
the heavy quark sector15. The theoretical framework for the extraction of the hadron
masses containing the s and the c quarks for this special case was also developed.

14The TSMB described in Chapter 1 can be easily applied to this case, but, as we have seen in the
present chapter, optimized HMC-based algorithms appear to be more efficient in the light quark
regime.

15Alternatively, one can consider a different, flavor-diagonal, twisted mass formulation in the valence
sector. After proper matching valence and sea quark masses, the resulting unitarity violations,
and flavor non-diagonal interactions, are O(a2) in the maximally twisted theory, see [81] and
references therein for a theoretical discussion; a flavor-diagonal formulation was also put forward
in [157]. A quenched study including the s quark in a flavor-diagonal formulation was performed
in [2].
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3.7.1. Lattice formulation for the split doublet

A real fermion determinant with a split-mass doublet (denoted with the label “h” in
the following, since coinciding here with the heavy sector of the s and c quarks) can
be obtained [82] if the mass splitting term is taken to be orthogonal in isospin space to
the twist direction. Opting for a diagonal untwisted mass matrix with mass splitting
term proportional to τ3, the twisted mass term must be chosen in the τ1 or τ2 direction.
The resulting action is therefore not flavor diagonal. We consider in the following the
choice with twist in the τ1 direction, in which case the action reads (compare with
Eq. (3.2)):

Sh = a4
∑

x

1

2a

±4∑

µ=±1

[r χh(x)χh(x) − χh(x + aµ̂)Uµ(x)(γµ + r)χh(x)]

+ χh(x) [m0h + iµσγ5τ1 + µδτ3] χh(x) . (3.47)

With this choice for the twist/split direction, the twist can be rotated away in the con-
tinuum limit exactly as in the degenerate case (Sec. 3.2): the unphysical off-diagonal
interactions are actually O(a) effects, O(a2) in the maximally twisted theory (analo-
gous to the unphysical isospin breaking in the degenerate theory). O(a) improvement
of the overall theory is obtained by tuning all doublets, in the present case (u, d) and
(c, s), to maximal twist, see Subsec. 3.7.3 in the following for the exact definition in
the non-degenerate case.

For a twisted mass split-mass doublet positivity of the fermion determinant is not
guaranteed in the whole parameter space of the lattice theory16. A sufficient condition
for positivity is given by the bound [82]17

µσ > µδ . (3.48)

3.7.2. Simulation algorithm

Past experience (see in particular in Subsec. 3.4.1) indicates that an optimized HMC
algorithm is the best option in term of simulation efficiency in the regime of light
quarks. The fermion matrix Q associated with the action (3.47) is however not di-
agonal in flavor space. Consequently, the two flavors of the non degenerate quarks
must be included explicitly in the update similarly to the a single flavor in standard
QCD. This implies that standard HMC cannot be applied. The positive definite ma-
trix Q†Q is indeed needed for the update, see Subsec. 1.2.1 for the case of TSMB, and
the fermion measure is given by the square root of its determinant

√

det(Q†Q). With
nDB-fold determinant breakup (Subsec. 1.2.6) the (2nDB)-th root of the determinant
is required18:

(det Q†Q)
1

2nDB . (3.49)

16This is expected, since in the continuum the fermion measure can be negative for two non-
degenerate quarks.

17We always assume positive values of µσ and µδ.
18In the present case nDB = 2.
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Fractional powers of the fermion determinant (3.49) can be handled in a HMC algo-
rithm by applying the idea of the polynomial expansion [132] as proposed in [52, 78]:
the resulting algorithm is a Polynomial Hybrid Monte Carlo (PHMC) algorithm. The
version used for the present simulations, developed in [140, 163], contains the opti-
mizations of mtmp-HMC (E/O and mass-preconditioning, multiple time-scales). The
error of the polynomial expansion is corrected by a stochastic step in the update (in
general multi-step, see [140]) along the lines of the noisy correction of TSMB described
in Subsec. 1.2.3, and, if needed, by measurement correction (Sec. 1.2.4).

3.7.3. Tuning

One of the main goals of the exploratory study [tlS-2] was to establish a practicable
procedure for tuning the twisted mass theory with an additional split-mass doublet to
maximal twist and realize the expected hierarchy of quark masses.

One possible method for tuning the degenerate twisted mass doublet to maximal
twist relies on the discussion of the chiral currents (as done in Sec. 3.5). Equiva-
lently, one can enforce vanishing of the untwisted PCAC quark mass (3.21). The
direct generalization of this method to the split-mass doublet involves the discussion
of the axial-vector Ward identities (defining in the degenerate case the PCAC quark
mass (3.21)). The PCAC relation is however more complicated in the non-degenerate
case:

∂∗
µA

a
h,µ(x) = 2amPCAC

χh P a
h (x) +







2iZ−1
A aµσS

0
h(x), a = 1

0, a = 2
(−2i)Z−1

A aµδP
0
h (x), a = 3

(3.50)

where, in analogy with the light sector, we define

Aa
h,µ(x) ≡ χh(x)

1

2
τaγµγ5χh(x) (a = 1, 2, 3) ,

S0
h(x) ≡ χh(x)χh(x) , P 0

h (x) ≡ χh(x)γ5χh(x) . (3.51)

The maximal twist condition in the heavy sector is given by

mPCAC
χh = 0 . (3.52)

This way of tuning the heavy sector is however not a viable option in practice. In-
deed, due to the flavor off diagonal terms in the quark propagator of the split-mass
doublet, all hadron correlators needed for the analysis of the Ward identities contain
disconnected diagrams (in the degenerate case these are present only for the neutral
currents via a different mechanism). Even not considering this problem, the simulta-
neous tuning of the two untwisted mass parameters m0l and m0h such that

mPCAC
χl = 0 ∧ mPCAC

χh = 0 , (3.53)

could be in practice very complicated.
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An alternative solution to the tuning problem was proposed in [tlS-2], and is based
on the following argument. One can namely show that, when the untwisted Lagrangian
mass parameters are equal in the two sectors

m0l = m0h , (3.54)

the discrepancy between the respective untwisted PCAC quark masses is an O(a)
effect:

m0l = m0h = m0 ⇒ mPCAC
χh = mPCAC

χl + O(a) . (3.55)

This suggests to tune m0 to the value where mPCAC
χl = 0 while keeping m0h = m0l =

m0: in this situation mPCAC
χh = O(a). Observe that, since the twisted quark mass in

the heavy sector is typically much larger than the one in the light sector, the O(a)
error is not expected to affect the maximal twist improvement in the sense of [80]
(while it is critical to have good tuning in the light quark sector, recall the discussion
in Subsec. 3.2.2). This can be checked by computing the twist angle in the heavy
sector ωh, as suggested in Subsec. 3.7.4, and verifying the accuracy of the condition
ωh ' π/2.

On the basis of simple universality arguments, one can show that the physical quark
masses of the split-mass doublet are expressed in terms of the bare twisted and un-
twisted quark masses by

mc,s = Z−1
P

√

(ZA mPCAC
χh )2 + µ2

σ ± Z−1
S µδ . (3.56)

The above equation can be considered as a generalization of Eq. (3.7). At maximal
twist mPCAC

χl = mPCAC
χh = 0 and

mc,s = Z−1
P

(

µσ ± ZP

ZS

µδ

)

; (3.57)

one is left with two additional tunable parameters, µσ and µδ. The latter should be
chosen such that

ms ' (ms)phys mc ' (mc)phys . (3.58)

The second condition is not critical as long as

Λcut−off ∼ a−1 . (mc)phys ' 1.2 GeV , (3.59)

since in this case the c quark dynamics is anyhow distorted by discretization effects.
On finer lattices, say Λcut−off ' 2 GeV, however, the tuning of the c quark becomes
an issue.

From Eq. (3.57) the relation for the relative split of the quark masses at maximal
twist follows

(mc − ms)

(mc + ms)
=

ZP

ZS

µδ

µσ

; (3.60)
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the positivity bound (3.48) implies

(mc − ms)

(mc + ms)
<

ZP

ZS

. (3.61)

After inserting the phenomenological values of the quark masses [198], we see that
the theory can be tuned to the desired configuration (maximal twist, physical quark
masses), while remaining in the region where positivity is guaranteed, if [82]

ZP

ZS

> 0.85 . (3.62)

This condition potentially puts a lower bound for the values of β for which positivity
is guaranteed (the ratio of normalizations converges to one for weak couplings).

3.7.4. Physical fields and currents

The discussion of Sec. 3.5 can be extended to the non degenerate case. In the degen-
erate case, the charged pion (light-light) sector was considered. Here, a natural option
is given by the mixed heavy-light meson sector, the isospin doublets of the kaons and
of the D-mesons (and charge-conjugated versions thereof)

K ≡ (K+ , K0) and D ≡ (D0 , D−) . (3.63)

One considers bilinears in the twisted basis with the corresponding nominal flavor
quantum numbers

VK+, µ(x) ≡ χs(x)γµχu(x) , AK+, µ(x) ≡ χs(x)γµγ5χu(x) , (3.64)

SK+(x) ≡ χs(x)χu(x) , PK+(x) ≡ χs(x)γ5χu(x) , (3.65)

VD0, µ(x) ≡ χc(x)γµχu(x) , AD0, µ(x) ≡ χc(x)γµγ5χu(x) , (3.66)

SD0(x) ≡ χc(x)χu(x) , PD0(x) ≡ χc(x)γ5χu(x) ; (3.67)

the hadron correlators of the above operators do not contain disconnected diagrams
(present instead in the heavy-heavy sector). Here, each bilinear in a given doublet
mixes not only with the corresponding operator with opposite parity (see Eqs. (3.30)
and (3.31)), but also with the corresponding operator in the “partner” doublet. This
means that the physical operators with definite physical flavor quantum numbers are
related to the bare heavy-light bilinears (3.64-3.67) by a linear transformation given
by a four-by-four matrix M. The latter contains the rotation angles in the heavy and
light sectors:

V̂ = M(ωl, ωh)V ,
¯̂V = V̄ M−1(ωl, ωh) . (3.68)

In the case of the (pseudo)scalar densities one can define

V =







ZP PK+

ZP PD0

ZSSK+

ZSSD0







V̄ = (−ZP PK− ,−ZP PD̄0 , ZSSK− , ZSSD̄0) (3.69)
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(and similarly for the chiral currents). The exact form of the rotation matrix M can
be found in Eq. (33) of [tlS-2].

The condition of restoration of the flavor and parity symmetries for suitable matrix
elements of the physical operators, such as

〈 0 | P̂+
K+(x) | D̄0, ~p = 0 〉 = 〈 0 | Ŝ+

K+(x) | D̄0, ~p = 0 〉 = 0 (3.70)

(analogous to (3.32) in the pion sector), leads to the relation

Z2
P /Z2

S =
〈SK+SD̄0〉 + 〈SD0SK−〉
〈PK+PD̄0〉 + 〈PD0PK−〉 , (3.71)

and a constraint relating ωh to ωl, see Sec. 3 of [tlS-2] for details. These relations allow
the determination of ωh and of the ratio ZS/ZP from numerical data.

3.7.5. Numerical simulations

The Nf = 2+1+1 twisted mass theory defined by Eqs. (3.2), (3.47) in the fermion
sector and with tlSym gauge action, the choice b1 = −1/12 in Eq. (3.20), was simulated
for two values of β = 3.25 (123 · 24 lattice) and 3.35 (163 · 32 lattice). The lattice
spacing was estimated to be a(3.25) = 0.2 fm and a(3.35) = 0.15 fm. For each value
of β, different values of the untwisted mass m0l = m0h = m0 where investigated at
fixed remaining parameters µ0, µσ, µδ, see Table 2 and 3 of [tlS-2]. Different values of
the untwisted mass were considered in order to investigate the metastabilities. The
positivity bound µσ > µδ is satisfied in all cases.

The twisted mass parameter in the light sector was chosen such that its value in
physical units was µl ' 10 MeV approximately matching the one investigated in the
two-flavor theory19.

Metastabilities. The light sector is expected to drive the phase transition, since the
heavy sector is characterized by a much larger twisted mass, µσ/µl = 31.5. However,
the additional degrees of freedom may have an effect on the strength of the transition.

The first lattice, with a ' 0.2 fm, roughly corresponds to the DBW2 point at
β = 0.67 studied in Subsec. 3.4.4. In that case, we recall, only a residual cross-over
behavior was observed. In the present case, in opposition, strong metastabilities are
present, signalized by the behavior of the plaquette (Fig. 1, left panel, of [tlS-2]).
This can be explained on one side by the superior properties of the DBW2 action
in relation to the phase transition, but could be an effect of the increased number
of quark flavors as well. On the finer lattice, a ' 0.15 fm, a sudden jump of the
plaquette value was observed when changing the untwisted quark mass, Fig. 2 of [tlS-
2], which could indicate a residual cross-over or a weaker phase transition in the region
not covered by the simulations. Direct comparison with the simulation tests of [68]
for the Nf = 2 theory with tlSym gauge action (in particular the run at β = 3.75
with similar values of a and µ in physical units) reveals an analogous behavior for the

19As usual for these estimates renormalization factors are neglected.
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plaquette (compare with the left panel of Fig. 5 of [68]); in the present case, however,
the transition appears to be stronger.

Hadron masses. Few basic hadron quantities were measured, including the kaon
and D-meson masses. On the basis of the symmetries of the lattice action in the
present setup, it can be argued [tlS-2] that isospin breaking is absent in the heavy-
light doublets (3.63), whose members are exactly degenerate.

The simulated pion masses are not particularly small: the smallest pion mass out-
side the metastable region (from positive quark masses) is Mπ ' 670 MeV on the
coarser lattice and Mπ ' 450 MeV on the finer one. Assuming on the basis of the
Wilson ChPT prediction (3.18) a linear dependence of the minimal pion mass upon
the lattice spacing, it is possible to estimate the maximal lattice spacing (ā) allowing
for safe simulations in the region Mπ . 300 MeV (the benchmark lattice spacing of
Eq. (3.22)). The result is ā ' 0.1 fm; the same result was obtained in the Nf = 2
theory (Subsec. 3.4.5).

The simulated kaons are heavier than in nature (MK ≥ 850 MeV), but in this case
the mass can be easily reduced by properly tuning the mass parameters in the heavy
sector µσ and µδ (the present study was performed at a single value of µσ and µδ for
each β).

Twist angle ωh and ZP/ZS. The twist angle in the heavy sector ωh was deter-
mined, according to the method of Subsec. 3.7.4, for one simulation point of each
lattice. One can see in this way that the condition ωh = π/2 is very well satisfied in
the heavy sector, even when the light sector is still off maximal twist (recall that the
untwisted masses are equal in the two sectors up to O(a)). We conclude that in the
heavy quark sector, the tuning to maximal twist is not an issue at all.

The non-perturbative determination of the ratio ZP /ZS according to (3.71) reveals
quite small values ZP /ZS = 0.5 − 0.6, which can explain the quite heavy kaons: the
relative c-s mass-split is suppressed by this factor, see Eq. (3.60), and the resulting s
mass is larger than in absence of renormalizations. Observe that the estimated values
of ZP /ZS = 0.5 − 0.6 are below those ensuring the positivity of the measure in the
heavy sector at maximal twist and for physical values of the c and s mass.

Chiral fits. In spite of the heaviness of the respective masses, LO continuum ChPT
seems to describe quite well the lattice data for the ratios of the pion and kaon masses,
see Fig. 6 of [tlS-2]. Interestingly, data from the two lattices (µσ 6= µδ) lie on the
same curve, confirming constant physics; moreover the interpolated value at maximal
twist of the mass ratio is close to the physical value M2

π/M2
K ' 0.082.

3.7.6. Conclusions

This exploratory study of the Nf = 2+1+1 theory demonstrates the feasibility of
simulations of the twisted mass theory including a split-mass doublet. Tuning to
maximal twist is not more difficult than in the Nf = 2 theory, while the tuning of
the quark masses in the heavy sector appears to be practicable (the situation should
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improve for smaller lattice spacings).
The relatively heavy masses obtained for the kaon can be explained by the large

renormalization effects in the Wilson formulation. This issue could be less critical
at weaker lattice couplings, for which large-scale simulations are planned [42]. The
unphysical phase transition could be somewhat stronger than in the Nf = 2 theory,
but present results do not allow to draw definite conclusions at this regard.
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Summary and conclusions of part I

The first part of this review addressed the problem of the lattice simulation of QCD
with light dynamical quarks. The difficulties encountered in this regime with the
standard HMC algorithm motivated the search for alternative algorithms with better
properties in the case of light quarks. The first simulations considered in this review
are based on a multi-boson algorithm, TSMB [132, 136], which historically represents a
first attempt towards an effective simulation of QCD at light quark masses. Only more
recently [102] it has been shown how the HMC algorithm can be made efficient in this
regime. Efficient HMC-based algorithms [185, 140] were employed for the simulations
reviewed in the concluding sections of this part.

Chapter 1 was dedicated to the testing and benchmarking of the TSMB algo-
rithm [Alg] in the case of Nf = 2 QCD. Simulations were considered down to rel-
atively light quark masses: one fifth of the physical s quark mass corresponding to
about Mπ ' 300 MeV. In [Alg] the first example is given of a simulation with light
pions in the case of Wilson fermions, in a time when the bulk of the simulations with
Wilson fermions were confined in the region of pion masses Mπ ' 500 − 600 MeV.
Due to limitations in computer power however, only coarse 83 · 16 lattices could be
considered in those tests, with a lattice spacing a ' 0.27 fm.

The main result of [Alg] from the algorithmic point of view, is a stable behavior
of TSMB until the lightest simulated quark mass. The “cost figure”, growing pro-
portionally to the inverse squared quark mass, is consistent with extrapolations from
values at larger quark masses obtained with HMC [184].

Hints for chiral logs could be found for the first time in the behavior of the lattice
data for the pion mass and decay constant as a function of the light quark mass. This
latter result prompted the systematic analysis of the meson sector with Chiral Pertur-
bation Theory (ChPT) performed in [Chi-1, Chi-2, Chi-3] and reviewed in Chapter 2.
The simulation point of [Chi-1], corresponding to one of the simulation points of [Alg],
is characterized by a fairly light quark mass (mud ' ms/4) and a quite coarse lattice
(as mentioned above); in [Chi-2, Chi-3] a range of quark masses was simulated down
to mud . ms/3 on a finer lattice (a ' 0.19 fm).

The study of the meson sector, accomplished by comparing lattice data with par-
tially quenched chiral perturbation theory at NLO, also including lattice corrections
(“Wilson chiral perturbation theory” [170, 159]), allowed the determination of the low-
energy constants l̄3 and l̄4 (in the sea quark sector analysis) and α5, 2α8 − α5 (in the
valence quark sector analysis). The analysis highlights the presence of still relevant
higher order (NNLO) corrections in the chiral formulae for the values of the quark

91



Summary and conclusions of part I

mass considered in [Chi-2, Chi-3]. These corrections cannot be included in a easy way
in the fits and introduce relevant systematic effects in the lattice determinations of the
low-energy constants. A more accurate determination of l̄3 and l̄4 could be obtained
from the sea quark analysis of [tlS-1] at lower quark masses and with substantially
higher statistics (see in the following).

The simulation of Chapters 1 and 2 are based on the original Wilson formulation of
QCD. The fermion sector of this formulation is characterized by O(a) discretization
effects, which potentially introduce large systematic errors in the continuum extrap-
olation. Moreover the fermion measure is not protected by infrared singularities. In
Chapter 3 a different lattice formulation in the fermion sector was considered, solving
both problems: “twisted mass” lattice QCD (TMQCD).

The results on the phase structure of the lattice theory with different formulations
in the gauge sector [Wil-1, Wil-2, dbW-1, dbW-2] prepared the way to the first large-
scale simulations, performed in [tlS-1], of the maximally twisted mass theory, which
is O(a) improved. The main objective of the former works was to map the region
of quark masses where, for a given lattice spacing, unacceptably large discretization
effects are avoided. These effects manifest themselves in form of an unphysical first
order phase transition and appearance of metastable vacua [170].

The comparison between the simple plaquette action [Wil-1, Wil-2] and the DBW2
gauge action [dbW-1, dbW-2] shows that gauge actions with a rectangular term are
characterized by an improved behavior in relation to the metastabilities at small quark
masses. An useful benchmark proposed in [Wil-2] is the maximal lattice spacing for
which simulations down to Mπ ' 300 MeV are possible in absence of metastabilities.
For this value of the pion mass and lower, ChPT formulae at NLO are supposed to
allow precise extrapolations to the physical value of the quark mass. In the case of the
plaquette action the benchmark lattice spacing was estimated to be āPl ' 0.07 fm, for
the DBW2 action āDBW2 ' 0.13 fm. An intermediate result was obtained with the
tree-level Symanzik improved gauge action (tlSym), ātlSym ' 0.1 fm. These results
show that the plaquette action is not a suitable choice in view of large-scale simulations.
The tlSym action was finally chosen, in opposition to DBW2, because of its good
scaling properties.

Another important aspect considered in some detail in [dbW-1, dbW-2] was the
determination of the twist angle of the twisted mass theory for a given choice of the
simulation parameters. The knowledge of the twist angle allows to extract physical
results from the twisted mass theory off maximal twist. The proposed method is based
on symmetry arguments and allows to obtain an “optimal” tuning of the theory to
maximal twist [13, 168, 79]; the latter ensures small O(a2) effects in the maximally
twisted mass theory down to light quark masses. A similar analysis also allowed to
extract finite lattice renormalization constants or combinations thereof.

As already mentioned, the tlSym gauge action was finally chosen for the large-scale
simulations at maximal twist of [tlS-1], since it ensures stable simulations already at
a ' 0.1 fm. At five simulation points, with light quark masses down to one sixth of
the physical s quark mass, precise determinations in the pion sector could be obtained
with numerical accuracy of one percent and below.
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These results could be achieved thanks to algorithmic developments as well [185]:
the stochastic evaluation of the quark determinant with several pseudofermion fields
(with different step-sizes in the molecular dynamics) appears to be the main ingredient
at the basis of the speed-up and stabilization of HMC at low quark masses [102, 133].

In perspective, the simulations of TMQCD will include the s and c quarks in a
Nf=2+1+1 formulation [42]. In [tlS-2], a framework for tuning the various param-
eters of the theory was set up: maximal twist and s and c quark masses at their
respective phenomenological values. A negative (even if expected) result of [tlS-2] is
the strengthening of the unphysical phase transition at small quark masses in com-
parison with the Nf = 2 case. This negative effects of this feature can be probably
compensated by an optimization of the formulation in the gauge and/or fermion sector.

We conclude this part by acknowledging very important recent progresses in the
simulation of light quarks in the Wilson framework, alternative to TMQCD and ob-
tained by several improvements in the simulation algorithms and in the lattice formu-
lation [133, 56, 96, 127, 63].
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4. Simulation of N = 1 SYM
and one flavor QCD

Theoretical arguments support a picture in which supersymmetry (SUSY) plays a
role in particle physics down to low energy scales. Since, however, no trace of it is
observed in low-energy phenomenology, it must be broken at a higher scale by some,
yet unknown, mechanism. Non-renormalization theorems holding for SUSY quantum
field theories imply that such a breaking mechanism can occur either at tree-level by
a proper tuning of the Lagrangian parameters, or dynamically by non-perturbative
effects. In this latter case, the SUSY breaking has to take place at a scale where
SUSY interactions become strong. This second, theoretically more attractive scenario
provides the main motivation for studying non-perturbative aspects in SUSY gauge
theories.

There are few analytical methods suitable for a non-perturbative analysis of SUSY
gauge theories; they are based on general arguments (as for example the Witten in-
dex [196]), low-energy Lagrangians [187, 74], or explicit (sometimes exact) computa-
tions (for a comprehensive discussion for example of the instanton calculus in SUSY
theories, see [175]). These analytical methods can shed light on some aspects of
strongly interacting SUSY gauge theories. A systematic ab initio investigation of
their properties, however, can only be obtained in the lattice framework.

The basic problem one has to face when trying to put this program into practice was
already realized in the very first work on SUSY in a lattice quantum field theory [58].
It consists in the simple observation that in a discretized space-time manifold, SUSY
cannot be formulated. Exact SUSY only emerges in the continuum limit. In the
case of extended SUSY, the explicit breaking of the symmetry on the lattice can
potentially bring to the proliferation of counterterms needed for the renormalization
of the theory, in which case the recovery of SUSY in the continuum limit becomes a
non-trivial issue. Different approaches partially coping with this problem have been in
the meanwhile developed. In the case of extended SUSY, a prescription can be given
for the construction of a lattice model with a residual exact symmetry1 interchanging
bosons and fermions [118, 36, 178]. The numerical implementation of these approaches
is however not (yet) practicable in the case of physically interesting models.

In the case of minimal (N=1) SUSY, the explicit SUSY breaking introduced by
the space-time discretization is harmless (in the above mentioned sense) and a sim-
ple discretization of the theory, based on the Wilson formulation of QCD, can be

1Generated by some of the supercharges which are not related to infinitesimal space-time transla-
tions.
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considered [49]. SUSY is in this case recovered in the continuum limit by a proper
renormalization of few bare parameters. The simplest four-dimensional non-Abelian
SUSY gauge theory with minimal SUSY will be considered here, the N=1 SUSY Yang-
Mills theory (SYM). Only one tunable parameter exists in the Wilson discretization of
SYM, the bare gluino mass. The situation here is similar to the one applying for the
Wilson lattice formulation of QCD, discussed in the previous chapters, where chirality
is recovered in the continuum limit by properly tuning the bare quark mass.

The review will cover recent large-scale simulations of SYM with SU(2) gauge group
(Nc = 2). The recovery of SUSY for vanishing gluino mass was verified in [SYM-1] by
the numerical study of the lattice SUSY Ward identities. The works [SYM-2, SYM-3]
focus on the bound state spectrum, where SUSY is expected to show up in form of
supermultiplets. A previous review of some of these themes can be found in [138].

QCD, in the special formulation where only one quark flavor is considered (Nf = 1
QCD), shares many similarities with SYM. In particular, both theories lack a continu-
ous chiral symmetry. This affinity can be put on more rigorous grounds in a particular
“orientifold” large Nc expansion [17]. At the planar level of this expansion, an exact
equivalence between SYM and Nf = 1 QCD can be established [17]. QCD with one
quark flavor represents therefore the case of a non-supersymmetric theory in which
relics of SUSY are expected [18].

One flavor QCD is interesting in itself, apart from the above mentioned equivalence
with SYM. Open questions in this theory regard in particular the hadron bound state
spectrum, the definition of the quark mass in absence of a (restored) chiral symmetry,
and a possible spontaneous breaking of the CP symmetry [48]. The latter two issues
also apply for the physical multi-flavor theory: they can be better understood in the
simplified framework of QCD with a single flavor.

Surprisingly, in spite of these interesting aspects, a systematic lattice investigation
of the model is still missing in the literature2. Here, first numerical simulations [Nf1] in
a starting project trying to close this gap will be reviewed. The focus in this first study
was on the low-lying bound states spectrum, where relics of SUSY can be verified.

This is the plan of the chapter. SYM is introduced in Sec. 4.1; Sec. 4.2 highlights
the interesting non-perturbative aspects of this theory, deserving lattice investigation;
the lattice formulation with Wilson fermions is given in Sec. 4.3; Secs. 4.4, 4.5 and 4.6
account for the numerical studies of SYM [SYM-1, SYM-2, SYM-3]. Sec. 4.7 and 4.8
are dedicated to QCD with one flavor; Sec. 4.7 contains a summary of open questions
in the theory while in Sec. 4.8 the first numerical results about the hadron spectrum
obtained in [Nf1] are described.

4.1. N = 1 SUSY Yang-Mills theory (SYM)

SYM is the SUSY extension of the gauge theory describing the self-interactions of
SU(N) gauge fields (gluons). The SUSY partner of the gluon is a spin 1/2 particle,

2With recent exceptions [53].
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the gluino (g̃). The balance between fermionic and bosonic degrees of freedom implied
by SUSY can only be fulfilled if gluinos are described by real neutral fields, namely
Majorana spinors. Moreover, compatibility of SUSY with gauge invariance requires
that the gluinos transform in the adjoint representation of the color group. We consider
here the general case of a SU(Nc) color group (Nc = number of colors).

4.1.1. The model

A generalization of gluodynamics under the minimal assumptions of SUSY and gauge
invariance is easily obtained in the superfield formalism [160].3 The basic degree
of freedom is represented in this case by a vector superfield V (x, θ̄, θ) satisfying the
constraint V † = V and transforming in the adjoint representation of the gauge group:

exp{V g} = exp{−iΛ+} exp{V } exp{iΛ} , Λ: chiral superfield . (4.1)

An action which is manifestly invariant under SUSY and gauge transformations can
be easily obtained in terms of the SUSY field strength Wα, a chiral superfield:

LSY M =
1

16πk
Im {τ Trcolor (W αWα)θθ} . (4.2)

SUSY invariance follows from the fact that the θθ (or F ) component of the chiral su-
perfield W αWα is SUSY invariant (up to a total divergence, see in the following). The
factor k is conventional and related to the normalization of the generators of SU(N)
in a generic representation: Tr(T aT b) = k δab; τ is an arbitrary complex parameter
which we identify with

τ =
Θ

2π
+

4πi

g2
0

. (4.3)

The number of component fields can be reduced by a partial gauge fixing (Wess-
Zumino gauge). In terms of the ungauged fields the Lagrangian (4.2) reads4

LSY M = −1

4
F a

µνF
aµν +

i

2
λaσµDab

µ λ̄b +
i

2
λ̄aσ̄µDab

µ λb +
1

2
DaDa + i

Θg2
0

32π2
F̃ a

µνF
aµν , (4.4)

where we indicate the color indices explicitly.
The D field decouples and can be neglected in the remainder. The calligraphic

symbol D above denotes the covariant derivative in the adjoint representation:

Dab
µ = δab ∂µ + g0 fabc Ac

µ (4.5)

and F a
µν is the conventional field strength tensor of Aa

µ.

3For details on SUSY and the superfield formalism, see for example [193, 190].
4We revert here to the conventional normalization of the fields, related to that of the component

fields of the vector supermultiplet, see for example [193], by λ → λ/g0, Aµ → Aµ/g0.
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We see from (4.4) that the Weyl spinor λa interacts with the vector fields by min-
imal coupling and gauge invariance is manifest. Observe that, as anticipated, the
Lagrangian (4.4) can be naturally expressed in terms of a Majorana bispinor

Ψ =

(
λα

λ̄
.
α

)

. (4.6)

The Lagrangian assumes in this case the compact form (we set here and in the following
Θ = 0)

LSY M = −1

4
F a

µνF
a µν +

i

2
Ψ̄aγµDab

µ Ψb . (4.7)

The factor 1/2 in the fermion action is characteristic for the SUSY formulation (com-
pare with the case of the quarks, Eq. (0.8)).

The Lagrangian (4.7) is invariant, up to a surface term, under a global transformation

δξA
a
µ = i ξ̄γµΨa ,

δξΨ
a =

1

2
σµνF a

µνξ ,

δξΨ̄
a = −1

2
ξ̄σµνF a

µν . (4.8)

We have

δξLSY M = − i

4
∂µ(ξ̄γµσνρF a

νρΨ
a) . (4.9)

Considering the variation under a local SUSY transformation (ξ = ξ(x)), an expression
for the variation of the Lagrangian similar to (4.9) is obtained, however with γµ and
σµνF a

µν interchanged. The conserved Noether current associated with the transforma-
tions (4.8), the supercurrent, reads therefore

Sµ = − 1

2
σνρF a

νργµΨa . (4.10)

For the following discussion, it is convenient to introduce a non-vanishing mass m
for the gluino. This can be obtained by regarding the parameter τ in the action (4.2)
as a chiral superfield [156]. A non zero vacuum expectation value of the F component
of τ introduces a SUSY soft-breaking gluino mass term. The choice Fτ = i8πmg̃/g

2
0

and the replacement
τ → τ + Fτθθ (4.11)

results in a Majorana mass term for the gluino

L(mg̃)
SY M = −1

4
F a

µνF
a µν +

i

2
Ψ̄aγµDab

µ Ψb − mg̃

2
Ψ̄aΨa ; (4.12)

in this case the SUSY Ward identities of the supercurrent contain a soft-breaking term

∂µSµ(x) = − i

2
mg̃ σµνF a

µνΨ
a . (4.13)
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4.1.2. Euclidean theory

An Euclidean formulation of SYM is needed for a rigorous quantization of the theory in
the functional integral scheme; it is also needed for the two relevant non-perturbative
computational techniques in this context, instanton calculus and lattice field theory.
Euclidization is however not completely trivial in the case of SUSY models [153] due
to the presence of Majorana spinors. In Euclidean geometry indeed, real neutral
spinors cannot be build, with the consequence that Hermiticity of the action must
be abandoned if one wants to preserve the equivalence with the relativistic theory.
The latter can be established as it is well known [164] by analytic continuation to
imaginary times of the Green functions of the relativistic theory. In this approach the
conjugated Euclidean Majorana field Ψ̄E(x) is no longer an independent variable (as
it is the case for Dirac spinors) but it defined by the Majorana condition

Ψ̄E ≡ −(ΨE)T C , (4.14)

where C is the spinorial representation of the charge conjugation operator. The func-
tional integration is therefore performed over the ΨE fields only:

〈Q[Ψ̄E, ΨE, Aµ
E]〉 = Z−1

∫

[dAµ
E][dΨE]Q[Ψ̄E, ΨE, Aµ

E] exp{−SE[Ψ̄E, ΨE, Aµ
E]} . (4.15)

The Euclidean version of the action (4.12) is obtained by applying the usual prescrip-
tions, with the result:

L(m)
SY M,E =

1

4
(FE)a

µν(FE)a
µν +

1

2
Ψ̄a

E γE
µ DE ab

µ Ψb
E +

mg̃

2
Ψ̄a

EΨE
a (4.16)

(with γE
4 ≡ γ0 and γE

i ≡ −iγi , i = 1, 2, 3).
An Euclidean formulation for relativistic Weyl spinors as in (4.4), instead of Majo-

rana spinors, is also possible, but notationally more cumbersome (the two formulations
are of course equivalent). The calculation of matrix elements of products of Euclidean
Majorana fields according to the prescription (4.14)-(4.15) can be greatly simplified
by using an analogy with the corresponding matrix elements for Dirac spinors [136].

4.2. Quantum features of N = 1 SYM

4.2.1. U(1)R symmetry and its fate

Supersymmetric theories are characterized by a peculiar symmetry which does not
leave the supercharges unchanged, the so-called R-symmetry. In the case of N = 1
SYM, with just one supercharge, this symmetry is Abelian:

Qα → eiφQα Q̄α → e−iφQ̄α . (4.17)

In the superfield representation it corresponds to a U(1) transformation of the gluino
field

λα → eiφλα λ̄α → e−iφλ̄α , Ψ → eiφγ5Ψ , (4.18)
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4. Simulation of N = 1 SYM and one flavor QCD

with associated Noether current

J5
µ = Ψ̄aγµγ5Ψ

a . (4.19)

The U(1)R symmetry is (partially) broken by the triangular anomaly, which for adjoint
fermions reads

∂µJ5
µ = 2Nc Q(x) , Q(x) =

g2
0

32π2
F̃ a µνF a

µν . (4.20)

In the Euclidean formulation, Q(x) corresponds to the topological charge density of
the gauge field. Due to the extra factor 2Nc in Eq. (4.20), originating from the
adjoint representation of the gluino, the anomaly term does not break the R-symmetry
completely. This can be seen by following Fujikawa’s approach [87] to anomalies, after
having temporarily reintroduced the Θ-term in the action of SYM, see Eq. (4.4). For
the Euclidean theory, an anomalous rotation produces a shift of the Θ-parameter:

LSY M(x) → LSY M(x) − 2Nc φ

∫

dxQ(x) : Θ → Θ − 2NcΦ . (4.21)

Since the topological charge is an integer corresponding to the winding number of the
(Euclidean) gauge configuration, ν =

∫
dxQ(x) ∈ N , rotations with angles

φ = φn ≡ n
2π

2Nc

, n ∈ N (4.22)

do not produce any effect in the functional integrals. This means that a discrete
subgroup Z2Nc

is preserved by the anomaly.
Theoretical arguments indicate that the vacuum of SYM develops a non-vanishing

gluino condensate 〈λa
αλaα〉, implying spontaneous breaking of the discrete chiral sym-

metry into Z2 (λa
α → −λa

α). A first indication for gluino condensation in SYM comes
from the low-energy Lagrangian approach of [187], see also in the next section; a quan-
titative prediction for the magnitude of the condensate can be obtained by instanton
computations. Instanton calculus for supersymmetric theories [155] is characterized
by absence of perturbative corrections: the leading order of the saddle-point expansion
gives already the exact result. On general grounds one expects

〈
g2
0(λ

a
αλaα)

16π2

〉

= C Λ3 exp{2πik/Nc} (4.23)

where k = 0, . . . , Nc − 1 labels the Nc degenerate vacua related by transformations
in the quotient group Z2Nc

/Z2 and Λ is the dynamical scale developed, as in QCD,
through dimensional transmutation. Two different instanton computations present in
the literature come up however with two different values for C:

C =
2

((Nc − 1)!(3Nc − 1))1/Nc
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4.2. Quantum features of N = 1 SYM

in a “strong-coupling” computation (SCI) [154, 158, 11, 10, 86], C = 1 in a “weak-
coupling” one (WCI) [86, 4, 5, 155, 174]. The discrepancy between the two results can
be explained by introducing in the theory an “extra” chiral symmetric phase where
the condensate vanishes [126] (however, see also the criticism expressed in [106] to this
argument). A third approach, based on the connection of N = 1 SYM with the exact
Seiberg-Witten solution of the N = 2 model, confirms the SCI result, C = 1 [106].

The chiral group Z2Nc
being discrete, the Goldstone theorem does not apply to

the spontaneous breaking of this residual symmetry, and the mass gap of the theory
persists for massless gluino. In an approximation of SYM, however, the spontaneous
breaking of a continuous symmetry does occur: this is the Okubo-Zweig-Iizuka (OZI)
approximation of the theory, in which Feynman diagrams containing disconnected
gluino loops5 are neglected. In this case the anomaly vanishes and U(1)R is expected
to be broken by a mechanism analogous to the one expected for the chiral symmetry
in QCD [187]. This means that, in the OZI approximation, the theory should contain
pseudoscalar states with negative parity, which are massless for vanishing gluino mass
(the so-called “adjoint-pions”, see also in the following).

4.2.2. Color confinement and bound states spectrum

The analogy with QCD suggests the occurrence of color confinement in SYM. The
large Nc expansion supports similarities with QCD in this respect (see for example the
discussion in [187]). The leading term of the expansion has indeed the same features
of the corresponding term in QCD for fixed Nf [180]6. Differently from QCD, where
only gluonic and q̄q bound states survive for Nc→∞, hadron bound states associated
with any combination of gluino and gluon fields are present in SYM. Observe that, the
gluino transforming in the adjoint representation, gauge invariant composite operators
can be built in SYM by taking the color trace of products of any number of gluino
and gluon fields:

Qα1,...,αm

µ1,...,µn
(x1, . . . , xm; y1, . . . , yn) =

Trcolor[Ψα1(x1) · · ·Ψαm
(xm) Aµ1(y1) · · ·Aµn

(yn)] . (4.24)

In consideration of the (partial) analogy with QCD, the question naturally arises
whether SYM confines static color sources. In QCD, dynamical quarks are expected to
screen the static fundamental charges so that the string tension vanishes. The situation
is different in SYM, since the dynamical fermions are in the adjoint representation and
are not expected to screen fundamental charges. It is therefore generally assumed that
SYM confines static quarks with a non-vanishing string tension.

If SUSY is not broken at the dynamical level, the colorless bound states of the
theory should form supermultiplets. The lowest end of the spectrum can be explored
in particular by means of low-energy Lagrangians.

5Diagrams which can be disconnected by cutting gluon lines.
6In spite of the different counting of the fermionic degrees of freedom in the two theories (∼ Nc in

QCD and ∼ N2

c in SYM).
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4. Simulation of N = 1 SYM and one flavor QCD

Starting from the analogy with QCD, Veneziano and Yankielowicz [187] take as ba-
sic degree of freedom a superfield S(x, θ) containing the composite operators λaλa ≡
Ψ̄a

RΨa
L (and Hermitian conjugated) and F̃ a

µνF
aµν . The simplest choice is a chiral su-

perfield also containing F a
µνF

aµν and σµνF a
µνλ

a:

S(x, θ) ∼ Ψ̄a
RΨa

L + iθσµνF a
µνΨ

a
L +

1

2
θ2 (F a

µνF
aµν + iF̃ a

µνF
aµν) + · · · (4.25)

(the ellipsis indicates further terms not relevant for the following discussion). The last
three operators in (4.25) correspond, respectively, to the superconformal, scale and
U(1)R anomalies of SYM. The kinetic term of the effective Lagrangian of the chiral
superfield S is a Kähler potential of the form

Lkin =
9

α
(S∗S)

1/3
D , (4.26)

where α is a free parameter. Lkin enjoys all the symmetries of the fundamental La-
grangian (4.4) at the classical level. The superpotential W (S) is determined, on the
other side, by requiring that the anomalous transformations reproduce the correct
anomaly terms. This results in

W (S) =
1

3
(S log S/µ3 − S)F + Hermitian conjugated . (4.27)

The effective Lagrangian of the superfield S allows to determine the Green functions
of the composite components fields, contained in (4.25), by a tree-level computation.
Since these composite operators represent interpolating fields for the bound states of
the theory, the mass spectrum of SYM follows immediately from the effective La-
grangian. In this, one assumes that S contains precisely those degrees of freedom
which dominate the dynamics of the theory at low-energies.

Purely gluonic operators do not possess any kinetic term in the Kähler potential
and consequently decouple in the Veneziano-Yankielowicz theory. The dynamical de-
grees of freedom are given by the gluino bilinear λaλa and the gluino-glue operator
σµνF

a
µνΨ

a
L. They project over a Wess-Zumino supermultiplet containing two mesonic

gluino states with both parities and one gluino-glue spin 1/2 state. This picture is
obviously incomplete, since mixing with the states projected by the purely gluonic
operators in (4.25) (glueballs) is expected.

Again starting from an analogy with QCD, where the scalar glueball can be coupled
to the η′ by a three-form potential Cµνρ, the authors of [74] embedded the chiral
superfield S in a three-form superfield U . The former can be obtained from the latter
by the relation

D̄2U = −1

4
(S − µ3) , (4.28)

which allows to re-express the Veneziano-Yankielowicz Lagrangian in terms of U . The
superfield U contains all the components of S and in addition the tree-form poten-
tial Cµνρ, a scalar operator interpolating the glueball with positive parity7, and a

7The operator F a
µνF aµν is not dynamical as in the Veneziano-Yankielowicz approach.
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4.3. Lattice formulation of N = 1 SYM

second Majorana spinor. The pseudoscalar glueball is described by the only physi-
cal component of the three-form potential Cµνρ. The resulting low-energy spectrum
is characterized in this new effective theory by two Wess-Zumino multiplets. The
expected mixing between the two supermultiplets is obtained by introducing in the
Veneziano-Yankielowicz Lagrangian a new interaction term of the form

1

δ

(

− U2

(S†S)1/3

)∣
∣
∣
∣
D

, (4.29)

where δ is a free parameter. In the limit δ → 0 the mass-split and mixing between
the two supermultiplets vanishes and the scalar states of the lower multiplet have a
prevalent glueball component.

The problem of the inclusion of the glueballs in the bound state spectrum of SYM
was also considered in [37] and [135]. A different point of view is put forward in [25],
where the authors point out that the inclusion of glueballs in the spectrum of SYM
necessarily requires dynamical breaking of SUSY, where no supermultiplets appear.

The mass spectrum of SYM with a small gluino mass was studied in [75] by extending
the analysis of [74] . The effective Lagrangian of the theory with softly broken SUSY
can be obtained by rephrasing the procedure for the introduction of a gluino mass
term in the fundamental Lagrangian (see end of Subsec. 4.1.1).

The effects on the spectrum, resulting from this kind of analysis, are analytic in
the gluino mass, with a first O(mg̃) correction and higher order corrections suppressed
by powers of mg̃/µ. The gluino mass removes in particular the degeneracy between
the supermultiplet members. In the lower supermultiplet the ordering of the states is
(with increasing mass): scalar, spin 1/2, pseudoscalar. The ordering is reversed in the
higher multiplet. At O(mg̃), the energy levels in the supermultiplets are equispaced;
one has namely: m1/2 = (m0+ + m0−)/2. In Fig. 4.1, taken from [75], the qualitative
behavior of the softly broken spectrum of SYM is given.

4.3. Lattice formulation of N = 1 SYM

As already anticipated in the introduction to this chapter, SUSY cannot be defined
in a straightforward way in a discretized space-time manifold. The basic problem
already emerges in the simplest case of the Wess-Zumino model [194] describing the
interactions of a chiral superfield φ. 8 In this model, the interactions are contained in a
term ∼ φ3

θθ and the SUSY invariance relies on the (non trivial) property that products
of chiral superfields are themselves chiral superfields. Going back to the expression of
the supercharge in superspace (we consider minimal SUSY)

Qα =
∂

∂θα
− iσµ

αα̇θ̄α̇∂µ , (4.30)

one sees that any lattice definition of the supercharge requires in turn a lattice version
of the differential operator ∂µ. The presence of the latter operator in the supercharge

8We follow here the discussion in [58].
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4. Simulation of N = 1 SYM and one flavor QCD

Figure 4.1.: Qualitative behavior of the mass spectrum of SYM when passing from the exact
SUSY model (unmixed and mixed cases, see in the text) to the softly broken
model in the effective low-energy Lagrangian picture.

comes from the superalgebra identity

{Qα, Q̄β̇} = 2 σµ

αβ̇
Pµ , (4.31)

and the fact that in the superfield representation Pµ ≡ −i∂µ. The problem of the
absence of infinitesimal translations on the lattice can be bypassed by considering a
lattice version of the differential operator ∂µ, OL

µ , having the correct continuum limit.
The lattice version of the supercharge according to (4.30), with ∂µ → OL

µ , satisfies the
identity (4.31) by construction9.

The point is now that for any local definition of the lattice differential operator OL
µ ,

the composite field φ3 does not transform like a chiral superfield, and the interaction
term φ3

θθ, in particular, is not invariant under lattice SUSY transformations. The
basic reason for this is that any local definition of the lattice derivative does not
satisfy the Leibniz rule. Explicit invariance of a lattice Lagrangian under a lattice
version of the SUSY transformation can only be obtained by introducing non local
definitions of the lattice differential operator (for example the “SLAC derivative” [61,
60]) and, consistently, non local interaction terms in the action (a first attempt in
this direction can be found for example in [22]). These formulations however violate
Lorentz invariance in the continuum limit [121].

Even if not relevant for the present discussion were minimal SUSY is considered,
we mention that, in the case of extended SUSY with several supercharges, lattice
models with a partial exact SUSY can be constructed [118, 36, 178]. The residual
SUSY is generated by supercharges which are not related to infinitesimal translations.

9However, the operator OL
µ does not generate finite translations on the lattice, unless a non-local

definition is used.
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The motivation behind this line of research is that the residual exact symmetry may
protect the renormalized theory from many relevant SUSY-violating terms.

As we will see in the next section, in the case of N=1 SYM only one SUSY-violating
term exists, associated with the gluino mass. The latter must be properly tuned in
order to recover SUSY in the continuum limit.10

4.3.1. The Curci-Veneziano lattice action

In [49] Curci and Veneziano put forward a lattice formulation of SYM which rephrases
the Wilson discretization of QCD.

In this original proposal the standard plaquette action is taken for the gluon sector.
The Wilson discretization of the Euclidean fermion action (4.16) leads to (we omit
here and in the following the label E referring to the Euclidean manifold):

S g̃ = a4
∑

x

Trcolor{ 1

2a

±4∑

µ=±1

[
r Ψ(x)Ψ(x) − Ψ(x + aµ̂)Uµ(x)(γµ + r)Ψ(x)U †

µ(x)
]

+ m0 Ψ(x)Ψ(x)} , (4.32)

with Ψ ≡ ΨaT a (T a are the generators of the fundamental representation of SU(N)),
a the lattice spacing and m0 the gluino bare mass, related to the hopping parameter
by am0 = 1/2κ − 4r; the bare gauge coupling g0 is related to the lattice parameter
β by the usual relation β = 2Nc/g

2
0. Observe the analogy with the Wilson action for

quarks (0.20). The parallelism with the Wilson formulation of QCD becomes even
more evident if an adjoint link is introduced:

V ab
µ (x) ≡ 2 Tr(U †

µ(x)T aUµ(x)T b) = V ab
µ (x)∗ = (V −1T )ab

µ (x) ; (4.33)

in this case, the Curci-Veneziano action assumes the more familiar form (observe,
again, the factor 1/2)

S g̃ = a4
∑

x

1

4a

±4∑

µ=±1

[
r Ψ

a
(x)Ψa(x) − Ψ

a
(x + aµ̂)V ab

µ (x)(γµ + r)Ψb(x)
]

(4.34)

+
m0

2
Ψ

a
(x)Ψa(x) , (4.35)

The adjoint link is a real orthogonal matrix; in this case V−µ(x) ≡ V T
µ (x − aµ̂) (and

γ−µ ≡ −γµ as usual).
In Wilson QCD, a chirality-breaking counterterm is required in order to recover

chiral symmetry in the renormalized theory in the continuum limit. Here similarly,
as can be argued in an analysis in weak-coupling perturbation theory, the SUSY and
anomalous UR(1) Ward identities are recovered in the renormalized theory if m0 is

10Since the mass term breaks chirality too, this tuning is avoided in chiral-symmetric lattice formu-
lations [152, 120].
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tuned to a critical value m0c(g0) 6= 0 corresponding to massless gluino. Observe
that, at finite lattice spacing, even for m0 = m0c(g0) no lattice version of the SUSY
transformations (4.8) exists leaving the lattice action invariant. Assuming that the
Curci-Veneziano lattice action belongs to the universality class of SYM, this means
that features of SYM related with SUSY will only appear in the continuum limit, while
at finite lattice spacing O(a) deviations are expected. The same considerations hold
for the U(1) R-symmetry. An analysis of these issues in a non-perturbative context
will be reviewed in the Section 4.4.

Using relation (4.14), the fermion action (4.32) can be rewritten in terms of an
antisymmetric matrix Mαβ, where the Greek indices refer collectively to space-time,
color and Dirac indices

S g̃ = −1

2
ΨαMαβΨβ . (4.36)

In this case the fermion measure reads:
∫

∏

γ

dΨγ exp{−1

2
ΨαMαβΨβ} = Pf(M) , (4.37)

where

Pf(M) ≡ 1

N !2N
εα1β1...αNβN

Mα1β1 . . . MαNβN
, (4.38)

is the Pfaffian of the antisymmetric matrix M (N denotes its order). Similarly to
QCD, a non-Hermitian and a Hermitian fermion matrix can be defined; respectively:

Q = C−1M Q̃ = γ5Q , (4.39)

with the relation

det(Q̃) = det(Q) = Pf(M)2 . (4.40)

Due to the property of Q̃, following from (4.39) and from the antisymmetry of M ,

CT Q̃ C = Q̃T , (4.41)

the spectrum of Q̃ is doubly degenerate and, consequently, the fermion determinant
is positive. Relation (4.40) implies in turn that Pf(M) is real11. One can thus write:

Pf(M) =
√

det(Q) sgn(Pf(M)) . (4.42)

On the basis of (4.42), the TSMB algorithm described in Sec. (1.2) can be applied
to SYM with the choice α = 1/4, while the sign of the Pfaffian must be taken into
account in the reweighting procedure (see in Sec. (1.2) and in [35] for more details).
The situation is in this sense similar to Nf = 1 QCD with a light quark mass to be
considered in the following in this chapter.

11If the Majorana representation of the gamma-matrices is used the matrix M itself is real.
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4.4. SUSY Ward identities on the lattice [SYM-1]

4.3.2. First studies

A first numerical study of SYM with gauge group SU(2) and dynamical gluino was
accomplished in [124], where the phase structure of the theory was studied by analyzing
the gluino condensate for light gluino masses. In the continuum (Subsec. 4.2.1), a
gluino condensate is expected to produce the spontaneous breaking of the discrete
chiral symmetry: Z4 → Z2 for gauge group SU(2). The gluino mass aligns the vacuum
into one specific direction in Z4/Z2 and the condensate changes sign when the gluino
mass becomes negative (Eq. (4.23)): a first order phase transition is expected for
vanishing gluino mass12. In the Wilson formulation, the condensate is subject to an
additive and a multiplicative renormalization and only a jump of the condensate can
be detected directly from lattice data. It is not clear how lattice artifacts can change
this scenario. In the case of QCD, as we have seen in Sec. 3.3, O(a) effects can
substantially modify the phase structure when m . aΛ2

QCD; metastable vacua are in
particular produced for light quark masses.

In [124] evidences for a first order phase transition with metastable vacua were found,
with a double-peak structure of the sample-distribution of the gluino condensate. The
method allowed to determine the critical value of the bare lattice gluino mass m0

(vanishing gluino mass) corresponding to a symmetric distribution of the condensate.
The simulation was performed on a relatively small 63 · 12 lattice and for one value of
β = 2.3. As we will see in Sec. 4.6, this value of β corresponds to a lattice spacing
a ' 0.06 fm when QCD units are used to fix the lattice scale (an explanation of the
conversion to QCD units can be found in Sec. 4.6); this implies on the 63 · 12 lattice
a spatial volume of only (0.4 fm)3. The value found in [124] for the critical hopping
parameter, κc = 0.1955(5), is therefore expected to be affected by substantial finite
volume effects.

A new analysis of the chiral phase transition in SU(2) SYM, based on a new PHMC
simulation algorithm [140], see also in Subsec. 3.4.1, on larger volumes and several
values of the lattice spacing is in preparation [57].

In [35] first large-scale simulations of the theory with the TSMB algorithm were
realized at β = 2.3 and on 63 · 12, 83 · 16 and 123 · 24 lattices. In this case, the analysis
focused on the inter-quark potential and the light bound state masses. The results of
this study will be compared with new results to be discussed in Sec. 4.6.

4.4. SUSY Ward identities on the lattice [SYM-1]

According to the discussion in Sec. 4.3, the Wilson discretization of SYM is not left
invariant by any lattice counterpart of the continuum SUSY transformations (4.8).
From the analysis in weak-coupling perturbation theory of [49], SUSY is however
expected to be recovered in the continuum renormalized theory. The situation is
similar to the one applying for chiral symmetry in QCD, with a substantial difference,

12Recall that no Goldstone boson is associated with this spontaneous symmetry breaking and the
mass gap of the theory does not vanish.
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however. In QCD, a lattice version of the non-renormalization theorem for conserved
currents [183] ensures the existence of the chiral currents in the continuum limit. The
latter are obtained by a finite multiplicative renormalization of the lattice operators13.
The chiral currents satisfy softly broken Ward identities if the quark mass is properly
renormalized by an additive term ∼ a−1. A similar scenario is expected to apply to
the SUSY Ward identities too, Eq. (4.13), but a rigorous proof is (still) missing. A
non-perturbative verification of SUSY restoration, complementing the weak-coupling
arguments of [49], is therefore of primary importance. A first non-perturbative study
of the SUSY Ward identities with dynamical gluino was performed in [SYM-1], where
also the theoretical issue of the renormalization was investigated in detail14.

4.4.1. Lattice SUSY Ward identities

The SUSY Ward identities for lattice SYM are obtained by rephrasing the method
introduced in [32] for the case of the chiral Ward identities in Wilson QCD. One
considers the invariance of the vacuum expectation value of a local operator Q(y)
(insertion operator) under redefinition of the fields by a local SUSY transformation.
The invariance of the vacuum expectation value under redefinition of the field variables
at the site x implies

〈−(δxS) Q(y) + δxQ(y)〉 = 0 , (4.43)

where δxS and δxQ(y) denotes the variation of the action and of the insertion operator,
respectively. The variation of the symmetric part of the action results in the divergence
of the spinorial Noether current Sµ(x) (“supercurrent”); so one can rewrite Eq. (4.43)
in the form:

〈∂µSµ(x) Q(y)〉 = 〈δxSbreak Q(y)〉 + contact terms ∼ δ(x − y) ; (4.44)

the contact term derives from the variation of the local insertion operator.
The first step is therefore to define a lattice analogous of the transformations (4.8)15.

The lattice SUSY transformations should commute with the lattice gauge transforma-
tions, the discrete symmetries of the action (P, T) and preserve the Majorana condition
for the gluino field (4.14). The simplest choice is

δξUµ(x) = −ig0a

2
(ξ(x)γµUµ(x)Ψ(x) + ξ(x + aµ̂)γµΨ(x + aµ̂)Uµ(x)) ,

δξU
†
µ(x) =

ig0a

2
(ξ(x)γµΨ(x)U †

µ(x) + ξ(x + aµ̂)γµU
†
µ(x)Ψ(x + aµ̂)) ,

δξΨ(x) =
1

2
P (cl)

µν (x)σµνξ(x) ,

δξΨ(x) = −1

2
ξ(x)σµνP

(cl)
µν (x) , (4.45)

13The renormalization converges to one for g0 → 0.
14SUSY Ward identities for SYM in the quenched approximation were considered in [59].
15Observe, however, that the equations of Subsec. 4.1.1 were derived for the Minkowski manifold.
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where ξ(x), ξ(x) are infinitesimal Majorana fermionic parameters. P
(cl)
µν (x) is a (clover-

symmetrized) lattice version of the field strength tensor Fµν which complies with P

and T [SYM-1].
This results in the following Ward identities16

∑

µ

〈(
∇µS

(ps)
µ (x)

)
Q(y)

〉
= m0 〈χ(x)Q(y)〉 +

〈
X(ps)(x)Q(y)

〉
−

〈
δQ(y)

δξ(x)

〉

. (4.46)

The meaning of the various terms will be explained in the following.
The lattice SUSY current S

(ps)
µ (x) is a point-split current [182]

S(ps)
µ (x) = −1

2

∑

ρσ

σρσγµTr
(

P (cl)
ρσ (x)U †

µ(x)Ψ(x + aµ̂)Uµ(x) + (4.47)

P (cl)
ρσ (x + aµ̂)Uµ(x)Ψ(x)U †

µ(x)
)

;

∇b is the backward lattice derivative ∇b
µf(x) = (f(x) − f(x − aµ̂))/a.

The first two terms on the RHS of Eq. (4.46) result from the fact that the lattice
action is not invariant under a global SUSY transformations. In particular, the gluino
mass term gives rise to the expected soft breaking term (compare with Eq. (4.13)):

χ(x) =
∑

ρσ

σρσTr
(
P (cl)

ρσ (x)Ψ(x)
)

. (4.48)

The explicit SUSY breaking of the Curci-Veneziano action, including the one stem-
ming from the Wilson term, gives rise to an additional SUSY-breaking term, denoted
with X(ps)(x) in Eq. (4.46). The exact expression of X(ps)(x) [182] is not needed for
the following discussion; it is enough to know that, in the naive continuum limit,
XS(x) ' aO11/2(x), where O11/2(x) is a dimension 11/2 operator.

The last contact term in (4.46) will be disregarded in the following, where x 6= y
will always be taken.

The lattice definition of the SUSY current is univocal up to O(a) terms. In par-

ticular, a local choice for the current is also possible. The local current S
(loc)
µ (x)

satisfies a Ward identities of the form (4.46), with a symmetric lattice derivative
∇s

µf(x) = (f(x+aµ̂)−f(x−aµ̂))/2a (preserving P and T); the SUSY-breaking term,
which depends on the details of the discretization, differs from the point-split version
by O(a) terms: X(loc) = X(ps) + O(a).

4.4.2. Renormalization

Eq. (4.46) is a relation among bare correlators, while the continuum limit can only be
taken after proper renormalization of the theory. The discussion of the renormaliza-
tion of the lattice SUSY Ward identities is closely related to that of the chiral Ward

16In view of non-perturbative studies, only gauge invariant insertion operators are considered; in this
case, SUSY-breaking gauge fixing terms in the action do not play any role.
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4. Simulation of N = 1 SYM and one flavor QCD

identities in QCD [32, 183]. In particular, the mixing of the SUSY-breaking oper-
ator XS(x) with lower dimensional operators gives rise to logarithmically divergent
renormalizations and power subtractions.

The renormalization pattern of the operator O11/2(x), related to the SUSY-breaking
lattice term XS(x), is discussed in detail in Appendix B of [SYM-1]. By using the
available symmetries of the lattice action (gauge invariance, C, P, T, hyper-cubic),
one can make restrictions on the mixing pattern of O11/2. In particular, hyper-cubic
invariance excludes Lorentz violating mixing terms.

In the on-shell case, the resulting general mixing pattern involves operators with
dimensions 7/2≤d ≤ 11/2:

OR
11/2(x) =

Z11/2 [O11/2(x) + a−1(ZS − 1)∇µSµ(x) + a−1ZT ∇µTµ(x) + a−2Zχ χ(x)]

+
∑

j

Z
(j)
11/2O

(j) R
11/2 (x) . (4.49)

An additional dimension 7/2 operator (besides the SUSY current) appears in (4.49),
the mixing current Tµ(x). In the point-split case it may be defined as

T (ps)
µ (x) =

∑

ν

γνTr
(

P (cl)
µν (x)U †

µ(x)Ψ(x + aµ̂)Uµ(x) + (4.50)

P (cl)
µν (x + aµ̂)Uµ(x)Ψ(x)U †

µ(x)
)

.

The last term on the RHS of Eq. (4.49) reflects the mixing of the operator O11/2(x)

with other bare operators O
(j)
11/2(x) with the same dimension. Solving Eq. (4.49) for

O11/2(x) and substituting it in the Ward identities (4.46), one gets the new renormal-
ized Ward identities

ZS 〈(∇µSµ(x)) Q(y)〉 + ZT 〈(∇µTµ(x)) Q(y)〉 = mS 〈χ(x)Q(y)〉 + O(a) , (4.51)

where the subtracted mass mS is given by

mS = m0 − a−1Zχ . (4.52)

In deriving Eq. (4.51) we have relied on the vanishing in the continuum limit of the
correlation

a

〈

[Z−1
11/2O

R
11/2(x) −

∑

j

Z
(j)
11/2O

(j) R
11/2 (x)] Q(y)

〉

= O(a) , (4.53)

which is valid on-shell, x 6= y (Z11/2, Z
(j)
11/2 are logarithmically divergent renormaliza-

tions).
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4.4. SUSY Ward identities on the lattice [SYM-1]

By using general renormalization group arguments (see for example [183]) one can
show that the power-subtraction coefficients ZS, ZT and Zχ are independent of the
renormalization scale. Dimensional considerations imply in this case:

ZS = ZS(g0,m0a) , ZT = ZT (g0,m0a) , Zχ = Zχ(g0,m0a) . (4.54)

In particular, the dependence of ZS and ZT on the gluino mass is vanishingly small in
the continuum limit17.

In QCD, the lattice chiral Ward identities lead to the definition of a multiplicatively
renormalized chiral current. A rigorous argument [32, 183] shows in this case that
the renormalized current coincides with the physical current in the continuum limit.
It satisfies in particular the appropriate current algebra. The analogous quantity for
SUSY would be (see Eq. (4.51)):

Ŝµ(x) = ZS Sµ(x) + ZT Tµ(x) . (4.55)

As discussed in [SYM-1], an attempt to reproduce the QCD argument in the case of
the SUSY current however fails. Explicit one-loop calculations in lattice perturbation
theory may shed some light on this issue [182]. If the correctly normalized SUSY
current coincides with Ŝµ(x) (or is related to it by multiplicative renormalization),
then Eq. (4.51) implies that it is conserved when mS vanishes. In this case SUSY is
restored in the continuum limit at mS = 0.

The renormalized SUSY Ward identities (4.51) are the object of the numerical in-
vestigations which will be reviewed in the following. In particular, the Ward identities
are used to determine, in a non-perturbative way, mS. The issue of the renormaliza-
tion of the supercurrent, which can only be settled by studying the continuum limit
of lattice SYM, is beyond the scope of this analysis taking place at a single value of
the lattice spacing.

4.4.3. Insertion operators

The choice of the insertion operator for the SUSY Ward identities (4.51) is not com-
pletely trivial due to the spinorial nature of the SUSY current. Since the Ward identi-
ties are considered at zero spatial momentum, the “orbital” angular momentum van-
ishes and rotational invariance requires that the insertion operator contains at least
one spin 1/2 component (O(a) corrections are neglected in the Ward identities, mean-
ing that the more restrictive Lorenz invariance of the continuum applies). So, as one
would naively expect, only insertion operators containing spin 1/2 representations of
the rotational group result in non trivial Ward identities. It is possible to classify the
representations of the Lorentz group having this property (Appendix C of [SYM-1]).

For the optimization of the signal-to-noise ratio, it is convenient to choose low
dimensional composite operators. The best candidate according to these criteria is

17In simulations at fixed lattice spacing this dependence is treated as an O(a) effect.
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the dimension 7/2 operator confined on a time-slice

Q(x0) =
∑

~x

χ(sp)(~x, x0) ≡
∑

~x ,i<j

σijTr
[

P
(cl)
ij Ψ(~x, x0)

]

. (4.56)

Another possible choice is given by the temporal component of the mixing current
(4.50), which however is not confined on a time-slice.

Each spinorial dimension 7/2 operator delivers two independent equations when in-
serted in the Ward identities (4.51), corresponding to the two spin 0 components in
the sink-source operator product. The two resulting Ward identities can be used to
determine the bare soft-breaking gluino mass Z−1

S mS and the combination of renoma-
lization constants Z−1

S ZT .

4.4.4. Simulation

The investigation of [SYM-1] relies on samples of configurations on a 123 · 24 lattice
at β = 2.3. Besides the set at κ = 0.1925 of [35], two further sets at lighter values of
the gluino mass, κ = 0.194 and 0.1955, were generated. The motivation for simulating
with a light gluino is of course that the restoration of SUSY can only be verified after
an extrapolation to zero gluino mass.

From the algorithmic point of view, the simulation allowed to test for the first time
the behavior of TSMB in the case of extremely light fermionic degrees of freedom.
This was also important in view of the future applications in QCD, covered in the first
three Chapters.

The possibility given by TSMB of tuning various algorithmic parameters allowed to
avoid a dramatic increase of the autocorrelations for decreasing gluino mass, see Table
2 of [SYM-1]. A more detailed analysis of the behavior of TSMB for light quarks was
given in Chapter 1.

A potential problem in lattice SYM is the fast fluctuation of the sign of the Pfaffian
during the update. Such a behavior is expected in the vicinity of the chiral phase
transition at zero gluino mass (Secs. 4.2.1 and 4.3.2). In the present case, up to the
lightest simulated gluino mass, occurrence of sign flips turned out to be statistically
negligible.

Missing any connection to phenomenology, in SYM it is not possible to fix the
lattice scale; nevertheless one can exploit the analogy with the physical theory QCD
in order to get qualitative indications. Using the Sommer scale parameter r0 [176],
extrapolated to zero gluino mass, to fix the scale (see Sec. 4.6 in the following) one
obtains for the lattice spacing a ' 0.06 fm. This corresponds to a quite small lattice
spacing in QCD computations. If analogy with QCD holds, O(a) SUSY-breaking
effects are not expected to play a major role at this β-value (even if the lattice theory
is not improved). The physical volume is on the other hand relatively small: (0.7 fm)3.
In the case of SYM however the mass gap does not vanish in the massless gluino limit
and the finite size scaling may be radically different from the one applying to QCD.
In the case of the SUSY Ward identities, finite volume effects come into play through
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the (SUSY-breaking) anti-periodic boundary conditions in the time direction for the
fermions.

4.4.5. Results from the SUSY Ward identities

As mentioned above, the study of the SUSY Ward identities allows to determine the
bare SUSY soft-breaking gluino mass Z−1

S mS and the combination of finite renormal-
ization constants Z−1

S ZT . The numerical results for these quantities in lattice units are
reported in the Tables 4-7 of [SYM-1], for different lattice definitions of the currents
and choices of the insertion operator (results as a function of the sink-source time
separation are given in Figs. 4 and 5). The time-slice insertion operator (4.56) gives
the most precise determinations; the following discussion is based on these results.

Local and point-split currents produce quite different values for Z−1
S ZT (in partic-

ular the coefficient is close to zero in the case of the point-split current). This is
expected, since this quantity is a pure lattice artifact and therefore sensitive to the
exact lattice definition of the current. In the case of Z−1

S mS, a quantity with a con-
tinuum counterpart, different discretizations are expected to produce relatively small
O(g2

0) deviations. This is well reflected by the numerical results.
Another observation consistent with theoretical expectations is that the dimension-

less coefficient Z−1
S ZT has a weak dependence upon κ; this dependence, according to

the discussion of Subsec. 4.4.2, is an O(a) effect. On the contrary, a strong dependence
upon κ is observed for the soft-breaking gluino mass, which decreases for increasing κ.
This is consistent with the picture of restored SUSY for κ → κc, where the gluino mass
vanishes. An independent check of this picture is obtained in the OZI approximation
(briefly discussed near the end of Subsec. 4.2.1), predicting a massless adjoint-pion
in the limit of restored (discrete) chiral symmetry at zero gluino mass. This aspect
will be discussed more extensively in Sec. 4.6, when reviewing [SYM-3]. We antici-
pate that numerical results indicate that both the soft-breaking gluino mass and the
adjoint-pion mass vanish at a common value of κ.

A simple linear extrapolation of Z−1
S amS as a function of m0 ∼ 1/κ (based on the

expectation of an analytic dependence of this quantity on the Lagrangian gluino mass
parameter) allows to estimate the critical value of the hopping parameter where mS =
0. The result is κc = 0.19750(38) (point-split current) and κc = 0.19647(27) (local).
This result shifts the critical value to larger values compared with the previous estimate
κc = 0.1955(5) of [124] (Subsec. 4.3.2). Indeed, one of the simulations of [SYM-1] was
exactly at κ = 0.1955. We conclude that the value κ = 0.1925 considered in [35] for
the analysis of the bound states spectrum corresponds to a quite heavy gluino, for
which soft breaking effects are still large. A new investigation of the spectrum deeper
into the light gluino regime is therefore required for a verification SUSY in the mass
spectrum of the theory. This will the subject of Sec. 4.6.

In summary, the results of [SYM-1] show the feasibility of a non-perturbative study
of the SUSY ward identities in a SUSY gauge theory; the results are consistent with the
renormalized SUSY Ward identities (4.51) and support a picture in which both SUSY
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and the (discrete) chiral symmetry are restored (up to O(a) corrections) if the bare
gluino mass is tuned to a common critical value. SUSY restoration in the continuum
limit can be verified for example in the bound state spectrum of SYM (Sec. 4.6).

4.5. Volume source technique revisited [SYM-2]

As we have seen in Subsec. 4.2.2, the interpolating operators of mesonic bound states of
SYM consist of gluino bilinears. The correlators of these operators contain diagrams
with two disconnected gluino loops. The numerical estimate of such disconnected
diagrams is not trivial, since standard fermion-matrix inversion techniques are not
applicable; in addition, the signal for the correlators is intrinsically noisy. A prereq-
uisite for an accurate determination of the hadron masses in SYM is therefore the
optimization of the computational techniques. In the following, as a preparation for
the analysis of the bound state spectrum of SYM to be discussed in Sec. 4.6, a novel
method for the evaluation of the disconnected diagrams of the mesonic correlators in
SYM is proposed and compared with stochastic methods already available for QCD.

4.5.1. Improved volume source technique (IVST)

Interpolating operators of mesonic states in SYM are given, see also in Subsec. 4.2.2, by
bilinears of the fermion fields λa

αλaα, λ̄a
.
αλ̄a

.
α
, or equivalently with Majorana spinors18:

ψ̄(x)Γψ(x) , Γ = 11, γ5 . (4.57)

The disconnected component of the meson correlators in the background of a gauge
configuration {U} can be written

CΓ,disc[U ](x0 − y0) =
1

Vs

TrDirac[ΓS(x0)] TrDirac[ΓS(y0)] ; (4.58)

S(x0) is the trace over color and spatial indices of the fermion propagator in the
background of the gauge configuration {U}:

Sαβ(x0) =
∑

~x

Trcolor[Q
−1
xα,xβ] . (4.59)

The exact evaluation of the above time-slice sum is not feasible in practice, since it
requires the computation of Q−1

xα,yβ for any x and y (“all-to-all” inversion problem).
The first solution found for this problem was based on a volume source [128] (“Vol-

ume Source Technique”, VST). VST delivers an estimate of Sαβ(x0) at the price of a
single inversion for each value of the color and the Dirac index. The inversion problem
with the volume source ωV reads

QZ = ωV
[a,α] , (ω

[a,α]
V )xbβ = δab δαβ , (4.60)

18The present discussion is general for any representation of the gauge group SU(Nc) and the usual
symbols for the fermion fields are therefore used.
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with solution
Z

[a,α]
xbβ = [Q−1ω

[a,α]
V ]xbβ = Q−1

xbβ,xaα +
∑

y 6=x

Q−1
xbβ,yaα . (4.61)

An estimate of the time-slice sum (4.59) is given by

S̃αβ(x0) ≡
∑

~x,a

Z
[a,α]
xaβ = [Q−1ω

[a,α]
V ]xaβ , (4.62)

where however the last term in (4.61) yields spurious, non gauge-invariant, contribu-
tions to the disconnected component of the correlator (4.58). In QCD and in general
for a non real representation of SU(N), one can eliminate these spurious terms in
the correlators by replacing S̃, for example in the source term, with its Hermitian
conjugate (transposition in color and Dirac indices)

C̃Γ,disc[U ](x0 − y0) =
1

Vs

TrDirac[ΓS̃(x0)] TrDirac[ΓS̃†(y0)] ; (4.63)

after this replacement, the spurious contributions add up to zero in the average over
the gauge sample, since they do not contain any gauge invariant component. The
latter statement can be proven by considering that the product of fundamental repre-
sentations of SU(3) does not contain the trivial representation. This argument holds
more generally for the fundamental representation of SU(Nc) with Nc > 2.

As noticed in [SYM-2], however, in the case of gauge group SU(2), which has real
representations only, and in the adjoint representation of SU(Nc) in general for any Nc,
the above argument fails. For SU(2) the product of two fundamental representations
contains the trivial one, which leads to non-vanishing contributions. The same is true
in general for the adjoint representations of SU(Nc).

At this point the simple observation was made in [SYM-2], that the error term in
the correlator, resulting from these spurious gauge invariant contributions, can be in
general removed by replacing S̃αβ(x0) with its gauge-average, since

〈

S̃αβ(x0)
〉

gauges
= Sαβ(x0) . (4.64)

In practice this is obtained by averaging S̃αβ(x0) over a sufficiently large number Ng of
gauge configurations obtained from the original one by a random gauge transformation
g(x); this defines the improved version of VST (IVST in the following). The stochas-
tic input given by the random gauge transformation suggests an analogy with the
stochastic estimator techniques (SET) often used for the computation of flavor-singlet
correlators in QCD (see [161] for a recent review on the topic). A direct comparison
of the efficiency of the two methods is therefore possible.

4.5.2. Comparing IVST with stochastic source methods

For the comparative study of IVST and SET in the case of SYM, a new set of configu-
rations on a larger 163 · 32 lattice was generated with the TSMB algorithm at β = 2.3
and κ = 0.194.
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For ∼ 200 uncorrelated gauge configurations, 50 estimates of the time-slice sum
(4.59) were performed in IVST and 165 estimates in SET in the spin-explicit variant.
In the latter case each estimate of the time-slice sum is obtained by inverting the
fermion-matrix with source

(ω
[α]
S )xbβ = δαβ η

[α]
xb , (4.65)

where η
[α]
xb are independent stochastic variables chosen at random among 1√

2
(±1 ± i)

(complex Z2).

The comparison of the two methods must be done in terms of matrix inversions,
since the computational load per estimate is different in the two cases (one estimate
with IVST is a factor of three more expensive than the corresponding one with SET).
The two methods give in general consistent results for the expectation values of the
condensates with both parities and for the mesons correlators (Figs. 2 and 5 of [SYM-
2]).

A non trivial result of the study is that the two stochastic methods produce the
same level of noise in the correlators. Indeed, see Fig. 4 of [SYM-2], the statistical
error for the same number of inversions is comparable in the two cases. As expected
from the discussion above, the unimproved VST introduces a systematic error in the
correlators (Fig. 5); the latter is reflected by large fluctuations of the effective hadron
mass for large time-separations, where the disconnected term dominates.

The main result of the study [SYM-2] is that the two stochastic methods for the
determination of the disconnected diagrams, IVST and SET, are essentially equivalent
and both give satisfactory results for the quantity of interest, the masses of the mesonic
bound states of SYM. On the contrary, VST introduces large systematic effects in the
correlators and in the estimates of the masses. In consideration of this result, IVST
and SET were applied in the investigation of the light bound state spectrum of [SYM-3]
(next section).

4.6. Study of the bound state spectrum of

N = 1 SYM [SYM-3]

As we have seen in Subsec. 4.2.2, the main features of the low-lying bound state spec-
trum of SYM are still under debate in the theoretical discussion. In particular, glueball
states, which should naturally appear at low-energies, cannot be easily included in the
low-energy effective Lagrangians.

On the other side, the numerical analysis of the spectrum of SYM presents non trivial
difficulties. The involved bound state correlators are indeed intrinsically noisy and the
extraction of the signal awkward. In the case of the glueball and mixed gluino-glue
bound states, the noise originates from the gluon content of the interpolating operators.
For the mesonic states, as discussed in the previous section, large fluctuations are
introduced by the disconnected diagrams.
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In [35], a first pioneering investigation of the spectrum of SYM was undertaken.
However, the repositioning of the critical hopping parameter to a larger value operated
in [SYM-1] implies that the gluino mass considered in that first work is probably too
heavy; the soft breaking effects are still too large for a safe extrapolation of the data
to the massless gluino limit. Another open question from [35] is the effect of the
finite volume on the bound state masses: the spatial volume in the 123 · 24 lattice was
estimated to be less than (1 fm)3.

The new analysis of [SYM-3] tries to cope with these open questions. In order
to obtain more precise results, a larger statistic was sampled for the computation of
the masses. The accuracy for the meson masses was improved by recurring to the
optimized analysis techniques described in the previous section. Finally, substantially
lighter (up to a factor three) gluino masses and a larger volume were included in the
analysis of the bound states mass spectrum.

4.6.1. Gauge samples

The analysis of [SYM-3] is based on three sets of configurations on a 123 · 24 lattice
at β = 2.3, κ = 0.1925 [35], κ = 0.194 and κ = 0.1955 [SYM-1]. At κ = 0.194, a set
of configurations on a larger 163 · 32 lattice was also included in the analysis (this set
was already employed for the study [SYM-2] described in the previous section).

As already briefly mentioned, a characterization of the gauge sample can be obtained
by the Sommer scale parameter r0 [176] of the inter-quark potential. In [SYM-3] a
definition of the lattice spacing was proposed obtained from the extrapolated value
of r0 at massless gluino. This corresponds to the massless renormalization scheme of
QCD, where the lattice spacing only depends on the bare gauge coupling.

In the case of SYM, the lattice spacing cannot of course be translated into physical
units. However, one can quote [SYM-3] the value of the lattice spacing corresponding
to the phenomenological value of r0, r0 = 0.5 fm, appropriate for the case of QCD.
This delivers for β = 2.3 in two-color SYM a ' 0.06 fm, a fairly small lattice spacing
from the point of view of QCD simulations. Of course SYM and QCD are different
theories and the discretization effects in the respective lattice formulations could be
very different.

The study of the inter-quark potential allows to determine the string tension σ of
static fundamental sources, which does not vanish in SYM (Subsec. 4.2.2). Finite
volume effects play an important role here; the comparison of the string tension for
Lx = 12 (∼ 0.7 fm) vs. Lx = 16 (∼ 1 fm) reveals a small deviation inside the
statistical errors, as shown in Table 1 of [SYM-3]. The picture of confinement of static
fundamental sources is substantially confirmed.

4.6.2. Gluino mass and massless limit

The (bare) gluino mass mg̃ can be determined in a direct way from the study of
the SUSY Ward identities ([SYM-1], Sec. 4.4). As noticed in [SYM-3] an indirect
determination of mg̃ is available in the OZI approximation of SYM (Subsec. 4.2.1).
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Figure 4.2.: Low-energy hadron masses in N = 1 SYM [SYM-3].

In the OZI limit, the anomaly vanishes and the adjoint pion is the Goldstone boson
associated to the spontaneous breaking of U(1)R. Assuming a linear behavior of the
squared adjoint pion mass M2

a-π with mg̃, one can use the dimensionless quantity Mr =
(Ma-πr0)

2 as reference gluino mass in analogy with the QCD case ([Alg], Sec. 1.3).
The relation valid in QCD [Alg], mq = (Mr/3.1) ms, can be used for the conversion to
physical units by replacing the quark mass mq with the gluino mass mg̃.

Numerically, the two definitions of the gluino mass, by the SUSY Ward identities
and the OZI approximation, result in mg̃ = 180 − 550 MeV and mg̃ = (1.3 − 4.4)ms,
respectively. The two estimates are in rough agreement for ms ' 100 MeV. The range
of the adjoint pion mass in physical units is Ma-π = 840 − 1800 MeV.

Under the assumption of the analogy with QCD, these results indicate that the
gluino mass is still too large, probably outside the domain of validity of the estimates
of [75] in the effective Lagrangian approach (see end of Subsec. 4.2.2). We recall that
in QCD, NLO chiral perturbation theory is expected to hold for fairly light quark
masses mq . ms/4 ' 20 − 25 MeV or Mπ . 300 MeV.

Nevertheless, the two definitions of the gluino mass seem to point towards a consis-
tent massless limit, as suggested by Fig. 3 of [SYM-3].

4.6.3. Spectrum

We recall that the low-energy Lagrangians discussed in Subsec. 4.2.2 predict the pres-
ence of two Wess-Zumino supermultiplets at the lower end of the bound state mass
spectrum of SYM. They also predict mixing between the states projected by the sim-
plest interpolating operators for the given quantum numbers (0±, 1/2). As argued
in [SYM-3] however, the masses of the unmixed states diagonalizing the Hamiltonian
are determined in the standard methods relying on the asymptotic behavior of Eu-
clidean correlators. In this kind of analysis, the second supermultiplet is formed by
the excited states in the channel with given quantum numbers.

Unfortunately, two of the simplest operators in the spin zero sector, the 0− glueball
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operator (F̃F ) and the 0+ mesonic operator (Ψ̄Ψ), are for different reasons affected
by large statistical fluctuations. This means that one has to rely on the remaining
operators, the 0+ glueball (FF ) and the 0− meson (Ψ̄γ5Ψ), for the determination of
the masses. Notice that in case of strong mixing, gluonic and mesonic operators are
in principle equivalent.

The pseudoscalar mesonic operator delivers the most solid results for the masses.
The quality of the data is displayed by Fig. 7 of [SYM-3], where the effective mass is
plotted. The disconnected diagram of the meson correlator was determined in this case
by the optimized stochastic method with complex Z2 noise (SET) of Sec. 4.5 (SET
and IVST are essentially equivalent). For the pseudoscalar and spin 1/2 particles it
was possible to extract the excited state masses, which turned out to be ' 1 in lattice
units.

An important test is the verification of the finite volume scaling of the masses. The
comparison of the estimates when passing from the ' 0.7 fm of the Lx = 12 lattice
to the ' 1 fm of the Lx = 16 lattice, reveals sizeable (10 − 20)% finite volume effects
(Table 2 of [SYM-3]).

The behavior of the correlators reveals the presence of excited states with mass
comparable to that of the ground state and large component in the projected state.
This observation is compatible with a second nearby multiplet as predicted by the
low-energy Lagrangian of [74].

For convenience, we report in Fig. 4.2 the determined bound state masses as a
function of 1/κ, which is proportional to the gluino mass up to a constant. One can
observe a general tendency of the bound state masses to decrease with the gluino mass.
At the lightest gluino mass, in particular, the 0− state is the lightest particle (with
mass ' 800 MeV). This contradicts the predictions of [75], where the lowest state
contained in the softly broken supermultiplet has positive parity, Fig. 4.1. A possible
explanation is that, as already argued, the gluino mass is still too heavy to allow for
a comparison with those predictions.

A naive linear extrapolation of the pseudoscalar particle mass to massless gluino
reveals a fairly light particle, with mass ' 300 MeV. The corresponding state of QCD,
the η′, is considerably heavier, Mη′ ' 1 GeV. Interestingly, as we will see in the
following in this chapter, a similar observation can be done in Nf = 1 QCD too.
The above estimate about the pseudoscalar particle mass in SYM is however only
qualitative, since, as already stated, the simulated gluino masses are probably too
heavy for safe extrapolations to the SUSY limit.

The study [SYM-3] represents a first step towards an accurate analysis of the bound
state spectrum of SYM. One indication from [SYM-3] is that the gluino mass should
be further reduced in order to be able to see SUSY effects in the bound state spec-
trum. The large statistical fluctuations in the hadron correlators can be reduced by a
substantial increase of the number of sampled configurations (at least by one order of
magnitude). These goals can be probably achieved with a new Monte Carlo algorithm
for SYM based on polynomial hybrid Monte Carlo along the lines of [140] (see also in
Subsec. 3.4.1); such an algorithm is currently under development [57].
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4. Simulation of N = 1 SYM and one flavor QCD

The main systematic errors on the determination of the masses are probably rep-
resented by the contamination from the excited states. This effect is particularly
relevant in the case of the O+ glueball projecting operator. In this case, due to the
high level of noise, the investigation of large time separations was not possible. The
introduction in the analysis of variational smearing methods based on an “optimized”
interpolating operator, along the lines of [143], could improve the situation. In the
mesonic sector, a better signal can probably be obtained by including explicitly the
contribution of the lowest eigenmodes of the fermion matrix to the gluino propagator.

4.7. One flavor QCD

QCD with one flavor of quarks (Nf = 1 QCD) differs from QCD with two or more
flavors in that chiral symmetry is absent: the Abelian chiral symmetry of the one flavor
theory is washed out at the quantum level by the Adler-Bell-Jackiw anomaly [3, 24].
Only a vector symmetry remains, related to the conservation of the baryon number.
As a consequence of this, the main features of the phase structure and mass spectrum
of Nf = 1 QCD strongly deviate from those of ordinary QCD, characterized by the
spontaneous breaking of the non-Abelian chiral symmetry.

Nf = 1 QCD is in this aspect nearer to N = 1 SYM, where the Dirac spinor of
the quark is replaced by the Majorana spinor of the gluino and a continuous chiral
symmetry is also absent due to the anomaly (Subsec. 4.2.1)19.

As recently shown, these differences between the two theories get weaker and weaker
in a special large Nc limit preserving balance between fermionic and bosonic degrees
of freedom (orientifold large Nc limit) [17]. The equivalence of the two theories can
indeed be proven [17] at the planar level of this large Nc expansion20.

Relics of SUSY are therefore expected in the massless quark limit of Nf = 1
QCD [18]. A prediction of the orientifold equivalence, already studied in the liter-
ature [53], concerns the size of the quark condensate which, as seen in Subsec. 4.2.1
can be computed analytically in SYM.

Another important place where relics of SUSY can be investigated, considered here
in more detail, is the low-lying bound state spectrum [Nf1]. As we have seen (Sub-
sec. 4.2.2) SUSY strongly constraints the hadron mass patterns in SYM. In particular
a signature of SUSY is the presence at low energies of two degenerate scalar particles
with opposite parity. In Nf = 1 QCD these two particles can be easily identified with
the pseudoscalar η meson and the scalar σ meson, respectively; the former picks up a
mass through the anomaly. On the basis of the planar equivalence, their mass ratio
including O(1/Nc) corrections is expected to be mσ/mη = Nc/(Nc − 2) [16].

One flavor QCD turns out to be useful for a better understanding of different aspects

19In the latter case however, a residual discrete chiral symmetry is preserved by the anomaly. As we
have seen in the previous sections of this chapter, the consequence is a richer vacuum structure
with a phase transition corresponding to the spontaneous breaking of the discrete chiral symmetry
at zero gluino mass, which however does not produce Goldstone bosons.

20The equivalence holds for any number of flavors and, also, for a massive fundamental fermion.
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Figure 4.3.: Expected phase diagram of one flavor QCD in the complex mass plane [45].

of the multi-flavor theory. We refer here to the recent works of M. Creutz addressing
open problems in QCD [46, 47]. These aspects are not directly related to the sponta-
neous breaking of the chiral symmetry and have therefore an equivalent in the single
flavor theory: the latter represents therefore a simple setup for their investigation.

One question raised by Creutz [46], having a relevant phenomenological impact, is
whether it is possible to define in an unambiguous way the case where one quark (say
the u quark) becomes massless. The arguments against an unique definition of the
massless limit [46] essentially rest upon the U(1) anomaly and should therefore hold a
fortiori for the one flavor theory. A second aspect is the possibility of a spontaneous
CP breaking in QCD for special choices of the quark masses, conjectured for the first
time by Dashen [50]. According to the Vafa-Witten theorem [186] a prerequisite for
the spontaneous breaking of a discrete symmetry is the non positivity of the fermion
measure. For Nf = 1 QCD this is the case when the quark mass is negative. The tran-
sition line is indeed expected to be located [45] on the negative real quark mass axis in
the extended complex parameter space, see Fig. 4.3. In the case of the physical theory,
the transition is excluded for phenomenologically relevant values of the quark masses,
but its nearby presence might nevertheless affect lattice numerical simulations [47]. In
this sense, the interest to these phenomena is not purely academic.

In Sec. 4.8, first numerical simulations of one flavor QCD in a large volume and with
light quark masses [Nf1] will be reviewed. In this region, relics of SUSY are expected
in the hadron spectrum, see the discussion above. The study of the phase structure
at negative quark masses will be the subject of a future work [72].

4.8. First study of the bound state spectrum of one

flavor QCD [Nf1]

The study of the mass spectrum of hadron states of Nf = 1 QCD requires reasonably
large physical volumes, in order to be able to accommodate the bound states, and small
quark masses. Mesonic states of the single flavor theory are characterized, as in SYM,
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Figure 4.4.: Expected low-energy spectrum of hadron masses in one flavor QCD.

by disconnected contributions. These are intrinsically noisy and require large statistics
for precise determinations. High statistics is also relevant for the computation of the
glueball masses.

4.8.1. Simulation

The study [Nf1] is based on the Wilson lattice fermion action which, as we have
already seen in different instances in this review, turns out to be suitable for this kind
of investigations21. The tree-level improved Symanzik action (tlSym, see Eq. (3.20))
was taken in the gauge sector; tlSym was proven in [tlS-1] and [tlS-2] to speedup the
Monte Carlo simulation as an effect of the reduced number of small eigenvalues of the
fermion matrix. The same effect can be obtained by introducing a so-called “Stout-
link” [142] in the lattice Wilson-Dirac operator. First experiences in this direction
were collected in [73].

The simulation algorithm is the PHMC algorithm proposed in [140] and already
applied in [tlS-2] for the Nf=2+1+1 twisted mass setup. Two lattices were considered
in [Nf1]: 123 · 24 at β = 3.8 and 163 · 32 at β = 4.0, corresponding in QCD units to
a(3.8) = 0.186 fm and a(4.0) = 0.134 fm. These lattice spacings are larger than the
one applying for the simulations of two-color SYM, a ' 0.06 fm. This could explain
the different behavior found in the two cases in relation to the sign of the fermion
measure, see in the following.

As already briefly mentioned in the previous introductory section, the fermion mea-
sure in Nf = 1 QCD is not positive for all values of the quark masses. The sign of the
quark determinant, analogous to the sign of the Pfaffian in SYM (Subsec. 1.2.5) is a
sensitive issue in Nf = 1 QCD; in particular, a negative determinant could trigger a
CP-violating phase transition. In the continuum, the fermion determinant is positive
for positive quark mass. With Wilson lattice fermions for small quark masses, it can
become negative on some configurations due to quantum fluctuations.

21Observe that a twisted mass formulation as the one given in Chapter 3 for the multi-flavor theory
is not possible in the single flavor theory; a chiral singlet rotation would introduce a non-zero
theta-term in the formulation.
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The sign of the determinant was computed in [Nf1] by means of the spectral-flow
method also employed in the case of SYM [SYM-1]. For the new analysis performed
in [73], an alternative method was considered. In this case, the (complex) spectrum of
the non-Hermitian matrix was computed, concentrating on the lowest real eigenvalues:
sign changes are signaled by negative real eigenvalues. This latter method, which will
be used for future investigations, delivers unambiguous results and can be simply
automatized.

In most of the simulations of [Nf1] the (positive) quark mass was large enough to
prevent sign changes and the occurrence of a negative determinant was a rare event.
For the lightest simulated quark mass on the coarser lattice however (“run c” at β = 3.8
and κ = 0.1710) sign changes did occur (26 configurations out of 2884). The sign of
the determinant had in this case a sizeable effect on the computed hadron masses.

4.8.2. Hadron spectrum

Due to the absence of the flavor symmetry, the hadron spectrum of Nf = 1 QCD is
characterized by a simpler structure compared to the multi-flavor theory. A schematic
picture of the expected spectrum of Nf = 1 QCD is given in Fig. 4.4. In particular,
one finds only two states in the meson sector at low energies, the η (0−) and the σ (0+).
At somewhat higher energies spin 3/2 baryons are expected corresponding to the ∆++

baryon in QCD.
The estimate of the meson masses in the single flavor theory requires the computa-

tion of disconnected diagrams. Here the spin-explicit variant of SET, also considered
in SYM, was applied.

As mentioned in Sec. 4.7 relics of SUSY suggest approximate degeneracy of the two
lightest mesons, while the first correction gives mσ/mη = Nc/(Nc − 2); this means
mσ/mη = 3 for Nc = 3 [16]. For the simulation points of [Nf1] this ratio turns out
to be about 1.5. This results is below the estimate in [16], but the situation could
improve in the massless quark limit where the prediction applies. The lightest ∆++

baryon is by about a factor of 3 heavier than the η meson. The scalar glueball was
investigated as well: its mass turns out to lie between the σ meson and the baryon
mass. A proper measurement of the glueball mass could not however achieved with
the given statistics.

4.8.3. Partially quenched viewpoint

An observation made in [Nf1] is that Nf = 1 QCD can be embedded in a partially
quenched multi flavor theory (see 2.2 for a brief introduction). A particularly sym-
metric choice consists in taking the Nval valence quark flavors degenerate with the
sea quark: in this case the combined sea-valence sector is characterized by an exact
non-Abelian SU(Nval + 1) flavor symmetry.

In this fictitious multi-flavor theory a pion, also containing quenched valence quarks,
can be defined. Similarly to the “adjoint pion” of SYM (Subsec. 4.2.1) its mass gives an
useful indication on the lightness of the fundamental fermion (the quark in this case).

125



4. Simulation of N = 1 SYM and one flavor QCD

In particular, the run with the lightest quark mass in [Nf1] (“run c”) corresponds to a
pion with fairly small mass: Mπ ' 270 MeV in QCD units. A PCAC quark mass can
also be defined as in Eq. (1.20) and taken as an operational definition of the quark
mass for the single flavor theory. The behavior of the hadron masses as a function of
this quark mass can be investigated, see Figs. 1 and 2 of [Nf1].

A partially quenched chiral perturbation theory can be setup, exactly as in the Nf > 1
case. The comparison of the lattice data with the chiral perturbation theory predic-
tions allows in particular to extract the low-energy constants Λ3 and Λ4, defined in
Eq. (2.54). Observe that these constants refer here to the Nf = 1 case: the dependence
upon the number of flavors should be taken into account when comparing for example
with the Nf = 2 case.

The values found in [Nf1] for the single flavor theory are:

Λ3

F0

= 10.0 ± 2.6 (4.66)

Λ4

F0

= 31.5 ± 14.3 . (4.67)

These values are compatible, although with large errors, with the recent determina-
tions for the two flavor theory at light quark masses in [tlS-1], see Table 2.2.

This first Monte Carlo investigation of Nf = 1 QCD in a large volume reveals the
qualitative features of the low lying hadron spectrum of this theory. In general, the
mass measurements have relatively large errors between 3–10%. In order to obtain
more quantitative results, larger statistics and smaller quark masses are required.
Progresses in both directions are expected with new simulations with Stout-smeared
links in the fermion action [72].

The introduction of a partially quenched extension of the single flavor theory with
valence quarks allows in particular to obtain a definition of the bare quark mass which
is otherwise awkward in absence of chiral symmetry.

A further direction of investigation for the future [72] is the CP-violating phase
transition expected at negative quark masses [45]. For this aspect of the single flavor
theory the non-positivity of the fermion measure is expected to play an essential role.

In consideration of the planar orientifold equivalence, it would be interesting to
directly compare lattice determinations in Nf = 1 QCD and SYM (in this comparison
the fundamental fermion does not need to be massless). For this, the simulation of
SYM with three colors is required (recall that the hereby described simulations of
SYM apply for the Nc = 2 theory). This line of investigation is under consideration
for future activities.
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This second part of the review covered simulations of the N = 1 supersymmetric
Yang-Mills theory (SYM) with two colors, and of Nf=1 QCD with three colors. The
two theories (for equal number of colors) share a similar structure in the fermionic
sector: the first is obtained from the second by replacing the Dirac spinor of the quark
by the Majorana spinor of the gluino. Both theories are in particular characterized by
a non-positive fermion measure and are expected to spontaneously break a discrete
symmetry [187, 43]. In a particular generalization of the theories with large number
of colors an exact equivalence can be actually proven [17].

The lattice simulation of a SUSY gauge theory can shed light on non-perturbative
mechanisms in non-Abelian gauge theories, where supersymmetry plays a distinctive
role. One important aspect in view of phenomenological applications is of course the
mechanism triggering a possible spontaneous breaking of SUSY. This phenomenon is
however is not expected in SYM, which is at present the only four dimensional SUSY
gauge theory accessible to large-scale lattice simulations.

Chapter 4 reviews first large-scale simulation of SYM [SYM-1, SYM-2, SYM-3].
The main focus was in this case on the restoration of SUSY in the Wilson fermion
formulation for vanishing gluino mass and on the low-energy spectrum of the bound
states. At the lower end, low-energy Lagrangians predict the presence of a chiral
supermultiplet [187, 74].

One value of lattice coupling, β = 2.3, was considered in the Curci-Veneziano for-
mulation [49] rephrasing the Wilson formulation for lattice QCD. This value of β
corresponds, in QCD units, to a fairly small lattice spacing a ' 0.06 fm. Corre-
spondingly, the volume is quite small ' (1 fm)3, and finite volume effects could be
large.

A lattice formulation of SYM necessarily breaks supersymmetry. In the Wilson
approach considered here, also chiral symmetry (coinciding with the R-symmetry in
the SUSY model, Subsec. 4.2.1) is explicitly broken. Both symmetries are expected to
be recovered in the continuum limit. This important point was in particular addressed
in [SYM-1], where the SUSY Ward identities were analyzed and the gluino mass of the
soft-breaking term computed non-perturbatively. Chiral symmetry can be analyzed
in the OZI limit of the theory where the U(1) anomaly disappears and a massless pion
emerges (“adjoint pion”) for vanishing gluino mass.

The analysis of [SYM-1] allowed in particular to compute the SUSY softly breaking
gluino mass in a non-perturbative framework. Its behavior as a function of the hopping
parameter indicates that, indeed, this mass parameter can be tuned to zero: in this
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situation the theory is supersymmetric up to O(a) lattice artifacts. Numerical results
on the adjoint pion mass indicate restoration of chiral symmetry in this limit. This
latter result could be better established by an analysis of the chiral phase transition
in a large volume: for vanishing gluino mass the residual discrete ZNc

chiral symmetry
should be restored (see the discussion in Subsec. 4.2.1). This aspect is currently under
study [57].

The study of the spectrum, and in particular of the mesonic states, requires the
computation of disconnected diagrams. The techniques which are well known in QCD
can also be applied in SYM, however with some care due to the different (adjoint)
color representation of the gluino. This aspect was considered in [SYM-2] where the
efficiency of different techniques was also compared (volume source vs. stochastic
source).

The systematic analysis of the expected bound states at low-energy was undertaken
in [SYM-3]. A negative outcome of this study is the relatively large content of noise
of some of the states preventing a precise determination of the masses. The most
solid determinations could be obtained for the spin 1/2 mixed gluino-glue states and
the pseudoscalar meson. The latter is the lightest state for the smallest gluino mass.
This outcome is in contrast with the predictions of low-energy Lagrangians at leading
order in the soft SUSY breaking [75], which indicate a state with positive parity. A
possible explanation is that higher order corrections could play a significant role for
the relatively heavy gluino masses in the simulation. The lightest simulated gluino
mass was indeed estimated to be ' 150 MeV (QCD units).

A general qualitative observation is that the bound states masses tend to cluster and
get lighter when decreasing the gluino mass. Numerical data for the effective bound
states masses indicate the presence of nearby excited states. These states are predicted
by the low-energy Lagrangians and should form a second chiral supermultiplet.

For an improved analysis, a lighter gluino mass in a larger volume, and larger statis-
tics for a more precise determination of the masses are essential [57]. In consideration
of this latter aspect, the simulation of SYM with a more efficient polynomial HMC
algorithm has been started.

The above mentioned polynomial HMC algorithm could be already applied in first
simulations of single flavor QCD in a large volume [Nf1]. The Wilson formulation
was again taken in the fermion sector and the tree-level Symanzik action in the gauge
sector. In this case two relatively coarse lattices were considered, a = 0.186 fm at
β = 3.8 and a = 0.134 fm at β = 4.0, and three different values of the quark mass
down to Mπ ' 270 MeV (the pion is defined in a partially quenched setup). The
volume ' (2 fm)3 is large enough to the accommodate the bound states of the
hadrons.

Here all the masses expected at the lower end of the spectrum could be estimated
with satisfactory accuracy. The approximate degeneracy of the pseudoscalar and scalar
mesons, expected from the relics of SUSY in this model [18, 16], could be partially
verified. The hierarchy of the hadron masses was established at a qualitative level.
The role of the sign of the fermion determinant in the determination of the hadron
masses for the lightest simulated quark mass was investigated.
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Moreover, in [Nf1] a partially quenched set up for the one flavor theory was pro-
posed, enabling the definition of a quark mass in absence of chiral symmetry and the
comparison of lattice data for hadron properties with chiral perturbation theory. The
estimated low-energy constants of the chiral Lagrangian are, even if with relatively
large statistical errors, comparable to those for the Nf = 2 theory [tlS-1]; this out-
come supports a weak dependence of the constants upon the number of flavors. More
precise determinations will settle this issue.
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Abstract. Two degenerate flavors of quarks are simulated with small masses down to about one fifth of
the strange quark mass by using the two-step multi-boson (TSMB) algorithm. The lattice size is 83 × 16
with lattice spacing about a � 0.27 fm which is not far from the Nt = 4 thermodynamical cross-over
line. Autocorrelations of different physical quantities are estimated as a function of the quark mass. The
eigenvalue spectra of the Wilson–Dirac operator are investigated.

1 Introduction

The question of the computational cost of dynamical
quark simulations is a central issue in lattice gauge the-
ory. Existing unquenched simulations are typically done
in a region where the quarks are not light enough, in most
cases – especially in case of Wilson-type quarks – with
two light quark flavors (u and d) having masses larger
than half the strange quark mass (mud > (1/2)ms). The
physical masses of the u- and d-quarks are so small that in
the foreseeable future simulations can only be carried out
at somewhat higher masses. In order to extrapolate the
results to the physical masses, chiral perturbation theory
based on the low energy chiral effective Lagrangian can
be used. However the systematic errors can only be con-
trolled if the dynamical quark masses in the simulations
are close enough to the physical point. For instance, in
case of partially quenched simulations to determine the
low energy constants in the chiral effective Lagrangian of
QCD we would like to reach at least mud ≤ (1/4)ms [1].

Going to light quark masses in unquenched QCD sim-
ulations is a great challenge for computations because
known algorithms have a substantial slowing down to-
wards small quark masses. The present status has been
recently summarized by the contributors to the panel dis-
cussion at the Berlin lattice conference [2–7]. Inspired by
the results presented there the computational cost of a
simulation with two light quarks will be parametrized in
the present paper as

C = F (r0mπ)−zπ

(
L

a

)zL (r0

a

)za

. (1)

Here r0 is a physical length, for instance the Sommer
scale parameter [8], mπ the pion mass, L the lattice ex-
tension and a the lattice spacing. The powers zπ,L,a and
the overall constant F are empirically determined. The

value of the constant factor F depends on the precise
definition of “cost” [9]. For instance, one can consider
the number of floating point operations in one autocor-
relation length of some important quantity, or the num-
ber of fermion-matrix-vector multiplications necessary for
achieving a given error of a quantity. Of course, the cost
also depends on the particular choice of lattice action and
of the dynamical fermion algorithm which should be op-
timized.

An alternative parameterization can be obtained from
the one in (1) by replacing the powers of r0mπ by those
of mπ/mρ. In fact, the results of the CP-PACS, JLQCD
Collaboration have been presented by Ukawa at the Berlin
lattice conference [6] in this form

CU = FU

(
mπ

mρ

)−zπρ
(

L

a

)zL (r0

a

)za

, (2)

FU = 5.9 × 106 flop, (3)
zπρ = 6, zL = 5, za = 2. (4)

Since the determination of the ρ meson mass is difficult for
light quarks when the decay ρ → ππ is allowed, we prefer
the form in (1). Other parameterizations used for Wilson-
type quarks [5,7] are given under the assumption that
zπ = za ≡ zaπ when in (1) the physical length parameter
r0 disappears.

In the present paper we report on the results of ex-
tended test runs with the simple Wilson fermion action
using the two-step multi-boson algorithm [10] in order to
determine the quark mass dependence of the computa-
tional cost of dynamical Monte Carlo simulations with
two light flavors in the region mud ≥ (1/5)ms. For the
definition of the quark mass the dimensionless quantity

Mr ≡ (r0mπ)2 (5)
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is used, which already appears in (1). This is a possible
definition for small quark masses because for mq → 0 the
pion mass behaves as mπ ∝ m

1/2
q . For defining the value

of Mr which corresponds to the strange quark mass one
can use unquenched Nf = 2 lattice data. For instance,
the experimental value of the Ω− baryon mass mΩ− =
1.672 GeV and r0 = 0.5 fm give r0mΩ− = 4.237. Interpo-
lating the CP-PACS results [11] for the ∆ baryon mass
at their largest β value, β = 2.20, between κ = 0.1363
and κ = 0.1368 one can match r0m∆ = 4.237 if their pion
mass is r0mπ � 1.76. This gives for the strange quark
mass Mr,strange � 3.1. Of course, there are also other ways
to estimate Mr,strange which might give slightly different
values. In the present paper, without attempting to re-
ally compute the strange quark mass, we shall stick to the
operational definition

Mr,strange ≡ 3.1. (6)

The Monte Carlo simulations are done near the Nt = 4
thermodynamical cross-over line, that is for a � 0.27 fm.
The lattice size is 83 × 16 implying a physical lattice ex-
tension L � 2.2 fm. Later on we shall also extend our in-
vestigations to 123 × 24 and 163 × 32 lattices. Our present
studies can be considered as complementary to the ones
on larger lattices (closer to the continuum limit) but at
larger quark masses (typically mud ≥ (1/2)ms) [2–7].

In addition to obtaining estimates of autocorrelation
lengths as a function of the quark mass we also performed
a detailed study of the small eigenvalue spectra both for
the hermitean and non-hermitean Wilson–Dirac fermion
matrix. Besides giving important qualitative information
about quark dynamics this also allows one to clear the
issue of the sign problem of the quark determinant. For
an odd number of Wilson-type quark flavors the fermion
determinant can have both signs, because there might be
some eigenvalues (of the non-hermitean fermion matrix)
on the negative real axis. Since for importance sampling
a positive measure is required, the determinant sign can
only be taken into account in a measurement reweighting
step. A strongly fluctuating determinant sign is a potential
danger for the effectiveness of the Monte Carlo simulation
because cancellations can occur resulting in an unaccept-
able increase of statistical errors. We actually study this
question here with two degenerate quark flavors (Nf = 2)
where in the path integral the square of the fermion deter-
minant appears and hence the sign is irrelevant. But our
two quarks are much lighter than the physical s-quark.
Therefore the statistical insignificance of negative eigen-
values in this case hints towards the absence of the sign
problem in the physical case of Nf = 2 + 1 quark fla-
vors, when the sign of the s-quark determinant could, in
principle, cause a problem.

The plan of this paper is as follows: in the next sec-
tion we briefly introduce the parameters of the TSMB
algorithm and give some details of our implementation on
different computers. In Sect. 3 the autocorrelations are in-
vestigated for some basic quantities such as the average
plaquette and the pion mass. Section 4 contains a detailed
study of the small eigenvalue spectra of the fermion ma-

trix. The last section is devoted to discussion and conclu-
sions.

2 The TSMB algorithm

We use in this study the two-step multi-boson (TSMB)
algorithm which has been originally developed for Monte
Carlo simulations of the supersymmetric Yang–Mills the-
ory [10], but that can also be applied more generally [12].

2.1 Algorithmic parameters

TSMB is based on a representation of the fermion deter-
minant in the form

|det(Q)|Nf � 1

det P
(1)
n1 (Q̃2) det P

(2)
n2 (Q̃2)

. (7)

Here Nf denotes the number of fermion flavors and Q is
the fermion matrix, which in the present paper is equal to
the Wilson–Dirac matrix

Qys,xr ≡ δyxδsr (8)

− κ

4∑

µ=1

[
δy,x+µ̂(1 + γµ)Usr,xµ + δy+µ̂,x(1 − γµ)U†

sr,yµ

]
,

with x, y denoting lattice sites, r, s color (triplet) indices,
µ̂ the unit lattice vector in direction µ, Uxµ ∈ SU(3) gauge
link matrices and κ the hopping parameter. The hermitean
Wilson–Dirac fermion matrix is defined as usual by

Q̃ ≡ γ5Q = Q̃†. (9)

The polynomial approximations in (7) satisfy

P (1)
n1

(x) � x−Nf /2,

lim
n2→∞ P (1)

n1
(x)P (2)

n2
(x) = x−Nf /2, x ∈ [ε, λ], (10)

where the interval [ε, λ] covers the spectrum of the squared
hermitean fermion matrix Q̃2 on a typical gauge configura-
tion. The first polynomial P (1) is a crude approximation
with relatively low order. It is used in the multi-boson
representation of fermion determinants [13]. The second
polynomial P (2) is a correction factor which is taken into
account in the gauge field updating by a global accept-
reject step. For this a polynomial approximation of the
inverse square root of P (2) is also needed:

P (3)
n3

(x) � P (2)
n2

(x)−1/2. (11)

The limit n2 → ∞ can be taken in the computed expecta-
tion values if one produces several update sequences with
increasing n2 or, more conveniently, one can keep n2 fixed
at some sufficiently large value for a good approximation
and introduce a further polynomial P (4) satisfying

lim
n4→∞ P (1)

n1
(x)P (2)

n2
(x)P (4)

n4
(x) = x−Nf /2. (12)
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P (4) can be taken into account by reweighting the gauge
configurations during the evaluation of expectation val-
ues. In most cases the order n2 of P

(2)
n2 can be chosen high

enough such that the reweighting correction has a negli-
gible effect on expectation values. In any case the evalua-
tion of the reweighting factors is useful because it shows
whether or not the two-step approximation in (10) is good
enough. For a recent summary of some details of TSMB
and for references see Sect. 3 of [14].

The Monte Carlo integration of the path integral is
performed by averaging over a sequence (Markov chain) of
multi-boson and gauge field configurations. The n1 multi-
boson fields (Φ) and gauge fields (U) are updated in re-
peated update cycles consisting of several sweeps over the
multi-boson fields and gauge field. For the multi-boson
fields we use (local) heatbath and overrelaxation as well
as global quasi-heatbath [15] sweeps. For the gauge field
update heatbath and overrelaxation sweeps are alternated.
After several gauge field sweeps a global Metropolis
accept–reject correction step is performed by the polyno-
mials P (2) and P (3). The update sequence within a cycle
is subject to optimization with the goal to decrease auto-
correlations. We tried several kinds of update sequences
within an update cycle. A typical sequence was 3 Φ-over-
relaxations, 1 Φ-heatbath, 12 U -overrelaxation, global U -
Metropolis, 3 Φ-overrelaxations, 1 Φ-heatbath, 6 U -heat-
bath, global U -Metropolis. In every 10th cycle the first Φ-
overrelaxation–Φ-heatbath combination was replaced by a
global quasi-heatbath.

2.2 Implementation and performance

We have implementations of the updating and measure-
ment programs in TAOmille for the APEmille and in
C++/MPI. The latter implementation is usable on many
different architectures as long as they provide a C++ com-
piler and, in case of parallel computers, support MPI. In
the updating program the computing time is dominated
by the fermion-matrix-vector multiplications (MVMs); 2×
(n2 + n3) of them are needed for the correction step and
O(100 × n1) for the global heatbath and quasi-heatbath
[15]. Altogether they make up 60%–80% of the comput-
ing time. In the most interesting regions of small quark
masses the program is dominated by the MVMs even more
strongly. The same is true for the measurement program,
where smearing and calculation of simple Wilson loops
takes only a few percent of the time. It is therefore of
the utmost importance to improve the performance of
the MVM routines, both preconditioned (for the correc-
tion step and the measurements) and non-preconditioned
(for the global heatbath). This has been done for the
APEmille, the Cray T3E with the KAI C++ compiler,
and for a multi-node Pentium-4 cluster here also exploit-
ing the possibilities of SSE and SSE2 instructions. Re-
sults are given in Table 1. Note that an important fea-
ture of the SSE instructions is that in single precision the
peak performance is doubled compared to double preci-
sion. The performance numbers in Table 1 are substan-
tially influenced by the communication costs among com-

Table 1. Performance of the matrix-vector multiplication in
MFlops and percent relative to peak performance on one board
(8 nodes) on the APEmille and on 8 processors on the T3E and
P4-cluster for a 83 × 16 lattice

APEmille T3E-1200 P4-1700

32 bit 1008 (23.9%) 912 (9.5%) 4322 (7.9%)
64 bit – 712 (7.4%) 2087 (7.7%)

puting nodes. Without communications the numbers both
for APEmille and P4-cluster would be almost a factor of 2
higher. On larger volumes than those considered here com-
munication will have less influence on the performance.

Since the matrix multiplications dominate the comput-
ing time it is reasonable to express e.g. autocorrelations in
units of MVMs. The remaining part of the computation is
given by the local updates. These are composed of parts
which can be essentially thought of as pieces of MVMs,
too. As a result the following approximate formula for the
total amount of MVMs needed for one update cycle is
obtained:

NMVM/cycle � 6(n1NΦ + NU ) + 2(n2 + n3)NC + IGFG.
(13)

Here NΦ is the number of local bosonic sweeps per up-
date cycle, NU the number of local gauge sweeps, NC the
number global Metropolis accept–reject correction steps,
and IG and FG give the number of MVMs and frequency
of the global heatbath.

For data from APEmille and Cray the estimate of the
cost of the local updates obtained from (13) agrees with
the actual costs up to 5%. Therefore the final costs in units
of MVM based on (13) are not much influenced by the ap-
proximation. This is not true for the data presented for the
P4-1700 system, since in this case the matrix multiplica-
tion and the local updates are not treated homogeneously.
Indeed the former is written in assembler using SSE/SSE2
instructions while our code for the local updates is writ-
ten in C++ and compiled with the g++ compiler. As a
result, the estimate for the cost of the local updates is
in this case underestimated by about a factor 3. Still we
take the above formula as a reference when tuning the
parameters because the number of MVMs is more gener-
ally applicable as it does not depend on implementation
details. In addition, in the future the local updates could
be rewritten by using SSE/SSE2 instructions, too, thus
eliminating the non-homogeneity with the MVMs.

It is sometimes interesting to convert the number of
MVMs into the number of floating point operations. On
our 83 × 16 lattice this conversion is approximately

1 MVM � 1.1 × 107 flop. (14)

3 Autocorrelations at small quark masses

The bare parameters of the QCD lattice action with Wil-
son quarks (β for the SU(3) gauge coupling and κ for the
hopping parameter of two degenerate quarks) have to be
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Table 2. Bare couplings, parameters of the TSMB algorithm as defined in Sect. 2.1
and total statistics in 1000 update cycles (Uk) of our runs

Run β κ n1 n2 n3 n4 λ ε Uk

(a) 5.28 0.160 20 40 70 100 2.8 1.75 ×10−2 80
(b) 5.04 0.174 28 90 120 150 3.0 3.75 ×10−3 33
(c) 4.84 0.186 38 190 240 300 3.6 1.44 ×10−3 31
(d) 4.80 0.188 44 240 300 300 3.6 7.2 ×10−4 12
(e) 4.76 0.190 44 360 380 500 3.6 2.7 ×10−4 144
(f) 4.80 0.190 44 360 380 500 3.6 2.7 ×10−4 224
(g) 4.72 0.193 52 600 750 800 3.6 0.9 ×10−4 196
(h) 4.68 0.195 66 900 1200 1100 3.6 3.6 ×10−5 200
(i) 4.64 0.197 72 1200 1500 1400 3.6 1.8 ×10−5 110
(j) 4.64 0.1975 72 1200 1350 1400 4.0 2.0 ×10−5 4

tuned properly in order to obtain the desired parameters
in the Monte Carlo simulations. We are interested in the
quark mass dependence of the simulation cost of hadron
spectroscopy applications; therefore, we want to keep the
physical volume of our lattices sufficiently large and (ap-
proximately) constant. For a 83×16 lattice, a lattice spac-
ing a � 0.27 fm implies a lattice extension of L � 2.2 fm
which is a reasonable starting point for spectroscopy. Pre-
vious Monte Carlo simulations with Nf = 2 Wilson quarks
[16,17] showed that this kind of lattice spacing is realized
near the Nt = 4 and Nt = 6 thermodynamical transi-
tion lines which, therefore, provide a good orientation. We
started our simulations at a relatively large quark mass
on the Nt = 4 transition line and then tuned β and κ to-
wards smaller quark masses keeping r0/a approximately
constant. A summary of simulation points is given in Ta-
ble 2, where some important algorithmic parameters of the
TSMB are also collected.

Most of the runs have been done with 32-bit arith-
metics. Exceptions are run (j) and about 10% of the statis-
tics in run (h) where 64-bit arithmetics was used. In gen-
eral, on the 83 × 16 lattice it is not expected that single
precision makes any difference. In fact, the double preci-
sion results in run (h) were compatible within errors with
the single precision ones.

3.1 Physical quantities

In order to monitor lattice spacing and quark mass one
has to determine some physical quantities containing the
necessary information. As discussed before, we define the
physical distance scale from the value of the Sommer scale
parameter r0. Once r0 in lattice units is known one can
transform any dimensionful quantity, for instance the pion
mass mπ, from lattice to physical units. Therefore a care-
ful determination of r0/a is important. For a dimensionless
quark mass parameter one can use Mr as defined in (5):
Mr = (r0/a × amπ)2. In addition, we also measured some
other quantities like fπ, mρ and another definition of the
quark mass mq for obtaining a broader basis for orienta-
tion. In the next subsections the procedures for extracting
these quantities will be described in detail.

3.1.1 Masses and amplitudes

In order to extract masses and amplitudes we compute
the zero-momentum two-point functions depending on the
time-slice distance (x0 − y0):

CXY (x0 − y0) =
1
Vs

∑

x,y

〈X†(x)Y (y)〉 , (15)

with x ≡ (x0,x) and

X(x) = Y (x) = P5(x) ≡ q̄′(x)γ5q(x)
(CPP (x0 − y0)),

X(x) = Y (x) = A0(x) ≡ q̄′(x)γ5γ0q(x)
(CAA(x0 − y0)),

X(x) = Y (x) = Vi(x) ≡ q̄′(x)γiq(x)
(CViVi(x0 − y0));

we also consider the mixed correlator with

X(x) = A0(x), Y (x) = P5(x) (CAP (x0 − y0)).

Exploiting translation invariance we pick the source y in
(15) at random over the lattice. Taking into account cor-
relations between different time-slices, one sees that this
procedure is optimal for the ratio computational cost/final
statistical error for hadronic observables.

Masses and amplitudes are in general obtained from
the asymptotic behavior of the correlators1:

CXY (T ) =
ξ2
XY

2mp
(e−mpT + (−1)X+Y e−mp(Lt−T )), (16)

ξXY =
√

〈0|X(0)|p〉〈0|Y (0)|p〉, (17)

where |p〉 is the zero-momentum state of the particle as-
sociated with the operators X(x) and Y (x), mp the corre-
sponding mass and (−1)X(Y ) the time-parity of X(Y )(x).
We determine parameters mp and ξXY by global fitting

1 Amplitudes are assumed to be real
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Table 3. Results of runs specified in Table 2 for different physical quantities defined in the text. The
values given in lattice units can be transformed to physical units by canceling the lattice spacing a
with the help of the results for r0/a and using r0 = 2.53 GeV−1

Run r0/a afπ amπ amρ mπ/mρ Mr µr

(a) 1.885(30) 0.3738(50) 1.2089(36) 1.2982(32) 0.9312(17) 5.19(20) 0.498(12)
(b) 1.715(20) 0.4321(23) 1.0428(41) 1.1805(38) 0.8834(14) 3.20(10) 0.305(6)
(c) 1.616(110) 0.4171(47) 0.7886(40) 1.0251(48) 0.7693(32) 1.61(24) 0.148(11)
(d) 1.903(159) 0.4199(75) 0.753(11) 0.999(12) 0.752(11) 2.05(40) 0.155(13)
(e) 1.697(46) 0.4191(20) 0.7151(20) 0.9941(19) 0.7187(16) 1.473(88) 0.1229(41)
(f) 1.739(33) 0.3658(34) 0.5825(34) 0.9089(47) 0.6431(33) 1.026(51) 0.0811(30)
(g) 1.772(41) 0.3791(39) 0.5695(38) 0.9116(33) 0.6256(31) 1.018(61) 0.0770(32)
(h) 1.765(37) 0.3668(54) 0.5088(51) 0.8983(35) 0.5675(42) 0.806(50) 0.0596(27)
(i) 1.812(46) 0.3575(48) 0.4333(48) 0.8616(80) 0.5002(60) 0.616(45) 0.0429(21)
(j) 1.756(128) 0.3377(48) 0.4205(54) 0.859(12) 0.4894(65) 0.545(47) 0.0363(38)

over a range of time-slice distances (after time-symmetri-
zation) T ∈ [Tmin, Lt/2]. We find the optimal value for
Tmin by checking the behavior of the effective local mass
meff(T ). The latter is implicitly defined by the relation

CXY (T )
CXY (T + 1)

(18)

=
e−meff (T )T + (−1)X+Y e−meff (T )(Lt−T )

e−meff (T )(T+1) + (−1)X+Y e−meff (T )(Lt−T−1) .

The value of Tmin is fixed by the onset of the plateau
for meff(T ) as a function of T . The plateau value for the
effective mass is always consistent with the result from the
global fit procedure. The latter gives however the most
precise determination.

A typical problem associated with small quark masses
is a delayed asymptotic behavior for correlators (i.e. a
larger Tmin) resulting in large errors for the hadronic ob-
servables. This problem was solved by applying Jacobi
smearing [18] on both source and sink. Jacobi smearing
was applied in a different context [19,20] in the same situ-
ation of light fermionic degrees of freedom, and it appeared
to improve the overlap of the hadronic operators with the
bound state. Amplitudes and decay constants have been
determined from correlators with local operators.

We determine the pion mass mπ from the asymptotic
behavior of the correlator CPP (T ). From CPP (T ) one can
also extract the amplitude gπ = 〈0|P5(0)|π〉 by identifying
gπ = ξPP . The ρ meson mass mρ is determined from the
asymptotic behavior of the correlator

CV V (T ) =
1
3

3∑

i=1

CViVi(T ). (19)

For the determination of the pion decay constant fπ ≡
m−1

π 〈0|A0(0)|π〉 we apply two different methods. In the
first, the amplitude 〈0|A0(0)|π〉 is obtained by fitting the
asymptotic behavior of the correlator CAA(T ), while the
pion mass is the one coming from CPP (T ). In the second
method [21], we fit the amplitude ratio

rAP =
〈0|A0(0)|π〉
〈0|P5(0)|π〉 (20)

by using the asymptotic behavior

CAP (T )
CPP (T )

= rAP tanh[mπ(Lt/2 − T )], (21)

where mπ is fixed at the best-fit value from CPP (T ). The
determination of fπ is then obtained from the relation

fπ = m−1
π rAP gπ, (22)

using for gπ the determination from CPP (T ). In the region
of large and moderate quark masses the second method
gives by far the most precise determination of fπ. This
is generally no more true for very light quarks where the
data are highly correlated. Here the best determination
was picked from the two different methods on a case-by-
case basis.

Using the above determinations we can extract the
quark mass defined by the PCAC relation

mPCAC
q =

fπ

2gπ
m2

π. (23)

The PCAC quark mass gives us a second definition of the
physical quark mass as an alternative to (5):

µr ≡ r0m
PCAC
q . (24)

We estimated statistical errors on hadron quantities
by applying the Jackknife procedure on blocks of data of
increasing size. The same procedure is applied also for
the Sommer scale parameter (see next subsection). This
method provides us with a definition of the integrated au-
tocorrelation τint of the pion mass. Autocorrelations in
general will be discussed in Sect. 3.2. The results for the
hadronic quantities are listed in Table 3.

3.1.2 Sommer scale parameter

There are several phenomenological models that can be
used to get an estimate for the Sommer scale parameter
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r0 in nature, and most of them point towards a value of
r0 � 0.49 fm. On the lattice r0/a can be calculated from
the static quark potential, which is in turn determined
from Wilson loops. The basic idea is simple, but since we
want to match all our results to this parameter it is crucial
to get a precise determination. To achieve this we follow
the method proposed by Michael and collaborators [22,
23] and some details are found in [24].

Using the variational approach of [25] we get matrices
Wij(r, t) consisting of r × t loops of smeared gauge links,
where our smearing technique of choice is APE-smearing
(the indices i, j label the level of smearing). We use for
our determinations two and six or two, four and six levels
of smearing and symmetrize the matrices Wij . The ratio
staple/link is set to α = 0.45.

From the solutions to

Wij(r, t)φ(r)(k)
j = λ(k)(r; t, t0)Wij(r, t0)φ(r)(k)

j ,

i, j, k = 0, 1(, 2) (25)

one gets the eigenvector φ(r)(0)j for the largest eigenvalue
λ(0)(r; t = t0+1, t0). This equation is solved by transform-
ing it into an ordinary eigenvalue equation, where several
ways are possible:

W (r, t0)−1W (r, t)φ = λφ, (26)
W (r, t)W (r, t0)−1(W (r, t0)φ) = λ(W (r, t0)φ), (27)

W (r, t0)−1/2W (r, t)W (r, t0)−1/2(W (r, t0)1/2φ)

= λ(W (r, t0)1/2φ). (28)

In the literature [25] the third version has been used. How-
ever this can only be done with extremely good statistics.
Otherwise it is possible that, due to statistical fluctua-
tions, the matrix Wij gets negative eigenvalues making
the (real) square root impossible. We checked that the
first two versions give numerically exactly the same re-
sult. For the final determinations we choose the first ver-
sion (26), where one has to be careful about the fact that
W (r, t0)−1W (r, t) has no longer to be symmetric, compli-
cating the calculation of the corresponding eigenvectors.

Once the eigenvector φ(r)(0)j has been obtained, we can
project the matrix Wij to the ground state:

W̃0(r, t) = φ(r)(0)i Wij(r, t)φ(r)(0)j . (29)

This correlator leads to good estimates of the ground state
energy

Ẽ0(r, t) = ln

(
W̃0(r, t)

W̃0(r, t + 1)

)

. (30)

The potential V (r) is estimated by averaging E0(r, t)/t
over time extensions t with t ≥ 1 and weight given by the
Jackknife error. Compared to some other methods this
way of extracting the potential seems to give the most
reliable estimates with smallest error bars.

The Sommer scale parameter is defined in terms of the
potential as

r2
0

dV

dr

∣
∣
∣
∣
r0

= 1.65. (31)

Having a reliable static quark potential we can follow [26]
by fitting the potential to

V (r) = V0 + σr − e

[
1
r

]
(32)

with r = |r| and [1/r] being the tree-level lattice Coulomb
term [

1
r

]
= 4π

∫ π

−π

d3k
(2π)3

cos(k · r)
4
∑3

j=1 sin2(kj/2)
. (33)

Due to the small lattice size we had to drop in (32) the
additional correction term f ×([1/r] − (1/r)), which could
have been used to estimate O(a) effects, fixing e = π/12.
Bringing together the above equations we extract r0 from

r0 =

√
1.65 − e

σ
. (34)

3.2 Autocorrelations

The “cost” of numerical simulations can be expressed in
terms of the necessary number of arithmetic operations for
obtaining during the Monte Carlo update process a new
“independent” gauge field configuration. The real cost can
be then easily calculated once the price of e.g. a floating
point operation is known. For a definition of the indepen-
dence of a new configuration the integrated autocorrelation
τint is used. (For a general reference see [27].) τint does de-
pend on the particular quantity it refers to. Of course, it
is reasonable to choose an “important” quantity as, for
instance, the pion mass but simple averages characteriz-
ing the gauge field such as the plaquette average are also
often considered.

In case of the TSMB algorithm a peculiar feature is
the reweighting step correcting for the imperfection of
polynomial approximations. As will be discussed in the
next subsection, in most of our runs this correction is to-
tally negligible but even in these cases it is important to
perform the reweighting on a small subsample of config-
urations in order to check that the used polynomials are
precise enough. In some cases, especially for very small
quark masses, there are a few exceptional configurations
with small eigenvalues of the squared hermitean fermion
matrix (Q̃2) which are practically removed from statistical
averages by their small reweighting factors. In the calcula-
tion of expectation values these reweighting factors were
always taken into account. For the autocorrelations the
effect of the exceptional configurations is in most cases
negligible.

3.2.1 Integrated autocorrelation of the pion mass

In case of secondary quantities such as the pion mass, or
in general any function of the primary expectation values,
the straightforward definition of the integrated autocorre-
lation τint for primary quantities is not directly applicable.
In fact, there are several possibilities which we shall now
shortly discuss.
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(1) Linearization. As has been proposed by the ALPHA
Collaboration [9], in the limit of high enough statistics the
problem of the error estimate and of the autocorrelation
for secondary quantities can be reduced to considering a
linear combination of primary quantities. Let us denote
the expectation values of a set of primary quantities by
Aα, (α = 1, 2, . . .). Their estimates obtained from a data
sequence are aα. For high statistics the estimates are al-
ready close to the true values: |aα − Aα| � 1. Therefore,
if the secondary quantity is defined by a function f(A) of
primary quantities, we have

f(a) − f(A) �
∑

α

(aα − Aα)
∂f(A)
∂Aα

. (35)

The values of the derivatives are constants; therefore, on
the right hand side there is a linear combination of primary
quantities which can be handled in the same way as the
primary quantities themselves. Since

∂f(A)
∂Aα

� ∂f(A)
∂Aα

∣
∣
∣
∣
A=a

≡ f̄α, (36)

one can consider the linear combinations

Af̄ ≡
∑

α

Aαf̄α, af̄ ≡
∑

α

aαf̄α, (37)

and the variance of the secondary quantity can be esti-
mated as

σ2
f � 〈(af̄ − Af̄ )2

〉
. (38)

(Note that here 〈. . .〉 stands for the expectation value in
an infinite sequence of identical measurements with the
same statistics as the one under consideration.) According
to (38) the integrated autocorrelation of the secondary
quantity can be defined as the integrated autocorrelation
of Af̄ .

This way of obtaining error estimates and autocorre-
lations of secondary quantities is simple and generally ap-
plicable. Let us note that because of the reweighting even
the simplest physical quantities are given by ratios of two
expectation values and are, therefore, secondary quanti-
ties.
(2) Blocking. In case of sufficiently large statistical sam-
ples the integrated autocorrelations of secondary quanti-
ties can also be obtained by comparing statistical fluc-
tuations of data coming from the measurement program
before and after a blocking procedure. The blocking pro-
cedure eliminates for increasing block size the autocor-
relations between data and the final error is the one for
uncorrelated data. Since the latter is the true error of the
measurement, it is appropriate to use this definition of
τint to estimate the real cost of a simulation. In the case
of primary quantities such as the plaquette this definition
coincides with the usual one.

For a generic quantity A one can define σB
n (A) as the

standard deviation of the data at blocking-level n. In the
case of the pion mass, we determine this quantity by ap-
plying the jackknife procedure on the hadron correlators
averaged over blocks of length n. In the limit of infinite

statistics, for increasing n, σB
n (A) should approach after a

transient an asymptotic value corresponding to the stan-
dard deviation of the uncorrelated data σunc(A). For finite
statistics, σB

n (A) fluctuates around σunc(A). We determine
σunc(A) by averaging σB

n (A) over a range of block sizes
n after the transient. The error on this determination is
given by the mean dispersion of data around the average.
Once σunc(A) is given the integrated autocorrelation is
defined by

τint =
1
2

(
σunc(A)
σB

1 (A)

)2

. (39)

Another way of writing the above formula is

Nunc =
Nstat

2τint
(40)

where Nstat is the original statistics and Nunc is the num-
ber of uncorrelated configurations; so 2τint can be thought
of as the distance between two uncorrelated configura-
tions.
(3) Covariance matrix. In most cases it is a good approx-
imation to assume that the probability distribution of the
estimates aα of the primary quantities Aα is Gaussian:

P (a) ∝ exp

{

−1
2

∑

αα′
(aα − Aα) C−1

αα′ (aα′ − Aα′)

}

. (41)

The covariance matrix is

〈(aα − Aα)(aα′ − Aα′)〉 = 〈aαaα′〉 − 〈aα〉〈aα′〉 = Cαα′ .
(42)

The elements of the covariance matrix can be estimated
from the data sequence by determining the integrated au-
tocorrelations τ

(AαAα′ )
int :

Cαα′ � (aαaα′ − aαaα′)
2τ

(AαAα′ )
int

Nstat
. (43)

Once the probability distribution of the estimates P (a) is
known one can obtain an error estimate for any function
of aα by generating a large number of estimates. From the
error it is also possible to obtain an indirect estimate of
the integrated autocorrelation from a formula like (39).

The integrated autocorrelation of the pion mass (and
the error of the pion mass) can be obtained by any of
these three methods and the results are generally consis-
tent with each other. The method based on linearization is
rather robust already at the level of statistics we typically
have. The blocking method becomes easier unstable, espe-
cially for moderate statistics. This is understandable since
the statistics in the individual blocks is reduced compared
to the total sample. The method based on the covariance
matrix needs sufficient statistics in order that the esti-
mate of the covariance matrix be reliable. This is usually
the case for effective masses derived from intermediate dis-
tances but – in our runs – this method sometimes fails for
the largest distances.
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Fig. 1. Correction factors for run
(h) (left panel) and (i) (right panel)

3.2.2 Correction factors

As has been described in Sect. 2.1 a fourth polynomial
P

(4)
n4 can be used to extrapolate to infinite polynomial or-

der, therefore avoiding the need for several simulations
with different orders of the second polynomial P

(2)
n2 . In our

runs the evaluation of the reweighting factors was done in
the way described in detail in [19]. Few smallest eigen-
values λ̃2 of the squared hermitean fermion matrix Q̃2,
typically four, were explicitly determined and the corre-
sponding correction factors were exactly taken into ac-
count. In the subspace orthogonal to the corresponding
eigenvectors a stochastic estimate based on four Gaussian
random vectors was taken. (Note that in the limit of infi-
nite statistics a stochastic estimate always gives a correct
result independently of the number of random vectors; no
systematic error is introduced.)

As stated before, most of our results were obtained
with second polynomials P

(2)
n2 which gave already a good

approximation of the fermionic measure. In this case the
inclusion of the correction factors had nearly no influence
on the final determinations since they were very close to
one. Going to smaller quark masses the smallest eigenvalue
starts to fluctuate more, and it is therefore no longer rea-
sonable to try to use a second polynomial that is good
enough for all cases. Such large fluctuations appeared in
runs (h) and (i). The histograms of reweighting factors
are illustrated by Fig. 1. It turned out that, as expected,
the inclusion of the correction factors had the nice effect
of reducing error bars. This is especially noticeable for
fermionic quantities and in particular the pion mass which
is highly correlated to the smallest eigenvalue.

Nevertheless, even in these cases the effect of reweight-
ing was so small that the individual estimates with correc-
tion factors agreed within error bars with those without
correction factors. As a whole, however, a minor system-
atic increase in the masses could be seen. Both histograms
in Fig. 1 have a tail towards small values which are due to
eigenvalues that could have been further suppressed by a
better second polynomial. As the figure shows, this tail is
more important in run (i) than in run (h). A closer look at

0 5000 10000 15000 20000 25000 30000

1e−07 1e−07

1e−06 1e−06

1e−05 1e−05

0.0001 0.0001

0 5000 10000 15000 20000 25000 30000

1e−07 1e−07

1e−06 1e−06

1e−05 1e−05

0.0001 0.0001

history of smallest eigenvalue on different replica of run (i)

Fig. 2. Histories of the smallest eigenvalue at β = 4.64, κ =
0.197 for two independent lattices. The upper figure shows the
typical case when the smallest eigenvalue stays most of the
time above ε shown by the dashed line. The lower figure is the
history with exceptionally small eigenvalues. The measurement
of physical quantities was started at the vertical line

the smallest eigenvalue histories in run (i) reveals that the
tail near zero was produced by one of the four indepen-
dent parallel lattices when the smallest eigenvalue stayed
for some time below the lower limit of the approximation
interval ε (see Fig. 2).

Configurations with small eigenvalues λ̃2 are interest-
ing because exceptionally small values could indicate
crossing of real eigenvalues of the Wilson–Dirac matrix
Q to the negative axis. This could give a negative sign
for the determinant of a single quark flavor. We systemat-
ically analyzed in all our runs configurations with small λ̃2,
searching for this effect. In the present study we found, for
the first time in a QCD simulation with TSMB, configura-
tions with real negative eigenvalues of the Wilson–Dirac
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Fig. 3. Left panel: Power fit of the plaquette autocorrelation given in units of 106 × MVM as a function of the dimensionless
quark mass parameter Mr. The best fit of the form cMz

r is at c = 7.92(68), z = −2.02(10). Middle panel: The same as a
function of mπ/mρ. In this case the last point is omitted from the fit. The best fit of the form c(mπ/mρ)z is at c = 0.476(77),
z = −6.03(41). Right panel: Power fit of autocorrelation for the smallest eigenvalue of Q̃2 given in units of 106 × MVM as a
function of the dimensionless quark mass parameter Mr. The best fit of the form cMz

r is at c = 5.36(80), z = −1.48(25)

matrix. This happened namely in one run, run (i). The
(three) configurations are however statistically insignifi-
cant, since the corresponding reweighting factors are ex-
tremely small: 2.7× 10−2, 8.2× 10−4 and 3.0× 10−4. Sta-
tistically they represent less than 0.03 configurations in a
sample with a total statistical weight of about 1600.

3.2.3 Results for autocorrelations

The analysis of the runs specified in Table 2 gives the re-
sults for physical quantities collected in Table 3. The inte-
grated autocorrelations, where they could be determined,
are given in Table 4.

The quoted errors of autocorrelations were estimated
in different ways. For the determination of the autocor-
relation of the pion mass we apply the blocking method
explained in Sect. 3.2.1. In general, one has to say that
in some cases our statistics is only marginal for a precise
determination of the integrated autocorrelations. In some
cases (run (a), (j)) we are not able to quote a reliable
result for the autocorrelation of the pion mass.

In the high statistics runs with small quark masses
(e), (f), (g), (h) and (i) we had four independent parallel
update sequences which could be used for a crude estimate
of the errors. In addition, whenever the runs were long
enough, we used binning with increasing bin lengths for
the error estimates.

In general, integrated autocorrelations of the average
plaquette are longest. Those for the smallest eigenvalue
are comparable but sometimes by a factor 2–3 shorter.
The important case of τmπ

int is the most favorable among
the quantities we have considered: it is by a factor 2 to 10
shorter than τplaq

int . Our experience was that the best values
for τmπ

int could be achieved in runs where the lower limit
of the approximation interval ε was at least by a factor
of 2–3 smaller than the typical smallest eigenvalue of Q̃2

Table 4. Integrated autocorrelations in update cycles obtained
from runs specified by Table 2. In the second column Ccycle

gives the number of kMVMs (103 MVMs) per update cycle.
The suffices min, plaq, π8 and mπ refer to the minimal eigen-
value of Q̃2, the average plaquette, the pion correlator at dis-
tance d = 8 and the pion mass, respectively

Run Ccycle τmin
int τplaq

int τπ8
int τmπ

int

(a) 1.49 – 200(20) – –
(b) 2.45 340(60) 350(50) 152(20) 140(20)
(c) 4.35 – 420(80) – 150(20)
(d) 5.05 � 310 490(90) – 170(90)
(e) 7.34 550(110) 490(40) 274(41) 207(33)
(f) 7.31 810(110) 800(90) 367(110) 187(63)
(g) 10.5 320(80) 820(180) 466(62) 188(13)
(h) 16.2 380(120) 940(330) 370(88) 186(40)
(i) 20.4 670(210) 1500(300) 283(67) 153(54)
(j) 17.4 � 390 � 1050 – –

and the multi-boson fields were relatively often updated
by the global quasi-heatbath.

Using the values given in Table 4 one can extract, for
instance, the behavior of τplaq

int as a function of the di-
mensionless quark mass parameter Mr. Since, according
to Table 3, the different runs are at slightly different val-
ues of r0/a, one can correct the points with an assumed
power za = 2 to a common value, say, r0/a = 1.8. The
resulting behavior is shown by Fig. 3 (left panel) where a
two-parameter fit cMz

r is also shown. The best fit is at
c = 7.92(68) (106 MVMs), z = −2.02(10) with a χ2 per
number of degrees of freedom of χ2/d.o.f. = 1.8. (The re-
sult for z remains the same if the common value of r0/a
is changed in the interval 1.6 ≤ r0/a ≤ 2.0.)

The alternative parameterization in (2) suggests a
power fit as a function of mπ/mρ. A good fit can only be
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obtained in this case if the last point with the largest quark
mass is omitted (see Fig. 3, middle panel). The best-fit
parameters are in this case c = 0.476(77), z = −6.03(41)
with χ2/d.o.f. = 1.1. The obtained power agrees very well
with zπρ = 6 in (2) given by the CP-PACS, JLQCD Col-
laboration although the latter value was obtained in a
range of substantially larger quark masses on large lat-
tices.

The data on the integrated autocorrelation of the small-
est eigenvalues τmin

int typically have larger errors. A fit
of the form cMz

r is shown in Fig. 3 (right panel) where
c = 5.36(80), z = −1.48(25) with χ2/d.o.f = 2.4. A fit
to the integrated autocorrelation of the pion mass τmπ

int
gives similar parameters: c = 1.99(16), z = −1.47(16)
with χ2/d.o.f = 1.7. This shows that for τmin

int and τmπ

int
the quark mass dependence is described by zπ � 3 which
is, of course, more favorable than zπ � 4 for τplaq

int .
Concerning the quality of fits one has to remark that

the different points belong to individually different opti-
mizations of the polynomial parameters which have not
necessarily the same quality. This implies an additional
fluctuation beyond statistics. In view of this the χ2 per
number of degrees of freedom values are reasonably good.

4 Eigenvalue spectra

The eigenvalue spectrum of the Wilson–Dirac matrix is
interesting both physically and from the point of view of
simulation algorithms. From the physical point of view
the low-lying eigenvalues are expected to dominate the
hadron correlators [28,29] and carry information about
the topological content of the background gauge field [30–
32]. Although, as already stressed, in the present work we
consider rather coarse lattices, given the importance of the
question, it is interesting to see the effect of the determi-
nant of light quarks on the qualitative properties of the
eigenvalue spectrum. From the algorithmic point of view
knowledge of the low-lying eigenvalues is crucial for the
optimization of polynomial approximations. Finally, since
we plan to perform simulations with an odd number of
flavors [33], we have to consider the possibility of nega-
tive (real) eigenvalues of the non-hermitean quark matrix
Q, which would imply a negative determinant for a single
quark flavor. For Nf = 2 the square of the determinant is
relevant; therefore, the sign does not matter, but the ab-
sence (or statistical insignificance) of negative eigenvalues
at very small quark masses would strongly support the
assumption that for the heavier strange quark there will
be no problem with the determinant sign.

In order to study the low-lying spectrum of the eigen-
values we used two methods: for the eigenvalues of the
hermitean fermion matrix with small absolute value the
one by Kalkreuther and Simma [34] and for small eigenval-
ues of the non-hermitean matrix the Arnoldi method [35,
36]. The determination of the eigenvalues of the hermitean
matrix is in general much faster. However, the spectrum
of the non-hermitean fermion matrix contains more infor-
mation. First of all, the eigenvalues of Q depend trivially

on the valence hopping parameter κval, because

Q = 1 − κvalD. (44)

This is not true for Q̃. Moreover, because of the symme-
tries

Q† = γ5Qγ5, ODO = −D, (45)

where Oxy = (−1)(x1+x2+x3+x4)δxy, the spectrum of D
is invariant under complex conjugation and sign change.
As a consequence, it is sufficient to compute the low-lying
spectrum of Q at an arbitrary value κval = κ̄val. Other κval
are easily obtained by a shift. The value of κ̄val is chosen
such that it gives the best compromise of computation
time and precision.

It turned out that the application of the Arnoldi al-
gorithm is more efficient on the even–odd preconditioned
matrix Q̄ than on Q itself. The analytic relation between
the eigenvalues of Q̄ and Q can be used to transform the
result back to Q. Indeed if Q is written in the form

Q = 1 − κ

(
0 Deo

Doe 0

)

, (46)

then Q̄ is given by

Q̄ = 1 − κ2

(
0 0
0 DoeDeo

)

. (47)

If v = (ve, vo) is an eigenvector of Q with eigenvalues λ
then it satisfies

(λve, λvo) = (ve − κDeovo, vo − κDoeve) (48)

and hence

(1 − κ2DoeDeo)vo = vo − (1 − λ)2vo = λ(2 − λ)vo. (49)

As a result, the eigenvalues of Q̄ are either 1 (in the even
subspace) or they satisfy

λ̄ = λ(2 − λ). (50)

Because of the symmetries mentioned above, the solutions
of (50) will give precisely all the eigenvalues of the matrix
Q. This relation also gives a possibility to perform a non-
trivial check of the Arnoldi code. (In addition, we also
compared the algorithm with a direct computation of all
the eigenvalues on a small 44 lattice by means of a NAG
library routine.) All checks confirmed the high precision
given as an output by the ARPACK code, which was, in
our cases, always better than 10−4 (relative precision).

4.1 Small eigenvalues

As a first task we computed the low-lying eigenvalues from
sample sets of 10 configurations for runs in decreasing or-
der of quark masses, namely those labeled with (a) and
(c)–(j) in Table 2. In order to have a better access to
the most interesting regions of the spectrum we analyzed
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Fig. 4. Low-lying eigenvalues from a set of O(10) configurations for runs (a), (c) to (j)

each configuration from two different points of view. For
each configuration we first determined the 150 eigenval-
ues of the preconditioned Wilson–Dirac matrix (Q̄) with
smallest modulus and then the 50 eigenvalues of the non-
preconditioned one (Q) with smallest real part.

Both computations were performed at an auxiliary
value of κval = 0.170, where the Arnoldi algorithm per-
formed better. By using the analytical relations (44) and
(50) we transformed the eigenvalues to those of Q at the

κ value of the dynamical updates (κ ≡ κsea). The results
are plotted in Fig. 4. The dashed vertical line shows the
limit for the computation of the eigenvalues with smallest
real part: only the part of the spectrum to the left of this
line is known. In a similar way, by computing the eigenval-
ues with smallest modulus, we have access to the portion
of the spectrum inside the dashed circle. The circle is de-
formed and not centered at the origin because it has been
transformed together with the eigenvalues by using (50).
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Fig. 5. Low-lying eigenvalues for a set of 10 configurations with exceptionally small eigenvalues, at β = 4.68 and κ = 0.195
(left panel), β = 4.64 and κ = 0.197 (middle panel), detail (right panel)

In summary, the spectrum is not known in those points
of the complex plane which are both to the right of the
vertical line and outside the circle.

Since the sequence from (a) to (j) corresponds to de-
creasing quark masses it is not a surprise that the eigen-
values have an increasing tendency to go to the left in the
complex plane. At the same time they are pushed away
from zero as an effect of including the fermionic determi-
nant in the path integral measure. At very small quark
masses a pronounced hole near zero is developing. For the
continuum Dirac operator the spectrum is on a vertical
line with some gap near zero. On our coarse lattices there
is an additional horizontal spread of the eigenvalues and
the picture is strongly deformed.

The size of the holes produced by the determinant
is very important if we have in mind the possibility of
computing observables at a partially quenched κval higher
than κsea used in the update. The distance between the
origin and the smallest real eigenvalue determines how
much smaller masses (larger κval) one can reach by par-
tial quenching before encountering exceptional configura-
tions. This question can be answered by studying config-
urations with exceptionally small eigenvalues. Of course,
the reweighting factors discussed in Sect. 3.2.2 have to be
taken into account in this analysis because they suppress
such configurations to a large extent.

4.2 Negative eigenvalues

One of the purposes of the analysis of the eigenvalues was
to determine whether there is a statistically significant
presence of configurations with negative determinant. As
already said, the sign of the determinant is easy to deter-
mine from the low-lying spectrum since it is negative if an
odd number of real negative eigenvalues occurs. In fact,
non-real eigenvalues always appear in conjugate pairs. In
the randomly chosen set of configurations reported above
we did not find a single real negative eigenvalue. However,
a set of O(10) configurations is a rather small subsample.

Additional information on the presence or absence of
negative eigenvalues in our samples is given by the distri-
bution of reweighting factors. Crossing of eigenvalues to
negative real axis implies small reweighting factors corre-
sponding to very small eigenvalues of Q̃2 below the lower
bound of the interval [ε, λ]. The calculation of reweighting
factors, which was carried out on every configuration in
the selected subsamples, is much cheaper than the analy-
sis of small eigenvalues of the non-hermitean matrix Q. As
we discussed in Sect. 3.2.2, the distribution of reweighting
factors is strongly peaked near 1 in all runs, except for
runs (h) and (i) which have high statistics at very small
quark masses (see Fig. 1). In these cases there are a few
configurations with reweighting factors close to zero. In
order to see whether the small reweighting factors (and
the corresponding small eigenvalues of Q̃2) are associated
to negative eigenvalues or not, we concentrated on config-
urations with particularly small eigenvalues of Q̃2.

Note that there is no simple analytical relation be-
tween the lowest eigenvalues of the hermitean and the
non-hermitean matrix, but it is reasonable to expect that
small eigenvalues occur together. This expectation was
confirmed in all cases we investigated. An interesting ob-
servation was that very small eigenvalues of the hermitean
matrix seem to be usually associated to small real eigen-
values of the non-hermitean one. This is compatible with
the fact that real eigenvalues do not need to be double
degenerate and therefore they can afford one to approach
closer to the origin than a complex conjugate pair.

In Fig. 5 two significant examples are reported. The
first set of configurations in the figure corresponds to a
moderately small quark mass (run (h)) and the second to a
very small quark mass (run (i)). In both cases we selected
the configurations with smallest eigenvalues of Q̃2. Even in
this way we could not find a single real negative eigenvalue
for the first run (h). In the second case we found three
configurations with negative eigenvalues. The (in total)
four negative eigenvalues are visible in the detail in the
right panel of Fig. 5. As stated before these configurations
are statistically insignificant.
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Fig. 6. Computation of 8 eigenvalues closest to zero of the hermitean Wilson–Dirac matrix for two configurations from the run
at β = 4.64 and κ = 0.197

Some comments are in order. We have collected strong
evidence that the presence of configurations with negative
determinant is irrelevant at this stage. Of course it is not
yet possible to tell how this picture will evolve on larger
volumes and closer to the continuum limit. It will be nec-
essary to keep monitoring the low part of the spectrum as
we did here. Since, to that purpose, we only need to know
a very small part of the spectrum, there is no reason to
think that this task should become too difficult on large
volumes.

As a last remark we should stress that we performed
this analysis of the sign for very small quark masses. Even
if (partially quenched) chiral perturbation theory is valid
for any combination of the quark masses, it is probably
not worth having an unpaired sea quark with a mass much
smaller than the strange quark. Therefore, provided that
the picture will not dramatically change on larger lattices,
for all physical circumstances it seems very unlikely that
the determinant sign could become a problem.

4.3 Flow of eigenvalues

By using the algorithm of Kalkreuther and Simma [34]
we also explored the flow of the spectrum {λ̃} of the her-
mitean matrix Q̃ for a wide range of valence κ values, going
from zero bare quark mass to a large negative one. This
is interesting in view of simulations of dynamical fermions
with Neuberger’s operator [37], where the inverse square
root of Q̃2 with negative valence mass has to be taken. The
optimal valence mass should be chosen in a region where Q̃
has no eigenvalues extremely close to zero, namely where
a “gap” is opening up in the spectrum near λ̃ = 0. The

results for two typical configurations are plotted in Fig. 6.
For large negative masses we observed many sign changes,
and the eigenvalue with smallest absolute value is always
close to zero. It seems that for dynamical Wilson fermions
on our coarse lattice there is no gap-opening near λ̃ = 0.

A possible application of the eigenvalue flow is to mon-
itor the number of negative eigenvalues at κ = κsea [38,
19]. This is substantially cheaper than the analysis of the
spectrum of the non-hermitean matrix Q by the Arnoldi
method. For instance, observing the eigenvalue flow one
can easily exclude the absence of negative eigenvalues if
there is no crossing of zero in the flow below κsea – which
is the typical case. A more detailed (and more expensive)
analysis can be restricted to the rare case when a crossing
occurs.

5 Discussion

Our runs on 83×16 lattices with a lattice spacing of about
a � 0.27 fm for Nf = 2 degenerate quarks display the de-
pendence of simulation costs on the quark mass. Assuming
the parameterization in (1) with zL = 5 and za = 2, from
the integrated autocorrelation of the average plaquette we
obtain

zπ � 4, F � 0.8 × 109 flop. (51)

The power for the quark mass dependence zπ comes out
smaller than zπρ = 6 in the form (2) quoted by the CP-
PACS, JLQCD Collaboration [6] but if we omit the point
with largest quark mass and perform a fit with the para-
metrization (2), we also obtain zπρ � 6 (see Fig. 3).

As shown by Fig. 3 (left panel), our data on the inte-
grated autocorrelation of the average plaquette are well
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fitted by zπ = 4 in the whole range 0.6 ≤ Mr ≤ 6 which
approximately corresponds to (1/5)ms ≤ mud ≤ 2ms.
The data on the integrated autocorrelation of the small-
est eigenvalue of the squared hermitean fermion matrix
show an even weaker power zπ � 3, but there the errors
are larger and the fit is less convincing (see right panel
in Fig. 3). The pion mass has the shortest autocorrela-
tion; this also shows a power zπ � 3. zπ = 4 corresponds
to a behavior proportional to the inverse square of the
quark mass. Qualitatively speaking, according to Table 4,
one inverse quark mass power is due to the increase of
the condition number of the fermion matrix and another
inverse power comes from the increase of the autocorre-
lation in numbers of update cycles. Note that because of
(r0mπ)2 ∝ (r0mq) the case of zπ = 4, za = 2 corresponds
to a situation when the scale parameter r0 cancels in the
cost formula (1).

The overall factor F given in (51) is such that for our
second smallest quark mass Mr � 0.6 (run (i)) the cost in
floating point operations turns out to be C � 2.3 × 1014.
As Table 4 shows, considering instead of the integrated
autocorrelation of the average plaquette the one of the
pion mass, the result is C � 0.4×1014. The parameters in
(2) give the same number. The other estimates for Wilson-
type quarks in [5] and [7] in this point are CL � 0.2×1014

and CW � 1.1 × 1014, respectively. Taking into account
that the numbers CU,L,W have been obtained under rather
different circumstances concerning simulation algorithm,
autocorrelations considered, quark mass range, lattice size
and even lattice action, there is a surprisingly good order
of magnitude agreement.

It is remarkable that in a rather broad range of quark
masses (1/5)ms ≤ mud ≤ ms (leaving out the point at
mud � 2ms) two fits with zπ = 4 and zπρ = 6 work
equally well (Fig. 3). This implies in this range of quark
masses a peculiar dependence of mπ/mρ on Mr (see Fig. 7,
where the relation between the two different quark mass
parameters µr and Mr is also shown). However, the two
parameterizations in (1) and (2) cannot be both correct
in the vicinity of zero quark mass because there the two
powers have to be equal: zπρ = zπ. Putting it differently,
the extrapolations of the two fits below mud = (1/5)ms

are different. The fit with zπρ = 6 gives a more dramatic
slowing down near zero quark mass than the one with
zπ = 4. The real asymptotics near mud = 0 could be
disentangled by going to still smaller quark masses. With
TSMB there is no serious obstacle for doing this – except
for the increase in necessary computer time.

The value of the lattice spacing in this paper is chosen
rather large in order to limit the computational costs for
these tests. Our aim was to concentrate on the quark mass
dependence in the range of light quarks. Further studies
will be needed for investigating the cost as a function of
the lattice spacing (in particular, the value of the expo-
nent za) for smaller values of a. In this respect the expe-
rience of the DESY–Münster–Roma Collaboration in the
supersymmetric Yang–Mills theory at much smaller lattice
spacings (a � 0.06fm) [19,20] shows already that TSMB
has a decent behavior also closer to the continuum limit.
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Fig. 7. The dependence of (mπ/mρ)2 on Mr according to
Table 3 (right values). The values of µr are also shown (left)
together with a linear fit (dashed line)

Besides the quark mass dependence of simulation costs,
the other interesting question we investigated in this paper
is the distribution of the small eigenvalues of the fermion
matrix and, in particular, the existence of negative fermion
determinants of a single quark flavor. Our data show that
the effect of the fermion determinant is rather explicit be-
cause of the strong suppression of the eigenvalue density
near zero (see Figs. 4–5). The statistical weight of configu-
rations with negative determinant is negligible even at our
smallest quark masses. In fact after an extensive analysis
we only found three configurations with negative determi-
nant at our second smallest quark mass Mr � 0.6 (run
(i)) and none of them at other quark masses. Taking into
account the small reweighting factors of the configurations
with negative determinant, their relative statistical weight
is O(10−5).

It is clear that it would be important to check the vol-
ume dependence of our results, both for simulation costs
and small eigenvalues, on larger lattices and closer to the
continuum limit. We plan to do this in the future.
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Abstract

The dependence of the pseudoscalar meson mass and decay constant is compared to one-loop partially quen
perturbation theory (PQChPT) in a numerical simulation with two light dynamical quarks. The characteristic behavio
chiral logarithms is observed. The values of the fitted PQChPT-parameters are in a range close to the expectation in c
in spite of the fact that the lattice spacing is still large, namelya � 0.28 fm.
 2003 Published by Elsevier Science B.V.

1. Introduction

In numerical Monte Carlo simulations of QCD chiral perturbation theory (ChPT) [1] is often used to
the extrapolation to the physical values of the three light quark masses (mu � md andms ). In this procedure no
only the lattice gauge theory results are established but also useful information is obtained about the valu
Gasser–Leutwyler parameters of ChPT. In fact, recently several groups explored this possibility in quenche
and unquenched simulations with Wilson-type [3] and staggered [4,5] quarks. (For a review see [6].)

In order to achieve small systematic errors the simulations themselves have to be performed in a
quark masses where the applied one-loop (NLO) ChPT-formulas give a good approximation. In particu
characteristicchiral logarithms have to appear in the quark mass dependence of different physical quantitie
applies both to original ChPT as well as to PQChPT [7,8]. However, in most recent simulations—especia
Wilson-type quarks—this condition is not fulfilled because they are performed in the rangemu,d � 1

2ms . Estimates
based on present knowledge of the ChPT parameters indicate (see, for instance, [9]) that at leastmu,d � 1

4ms − 1
5ms

has to be reached. (See also the summary of the panel discussion at the Boston lattice conference [10].

E-mail address: montvay@mail.desy.de (I. Montvay).
0370-2693/03/$ – see front matter 2003 Published by Elsevier Science B.V.
doi:10.1016/S0370-2693(03)00386-1
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requirement is that the virtual effects of thes-quark also has to be taken into account by simulating with three
dynamical quarks.

Since the dynamical quarks in most unquenched simulations do not satisfy the above bound, it is not su
that the chiral logarithms have not been observed [11–16]. This was the main motivation of our collabor
start exploring the possibility of simulating QCD with light quarks in the rangemud � 1

2ms [17–21]. In these
simulations we use thetwo-step multi-boson (TSMB) algorithm for dynamical fermions [22] and consider for t
momentNs = 2 dynamical “sea” quarks. The case ofNs = 3 is also under study [23]. Our first simulations we
oriented towards the investigation of simulation costs as a function of the quark mass and were perfo
modest size lattices (typically 83 · 16) with lattice spacings of the ordera � 0.27 fm—a value where continuum
behaviour is not necessarily expected. Therefore, it came to us as a surprise that plotting the pseudoscala
mass and decay constant as a function of the quark mass (in the form suggested by [24,25]) the chiral log
behaviour has been qualitatively displayed [19,20].

Encouraged by this result we picked out a point withmud � 1
4ms and performed a high statistics run on 14

lattice in order to study the dependence on the valence quark mass in a sufficiently large physical volum
has the advantage that by taking ratios of the masses and decay constants theZ-factors of renormalization cance
This removes an uncertainty in [19,20] where theZ-factors have been neglected by setting them toZ ≡ 1. In our
analysis of simulation data we applied PQChPT for Wilson lattice fermions [26] which take into account l
lattice artefacts ofO(a).

The plan of this Letter is as follows: in the next section the one-loop PQChPT formulas for Wilson
fermions will be recapitulated. In Section 3 the numerical simulation data will be analyzed and discussed.

2. PQChPT formulas

Our analysis of the valence quark dependence of the pseudoscalar mass (mπ ) and decay constant (fπ ) is based
on the one-loop PQChPT formulas for the Wilson lattice action as derived in [26]. Instead of the quantiti
dimension mass-squareχA andρA of Ref. [26] we prefer to use the dimensionless ones

(1)χA ≡ 2B0mq

f 2
0

, ρA ≡ 2W0acSW

f 2
0

.

Heremq is the quark mass,a the lattice spacing,B0 andW0 are parameters of dimension mass and (mas)3,
respectively, which appear in the leading order (LO) chiral effective Lagrangian,cSW is the coefficient of theO(a)

chiral symmetry breaking term andf0 is the value of the pion decay constant at zero quark mass. (Its normaliz
is such that the physical value isf0 � 93 MeV.) In Ref. [26] the case of three non-degenerate quark flavou
considered. Here we consider a general numberNs of equal mass sea quarks.

The next to leading order (NLO) PQChPT formula for the pion decay constant is in this case:

fAB

f0
= 1− Ns

128π2

{
(χA + χS + ρA + ρS) log

(
1

2
(χA + χS + ρA + ρS)

)

+ (χB + χS + ρB + ρS) log

(
1

2
(χB + χS + ρB + ρS)

)}

+ 1

64Nsπ2

{
χA + χB + ρA + ρB − 2χS − 2ρS + (χB − χA + ρB − ρA)

−1

×
[
2(χA + ρA)(χB + ρB)− (χS + ρS)(χA + χB + ρA + ρB) log

(
χA + ρA

χB + ρB

)]}

(2)+ 2L̄5(χA + χB)+ 2	W5(ρA + ρB)+ 4NsL̄4χS + 4Ns
	W4ρS.
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HereA andB denote generic quark indices:S will be the label for the sea quarksV for valence quarks. For th
pion mass squared we have:

m2
AB

f 2
0

= 1

2
(χA + χB + ρA + ρB)+ 1

32Nsπ2

(χA + χB + ρA + ρB)

(χB − χA + ρB − ρA)

× {
(χA + ρA)(χS − χA + ρS − ρA) log(χA + ρA)

− (χB + ρB)(χS − χB + ρS − ρB) log(χB + ρA)
}

+ 4Ns

(
2L̄6 − L̄4

)
χS(χA + χB)+ 2

(
2L̄8 − L̄5

)
(χA + χB)

2

+ 4Ns

( 	W6 − L̄4
)
χS(ρA + ρB)+ 4Ns

( 	W6 − 	W4
)
ρS(χA + χB)

(3)+ 2
(
2	W8 − 	W5 − L̄5

)
(χA + χB)(ρA + ρB).

The NLO parameters̄Lk and 	Wk are related toLk andWk in Refs. [9,26] by

(4)L̄k ≡ Lk − ck log
(
f 2

0

)
, 	Wk ≡ Wk − dk log

(
f 2

0

)
,

where the coefficients of the logarithms are given by

(5)c4 = 1

256π2
, c5 = Ns

256π2
, c6 = (N2

s + 2)

512N2
s π

2
, c8 = (N2

s − 4)

512Nsπ2
,

respectively,

(6)d4 = 1

256π2
, d5 = Ns

256π2
, d6 = (N2

s + 2)

256N2
s π

2
, d8 = (N2

s − 4)

256Nsπ2
.

The relations in (4) have the unpleasant feature that logarithms of a dimensionful quantity appear. One c
this by introducing

(7)L′
k ≡ Lk − ck log

(
µ2), W ′

k ≡ Wk − dk log
(
µ2),

whereµ is the mass scale introduced by dimensional regularization. SinceLk andWk depend onµ the choice of
it in the logarithm is natural. In terms ofL′

k andW ′
k we have

(8)L̄k = L′
k − ck log

(
f 2

0

µ2

)
, 	Wk = W ′

k − dk log

(
f 2

0

µ2

)
.

Note that the NLO parametersαk in Ref. [7] are related toL′
k by

(9)αk = 128π2L′
k.

The universal low energy scales Λ3,4 in Refs. [24,25] can be expressed, in the case ofNs = 2, by the following
combinations of the coefficients̄Lk :

(10)− 1

256π2
log

Λ2
3

f 2
0

= 2L̄8 − L̄5 + 4L̄6 − 2L̄4,
1

64π2
log

Λ2
4

f 2
0

= 2L̄4 + L̄5.

In this Letter we are interested in the valence quark mass dependence offπ andm2
π for fixed sea quark mas

parameterχS . Therefore, it is natural to introduce the ratios of the other mass parameters toχS :

(11)ξ ≡ χV

χS
, η ≡ ρS

χS
, ζ ≡ ρV

ρS
= ρV

ηχS
.
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Once relations (11) are substituted in (2), (3), the logarithmic dependence onχS can be absorbed in the NL
parameters if one introduces

LSk ≡ L̄k − ck log(χS)= L′
k − ck log

(
f 2

0

µ2χS

)
,

(12)WSk ≡ 	Wk − dk log(χS)= W ′
k − dk log

(
f 2

0

µ2
χS

)
.

Let us note that the argument of the last logarithms here can also be written as

(13)
f 2

0

µ2
χS = 2B0mqS

µ2
.

In this Letter we keep the sea quark mass (χS) fixed and vary the valence quark mass (χV = ξχS ). Expanding
the ratio of decay constants up to first order in the one-loop corrections one obtains

(14)RfVV ≡ fVV

fSS
= 1+ 4(ξ − 1)χSLS5 − NsχS

64π2 (1+ ξ + 2η) log
1+ ξ + 2η

2
+ NsχS

32π2 (1+ η) log(1+ η),

and similarly

RfVS ≡ fV S

fSS
= 1+ 2(ξ − 1)χSLS5 + χS

64Nsπ2 (ξ − 1)− χS

64Nsπ2 (1+ η) log
ξ + η

1 + η

(15)− NsχS

128π2 (1+ ξ + 2η) log
1+ ξ + 2η

2
+ NsχS

64π2 (1+ η) log(1+ η).

In case of the ratios ofm2
π we expand up to first order in the “correction” which now also includes theO(a) terms

of the tree-level expressions:

RmVV ≡ m2
VV

m2
SS

= ξ + η − ηξ + 8ξ(ξ − 1)χS(2LS8 −LS5)+ 8Ns(ξ − 1)ηχS(LS4 −WS6)

+ χS

16Nsπ2
(ξ − 1)(ξ + η)− χS

16Nsπ2
ξ(1+ 2η) log(1+ η)

(16)+ χS

16Nsπ2

(
2ξ2 − ξ − η + 3ηξ

)
log(ξ + η),

and

RmVS ≡ m2
V S

m2
SS

= 1

2
(1+ ξ + η − ηξ)+ 2(ξ + 1)(ξ − 1)χS(2LS8 −LS5)+ 4Ns(ξ − 1)ηχS(LS4 −WS6)

(17)− χS

32Nsπ2 (ξ + 1)(1+ 2η) log(1+ η)+ χS

32Nsπ2

(
ξ2 + ξ + η + 3ηξ

)
log(ξ + η).

In these expressions it is assumed that theO(a) mass termsρ are the same for valence quarks and the sea qu
namelyρV = ρS . This is the case if only the hopping parameterκ is changed. ChangingρV = ζηχS can be
investigated by changing the Wilson-parameterr in the Wilson fermion action, too.

Up to now we considered the valence quark mass dependence for unchanged sea quark masses. Let
that the formulas for the sea quark mass dependence can also be written in a similar form as Eqs. (14)–(1
case it is advantageous to fix areference sea quark mass χR (see [2]) and introduce the variables

(18)σ ≡ χS

χR
, ω ≡ ρR

χR
, τ ≡ ρS

ρR
= ρS

ωχR
.
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Instead of the NLO parameters in (12) the appropriate ones are then obviously

(19)LRk ≡ L′
k − ck log

(
f 2

0

µ2χR

)
, WRk ≡ W ′

k − dk log

(
f 2

0

µ2χR

)
.

3. Numerical results

We performed Monte Carlo simulations withNs = 2 degenerate sea quarks on a 164 lattice atβ = 4.68,
κ = 0.195 and investigated the valence quark mass dependence atκ = 0.1955,0.1945,0.1940,0.1930,0.1920.The
statistics corresponds to 1180 gauge field configurations. The error analysis was based on thelinearization method
[27]. Sincer0/a = 1.76(6) the lattice spacing isa � 0.28 fm. This means that the physical lattice extension is ra
large:L � 4.5 fm. The value of the quark mass parameter is given byamπ = 0.519(1) asMr ≡ (r0mπ)

2 � 0.83.
This is about 1/4 of the value ofMr for the strange quarkMstrange

r � 3.1.
The ratios in Eqs. (14)–(17) as a function of the quark mass ratio (ξ ) depend on five parameters, name

χS,η,LS5, (2LS8 − LS5) and (LS4 − WS6). With our choice of the valence hopping parameters and with
statistics most of the multi-parameter fits were unstable, therefore, our analysis is based one a sequence o
double parameter fits. The stability of the multi-parameter fits can be improved by optimizing the choice of v
quark mass values, which we did not exploit this time.

A very useful quantity is the double ratio of decay constants [14] which does not depend on any of th
coefficients. In other words there one can see the chiral logarithms alone. The NLO formula is:

(20)RRf ≡ f 2
V S

fV V fSS
= 1+ χS

32Nsπ2
(ξ − 1)− χS

32Nsπ2
(1+ η) log

ξ + η

1+ η
.

Because of theO(a) contributions this has two parameters:χS andη = ρS/χS . For performing two-parameter fit
some timeslice distance pairs were chosen and the fits of the pion- and quark-mass were taken from them
choices are, for instance, 4–5, 4–6 or 5–6. (The way physical quantities were obtained has been describe
in [17].) The result of the two-parameter fit was (see Fig. 1):

(21)χS = 9.2± 2.5, η = 0.14± 0.30.

The value ofχS has the right order of magnitude. Indeed, from the axial Ward identity we obtainr0mqS = 0.06Z−1
q .

Using this and the phenomenological estimates [25]r0f0 = 0.23, r0B0 = 7.0, where the value ofB0 refers to the
MS scheme atµ= 2 GeV, we deduceχestimate

S � 16Z−1
q . HereZq is an unknownZ-factor relating the bare lattic

quark mass to the renormalized one at 2 GeV, which is typically ofO(1). Another estimate can be obtained
using the tree-level ChPT formulaχestimate

S ≈ Mr/(r0f0)
2 � 15.7.

After determiningχS andη = ρS/χS from the double ratioRRf one can fit the other ratios to obtain estima
of the NLO coefficients. A nice linear combination of mass-squared ratios is:

LRm ≡ 2RmVS −RmVV = 1− 4(ξ − 1)2χS(2LS8 −LS5)− χS

16Nsπ2
(ξ − 1)(ξ + η)

(22)− χS

16Nsπ2 (1+ 2η) log(1+ η)− χS

16Nsπ2

(
ξ2 − 2ξ − 2η

)
log(ξ + η).

This has only a single new parameter(2LS8 − LS5) and the statistical errors are small, therefore, one can
perform a two-parameter fit ofχS and(2LS8 − LS5) with the result (η = 0.05 fixed, errors in last digits given i
parentheses):

(23)2LS8 −LS5 = −0.00203(5), 2α8 − α5 = 0.85(6), χS = 5.2(1.1).
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Fig. 1. The valence quark mass dependence of the double ratio of pion decay constantsRRf . Besides the “fit” the two other curves show t
O(a) contribution (“eta”) and the physical contribution obtained atη = 0 (“chi”).

αk denote the NLO parameters in (9) taken at the renormalization scaleµ = 4πf0. Fixing bothχS = 10.0 and
η = 0.10 gives:

(24)2LS8 −LS5 = −0.00177(3), 2α8 − α5 = 0.58(3).

As Fig. 2 shows, with these parameters the last point is not perfectly fitted. A perfect fit is obtained w
parameters in (23).

The value ofLS5 can be determined fromRfVV . (RfVS gives very similar results.) In this case the statisti
errors are larger, therefore, only a single parameter fit is useful. The result for fixedχS = 10.0 andη = 0.10 is (see
Fig. 3):

(25)LS5 = 0.0034(1), α5 = 1.55(24).

The errors given in (23)–(25) are the ones for the specified values of fixed parameters. The overall err
course, larger—as one can see, for instance, by comparing (23) and (24). The values of(2α8 − α5) andα5 are
somewhat larger than the results of UKQCD [3]:(2α8 − α5) = 0.36± 0.10 andα5 = 1.22± 0.11 (only statistical
errors quoted).

The double ratio of the pion mass squares [13]
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Fig. 2. The valence quark mass dependence of the linear combination of pion mass-squared ratiosLRm. Besides the “fit” the two other curve
show theO(a) contribution (“eta”) and the physical contribution obtained atη = 0 (“chi”).

RRm ≡ m4
V S

m2
VVm

2
SS

= (ξ + 1)(ξ2 + ξ − η + 2ηξ − ηξ2)

4ξ2

+ χS(ξ + 1)(ξ2 + ξ + η + 3ηξ2) log(ξ + η)

64Nsπ2ξ2 − χS(ξ + 1)2(2η+ 1) log(1+ η)

64Nsπ2ξ

(26)− χS(ξ − 1)(ξ + 1)2(ξ + η)

64Nsπ2ξ2 + 2NsχSη(ξ + 1)(ξ − 1)2

ξ2 (LS4 −WS6)

can be used to determine the fifth parameter(LS4 −WS6). In this case a single parameter fit with fixedχS = 10.0
andη = 0.10 gives(LS4 −WS6)= 0.00358(6).

The conclusion of this Letter is that—once the quark masses are small enough—the qualitative behavio
low energy chiral effective theory with chiral logarithms is present even on coarse lattices. Since here ratios
masses and decay constants are considered theZ-factors of renormalization cancel, therefore the uncertainty a
theirβ-dependence, which can influence the results of [17,19], is removed. The coefficients of the observe
logarithms and the fitted values of the Gasser–Leutwyler coefficients are close to expectation. This qu
agreement of the results of a numerical simulation with (PQ)ChPT is quite satisfactory but for a quan
determination of NLO ChPT parameters one has to perform extrapolations toa → 0 andmq → 0. SinceO(a)

effects are taken into account in the analysis by the Rupak–Shoresh effective Lagrangian, the continuum
be reached asymptotically at the rateO(a2).
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Fig. 3. The valence quark mass dependence of the ratio of pion decay constantsRfVV . Besides the “fit” the two other curves show theO(a)

contribution (“eta”) and the physical contribution obtained atη = 0 (“chi”).
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Abstract. The dependence of the pseudo-scalar meson masses and decay constants on sea and valence quark
masses is compared to next-to-leading order (NLO) chiral perturbation theory (ChPT). The numerical
simulations with two light dynamical quark flavors are performed with the Wilson quark lattice action at
gauge coupling β = 5.1 and hopping parameters κ = 0.176, 0.1765, 0.177 on a 164 lattice. O(a) lattice
artifacts are taken into account by applying chiral perturbation theory for the Wilson lattice action. The
values of the relevant combinations of Gasser–Leutwyler constants L4, L5, L6 and L8 are estimated.

1 Introduction

The low energy dynamics of strong interactions in the
pseudo-Goldstone boson sector of QCD is constrained by
the non-linear realization of spontaneously broken chi-
ral symmetry [1]. In an expansion in powers of momenta
and light quark masses a few low energy constants – the
Gasser–Leutwyler constants – appear which parameter-
ize the strength of interactions in the low energy chiral
Lagrangian [2]. The Gasser–Leutwyler constants are free
parameters which can be constrained by analyzing exper-
imental data. In the framework of lattice regularization
they can be determined from first principles by numer-
ical simulations. In experiments one can investigate pro-
cesses with different momenta but the quark masses are, of
course, fixed by nature. In numerical simulations there is,
in principle, much more freedom because, besides the pos-
sibility of changing momenta, one can also freely change
the masses of the quarks. This allows for a precise deter-
mination of the Gasser–Leutwyler constants – once the
simulations reach high precision. First steps towards this
goal have recently been done by several authors [3–6] in-
cluding our Collaboration [7–9].

The main difficulty for numerical simulations in lattice
QCD is to reach the regime of light quark masses where
ChPT is applicable. The reason is the critical slowing down
of simulation algorithms for small quark masses and lat-
tice spacings. We apply the two-step multi-boson (TSMB)
algorithm [10] which allows one to perform simulations
with small quark masses within the range of applicability
of next-to-leading order (NLO) ChPT [7,8].

Another important aspect of investigating the quark
mass dependence in numerical simulations is the possi-
bility to use ChPT for the extrapolation of the results
to the physical values of u- and d-quark masses which
would be very difficult to reach otherwise. In fact, ChPT
can be extended by changing the valence quark masses in
quark propagators independently from the sea quark mas-
ses in virtual quark loops which are represented in the
path integral by the quark determinant. In this way one
arrives at partially quenched chiral perturbation theory
(PQChPT) [11–13]. The freedom of changing valence and
sea quark masses substantially contributes to the power of
lattice QCD both in performing quark mass extrapolations
and in determining the values of the Gasser–Leutwyler
constants [14].

For a fast convergence of numerical results to the con-
tinuum limit it is important to explicitly deal with the
leading O(a) lattice artifacts. An often used method is the
application of the O(a) improved lattice action [15]. We
apply an alternative technique [16] which in the pseudo-
Goldstone boson sector is equivalent to the O(a) improve-
ment of the lattice action. In this method the (unimproved)
Wilson action is used in the Monte Carlo generation of
gauge configurations and the O(a) effects are compensated
in PQChPT itself. This means that we apply chiral pertur-
bation theory for the Wilson lattice action. Our calculations
showed that in practice this method gives results with good
precision [9].

The plan of this paper is as follows: in the next two
sections we collect the NLO (PQ)ChPT formulas for ratios
of pseudo-scalar meson masses and decay constants. In
Sect. 2 a discussion of the general form of the NNLO tree-
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graph corrections is also included. In Sect. 4 the results
of numerical simulations is presented. The last section is
devoted to a summary and discussion.

2 Valence quark mass dependence

In this paper we use the notation introduced in [9] which
slightly differ from those of [14,16]. The dimensionless vari-
ables for quark masses and O(a) lattice artifacts are de-
noted, respectively, by

χA ≡ 2B0mq

f2
0

, ρA ≡ 2W0acSW

f2
0

. (1)

Here mq is the quark mass, a the lattice spacing, B0 and
W0 are parameters of dimension mass and (mass)3, re-
spectively, which appear in the leading order (LO) chiral
effective Lagrangian, cSW is the coefficient of the O(a) chi-
ral symmetry breaking term and f0 is the value of the pion
decay constant at zero quark mass. (Its normalization is
such that the physical value is f0 � 93 MeV.) For fixed sea
quark mass χS the dependence of the pseudo-scalar meson
mass and decay constant on the valence quark mass χSV
can be described by the variables

ξ ≡ χSV

χS
, ηS ≡ ρS

χS
. (2)

For instance, in case of a number of Ns equal mass sea
quarks the ratios of decay constants are given by

RfVV ≡ fVV

fSS
= 1 + 4(ξ − 1)χSLS5

−NsχS

64π2 (1 + ξ + 2ηS) log
1 + ξ + 2ηS

2

+
NsχS

32π2 (1 + ηS) log(1 + ηS) , (3)

and similarly

RfVS ≡ fVS

fSS
= 1 + 2(ξ − 1)χSLS5

+
χS

64Nsπ2 (ξ−1)− χS

64Nsπ2 (1+ηS) log
ξ + ηS

1 + ηS

− NsχS

128π2 (1 + ξ + 2ηS) log
1 + ξ + 2ηS

2

+
NsχS

64π2 (1 + ηS) log(1 + ηS) . (4)

LSk (k = 5) denotes the relevant Gasser–Leutwyler coeffi-
cient at the scale f0

√
χS. This is related to L̄k defined at

the scale f0 and L′
k defined at the generic scale µ according

to

LSk = L̄k − ck log(χS) = L′
k − ck log

(
f2
0

µ2 χS

)
. (5)

with the constants ck (k = 4, 5, 6, 8) given below. Simi-
larly, the corresponding relations for the coefficients WSk

introduced in [16] are

WSk = W̄k − dk log(χS) = W ′
k − dk log

(
f2
0

µ2 χS

)
. (6)

The constants in (5) and (6) are given by

c4 =
1

256π2 , c5 =
Ns

256π2 ,

c6 =
(N2

s + 2)
512N2

s π2 , c8 =
(N2

s − 4)
512Nsπ2 , (7)

respectively,

d4 =
1

256π2 , d5 =
Ns

256π2 ,

d6 =
(N2

s + 2)
256N2

s π2 , d8 =
(N2

s − 4)
256Nsπ2 . (8)

For the valence quark mass dependence of the (squared)
pseudo-scalar meson masses one can consider, similarly to
(3) and (4), the ratios

RmVV ≡ m2
VV

m2
SS

, RmVS ≡ m2
VS

m2
SS

. (9)

In the present paper we prefer to divide these ratios by
the tree level dependences and consider

RnVV ≡ m2
VV

ξm2
SS

= 1 − ηS
(ξ − 1)

ξ

+8(ξ − 1)χS(2LS8 − LS5)

+8Ns
(ξ − 1)

ξ
ηSχS(LS4 − WS6)

+
χS

16Nsπ2

(ξ − 1)
ξ

(ξ + ηS)

− χS

16Nsπ2 (1 + 2ηS) log(1 + ηS) (10)

+
χS

16Nsπ2

(2ξ2−ξ−ηS+3ηSξ)
ξ

log(ξ + ηS) ,

and

RnVS ≡ 2m2
VS

(ξ + 1)m2
SS

= 1 − ηS
(ξ − 1)
(ξ + 1)

+4(ξ − 1)χS(2LS8 − LS5)

+8Ns
(ξ − 1)
(ξ + 1)

ηSχS(LS4 − WS6)

− χS

16Nsπ2 (1 + 2ηS) log(1 + ηS) (11)

+
χS

16Nsπ2

(ξ2 + ξ + ηS + 3ηSξ)
(ξ + 1)

log(ξ + ηS) .
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A useful quantity is the double ratio of decay constants
[17] which does not depend on any of the NLO coefficients.
In other words there one can see the chiral logarithms
alone. The NLO expansion for this quantity is

RRf ≡ f2
VS

fVVfSS
= 1 +

χS

32Nsπ2 (ξ − 1)

− χS

32Nsπ2 (1 + ηS) log
ξ + ηS

1 + ηS
. (12)

The double ratio of the pion mass squares [18] corre-
sponding to (10) and (11) has the NLO expansion

RRn ≡ 4ξm4
VS

(ξ + 1)2m2
VVm2

SS
= 1 − ηS(ξ − 1)2

ξ(ξ + 1)

+
χS(ξ2 + ξ + ηS + 3ηSξ2) log(ξ + ηS)

16Nsπ2ξ(ξ + 1)

−χS(2ηS + 1) log(1 + ηS)
16Nsπ2

−χS(ξ − 1)(ξ + ηS)
16Nsπ2ξ

+
8NsχSηS(ξ − 1)2

ξ(ξ + 1)
(LS4 − WS6) . (13)

2.1 Quadratic corrections

A complete NNLO (i. e. two-loop) calculation in PQChPT
for our physical quantities is not yet available. Neverthe-
less, the general form of NNLO tree-graph (“counterterm
insertion”) contributions can be given [19]1. For instance,
one has for the pion mass square:

δm2
AB

m2
AB

= α1χ
2
S + α2χS(χA + χB)

+α3(χA + χB)2 + α4(χ2
A + χ2

B) . (14)

(Here A and B denote generic quark indices: S is the label
for the sea quarks, V for valence quarks.) For the pion decay
constant there is a similar expression. This information is
very useful in order to estimate the importance of the
NNLO terms in our present range of quark masses.

The general characteristic of the NNLO terms is that
they are proportional to the quark mass square: χ2

S. (Here
we only consider terms in the continuum limit and hence
neglect lattice artifacts. This will be to some extent jus-
tified a posteriori by the observed smallness of the O(a)
terms.) Neglecting loop contributions, which are at the
NLO order relatively small, the dependence on the quark
mass ratio ξ is at most quadratic and can, therefore, be
represented by terms proportional to (ξ − 1) and (ξ − 1)2.
Therefore, these contributions have the generic form

DXχ2
S(ξ − 1) + QXχ2

S(ξ − 1)2 . (15)
1 We thank the authors for communicating us the content

of this paper prior to publication

Here X denotes an index specifying the considered ratio
as, for instance, X = fVV, nVS etc. for the single ratios
and X = fd and X = nd for the double ratios RRf and
RRn, respectively. The NLO tree-graph contributions for
the single ratios Rf and Rn are also proportional to (ξ−1).
These can be parametrized as LXχS(ξ−1) (for instance, we
have LfVV ≡ 4L5 and LnVV ≡ 8(2L8−L5)). The inclusion
of DX -type terms is equivalent to a linear dependence of
the effective LX for fixed χS:

Leff
X = LX + DXχS . (16)

At this point one has to remember that mathematically
speaking – in order to completely remove the effect of
higher order terms – LX is defined in the limit χS → 0.

The NNLO coefficients are not all independent but sat-
isfy the relations

DfVS =
1
2
DfVV , DnVS =

1
2
DnVV ,

Dfd = 0 , Dnd = 0 ,

Qfd = 2QfVS − QfVV +
1
4
L2

fVV ,

Qnd = 2QnVS − QnVV +
1
4
L2

nVV . (17)

The first line is a consequence of the general structure
of the NNLO tree-graph contributions. The last two lines
follow from the definition of RRf and RRn if one only
considers NLO and NNLO tree-graph contributions.

We shall see in Sect. 4 that in our range of quark mas-
ses the NNLO tree-graph contributions of the form (15)
are important but can be approximately determined by
global fits. In this way the NLO constants Lk are better
determined. Observe that a determination of the DX is
only possible in our analysis if different sea quark masses
are included (see below).

2.2 O(a2) corrections

The idea of including leading lattice artifacts in the low
energy effective Lagrangian for the Wilson lattice action
can be extended to higher orders in lattice spacing. Indeed,
in writing this paper we have seen two recent publications
about the inclusion of O(a2) corrections [20,21]. The gen-
eral formulas derived in these papers for the O(a2) terms
imply that in the formulas for the pion mass-squared ratios
(10), (11) and (13) there are only very little changes. In
fact, the changes can be summarized by the replacement

ηS(LS4 − WS6) −→ ηS(LS4 − WS6)

+
η2
S

Ns
(NsWS4 + WS5 − 2NsW

′
S6 − 2W ′

S8) . (18)

Here W ′
S6 and W ′

S8 denote some new low energy con-
stants appearing in the O(a2) part of the effective La-
grangian. This means that fitting the valence quark mass
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dependence with our formulas (10), (11) and (13) effec-
tively takes into account also O(a2) corrections.

Concerning the ratios of the pion decay constants in
(3), (4) and (12) the situation is expected to be similar
but there, in addition to the O(a2) terms, also new types
of O(amq) terms may appear.

3 Sea quark mass dependence

The dependence on the sea quark mass can be treated
similarly to the valence quark mass dependence considered
in Sect. 2. Here one chooses a “reference value” of the sea
quark mass χR and determines the ratios of the coupling
and decay constant as a function of

σ ≡ χS

χR
, τ ≡ ρS

ρR
. (19)

Instead of τ one can also use

ηS ≡ ρS

χS
, ηR ≡ ρR

χR
, (20)

which satisfy
τ

σ
=

ηS

ηR
. (21)

With this we have for the decay constants

RfSS ≡ fSS

fRR
= 1 + 4(σ − 1)χR(NsLR4 + LR5)

+4(ηSσ − ηR)χR(NsWR4 + WR5)

−NsχR

32π2 σ(1 + ηS) log[σ(1 + ηS)]

+
NsχR

32π2 (1 + ηR) log(1 + ηR) (22)

and for the mass squares

RnSS ≡ m2
SS

σm2
RR

= 1 + ηS − ηR

+8(σ − 1)χR(2NsLR6+2LR8−NsLR4−LR5)

+8(ηSσ − ηR)χR(2NsWR6 + 2WR8

−NsWR4 − WR5 − NsLR4 − LR5)

+
χR

16π2Ns
σ(1 + 2ηS) log[σ(1 + ηS)]

− χR

16π2Ns
(1 + 2ηR) log(1 + ηR) . (23)

Of course, the coefficients LRk and WRk (k = 4, 5, 6, 8) are
now defined at the scale f0

√
χR therefore in the relations

(5) and (6) χS is replaced by χR.
The logarithmic dependence of the LSk and WSk have

to be taken into account also in simultaneous fits of the
valence quark mass dependence at several sea quark mass

values. Choosing a fixed reference sea quark mass χR we
have from (5) and (6) with µ = f0

√
χR

LSk = LRk − ck log σ , WSk = WRk − dk log σ . (24)

The NLO PQChPT formulas for the valence quark mass
dependence in terms of the reference sea quark mass are
obtained by the following substitutions in (3), (4), (10)–
(13):

χS → σχR , LSk → LRk , WSk → WRk ,

log(1 + ηS) → log[σ(1 + ηS)] ,

log(ξ + ηS) → log[σ(ξ + ηS)] ,

log(1 + ξ + 2ηS) → log[σ(1 + ξ + 2ηS)] . (25)

An important feature of both the valence and sea quark
mass dependences considered in the present work is that
they are ratios taken at a fixed value of the gauge coupling
(β). These are renormalization group invariants indepen-
dent from the Z-factors of multiplicative renormalization
since the Z-factors only depend on the gauge coupling and
not on the quark mass. Taking ratios of pion mass squares
and pion decay constants at varying quark masses has,
in general, the advantage that quark mass independent
corrections – for instance of O(a) and/or O(a2) – cancel.

4 Numerical simulations

We performed Monte Carlo simulations with Ns = 2 de-
generate sea quarks on a 164 lattice at β = 5.1 and three
values of κ: κ0 = 0.176, κ1 = 0.1765 and κ2 = 0.177. For
the reference sea quark mass we choose κR ≡ κ0 = 0.176.
A summary of the simulation points is reported in Ta-
ble 1, where also the set-up of the TSMB algorithm for the
different simulation points can be found. The gauge field
configurations collected for the evaluation of the physi-
cal quantities are separated by 10 TSMB update cycles
consisting out of boson field and gauge field updates and
noisy correction steps. It turned out that these configura-
tions were statistically independent from the point of view
of almost all secondary quantities considered. Exceptions
are r0/a and Mr (see below) where autocorrelation lengths
of 2–5 units in the configuration sequences appear.

We investigated for each simulation point the valence
quark mass dependence of the pseudo-Goldstone boson
spectrum and decay constants; the values of the valence κ
considered for each simulation point are reported in Ta-
ble 2. In these intervals the valence quark masses are ap-
proximately changing in the range 1

2msea ≤ mvalence ≤
2msea.

A rough estimate of the sea quark mass range can be
obtained by considering the quantity Mr ≡ (r0mπ)2, which
for the strange quark gives Mr ≈ 3.1. (Here r0 ≈ 0.5 fm
is the Sommer scale parameter which characterizes the
distance scale intrinsic to the gauge field.) In our simu-
lation points the value of Mr ranges between Mr ≈ 2.10
and Mr ≈ 1.09, corresponding to about 2

3 and 1
3 of the



The qq+q Collaboration: Quark mass dependence of masses and decay constants 231

Table 1. Parameters of the simulations: all simulations were done at β = 5.10
with determinant breakup Nf = 1 + 1. The other TSMB-parameters are
the interval of polynomial approximasions [ε, λ] and the polynomial orders
n1,2,3 [10]

Run κ Configurations ε λ n1 n2 n3

0 0.1760 1811 4.50 · 10−4 3.0 40 210 220
1 0.1765 746 2.50 · 10−4 3.0 40–44 280 260–340
2 0.1770 1031 3.75 · 10−5 3.0 54 690 840

Table 2. Values of the valence quark hopping parameter

Run 0 1 2
κsea 0.1760 0.1765 0.1770

κvalence 0.1685 0.1710 0.1743
0.1705 0.1718 0.1747
0.1720 0.1726 0.1751
0.1730 0.1734 0.1754
0.1735 0.1742 0.1759
0.1745 0.1750 0.1763
0.1750 0.1758 0.1767
0.1770 0.1772 0.1775
0.1775 0.1778 0.1779
0.1785 0.1785 0.1783
0.1790 0.1791 0.1787
0.1800 0.1797 0.1791

value for the strange quark mass. Since the valence quark
masses roughly go down to mvalence � 1

2msea, they reach
mvalence � 1

6ms. In our configuration samples we did not
encounter problems with “exceptional gauge configura-
tions” – in spite of the smallness of the valence quark
mass. This means that the quark determinant effectively
suppresses such configurations.

Standard methods for the extraction of the relevant
physical quantities have been applied (a more detailed de-
scription is given in our previous paper [7] and in [22]).
Statistical errors have been obtained by the linearization
method [23, 24] which we found more reliable than jack-
knifing on bin averages.

Within a mass independent scheme of renormalization
– defined at zero quark mass – the Z-factors of multiplica-
tive renormalization depend only on the gauge coupling
(β) and not on the quark mass (κ). Similarly, the lattice
spacing a is also a function of the gauge coupling alone [25].
Therefore, since our simulation points are at fixed gauge
coupling β = 5.1, the ratios of the sea quark masses can
be obtained by taking ratios of the measured bare quark
masses in lattice units Zqamq. Here Zq is the multiplica-
tive renormalization factor for the quark mass which is
the ratio of the Z-factors of the pseudo-scalar density and
axial-vector current (Zq = ZP/ZA) because we determine
the quark mass by the PCAC-relation: mq ≡ mPCAC

q [7].
(Of course, in the valence quark ratios the factor Zqa also
cancels trivially.) The obtained values of the sea quark
mass ratios σi ≡ mqi/mq0 (i = 1, 2) are given in Table 3
together with some other basic quantities.

Table 3. The values of some basic quantities in our simulation
points. Statistical errors in last digits are given in parentheses.
We define Mr = (r0mπ)2 and σi = mqi/mq0

κ κ0 κ1 κ2

r0/a 2.149(15) 2.171(88) 2.395(52)
amπ 0.6747(14) 0.6211(22) 0.4354(68)
Mr 2.103(26) 1.824(41) 1.088(47)
Zqamq 0.07472(32) 0.06247(51) 0.03087(36)
σi 1.0 0.8361(52) 0.4132(34)

Note that by identifying the quark mass ratios in the
ChPT formulas with the ratios of the PCAC quark masses
(“axial-vector Ward identity quark masses”) one assumes
that these two kinds of renormalized quark masses are pro-
portional to each other. As it is shown, for instance, by
(48) in [21] this is indeed the case – apart from lattice arti-
facts of O(amq) and O(a2). The quark mass independent
part of the O(a2) terms are cancelled by taking ratios.
The remaining quark mass dependent lattice artifacts are
neglected in the present paper.

The critical value of the hopping parameter where the
quark mass vanishes can be estimated by a quadratic ex-
trapolation using the values of σ1,2:

σi ≡ mqi

mq0
=

(κ−1
i − κ−1

cr ) + dσ(κ−1
i − κ−1

cr )2

(κ−1
0 − κ−1

cr ) + dσ(κ−1
0 − κ−1

cr )2
. (26)

The values of σ1,2 in Table 3 give the solution κcr=0.1773(1)
and dσ = −11.2(8). (The relatively large absolute value of
dσ shows that the quadratic term in the extrapolation is
important.)

The value of the lattice spacing a can be inferred from
the value of r0/a at κ = κcr. This can also be determined
by a quadratic extrapolation of the values of r0/a given
in Table 3 with the result: r0(κcr)/a = 2.65(7). Taking,
by definition, r0(κcr) = 0.5 fm this gives for the lattice
spacing: a = 0.189(5) fm.

The physical volume following from the lattice spacing
is comfortably large: L � 3.0 fm. Since the minimal value of
the pion mass in lattice units in our points is ammin

π � 0.43
for sea quarks and ammin

π � 0.30 for the lightest valence
quark, we have Lmπ ≥ 4.8.

Another piece of information given by the values of Mr

is an estimate of the quark mass parameter χS in the ChPT
formulas. For instance, in the reference point we have from
r0f0 � 0.23 [26]: χestimate

R ≈ Mr/(r0f0)2 � 39.8.
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4.1 Valence quark mass dependence

For a fixed value of the sea quark mass χS the valence
quark mass dependence of the ratios RfVV,VS, RnVV,VS,
RRf and RRn is determined by five parameters:

χS , ηS , χSLS5 ,

χSLS4W6 ≡ χS(LS4 − WS6) ,

χSLS85 ≡ χS(2LS8 − LS5). (27)

The dependence is non-linear in ηS and linear in the rest.
After performing such fits of the data we realized that

the sea quark mass dependence is not consistent with the
NLO PQChPT formulas. In particular, the best fit values
of the χS have ratios considerably closer to 1 than σ1,2
in Table 3 and the change of the Lk with χS is also not
consistent with (24). This shows that NNLO effects are
important and, therefore, we tried fits including NNLO
tree-graph terms of the form given in (15). The list of the
relevant NNLO-parameters is

χ2
RDfVV,nVV , χ2

RQfVV,fVS,fd,nVV,nVS,nd . (28)

Qfd and Qnd have to satisfy the quadratic relations given
in the last line of (17) but in order to keep linearity we did
not impose these relations and fitted the eight parameters
in (28) independently. After performing the fits one can
check how well the relations for Qfd and Qnd are fulfilled.

The global fit of the valence quark mass dependence
for several values of the sea quark mass has twelve linear
parameters: the linear parameters in (27) with χS replaced
by χR

χR , χRLR5 ,

χRLR85 ≡ χR(2LR8 − LR5) ,

χRLR4W6 ≡ χR(LR4 − WR6) (29)

and the eight in (28). In addition there are the non-linear
parameters, in our case three of them: ηS = η0,1,2.

Multi-parameter linear fits are easy and, except for de-
generate situations, the chi-square always has a unique
well-defined minimum. Non-linear fits involving the η are
more problematic; therefore, we adopted the following pro-
cedure: performing non-linear fits at individual sea quark
mass values we obtained the starting values of η0,1,2. Then
for fixed values of η0,1,2 we performed a linear fit of the
twelve parameters in (28) and (29) and looked for a min-
imum of the chi-square as a function of η0,1,2. For the sea
quark masses we imposed the relation χS = σχR and for
the NLO-parameters the relations in (24) with the values
of σ1,2 given in Table 3. (The possible dependence of the
NNLO-parameters D and Q on σ has been neglected.) The
minimum of the chi-square after the non-linear minimiza-
tion is near

η0 = 0.07 , η1 = 0.03 , η2 = 0.02 . (30)

The minimum as a function of η0,1,2 is rather shallow but
definitely within the bounds 0 ≤ η0,1,2 ≤ 0.10. The mini-
mization of the chi-square of the linear fit does not change

Table 4. Values of best fit parameters for the valence quark
mass dependence. Quantities directly used in the fitting pro-
cedure are in bold face

χR 33.5(2.4)
χRLR4W6 5.24(38) · 10−2 LR4W6 1.564(71) · 10−3

χ2
RQnd 6.5(1.8) · 10−3 Qnd 5.80(79) · 10−6

χRLR5 10.06(44) · 10−2 LR5 3.00(19) · 10−3

χ2
RDfVV −9.3(1.7) · 10−2 DfVV −8.3(1.9) · 10−5

χ2
RQfVV −2.80(19) · 10−2 QfVV −2.50(50) · 10−5

χ2
RQfVS −2.197(45) · 10−2 QfVS −1.96(29) · 10−5

χ2
RQfd −0.99(14) · 10−2 Qfd −0.89(45) · 10−5

χRLR85 −2.10(12) · 10−2 LR85 −6.25(52) · 10−4

χ2
RDnVV −1.67(20) · 10−1 DnVV −1.49(10) · 10−4

χ2
RQnVV −8.44(67) · 10−2 QnVV −7.53(48) · 10−5

χ2
RQnVS −4.05(25) · 10−2 QnVS −3.61(29) · 10−5

the η substantially: already the starting values are close
to (30). This confirms the small value of ηS found in our
previous paper at β = 4.68 [9].

In contrast to the stable values of the η there are large
fluctuations in the basic parameter χR: one can obtain
values in the range 13 ≤ χR ≤ 40 depending on the set of
functions fitted, on the fit interval etc. This is presumably
the effect of our small number (only three) of sea quark
masses. In order to obtain more stable results we fixed
η0,1,2 according to (30) and first determined in a linear
fit the three parameters χR, χRLR4W6 and χ2

RQnd from
RRn. These parameters were then used as an input in the
linear fit of the remaining nine parameters.

All 18 valence quark mass dependences considered can
be reasonably well fitted. The best fit is shown by Figs. 1
and 2. The sum of the chi-squares of the linear fits is
χ2 � 300 for a number of degrees of freedom n.d.f. =
18 · 12 − 12 = 204. Most of the chi-squares comes from
the points with largest and smallest valence quark masses
where there are obviously some systematic deviations, too.
The parameters of best fit are given in Table 4. The values
in the table show that there are some discrepancies in both
relations in the last line of (17), but the deviations are not
very large. The first and second relation give −0.89(49) ·
10−5 � 2.05(39) · 10−5 and 0.52(9) · 10−5 � 0.92(8) · 10−5,
respectively.

The values of the NLO- and NNLO-parameters them-
selves are also shown in the right hand part of Table 4, with
errors determined (as always) by the linearization method.
With the help of the formulas in (5) and (6) one can also
transfer these results to the corresponding L and W at
some other renormalization scale different from f0

√
χR.

Going to the conventional renormalization scale µ = 4πf0
and multiplying by an overall factor 128π2 one obtains the
values of αk and ωk shown in Table 5.

Due to the unexpected smallness of the O(a) contri-
butions it is interesting to try a linear fit of the valence
quark mass dependences setting all O(a) terms to zero:
η0 = η1 = η2 = 0. This is a fit with eleven parame-
ters because in the formulas LS4W6 is always multiplied
by ηS. The result is a reasonable fit but the chi-square is
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Fig. 1. (RRn − 1), (RnVV − 1) and (RnVS − 1) for the three different sea quark mass values (full lines). Beside the fit the
unphysical contribution (proportional to ηS) is separately shown (broken lines)
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Fig. 2. (RRf − 1), (RfVV − 1) and (RfVS − 1) for the three different sea quark mass values (full lines). Beside the fit the
unphysical contribution (proportional to ηS) is separately shown (broken lines)
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Table 5. Values of combinations of the αk obtained from the best fit values in Table 4 and 6

α5 2.24(20)

α85 ≡ (2α8 − α5) 0.762(49) (α4 − ω6) 2.36(9)

α45 ≡ (2α4 − α5) 2.40(26) Λ4/f0 22.9(1.5) ω45 −1.7(1.8)

α6845 ≡ (4α6 + 2α8 − 2α4 − α5) 0.658(86) Λ3/f0 6.51(57) ω6845 −5.43(60)
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Fig. 3. NNLO tree-graph contribution at κ2 = 0.1770 where the sea quark mass is given by Mr � 1 (broken lines). The full
lines represent the total fits shown also in Figs. 1 and 2 which are the sums of the continuum NLO, the O(a) and NNLO terms

by about 10% larger then in the case of η0,1,2 �= 0. The
best fit values of the main parameters are in this case
χR = 36.1(1.0), α5 = 2.08(14), α85 = 0.502(46).

The NNLO tree-graph contributions are rather impor-
tant especially at κ = 0.176. From the point of view of the
NLO formulas the situation becomes better at κ = 0.177
but NNLO is still not negligible there; see Fig. 3. (At
κ = 0.1765 we have, of course, an intermediate situation

between κ = 0.176 and κ = 0.177.) In general, the NNLO
contributions are more important in the ratios RnVV and
RnVS than in RfVV and RfVS. In fact, the ratios RnVV
and RnVS at κ = 0.176 are dominated by NNLO. The
relative importance of NNLO terms is stronger for ξ > 1
than for ξ < 1. In the double ratios RRn and RRf the
NNLO terms are relatively unimportant.
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4.2 Sea quark mass dependence

The results from the fit of the valence quark mass depen-
dence can also be used in the investigation of the sea quark
mass dependence according to (22) and (23). In particu-
lar, the values (and errors) of χR and η0,1,2 are relevant
there. Besides these values and the known ratios of the sea
quark masses σ1,2 (see Table 3) two extra parameter pairs
appear, namely, for Ns = 2,

LR45 ≡ 2LR4 + LR5 , WR45 ≡ 2WR4 + WR5 (31)

in (22) and

LR6845 ≡ 4LR6 + 2LR8 − 2LR4 − LR5 ,

WR6845 ≡ 4WR6 + 2WR8 − 2WR4 − WR5 (32)

in (23).
Since we only have three sea quark mass values and

therefore two independent values of RfSS and RnSS a “fit”
actually means solving for the four unknowns. The results
are collected in Table 6. The corresponding values of the
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Table 6. Results for the parameters of the sea quark mass
dependence. Quantities directly used in the fitting procedure
are in bold face

LR45 4.34(28) · 10−3 Rf(σ=0) 0.415(19)
WR45 1.1(1.4) · 10−3

LR6845 −9.1(6.4) · 10−5 Rn(σ=0) 1.025(17)
WR6845 −5.52(48) · 10−3

α and ω are contained in Table 5. In this table also the
values of the universal low energy scales Λ3,4 are given.
(For the definitions see [26, 27] or (10) in [9].) Once the
parameters LR45 and LR6845 are known it is possible to
extrapolate the continuum NLO curves (without the O(a)
contributions) for RfSS and RnSS to zero sea quark mass;
see Fig. 4. The values of these curves at σ = 0 are also
given in Table 6.

The extrapolation of the full measured ratios, includ-
ing O(a) contributions, requires an extrapolation of ηS as
a function of σ which has, of course, a considerable uncer-
tainty. The behavior of the extrapolated curve is especially
sensitive to the assumed form of the ηS-extrapolation for
RnSS near zero. For instance, if the magnitude of the O(a)
contribution given by ρS = ηSχS is finite at zero, which
is reasonable to assume, then RnSS = m2

SS/(σm2
RR) has a

σ−1 singularity near zero. This is a manifestation of the
fact that different definitions of the “critical line” in the
(β, κ)-plane, for instance by m2

π = 0 or mPCAC
q = 0, in

general differ by lattice artifacts (in our case by O(a)). If,
however, ηS = ρS/χS would have a finite value at σ = 0
then there would be no such singularity. The two extrap-
olations shown in the lower part of Fig. 4 are examples of
these two cases.

Concerning the results on the parameters obtained from
the sea quark mass dependence (Table 6 and the second
half of Table 5) one has to remark that the assumption of
a quark mass independent lattice spacing a has an impor-
tant effect on them. Assuming a quark mass independent
Sommer scale parameter r0 would change these results sub-
stantially. (There would be small changes in the first half of
Table 5 due to the somewhat different values of the quark
mass ratios σ1,2, too.) For instance, the values of Λ4/f0
and Λ3/f0 would come out to be 16.1(1.1) and 30.4(2.9),
respectively, instead of the values given in the tables. As
it has been discussed above, the choice of a quark mass in-
dependent renormalization scheme requires a quark mass
independent lattice spacing and is not consistent with a
quark mass independent r0 [25,28]. Nevertheless, it is plau-
sible that in the continuum limit and in the limit of very
small sea quark masses r0/a becomes independent from
the sea quark mass and the differences between the values
for constant r0 and a disappear.

5 Summary and discussion

The results obtained in this paper for the Gasser–Leutwyler
constants (see Tables 4, 5 and 6) can only be taken as esti-
mates of the values in continuum. In order to deduce con-

tinuum values with controlled error estimates the left out
lattice artifacts have to be removed by performing simula-
tions at increasing β values and extrapolating the results
to a = 0. Reasonable next steps would be to tune the lat-
tice spacing to a � 0.13 fm on 243 · 48 and a � 0.10 fm on
323 · 64 lattices. This would require with the TSMB algo-
rithm by a factor of about 10 and 100 more computer time,
respectively. Our calculations near a � 0.20 fm should be
improved by going from 164 to 163 · 32 lattices in order
to improve the extraction of the physical quantities of in-
terest. The number of sea quark masses considered should
be increased to 5–6 towards smaller values. This will de-
crease the overall statistical errors considerably. We hope
to reach sea quark masses about msea � 1

6ms on 163 · 32
lattices in the near future.

General conclusions of the present work are the follow-
ing.
(1) Compensating O(a) effects in the pseudo-Goldstone
boson sector by introducing O(a) terms in the PQCh-
Lagrangian itself is a viable alternative to the O(a)-im-
provement of the lattice action. An extension to also treat
O(a2) effects in the PQCh-Lagrangian is possible [20, 21]
and has been partially taken into account also in the pre-
sent paper.
(2) The observed O(a) contributions in the pseudo-Gold-
stone boson sector are surprisingly small. The ratios of
the O(a)-parameters in the NLO PQCh-Lagrangian to the
quark masses ηS ≡ ρS/χS are in our present range of quark
masses ( 1

3ms ≤ msea ≤ 2
3ms) at the few percent level.

(3) Taking ratios of pion mass squares and pion decay
constants at fixed gauge coupling and varying quark mas-
ses has the advantage that the Z-factors of multiplicative
renormalization as well as all sorts of quark mass indepen-
dent corrections cancel.
(4) NNLO contributions in PQChPT are in our present sea
quark mass range rather important. In fact, they are more
important than the O(a) lattice artifacts. This introduces
new parameters in the multi-parameter fits which makes
the fitting procedure more difficult. The situation will be
better at smaller sea quark masses where the importance
of NNLO terms diminishes.

The present results strengthen the observation already
made in our previous paper [9] that the expected behavior
dictated by PQChPT sets in rather early – at relatively
large lattice spacings – once the quark masses are small
enough. Our present cut-off a−1 � 1 GeV is already a “high
energy scale” from the point of view of the pion dynam-
ics. As a consequence, it seems to us that the numerical
study of the pseudo-Goldstone boson sector of QCD is per-
haps the easiest field for obtaining new quantitative results
about hadron physics by lattice simulations.
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systems at NIC Jülich, the PC cluster at DESY Hamburg,
and the Sun Fire SMP-Cluster at the Rechenzentrum - RWTH
Aachen. Parts of the simulations were performed at the Eötvös
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Abstract. Our previous calculations of the sea- and valence-quark mass dependence of the pseudoscalar
meson masses and decay constants is repeated on a 163 ·32 lattice, which allows for a better determination
of the quantities in question. The conclusions are similar as before on the 164 lattice [1]. The two light
dynamical quark flavours we simulate have masses in the range ms/4 < mu,d < 2ms/3. The sea quark mass
dependence of fπ and m2

π/mq is well described by the next-to-leading order (NLO) chiral perturbation
theory (ChPT) formulas and clearly shows the presence of chiral logarithms. The valence quark mass
dependence requires the presence of NNLO contributions in partially quenched ChPT (PQChPT)—in
addition to the NLO terms. The O(a) lattice artifacts in these quantities turn out to be small.

1 Introduction

In Quantum Chromodynamics (QCD) – the theory of
strong interactions – there are two very light quarks and
one moderately light quark (u, d and s, respectively). The
strong interaction dynamics at low energies can be for-
mulated by an effective chiral Lagrangian, which incorpo-
rates the symmetry constraints following from the sponta-
neously broken chiral symmetry of the light quarks. In this
low-energy effective theory, the interactions are described
by a simultaneous expansion in powers of momenta and
light quark masses [2,3]. The coefficients of the interac-
tion terms in the effective chiral Lagrangian – the Gasser-
Leutwyler constants – are free parameters, which can be
constrained by experimental data and also calculated from
the underlying basic QCD Lagrangian in the framework
of the nonperturbative lattice regularization.

In numerical lattice QCD simulations, the quark
masses are free parameters. Changing these parameters
gives an excellent opportunity to precisely determine the
Gasser-Leutwyler constants. In fact, chiral perturbation
theory (ChPT) based on the chiral Lagrangian can be ex-
tended by changing the valence quark masses in quark
propagators independently from the sea quark masses in
virtual quark loops. This leads to partially quenched chiral
perturbation theory (PQChPT) [4].

The aim of numerical simulations in QCD is to reach
the regime of light quark masses where next-to-leading
order (NLO) chiral perturbation theory gives a good ap-
proximation. In previous papers [5,6,1], our collabora-
tion started a series of simulations with two equal-mass

light quarks (qq) with the goal of extracting the values of
the Gasser-Leutwyler constants conventionally denoted by
Lk, (k = 1, 2, . . .). Later on, it will be possible to extend
these calculations by also including the s-quark (qq+q).

In our previous paper [1], we started some larger scale
simulations on a 164 lattice at the gauge coupling β = 5.1,
which corresponds to a lattice spacing of a � 0.2 fm. Be-
cause it became clear that interesting results can be ob-
tained already at this relatively rough discretization scale,
we decided to repeat and extend these simulations on a
163 · 32 lattice, which is better suited for extracting quan-
tities like the pseudoscalar (pion) mass (mπ) and decay
constant (fπ). Our work profited from the valuable ex-
perience of previous simulations by other collaborations
[7–9].

Because the present work is on the same topics as [1],
we shall often only refer to it without repeating its full
content. In general, we use the conventions and notations
of [1,6,5]. Nevertheless, we also try to make the present
paper easily understandable for the reader and therefore
repeat the main definitions and relations. In the next sec-
tion, we deal with the sea quark mass dependence of fπ

and mπ. In Sect. 3, the valence quark mass dependence
is considered and the question of the magnitude of lead-
ing lattice artifacts is investigated. Section 4 is a short
summary of our experience with the Monte Carlo updat-
ing algorithm. The last section contains the summary and
discussion.
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2 Sea quark mass dependence

We performed Monte Carlo simulations with Ns = 2 de-
generate sea quarks on a 163 · 32 lattice at gauge cou-
pling β = 5.1 and four values of the hopping parameter
κ: κ0 = 0.176, κ1 = 0.1765, κ2 = 0.1768 and κ3 = 0.177.
Three of these points have also been simulated previously
on the 164 lattice in [1]. The point at κ2 = 0.1768 is new.
We collected 950–1000 gauge configurations per point,
which are typically separated by 10 update cycles con-
sisting of boson-field and gauge-field updates and noisy
correction steps. (Some observations about the algorithm
will be summarized in Sect. 4.)

A collection of the values of some basic quantities
in these simulation points is given in Table 1: the Som-
mer scale-parameter in lattice units, r0/a; the pion mass
in lattice units, amπ; the quark mass parameter, Mr =
(r0mπ)2; the bare PCAC quark mass Zqamq, including
the multiplicative renormalization factor, Zq = ZP /ZA;
the ratio of the PCAC quark masses σi with respect to
the reference sea quark mass at κ = κ0 and the pion de-
cay constant in lattice units, afπ divided by the renormal-
ization factor ZA. (The normalization of the pion decay
constant is such that the physical value is fπ � 93 MeV.)

Comparing Table 1 to the corresponding one (Table 3)
in [1], one can see that these quantities extracted on the
163 · 32 lattice differ considerably from those extracted
on the 164 lattice. The change of r0/a is about 2–5%.
The difference in amπ increases from 3% at κ0 to about
16% at κ3, whereas Zqamq differs at κ0 by 5% and at
κ3 already by about 28%. However, as we shall see later
on, considering ratios of the pion mass-square and of the
pion decay constant as a function of the ratios of PCAC
quark masses (denoted by σ for sea quark masses and ξ for
valence quark masses), it turns out that almost all changes
between the 164 and 163 · 32 lattices cancel.

In Table 1, the bare quark mass obtained from the
PCAC relation is shown: mq ≡ mPCAC

q . (For details
of its numerical determination, see Sect. 3.1.1 in [5].)
Another possibility to define the quark mass is to take
amren ≡ µren ≡ Zm(µ0 − µcr), where µ0 = 1/(2κ) − 4
is the bare quark mass in the Wilson–fermion action,
µcr is its critical value corresponding to zero quark mass
and ZR is an appropriate multiplicative renormalization
factor. The values of µ0 corresponding to κ0, ..., κ3 are
µ0(0) = −1.1590909..., µ0(1) = −1.1671388..., µ0(2) =
−1.1719457..., µ0(3) = −1.1751412..., respectively. Com-

paring the values of Zqamq or σi in Table 1 to the values
µ0(i), one can see that the relation between them is highly
nonlinear. This implies the same also for the relation be-
tween the (ratios of) mPCAC

q and mren. The nonlinear
terms in this relation are lattice artifacts, which have to
vanish in the continuum limit, but they are large at our
lattice spacings.

A consequence of the strongly nonlinear relation be-
tween σ and µ0 is that the determination of µcr (or κcr)
has large uncertainty. In fact, with our four points only,
we could not find a convincing extrapolation of σ to zero.
A crude quadratic extrapolation gives µcr = −1.180(4) or
κcr = 0.1773(2). The uncertainty in the critical point im-
plies an uncertainty in the extrapolation of physical quan-
tities, too, which is necessary in a quark mass-independent
renormalization scheme. In case of the lattice spacing,
which can be obtained from the extrapolation of r0/a to
the critical point, Table 1 shows that the values of r0/a
increase between κ0 and κ2, but between κ2 and κ3, they
are within error constants. Therefore, we take this con-
stant value as the extrapolated one: [r0/a]cr = 2.57(5).
This gives, with r0 ≡ 0.5 fm, for the quark mass indepen-
dent lattice spacing a = 0.195(4) fm.

In the ChPT formulas, the quark mass can be repre-
sented by the dimensionless quantity

χ ≡ 2B0mq

f2
0

, (1)

where B0 is a conventional parameter with dimension
mass and f0 is the value of the pion decay constant at
zero quark mass. (Its normalization here is such that the
physical value is f0 � 93 MeV.) In what follows, we shall
identify the quark mass mq in χ with the PCAC quark
mass mPCAC

q . According to the previous discussion, this
is a nontrivial choice because the lattice artifacts in (ra-
tios of) the quark mass are rather different for amPCAC

q

than, for instance, for amren.
The sea quark mass dependence of the ratio of the pion

decay constant in NLO of ChPT is:

RfSS ≡ fSS

fRR
= 1 + 4(σ − 1)χR(NsLR4 + LR5)

−NsχR

32π2 σ log σ + O(χ2
R). (2)

Here fSS is the pion decay constant of a pion con-
sisting of two sea quarks with mass χS and fRR is its

Table 1. The values of some basic quantities in our simulation points.
Statistical errors in last digits are given in parentheses

κ κ0 κ1 κ2 κ3

r0/a 2.229(63) 2.212(44) 2.621(46) 2.528(51)
amπ 0.6542(10) 0.5793(17) 0.3919(46) 0.3657(24)
Mr = (r0mπ)2 2.13(12) 1.642(72) 1.055(36) 0.855(34)
Zqamq 0.07092(27) 0.05571(30) 0.02566(27) 0.02208(21)
σi = mqi/mq0 1.0 0.7856(56) 0.3618(44) 0.3113(31)
Z−1

A afπ 0.2819(15) 0.2590(14) 0.2008(17) 0.1936(16)
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value at some reference quark mass χR. Ns is the num-
ber of mass-degenerate sea quarks (actually Ns = 2),
LRk (k = 4, 5, . . .) are Gasser-Leutwyler constants at the
scale µ = f0

√
χR and the ratio of sea quark masses to the

reference quark mass is

σ ≡ χS

χR
. (3)

The analogous formula for the pion mass squares is:

RnSS ≡ m2
SS

σm2
RR

= 1 + 8(σ − 1)χR ·
·(2NsLR6 + 2LR8 − NsLR4 − LR5)

+
χR

16π2Ns
σ log σ + O(χ2

R). (4)

Note that instead of the scale-dependent combinations (at
Ns = 2),

LR45 ≡ 2LR4 + LR5 ,

LR6845 ≡ 4LR6 + 2LR8 − 2LR4 − LR5, (5)

one can also use the universal low-energy scales Λ3,4 de-
fined by [10].

Λ3 = 4πf0 exp(−α6845) ,

α6845 = 128π2LR6845 − 1
2

log
χR

16π2

Λ4 = 4πf0 exp(α45/4) ,

α45 = 128π2LR45 + 2 log
χR

16π2 . (6)

The free parameters in RfSS and RnSS are χR, χRLR45
and χRLR6845. With the small number of points we have,
the linear fit with these parameters gives a good chi-square
but relatively large errors: χ2 = 0.8 and

χR = 30.8(9.4),
χRLR45 = 0.1398(86),

χRLR6845 = −0.0078(22). (7)

This corresponds to

LR45 = 4.5(1.1) · 10−3,
Λ4

f0
= 23.3(8.2),

LR6845 = −2.54(21) · 10−4,
Λ3

f0
= 7.64(14). (8)

Consistent results with smaller errors can be obtained
if one takes the value of χR = 35.8(3.3) from the fit of the
valence quark mass dependences (see next section) and
performs two linear fits with the parameters χRLR45 and
χRLR6845, respectively. The resulting parameters are

χRLR45 = 0.1443(15),

LR45 = 4.03(37) · 10−3,
Λ4

f0
= 21.4(1.5),

χRLR6845 = −0.00896(86),

LR6845 = −2.50(34) · 10−4,
Λ3

f0
= 8.21(27) (9)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

R
f

σ

Sea quark mass dependence of Rf

163x32
β = 5.10
κ = 0.176 - 0.177

χR = 35.8(3.3)
LR45 = 0.00403(37)
Λ4/f0 =  21.4(1.5)

fit:  1 + 4(σ-1)χRLR45 - χRσ logσ/16π2

Fig. 1. Sea quark mass dependence of the pion decay constant.
The straight dashed line connects the first two points

and the fits are shown in Figs. 1 and 2.
As these figures show, both RfSS and RnSS can be

well fitted with the NLO ChPT formula. The fit parame-
ters are within the expected range. For instance, the value
of χR is rather close to the tree-level estimate χestimate

R ≈
Mr/(r0f0)2 � 40.3. (Here we used r0f0 � 0.23.) The pres-
ence of a chiral logarithm, which causes the curvature, is
clearly displayed in Fig. 1, where a straight line connect-
ing the first two points is also shown. In RnSS , the mea-
sured points are consistent with the presence of a chiral
logarithm but the relative errors are large because all the
values including the ChPT fit are very close to 1. This
implies that the deviation from the tree-level behaviour
m2

SS ∝ χS is rather small. The results for the parameters
in (9) are close to the ones reported in [1]: the values for
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Fig. 2. Sea quark mass dependence of the pion mass-squared
divided by the quark mass
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Λ4/f0 practically coincide and the value of Λ3/f0 is only
slightly higher now.

The extrapolated values of RfSS and RnSS at zero
quark mass are, respectively:

Rf0 = 0.4228(60), Rn0 = 1.0717(69). (10)

The value of Rf0 together with Z−1
A afπ from Table 1 and

r0 = 0.5 fm imply, for the pion decay constant, at zero
quark mass (f0)

Z−1
A f0 = 121(5) MeV. (11)

This result for Ns = 2 light quarks compares well with
the phenomenological value f0 = 93 MeV if, as expected,
ZA = O(1).

3 Valence quark mass dependence

We consider, for fixed sea quark mass χS , the valence
quark mass dependence of fπ and m2

π as a function of
the quark mass ratio

ξ ≡ χV

χS
. (12)

In our numerical data, we determined the pseudoscalar
mass and decay constant in relatively wide ranges of the
valence quark mass ratios, typically 1

2 ≤ ξ ≤ 2. At the
smaller quark masses (κ = κ2,3), however, for ξ < 1 ex-
ceptional gauge configurations appear, which blow up the
statistical errors and clearly influence the mean values
themselves. Therefore, in most cases, we restrict our fits
to valence quark masses larger than the sea quark mass
(ξ > 1).

In the partially quenched situation, several types of
ratios can be constructed because the pseudoscalar meson
can be the bound state of two valence quarks (V V ) and
also a valence quark and a sea quark (V S). The PQChPT
formulas for the ratios of decay constants are:

RfV V ≡ fV V

fSS
= 1 + 4(ξ − 1)χSLS5

−NsχS

64π2 (1 + ξ) log
1 + ξ

2
+ DfV V χ2

S(ξ − 1) + QfV V χ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S) (13)

and

RfV S ≡ fV S

fSS
= 1 + 2(ξ − 1)χSLS5

+
χS

64Nsπ2 (ξ − 1 − log ξ)

− NsχS

128π2 (1 + ξ) log
1 + ξ

2

+
1
2
DfV V χ2

S(ξ − 1) + QfV Sχ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S). (14)

The analogous formulas for the valence quark mass depen-
dence of the (squared) pseudoscalar meson masses are:

RnV V ≡ m2
V V

ξm2
SS

= 1 + 8(ξ − 1)χS(2LS8 − LS5)

+
χS

16Nsπ2 [ξ − 1 + (2ξ − 1) log ξ]

+ DnV V χ2
S(ξ − 1) + QnV V χ2

S(ξ − 1)2

+O(χ2
S log ξ, χ3

S) (15)

and

RnV S ≡ 2m2
V S

(ξ + 1)m2
SS

= 1 + 4(ξ − 1)χS(2LS8 − LS5)

+
χS

16Nsπ2 ξ log ξ

+
1
2
DnV V χ2

S(ξ − 1) + QnV Sχ2
S(ξ − 1)2

+ O(χ2
S log ξ, χ3

S). (16)

In these formulas the Gasser-Leutwyler coefficients, LSk

(k = 4, 5, . . .), are defined at the scale f0
√

χS and, in ad-
dition to the NLO terms, also the tree-graph (i.e. counter-
term) contributions of the NNLO are included. Their gen-
eral form is taken from [11] and is discussed in more de-
tail in Sect. 2.1 of [1]. The left-out terms of NNLO, which
come from two-loop integrals, are generically denoted here
by O(χ2

S log ξ).
In addition to the single ratios, RfV V , RfV S , RnV V

and RnV S , it is useful to consider the so-called double
ratios, which do not depend on any of the NLO coefficients
LSk. The PQChPT formulas for the double ratios are:

RRf ≡ f2
V S

fV V fSS
= 1 +

χS

32Nsπ2 (ξ − 1 − log ξ)

+ Qfdχ
2
S(ξ − 1)2 + O(χ2

S log ξ, χ3
S)
(17)

and

RRn ≡ 4ξm4
V S

(ξ + 1)2m2
V V m2

SS

= 1 − χS

16Nsπ2 (ξ − 1 − log ξ)

+ Qndχ
2
S(ξ − 1)2 + O(χ2

S log ξ, χ3
S).

(18)

In the PQChPT formulas (13)-(18), there are alto-
gether 11 parameters. Three of them appear at NLO,
namely with Ns = 2,

χR , χRLR5 , χRLR85 ≡ χR(2LR8 − LR5), (19)

and the rest in NNLO:

χ2
RDfV V,nV V , χ2

RQfV V,fV S,fd,nV V,nV S,nd. (20)
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At the smallest quark mass, fits with the NLO formulas
are reasonable but for the larger quark masses the NNLO
contributions are required unless the fits are restricted to
a small range around ξ = 1.

An acceptable global fit with 11 parameters can be
achieved if the valence quark mass dependence at all four
sea quark masses is simultaneously considered. In this
case, one has to choose a reference sea quark mass, χR,
and take into account the relation between the NLO pa-
rameters

LSk = LRk − ck log
χS

χR
, (21)

where the relevant constants are:

c5 =
1

128π2 , c85 ≡ 2c8 − c5 = − 1
128π2 . (22)

Fitting all six valence quark mass dependences,
(RfV V , RfV S , RRf , RnV V , RnV S , RRn), there are rea-
sonably good 11 parameter (linear) fits with χ2 � 200 �
degrees of freedom. A typical set of the resulting fit pa-
rameters is shown in Table 2.

Comparing Table 2 with the corresponding one (Ta-
ble 4) in [1], one can see that most values are, within
statistical errors, the same. This is also true for the NLO

Table 2. Values of best fit parameters for the valence quark
mass dependence. Quantities directly used in the fitting pro-
cedure are in boldface

χR 35.8(3.3)
χRLR5 0.1003(76) LR5 2.80(39) · 10−3

χRLR85 −0.0256(12) LR85 −0.714(65) · 10−3

χ2
RDfV V −0.109(42) DfV V −8.5(4.4) · 10−5

χ2
RQfV V −0.014(29) QfV V −1.1(2.3) · 10−5

χ2
RQfV S −0.0177(94) QfV S −1.39(81) · 10−5

χ2
RQfd −0.0180(31) Qfd −1.41(13) · 10−5

χ2
RDnV V −0.134(21) DnV V −10.46(93) · 10−5

χ2
RQnV V −0.087(13) QnV V −6.77(30) · 10−5

χ2
RQnV S −0.0394(44) QnV S −3.07(24) · 10−5

χ2
RQnd 0.0077(48) Qnd 0.60(26) · 10−5

parameters defined at the scale 4πf0, which are now

α5 ≡ 128π2LR5 + log
χR

16π2 = 2.06(42),

α85 ≡ 2α8 − α5 ≡ 128π2LR85 − log
χR

16π2 = 0.583(45).

(23)
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The value of α5 is practically the same as in Table 5 of
[1], whereas α85 is slightly smaller now.

The tree-graph NNLO contributions play an important
role in the global fits of the valence quark dependences,
especially at the two larger sea quark masses (κ = κ0 and
κ = κ1). At the two smaller sea quark masses, NNLO is
substantially less important. This is illustrated in Fig. 3,
where the 11 parameter fit for RfV V is shown together
with the NLO contributions alone.

3.1 O(a) terms

The fits above have been performed with the continuum
formulas – without O(a) or any other lattice artifacts.
The fits are reasonably good and the resulting parameters
are quite similar to those obtained in [1], where the O(a)
terms have been taken into account in the (PQ)ChPT La-
grangian according to [12]. It has been observed already
in [1] that the parameter in the chiral Lagrangian charac-
terizing the magnitude of O(a) effects,

ρ ≡ 2W0acSW

f2
0

, (24)

is rather small compared with the quark mass parameter
χ in (1). Fitting the ratio ηS ≡ ρS/χS separately for the
individual sea quark mass values, we obtained increasing
values for increasing sea quark masses: 0.02 ≤ ηS ≤ 0.07.

The parameter ρ should be independent of the quark
mass because the quark masses are the other expansion
parameters in the chiral Lagrangian. This means that a
quark mass dependent ρS incorporates some higher or-
der effects proportional to some power of amq. (For in-
stance, a linearly increasing value of ηS corresponds to
ρS ∝ (amq)2.) Because the observed values of ρ are small
anyway, it is interesting to consider the behaviour of the
chi-square as a function of ρ if the linear fits are performed

for fixed ρ . Because of the presence of another new pa-
rameter describing O(a) effects in the chiral Lagrangian,
the linear fit has 12 parameters for ρ �= 0 (instead of 11
for ρ = 0). As is shown by Fig. 4, the χ2 of the fit has
a minimum near ρ = η = 0 and becomes extremely large
already at |η| � 0.1. where the absolute value of ρ is 10%
of the value of the reference quark mass parameter χR.
Another way to investigate the importance of O(a) effects
in our data is to consider the following combination of
double ratios:

RRn + 2 RRf − 3 = (Qnd + 2Qfd)χ2
S(ξ − 1)2

+O(χ2
S log ξ, χ3

S). (25)

As this formula shows, this combination vanishes in next-
to-leading order and only NNLO and higher orders con-
tribute to it. On the lattice, there could also be O(a) con-
tributions, which can be parametrized as

RRn + 2 RRf − 3 = 16ρ LS4W6
(ξ − 1)2

ξ(ξ + 1)
− ρ

(ξ − 1)2

χSξ(ξ + 1)

+ ρ
[2(1 − ξ2) + log ξ + 3ξ2 log ξ]

32π2ξ(ξ + 1)

+ρ
(ξ − 1 − ξ log ξ)

32π2ξ

+ O(ρ2, χ2). (26)

Here only the linear piece of the ηS = ρ/χS-dependence
is kept because ηS is small. LS4W6 ≡ LS4 − WS6 is a
new parameter appearing in the O(a) terms of the chiral
Lagrangian [12].

The linear fits with χ2
SQn2f ≡ χ2

S(Qnd +2Qfd) in (25)
and with ρ in (26), respectively, are shown in case of the
smallest sea quark mass (κ = κ3) by Fig. 5. As this figure
shows, the NNLO fit with χ2

SQn2f is better (χ2 = 1.3)
than the one with the leading O(a) term proportional to ρ
(χ2 = 7.2). For simplicity, the parameters χS = 11.7 and
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LS4W6 = 0.001 are fixed in this latter case, but taking
other values does not change the qualitative picture.

At the larger sea quark mass values, the fits with the
leading O(a) terms behave similarly to Fig. 5. This sup-
ports the fact that the O(a) terms are not important in
our numerical data. As shown by Fig. 4, good fits can only
be obtained at rather small values of η = ρ/χ. In contrast,
the NNLO contributions are very important, especially at
our larger sea quark masses.

4 Studies of the updating algorithm

The numerical simulations have been performed by the
two-step multi-boson (TSMB) algorithm [13]. This dy-
namical fermion update algorithm is based on the multi-
boson representation of the fermion determinant [14], and
in its present form, it incorporates several modern ideas
of fermionic updating: the global correction step in the
update [15], the final reweighting correction [16] and the
determinant breakup [17].

Our error analysis is based on measuring the autocor-
relations of the quantities in question [18,19], therefore,
we can estimate the computation cost based on the inte-
grated autocorrelations τint. In our previous papers [5,20,
21], we proposed an approximate formula for the cost,

Cτint � F (amq)−2 Ω, (27)

where amq is the quark mass in lattice units and Ω the
number of lattice points. The overall factor F depends on
the quantity under investigation. If we count the cost in
terms of the number of floating-point operations necessary
to perform an update sequence with length τint, then the
present simulations on 163 · 32 lattice are consistent with

Fplaquette � 7 · 106, Fmπ
� 106, Ffπ

< 4 · 105.
(28)

In case of fπ, we only have an upper limit on τint because
the gauge configurations stored for the measurements were
statistically independent. These numbers are somewhat
smaller than our previous estimates in [5,20,21], which is
due to a better tuning of algorithmic parameters. In par-
ticular, these simulations were done with a determinant
breakup Nb = 4, which means that the fermion determi-
nant of the two degenerate flavours (Nf = 2) were repro-
duced by 4⊗ (Nf = 1

2 ) flavours. Another important point
is the frequent call of the global heatbath update of the
multiboson fields, which every time gives a statistically
independent boson configuration.

If we take the plaquette expectation value as the worst
case, then at the present quark masses and lattice spacing,
this cost estimate is similar to previous estimates (see, for
instance, the formula of A. Ukawa [22]), but considering
the more interesting cases of mπ or fπ, there is a sub-
stantial improvement by an order of magnitude or more.
In addition, toward large volumes, smaller quark masses
and/or smaller lattice spacings, the scaling of the cost es-
timate in (27) is better: for fixed lattice spacing, the cost
increases as m−2

q Ω and decreasing the lattice spacing and

keeping the physical parameters fixed, the cost behaves
as a−6. This has to be compared with the estimated be-
haviour in [22], m−3

q Ω5/4 and a−7, respectively.

5 Summary

The quark mass dependence of the pseudoscalar mass and
decay constant in our numerical data can be well fitted
with the continuum (PQ)ChPT formulas. It has been al-
ready observed on the 164 lattice in [1] that the O(a) lat-
tice artifacts at our gauge coupling β = 5.1, corresponding
to a lattice spacing a � 0.2 fm, are small and one can ob-
tain reasonable fits by omitting them. This conclusion is
strengthened by the new 163 · 32 data and, therefore, here
we based our estimates of the chiral Lagrangian parame-
ters on fits with the continuum formulas.

The use of the ratios of the PCAC quark mass as the
variable in comparing the simulation data to chiral per-
turbation theory is essential. Taking other quark mass def-
initions, for instance µren ≡ Zm(µ0 − µcr), would be the
source of large lattice artifacts at our lattice spacing.

The sea quark mass dependence of fπ and m2
π/mq can

be well described in our quark mass range 0.855 ≤ Mr ≤
2.13, which roughly corresponds to 1

4ms ≤ mq ≤ 2
3ms,

by the NLO ChPT formulas. The obtained estimates of
the relevant Gasser-Leutwyler constants are, according to
Sect. 2,

Λ3

f0
= 8.21(27),

Λ4

f0
= 21.4(1.5). (29)

The functional dependence of the ratio of fπ as a function
of the ratio of quark masses clearly shows the presence of
chiral logarithms (see Fig. 1). This observation is in agree-
ment with the results in a recent paper of the UKQCD
Collaboration [23], which came out during the writing of
this paper.

In the valence quark mass dependence of the same
quantities, in addition to the NLO terms, the higher order
NNLO contributions appear to be important – especially
at our two larger sea quark masses. But, as shown by
Fig. 3, the importance of the NNLO terms is considerably
reduced at the two lighter sea quark masses. Our best es-
timates for the relevant Gasser-Leutwyler constants at the
scale 4πf0 are, according to (23).

α5 = 2.06(42), 2α8 − α5 = 0.583(45). (30)

The errors quoted in (29) and (30) are only the statis-
tical ones. In order to decrease the systematic errors, sim-
ulations at still smaller sea quark masses would be useful.
Because our lattice volume is relatively large (L � 3 fm),
finite volume effects can be expected to be small (see [24,
25]). For the moment, we have no direct handle on the
magnitude of the remaining nonzero lattice spacing effects.
These should be determined by performing simulations at
smaller lattice spacings.
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Abstract. The phase structure of zero temperature twisted mass lattice QCD is investigated. We find
strong metastabilities in the plaquette observable in correspondence of which the untwisted quark mass
assumes positive or negative values. We provide interpretations of this phenomenon in terms of chiral
symmetry breaking and the effective potential model of Sharpe and Singleton.

1 Introduction

As a consequence of (soft) chiral symmetry breaking, na-
ture has arranged itself such that three of the pseudo-scalar
mesons are light, with masses around 140 MeV. This light-
ness of the pionmass becomes important alsowhenwe think
of numerical simulations in lattice QCD. Approaching the
“physical point”, at which the pion mass assumes its value
as measured in experiment, the algorithms used in lattice
simulations suffer from a substantial slowing down [1, 2]
which restricts present simulations to rather high and un-
physical values of the quark mass.

In addition to this slowing down of the algorithms for
Wilson fermions, the quark mass does not act as an in-
frared regulator allowing thus for the appearance of very
small unphysical eigenvalues of the lattice Wilson–Dirac
operator. These eigenvalues render the simulations more
difficult and sometimes even impossible.

Staggered fermions solve this problem, but it is not clear
how to use this approach to simulateNf = 2 or odd number
of flavors [3]. Overlap fermions [4] also solve the problem,
but they are computationally very demanding and, unless
new algorithms are invented, they are very difficult to use
for dynamical simulations.

An elegant way out may be the use of so-called twisted
mass fermions [5, 6]. This formulation of lattice QCD
(tmQCD) is obtained when the Wilson term and the phys-
ical quark mass term are taken not parallel in flavor chiral
space, but rotated by a relative twist angle ω. If the Wilson
term is given the usual form, such a chiral rotation leads

a e-mail: andrea.shindler@desy.de

to a twisted mass parameter µ, in addition to the stan-
dard Wilson quark mass m0 (“untwisted” quark mass).
Lattice QCD with a twisted mass was first employed for
O(a)-improved Wilson fermions with the nice feature that
the improvement coefficients and the renormalization con-
stants are the same as for O(a)-improved Wilson fermions
without twisted mass and hence they did not need to be
recalculated [7]. The main advantage of the twisted mass
fermions is that the twisted quark mass provides a nat-
ural infrared cut-off and avoids problems with accidental
small eigenvalues, rendering therefore the simulations safe.
Of course, the slowing down of the algorithms when ap-
proaching small quark masses will remain, although it is
expected to be less severe.

Later on it was realized that a full O(a)-improvement of
correlation functions can be obtained by using the twisted
mass alone without additional improvement terms when,
as a special case, m0 is set to the critical value mcrit and
the above mentioned twist angle is equal to ω = π/2 [8]. In
this way the demanding computation of many improvement
coefficients can be avoided rendering the simulations much
easier both from a conceptual as well as from a practical
point of view.

The Wilson twisted mass formulation has been tested
numerically in the quenched approximation already [9]. The
results are very encouraging. The O(a) corrections appear
indeed to be cancelled and even higher order effects seem
to be small, at least for the quantities and the value of the
quark mass considered in [9].

A word of caution has to be added at this point. Al-
though, as mentioned above, the twisted quark mass can
be decreased towards zero without simulations breaking
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down due to exceptional configurations, there is an impor-
tant interplay between the lattice cut-off, Λ = a−1 with
a the lattice spacing, and the quark mass mq (see (10)
below). In the continuum in the presence of spontaneous
chiral symmetry breaking the chiral symmetry is not real-
ized à la Wigner and, as the quark mass goes to zero, the
chiral phase of the vacuum is driven by the phase of the
quark mass term. The same must be true on the lattice;
thus the scaling limit a → 0 should be taken before letting
mq → 0. As a result, taking the chiral limit is a numerically
delicate matter.

In order to ensure in practice that on the lattice the
chiral phase of the vacuum is determined by the quark mass
term, proportional to mq, and not by the Wilson term, the
lattice parameters should satisfy the order of magnitude
inequality [8]

mqΛ
−1
QCD � aΛQCD. (1)

This same condition emerges from many different corners of
the lattice theory when the physical world is approached. A
very simple argument leading to the bound (1) is obtained
by comparing the magnitude of the critical Wilson term
to that of the quark mass term and requiring the first to
be negligibly small compared to the second one, in order
to be sure that lattice physics matches the requirements
of the continuum theory. From the order of magnitude
inequality a(ΛQCD)5 � mq(ΛQCD)3, one immediately gets
the condition (1). It is important to observe, however, that
the less restrictive condition

mqΛ
−1
QCD � (aΛQCD)2 (2)

may be sufficient if one is dealing with O(a)-improved quan-
tities.

It should be remarked that, since aΛQCD can be (non-
perturbatively) expressed in terms of g2

0 , (1) and (2) are ac-
tually (order of magnitude) conditions for the values of the
dimensionless bare lattice parameters amq and g2

0 . Contact
with dimensionful quantities can be made by comparing
simulation data with physical inputs.

What is in practice important is to know for which
range of the bare lattice parameters one can avoid troubles
from chiral breaking cut-off effects, even if parametrically of
order a2 or higher. This issue has to be settled by numerical
investigations aimed at establishing both the structure of
the phase diagram of the lattice model in study and the size
of residual scaling violations on the physical observables.

In this perspective, twisted mass fermions offer a unique
opportunity to explore the phase diagram of Wilson fermi-
ons. By fixing the twisted mass parameter µ, one may vary
(m0 −mcrit) from positive to negative values. In this way,
the phase diagram of zero temperature lattice QCD can
be explored. It should be emphasized that, on large lat-
tices, such an investigation would be very difficult without
having µ �= 0, since else the algorithms would slow down
dramatically approaching the critical quark mass.

In this work we have performed simulations to explore
the phase diagram of zero temperature QCD. As it will be
shown in the following, we find strong metastabilities in
the plaquette expectation value. We determined in both

metastable branches a number of quantities such as the
(untwisted) PCAC quark mass and pseudo-scalar meson
masses. The results presented in this paper are obtained
at only one value of β = 5.2, with β related to the bare
gauge coupling g0 by β = 6/g2

0 . Since the value of β = 5.2
corresponds to a rather coarse value of the lattice spac-
ing (a ≈ 0.16 fm) our work can only be considered as
a starting point for a more detailed investigation of the
phase diagram of lattice QCD. In particular, the β de-
pendence of the strength of the observed metastabilities
has to be determined. We believe that a qualitative and
even quantitative understanding of the phase diagram is
a necessary prerequisite for phenomenologically relevant
numerical simulations.

This paper is organized as follows. In Sect. 2 we intro-
duce Wilson twisted mass fermions and give our notation.
This is followed by a short discussion of the algorithms
used. In Sect. 3 we provide our evidence for metastabili-
ties by hysteresis effects and long-living metastable states.
There, we also show results for a selected set of physical
quantities. In Sect. 4, we give a possible interpretation of
these results in terms of chiral symmetry breaking and the
Sharpen–Singleton effective potential model. We conclude
finally in Sect. 5. In the appendix some details of the applied
update algorithms are explained.

2 Lattice action and basic variables

2.1 Lattice action

Let us start by writing the Wilson tmQCD action as

S[U, χ, χ̄] = χ̄ (D[U ] +m0 + µiγ5τ3)χ. (3)

In (3) m0 is the quark mass parameter and µ is the twisted
quark mass parameter. The operator D[U ] is given by

χ̄D[U ]χ = a4
∑

x

{
4r
a
χ̄(x)χ(x) (4)

− 1
2a
χ̄(x)

4∑
µ=1

(
U(x, µ)(r + γµ)χ(x+ aµ̂)

+ U†(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
)}

,

with r the Wilson parameter which will be set to r = 1 in
our simulations.

The action as it stands in (3) can, of course, be studied
in the full parameter space (m0, µ). A special case arises,
however, when m0 is tuned towards a critical bare quark
massmcrit. In such, and only in such a situation all physical
quantities are, or can easily be, O(a)-improved. It is hence
natural to rewrite

m0 = mcrit + m̃, (5)

with m̃ an offset quark mass. The values of mcrit need
only to be known with O(a) accuracy [8] and can be, for
instance, taken from the pure Wilson theory at µ = 0.
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For standard Wilson fermions usually the hopping pa-
rameter representation is taken in the numerical simula-
tions. This representation is easily obtained from (3) by a
rescaling of the fields

χ →
√

2κ
a3/2 χ, χ̄ →

√
2κ

a3/2 χ̄, κ =
1

2am0 + 8r
. (6)

We then obtain the form of the action that is actually used
in our simulations

S[χ, χ̄, U ] =
∑

x

{
χ̄(x) (1 + 2iaµκγ5τ3)χ(x) (7)

−κχ̄(x)
4∑

µ=1

(
U(x, µ)(r + γµ)χ(x+ aµ̂)

+U†(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
)}

.

Although not needed for the discussion of the numerical
data presented below, we give for completeness here the
action in the so-called physical basis. This action is obtained
by introducing new fields ψ(x) and ψ̄(x) which are related
to the fields in (3) by a chiral transformation

ψ(x) ≡ ei ω
2 γ5τ3χ(x) =

(
cos

ω

2
+ iγ5τ3 sin

ω

2

)
χ(x) ,

ψ̄(x) ≡ χ̄(x)ei ω
2 γ5τ3 = χ̄(x)

(
cos

ω

2
+ iγ5τ3 sin

ω

2

)
.

(8)

The action then reads

S[ψ, ψ̄, U ] = a4
∑

x

{
mqψ̄(x)ψ(x)

− 1
2a
ψ̄(x)e−iωγ5τ3

[
4∑

µ=1

(
rU(x, µ)ψ(x+ aµ̂)

+rU†(x− aµ̂, µ)ψ(x− aµ̂)
)

−(2amcrit + 8r)ψ(x)

]

− 1
2a
ψ̄(x)

4∑
µ=1

(
U(x, µ)γµψ(x+ aµ̂)

−U†(x− aµ̂, µ)γµψ(x− aµ̂)
)}

, (9)

where we have identified

mq cosω = m0 −mcrit = m̃, mq sinω = µ. (10)

2.2 Simulation algorithms

In our numerical simulations we used two different opti-
mized updating algorithms for producing samples of gauge

configurations: the hybrid Monte Carlo (HMC) algorithm
with up to three pseudo-fermion fields as suggested in [10,
11] and the two-step multi-boson (TSMB) algorithm [12].

In the standard HMC algorithm we used even–odd pre-
conditioning, which in presence of a twisted mass is only a
slight modification of the standard preconditioning tech-
nique [13]. We give the relevant equations in Appendix A.1
of this paper. As a subsequent improvement of the algo-
rithm, we implemented the idea of [10] and used shifted
fermion matrices to “precondition” the original fermion
matrix. These shifted matrices are treated by introducing
additional pseudo-fermion fields. In the shifted fermion
matrix we simply used larger values of the twisted mass
parameter than the value of µ that is to be simulated. Us-
ing two pseudo-fermion fields we experienced a substantial
improvement of the HMC algorithm by at least a factor of
two. The addition of a third pseudo-fermion field gave only
another 10–20% improvement. Again we list the relevant
equations, how the shifted matrices are implemented, in
Appendix A.1. As a further algorithmic trick we used the
Sexton–Weingarten leap-frog integrator as proposed in [14].

Our alternative algorithm, the TSMB algorithm [12], is
based on the multi-boson representation of the fermion de-
terminant [15]. Optimized polynomial approximations are
used, both in the first update step and in the second global
accept-reject correction step, for reproducing the dynami-
cal effect of fermions on the gauge field. We apply high order
least-square optimization and obtain the necessary poly-
nomials using high precision arithmetics [16]. Concerning
the optimization of TSMB for QCD see, for instance, [17].

A useful improvement of the TSMB update algorithms
can again be achieved by even–odd preconditioning. This
can be implemented in TSMB for twisted mass quarks
along the lines of [18]. For the even–odd preconditioning
of the TSMB update the flavor indices of the quark fields
have to be kept. This means that the multi-boson fields
have 24 components per lattice site (2 for flavor, 3 for
color and 4 for Dirac spinor indices). Correspondingly, the
polynomials are approximating the function x− 1

2 as in the
case of a single Dirac flavor with untwisted quark mass. We
give some more details of our even–odd implementation of
the TSMB algorithm in Appendix A.2.

In the region of light quarks an important part of the
numerical effort has to be spent on equilibrating the gauge
configuration in a new simulation point. This is particu-
larly relevant in studies of the phase structure where many
different points in the parameter space have to be investi-
gated. In case of TSMB the equilibration time is substan-
tially longer than the autocorrelation of relevant physical
quantities in equilibrium: on our lattices equilibration can
take ten or more times the autocorrelation time of the
plaquette observable. The autocorrelation times in equi-
librium themselves are similar but most of the time by
factors of 2–3 shorter with our twisted quark masses than
with untwisted quark masses of similar magnitude. For an
approximate formula of the computational cost see [19].

The use of two different optimized update algorithms
was very helpful in checking our results. We did not try to
obtain a precise performance comparison. Qualitatively, we
did not see a noticeable difference in the speed once equi-
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Fig. 1. Thermal cycles in κ on 83 × 16 lattices at β = 5.2.
The plaquette expectation value is shown for: aµ = 0.1 (A);
aµ = 0.01 (B); aµ = 0 (C). The triangles (�) refer to increasing
κ-values, the diamonds (�) to decreasing ones

librium was reached, but the HMC algorithm with multiple
pseudo-fermion fields (MPHMC) turned out to be faster in
the equilibration process. In particular, crossing the tran-
sition region below and above the metastability region is
faster with MPHMC. Nevertheless, the extension in κ of
the metastability region is the same with both algorithms.

The data used for preparing the figures in this publi-
cation were obtained with MPHMC, except for the upper
four panels in Fig. 2, which were obtained with TSMB. The
thermal cycles in Fig. 1 were only run with MPHMC. In
the other figures the results of the TSMB runs, whenever
performed, were always consistent within errors with the
shown MPHMC results.

3 Numerical results

In this section we give our numerical evidence for the phe-
nomenon of metastability mentioned in the introduction.
As a first step and for an orientation we have investigated
thermal cycles in the hopping parameter κ. We then discuss
metastable states in the plaquette expectation value. Fi-
nally we determine quantities such as the pion mass and the
untwisted PCAC quark mass in the metastable branches

in order to obtain a picture of the physical properties in the
different states. In most cases we perform the simulations
at a twisted mass aµ = 0.01, but in a few cases we also put
aµ = 0, which is possible on the lattice sizes we consider.

3.1 Thermal cycles

We started our investigation of the phase diagram of zero
temperature lattice QCD by performing thermal cycles
in κ while keeping fixed β = 5.2 and the value of the
twisted mass parameter aµ. These cycles are performed
such that a starting value of κstart is chosen and then
κ is incremented, without performing further intermediate
thermalization sweeps, until a final value of κfinal is reached.
At this point the procedure is reversed andκ is decremented
until the starting valueκstart is obtained back. At each value
of κ 150 configurations are produced and averaged over.

In Fig. 1 we show three such thermal cycles, performed
at aµ = 0, aµ = 0.01 and aµ = 0.1 from bottom to top. In
the cycles signs of hysteresis effects can be seen for aµ = 0
and aµ = 0.01 while for the largest value of aµ = 0.1
such effects are hardly visible. Hysteresis effects in thermal
cycles may be signs of the existence of a first order phase
transition. However, they should only be taken as first
indications. Nevertheless, they provide most useful hints
for further studies to search for metastable states.

3.2 Metastability

Guided by the results from the thermal cycles, we next
performed simulations at fixed values of aµ and κ, starting
with ordered and disordered configurations, staying again
atβ = 5.2. InFig. 2we show theMonteCarlo time evolution
of the plaquette expectation value, in most cases on a
123 × 24 lattice. For several values of κ we find coexisting
branches with different average values of the plaquette.
The gap (the “latent heat”) appears to be rather large. At
κ = 0.1717we show the history of the plaquette expectation
value also on a larger (163 × 32) lattice. It seems that the
gap in the plaquette expectation value does not depend
much on the lattice size, suggesting that the metastability
we observe here is not a finite volume effect. In most cases
the twisted mass is aµ = 0.01, except for the picture left
in the bottom line where it is aµ = 0.

The lifetime of a metastable state, i.e. the time before
a tunneling to the stable branch occurs, depends on the
algorithm used. In fact, one may wonder, whether the ap-
pearance of the metastable states seen in Fig. 2 may not
be purely an artefact of our algorithms. We cannot com-
pletely exclude this possibility but we believe it is very un-
likely: we employed two very different kinds of algorithms
in our simulations as explained in Sect. 2.2. We observe the
metastable states with both of them. We also interchanged
configurations between the two algorithms: a configuration
generated with the algorithm A was iterated further with
algorithm B and vice versa. We find that in such situations
the plaquette expectation value remains in the state where
it has been before the interchange of configurations took



F. Farchioni et al.: Twisted mass quarks and the phase structure of lattice QCD 425

0.5

0.51

0.52

0.53

0 1 2

<
P

> 123×24
κ=0.17125, aµ=0.01

0.5

0.51

0.52

0.53

0 1 2

<
P

> 123×24
κ=0.17150, aµ=0.01

0.5

0.51

0.52

0.53

0 1 2

<
P

> 123×24
κ=0.17175, aµ=0.01

0.5

0.51

0.52

0.53

0 1.5 3

<
P

> 123×24
κ=0.17200, aµ=0.01

0.5

0.51

0.52

0.53

0 0.75 1.5

<
P

> 123×24
κ=0.17150, aµ=0.0

0.5

0.51

0.52

0.53

0 2.5 5

<
P

> 163×32
κ=0.17170, aµ=0.01

Fig. 2. Metastable states at β = 5.2. The number of sweeps is given in thousands. The lattice size is 123 × 24, except for the
right panel in the bottom line where it is 163 × 32. The twisted mass is aµ = 0.01, except for the left panel in the bottom line
where it is aµ = 0

place. In addition, as we shall see below, the two states
can be characterized by well defined and markedly differ-
ent values of basic quantities. We therefore conclude that
the metastable states are a generic phenomenon of lattice
QCD in our formulation.

3.3 Pion and quark masses

By selecting separately configurations with high and with
low plaquette expectation value, we measured the pion
mass and the untwisted PCAC quark mass to study the
physical properties in the two metastable states.

We obtained the pseudo-scalar (“pion”) mass from suit-
able correlation functions. These are constructed from the
standard composite fields defined in terms of the fields ψ̄
and ψ in (9):

S0(x) = ψ̄(x)ψ(x), Pα(x) = ψ̄(x)γ5
τα
2
ψ(x),

Aα
µ(x) = ψ̄(x)γµγ5

τα
2
ψ(x),

V α
µ (x) = ψ̄(x)γµ

τα
2
ψ(x). (11)

Here τα, α = 1, 2, 3 are the usual Pauli matrices in isospin
space. The corresponding composite fields in terms of the
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quark fields χ and χ̄ of (3) are then given by the transfor-
mation in (8). For instance, for α = 1, 2 (“charged pions”)
the pseudo-scalar density has the same form in the χ-basis
as in the ψ-basis. Therefore, the mass of the charged pi-
ons can be extracted from correlators in the χ-basis in the
usual way. The charged axial vector and vector currents
are rotated into each other by the angle ω in such a way
that at ω = π/2 they are interchanged. (For more details
see the literature, e.g. [5, 8].)

Besides the pion mass, we measured the PCAC quark
mass from the axial vector current in the χ-basis:

mPCAC
χ ≡

〈
∂∗

µχ̄γµγ5
τ±
2 χ(x) Ô∓(y)

〉
2

〈
χ̄ τ±

2 γ5χ(x) Ô∓(y)
〉 . (12)

Here Ô∓ is a suitable operator that we have chosen to be the
pseudo-scalar density Ô∓ = χ̄ τ∓

2 γ5χ(x), ∂∗
µ is the lattice

backward derivative defined as usual and τ± = τ1 ± iτ2.
One can show that in the limit a → 0 the quantity mPCAC

χ

is asymptotically proportional, through finite renormaliza-
tion constants, to m̃.

In Fig. 3 we show the pion mass squared in lattice units
as function of (2κ)−1. We observe that the pion mass is
rather large and the most striking effect in the graph is
that it can have two different values at the same κ. If we
consider the quark massmPCAC

χ in Fig. 4, we see that in the
states with a low plaquette expectation value the mass is
positive while for high values of the plaquette expectation it
is negative. These quark masses with opposite sign coexist
for some values of κ. Plotting the pion mass versus mPCAC

χ

one obtains Fig. 5.
Figures 2–4 clearly reveal that for small enough µmeta-

stabilities show up in the quantities we have investigated,
such as mπ, mPCAC

χ and the average plaquette, if m0 is
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Fig. 5. The pion mass squared in lattice units from Fig. 3
plotted against the untwisted PCAC quark mass in Fig. 4

close to its critical value. What “small enough µ” means is
likely to change with β. Simulations at larger values of β
are in progress. As a matter of fact, whenm0 is significantly
larger (smaller) than mcrit we find mPCAC

χ to be positive
(negative) and no signal of metastabilities. The remark
that metastabilities take place for m0 close to its critical
value will be important both in Sect. 4.1 to understand
why they affect also a purely gluonic observable such as
the plaquette and in Sect. 4.3, where it leads to a plausible
explanation of the observed metastability phenomena in
terms of spectral properties of the lattice tmQCD Dirac
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matrix (suppression of the “eigenvalue cloud crossing” phe-
nomenon by the fermionic determinant).

The remarks in Sect. 4.1mayprovide further insight also
on the similar metastability phenomena reported in [20]
for the Nf = 3 untwisted Wilson theory and on the reason
why they “disappear” when changing the gluonic action or
details, e.g. cSW-value, of the fermionic action. A possible
reason is that these changes might shift the range of m0
where metastabilities appear to values where no data are
yet available.

4 Physical interpretation

The observed strong metastabilities discussed in the pre-
vious section clearly suggest that we are working either
directly at a first order phase transition or at least very
close to it such that we see the remnants of a close-by first
order phase transition. With the present data we cannot
really differentiate between these two scenarios and in the
following we will therefore discuss both of them.

4.1 Jump in the plaquette
and chiral symmetry breaking

Generally speaking, a jump in the plaquette as seen in our
data can arise owing to the lack of chiral symmetry for
chirally non-invariant formulations of lattice QCD. The
argument relies on the key observation that, when working
with chirally twisted Wilson fermions, there are two dis-
tinct sources of chirality breaking. The first source is the
combination of the untwisted Wilson and mass terms

χ̄M [U ]χ = a4
∑

x

{
χ̄(x)

(
4r
a

+m0

)
χ(x)

− r

2a
χ̄(x)

4∑
µ=1

(
U(x, µ)χ(x+ aµ̂)

−U†(x− aµ̂, µ)χ(x− aµ̂)
)}

. (13)

The second source of chirality breaking is the twisted mass
term µχ̄iγ5τ3χ. As pointed out in Sect. 2, one may trade the
bare parameters m0 and µ in (3) for the equivalent bare
parameters mq and ω of (9). The latter are best suited
to discuss the connection with continuum QCD physics,
as ω is an unphysical parameter, while mq represents the
bare quark mass. Assuming spontaneous chiral symmetry
breaking in infinite volume, the pion mass squared is ex-
pected to vanish linearly in mq (up to lattice artifacts)
as mq → 0. Moreover in the continuum limit the physical
scalar condensate is expected to show a discontinuity and
changes sign as mq passes through zero:

lim
mq→0+

〈[ψ̄ψ]
R〉 = − lim

mq→0−
〈[ψ̄ψ]

R〉 �= 0 , (14)

where by [ψ̄ψ]R we mean the appropriately subtracted and
renormalized scalar density. We recall that for ω �= 0 this

is a non-trivial linear combination of χ̄χ, χ̄iγ5τ3χ and the
constant field (see below for details).

In order to make contact with the observed metasta-
bility phenomena in the regime of spontaneous chiral sym-
metry breaking, two further remarks are important.
(1) At non-zero lattice spacing the twisted mass term
µχ̄iγ5τ3χ induces the twisted condensate 〈[χ̄iγ5τ3χ]R〉,
while the untwisted mass terms χ̄M [U ]χ of (13) deter-
mine the untwisted condensate 〈[χ̄χ]R〉.
(2) The local plaquette field

φ(x) ≡ 1
12

∑
µ�=ν

1
3

tr
[
Uµ(x) × U†

µ(x+ aν̂)U†
ν (x)

]
(15)

admits on the basis of lattice symmetries an operator ex-
pansion of the form

φ(x) =
[
b0� + b4g a

4F · F ]
+ b3 a

3 [χ̄χ]sub

+b4 a4µ [χ̄iγ5τ3χ]sub + O(a5), (16)

with [. . .]sub denoting a subtracted, multiplicatively re-
normalizable, operator and F the continuum gauge field
strength tensor. The plaquette expectation value
P (r, am0, aµ) can be correspondingly written in the form

P (r, am0, aµ) =
[
b0 + b4g a

4〈F · F 〉(r,am0,aµ)
]

+b3 a3〈[χ̄χ]sub〉(r,am0,aµ) (17)

+b4 a4µ〈[χ̄iγ5τ3χ]sub〉(r,am0,aµ) + O(a5).

The important point about the representation (17) is that
it shows that P is actually sensitive to the value of the
subtracted condensates 〈[χ̄iγ5τ3χ]sub〉 and 〈[χ̄χ]sub〉.

Before continuing it is useful to pause a moment and
discuss the structure of (16) and (17) and the nature of
the various terms appearing in it.
– We first notice that the contributions from the identity
and the F · F operator are put together within a square
parenthesis in (16) and (17) to remind us that there is no
unambiguous way to subtract from the latter its power
divergent mixing with the identity. Ultimately this is due
to the fact that, unlike the chiral condensates, the vacuum
expectation value of F ·F is not an order parameter of any
symmetry.
– For the reason we have just recalled, it is instead per-
fectly possible to unambiguously define, in the massless
limit,multiplicatively renormalizable operators [χ̄χ]sub and
[χ̄iγ5τ3χ]sub, by following the procedure outlined in [21].
More generally, such quark bilinears can be defined as fi-
nite operators even at non-vanishing masses, though not
uniquely. This can be done by setting, for instance,

[χ̄χ]sub = χ̄χ− a−3CS0(r, am̃, aµ), (18)

[χ̄iγ5τ3χ]sub = χ̄iγ5τ3χ− a−2µCP (r, am̃, aµ), (19)

with the dimensionless coefficient functions CS0 and CP

determined at some finite space-time volume V = V0 by
the conditions

〈[χ̄χ]sub〉(r,m0,µ) = 0, V = V0, (20)
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〈[χ̄iγ5τ3χ]sub〉(r,m0,µ) = 0, V = V0. (21)

Both the coefficients CS0 and CP admit a finite polyno-
mial expansion in am̃ and aµ (actually in (aµ)2 for parity
reasons).
(3) In terms of [χ̄χ]sub and [χ̄iγ5τ3χ]sub, the renormalized
scalar density in the physical basis, [ψ̄ψ]R, reads[

ψ̄ψ
]
R (22)

= Z−1
M (ω)ZP [cosω [χ̄χ]sub + sinω [χ̄iγ5τ3χ]sub],

where zm = ZP /ZS0 , ZM = [z2
m cos2 ω + sin2 ω]1/2 and

ZΓ denotes the renormalization constant of χ̄Γχ in the
standard Wilson regularization computed in a mass inde-
pendent renormalization scheme1. Consistently with the
general arguments given above, we remark that only the
leading a−3 divergent subtraction is uniquely fixed by the
symmetries of the theory (WTI’s and spurionic transforma-
tions). Consequently these properties can be used to make
the chiral scalar condensate, ψ̄ψ, multiplicative renormaliz-
able in the massless limit, by defining it, e.g., as the Wilson
average over the expectation values computed with oppo-
site values of the coefficient of the Wilson term [8,22].

After this little digression let us go back and discuss
the implications of (17). If we are on the lattice and take
the action of (3) for values of µ or m̃ much larger than
O(aΛ2

QCD), the condensates 〈[χ̄iγ5τ3χ]sub〉 or 〈[χ̄χ]sub〉 are
expected to show no metastability and thus the same should
be true for the plaquette expectation value. However, if
µ is smaller than O(aΛ2

QCD) the physical scalar conden-
sate signaling spontaneous chiral symmetry breaking is not
simply given by 〈[χ̄iγ5τ3χ]sub〉, but has in general also an
untwisted component, 〈[χ̄χ]sub〉. Both components have
an impact on the value of the plaquette (see (17)). When
m̃ passes from positive to negative values the expectation
value of the untwisted operator [χ̄χ]sub should also change
sign and, at non-vanishingly small values of µ, eventu-
ally become very small for almost critical values of m0. In
this situation, owing to the presence of the chiral symme-
try breaking term (13) in the action, the tmQCD sample
of gauge configurations is expected to include configura-
tions where 〈[χ̄χ]sub〉U is positive and configurations where
〈[χ̄χ]sub〉U is negative, corresponding to whethermPCAC

χ is
positive or negative, respectively. (By 〈. . .〉U we mean the
fermionic Wick contraction on a fixed gauge background
U .) Since the coefficient b3 = b3(r, am0, aµ) does not vanish
at m0 = mcrit

2, the value of the plaquette on the configu-
rations where 〈[χ̄χ]sub〉U is positive should be different –
on the basis of the operator expansion (16) – from that on
the configurations where 〈[χ̄χ]sub〉U is negative. The ob-
served jumps of the plaquette expectation value can hence

1 The relations between renormalized and subtracted oper-
ators in the χ-basis are [χ̄χ]R = ZS0 [χ̄χ]sub and [χ̄iγ5τ3χ]R =
ZP [χ̄iγ5τ3χ]sub.

2 Using the spurionic invariances of the action (3), it is possible
to show that b3 is odd under (r → −r) × (m0 → −m0), or
equivalently, since mc(−r) = −mc(r), under (r → −r)× (m̃ →
−m̃). We expect hence a contribution to b3 odd in r and even
in m̃.

be regarded as a combined effect of spontaneous chiral sym-
metry breaking and the explicit breaking of this symmetry
due to the Wilson term in (13).

4.2 Effective potential model

The scenario of a jump in the scalar condensate for Wilson
fermions on the lattice has actually been given already
some time ago by Sharpe and Singleton [23]. As it has been
shown in that work, the phase structure of lattice QCD for
µ = 0 with Wilson-type quarks can be understood in the
low energy chiral theory of pseudo-Goldstone bosons if the
influence of leading lattice artifacts of O(a) and O(a2) is
taken into account.

There are two alternatives: either there exists an Aoki
phase [22] or there is a first order phase transition between
the phases with positive and negative quark mass and the
Aoki phase does not exist.

The relevant part of the effective potential is written
in [23] as

Vχ = −c1A+ c2A
2. (23)

Here A denotes the flavor singlet component of the SU(2)
matrix valued field Σ in the low energy effective chiral La-
grangian:

Σ = A+ i
3∑

r=1

Brτr. (24)

Because of the relation 1 = A2 +
∑3

r=1BrBr the variable
A is constrained to lie between −1 and +1 inclusive. In the
vicinity of the critical quark mass the constant c2 = O(a2)
and the other parameter c1 is proportional to the bare
quark mass (in our notation c1 ∝ m̃).

In order to find the ground state (“vacuum”) the ef-
fective potential has to be minimized. Without repeating
the details of the discussion in [23] let us just summarize
the result.

In case of positive c2 there exists an Aoki phase in the
region of bare quark masses defined by −2c2 ≤ c1 ≤ 2c2.
At the boundaries c1 = ±2c2 all three pion masses van-
ish. Inside the Aoki phase the charged pions are massless
because they are the Goldstone bosons of spontaneous fla-
vor symmetry breaking but the neutral pion is massive.
Outside the Aoki phase (|c1| > 2c2) the flavor symmetry
is preserved by the ground state and the three degenerate
pions are massive (see Fig. 6).

The other alternative is that c2 is negative. In this
case the flavor symmetry is preserved everywhere but there
exists aminimal pionmass because the pionmass is given by

m2
π = f−2

π (|c1| + 2|c2|) . (25)

At c1 = 0 the vacuum expectation value jumps from
Σ = A = +1 to Σ = A = −1. Since the jump of this
“order parameter” happens at non-zero pion mass (i.e. fi-
nite correlation length) the thermodynamical description
of the behavior near c1 = 0 corresponds to a first order
phase transition.

An interesting intermediate situation is defined by c2 =
0. In this case the vacuum expectation value jumps between
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µ

Fig. 6. The alternatives of the phase structure in the (m0, µ)
plane: Upper part: Aoki phase at µ = 0 if c2 > 0, middle part:
first order phase transition point if c2 = 0, lower part: first
order phase transition line if c2 < 0. In the latter case the two
phases are connected with each other as it is shown by the
curve with arrows at both ends

Σ = A = +1 and Σ = A = −1 at a single first order phase
transition point. This limiting case is the ideal situation,
when the phase structure in the Sharpe–Singleton model
is identical to the expected one in the continuum. It can
be characterized either by saying that the Aoki phase has
zero extension or that the minimal pion mass is zero (see
Fig. 6). Of course, this behavior is valid only up to O(a3)
effects, neglecting higher orders in the chiral expansion.

4.3 Scenarios

Our numerical results reveal that we clearly observe me-
tastabilities in various quantities. Thus our conclusion is
that at least for vanishing twisted mass parameter, i.e. for
the standard Wilson lattice theory, there is a first order
phase transition. For non-vanishing values of µ we can have
two scenarios.

The first is that the first order phase transition persists
forµ �= 0 but sufficiently small in absolute value. For largeµ
the theory approaches the quenched limit with a constant
quark determinant and therefore it is plausible that no
phase transition is expected. This scenario suggests that
the first order phase transition line in the (m0, µ) plane has
an end point: the two phases with positive and negative
quark masses are analytically connected (see Fig. 6). The
situation is in this sense analogous to the phase structure
of the SU(2) fundamental Higgs model (see Chap. 6 of [24]
and references therein).

The second scenario is that for any non-vanishing value
of µ the first order phase transition disappears. In this sce-
nario, when varying m0, one passes at some small distance

from the first order phase transition at µ = 0 and just feels
this close-by phase transition.

We can at present not differentiate between these two
scenarios. From the numerical side we would need to know
better the µ and β dependence of the metastability phe-
nomena. From the analytical side an analysis à la Sharpe
and Singleton including the twisted mass parameter µ is
helpful.3

The first order phase transition between the phases with
positive and negative quarkmasses observed in the previous
section is consistent with the no-Aoki-phase alternative
(c2 < 0) of Sharpe and Singleton.

Our exclusion of the Aoki phase is in agreement with the
results of a recent paper [25] which suggests that in case of
the unimproved Wilson action the Aoki phase is restricted
to the region of strong gauge couplings (β ≤ 4.6). Note that
in an early paper on QCD thermodynamics with Wilson
quarks [26] a first order “bulk” phase transition has also
been observed at β = 4.8 which is consistent both with [25]
and with our observations. For further numerical work on
the Aoki phase, see [27].

The rather strong metastability of the two phases with
positive and negative quark mass can be understood on
the basis of the properties of the eigenvalue spectrum of
the (non-hermitean) Wilson-fermion matrix in the twisted
mass basis corresponding to (3). For zero twisted mass
(µ = 0) at small positive quark masses there is a “cloud”
of eigenvalues close to the origin near the real axis. (For
a numerical study see Sect. 4 of [17].) In order to reach
negative quark masses this “cloud” has to cross near the
origin to the other side with negative real parts. This eigen-
value cloud crossing is strongly suppressed by the zero of
the determinant. This, we believe, is the reason at the mi-
croscopical level for the observed strong metastability. For
non-zero twisted mass there is a strip of width 2|µ| around
the real axis where there are no eigenvalues. If this strip is
wide enough the eigenvalues are sufficiently far away from
the origin and the first order phase transition disappears.

As it was already emphasized in [23], the sign of the
coefficient c2 in the low energy pion effective potential is not
universal, it depends on the way the action is discretized.
Therefore a clever choice of the lattice action may weaken
the first order phase transition and, for instance, decrease
the minimal pion mass at it. Previous results of the JLQCD
Collaboration [20] support the conjecture that changing the
gauge action alone has an important effect. If, indeed, one
could find some parameter in the lattice gauge action which
at some value would change the sign of c2 an appealing
possibility would be to tune the lattice action to this value.
The features of a discretization with c2 = 0 seem to be quite
favorable from the point of view of light quark simulations
when, up to O(a2), there would be just a single point
in the (m0, µ) plane with vanishing pion mass – an ideal
situation corresponding to the expected phase structure in
the continuum.

3 We thank Gernot Münster for discussions on this and for
communicating us his results before publication.
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5 Conclusion

In this paper we have explored Wilson twisted mass fermi-
ons restricting ourselves to simulations at only one value
of β = 5.2. By fixing the twisted mass parameter µ and
changing the untwisted Wilson quark mass m0, or equiv-
alently the hopping parameter κ, we encountered strong
metastabilities in the plaquette expectation value, visible
both in thermal cycles as well as in long-living metastable
states. At the same time, the pion mass does not vanish
but has a minimum at a rather large value. The PCAC
quark mass mPCAC

χ in the different metastable branches
is positive for the branch with low plaquette expectation
value and it is negative for the branch with high plaquette
expectation value.

The detection of these metastabilities became possible
by employing a twisted mass term. Only a non-vanishing
value of µ allowed us to cross the critical quark mass. We
showed that for lattice theories that break chiral symmetry
explicitly the jump of the scalar condensate, when changing
the sign of the quark mass, induces a jump of the plaque-
tte expectation value with associated signs of metastability.
Forµ = 0 these metastabilities find a natural interpretation
in the effective potential model of Sharpe and Singleton,
arising from spontaneous symmetry breaking and using a
low energy effective Lagrangian which also describes lattice
artifacts. The agreement with the Sharpe–Singleton model
is remarkable because in the continuum limit in this model
the phase structure of lattice QCD with Wilson quarks
approaches fast – at a rate O(a2) – the expected phase
structure of QCD near zero quark mass. This is an impor-
tant property which has to be required from any lattice
regularization of QCD.

It should be clear that our work can only represent a
first step in a detailed understanding of the QCD phase
diagram at zero temperature near vanishing quark masses.
Clearly, substantially more work has to be done to resolve
this phase structure and its behavior in the continuum
limit. For instance, at present for µ �= 0 we are unable to
differentiate between a scenario where the first order phase
transition persists and another one where at µ �= 0 only a
remnant of the phase transition at µ = 0 is seen. In this
respect an analysis like in [23] for µ �= 0 is very helpful [28].

Among the many open questions there are: How fast
does the gap vanish when the continuum limit at higher
values ofβ is approached?Howare the signs ofmetastability
related to the ones observed using the Wilson plaquette
action and clover-improvedWilson fermions?Howprecisely
do the eigenvalues re-arrange when the critical quark mass
is crossed? Do different gauge actions change the couplings
of the effective potential and may hence lead to avoid the
phenomena of metastability and reproduce the ideal phase
structure at vanishing quark mass already for non-zero
lattice spacing?

The most important question is, of course, how phe-
nomenology can be done given the metastability pheno-
menon seen in our present results, i.e.: What is the lowest
value of the quark mass that can be reached before one en-
ters the regime of metastabilities and how does this change
with decreasing value of the lattice spacing?
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A Appendix

A.1 Even–odd preconditioning for the HMC algorithm

Let us start with the Dirac operator in the hopping pa-
rameter representation in the twisted basis written as

S [χ, χ̄, U ] ≡
∑
xy

χ̄(x)Mxy χ(y), (26)

where the matrix M can be easily read from (7). Using M
one can define the hermitian operator

Q ≡ γ5M =
(
Q+ 0
0 Q−

)
, (27)

where the submatrices Q± can be factorized as follows:

Q± = γ5

(
1 ± iµ̃γ5 Meo

Moe 1 ± iµ̃γ5

)

= γ5

(
M±

ee Meo

Moe M
±
oo

)
(28)

=
(
γ5M

±
ee 0

γ5Moe 1

) (
1 (M±

ee)
−1Meo

0 γ5(M±
oo −Moe(M±

ee)
−1Meo)

)
,

and we have defined µ̃ ≡ 2κµ. Note that (M±
ee)

−1 can be
easily computed to be

(1 ± iµ̃γ5)−1 =
1 ∓ iµ̃γ5

1 + µ̃2 .

Using det(Q) = det(Q+) det(Q−) one can now derive the
following relation (an equation apart from an irrelevant
factor):

det(Q±) ∝ det(Q̂±)

Q̂± := γ5(M±
oo −Moe(M±

ee)
−1Meo) , (29)

where Q̂± is only defined on the odd sites of the lattice.
In the HMC algorithm the determinant is stochastically
estimated using pseudo-fermion fields φo:

det(Q̂+Q̂−) =
∫
D

[
φo, φ

†
o
]
exp(−Sb) ,

Sb := φ†
o(Q̂+Q̂−)−1φo,
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where the fields φo are defined only on the odd sites of the
lattice. In order to compute the force corresponding to the
effective action Sb we need the variation of Sb with respect
to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSb = −
[
φ†

o(Q̂+Q̂−)−1δQ̂+Q̂
−1
+ φo

+ φ†
oQ̂

−1
− δQ̂−(Q̂+Q̂−)−1φo

]
= −

[
X†

oδQ̂+Yo + Y †
o δQ̂−Xo

]
, (30)

with Xo and Yo defined on the odd sites as

Xo = (Q̂+Q̂−)−1φo, Yo = Q̂−1
+ φo = Q̂−Xo , (31)

where Q̂†
± = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5
(−δMoe(M±

ee)
−1Meo −Moe(M±

ee)
−1δMeo

)
,

(32)
and one finds

δSb = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†), (33)

where X,Y is now defined over the full lattice as

X =
(−(M−

ee)
−1MeoXo

Xo

)
, Y =

(−(M+
ee)

−1MeoYo

Yo

)
.

(34)
In addition, δQ+ = δQ−, M†

eo = γ5Moeγ5 and M†
oe =

γ5Meoγ5 has been used. Since the bosonic part is quadratic
in the φo fields, the φo are generated at the beginning of
each molecular dynamics trajectory with

φo = Q̂+R, (35)

where R is a random spinor field taken from a Gaussian
distribution with norm one.

A.1.1 Hasenbusch trick

The trick first presented in [10] is based on the observation
that writing

det[Q+Q−] = det[W+W−] · det[(Q+Q−)/(W+W−)] (36)

is advantageous for the HMC, if the condition number of
W+W− and of (Q+Q−)/(W+W−) is significantly reduced
compared to the condition number of only (Q+Q−). In
order to achieve this we define

Q± = γ5DW ± iµ̃,
W± = γ5DW ± iµ̃2. (37)

With µ̃2 = µ̃ + ∆µ̃ it follows immediately that the con-
dition number of W+W− is lower than the one of Q+Q−
if for λmin and λmax the lowest and the largest eigenvalue
of Q+Q−, respectively, |λmin| � µ̃2

2 � |λmax| holds: the
condition number of W+W− is |λmax|/µ̃2

2 while the one

of (W+W−)−1(Q+Q−)2 contrariwise is µ̃2
2/|λmin|. We can

take µ̃, which is a lower bound for |λmin|, to write down
the following estimates for the condition numbers k:

kW+W− =
|λmax|
µ̃2

2
, k(Q+Q−)/(W+W−) ≤ µ̃2

2

µ̃2 ,

which leads to an optimal choice for µ̃2
2 =

√|λmax| · µ̃2. As
has been shown in [11] also the force contribution coming
from (Q+Q−)/(W+W−) is reduced. This is true also for
tmQCD and can be seen in the following way: noticing that

Q+Q− = Q2 + µ̃2

and

W+W− = Q2 + µ̃2
2 = Q2 + µ̃2 + µ̃2

2 − µ̃2

= Q+Q− + µ̃2
2 − µ̃2, (38)

it follows that

W+W−(Q+Q−)−1 = 1 + (µ̃2
2 − µ̃2)(Q+Q−)−1. (39)

Since the corresponding effective action reads

SF = φ†(1 + (µ̃2
2 − µ̃2)(Q+Q−)−1)φ (40)

one can see that one gets an explicit factor (µ̃2
2 − µ̃2) � 1

multiplying the force contribution compared to the original
effective action which will reduce the force and therefore
lead to a smoother evolution of the algorithm.

Let us remark that the procedure explained above can
be immediately applied to the even–odd preconditioned
system. Furthermore the trick can be iterated to two or
even more additional operators.

In Fig. 7 the cost C in units of CG iterations and the
acceptance rate PA is plotted versus µ̃2 = 2κµ2 at fixed
HMC stepsize and trajectory length. One can see that
as expected the acceptance rate increases by introducing
an additional operator and reaches a maximum around
µ̃ = 0.2. Of course also the costs increase when compared
to the HMC without additional operators. But the costs are
still much less than what is needed to reach an acceptance
rate of about 90% without the additional operator (see the
dashed line in Fig. 7). One can see that the gain in the
costs is about a factor of two.

A.2 Even–odd preconditioning for the TSMB algorithm

In this appendix even–oddpreconditioning is derived for the
TSMB algorithm. The even–odd subspace decomposition
of the fermion matrix in the twisted basis can be written as

Qχ =
(
µ1 + iγ5τ3µ − 1

2Meo

− 1
2Moe µ1 + iγ5τ3µ

)
, (41)

where indices start by zero = even, the lattice spacing is set
to a = 1 and the abbreviation µ1 ≡ m0 + 4r = (2κ)−1 is
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Fig. 7. Acceptance rate PA and cost C in units of CG itera-
tions versus µ̃2 = 2κµ2 at fixed HMC stepsize and trajectory
length. The dashed line represents the cost required to obtain
about 90% acceptance rate without the additional operator.
The parameters are: 84 lattice, β = 5.2, κ = 0.17, µ = 0.01

introduced. The hermitean fermion matrix Q̃ = γ5τ1Q
χ =

Q̃† is then

Q̃ =
(
γ5τ1µ1 + τ2µ − 1

2 γ5τ1Meo

− 1
2 γ5τ1Moe γ5τ1µ1 + τ2µ

)
. (42)

Using the notation

t5 ≡ (γ5τ1µ1 + τ2µ)−1γ5τ1

= (µ1 − iγ5τ3µ)(µ2
1 + µ2)−1 (43)

one can write Q̃ as the following product:

Q̃ =
(
γ5τ1µ1 + τ2µ 0

0 γ5τ1µ1 + τ2µ

)

×
(

1 0
− 1

2 t5Moe 1

)
(44)

×
(

1 0
0 1 − 1

4 t5Moet5Meo

) (
1 − 1

2 t5Meo

0 1

)
.

This can be used for preconditioned inversion of Q̃
because the inverse of all the factors but the third one is
trivial. Of course, the third factor is expected to have a
smaller condition number than Q̃ itself.

Multi-boson (MB) updating can be set up following [18].
Since the determinant of the above triangular matrices is
equal to 1 we have

det Q̃

= det
(
γ5τ1µ1 + τ2µ 0

0 γ5τ1µ1 + τ2µ− 1
4 γ5τ1Moet5Meo

)

= det
e

(
γ5τ1µ1 + τ2µ

)
× det

o

(
γ5τ1µ1 + τ2µ− 1

4
γ5τ1Moet5Meo

)
, (45)

where dete and deto denote determinants in the even and
odd subspaces, respectively. The first factor does not de-
pend on the gauge field and therefore it can be omitted.

In the second factor we have the hermitean matrix defined
on odd sites

Q̄ = γ5τ1µ1 + τ2µ

− 1
4
γ5τ1Moe(γ5τ1µ1 + τ2µ)−1γ5τ1Meo

= γ5τ1µ1 + τ2µ

− 1
4
γ5τ1Moe(γ5τ1µ1 + τ2µ)(µ2

1 + µ2)−1γ5τ1Meo

= Q̄†. (46)

The hermiticity of Q̄, which can be called hermitean pre-
conditioned fermion matrix, follows from

γ5τ1M
†
oeγ5τ1 = Meo. (47)

In MB updating one can start with the identity

detQ = det Q̃ ∝ det
o
Q̄ =

(
det
o
Q̄2

) 1
2 
 1

deto P 1
2
(Q̄2)

(48)
where the P 1

2
is a polynomial approximation satisfying

P 1
2
(x) 
 1

x
1
2

(49)

in an interval x ∈ [ε, λ] covering the spectrum of Q̄2. (Note
that for µ �= 0 detQ and det Q̄ are positive.)

The rest is the same as usual: one writes the polyno-
mial with the help of the square roots of its roots ρj , j =
1, 2, . . . as

P 1
2
(Q̄2) ∝

∏
j

(Q̄− ρ∗
j )(Q̄− ρj). (50)

Then using the identity

det
(
Aee Aeo

Aoe Aoo

)
= det

e
Aee · det

o

(
Aoo −AoeA

−1
ee Aeo

)
(51)

one obtains

det
o

(Q̄− ρj) = det
e

(γ5τ1µ1 + τ2µ)−1 (52)

× det
(
γ5τ1µ1 + τ2µ − 1

2 γ5τ1Meo

− 1
2 γ5τ1Moe γ5τ1µ1 + τ2µ− ρj

)
.

Denoting the projector on the odd subspace byPo we finally
obtain the multi-boson representation

(
det
o
Q̄2

) 1
2

∝
∏
j

1

det
[
(Q̃− Poρ∗

j )(Q̃− Poρj)
] (53)

∝
∫

[dΦ] exp


−

∑
j

Φ†
j(Q̃− Poρ

∗
j )(Q̃− Poρj)Φj


 .



F. Farchioni et al.: Twisted mass quarks and the phase structure of lattice QCD 433

References

1. C. Bernard et al., Nucl. Phys. Proc. Suppl. 106, 199 (2002)
2. K. Jansen, Nucl. Phys. Proc. Suppl. 129, 3 (2004); hep-

lat/0311039
3. B. Bunk, M. Della Morte, K. Jansen, F. Knechtli, Nucl.

Phys. B 697, 343 (2004); hep-lat/0403022
4. H. Neuberger, Phys. Lett. B 417, 141 (1998); hep-

lat/9707022; for reviews, see F. Niedermayer, Nucl. Phys.
Proc. Suppl. 73, 105 (1999); hep-lat/9810026; P. Her-
nandez, Nucl. Phys. Proc. Suppl. 106, 80 (2002); hep-
lat/0110218

5. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz, Nucl. Phys.
Proc. Suppl. 83, 941 (2000); hep-lat/9909003

6. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz [Alpha Collab-
oration], JHEP 0108, 058 (2001); hep-lat/0101001

7. R. Frezzotti, S. Sint, P. Weisz, JHEP 0107, 048 (2001);
hep-lat/0104014; M. Della Morte, R. Frezzotti, J. Heitger,
S. Sint [ALPHA Collaboration], JHEP 0110, 041 (2001);
hep-lat/0108019

8. R. Frezzotti, G.C. Rossi, JHEP 0408, 007 (2004); hep-
lat/0306014; Nucl. Phys. Proc. Suppl. 128, 193 (2004);
hep-lat/0311008

9. K. Jansen, A. Shindler, C. Urbach, I. Wetzorke [XLF Col-
laboration], Phys. Lett. B 586, 432 (2004); hep-lat/0312013

10. M. Hasenbusch, Phys. Lett. B 519, 177 (2001); hep-
lat/0107019

11. M. Hasenbusch, K. Jansen, Nucl. Phys. B 659, 299 (2003);
hep-lat/0211042

12. I. Montvay, Nucl. Phys. B 466, 259 (1996); hep-lat/9510042
13. T.A. DeGrand, P. Rossi, Comput. Phys. Commun. 60,

211 (1990)

14. J.C. Sexton, D.H. Weingarten, Nucl. Phys. B 380,
665 (1992)
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Abstract

Lattice QCD with Wilson fermions generically shows the phenomenon of a first order phase transition. We study th
structure of lattice QCD using Wilson twisted mass fermions and the Wilson plaquette gauge action in a range ofβ values where
such a first order phase transition is observed. In particular, we investigate the dependence of the first order phase tra
the value of the lattice spacing. Using only data in one phase and neglecting possible problems arising from the phase
we are able to perform a first scaling test for physical quantities using this action.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the phase structure of lattice Q
is an important pre-requisite before starting large sc
simulations. Indeed, our collaboration found that wh
working at lattice spacings of about 0.15 fm there c
be strong first order phase transitions at small qu

E-mail address: carsten.urbach@physik.fu-berlin.de
(C. Urbach).
0370-2693/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physletb.2005.08.018
masses, at least when a combination of Wilson p
quette action and Wilson fermions is used[1,2]. The
phenomenon appears also when a small twisted m
term is switched on. This has serious consequen
since in such a scenario the pion massmPS cannot be
made arbitrarily small but assumes a minimal val
mmin

PS , which may be about 500 MeV and hence it b
comes impossible to work close to the physical va
of the pion mass.

The presence of the first order phase transition
pure Wilson fermions is in accordance with pred
.

http://www.elsevier.com/locate/physletb
mailto:carsten.urbach@physik.fu-berlin.de
http://dx.doi.org/10.1016/j.physletb.2005.08.018
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tions from chiral perturbation theory[3], which have
been extended later to the case of adding a twi
mass[4–8]. Let us, for completeness, also menti
that for values of the lattice spacing much coarser t
a = 0.15 fm the first order phase transition turns in
a second order one from the normal QCD phase to
so-called Aoki phase[9–11]. The generic phase stru
ture of lattice QCD according to our present und
standing is discussed and illustrated in Refs.[1,2,12].

In Refs.[1,2] we have studied only one value of th
inverse gauge couplingβ = 6/g2

0 in order to demon-
strate the existence of the first order phase transit
leaving the question of theβ-dependence open. Sinc
lattice chiral perturbation theory predicts a weaken
of the first order phase transition towards the con
uum limit, it is interesting to check this predictio
and, in particular, to investigate quantitatively how f
the transition weakens when the continuum limit
approached. The answer to the latter question will n
urally depend on the choice of the actions that are u
for the gauge and the fermion fields.

In this Letter we will present results using Wilso
twisted mass fermions and the Wilson plaquette ga
action for three values ofβ. At each of theseβ values
we have performed simulations at a number of qu
masses on both sides of the first order phase transi
This allows to study theβ-dependence of the pha
transition itself and, in addition, the lattice spaci
dependence of physical observables computed s
rately in the two phases. We have performed suc
scaling test for the pion mass, the pion decay cons
and the ratio of the pion to the vector meson ma
For a scaling test of Wilson twisted mass fermions a
other recent results in the quenched approximation
Refs.[13–15].

2. Wilson twisted mass fermions

In this Letter we will work with Wilson twisted
mass fermions[16] that can be arranged to beO(a)

improved without employing specific improveme
terms[17]. The Wilson tmQCD action in the twiste
basis can be written as

(1)

S[U,χ, χ̄ ] = a4
∑

x

χ̄(x)(DW + m0 + iµγ5τ3)χ(x),
.

-

where the Wilson–Dirac operatorDW is given by

(2)DW =
3∑

µ=0

1

2

[
γµ

(∇∗
µ + ∇µ

) − a∇∗
µ∇µ

]
,

and∇µ and∇∗
µ denote the usual covariant forward a

backward derivatives and the Wilson parameterr was
set to 1.

The situation of full twist and hence automa
O(a) improvement arises whenm0 in Eq.(1) is tuned
towards a critical bare quark massmcrit. We use for our
simulations the hopping representation of the Wilso
Dirac operator withκ = (2am0 + 8)−1.

We extract the pseudo scalar massmPSand the vec-
tor meson massmV from the usual correlation func
tions:

CPP (x0) = a3
∑

x

〈
P +(x)P −(0)

〉
,

(3)CV V (x0) = a3

3

3∑

k=1

∑

x

〈
V +

k (x)V −
k (0)

〉
,

where we consider the local bilinearsP ± = χ̄γ5
τ±
2 χ

and V ±
µ = χ̄γµ

τ±
2 χ . Here we usedτ± = (τ1 ± iτ2)

with τ1,2 the first two Pauli matrices. Similarly on
can define the correlation functionCAP with the local
bilinearA±

µ = χ̄γµγ5
τ±
2 χ .

The bare pseudo scalar decay constantf PS
χ in the

twisted basis can be obtained from (cf.[18,19])

(4)f PS
χ = m−1

PSrAP 〈0|P +(0)|π〉,
where the ratio

(5)rAP = 〈0|A+
0 (0)|π〉

〈0|P +(0)|π〉
can be extracted from the asymptotic behavior of

(6)
CAP (x0)

CPP (x0)
= rAP tanh

[
mPS(T /2− x0)

]
.

The bare PCAC quark massmPCAC
χ in the twisted basis

can then be computed from the ratio

(7)mPCAC
χ = f PS

χ

2〈0|P +(0)|π〉m
2
PS.

The sign ofmPCAC
χ andf PS

χ is determined by the sig
of rAP and therefore, the corresponding values can
negative. One has to keep in mind thatmPCAC

χ andf PS
χ ,
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since measured in the twisted basis, do not corresp
to the physical quark mass and the physical pse
scalar decay constant, respectively. While the qu
mass is given by a combination of the (renormaliz
values ofmPCAC

χ andµ, the pseudo scalar decay co
stant can be computed by the help off PS

χ and the twist

angle, as long asf PS
χ �= 0 and the value of the twis

angle is different fromπ/2.
Note that the purpose of the present Letter isnot to

work at full twist nor to extract physical quantities, b
rather to study the lattice spacing dependence of
first order phase transition. For the same reason
also do not address the question of the choice of
critical quark mass in order to stay at full twist he
see Refs.[14,15] for recent quenched simulations a
dressing this point.

3. The phase transition as a function of the lattice
spacing

In order to study the lattice spacing dependenc
the phase transition we have chosen three valuesβ:
β = 5.1, β = 5.2 andβ = 5.3. We scaled the volume
and the values ofµ such that the physical volume
larger than 2 fm, roughly constant and thatr0µ ≈ 0.03,
wherer0 is the Sommer scale[20] fixed to ber0 =
0.5 fm. Note that the value ofr0/a depends on the
value of the quark mass and therefore we had to cho
a reference value forr0/a as will be explained below
The parameters are summarized inTable 1.

In practice it turned out that a very direct way
detecting the presence of a first order phase trans
in lattice QCD is to monitor the behavior of the pl
quette expectation value〈P 〉, e.g. as a function ofκ
for fixed twisted mass parameterµ. In such a situa-
tion, starting at identical parameter values from “h
(random) or “cold” (ordered) configurations,〈P 〉 can
assume different, co-existing values. InFig. 1we show
〈P 〉 as a function of 1/(2κ) for the three values ofβ.
The picture is typical for the behavior of a first ord
phase transition with meta-stable branches, one
a low value of〈P 〉 and one with a high value of〈P 〉.
We will denote in the following these branches as h
(“H”) and low (“L”) plaquette phases, respectively.

The β-dependence shows that the gap in the p
quette expectation value�P decreases substantial

Table 1
Simulation points for Wilson plaquette gauge action. For the th
values ofβ we give the lattice extent, the value foraµ and the value
of the lattice spacing in fm, determined usingr0 = 0.5 fm at the
reference point (see text), where(r0mPS)

2 = 1.5

β L3 × T aµ a [fm]

5.1 123 × 24 0.013 0.200(2)

5.2 123 × 24 0.010 0.160(4)

5.3 163 × 32 0.008 0.138(8)
of
For this
Fig. 1. The plaquette expectation value〈P 〉 as a function of 1/(2κ) at the three values ofβ we have simulated. We also indicate the values
aµ which are scaled withβ such thatr0µ is roughly constant. The lines just connect the data points and only serve to guide the eye.
study we have more simulations points than in the next figures and than inTables 4, 5 and 6.
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is is
when moving fromβ = 5.1 (a ≈ 0.20 fm) toβ = 5.3
(a ≈ 0.14 fm), which is presumably due to the mi
ing with the chiral condensate as discussed in[1]. One
possible definition for the quantity�P is the differ-
ence between low and high phase plaquette expe
tion value at the smallest value ofκ where a meta
stability occurs.

Let us remark that the first order phase transit
exists also in the continuum limit at zero quark ma
where the scalar condensate has a jump as a co
quence of spontaneous chiral symmetry breaking. T
means, of course, that in the continuum limit the ph
transition occurs only forµ = 0.

We give our simulation parameters, the statistics
the Monte Carlo runs and the results foramPS, af PS

χ ,

amPCAC
χ andr0/a in Tables 4, 5 and 6.
The meta-stability phenomenon observed in〈P 〉

can also be seen in fermionic quantities. As an ex
ple, we show inFig. 2 the values of the PCAC quar
mass as obtained in the branches with high and
plaquette expectation values ofFig. 1for the three val-
ues ofβ. Again we observe that with increasingβ the
gap between positive (low plaquette phase) and n
tive (high plaquette phase) quark masses shrinks. A
the meta-stability region in 1/(2κ) gets much narrowe
with increasingβ.

The effects of the first order phase transition c
also be seen in the pion mass and the value of the f
parameterr0. We plot inFig. 3an example of the pion
-

-

mass as a function of the PCAC quark mass atβ = 5.3.
The most intriguing observation here is that due to
presence of the first order phase transition, the p
mass, say for positive quark masses, does not g
zero but rather reaches a minimal value, and jum
then to the phase with negative quark mass. This is
course, just another manifestation of the jump in
PCAC quark mass inFig. 2.

In Fig. 4 we also show the values ofr0/a in the
low and high plaquette phases atβ = 5.3. Note that
the values ofr0/a are quite different when determine
in the low and the high plaquette phases, which
generic feature also for other values ofβ and even for
different gauge actions, see Ref.[12].

An interesting question is, at which value of the l
tice spacinga the minimal pion massmmin

PS assumes a
value of, say, 300 MeV where contact to chiral pert
bation could be established.

The pion mass assumes two different values fo
fixed quark mass, once this quark mass lies inside
meta-stability region. These two values for the p
masses correspond to the two phases that for a
tain interval of quark masses co-exist. The precise
termination of the meta-stability region is, of cours
very difficult. We can, however, give an interval inκ ,
[κ1, κ2], that can be read fromTables 4, 5 and 6for
the three differentβ values, where meta-stabilities o
cur in our simulation. In the following, we will mainly
concentrate on the low plaquette phase since th
e
are on this
Fig. 2. In the graph on the left the PCAC quark mass is plotted as a function of 1/(2κ) at the three values ofβ we have simulated. Positiv
values correspond to the low plaquette phase while negative values correspond to the high plaquette phase. The statistical errors
scale for most of the points smaller than the symbols. In the right plot we give a closeup of theβ = 5.3 results.
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Fig. 3. The squared pion mass as a function of the PCAC quark mass atβ = 5.3.

Fig. 4.r0/a as a function of 1/(2κ) atβ = 5.3.
in-
ine
m- e in
the natural choice for studying lattice QCD. Being
terested only in the low plaquette phase we determ
then a lower bound for the minimal pion mass as co
puted at the lower end of this interval, i.e.κ1, in the
low plaquette phase. We give inTable 2the values of
the minimal pion masses in the low plaquette phas
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Table 2
Minimal pion massmmin

PS in physical units in the low plaquette pha
and�P for the threeβ values. To set the scale we usedr0 = 0.5 fm
and the value ofr0/a measured for the corresponding simulati
point

β mmin
PS [MeV] �P

5.1 � 600 0.0399(1)

5.2 � 630 0.0261(1)

5.3 � 470 0.0077(4)

physical units. In addition, we provide the value f
the gap in the plaquette expectation value�P .

In principle, it would be interesting to extrapola
the minimal pion mass and the gap in〈P 〉 as a function
of the lattice spacing. However, our present data
not allow for a reliable and safe extrapolation. First
all, the determination of the minimal pion mass ha
large ambiguity in itself since we do not know exac
for which value of the quark mass the meta-stabi
will disappear. A substantially larger statistics wou
be necessary to answer this question and to ch
whether tunneling from one phase to the other occ
Second, the only three values ofβ we have used give
too short lever arm to perform a trustworthy extrapo
tion. And, third, the values ofr0/a are very different in
the two phases, as can be seen inFig. 4, which makes
it particularly difficult to follow the gap in〈P 〉 as a
function ofa/r0.

Nevertheless, an estimate on a more qualita
level yields a value of the lattice spacing ofa ∼
0.07 fm–0.1 fm where simulations with pion mass
of about 300 MeV can be performed without being
fected by the first order phase transition.

4. Lattice spacing dependence of physical
observables

Although the present simulations are not at f
twist, the fact that we have results at three val
of β with roughly constantr0µ allows us to check
for the size of lattice artifacts. In order to perfor
such an investigation it is advantageous to exp
physical quantities in dimensionless variables. To
end, let us first define a reference pion mass thro
(r0mPS)

2 = 1.5. We have chosen this particular val
in order to be able to interpolate for the values
Table 3
Reference values foramPCAC

χ , af PS
χ andr0/a. The reference poin

is chosen such that(r0mPS)
2 = 1.5. The errors include the interpo

lation errors

β amPCAC
χ |ref af PS

χ |ref (r0/a)|ref

5.1 0.035(2) 0.195(06) 2.497(29)
5.2 0.025(4) 0.139(15) 3.124(85)
5.3 0.022(1) 0.122(07) 3.628(60)

β = 5.1 andβ = 5.3, and to perform only a short ex
trapolation forβ = 5.2 to this point.

At the aforementioned reference pion mass, a
responding reference value ofr0/a and a reference
quark mass can be determined, the latter leading
variableσ ,

(8)σ = mPCAC
χ

mPCAC
χ |ref

.

Similarly, we can define ratios for a quantityO,

(9)RO = O

O|ref
,

whereO|ref is the quantity as determined at the ref
ence pion mass. The values for several quantities a
reference point can be found inTable 3.

In order to determine the reference values
mPCAC

χ , f PS
χ and r0, in a first step we interpolate

mPCAC
χ linearly as a function of(r0mPS)

2 to the point
where (r0mPS)

2 = 1.5 and extracted the referen
value for mPCAC

χ . Then we determined the referen

values forf PS
χ and r0 by quadratically interpolating

the data as a function ofmPCAC
χ to the reference valu

of mPCAC
χ . We repeated the latter step with a linear

terpolation finding agreement within the errors. T
fits to the data have been performed with the RO
and MINUIT packages from CERN (cf.[21,22]), tak-
ing the errors on both axis into account. We rem
that for the quantityr0mPS we have neglected the co
relation of the data betweenr0/a andamPS.

For a given observableO, RO is a universal func-
tion of σ for fixed value ofµ in physical units tha
allows for a direct comparison of results obtained
different values ofβ and, in principle, even for differ
ent actions. Deviations of results at differentβ values
provide then a direct measure of scaling violations
Fig. 5we showR 2 as a function ofσ . Note that for
mPS
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s
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s
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Table 4
Parameters and physical observables for the simulations withβ = 5.1. The lattice size in these runs was set to 123 × 24 and the twisted mas
parameter toaµ = 0.013. We give the values forκ and the number of measurementsNmeasperformed. We indicate with “L” or “H” whether
the plaquette expectation assumes a low or a high value. Moreover, we give the values formPS, f PS

χ , mPCAC
χ andr0 in lattice units. Forr0 we

give in addition to the statistical error two systematic errors, the first of them coming from possible excited state contaminations and t
from the necessary interpolation of the force inr

κ Nmeas amPS af PS
χ amPCAC

χ r0/a

0.1758 L 160 0.7015(031) +0.2856(60) +0.0799(12) 2.178(8)(4)(20)
0.1763 L 160 0.6155(040) +0.2538(56) +0.0597(12) 2.258(8)(0)(8)

0.1765 L 160 0.5353(068) +0.2201(76) +0.0446(16) 2.370(12)(4)(26)
0.1768 L 160 0.4468(051) +0.1683(82) +0.0268(13) 2.625(19)(22)(1)

0.1758 H 160 0.5323(126) −0.2065(119) −0.0496(25) 3.926(26)(12)(10)
0.1763 H 160 0.6771(116) −0.2351(227) −0.0777(50) 4.087(56)(4)(0)

0.1765 H 160 0.7231(111) −0.2595(232) −0.0864(26) 4.053(18)(17)(3)

0.1768 H 160 0.7377(119) −0.2302(136) −0.0926(38) 4.139(35)(16)(2)

0.1770 H 160 0.7530(189) −0.2212(189) −0.0977(59) 4.045(28)(10)(4)

Table 5
Parameter and physical observables for the simulations withβ = 5.2. The lattice size in these runs was set to 123 × 24 and the twisted mas
parameter toaµ = 0.01. SeeTable 4for further explanations

κ Nmeas amPS af PS
χ amPCAC

χ r0/a

0.17125 L 320 0.6057(025) +0.2289(35) +0.0650(08) 2.618(20)(5)(49)
0.17150 L 459 0.5066(050) +0.1968(38) +0.0452(08) 2.800(17)(9)(4)

0.17175 L 320 0.4189(071) +0.1540(84) +0.0292(17) 3.038(28)(14)(4)

0.17125 H 320 0.4173(111) −0.1571(166) −0.0352(43) 4.796(63)(65)(15)
0.17150 H 318 0.4220(126) −0.1566(219) −0.0349(50) 4.282(61)(16)(0)

0.17175 H 320 0.4985(088) −0.1770(119) −0.0494(28) 4.418(23)(23)(0)

0.17250 H 320 0.6462(131) −0.1974(087) −0.0874(24) 4.767(51)(7)(3)

Table 6
Parameter and physical observables for the simulations withβ = 5.3. The lattice size in these runs was set to 163 × 32 and the twisted mas
parameter toaµ = 0.008. For further explanations seeTable 4

κ Nmeas amPS af PS
χ amPCAC

χ r0/a

0.16715 L 100 0.3525(061) +0.1349(111) +0.0255(18) 3.668(34)(9)(8)

0.16720 L 101 0.3460(075) +0.1259(063) +0.0233(15) 3.551(47)(2)(1)

0.16725 L 180 0.3213(088) +0.1211(078) +0.0200(18) 3.716(49)(24)(0)

0.16730 L 243 0.3208(037) +0.1160(063) +0.0191(15) 3.730(35)(6)(9)

0.16735 L 160 0.2757(040) +0.0887(084) +0.0157(12) 3.841(47)(28)(1)

0.16730 H 388 0.2656(054) −0.1037(093) −0.0140(12) 4.84(10)(2)(1)

0.16735 H 100 0.3114(106) −0.1291(128) −0.0204(17) 4.808(95)(33)(3)

0.16740 H 100 0.3027(094) −0.1237(137) −0.0210(19) 4.703(90)(0)(1)
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of
the scaling analysis we take the data in the low plaq
tte phase only since this corresponds to the stan
lattice QCD situation. We also remark that some
the points taken in this analysis might be meta-sta
Nevertheless, we assume here that these data can
for checking scaling violations. Besides the data fr
the present work, we added also results from sim
e

tions atβ = 5.6 [23], which were obtained, howeve
at vanishing twisted mass parameterµ = 0.

A rather amazing consequence ofFig. 5 is that,
despite the fact that we are using coarse lattices
cannot detect any scaling violation, at least within
(large) statistical errors of our data. Even more,
results of our present simulations at small values
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lot
Fig. 5. The dependence of the pion mass on the quark mass, i.e.R
m2

PS
as a function ofσ . Besides the data of this work, we added in the p

also results from Wilson fermion simulations atβ = 5.6 [23] which were obtained atµ = 0.

Fig. 6. The ratioR
f PS
χ

for the pseudo scalar decay constant as a function ofσ . We also added results from Wilson fermion simulations forRfPS

atβ = 5.6 [23] obtained withµ = 0.
il- at
ing
β agree with results from simulations with pure W
son fermions atβ = 5.6 setting µ = 0. The same
observation is made forRf PS

χ
, seeFig. 6 and the ra-
tio mPS/mV, seeFig. 7. These results indicate th
the lattice artifacts and the effect of a non-vanish
twisted mass parameterµ are surprisingly small. We
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Fig. 7. The ratiomPS/mV as a function ofσ . Again, we also added results from Wilson fermion simulations atβ = 5.6 [23].
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remark here that in the case of the ratios likeRm2
PS

andRf PS
χ

one could have cancellation of mass ind
pendent cutoff effects. One has also to have in m
that, due to the presence of the first order phase t
sition, the simulated pion masses are still larger t
500 MeV. Whether our findings also hold when one
approaching the chiral limit is certainly an interesti
but open question. However, in a set-up with Wils
twisted mass fermions and Wilson plaquette gauge
tion this question cannot be answered at these va
of the lattice spacing.

5. Conclusions

In this Letter we have investigated dynamical W
son twisted mass fermions employing the Wilson p
quette gauge action. We have performed simulation
three values ofβ = 5.1, 5.2, 5.3, corresponding to va
ues of the lattice spacing ofa ≈ 0.20, 0.16, 0.14 fm,
respectively. The non-zero values of the twisted m
parameterµ were chosen such thatr0µ ≈ 0.03 for
all of the threeβ values. At these rather coarse la
tice spacings we find clear signals of first order ph
transitions that manifest themselves in a meta-st
behavior of the plaquette expectation value and fer
onic quantities, such as the PCAC quark mass and
pion mass.

We clearly observe that the gaps in quantities s
sitive to the phase transition, such as the plaqu
expectation value and the PCAC quark mass decr
substantially whenβ is increased. Unfortunately, wit
our present set of simulations, we are not able
quantitatively locate the value of the lattice spaci
where the effects of the first order phase transit
becomes negligible and where a minimal pion m
of, say, 300 MeV can be reached. As an estimate
such a value of the lattice spacing we give a ra
of a ≈ 0.07 fm–0.1 fm. Of course, this would mea
that a continuum extrapolation of physical results
tained on lattices with linear extent of at leastL = 2 fm
would be very demanding, since the starting point
such simulations would already require large lattic
It is therefore very important to find alternative actio
such that the value of the lattice spacing can be l
ered without running into problems with the first ord
phase transition. One candidate for such an action
DBW2 gauge action, is discussed in Ref.[12] where it
has indeed been found that modifying the gauge ac
alone can substantially reduce the strength of the
order phase transition. We are presently investiga
another possibility, the tree-level Symanzik improv
gauge action[24,25].
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Despite the problems arising from the presence
a first order phase transition, we performed a sca
analysis for the pion mass, the pion decay constant
the ratiomPS/mV for the data obtained at the three v
ues ofβ where we performed simulations. To this en
we only analyzed data from the low plaquette pha
since this is the natural choice for QCD simulations

By defining a reference pion mass at(r0mPS)
2 =

1.5, we computed the ratio ofmPS andf PS
χ to the cor-

responding reference values as a function of the PC
quark mass, again measured with respect to the co
sponding reference quark mass. We find that for th
ratios the scaling violations are remarkably small a
cannot be detected with the present precision of
data. Even more, when adding data from simulati
of Wilson fermions withµ = 0 atβ = 5.6, then these
data fall on the same scaling curve as our results
much coarser lattices and with twisted mass para
ter switched on. This indicates that not only the latt
artifacts but also the effect of switching on a twist
mass of the order ofr0µ ≈ 0.03 are small, at leas
for the rather large pion masses simulated here. T
finding is surprising since it suggests that continu
values of physical quantities can be already estima
from simulations at not too small lattice spacings.
course, our scaling results suffer from the fact that t
are obtained using data that might be meta-stable
consequence of the presence of the first order p
transition. Hence, a scaling test with an action t
does not lead to significant effects of the first ord
phase transition is mandatory to check the results
sented in this Letter.
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Abstract. The effect of changing the lattice action for the gluon field on the recently observed [F. Farchioni,
R. Frezzotti, K. Jansen, I. Montvay, G.C. Rossi, E. Scholz, A. Shindler, N. Ukita, C. Urbach, I. Wetzorke,
Eur. Phys. J. C 39, 421 (2005); hep-lat/0406039] first order phase transition near zero quark mass is
investigated by replacing the Wilson plaquette action by the DBW2 action. The lattice action for quarks
is unchanged: it is in both cases the original Wilson action. It turns out that Wilson fermions with the
DBW2 gauge action have a phase structure where the minimal pion mass and the jump of the average
plaquette are decreased, when compared to Wilson fermions with Wilson plaquette action at similar values
of the lattice spacing. Taking the DBW2 gauge action is advantageous also from the point of view of the
computational costs of numerical simulations.

1 Introduction

A basic feature of the low-energy dynamics in quantum
chromodynamics (QCD) is the spontaneous chiral sym-
metry breaking implying the existence of light pseudo-
Goldstone (pseudoscalar) bosons. The associated phase
structure near zero quark masses has to be reproduced
in the continuum limit by the lattice-regularized formula-
tions but it is in general modified by lattice artifacts at
non-vanishing lattice spacing. In lattice theories based on
Wilson-type quark actions the possible phase structures
have been investigated up to O(a2) in the lattice spac-
ing a by Sharpe and Singleton [2] in the framework of
low-energy chiral Lagrangians [3,4] and using the effec-
tive continuum description of cut-off effects [5,6]. Their
results allow for two possible “scenarios”: the existence
of the Aoki phase [7] or, alternatively, a first order phase
transition near zero quark mass.

In a recent numerical simulation [1,8] the phase struc-
ture of lattice QCD with Wilson fermions and Wilson
gauge action has been investigated with the help of the
twisted mass Wilson fermion formulation [9,10]. For fixed
values of a, smaller than a ≈ 0.2 fm, evidence for a first
order phase transition line, near zero quark mass in the
plane of untwisted and twisted quark mass, has been found
corresponding to the “second scenario” of [2]. It is im-
portant to remark that this line is finite and ends at a

a e-mail: montvay@mail.desy.de

particular value of the twisted quark mass µc. This im-
plies metastability and a non-zero minimum of the abso-
lute value of quark- (and pion-) masses. These are lattice
artifacts which are expected to vanish in the continuum
limit where µc = 0 and the first order phase transition line
shrinks to a singular point. (For generalizations of the re-
sults of [2] for non-zero twisted mass see [11–13].) Consid-
ering, besides the bare quark masses, the bare gauge cou-
pling, too, near the continuum limit the first order phase
transition spans a surface, as it is schematically shown by
Fig. 1.

It might be speculated that at the microscopic level the
occurrence of the first order phase transition at a > 0 is
accompanied by a massive rearrangement of small eigen-
values of the Wilson–Dirac operator. The detailed proper-
ties and, in particular, the strength of the first order phase
transition does probably depend on the number and distri-
bution of these eigenvalues. It is known that some type of
small eigenvalues, especially real ones, are associated with
small topological dislocations of the gauge field. A high
probability of these dislocations and of the correspond-
ing small eigenvalues is presumably a cut-off effect which
can be diminished by an appropriate choice of the lattice
action. In fact, it is known [14–17] that the small topo-
logical dislocations can, indeed, be suppressed by taking
renormalization group improved (RGI) gauge actions as
the Iwasaki action [18] or the DBW2 action [19].
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β

µ

κ = (2µκ)-1

Fig. 1. The schematic view of the first order phase transition
surface in the (β, κ, µ) space close to the continuum limit. (β is
the bare gauge coupling, κ is the hopping parameter, µ is the
bare twisted quark mass, µκ ≡ (2κ)−1 is the bare untwisted
quark mass.) The crosses mark the second order boundary line
of the first order phase transition surface. The strong coupling
region near β = 0 is not shown in this figure

In the present paper we try to answer the question
whether the combination of RGI gauge actions with the
Wilson fermion action does shrink the first order phase
transition line near zero quark mass. Here we restrict our-
selves to the study of the DBW2 gauge action which has
been successfully applied also in dynamical domain wall
fermion simulations [20]. The goal of the present paper is
to qualitatively show how a change of the gauge action will
modify the phase structure. Hence, we do not aim here at
a high precision study.

The Iwasaki action is often used in dynamical quark
simulations by the CP-PACS and JLQCD Collaborations,
in particular, in combination with the Sheikholeslami–
Wohlert clover improved Wilson fermion action [6]. Earlier
results of the JLQCD Collaborations indicate [21] that, in-
deed, a metastability seen in the average plaquette can be
suppressed by replacing the Wilson plaquette action by
the Iwasaki action. (See also [22], and for a review of ear-
lier results on the phase structure of QCD, see [23]. An
early discussion of the phase structure of QCD can also
be found in [24].)

The plan of this paper is as follows: in the next section
the lattice action and some parameters of the update algo-
rithm are defined. In Sect. 3 we present the results of the
numerical simulations. Section 4 is devoted to the inves-
tigation of the eigenvalue spectrum of the Wilson–Dirac
operator near the origin. The last section contains some
discussion and concluding remarks.

2 Lattice action and simulation algorithm

2.1 Lattice action

We apply for quarks the lattice action of Wilson fermions,
which can be written as

Sq =
∑

x

{(
χx[µκ + iγ5τ3µ]χx

)

−1
2

±4∑
µ=±1

(
χx+µ̂Uxµ[r + γµ]χx

)}
. (1)

Here the (“untwisted”) bare quark mass in lattice units is
denoted by

µκ ≡ am0 + 4r =
1
2κ

, (2)

r is the Wilson parameter, set in our simulations to r =
1, am0 is another convention for the bare quark mass in
lattice units and κ is the conventional hopping parameter.
In (1) the twisted mass µ is also introduced. Uxµ ∈ SU(3)
is the gauge link variable and we also defined Ux,−µ =
U†

x−µ̂,µ and γ−µ = −γµ.
For the SU(3) Yang–Mills gauge field we apply the

DBW2 lattice action [19] which belongs to a one-
parameter family of actions obtained by renormalization
group considerations. These actions also include, besides
the usual (1× 1) Wilson loop plaquette term, planar rect-
angular (1 × 2) Wilson loops:

Sg = β
∑

x

(
c0

4∑
µ<ν; µ,ν=1

{
1 − 1

3
Re U1×1

xµν

}

+c1

4∑
µ�=ν; µ,ν=1

{
1 − 1

3
Re U1×2

xµν

} , (3)

with the normalization condition c0 = 1 − 8c1. (The no-
tation c0,1 is conventional. Of course, c1 should not be
confused with the parameter c1 in the effective potential
of [2,1].) The coefficient c1 in (3) takes different values for
various choices of RGI actions, for instance,

c1 =

{
−0.331 Iwasaki action,

−1.4088 DBW2 action.
(4)

Clearly, c1 = 0 corresponds to the original Wilson gauge
action with the plaquette term only. Note that for c1 =
−1/12 one obtains the tree-level improved action in the
Symanzik improvement scheme [25].

2.2 Twist angle

An important quantity is the twist angle ω, the polar an-
gle in the plane of the untwisted and twisted mass (µκ, µ).
We present here a method which allows one to determine
the twist angle only on the basis of symmetry of the cor-
relators defined in a given point of bare parameter space
(see also [8]).
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Following [10], we introduce the twist angle ω as the
chiral rotation angle between the renormalized (physical)
vector and axialvector currents V̂ a

xµ, Âa
xµ and the bare

bilinears of the χ-fields V a
xµ, Aa

xµ:

V a
xµ ≡ χx

1
2
τaγµχx , Aa

xµ ≡ χx

1
2
τaγµγ5χx . (5)

With the renormalization constants ZV and ZA we have

V̂ a
xµ = ZV V a

xµ cos ω + εab ZAAb
xµ sin ω , (6)

Âa
xµ = ZAAa

xµ cos ω + εab ZV V b
xµ sin ω , (7)

where only charged currents are considered (a = 1, 2).
The twist angle ω is related to the ratio of the renor-

malized twisted and untwisted masses entering the chiral
Ward identities [10]. (In [10] this definition of the twist an-
gle was called α.) We define, in addition, the two auxiliary
angles

ωV = arctan(ZAZ−1
V tanω) ,

ωA = arctan(ZV Z−1
A tanω) . (8)

In terms of ωV , ωA (6) and (7) are written as

V̂ a
xµ = NV (cos ωV V a

xµ + εab sin ωV Ab
xµ) , (9)

Âa
xµ = NA (cos ωAAa

xµ + εab sin ωAV b
xµ) (10)

where the overall multiplicative renormalization is (X =
V, A):

NX =
ZX

cos ωX

√
1 + tanωV tanωA

. (11)

From (8) it follows that

ω = arctan
(√

tanωV tanωA

)
. (12)

As shown by the relations in (8) and (12), the values of
ω, ωV and ωA coincide for |ω| = 0, π/2. However, for
other angles they are, in general, different and the dif-
ference goes to zero in the continuum limit only as fast as
ZV /ZA → 1.

A possibility to determine ωV and ωA is to impose
the vector and axialvector Ward identities, respectively,
with a suitable insertion operator Ôx. For instance, in the
vector case one can use the Ward identity

∑
x,y

〈∂∗
µV̂ +

xµ Ô−
y 〉 = 0 =⇒ tanωV =

−i
∑

x,y〈∂∗
0V +

x0 Ô−
y 〉∑

x,y〈∂∗
0A+

x0 Ô−
y 〉 .

(13)
Here the indices + and − refer to the charged compo-
nents τ± ≡ τ1 ± iτ2 and ∂∗

µ denotes the backward lattice
derivative.

Another possibility for determining the twist angles
ωV , ωA and ω is to impose parity conservation for suit-
able matrix elements, for instance with the pseudoscalar
density P±

x = χ̄x
τ±
2 γ5χx:∑

x,y

〈Â+
x0 V̂ −

y0〉 =
∑
x,y

〈V̂ +
x0 P−

y 〉 = 0 . (14)

These equations admit the solution

tanωV =
−i
∑

x,y〈V +
x0 P−

y 〉∑
x,y〈A+

x0 P−
y 〉 , (15)

tanωA =
i
∑

x,y〈A+
x0 V −

y0〉+tanωV

∑
x,y〈A+

x0 A−
y0〉∑

x,y〈V +
x0 V −

y0〉−itanωV

∑
x,y〈V +

x0 A−
y0〉

.

(16)

In (14) one can also take the derivatives of the currents
instead of the currents themselves. For instance, taking
the divergence of the vector current in the second equality
gives the same equations as (13) with Ô = P .

Once ωV and ωA are determined, the twist angle ω
can be obtained by (12). This method for determining the
twist angle can also be used in case of simulations with
partially quenched twisted mass quarks. The estimate of
ω is, of course, affected by O(a) ambiguities. For non-
zero twisted mass µ 	=0 the critical bare untwisted quark
mass µκ = µκcr , or the critical hopping parameter κcr =
(2µκcr)

−1, is signaled by |ω| = π/2.

2.3 Updating algorithm

Concerning updating in our numerical simulations, we
apply the two-step multi-boson (TSMB) algorithm [26],
which has been tuned to QCD simulations with Wilson
quarks in previous works [1, 27–30]. (For details and refer-
ences see in these papers.) In [27] there is an approximate
formula for the computational cost of an update cycle in
terms of matrix-vector-multiplications (MVMs):

NMVM

cycle

 6(nBn1NΦ + NU ) + 2nB(n2 + n3)NC + IGFG .

(17)
Here n1,2,3 are the orders of polynomials used in the two
approximation steps, nB gives the multiplicity in determi-
nant breakup, NΦ is the number of local bosonic sweeps
per update cycle, NU the number of local gauge sweeps,
NC the number of global Metropolis accept–reject correc-
tion steps, and IG and FG give the number of MVMs in
the global boson heatbath and its frequency, respectively.

The number of MVMs can also be converted into the
number of floating point operations by noting that in our
code, for vanishing twisted mass, we have

1 MVM 
 1.2 · 103 Ω flop , (18)

where Ω is the number of lattice points. For non-zero
twisted mass there is an additional factor 2 due to the
flavor index. (This does, however, not mean that twisted
mass fermions are a factor of two more expensive since in
this case the two flavors are incorporated in one fermion
matrix and the polynomial approximations have lower or-
ders; see Appendix A.2 of [1].)

Measuring the integrated autocorrelations τint as a
function of the quark mass in lattice units amq and of
the lattice volume Ω, previous experience tells that one
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can approximate the computational cost of a number of
update cycles equal to τint by the simple formula

Cτint 
 F (amq)−z Ω . (19)

According to [27], in case of combining the Wilson fermion
action with the Wilson plaquette gauge action, the power
of the inverse quark mass is close to z = 2. The over-
all factor F depends on the quantity under investigation.
For Wilson quarks with Wilson gauge action the previous
results can be summarized, for instance, for the average
plaquette and for the pion mass determined with a ran-
domly chosen source by [30]

Fplaq 
 7 · 106 flop , Fmπ 
 106 flop . (20)

Let us note that the approximate formula in (19) has been,
up to now, verified only for some fixed values of the gauge
coupling β. The β-dependence of F has not yet been sys-
tematically investigated.

3 Numerical simulation results

Our aim is to compare the phase structure of two-flavor
(Nf = 2) QCD near zero quark mass for Wilson lattice
fermion action and DBW2 gauge action with the one ob-
served in [1,8] for Wilson fermion action and Wilson (pla-
quette) gauge action. Since the phase structure obviously
depends on the lattice spacing, we have to find the values
of the bare parameters (β, µκ) in the lattice action (1)–(3)
which correspond to quark mass mq 
 0 and to the same
lattice spacing as in [1,8], namely a 
 0.2 fm. For hav-
ing a fair comparison, the lattice volume has to be kept
constant, too, because the metastability phenomenon does
also depend on it. Therefore, we shall compare the results
on 123 × 24 lattices.

A possibility for facilitating the parameter tuning is to
explore the position of the high-temperature phase tran-
sition on lattices with time extension Nt = 4 and Nt = 6
for small quark masses, which mark a = 0.25–0.30 fm and
a = 0.17–0.20 fm, respectively. (This method with Nt = 4
has been applied, for instance, in [27].) A useful first ori-
entation is also provided by the quenched studies. (For a
useful collection of data on RGI gauge actions see [31] and
references therein). For specifying the actual value of the
lattice spacing we determine the Sommer scale parameter
in lattice units r0/a [32], which we set by definition to be
r0 ≡ 0.5 fm, independently from the quark mass.

In order to localize the Nt = 4 high-temperature phase
transition we fixed the gauge coupling at β = 0.55 and
changed the bare quark mass µκ (or, equivalently, the hop-
ping parameter κ = (2µκ)−1). The results on an 83×4 lat-
tice for the absolute value of the Polyakov line and average
plaquette are given in Fig. 2. As it is shown by the figure,
the transition with the DBW2 action is rather smooth,
barely visible. This has to be contrasted with the strong
and sudden increase of both Polyakov line and average
plaquette in case of the Wilson plaquette action, which is
also shown for comparison in Fig. 2.

Table 1. Bare couplings and parameters of the TSMB algo-
rithm in runs with the DBW2 gauge action. The determinant
breakup multiplicity is nB = 4 in all runs. Small letters label
runs on 83 × 16 lattices at β = 0.55 whereas capital letters
stand for runs on 123 × 24 lattices at β = 0.67. The suffix l
and h denote “low” and “high” plaquette phase, respectively.
Those runs with a calligraphic letter are performed with an
additional twisted mass term (µ = 0.01). The number of an-
alyzed configurations is given in the last column. An asterix
on these numbers denotes that a few configurations have very
low (� 1) reweighting factors. The analyzed gauge configu-
rations are separated by 10 update cycles, except for runs (a)
and (Al), where they are separated by 100 and 2 update cycles,
respectively

run κ n1 n2 n3 λ ε Nconf

(a) 0.184 22 100 102 24 2.4·10−3 116
(b) 0.186 22 200 220 23 5.8·10−4 381
(c) 0.188 24 500 520 23 5.7·10−5 165
(d) 0.190 30 900 940 22 1.1·10−5 66∗

(e) 0.192 30 1400 1440 22 2.7·10−6 159∗

(f) 0.193 26 650 680 22 2.7·10−5 192
(g) 0.194 22 300 320 21 2.1·10−4 111
(Al) 0.165 28 210 220 26 1.3 · 10−3 82
(Cl) 0.167 28 500 510 25 1.3 · 10−4 62
(Ch) 0.167 30 1100 1200 25 1.3 · 10−5 220
(Dl) 0.168 30 1100 1200 25 1.2 · 10−5 82∗

(Dh) 0.168 30 1100 1200 25 1.2 · 10−5 211
(Eh) 0.170 28 900 920 24 4.8 · 10−5 194
(Fh) 0.172 28 500 510 24 1.2 · 10−4 151
(Gh) 0.175 28 500 510 23 1.1 · 10−4 78∗

(Al) 0.165 16 250 270 24 1.2 · 10−3 540
(Bl) 0.166 18 420 460 24 3.6 · 10−4 58
(Ch) 0.167 18 420 460 24 3.6 · 10−4 139
(Dh) 0.168 18 420 460 24 3.6 · 10−4 321
(Eh) 0.170 18 420 460 24 3.6 · 10−4 100

A similar analysis on 123 × 6 lattices at β = 0.67
gives qualitatively similar results but there the difference
between the DBW2 and the Wilson plaquette action is
smaller because the transition for the Wilson plaquette
action becomes weaker.

3.1 Results on an 83 × 16 lattice at β = 0.55

The runs on an 83 × 16 lattice at β = 0.55 and µ = 0
were started from the low-temperature phase by taking
four copies in the time direction of some of the 83 × 4
lattices. The parameters of these runs are specified in the
first part of Table 1.

Besides the hopping parameter κ also some parameters
of the TSMB updating algorithm are specified: the orders
of the polynomials used n1,2,3 and the interval covering
the eigenvalues of the squared preconditioned hermitean
quark matrix [ε, λ].
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Fig. 2. Upper panels: the signals of the Nt = 4 non-zero temperature transition on an 83 × 4 lattice with the DBW2 gauge
action. Lower panels: the same with Wilson gauge action. Left panels: absolute value of the Polyakov line, right panels: average
plaquette, both as a function of κ

In the 83 × 16 runs we looked for signals of metasta-
bility but we did not find any. The results for some inter-
esting quantities are collected in the first part of Table 2:
the pion (i.e. pseudoscalar meson) and ρ-meson masses
and the bare quark mass in lattice units amPCAC

χ . Some
of these quantities are also shown in Fig. 3. The scale pa-
rameter in lattice units r0/a was also determined. We note
in passing that at this small value of β and with our partly
low statistics the evaluation of r0 is rather difficult. Nev-
ertheless, in order to estimate quantities also in physical
units, we performed a purely statistical analysis for r0, be-
ing aware of the fact that systematic effects can be large.

The bare quark mass amPCAC
χ is defined by the PCAC

relation containing the axialvector current Aa
xµ in (5) and

the pseudoscalar density insertion:

amPCAC
χ ≡ 〈∂∗

µA+
xµ P−

y 〉
2〈P+

x P−
y 〉 . (21)

Since for the moment we do not determine the Z-
factors of multiplicative renormalization, the bare quark
mass amPCAC

χ contains an unknown O(1) Z-factor Zq ≡
ZP /ZA. In the following analysis we extracted the quark
mass with the method detailed in [27]; see Sect. 3.1.1 there.

In agreement with the absence of a signal for metasta-
bility, the µκ-dependence of the pion mass and quark
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Fig. 3. Results of the numerical simulation on an 83×16 lattice
at β = 0.55: upper panel the square of the pion mass (amπ)2,
lower panel the PCAC quark mass amPCAC

χ . In the upper panel
the dashed lines are extrapolations to zero pion mass: at the
right it is a linear fit of four points, at the left a straight line
connecting two points with small quark mass

mass in Fig. 3 is consistent with the absence of a first or-
der phase transition at this gauge coupling (β = 0.55).
A rough estimate for the value of the lattice spacing
is a 
 0.30 fm in the positive quark mass phase and
a 
 0.23 fm in the negative quark mass phase. The upper
panel in Fig. 3 suggests the existence of a short interval
(µκ ∈ [2.62, 2.63] or κ ∈ [0.190, 0.191]) of an Aoki phase
near zero quark- and pion masses. This behavior is quali-

Table 2. Results of runs specified in Table 1 for different quan-
tities

run amπ amρ mπ/mρ amPCAC
χ

(a) 0.6962(69) 1.0015(75) 0.6952(37) 0.07086(85)
(b) 0.5325(60) 0.9013(75) 0.5908(57) 0.03890(75)
(c) 0.3652(49) 0.840(26) 0.435(13) 0.0154(10)
(d) 0.081(24) 0.62(38) 0.130(78) 0.0012(15)
(e) 0.594(51) 1.80(30) 0.355(42) −0.0430(70)
(f) 0.888(19) 1.794(30) 0.495(13) −0.0870(38)
(g) 0.997(23) 1.820(59) 0.548(17) −0.0995(66)
(Al) 0.454(04) 0.724(25) 0.627(18) 0.0414(05)
(Cl) 0.343(07) 0.735(32) 0.466(21) 0.0222(11)
(Ch) 0.313(22) 0.776(125) 0.403(67) −0.0222(28)
(Dl) 0.153(12) 0.445(109) 0.344(91) 0.0053(17)
(Dh) 0.380(31) 1.144(88) 0.332(37) −0.0335(54)
(Eh) 0.644(15) 1.324(75) 0.487(27) −0.0834(38)
(Fh) 0.840(23) 1.468(52) 0.572(25) −0.1295(77)
(Gh) 1.005(44) 1.801(81) 0.558(28) −0.1585(103)
(Al) 0.4641(45) 0.7228(58) 0.6421(53) 0.03803(81)
(Bl) 0.341(05) 0.634(55) 0.538(45) 0.0177(22)
(Ch) 0.291(12) 0.607(232) 0.480(178) −0.0149(22)
(Dh) 0.472(07) 1.035(72) 0.456(32) −0.0469(16)
(Eh) 0.712(14) 1.136(65) 0.627(34) −0.0946(72)

tatively similar to the one for the Wilson plaquette action
which also shows the existence of the Aoki phase at strong
gauge coupling [33].

3.2 Results on a 123 × 24 lattice at β = 0.67

With a short investigation of the high-temperature phase
transition on a 123 × 6 lattice one can easily localize the
gauge coupling β and bare quark mass µκ = (2κ)−1 where
the lattice spacing is about a factor 3/2 smaller than at
β = 0.55. It turned out that one can take β = 0.67 and
κ 
 0.17. Fixing β = 0.67 and changing κ we performed
several runs on a 123 × 24 lattice. In this way the physical
volume of the lattice is approximately the same as the
one of an 83 × 16 lattice at β = 0.55. In order to be able
to compare with the results of [1], besides the runs with
µ = 0, at this β we also considered a non-vanishing twisted
mass µ = 0.01.

First we looked also here at µ = 0 for a signal of
metastability in the average plaquette and we found it
near κ = 0.167–0.168, as it is shown by the upper panel
of Fig. 4. Note that the average plaquette values are sub-
stantially higher here than at β = 5.2 with the Wilson pla-
quette gauge action in [1]: Aplaq ≡ 〈 1

3Re Tr Uplaq〉 
 0.59
instead of Aplaq 
 0.52. This qualitatively shows that the
gauge field with DBW2 is smoother.

We also determined the pion, ρ-meson and quark
masses, with the results given in Table 2. (For a graphical
representation of some of these results see also the upper
panels of Fig. 5.) For the extraction of r0/a we performed
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Fig. 4. The average plaquette at β = 0.67 on a 123 ×24 lattice
as a function of the hopping parameter κ: upper panel µ = 0
and lower panel µ = 0.01, respectively

only a statistical analysis also here, neglecting the system-
atic effects. Let us give a range of values for the runs in
Table 2. For Al to Dl we find 2.37 < r0/a < 2.76 in the low
and for Ch to Gh 2.72 < r0/a < 3.17 in the high plaquette
phases, respectively. For Al, Bl we find 2.39 < r0/a < 2.54
in the low and for Ch to Eh we find 2.89 < r0/a < 3.07 in
the high plaquette phase.

From the values of the scale parameter r0/a we deter-
mined the lattice spacing, and found a 
 0.18–0.21 fm in
the positive and a 
 0.16–0.18 fm in the negative quark
mass phase, respectively. This is quite close to the values
obtained in both phases with the Wilson plaquette gauge
action at β = 5.2 in [1].

Going to the positive twisted mass µ = 0.01, the
metastability in the average plaquette disappears on our
123 ×24 lattice, as it is shown by the lower panel of Fig. 4.
Having in mind the strong metastability signal in the aver-
age plaquette observed on a 123×24 lattice at β = 5.2 and
µ = 0.01 with the Wilson plaquette gauge action in [1], the
absence of the metastability here signals a dramatic im-
provement of the phase structure due to the DBW2 gauge
action. The presence of metastability at µ = 0 and the ab-
sence of it at µ = 0.01 indicates the existence of a rather
short first order phase transition line near the origin in the
(µκ, µ)-plane. Of course, for a precise localization of the
first order phase transition line a detailed study of the in-
finite volume limit is required, which is beyond the scope
of this paper.

An important question is the minimal value of the pion
mass mmin

π associated to the first order phase transition
line. A precise definition of mmin

π could be the value of
the infinite volume pion mass just at the position of the
first order phase transition, defined by the equal depth of
the two free energy minima in the infinite volume limit.
To obtain this would be rather demanding. Although the
volume dependence could be studied beyond our volume
extension of L 
 2.4 fm, for instance on a 163 × 32 lattice,
the precise comparison of the free energy minima would be
quite difficult. An approximate determination of mmin

π can
be obtained by requiring the equality of the pion mass in
lattice units amπ in the two phases on our 123×24 lattices.
For this a linear extrapolation of (amπ)2 from the points
on both sides of the phase transition can be considered.
As shown in the upper left panel of Fig. 5, our result at
µ = 0 is (amπ)2 = 0.0881. This implies, with the range
of r0 values given above, that mmin

π 
 251 MeV in the
positive quark mass phase and mmin

π 
 374 MeV in the
phase with negative quark mass.

The minimal charged pion mass at µ = 0.01 is mmin
π 


360 MeV (see the lower left panel of Fig. 5). This originates
from the non-zero value of the twisted quark mass and not
from the presence of a first order phase transition.

In the right panels of Fig. 5 the bare quark mass in
lattice units is shown. The dashed lines are linear fits to
the points with positive and negative quark mass, respec-
tively. At zero twisted mass (upper panel) the metastabil-
ity region near the first order phase transition is clearly
displayed. At µ = 0.01 (lower panel) the difference be-
tween the two dashed lines is smaller. This difference may
be interpreted as a consequence of a cross-over in the con-
tinuation of the first order phase transition line. In the
figure there is also a linear fit to all points shown (full
line) which goes reasonably close to every point. The two
dashed lines also give lower and upper bound estimates
for the critical hopping parameter: 0.1661 ≤ κcr ≤ 0.1689.
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Fig. 5. Results of the numerical simulation on a 123 × 24 lattice at β = 0.67 as a function of µκ = (2κ)−1: upper panels µ = 0,
lower panels µ = 0.01. Left panels: (amπ)2, right panels: the bare PCAC quark mass amPCAC
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fits to the points in the positive and negative quark mass phase, respectively. The horizontal line in the upper left panel shows
the estimated value of the minimal pion mass in lattice units. The straight lines in the right panels are explained in the text

Another way to estimate the critical hopping parame-
ter (i.e. critical bare untwisted quark mass) is to determine
the twist angle and find κcr = (2µκcr)

−1 where it equals
π/2. Considering, for definiteness, the twist angle ωV de-
fined in Sect. 2.2, the fit in Fig. 6 gives κcr = 0.16651(2),
in good agreement with the previous estimate. (Actu-
ally the numbers in Fig. 6 come from the vector Ward
identity (13) but, within errors, (15) gives compatible re-
sults.) The Z-parameter appearing in this fit for ωV is
ZoV ≡ ZAZS/(ZV ZP ) (see Sect. 2.2 and [10]). According
to Fig. 6 we have ZoV = 0.959(30). Since from an analo-
gous fit to ωA one could determine ZoA ≡ ZV ZS/(ZAZP ),
this also offers a relatively easy way to obtain the Z-
parameter combinations ZA/ZV and ZP /ZS .

The quantities (r0mπ)2 and amPCAC
χ can also be plot-

ted against each other (see Figs. 7 and 8 for µ = 0 and
µ = 0.01, respectively). Figure 7 and the data in Table 2
show that at µ = 0, in the metastable region beyond the
minimal pion mass, one can also reach values close to the
physical value mπ 
 140 MeV.

3.3 Topological charge

The RGI gauge actions, and in particular the DBW2 ac-
tion, are known to slow down the transitions between dif-
ferent topological sectors both in quenched [16] and in
dynamical domain wall simulations [20]. In order to check
this we determined the topological charge Qtop in some of
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the runs using a cooling method [34]. In the following we
denote the result from the cooling analysis by “topolog-
ical charge”, being aware of the fact that this definition
contains some degree of arbitrariness. However, for our
aim of testing the autocorrelation time this definition is
sufficient.

In the run with label (Ch) (123 × 24 lattice, β = 0.67,
µ = 0.01, κ = 0.167) the history of the topological charge
is shown in the upper panel of Fig. 9. (The lower panel is a
histogram of Qtop.) The analyzed configurations are sepa-
rated by 10 TSMB update cycles. In this point, according
to Table 2, the quark mass is about mq 
 0.3 mstrange and
the pion mass mπ 
 380 MeV. As the figure shows, the
topological charge is often changed. Its integrated auto-
correlation in this run is τ top

int 
 180, but there is obviously
a long tail of the autocorrelation which is not yet properly
taken into account in a run of this length. In any case, τ top

int
is substantially longer than those of the average plaquette
(τplaq

int 
 22) or of the pion mass (τmπ

int 
 6) in Table 3.
In another run, the one with label (Cl) (123 × 24 lat-

tice, β = 0.67, µ = 0, κ = 0.167), where the quark mass
is about mq 
 0.18 mstrange and the pion mass mπ 

295 MeV, the general picture is similar to Fig. 9. The inte-
grated autocorrelation here comes out to be τ top

int 
 70, but
this value is even less reliable because the run is shorter.

In spite of these relatively long autocorrelations, it is
clear that in a sufficiently long run, say of length 1000 τmπ

int ,
which would be needed anyway for a good statistics on
other quantities, the different topological sectors could be
properly sampled by the TSMB algorithm. Therefore, at
these bare parameter values, there is no problem with the



82 F. Farchioni et al.: Phase structure of lattice QCD

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 300 400 500 600

to
po

lo
gi

ca
l c

ha
rg

e

configuration number

123x24 lattice
β = 0.67
κ = 0.167
c1 = -1.4088
µ = 0.01

0

10

20

30

40

50

60

70

80

90

-10 -8 -6 -4 -2 0 2 4 6 8 10

nu
m

be
r 

of
 c

on
fig

ur
at

io
ns

topological charge

123x24 lattice
β = 0.67
κ = 0.167
c1 = -1.4088
µ = 0.01

Fig. 9. The topological charge on a 123 × 24 lattice at β =
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suppression of the transitions between different topologi-
cal sectors.

3.4 Results about the update algorithm

In this paper we applied the TSMB update algorithm [26].
The estimates of the autocorrelations in different runs and
the cost estimates obtained using (17) are given in Table 3.
Since in our relatively short runs the autocorrelations can
only be estimated, say, within a factor of two, the numbers
in Table 3 give only a first orientation.

Qualitatively speaking, the 123 × 24 runs with “low
plaquette” (positive quark mass) have lower costs than
the corresponding runs with “high plaquette” (negative

Table 3. The cost of an update cycle Ccycle in thousands of
MVMs according to (17) and the estimated integrated autocor-
relation lengths in update cycles obtained from runs specified
by Table 1. The suffix plaq and mπ refer to the average pla-
quette and the pion mass, respectively. The last two columns
give the factors F calculated from (19) with z = 2

run Ccycle τplaq
int τmπ

int Fplaq/106 Fmπ /106

(a) 13 152 11.9
(b) 19 100 20 3.5 0.7
(c) 30 147 < 5 1.3 < 0.04
(d) 48 12 0.001
(e) 65 167 < 5 24 < 0.7
(f) 38 95 9 33 3.1
(g) 25 32 < 5 9.5 < 1.5
(Al) 19 21 < 5 0.8 < 0.2
(Cl) 29 18 15 0.3 0.3
(Ch) 50 53 33 1.5 0.9
(Dl) 51 77 < 5 0.1 < 0.01
(Dh) 51 113 7 7.8 0.5
(Eh) 43 61 11 22 3.9
(Fh) 30 56 < 5 33.4 < 3.0
(Gh) 31 52 6 48.4 5.6
(Al) 12 143 13 5.9 0.5
(Bl) 21 41 9 0.6 0.1
(Ch) 21 22 6 0.2 0.1
(Dh) 21 72 8 7.8 0.9
(Eh) 21 29 7 12.8 3.1

quark mass): at the same absolute value of the bare quark
mass the runs in the negative quark mass phase have in
most cases at least by an order of magnitude higher costs
than those in the positive quark mass phase. The reason of
the higher cost at negative quark mass is that the smallest
eigenvalues fluctuate more frequently to very small values.

There is also a general tendency that the overall fac-
tors F decrease for decreasing absolute value of the quark
mass. In fact, the data on F show that in the small quark
mass region an inverse quark mass power z = 1 is a better
approximation than z = 2, which has been observed in
previous simulations with the Wilson plaquette gauge ac-
tion [27–30,9]. At µ = 0 the overall factor for the average
plaquette Fplaq in the parameterization

Cτint 
 F (amq)−1 Ω (22)

turns out to be Fplaq 
 2 · 107 in the positive quark mass
phase and Fplaq 
 (2–3) ·108 at negative quark mass. The
corresponding numbers at µ = 0.01 are between these two
values.

Let us note that at the smallest quark masses a fi-
nal reweighting correction has to be applied because the
smallest eigenvalues cannot be always kept in the interval
of polynomial approximations. Sometimes they fluctuate
below the lower limit ε.
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Fig. 10. Eigenvalues of the Wilson–Dirac fermion matrix (1) with small absolute value for µ = 0, β = 0.55 on an 83 ×16 lattice.
Upper left panel: κ = 0.184. Upper right panel: κ = 0.190. Lower panels: κ = 0.194 at the beginning of equilibration (left panel)
and after equilibration (right panel)

4 Eigenvalue spectra

Looking at the eigenvalue spectra of the Wilson–Dirac
fermion matrix (1) at small (untwisted) quark masses (see,
for instance, in Sect. 4 of [27]) it seems plausible that near
zero quark mass there has to be a massive rearrange-
ment of eigenvalues. This is because in the path integral
small eigenvalues are strongly supressed by the zero of the
fermion determinant. At the sign change of the quark mass
the eigenvalues have to somehow avoid the zero of the de-
terminant at the origin. It is plausible that this eigenvalue
rearrangement is related to the phase transition at zero
quark mass.

An interesting question is how the behavior of eigen-
values in the small quark mass region is influenced by a
non-zero twisted mass term.

We investigated the eigenvalue spectra by the Arnoldi
method on 83×16 and 123×24 lattices in some of the runs

listed in Table 1. Typically 100–200 eigenvalues were de-
termined on 10–30 independent gauge field configurations.
The parameters of the Arnoldi code were set for searching
the eigenvalues with the smallest absolute value.

The results at µ = 0 on an 83 × 16 lattice are shown
by Fig. 10. In the upper panels of the figure, where the
quark mass is positive, typical “half-moons” filled with
eigenvalues can be seen, which correspond to the figures in
[27]. At negative quark mass – in the lower part of Fig. 10
– an almost empty segment in the middle of the “half-
moon” appears. Comparing the two figures at negative
quark mass one can also see how this segment is gradually
emptied during equilibration.

It is remarkable that even after equilibration there are
some real (“zero-mode“) eigenvalues on the positive axis.
Our Arnoldi code did not find in these configurations any
negative real eigenvalues. In addition, it is quite surpris-
ing that, apart from the empty segment in the middle,
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Fig. 11. Eigenvalues of the Wilson–Dirac fermion matrix (1)
with small absolute value for µ = 0.01, β = 0.55 on an 83 × 16
lattice. Upper panel: κ = 0.184, lower panel: κ = 0.186

the half-moon-shaped deformation of the eigenvalue re-
gion observed at small positive quark masses does not
disappear for small negative quark masses either.

The effect of a non-zero twisted mass on the eigenvalue
spectrum on an 83 × 16 lattice is illustrated by Fig. 11. It
can be seen that the strip around the real axis −µ ≤
Im(λ) ≤ +µ is free from eigenvalues. Let us remark that
also in presence of a non-zero twisted mass we studied
the spectrum of the operator of (1), which corresponds to
the so-called “twisted basis”. In the “physical basis” [35],
for ω = π/2, the spectrum of the Dirac operator lies in a
vertical line parallel to the imaginary axis and is shifted
from the origin by µ (exactly as in the continuum).

Going to larger β (smaller lattice spacing) the visi-
ble difference is that the “half-moons” are straightened
and come closer to the origin; see Fig. 12. Otherwise most
qualitative features are unchanged. There is, however, a
marked difference in the number of real eigenvalues (for
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Fig. 12. Eigenvalues of the Wilson–Dirac fermion matrix (1)
with small absolute value at β = 0.67, κ = 0.168 on a 123 ×24
lattice. Upper panel: µ = 0, “low plaquette”; lower panel: µ =
0, “high plaquette”

µ = 0): in the upper panels of Fig. 10 there are lots of
them, whereas at larger β, in the upper panel of Fig. 12,
their number is substantially reduced.

The effect of changing the gauge action can be seen
by comparing Fig. 12 with the eigenvalue spectra in case
of the Wilson plaquette gauge action at a similar lattice
spacing a 
 0.2 fm in Fig. 13. The fact that in the case of
using the Wilson gauge action the pion mass is larger than
in the case of the DBW2 action is reflected by a movement
of the ”half-moons” farther away from the origin.

5 Conclusion

The main conclusion of this paper is that, indeed, exchang-
ing the Wilson plaquette gauge action with the (renormal-
ization group improved) DBW2 action shows substantial
effects on the phase structure. We performed a qualitative



F. Farchioni et al.: Phase structure of lattice QCD 85

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Im
λ

Re λ

123 x 24 lattice
β = 5.20
κ = 0.1715
c1 = 0
µ=0.01

high plaq. phase
low plaq. phase

Fig. 13. Eigenvalues of the Wilson–Dirac fermion matrix with
small absolute value in case of the Wilson plaquette action at
β = 5.20, µ = 0.01, κ = 0.1715 on a 123 × 24 lattice. Both
“high plaquette” and “low plaquette” spectra are shown

study of the phase structure of lattice QCD by changing
the gauge action and compared the Wilson plaquette and
DBW2 actions at a lattice spacing a 
 0.2 fm in the posi-
tive quark mass phase and a 
 0.17 fm in the phase with
negative quark mass. This means: at β = 5.2 for the Wil-
son plaquette action and β = 0.67 for the DBW2 action.
At this comparable situation the metastability signaled
by the existence of long living states with different aver-
age plaquette value and quark masses with opposite sign
becomes weaker and the minimal pion mass and the jump
in the average plaquette between the phases with positive
and negative quark mass decrease.

For vanishing twisted mass µ = 0 the metastability oc-
curs in the hopping parameter range 0.167 ≤ κ ≤ 0.168.
Going to the twisted mass value µ = 0.01, which is the
same as in the numerical simulations of [1,8], the metasta-
bility disappears on our 123×24 lattices. It might reappear
on larger lattices, but our 123 × 24 data indicate that the
jump in the average plaquette is at least by a factor of ten
smaller than the one observed in [1].

At a lower β value, β = 0.55, which corresponds to
lattice spacings a 
 0.30 fm and a 
 0.23 fm for posi-
tive and negative quark mass, respectively, our simulation
data are consistent with the existence of the Aoki phase.
This is similar to the situation for β ≤ 4.6 in case of the
Wilson plaquette action [33]. The schematic picture of the
suggested phase diagram in the (β, κ, µ) space, both for
DBW2 and Wilson plaquette gauge actions, is shown by
Fig. 14.

The minimal pion mass in a stable phase can be esti-
mated from our simulation data at β = 0.67 and vanishing
twisted mass on a 123 × 24 lattice to be mmin

π 
 250 MeV

β

µ

κ = (2µκ)-1

β1

Fig. 14. The schematic view of the phase transitions in the
(β, κ, µ) space for Wilson quarks with both DBW2 and Wil-
son plaquette gauge action (β is the bare gauge coupling, κ is
the hopping parameter, µ is the bare twisted quark mass, and
µκ ≡ (2κ)−1 is the bare untwisted quark mass.) The crosses
mark the second order boundary line of the first order phase
transition surface. At strong gauge coupling there is the sur-
face containing the Aoki phase, which ends at a point denoted
by β = β1. The figure does not extend down to β = 0 and only
one “finger” of the Aoki phase is shown

in the positive quark mass phase and mmin
π 
 375 MeV in

the phase with negative quark mass. On larger lattices this
value is expected to be 10–20% smaller due to the finite
volume effects which are non-negligible on the 123×24 lat-
tice, especially in the negative quark mass phase where the
lattice extension is only L 
 2.0 fm. At positive twisted
mass µ = 0.01 the estimate for the minimal charged pion
mass is mmin

π 
 360 MeV, a value entirely due to the non-
zero twisted mass and not to the first order phase transi-
tion.

Besides the pion- and ρ-meson masses, at non-
vanishing twisted mass, we also determined the twist an-
gle ωV as a function of the bare untwisted quark mass
µκ. The µκ-dependence of ωV can be well described by
the expected arctan-function (see Fig. 6). From the fit
one obtains the value of the critical hopping parameter
κcr = 0.16651(2) and an estimate of a combination of Z-
factors.

In some of the simulation runs we also monitored the
history of the topological charge (see, for instance, Fig. 9).
Although the autocorrelation of the topological charge is
markedly longer than those of the average plaquette or of
the pion mass, in a good statistics run with, say, thousand
times the integrated autocorrelation length of the pion
mass, the different topological sectors could be properly
sampled.
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In order to illustrate the rearrangement of the small
eigenvalues near the zero quark mass phase transition we
investigated in some detail the eigenvalue spectrum of the
non-hermitean fermion matrix defined in (1). To our sur-
prise, the transition from positive to negative quark mass
is signaled in the eigenvalue spectrum by the opening up
of an almost empty segment in the “half-moon” occupied
by the eigenvalues near the origin. The introduction of a
non-vanishing twisted mass causes the appearance of an
empty strip [−µ,+µ] on both sides of the real axis. The
effect of larger β is to straighten the “half-moon” occu-
pied by the small eigenvalues. At the same time the small
real eigenvalues at zero twisted mass, which are causing
the problem of the so-called “exceptional gauge configura-
tions” in partially quenched simulations, occur much less
frequently.

A welcome side-effect of introducing the RGI gauge ac-
tion is the speed-up of the TSMB update algorithm. (This
presumably also applies to other update algorithms, but
in this paper we only used TSMB.) This can be qualita-
tively understood by the reduction of the probability for
small size “dislocations” in the gauge field and for the
less frequent occurrence of small real eigenvalues. (This is
qualitatively similar to the conclusions of [36], obtained in
another setup.) The computational cost as a function of
the quark mass can be better approximated in the small
quark mass region by an inverse power behavior of only
(amq)−1 than by the behavior (amq)−2 observed previ-
ously with the Wilson plaquette action.

The results of the present paper indicate that the com-
bination of Nf = 2 Wilson quarks with the DBW2 gauge
action leads to a phase structure with a weaker first order
phase transition than Nf = 2 Wilson quarks with the pla-
quette gauge action at a comparable value of the lattice
spacing. For the moment we have no detailed information
on the dependence of the phase structure on the parame-
ter c1 in the gauge action which multiplies the rectangular
Wilson loops. It is possible that the optimal choice is dif-
ferent from c1 = −1.4088, for instance, c1 = −0.331 for
to the Iwasaki action or c1 = −1/12 for the tree-level
improved Symanzik action. The best choice of c1 might
also be influenced by the positivity problem of improved
actions [31] and/or by the convergence rate of lattice per-
turbation theory [37].

An important open question, which remains to be in-
vestigated in the future, is the β-dependence of the phase
structure for Wilson-type lattice fermions. It is expected
that closer to the continuum limit the minimal pion mass
and the jump in the average plaquette become smaller
and finally, in the continuum, the first order phase transi-
tion line in the plane of untwisted and twisted quark mass
shrinks to a first order phase transition point. The faster
this actually happens the better it is for phenomenolog-
ically relevant numerical QCD simulations with Wilson-
type quarks.

Another important question is whether the DBW2
gauge action in combination with Wilson twisted mass
fermions shows a good scaling behavior. To this end, a
simulation at a higher value of β than the one used here

is necessary. For the scaling studies previous experience in
the quenched approximation [38] will be very helpful. Both
questions mentioned above are presently investigated by
our collaboration.
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puter at NIC Jülich and the PC clusters at DESY Ham-
burg, NIC Zeuthen, Forschungszentrum Karlsruhe, University
of Münster and the Sun Fire SMP-Cluster at the Rechenzent-
rum - RWTH Aachen. This work was supported by the DFG
Sonderforschungsbereich/Transregio SFB/TR9-03.

References

1. F. Farchioni, R. Frezzotti, K. Jansen, I. Montvay, G.C.
Rossi, E. Scholz, A. Shindler, N. Ukita, C. Urbach, I. Wet-
zorke, Eur. Phys. J. C 39, 421 (2005); hep-lat/0406039

2. S.R. Sharpe, R. Singleton, Jr., Phys. Rev. D 58, 074501
(1998); hep-lat/9804028

3. S. Weinberg, Physica A 96, 327 (1979)
4. J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984)
5. K. Symanzik, Nucl. Phys. B 226, 187 (1983)
6. B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 72

(1985)
7. S. Aoki, Phys. Rev. D 30, 2653 (1984); Phys. Rev. Lett.

57, 3136 (1986)
8. F. Farchioni, C. Urbach, R. Frezzotti, K. Jansen, I. Mont-

vay, G.C. Rossi, E. Scholz, A. Shindler, N. Ukita, I. Wet-
zorke, Nucl. Phys. Proc. Suppl. 140, 240 (2005); hep-
lat/0409098

9. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz, Nucl. Phys.
Proc. Suppl. 83, 941 (2000); hep-lat/9909003

10. ALPHA Collaboration, R. Frezzotti, P.A. Grassi, S. Sint,
P. Weisz, JHEP 0108, 058 (2001); hep-lat/0101001

11. G. Münster, JHEP 0409, 035 (2004); hep-lat/0407006
12. S.R. Sharpe, J.M.S. Wu, Phys. Rev. D 70, 094029

(2004); hep-lat/0407025; Nucl. Phys. Proc. Suppl. 140,
323 (2005); hep-lat/0407035

13. L. Scorzato, Eur. Phys. J. C 37, 445 (2004); hep-
lat/0407023

14. CP-PACS Collaboration, A. Ali Khan et al., Phys. Rev.
D 63, 114504 (2001); hep-lat/0007014

15. RBC Collaboration, K. Orginos, Nucl. Phys. Proc. Suppl.
106, 721 (2002); hep-lat/0110074

16. Y. Aoki et al., Phys. Rev. D 69, 074504 (2004); hep-
lat/0211023

17. K. Jansen, K. Nagai, JHEP 0312, 038 (2003); hep-
lat/0305009

18. Y. Iwasaki, UTHEP-118 (1983), unpublished.
19. T. Takaishi, Phys. Rev. D 54, 1050 (1996); QCD-TARO

Collaboration, P. de Forcrand et al., Nucl. Phys. Proc.
Suppl. 53, 938 (1997); hep-lat/9608094

20. RBC Collaboration, C. Dawson, Nucl. Phys. Proc. Suppl.
128, 54 (2004); 129, 167 (2004); hep-lat/0310055; RBC
Collaboration, T. Izubuchi, Nucl. Phys. Proc. Suppl. 129,



F. Farchioni et al.: Phase structure of lattice QCD 87

266 (2004); hep-lat/0310058; L. Levkova, R. Mawhin-
ney, Nucl. Phys. Proc. Suppl. 129, 399 (2004); hep-
lat/0309122

21. JLQCD Collaboration, S. Aoki et al., Nucl. Phys. Proc.
Suppl. 106, 263 (2002); hep-lat/0110088

22. JLQCD Collaboration, S. Aoki et al., hep-lat/0409016
23. A. Ukawa, Nucl. Phys. Proc. Suppl. 53, 106 (1997); hep-

lat/9612011
24. M. Creutz, Talk given at RHIC Summer Study 96; hep-

lat/9608024
25. P. Weisz, Nucl. Phys. B 212, 1 (1983); P. Weisz, R.

Wohlert, Nucl. Phys. B 236, 397 (1984)
26. I. Montvay, Nucl. Phys. B 466, 259 (1996); hep-

lat/9510042
27. qq+q Collaboration, F. Farchioni, C. Gebert, I. Mont-

vay, L. Scorzato, Eur. Phys. J. C 26, 237 (2002); hep-
lat/0206008

28. qq+q Collaboration, F. Farchioni, C. Gebert, I. Montvay,
E Scholz, L. Scorzato, Phys. Lett. B 561, 102 (2003); hep-
lat/0302011

29. qq+q Collaboration, F. Farchioni, I. Montvay, E. Scholz,
L. Scorzato, Eur. Phys. J. C 31, 227 (2003); hep-
lat/0307002

30. qq+q Collaboration, F. Farchioni, I. Montvay, E. Scholz,
Eur. Phys. J. C 37, 197 (2004); hep-lat/0403014

31. S. Necco, Nucl. Phys. B 683, 137 (2004); hep-lat/0309017
32. R. Sommer, Nucl. Phys. B 411, 839 (1994); hep-

lat/9310022
33. E.M. Ilgenfritz, W. Kerler, M. Müller-Preussker, A. Stern-
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Abstract. Discretisation errors in two-flavour lattice QCD with Wilson quarks and DBW2 gauge action are
investigated by comparing numerical simulation data at two values of the bare gauge coupling. Both non-zero-
and zero-twisted-mass values are considered. The results, including also data from simulations using theWil-
son plaquette gauge action, are compared to next-to-leading order chiral perturbation theory formulas.

1 Introduction

The singular point of QCD at vanishing quark masses
is distorted in Wilson-type lattice formulations: as a re-
sult of lattice artefacts, in the region of small quark
masses an extended phase structure is developed. This
phase structure can be predicted and classified in chi-
ral perturbation theory (ChPT) [1] if lattice artefacts are
taken into account [2]. If, in addition to the usual quark
mass parameter, a twisted quark mass is introduced [3, 4]
then in the plane of untwisted and twisted quark mass
a first order phase transition line with second order end-
points appears. Depending on the sign of the leading term
representing lattice artefacts, the first order phase tran-
sition line is either on the untwisted quark mass axis
(“Aoki phase scenario” [3]) or perpendicular to it (“normal
scenario”) [5–7].
In numerical simulations it pays off to try to reduce lat-

tice artefacts at fixed (non-vanishing) lattice spacing by an
appropriate choice of the lattice action. An important is-
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sue in this respect is to bring the phase structure at small
quark masses as close as possible to the point-like singu-
larity appearing in the continuum limit. In fact, the strong
first order phase transition observed earlier in numerical
simulations with Wilson-type quarks [8–10] presents a se-
rious obstacle for QCD simulations with light quarks.
In previous work we systematically investigated the

phase structure of lattice QCD with twisted-mass Wilson-
type quarks (for a recent review see [11]). In [12] we have
shown that at lattice spacings near a � 0.2 fm the phase
structure with Wilson quarks and Wilson plaquette gauge
action is consistent with the “normal scenario” of ChPT.
This differs from the situation in the strong coupling
regime, where the “Aoki phase scenario” has been previ-
ously observed [13].
A consequence of the “normal scenario” is that for fixed

gauge coupling (β) the mass of charged pions have a pos-
itive lower bound (mminπ ). The numerical simulation data
in [12] have shown that this lower bound is at a � 0.2 fm
quite high, namely about 600MeV. Such a high lower
bound would prohibit the study of light quarks. There-
fore, an important question is the behaviour of this lower
bound as a function of the gauge coupling (or lattice spac-
ing) towards the continuum limit. In a subsequent paper
it has been shown [14] that, as expected, the lower bound
becomes clearly smaller for decreasing lattice spacing. Its
decrease in the range 0.20 fm≥ a≥ 0.14 fm is roughly con-
sistent with the prediction of next-to-leading order (NLO)
ChPT [2, 5–7, 15], namely mminπ ∝ a (at aµ = 0). A min-
imal pion mass of mminπ � 300MeV is estimated to occur
near a≈ 0.07–0.10 fm, but this estimate is rather uncertain
and has to be checked in future simulations if the Wilson
gauge action ought to be used. The question arises whether
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one could lower mminπ by a suitable change of the lattice
action.
An early observation by the JLQCD Collaboration has

been [9] that the strength of the first order phase transition
near zero quark mass is sensitive to a change of the gauge
action. Following this hint, we have shown in a previous
paper [16] that combining two flavours (Nf = 2) of Wilson
quarks with the DBW2 gauge action [17] leads to a phase
structure near zero quark mass with substantially weaker
first order phase transition. As a consequence, the minimal
pion mass is at least by a factor of two lower compared to
the plaquette gauge action at similar lattice spacings.
This implies that numerical simulations with light

quarks become possible on coarser lattices and hence with
much less computational costs if the DBW2 gauge action
is used. Of course, for the choice of the gauge action also
other criteria may be relevant. For instance, it has been re-
ported in quenched studies [18, 19] that in some quantities
strong scale breaking effects appear if the DBW2 action
is used. Another problem could be the late convergence of
lattice perturbation theory, implied by the results of the
QCDSF Collaboration [20].
In general, the question of the scaling behaviour of the

results obtained by a given lattice action is very import-
ant. In case of the Wilson twisted-mass formulation of
lattice QCD it has been shown [21] that the leading lattice
artefacts are of O(a2) if the bare quark masses are appro-
priately tuned. Detailed investigations have shown [22–24]
that in the quenched approximation excellent scaling be-
haviour can be achieved, indeed, also at light quarkmasses.
The same question in the full theory with dynamical
quarks is obviously very important.
In the present paper we perform first exploratory scal-

ing tests for the combination of Wilson fermion lattice
action with the DBW2 gauge action by comparing numer-
ical simulation data at two values of the gauge coupling,
namely β = 0.67 and β = 0.74. We consider data points
with both vanishing and non-vanishing value of the twisted
mass. Moreover, since one can extract useful information
on multiplicative renormalisation factors from the depen-
dence of matrix elements on the twist angle in the plane of
untwisted and twisted quark mass, we exploit this method
and derive from our simulation data the values of ZV ,
ZA and ZP /ZS. In addition, we compare the NLO-ChPT
formulas of [5–7, 15, 25] to the results of the numerical
simulations. For comparison, ChPT fits of the data ob-
tained by the Wilson plaquette gauge action [14] are also
considered.
The outline of the paper is as follows: in the next sec-

tion, after specifying the lattice action and the simula-
tion algorithms, the numerical simulation runs are dis-
cussed and some scaling tests are presented. Section 3 is
devoted to a detailed description of the results on the twist
angle in the plane of untwisted and twisted quark mass
together with an explanation how the aforementionedmul-
tiplicative renormalisation Z-factors can be determined.
The knowledge of the twist angle and Z-factors makes it
possible to obtain results on physical quantities, such as
the quark mass and the pion decay constant. In Sect. 4 the
ChPT fits of the data with DBW2 gauge action are pre-

sented. Section 5 contains a discussion and a summary. In
an appendix alternative chiral fits of the DBW2 data are
shown and compared to similar ChPT fits of Wilson pla-
quette data.

2 Numerical simulations

The lattice action and simulation algorithms are defined
here for the reader’s convenience. The notation is similar to
the one in [16].

2.1 Lattice action and simulation algorithms

We apply for quarks the lattice action of Wilson fermions,
which can be written as

Sq =
∑

x

{(
χx[µκ+iγ5τ3aµ]χx

)

−
1

2

±4∑

µ=±1

(
χx+µ̂Uxµ[r+γµ]χx

)}
. (1)

Here the (“untwisted”) bare quark mass in lattice units is
denoted by

µκ ≡ am0+4r=
1

2κ
, (2)

r is the Wilson parameter, set in our simulations to r = 1,
am0 is another convention for the bare quark mass in
lattice units and κ is the conventional hopping parame-
ter. The twisted mass in lattice units is denoted here by
aµ. (This differs from the notation in [16] where µ has
been defined without the lattice spacing factor a in front.)
Uxµ ∈ SU(3) is the gauge link variable and we also defined
Ux,−µ = U

†
x−µ̂,µ and γ−µ =−γµ.

For the SU(3) Yang–Mills gauge field we apply the
DBW2 lattice action [17] which belongs to a one-parameter
family of actions obtained by renormalisation group con-
siderations. Those actions also include, besides the usual
(1× 1) Wilson loop plaquette term, planar rectangular
(1×2) Wilson loops:

Sg = β
∑

x

(
c0

4∑

µ<ν;µ,ν=1

{
1−
1

3
Re U1×1xµν

}

+ c1

4∑

µ�=ν;µ,ν=1

{
1−
1

3
Re U1×2xµν

})
, (3)

with the condition c0 = 1−8c1. For the DBW2 action we
have c1 =−1.4088.
For preparing the sequences of gauge configurations two

different updating algorithms were used: the hybrid Monte
Carlo (HMC) algorithm [26] with multiple time scale inte-
gration and mass preconditioning as described in [27] and
the two-step multi-boson (TSMB) algorithm [28] which
has been tuned for QCD applications following [12, 29].
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2.2 Simulation parameters and a first scaling test

In our numerical simulations we considered two values of
the gauge coupling, namely β = 0.67 and β = 0.74. The
simulations at the lower β-value have been performed on
a 123 ·24 lattice as in [16]. The higher β-value (β = 0.74)
was chosen in such a way that the physical volume of the
163 · 32 lattice remains approximately the same; that is,
a(β = 0.74)� 3

4a(β = 0.67). The value of the lattice spac-
ing was defined by extrapolating the Sommer scale pa-
rameter in lattice units r0/a [30] to zero quark mass and
assuming r0 ≡ 0.5 fm. The simulation parameters and the
amount of statistics are specified in Table 1.
As Table 1 shows, both zero- and non-zero-twisted-

mass points were simulated. The non-zero values of the
twisted mass were also chosen according to the assumed
scale ratio; that is, aµ(β =0.74)= 34 aµ(β =0.67)= 0.0075.
In other words, the bare twisted mass µ is kept (approxi-
mately) constant.
In several points of the parameter space simulation runs

have been performed with both the HMC and the TSMB
updating algorithms. Having run the two algorithms in the
same points allowed one to compare their performance.
It turned out that the optimised HMC algorithm of [27]
is substantially faster than TSMB. For instance, in long
runs at the simulation point (A) (163 ·32 lattice, β = 0.74,
κ = 0.1580, aµ = 0) HMC with multiple time scale inte-
gration and mass preconditioning is almost by a factor of
10 faster. Therefore, in the majority of simulation points
the final data analysis is based on HMC runs. Results from
TSMB updating were only used in the runs of the first part
of Table 1 (those at β = 0.67 and aµ = 0). Even if results
with both updating algorithms were available in several
other points, in the final analysis we never mixed results
from different updating procedures.

Table 2. The results for the scale parameter (r0/a), the pseudoscalar (“pion”) mass
amπ and the vector-meson (“ρ-meson”) mass amρ

run r0/a amπ am� mπ/m� r0mπ (r0mπ)
2

(a) 2.305(36) 0.4468(30) 0.7025(44) 0.6359(51) 1.030(19) 1.061(38)
(b) 2.391(56) 0.4085(55) 0.7007(79) 0.5831(66) 0.977(23) 0.954(44)
(c) 2.351(27) 0.3619(27) 0.629(10) 0.5747(84) 0.850(11) 0.724(19)
(d) 2.652(38) 0.235(12) 0.595(22) 0.396(18) 0.623(30) 0.389(37)

(a′) 2.347(26) 0.4540(24) 0.7026(46) 0.6461(47) 1.065(12) 1.135(25)
(b′) 2.415(24) 0.3981(40) 0.6808(66) 0.5847(61) 0.9618(25) 0.925(18)
(c′) 2.503(29) 0.3449(40) 0.662(11) 0.520(10) 0.863(11) 0.745(18)
(d′) 2.867(29) 0.2793(26) 0.654(45) 0.426(30) 0.801(16) 0.641(26)
(e′) 3.127(31) 0.2937(32) 0.807(64) 0.363(29) 0.918(14) 0.844(25)
(f ′) 3.279(36) 0.3706(50) 0.913(72) 0.403(33) 1.215(23) 1.477(57)
(g′) 3.261(31) 0.4514(84) 1.013(82) 0.444(36) 1.472(30) 2.168(88)

(A) 3.563(33) 0.3038(15) 0.5256(37) 0.5780(41) 1.082(11) 1.172(23)
(B) 3.741(90) 0.2250(29) 0.491(14) 0.457(13) 0.843(22) 0.711(36)

(A′) 3.467(51) 0.3107(24) 0.5354(71) 0.5803(78) 1.077(17) 1.161(36)
(B′) 3.78(10) 0.2429(36) 0.537(21) 0.451(18) 0.920(25) 0.846(46)
(C′) 3.87(10) 0.1954(22) 0.57(14) 0.337(79) 0.756(31) 0.572(48)
(D′) 4.148(65) 0.2620(38) 0.639(73) 0.409(48) 1.086(24) 1.181(52)

Table 1. Run parameters: the gauge coupling (β), the twisted
mass in lattice units (aµ), the hopping parameter (κ) and the
lattice size. The last column shows the number of gauge config-
urations used in the data analysis

run β aµ κ L3×T Nconf

(a) 0.67 0 0.1650 123×24 4514

(b) 0.67 0 0.1655 123×24 2590

(c) 0.67 0 0.1660 123×24 2589

(d) 0.67 0 0.1665 123×24 1721

(a′) 0.67 0.01 0.1650 123×24 600

(b′) 0.67 0.01 0.1655 123×24 620

(c′) 0.67 0.01 0.1660 123×24 509

(d′) 0.67 0.01 0.1665 123×24 570

(e′) 0.67 0.01 0.1670 123×24 584

(f ′) 0.67 0.01 0.1675 123×24 499

(g′) 0.67 0.01 0.1680 123×24 606

(A) 0.74 0 0.1580 163×32 1319

(B) 0.74 0 0.1585 163×32 419

(A′) 0.74 0.0075 0.1580 163×32 430

(B′) 0.74 0.0075 0.1585 163×32 296

(C′) 0.74 0.0075 0.1590 163×32 353

(D′) 0.74 0.0075 0.1595 163×32 352

The results for some basic quantities are collected in Ta-
bles 2 and 3. The pseudoscalar meson (“pion”) mass amπ
is obtained from the correlator of the charged pseudoscalar
density

P±x = χ̄x
τ±

2
γ5χx , (4)
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Table 3. The results for the PCAC quark mass (amPCACχ ) and pseudoscalar
(“pion”) decay constant (afχπ)

run amPCACχ r0m
PCAC
χ afχπ r0fχπ

(a) 0.03884(22) 0.0895(14) 0.18567(90) 0.4279(62)
(b) 0.03224(71) 0.0771(18) 0.1798(17) 0.4301(98)
(c) 0.02247(80) 0.0528(20) 0.1553(27) 0.3653(75)
(d) 0.00972(43) 0.0258(11) 0.1369(65) 0.363(18)

(a′) 0.03801(63) 0.0892(16) 0.05774(88) 0.1355(25)
(b′) 0.02791(65) 0.0674(16) 0.0520(11) 0.1257(28)
(c′) 0.01846(99) 0.0462(22) 0.0442(20) 0.1107(44)
(d′) 0.00505(82) 0.0145(22) 0.0174(26) 0.0499(75)
(e′) −0.0109(2) −0.0341(37) −0.0354(37) −0.110(12)
(f ′) −0.0252(18) −0.0829(62) −0.0562(44) −0.184(15)
(g′) −0.0409(17) −0.1336(56) −0.0683(30) −0.2229(98)

(A) 0.02313(23) 0.0824(10) 0.1243(12) 0.4429(58)
(B) 0.01251(43) 0.0469(24) 0.1124(37) 0.420(22)

(A′) 0.02247(33) 0.0779(16) 0.03645(60) 0.1264(28)
(B′) 0.01093(49) 0.0414(21) 0.0266(12) 0.1007(46)
(C′) −0.00120(18) −0.0046(29) −0.0043(18) −0.016(11)
(D′) −0.01635(66) −0.06783(29) −0.0361(16) −0.1500(71)

where τ± ≡ τ1± iτ2. In case of the vector meson (“ρ-
meson”) mass amρ, for generic values of the bare untwisted
and twisted quark mass, the correlators of both vector
(V axµ) and axial-vector (A

a
xµ) bilinears of the χ-fields can be

used:

V axµ ≡ χx
1

2
τaγµχx ,

Aaxµ ≡ χx
1

2
τaγµγ5χx (a= 1, 2) . (5)

The reason is that the physical vector current is, in gen-
eral, a linear combination of V axµ and A

a
xµ (see Sect. 3). In

a given simulation point we determined amρ from the cor-
relator possessing the better signal.
In Table 3 the values of the bare (untwisted) PCAC

quark mass amPCACχ are also given. It is defined by the
PCAC-relation containing the axial-vector current Aaxµ
in (5) and the pseudoscalar density P±x :

amPCACχ ≡

〈
∂∗µA

+
xµ P

−
y

〉

2
〈
P+x P

−
y

〉 . (6)

Here ∂∗µ denotes, as usual, the backward lattice derivative.
Besides amPCACχ , Table 3 also contains the values of

the bare “untwisted” pseudoscalar decay constant afχπ de-
fined by

afχπ ≡ (amπ)
−1
〈
0
∣∣A+x=0,0

∣∣π−
〉
. (7)

The relation of the bare (untwisted) quantities amPCACχ

and afχπ to the corresponding physical quantities will be
discussed in the following section.
The squared ratio of the pion mass to the ρ-meson

mass is plotted in Fig. 1 as a function of (r0mπ)
2, both of

which are expected to be approximately proportional to

the quark mass for small quark masses. (This holds if the
effect of the “chiral logarithms” is negligible in the quark
mass depedence of m2π and if r0 is approximately constant
near zero as a function of the quark mass.) The straight
line in the figure connects the origin and the point with
the physical valuesmπ = 140MeV,mρ= 770MeV and r0 =

Fig. 1. The squared pion to ρ-meson mass ratio (mπ/mρ)
2 ver-

sus (r0mπ)
2. Only simulation points with positive quark mass

are considered. The physical point is shown by an asterisk .
The straight line connecting the origin with it is the continuum
expectation for small quark masses where both quantities are
approximately proportional to the quark mass
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0.5 fm. As the figure shows, in this plot there are observ-
able scale breaking effects between β = 0.67 and β = 0.74,
but the β = 0.74 points are already close to the continuum
expectation. Within the (large) statistical errors there is
no noticeable difference between the points with vanishing
and non-vanishing twisted mass. (According to Table 9 the
twisted-mass values are given by r0µ = 0.02845(68) and
r0µ= 0.0283(15) for β = 0.67 and β = 0.74, respectively.)

3 Twist angle and renormalisation factors

3.1 Twist angle

In this section we discuss the determination of the twist
angle ω. For given (µκ, aµ) this is defined as the rotation
angle relating twisted-mass QCD (TMQCD) to the physi-
cal theory QCD. An important point is that the connection
can be made only after (lattice) renormalisation of the the-
ory. The renormalisation of the local bilinears in the Wil-
son twisted-mass formulation is therefore involved. Some
of the arguments of this section were already discussed in
previous publications of this collaboration [16, 31].
Following [32] we operationally define [16, 31] the twist

angle ω as the chiral rotation angle between the renor-
malised (physical) chiral currents and the corresponding
bilinears of the twisted formulation. We denote with V̂ axµ
and Âaxµ the physical vector and axial-vector currents,
while V axµ and A

a
xµ are the bilinears of the χ-fields defined

in (5). In order to establish the correspondence with the
physical currents, the bilinears of the χ-fields have to be
properly renormalised. This is obtained, as in QCD, by
multiplying them by the respective renormalisation con-
stants ZV and ZA. In a mass independent scheme these are
functions of β alone and coincide with the analogous quan-
tities in Wilson lattice QCD for the same value of β. So the
relation reads

V̂ axµ = ZV V
a
xµ cosω+ εabZAA

b
xµ sinω , (8)

Âaxµ = ZAA
a
xµ cosω+ εabZV V

b
xµ sinω , (9)

where only charged currents are considered (a= 1, 2) and
εab is the antisymmetric unit tensor.
The conserved vector current of the χ-fields

Ṽ axµ ≡
1

4

(
χx+µτa Uxµ(γµ+ r)χx+χxτa U

†
xµ(γµ− r)χx+µ

)

(10)

satisfies by construction the correctWard–Takahashi iden-
tity of the continuum. In this case (8) and (9) apply with
ZV replaced by 1; in particular,

Âaxµ = ZA A
a
xµ cosω+ εabṼ

b
xµ sinω . (11)

In practical applications it is useful to define two fur-
ther angles ωV and ωA:

ωV = arctan(ZAZ
−1
V tanω) ,

ωA = arctan(ZV Z
−1
A tanω) . (12)

In terms of ωV and ωA, (8) and (9) read

V̂ axµ =NV (cosωV V
a
xµ+ εab sinωVA

b
xµ) , (13)

Âaxµ =NA (cosωAA
a
xµ+ εab sinωAV

b
xµ) . (14)

The unknownmultiplicative renormalisations are now con-
tained in an overall factor (X = V,A):

NX =
ZX

cosωX
√
1+tanωV tanωA

. (15)

From the definition (12) it follows that

ω = arctan
(√
tanωV tanωA

)
(16)

ZA

ZV
=
√
tanωV / tanωA . (17)

As already proposed in [16, 31], we determine the twist
angle ω by imposing parity-restoration (up to O(a) preci-
sion) for matrix elements of the physical currents. Due to
the presence of unknown lattice renormalisations, two con-
ditions are required. The most suitable choice in the case of
the vector current is

∑

x

〈
V̂ +x0 P

−
y

〉
= 0 . (18)

Indeed, for asymptotic times, the pion state dominates the
matrix element1 and the condition reads

〈
0
∣∣V̂ +x0
∣∣π−
〉
= 0 . (19)

In case of the axial-vector current we choose the condition2

∑

x,i

〈
Â+xiV̂

−
xi

〉
= 0 (20)

or asymptotically

〈
0
∣∣Â+xi
∣∣ρ−
〉
= 0 . (21)

In terms of (13) and (14), (18) and (20) admit the solution

tanωV =−i

∑
x

〈
V +x0P

−
y

〉
∑
x

〈
A+x0P

−
y

〉 , (22)

tanωA =
−i
∑
x,i

〈
A+xiV

−
yi

〉
+tanωV

∑
x,i

〈
A+xiA

−
yi

〉
∑
x,i

〈
V +xiV

−
yi

〉
+i tanωV

∑
x,i

〈
V +xiA

−
yi

〉 .

(23)

1 At small time separations, due to the O(a) breaking of
parity, intermediate states with “wrong” parity may still play
a role.
2 In [16, 31] the use of the temporal component for the cur-
rents was proposed. This choice is however not optimal: a scalar
state with positive parity dominates in this case the matrix
element in the continuum limit, but at finite lattice spacing
the O(a) breaking of parity introduces contamination by pion
intermediate states which eventually dominate for light quark
masses.
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Equations (16), (17), (22) and (23) allow for the numerical
determination of ω and of the ratio ZA/ZV .
It is obvious that the definition of the twist angle in

the lattice theory is subject to O(a) ambiguities. Differ-
ent choices of the parity-restoration conditions, including
also the form of the lattice currents, result in different def-
initions of the twist angle differing by O(a) terms. The
situation of full twist corresponds to ω = ωV = ωA = π/2.
Numerically it is most convenient to use ωV = π/2 as a cri-
terion. The reason is that a safe determination of the twist
angle is obtained in the asymptotic regime where the light-
est particle dominates as intermediate state. This is the
pseudoscalar state in the case of ωV which, as one would
expect, delivers a better signal than the vector meson in
case of ωA. Therefore we impose [16, 31]

ωV =
π

2
⇐⇒

∑

x

〈
A+x0P

−
y

〉
= 0 (24)

or asymptotically

〈
0|A+x0|π

−
〉
= 0 , (25)

and we denote by µκcr the corresponding value of µκ for the
given µ.
Another possible determination of ωV is obtained by

replacing in (22) the currents with their divergences. For
simplicity, we consider the case of the conserved vector cur-
rent which avoids the introduction of a renormalisation
constant:

cot ω̃V = i

∑
x

〈
∂∗µA

+
xµP

−
y

〉
∑
x

〈
∂∗µṼ

+
xµP

−
y

〉 =
mPCACχ

µ
. (26)

Here in the last step [7, 15] the Ward identity for the con-
served vector current

∂∗µṼ
+
xµ = 2iµP

+
x (27)

and the definition (6) of the “untwisted” PCAC quark

massmPCACχ have been used. If the local vector current de-
fined in (5) is used for the determination of ωV instead of
the conserved one, in (26) the introduction of the renormal-
isation constant ZV is required. In this case one has

cotωV = i

∑
x

〈
∂∗µA

+
xµP

−
y

〉
∑
x

〈
∂∗µV

+
xµP

−
y

〉 = ZV
mPCACχ

µ
, (28)

where ZV is determined as explained in the next subsec-
tion. Using the definition (12) for ωV one arrives at the
following relation involving this time the twist angle ω:

cotω = ZA
mPCACχ

µ
. (29)

Notice that the factor ZV cancels in this relation, which is,
therefore, independent of the choice for the vector current
employed for the determination of the twist angle ω.
One can simply show that the two determinations of ωV

given by (22) and (28) coincide under the assumption that

the ratio of the correlators is independent of the time sepa-
ration; this is in particular true for asymptotic times where
the pion dominates.
To have an effective automatic O(a) improvement,

meaning without large O(a2) effects, the critical line
(µκcr(a, µ), µ) has to be fixed in such a way that the lattice
definition of the untwisted quarkmass (e.g.mPCACχ defined
above) is free, on that line, from mass independent O(a)
errors. For a definition of the critical line where this condi-
tion is not necessarily satisfied, one has to make sure that
µ > aΛ2.
The issue of the choice of the critical untwisted mass

has been raised by the work of Aoki and Bär [33] and
by the numerical results obtained in [34]. This problem
has been further analysed in several aspects [15, 35, 36].
In [15, 33, 36] the theoretical framework is twisted-mass
chiral perturbation theory (tmChPT) [25] where the cutoff
effects are included in the chiral lagrangian along the lines
of [2, 46]. The works [15, 33] agree on the fact that choos-
ing the critical mass by imposingmPCACχ = 0 (or ωV = π/2)
allows one to have automatic O(a) improvement down to
quark masses that fulfill µ� a2Λ3. In [35] a Symanzik ex-
pansion was performed (in an approach different from that
of [15, 33], cf. [15] for a discussion) confirming the results
of [15, 33]. For a discussion of these issues in numerical
studies within the quenched approximation see [22–24]
and the review [11].

3.2 Determination of ZV

We adopt here the procedure well known in QCD which
relies on the non-renormalisation property of the con-
served current Ṽxµ [38]. A possible determination of ZV in
TMQCD is given by

Z
(1)
V =

〈
0|Ṽ +x=0,0|π

−
〉

〈
0|V +x=0,0|π

−
〉 . (30)

Note that in TMQCD the time component of the vector
current couples the vacuum to the pseudoscalar particle:
in the most interesting region near full twist this coupling
is maximal. (Note that at aµ= 0 the analogous procedure
has to rely on the noisier matrix element with the vector
particle or on three point functions.) Alternatively ZV can
be determined without direct use of the conserved current
by exploiting the (exact) Ward identity for the vector cur-
rent. This implies [39]

〈
0|Ṽ +x=0,0|π

−
〉
=
−2iµ

mπ

〈
0|P+x=0|π

−
〉
. (31)

Inserting the above relation in (30) a second determination
of ZV is obtained:

Z
(2)
V =

−2iµ
〈
0|P+x=0|π

−
〉

mπ
〈
0|V +x=0,0|π

−
〉 . (32)

Z
(1)
V and Z

(2)
V (differing by O(a) terms) are mass de-

pendent renormalisations. We obtain a mass independent
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determination of ZV by extrapolating Z
(i)
V to full twist

(mPCACχ = 0). In this situation the theory isO(a) improved

and the Z
(i)
V deliver an estimate of ZV with O(a

2) error
(also including O((µa)2) terms).

3.3 Physical quantities

The knowledge of the twist angle ω allows for the deriva-
tion of physical quantities of interest in QCD for a generic
choice of (µκ, aµ). Let us consider the case of the quark
mass and the pion decay constant. It is convenient [22,
39, 40] here to use the conserved vector current since it
possesses already the right continuum normalisation. The
physical PCAC quark mass mPCACq can be obtained from
the Ward identity for the physical axial-vector current:

〈
∂∗µÂ

+
xµP

−
y

〉
= 2amPCACq

〈
P+x P

−
y

〉
. (33)

We use (8) in order to eliminate Aaxµ in (11) for ω 
= 0

Âaxµ =−εabV̂
b
xµ cotω+ εabṼ

b
xµ(sinω)

−1 (34)

and insert the result in theWard identity (33) using isospin
invariance for V̂ axµ. As a result we obtain

amPCACq =
−i

2 sinω

〈
∂∗µṼ

+
xµP

−
y

〉
〈
P+x P

−
y

〉 = µ

sinω
, (35)

where in the last step we used once again the Ward iden-
tity (27). Inserting (29) into the last expression in the
above equation, we arrive at the following relation for the
untwisted quark mass:

mPCACχ =mPCACq Z−1A cosω . (36)

In the remainder we shall also make use of a definition of
the untwisted quark mass which already incorporates the
renormalisation factor of the axial current:

m̄PCACχ =mPCACq cosω = ZAm
PCAC
χ . (37)

Analogously, for the physical pion decay constant fπ we
use

afπ = (amπ)
−1
〈
0|Â+x=0,0|π

−
〉

=−i(amπ sinω)
−1
〈
0|Ṽ +x=0,0|π

−
〉
. (38)

Also here the matrix element on the right hand side can be
replaced by the matrix element of the pseudoscalar density
as in (31) giving

afπ =
−2aµ

(amπ)2 sinω

〈
0|P+x=0|π

−
〉
. (39)

Let us note that here the normalisation of fπ corresponds
to a phenomenological value ≈ 130MeV. If the local vector
current is used in (38) instead of the conserved one, a factor
ZV is missing:

afvπ =−i(amπ sinω)
−1
〈
0|V +x=0,0|π

−
〉
,

fvπ = Z
−1
V fπ . (40)

3.4 Results

In Fig. 2 the local determination of ωV and ωA is shown
as a function of the time separation for a specific simula-
tion point at positive untwisted quark mass. The numer-
ical values of the twist angles ωV , ωA and ω are reported
in Table 4. Notice that the simulation point at β = 0.74 and
κ= 0.159 is almost at full twist.
Figures 3 and 4 show the determinations of µκcr by ex-

trapolatingmPCACχ and cotωV to zero. The theoretical de-
pendence of the twist angle upon the untwisted bare quark
mass µκ can be obtained [16] by starting from [37]

cotω =
mχR

µR
+O(a) , (41)

Fig. 2. Determination of tanωV and tanωA as in (22) and (23)
for the point (a′). The lines represent the fitted values

Table 4. The twist angles ω, ωV and ωA, as defined in (8), (9)
and (12), determined by (22), (23) and (16)

β aµ κ ωV /π ωA/π ω/π

0.67 1.0 ·10−2 0.1650 0.1352(13) 0.0564(17) 0.0883(13)

0.67 1.0 ·10−2 0.1655 0.1772(29) 0.0771(27) 0.1190(25)

0.67 1.0 ·10−2 0.1660 0.2412(62) 0.1069(41) 0.1661(54)

0.67 1.0 ·10−2 0.1665 0.411(12) 0.229(17) 0.334(17)

0.67 1.0 ·10−2 0.1670 0.678(12) 0.622(16) 0.647(11)

0.67 1.0 ·10−2 0.1675 0.8053(86) 0.826(13) 0.8137(80)

0.67 1.0 ·10−2 0.1680 0.8709(43) 0.843(23) 0.857(11)

0.74 7.5 ·10−3 0.1580 0.1542(26) 0.0722(38) 0.1076(31)

0.74 7.5 ·10−3 0.1585 0.2613(66) 0.1393(96) 0.1963(77)

0.74 7.5 ·10−3 0.1590 0.532(12) 0.582(37) 0.5544(92)

0.74 7.5 ·10−3 0.1597 0.7966(49) 0.790(15) 0.794(12)
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Fig. 3. Determination of µκcr at β = 0.67, aµ= 0.01 by parity-
restoration and by extrapolating the untwisted PCAC quark
mass mPCACχ to zero

where µR and mχR are the renormalised twisted and un-
twisted quark masses in the continuum limit

µR = Z
−1
P µ , (42)

mχR = a
−1Z−1S (µκ−µκcr) . (43)

Observe that the relation (41) holds up to O(a) terms be-
cause the right hand side of the relation corresponds to
a different definition of the twist angle compared to the one
given in Sect. 3.1. The two definitions only coincide in the
continuum limit. By using the first of equations (12) one
obtains for ωV [16]

cotωV = (ZoV µ)
−1(µκ−µκcr)+O(a) (44)

ZoV = ZSZAZ
−1
P Z

−1
V . (45)

Note that the angular coefficient of the linear fit gives the
finite combination of renormalisation factors ZoV . Using as
an input the determination of ZA/ZV in (17) one can ob-
tain from this the combination ZP /ZS .

Table 5. Determination of µκcr by requiring ω = π/2, µκcr(ωV ), or m
PCAC
χ =

0, µκcr(m
PCAC
χ ). The plus and minus signs indicate extrapolations from posi-

tive or negative untwisted quark masses mPCACχ , avg denotes the average

β aµ sign µκcr(ωV ) µκcr(m
PCAC
χ ) ZoV

0.67 1.0 ·10−2 + 2.99800(9) 2.99839(12) 1.438(33)

0.67 1.0 ·10−2 − 3.00059(13) 3.00043(17) 1.065(61)

0.67 1.0 ·10−2 avg 2.99930(11) 2.99941(15) 1.251(47)

0.74 7.5 ·10−3 + 3.145528(52) 3.145645(22) 1.328(36)

0.74 7.5 ·10−3 − 3.145441(52) 3.145435(21) 1.055(49)

0.74 7.5 ·10−3 avg 3.145484(52) 3.145540(22) 1.191(42)

Fig. 4. Determination of µκcr at β = 0.74, aµ = 0.0075 by
parity-restoration and by extrapolating the untwisted PCAC
quark mass mPCACχ to zero

We use (44) for a linear fit to µκcr and ZoV ; see Table 5
for the results. As expected from the discussion in Sect. 3.1,
the condition mPCACχ = 0 gives results very close to those
from the parity-restoration condition cotωV = 0. We con-
clude that the two methods are essentially equivalent also
from the numerical point of view. A discrepancy is ob-
served between the extrapolation from positive and nega-
tive quark masses for the simulation point β = 0.67: we in-
terpret this as a residual effect of the first order phase tran-
sition at the given value of the lattice spacing. (Whether
first order phase transition or “cross-over” can only be
decided in a study of the infinite volume limit.) Observe
also that the ZoV comes out different for the two differ-
ent signs of the quark mass: this is due to the break-
ing of symmetry under reflection of the untwisted quark
mass induced by O(a) terms [36]. The numerical discrep-
ancy shows that these O(a) corrections are relevant. An
O(a)-improved estimate of ZoV is simply obtained by av-
eraging the determinations for negative and positive quark
masses, corresponding to a Wilson average for the quan-
tity under study. An analogous observation can be done for
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Table 6. Renormalisation constants of the vector and axial-vector currents. The ratio
ZA/ZV is determined from the analysis of the twist angles, cf. (16); two different deter-

minations of the vector current ZV are reported: Z
(1)
V from (30) and Z

(2)
V from (32);

the renormalisation constant of the axial-vector current is derived by combining the

results for ZA/ZV and Z
(1)
V

β aµ κ ZA/ZV Z
(1)
V Z

(2)
V ZA

0.67 1.0 ·10−2 0.1650 1.589(26) 0.5910(13) 0.5810(16) 0.939(15)

0.67 1.0 ·10−2 0.1655 1.587(28) 0.5813(11) 0.5761(25) 0.923(16)

0.67 1.0 ·10−2 0.1660 1.649(28) 0.5766(12) 0.5708(38) 0.951(16)

0.67 1.0 ·10−2 0.1665 1.979(68) 0.5689(10) 0.5657(39) 1.126(39)

0.67 1.0 ·10−2 0.1670 0.815(58) 0.5705(14) 0.5666(46) 0.465(33)

0.67 1.0 ·10−2 0.1675 1.087(47) 0.5716(32) 0.5688(38) 0.623(27)

0.67 1.0 ·10−2 0.1680 0.894(78) 0.5851(33) 0.5754(43) 0.518(46)

0.74 7.5 ·10−3 0.1580 1.508(35) 0.6379(12) 0.6315(32) 0.963(22)

0.74 7.5 ·10−3 0.1585 1.515(59) 0.6294(11) 0.6294(38) 0.953(37)

0.74 7.5 ·10−3 0.1590 1.65(45) 0.62595(95) 0.6241(38) 1.04(28)

0.74 7.5 ·10−3 0.1597 0.972(73) 0.6291(25) 0.6242(40) 0.612(46)

other combinations of renormalisation constants (see the
following).
Table 6 reports the determination of the renormalisa-

tion constants of the vector and axial-vector currents ZV
and ZA. The ratio ZA/ZV comes from the analysis of the
the twist angles, (17). Using the direct estimate of ZV
by (30) we can also determine ZA. Observe that the full
twist extrapolations of ZA/ZV from the two quark mass
signs present large discrepancies, which in this case can-
not be attributed to O(a) effects (these should disappear
at full twist). A possible explanation of the discrepancy
could reside in the relatively bad quality of the data in the
negative mass region. The discrepancies in ZA and ZP /ZS

Fig. 5. Full twist extrapolation of Z
(1)
V at β = 0.67, aµ= 0.01

are a consequence of that for ZA/ZV . In the light of these
considerations we rely on the determinations for positive
quark masses.
The full twist extrapolations of ZV are shown in Figs. 5

and 6: the values from the two signs of the quark mass are
rather close, compatible with each other within statistical
uncertainty. For the case β = 0.74 the extrapolation is very
short, see Table 7 for the numerical values with compari-
son with one-loop perturbative estimates [41]. Table 7 also
includes the determinations of the ratio ZP /ZS from ZoV
(see (44) and (45)). This quantity is of particular interest
for simulations [42] of the theory with an additional mass-
split doublet describing the strange and charm quarks [43].

Fig. 6. Full twist extrapolation ofZ
(1)
V at β = 0.74, aµ= 0.0075
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Table 7. Full twist extrapolations for ZV , ZA and the ratio ZA/ZV (see text for
explanation) with comparison with one-loop perturbative estimates (PT) and tadpole-
improved perturbative estimates (TI) [41]. The ratio ZP /ZS is also reported, deter-
mined from ZoV (see (44) and (45))

β aµ Sign Op. Z Z(PT) Z(TI)

0.67 1.0 ·10−2 + V 0.5650(11) 0.6089 0.6531

0.67 1.0 ·10−2 – V 0.5673(19) 0.6089 0.6531

0.74 7.5 ·10−3 + V 0.6217(23) 0.6459 0.6892

0.74 7.5 ·10−3 – V 0.6257(10) 0.6459 0.6892

0.67 1.0 ·10−2 + A 0.952(30) 0.7219 0.7176

0.67 1.0 ·10−2 – A 0.49(4) 0.7219 0.7176

0.74 7.5 ·10−3 + A 0.944(74) 0.7482 0.7735

0.74 7.5 ·10−3 – A 0.612(46) 0.7482 0.7735

0.67 1.0 ·10−2 + A/V 1.683(52) 1.1130 0.9696

0.67 1.0 ·10−2 – A/V 0.867(70) 1.1130 0.9696

0.74 7.5 ·10−3 + A/V 1.52(12) 1.1023 0.9747

0.74 7.5 ·10−3 – A/V 0.972(73) 1.1023 0.9747

0.67 1.0 ·10−2 + P/S 1.17(6) 0.8157 0.9407

0.67 1.0 ·10−2 – P/S 0.81(11) 0.8157 0.9407

0.74 7.5 ·10−3 + P/S 1.14(12) 0.8302 0.9444

0.74 7.5 ·10−3 – P/S 0.92(10) 0.8302 0.9444

Defining rcs as the mass ratiomc/ms, the positivity of the
fermionic measure in the strange–charm sector imposes

ZP

ZS
>
rcs−1

rcs+1
. (46)

The most stringent condition considering the experimental
bounds [44] forms andmc is

ZP

ZS
> 0.89 . (47)

Our results and the tadpole improved perturbative deter-
minations for ZP /ZS (for Nf = 2) seem to indicate that
already at our values of β this condition is satisfied.

Table 8. Physical PCAC quark mass amPCACq and pion decay constant afπ ob-

tained from (35) and (38), respectively. The last two columns show am̄PCACχ ≡

cos(ω)amPCACq and the unrenormalised pion decay constant calculated with the local
current afvπ, respectively

β aµ κ amPCACq afπ am̄PCACχ afvπ

0.67 1.0 ·10−2 0.1650 0.03652(53) 0.1672(25) 0.03511(54) 0.2936(63)

0.67 1.0 ·10−2 0.1655 0.02739(55) 0.1541(25) 0.02549(59) 0.2750(73)

0.67 1.0 ·10−2 0.1660 0.02006(59) 0.1447(23) 0.01739(69) 0.2549(84)

0.67 1.0 ·10−2 0.1665 0.01154(11) 0.1192(18) 0.00575(71) 0.2113(62)

0.67 1.0 ·10−2 0.1670 0.01117(38) 0.1085(37) −0.00497(43) 0.1932(80)
0.67 1.0 ·10−2 0.1675 0.01810(69) 0.1203(44) −0.01508(82) 0.219(13)
0.67 1.0 ·10−2 0.1680 0.0230(17) 0.1146(95) −0.0207(18) 0.202(14)

0.74 7.5 ·10−3 0.1580 0.02262(45) 0.1170(25) 0.02133(66) 0.1833(57)

0.74 7.5 ·10−3 0.1585 0.01297(44) 0.0999(26) 0.01057(54) 0.1625(83)

0.74 7.5 ·10−3 0.1590 0.007611(38) 0.0874(15) −0.00129(22) 0.1400(56)
0.74 7.5 ·10−3 0.1595 0.01245(61) 0.0867(39) −0.00992(78) 0.137(10)

The results for the physical PCAC quark mass and pion
decay constant fπ obtained from (35) and (38) are listed
in Table 8. In Figs. 7 and 8 the pion decay constant is plot-
ted as a function of the quark mass. The simulation points
for negative quark masses are not taken into account in
the present discussion. The figures also include the deter-
mination of fπ by the axial-vector current A

a
xµ: a formula

similar to (38) applies in this case where, however, the fac-
tor 1/ sinω is replaced by 1/ cosω. In the interesting region
near full twist this introduces large fluctuations in the esti-
mate of fπ, as one can see from the figures. Moreover in the
case of the axial-vector current, the decay constant has not
yet the right normalisation of the continuum: a ZA-factor
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Fig. 7. The pion decay constant afπ as a function of the PCAC
quark mass amPCACq at β = 0.67, aµ= 0.01

is still missing. On the contrary, in the case of the con-
served vector current fπ has automatically the physical
normalisation [22, 39, 40]. If we exclude the lightest point
at β = 0.67, which is likely to be under the influence of
residual metastabilities, fπ seems to be characterised by
a linear dependence upon the quark mass. On the basis
of this observation we try a simple linear extrapolation to
the chiral limit mPCACq = 0; see Table 9 for the numerical
results. Of course, deviations from this linear behaviour
could be present for lighter quark masses where chiral log-
arithms play a role.
In order to check the scaling between the two β-values

we need to fix the lattice spacing. This can be accomplished
by extrapolating the value of r0 tom

PCAC
q = 0. Also in this

case we obtain two different values for the two different
signs of the untwisted quark mass, again due to O(a) ef-
fects. As for ZoV we take the average of the two values,
which delivers an O(a)-improved estimate of r0 in the chi-
ral limit. The results are reported in Table 9. We obtain
for the lattice spacing (assuming r0 = 0.5 fm): a(0.67) =
0.1757(41) fm, a(0.74) = 0.1326(70) fm. Denoting the zero
quark mass limit of the pion decay constant by

Table 9. Chiral extrapolation (mPCACq = 0) of the Sommer scale parameter r0 and
pion decay constant fπ. (This latter is denoted by f0 ≡ limmPCACq =0 fπ.) The scale in-

dependent combination f0r0 is also reported. Only data with positive twisted quark
masses have been used for the extrapolations, with the exception of the point at
aµ= 0.0075 and κ= 0.1590 which is almost at full twist

β aµ r0/a a [fm] a f0 f0 r0

0.67 1.0 ·10−2 2.845(66) 0.1757(41) 0.1171(59) 0.333(10)

0.74 7.5 ·10−3 3.77(20) 0.1326(70) 0.0726(25) 0.274(20)

Fig. 8. The pion decay constant afπ as a function of the PCAC
quark mass amPCACq at β = 0.74, aµ= 0.0075

f0 ≡ lim
mPCACq =0

fπ , (48)

we obtain f0r0(0.67) = 0.333(10), f0r0(0.74) = 0.274(20).
These values are not far from the phenomenological value
(f0r0)phen = 0.308. (The errors here are only statisti-
cal. Systematic errors of the chiral extrapolation are not
included.)

4 Fits to chiral perturbation theory

Chiral perturbation theory (ChPT) is an expansion around
the limit of massless quarks in QCD [1]. It describes the
dependency of physical quantities on the quark masses
in terms of expansions in powers of quark masses, modi-
fied by logarithms. In nature, however, quark masses have
fixed values. The question of how observables depend on
them functionally is experimentally unaccessible. Lattice
gauge theory, on the other hand, offers the possibility to
vary quark masses. Therefore it represents the ideal field
of application of chiral perturbation theory. On the one
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hand, chiral perturbation theory allows one to extrapo-
late results from numerical simulations of QCD into the
region of small physical values for the up- and down-
quark masses. On the other hand, lattice QCD can provide
values for the low-energy constants of chiral perturbation
theory.
In chiral perturbation theory the effects of the non-zero

lattice spacing a can be taken into account in form of an
expansion in powers of a [2, 45–48]. For the case of the Wil-
son twisted-mass formulation of lattice QCD this has been
worked out in next-to-leading order in [6, 15, 25, 49].
The major purpose of the present paragraph is to pro-

vide a set of formulas derived from lattice chiral perturba-
tion theory that can be used to analyse physical quantities
such as the pion mass, decay constants and amplitudes.
The novelty here is that these quantities have to be de-
scribed across or nearby a phase transition.
The ChPT formulas are expected to be applicable at

sufficiently small values of the lattice spacing and quark
mass. It is thus far from obvious whether the data ob-
tained with the DBW2 action in this work can be described
by them, hence it is interesting to confront the simulation
data at our quark masses and lattice spacings with these
formulas. Let us emphasise that we consider this investiga-
tion mainly as a methodological study that does not aim to
extract physical values of the low-energy constants in the
first place.
Properly determined parameters of the ChPT formu-

las in the continuum limit are independent of the lattice
action. The parameters describing the dependence on the
lattice spacing do, however, depend on it. Therefore, in
an appendix we also present ChPT fits of some simulation
data obtained previously with the Wilson plaquette gauge
action [14].
The quark masses in chiral perturbation theory always

appear multiplied by 2B0, where B0 is a low-energy con-
stant. A connection to lattice regularisation can be estab-
lished by considering the renormalised quark masses de-
fined in (42), (43) and

mPCACχR =
ZA

ZP
mPCACχ . (49)

A common renormalisation factor 1/ZP in m
PCAC
χR and µR

can be absorbed into B0. However, since the multiplicative
renormalisation ofmPCACχ and µ differs by a factor ZA, this
has to be taken into account when fitting lattice data (see
below).
The lattice spacing enters chiral perturbation theory in

the combination

ρ= 2W0a , (50)

whereW0 is another low-energy constant.
For the low-energy constants of lattice QCD in next-to-

leading order [46, 48] with two quark flavours we use the
notation

L54 = 2L4+L5, L86 = 2L6+L8 ,

W54 = 2W4+W5, W86 = 2W6+W8 , (51)

W =
1

2
(W86−2L86), W

′ =
1

2
(W ′86−W86+L86) ,

W̃ =
1

2
(W54−L54) . (52)

Experience in untwisted lattice QCD shows [50] that
lattice artefacts are considerably reduced when observ-
ables are considered as functions of the PCAC quark mass
instead of the renormalised lattice quark mass. (A possible
reason is that the PCAC quark mass reabsorbs leading
O(a) effects.) Therefore, in our case, instead of using mχR
as a variable, we re-expand the physical quantities in terms
of the PCAC quark mass in the twisted basis mPCACχR . In-
cluding the relevant prefactor we define

χ′PCAC = 2B0m
PCAC
χR . (53)

For the purpose of fitting data at constantµ it is convenient
to define the combination

χ̄= 2B0

√(
mPCACχR

)2
+µ2R . (54)

(The attentive reader is certainly realising that we use the
symbols χ for different quantities. Nevertheless, both the
notation for the fermion field of twisted-mass fermions and
the mass parameters in ChPT are standard in the litera-
ture and we do not want to change either of them in this
paper.) Then, for the charged pionmasses, chiral perturba-
tion theory at next-to-leading order including lattice terms
of order a gives

m2π± = χ̄+
1

32π2F 20
χ̄2 ln

χ̄

Λ2

+
8

F 20

{
(−L54+2L86)χ̄

2+2(W − W̃ )ρχ′PCAC

}
.

(55)

Similarly for the pion decay constant and the one-pion ma-
trix element of the pseudoscalar density:

Fπ

F0
= 1−

1

16π2F 20
χ̄ ln

χ̄

Λ2
+
4

F 20

{
L54χ̄+2W̃ρ

χ′PCAC
χ̄

}
,

(56)

Gπ

F0B0
= 1−

1

32π2F 20
χ̄ ln

χ̄

Λ2

+
4

F 20

{
(−L54+4L86)χ̄+(4W −2W̃)ρ

χ′PCAC
χ̄

}
.

(57)

In the ChPT formulas the pion decay constant at zero
quark mass (F0) appears. In the conventional normalisa-
tion its phenomenological value is F0 ≈ 86MeV. This is re-
lated to f0 ≈ 122MeV used in the previous section by F0 ≡
f0/
√
2. Similarly, Fπ and Gπ denote the pion decay con-

stant and the one-pion matrix element of the pseudoscalar
density, respectively, in this normalisation convention.
The renormalisation scale Λ appearing in the one-loop

contributions is taken to be Λ= 4πF0 as usual. Taking into
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account the renormalisation factors, when using these ex-
pressions for fitting the lattice data, one writes

χ̄= 2B
√
(mPCACχ )2+Z−2A µ

2 , (58)

where B =B0ZA/ZP .

4.1 Fit procedure

For fitting the data as a function of mPCACχ (55)–(57) are
going to be used. The data for mπ, Fπ and Gπ, as well as
that for mPCACχ are afflicted with numerical errors. There-
fore, a fit procedure has to be used which takes into account
errors in both coordinates. The method with effective vari-
ances [51] treats the coordinates on unequal footings but
is numerically not so convenient. We have decided to use
the more appropriate method of generalised least-squares
fits [52].
Consider a data set containing N “measured” values

for each of the D variables. They are collected in the vec-
tor y= (y1, . . . ,yN), where each element yi is itself a col-
umn vector withD elements yi = {yi,j} , j = 1, . . . , D. The
true values for each data point, which have to be esti-
mated together with the parameters, will be collected in
the same way in a vector x = (x1, . . . ,xN) with entries
xi = {xi,j} , j = 1, . . . , D. Now the set of measured data
points {yi,j} represents a single realisation of an experi-
ment which occurs with a probability given by a joint dis-
tribution called “likelihood”. The likelihood is specified
by a multivariate normal distribution L with mean values
given by the exact values x and a ND×ND covariance
matrix σ =

{
σ(i,j),(k,l)

}
, i, k = 1, . . . , N ; j, l = 1, . . . , D:

L=
1

(2π)
ND
2

1
√
detσ

exp

[
−
1

2
(x−y)σ−1 (x−y)T

]
.

(59)

The process of data analysis amounts to the con-
strained maximisation of this likelihood through the es-
timation of the values of x based on the knowledge of y,
where the constraints enter through the fit-functions. In-
stead of maximising L it is more convenient to minimise its
negative logarithm. The only non-constant term is given by

L′ =
1

2
(x−y)σ−1 (x−y)T . (60)

The fit-functions are given by a number F of model-
functions Gi, which can be incorporated as, generally non-
linear, constraints on the relationship between the exact
values collected in x. These functions also depend on a set
of P parameters α = (α1, . . . , αP ), whose values are to be
determined. They can be written in the compact form
G (x, α) = 0 with the F -dimensional column vector G =
(G1, . . . , GF ).
Maximisation of the likelihood L under the constraints

G (x, α) = 0 is now equivalent to the unconstrained min-
imisation of L given by

L=
1

2
(x−y)σ−1 (x−y)T+λG , (61)

where λ is the F -dimensional row-vector of Lagrange mul-
tipliers. We implemented the minimisation of L using the
Maple algorithm NLPSolve, which is based on routines
provided by the numerical algorithms group (NAG).
In the present case the N different points of measure-

ment correspond to different values of the hopping param-
eter κ, which are completely independent of each other.
Therefore we can assume the covariance matrix to be diag-
onal, σ(i,j),(i,j) = (∆yi,j)

2, where ∆yi,j denotes the statis-
tical error of yi,j .
The errors of the model parameters αi are calculated

using a Monte Carlo approach. In K steps of an artifi-
cial Monte Carlo procedure a new set of normally dis-
tributed values

{
ymci,j
}
k
, k = 1, . . . ,K, is generated using

the values of {yi,j} as means and σi,j as the variances.
Now for every k an independent estimate for the param-
eters is calculated yielding αkmc;i in each step. Finally the
errors∆αi are given by the standard deviation of the set of{
αkmc,i

}
, k = 1, . . . ,K.

4.2 Results

At β = 0.67 and at β = 0.74 results for mπ, Fπ , Gπ and
mPCACχ are available both for non-vanishing and for van-
ishing twist mass µ. At µ= 0 only part of the data, namely
form0−mcr > 0, is reliable and is being used.
By using the results in Table 9 for the values of r0/a ex-

trapolated to the chiral limit, we express all quantities in
units of MeV. For the value of the Sommer scale we assume
r0 ≡ 0.5 fm = (394.6MeV)−1. This allows us to compare
and to combine the results from the different values of β.
It is important to observe that the lattice spacing a(β)

is obtained from extrapolation of r0/a to the chiral limit.
In presence of both positive and negative masses we take
the average. This is a strong constraint on the fits, since
the data have to reproduce the scaling behaviour dictated
by r0. If the purpose is the determination of the low-energy
constants, matching ratios like mπ/Fπ with ChPT would
be preferable. However, in this exploratory study, we find it
interesting to check that the scaling behaviour of different
quantities is indeed consistent.
We made combined fits of the three quantities as func-

tions ofmPCACχ for both values of β, including lattice terms
of order a. For the pion masses the expressions for the
O(a2) lattice terms are known, but they cannot be fitted
meaningfully. The value of ZA, entering the fit-functions,
has been taken as input from the Monte Carlo data. As it
varies with β, we denote the corresponding values ZA(β).
The fits include data both for non-zero- and zero-twisted
mass µ.
The low-energy constants resulting from the fits are

shown in Table 10. In the first case data points with both
positive and negative values of mPCACχ are fitted, whereas
in the second case only those withmPCACχ > 0. (This latter
choice corresponds to the procedure in Sect. 3 where also
only points with mPCACχ > 0 have been taken into account
in the chiral extrapolation of fπ.) We also made single fits
for the three quantities, which are not displayed here. As
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Table 10. Results of the ChPT fits with DBW2 gauge action. Upper part: fit with both positive and nega-

tive values of amPCACχ . Lower part: fit with only positive values of amPCACχ

Input ZA Fitted ZA
β = 0.67 β = 0.74 both β β = 0.67 β = 0.74 both β

ZA(0.67) 0.952(30) − 0.952(30) 0.8658(90) − 0.852(14)
ZA(0.74) − 0.944(74) 0.944(74) − 0.868(18) 0.909(31)
F0 [MeV] 80.7(3.6) 68.6(5.2) 73.7(4.8) 78.9(3.2) 66.0(4.4) 72.0(3.0)
B(0.67) [GeV] 3.20(13) − 3.20(12) 3.09(10) − 3.063(94)
B(0.74) [GeV] − 3.31(30) 3.16(38) − 3.12(19) 3.18(15)

L54 ·10
3 0.98(26) 0.96(26) 1.17(28) 0.50(15) 0.80(23) 0.74(12)

L86 ·10
3 0.78(13) 0.81(11) 0.94(14) 0.554(84) 0.76(10) 0.709(61)

W0 ·W ·10
−3 [MeV3] 50(15) −21(16) 18(17) 35(12) −30(14) 6.6(8.0)

W0 ·W̃ ·10
−3 [MeV3] 89(19) 21(38) 64(29) 62(14) −9(22) 35(12)

Λ3/F0 6.1(2.8) 5.5(2.3) 5.1(2.5) 5.9(1.7) 5.0(2.0) 5.3(1.1)
Λ4/F0 17.1(1.4) 17.0(1.4) 18.2(1.6) 14.74(69) 16.2(1.1) 16.86(59)
Lmin/d.o.f. 12.8(3.5) 12.3(4.9) 13.1(7.2) 9.2(1.6) 11.6(2.4) 9.4(1.6)

ZA(0.67) 0.952(30) − 0.952(30) 0.888(10) − 0.896(11)
ZA(0.74) − 0.944(74) 0.944(74) − 0.910(18) 0.880(23)
F0 [MeV] 80.3(3.4) 91.2(5.4) 83.9(4.4) 79.3(3.4) 89.9(4.2) 82.2(2.6)
B(0.67) [GeV] 2.92(11) − 2.95(11) 2.85(10) − 2.864(84)
B(0.74) [GeV] − 3.46(22) 3.52(38) − 3.39(15) 3.39(11)

L54 ·10
3 1.39(33) 1.04(53) 1.32(28) 0.86(17) 0.82(23) 0.80(13)

L86 ·10
3 0.92(16) 0.71(20) 0.81(15) 0.70(11) 0.64(13) 0.649(77)

Λ3/F0 7.1(4.1) 7.7(6.4) 7.7(4.0) 6.4(2.2) 6.9(3.0) 6.7(1.7)
Λ4/F0 19.5(2.0) 17.4(2.9) 18.6(1.6) 16.47(88) 16.3(1.2) 16.19(69)
Lmin/d.o.f. 10.1(4.9) 2.7(6.5) 5.8(7.9) 7.0(2.0) 2.6(2.4) 4.5(1.6)

they are each based on less data, their results are less valu-
able, but consistent with the combined fits.
In addition to the single-β fits we also made a global fit

including the data from both values of β. The results are
also contained in Table 10. The fits at the two single values
of β and the global fit are roughly consistent with each
other. The differences in the numbers for the low-energy
constants give an indication of the size of the uncertainties.
Instead of using ZA as input from the numerical cal-

culations, it can alternatively be left as an additional fit
parameter. The corresponding fit results are shown in the
right hand side of the table. The fittedZA is in rough agree-
ment with its Monte Carlo estimate. Also, the low-energy
coefficients are consistent with the ones from the other fits.
In addition to the combinations of Gasser–Leutwyler

coefficients Lk, the table includes the values of the invari-
ant scale parameters [53]

Λ3 = 4πF0 exp(128π
2(L54−2L86)) ,

Λ4 = 4πF0 exp(32π
2L54) . (62)

The results for Λ3, Λ4 are close to phenomenological es-
timates (see the discussion). TheW -parameters have large
errors but their magnitude is reasonable, asW0 is expected
to be of order Λ3QCD and the otherW ’s of the same order as
the L’s.
The fit curves for mπ, Fπ and Gπ together with data

points at β = 0.67 and β = 0.74 are shown in Figs. 9, 10,
11 and 12. In order to display the size of the leading-order

Fig. 9. The charged pion masses squared as a function of

amPCACχ at aµ = 0.01. The points represent the data at β =
0.67. The solid line displays the global fit with ZA as input. The
dashed and dotted lines show the fit with part of the L and W
coefficients set to zero, in order to indicate the size of the NLO
corrections
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Fig. 10. The charged pion masses squared as a function of
amPCACχ at aµ = 0.0075. The points represent the data at
β = 0.74. The solid line displays the global fit with ZA as in-
put. The dashed and dotted lines show the fit with part of the
L andW coefficients set to zero, in order to indicate the size of
the NLO corrections

Fig. 11. The pion decay constant aFπ as a function of
amPCACχ at β = 0.67, aµ = 0.01. The solid line displays the
global fit with ZA as input. The dashed and dotted lines show
the fit with part of the L andW coefficients set to zero, in order
to indicate the size of the NLO corrections

contribution and the corrections, the figures contain ad-
ditional curves representing the fit-functions with some of
the low-energy constants being put to zero.

Fig. 12. The pseudoscalar matrix element a2Gπ as a function
of amPCACχ at β = 0.67, aµ= 0.01. The solid line displays the
global fit with ZA as input. The dashed and dotted lines show
the fit with part of the L andW coefficients set to zero, in order
to indicate the size of the NLO corrections

We have also investigated mPCACχ as a function of m0.
It can be fitted with the corresponding formula from chiral
perturbation theory, which involvesW , W ′ and W̃ but no
L-coefficients, but the resulting coefficients are unreliable
owing to large errors.
In this section we stick to the definition of the untwisted

bare PCAC quark mass amPCACχ in (6). As it is shown in
the Appendix, the agreement with the ChPT formulas can
be improved by taking am̄PCACχ of (37) as the quark mass
variable, instead. In addition, ChPT fits to some previously
obtained simulation data by the Wilson plaquette gauge
action are also presented there.

5 Discussion

We compared in this paper the numerical simulation re-
sults with two flavours of twisted-mass Wilson quarks and
DBW2 gauge action at two values of the lattice spacing
corresponding to β = 0.67 and β = 0.74. The lattices were
123 ·24 and 163 ·32, respectively. The lattice spacing was
defined by the value of the Sommer scale parameter r0 ex-
trapolated to zero quark mass and assuming r0 ≡ 0.5 fm.
The β-values were chosen in such a way that the lat-
tice extensions were approximately equal: L� 2.11 fm and
L � 2.12 fm, respectively. Also the bare twisted masses
scaled approximately: r0µ � 0.0285 and r0µ � 0.0283,
respectively.
The comparison of the observed quantities at two

β-values allows for a first look at discretisation errors.
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The outcome of these tests is reasonable, having in mind
the coarse lattice spacings: a � 0.176 fm on the 123 · 24
and a� 0.133 fm on 163 ·32. For instance, the results for
the pseudoscalar decay constant at zero quark mass are
fπr0 = 0.330(10) and fπr0 = 0.274(20) at β = 0.67 and
β = 0.74, respectively. These values also come close to the
phenomenological value (fπr0)phen = 0.308 [55]. The situ-
ation is somewhat worse for the pseudoscalar–vector mass
ratio, as Fig. 1 indicates. There are some noticeable scale
breaking effects, especially for pseudoscalar masses near
mπ = r

−1
0 . Of course, one has to bear in mind that the

ρ-meson mass in most of the points is quite close to the
cutoff.
The prerequisite for the extraction of quantities as, for

instance, fπ is the knowledge of the multiplicative renor-
malisation Z-factors for the currents. For obtaining the
Z-factors one can exploit the twist-angle dependence in
the plane of untwisted and twisted quark masses. As we
have shown in Sect. 3, this is a rather powerful method
for obtaining “finite” (according to perturbation theory)
Z-factor combinations as ZV , ZA and ZP /ZS . Remark-
ably consistent results could be obtained even with our
exploratory simulation data, without a dedicated choice of
simulation points for this purpose.
We have also attempted to describe our numerical

simulation data by a set of formulas derived from lattice
chiral perturbation theory. Although the values of the lat-
tice spacing and the quark mass are rather large in the
simulations, it turned out that these formulas describe the
behaviour of many physical quantities – even across the
phase transition – surprisingly well, at least on a qualita-
tive level. However, at the quantitative level our presently
available data do neither allow one to make a quantita-
tive extraction of the values of the ChPT parameters nor
can we answer the question whether the lattice artifacts
are well described by the lattice extension of ChPT. The
achieved qualitatively correct ChPT fits of our simulation
data makes us very optimistic that with new data we are
working on at present – at smaller lattice spacings and
small quarks masses – these questions will be answered. To
achieve this the experience with the fits in this paper will
be very helpful.
In Sect. 4 and the Appendix we used the NLO expres-

sions of ChPT including terms describingO(a) lattice arte-
facts. In general, metastable points near the first order
phase transition can be and have been included in the fits.
(Note that the fits in [50] are also based on metastable
points, as it has been discovered later.) Several setups were
tried and were shown to give satisfactory and consistent
fits. Nevertheless, there are probably some higher order ef-
fects (higher orders both in the quark mass and in lattice
spacing) which are non-negligible in our parameter range.
In addition, for the multi-parameter fits our data are not
precise enough and the data points are too few and not
optimally distributed in the parameter space. (In a dedi-
cated investigation the inclusion of partially quenched data
points could be very helpful.) Qualitatively speaking, the
ChPT fits presented here support the choice of the PCAC
quark mass as the preferred quark mass variable and show
that the O(a) effects are not overwhelming because a fit

without them is most of the time possible. Both these find-
ings agree with those of [50].
The ChPT fits are also helpful in estimating the min-

imal pion mass at a given lattice spacing. For instance,
the results at β = 0.74(a= 0.1326(70) fm) indicate that for
fixed aµ = 0.0075 we are above the end point of the first
order phase transition line (see e.g. the smooth behaviour
near µκcr in Fig. 4). The minimal value of the pion mass
in Figs. 10 and 13 is aboutmminπ (aµ= 0.0075)� 280MeV.
This is an upper bound for the absolute minimummminπ at
β = 0.74.
According to Table 10 the fits of the data with DBW2

gauge action suggest the following qualitative estimates for
the values of the relevant ChPT parameters:

2.9 GeV≤B ≤ 3.5 GeV ,

70MeV≤ F0 ≤ 85MeV ,

4.0≤ Λ3/F0 ≤ 8.0 ,

16.0≤ Λ4/F0 ≤ 19.0 . (63)

As Table 11 shows, the fits with the plaquette gauge action
are roughly consistent with these values. The estimates
of Λ3,4 are close to previous estimates in [50]: Λ3/F0 ≈ 8,
Λ4/F0 ≈ 21.
The values of theW -parameters describingO(a) effects

are not well determined and are in most cases consistent
with zero in our fits, if amPCACχ (or am̄PCACχ ) is taken as the

independent variable. Note that if one considers the rela-
tion of amPCACχ and am0, thenW andW

′ are quite visible.
An example is Fig. 2 in our previous proceedings contribu-
tion [56] whereW gives the difference of the slope between
positive and negative masses (W ′ turns out to be small).

Fig. 13. Fit of the charged pion mass squared from DBW2
data at non-zero aµ as described in the Appendix. The upper
(lower) curve belongs to β = 0.67 (β = 0.74)
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Table 11. Results of the ChPT fits with plaquette gauge action. The columns corres-
pond to different definitions of the currents for afπ and am

PCAC
χ . For the definitions

see Sect. 3.3. Upper part: fit with both positive and negative values of amPCACχ . Lower

part: fit with only positive values of amPCACχ

fvπ & m̄
PCAC
χ fπ & m̄

PCAC
χ fvπ & m

PCAC
χ fπ &m

PCAC
χ

B [GeV] 5.05 5.04 5.00 4.90
F0 [MeV] 104.9 104.2 88.3 86.6

L86 ·10
3 0.916 0.950 1.829 1.943

L54 ·10
3 1.637 1.709 2.850 3.027

W0 ·W ·10
−3 [MeV3] 31.5 28.5 2.9 6.6

W0 ·W̃ ·10
−3 [MeV3] 43.2 39.7 −3.6 −1.3

Λ3/F0 9.8 9.9 4.5 4.2
Λ4/F0 21.1 21.6 30.9 32.7

(
∑
dev2/σ2)/d.o.f. 2.08 2.19 4.25 4.16

B [GeV] 5.05 4.33 4.43 3.95
F0 [MeV] 98.5 93.9 90.5 85.8

L86 ·10
3 0.892 1.466 1.135 1.836

L54 ·10
3 1.848 2.705 2.099 3.155

Λ3/F0 13.6 9.4 10.1 6.5
Λ4/F0 22.5 29.5 24.4 34.0

(
∑
dev2/σ2)/d.o.f. 1.36 2.24 1.26 1.77

If the data at the two β-values are fitted separately,
as Table 10 shows, there is a remarkably good agreement
of the corresponding parameter values. This agrees with
expectations since the inclusion of O(a) terms in the for-
mulas reduces the discretisation errors in the physical
parameters. The consistency of the ChPT fits is sup-
ported by the agreement of the pion decay constant at
zero quark mass F0 with the value directly extracted from
the data in Sect. 3: f0(β = 0.74)/

√
2 � 76MeV. The esti-

mates of the universal low-energy scales Λ3,4 are within
the bounds of their phenomenological values given in [55]:
Λ3 = 0.6(+1.4,−0.4)GeV, Λ4 = 1.2(+0.7,−0.4)GeV that
is 2.3≤ Λ3/F0 ≤ 23.3, 9.3≤ Λ4/F0 ≤ 22.1.
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Appendix : Comparison with the fits
to plaquette action data

It is interesting to compare the results obtained from the
DBW2 gauge action with those presented in [14] result-
ing from the plaquette gauge action. As shown in the
previous sections, chiral perturbation theory for Wilson
lattice fermions (WChPT) offers a natural framework to
perform such a comparison. In fact, if NLO-WChPT is ap-
plicable, the parameters B0, F0 and Li entering (55)–(57)
should already take their physical (continuum) values: lat-

tice artefacts are expected to be taken into account by the
W -parameters. The latter depend, in general, on the lat-
tice action.
We remark that, having expressed all quantities (Fπ,

Gπ and mπ) as functions of m
PCAC
χ , the parameterW ′ [7,

15] disappears, and the pion mass can apparently go to zero
when mPCACχ → 0 and µ→ 0. However, one should keep
in mind that not all values of mPCACχ are accessible with

Fig. 14. Fit of the pion decay constant aFπ from DBW2 data
at non-zero aµ as described in the Appendix. The upper (lower)
curve belongs to β = 0.67 (β = 0.74)
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stable simulation points. This parametrisation allows one
to include in the ChPT fit also metastable points, where
bothmπ andm

PCAC
χ are lower than it would be possible in

a stable minimum of the effective potential. Since this is an
interesting check, we exploit this possibility and we include
also metastable points (from [14]) in the fit.
Given the larger amount of data points, we use a differ-

ent fit procedure from the one described in Sect. 4.1. The
χ2 is defined as for the effective variances method [51, 52,
54], but minimised through the Matlab implementation
of the Nelder–Mead simplex method. The variables a and
mPCACχ are taken as independent variables, andFπ ,Gπ and
mπ as dependent ones.
Besides using a fitting procedure different from the

one in the previous Sects. 4.1–4.2, our fits to the plaque-
tte gauge action data are restricted to data points with
non-zero twisted mass (aµ > 0) only. We also tried to use
different independent variables instead of amPCACχ , which
correspond to different possible definitions of the untwisted
component of the quark mass. It turned out that the
fit quality is improving if one considers am̄PCACχ defined
in (37). The difference implied by these changes compared
to the analysis in Sects. 4.1–4.2 – i.e. different fitting pro-
cedure, restricting the fit to aµ > 0 and using am̄PCACχ –
is illustrated by Figs. 13, 14 and 15 which have to be com-
pared to Figs. 9, 10, 11 and 12, respectively.
A consequence of considering am̄PCACχ instead of

amPCACχ is that ZA enters only indirectly – through the de-
termination of ω; therefore, we do not need to fit them. As
said before, the ZP is included in the B-factor. However,
when comparing different lattice spacings and different ac-
tions, we must allow for a β dependent ZP . In practice we
choose a reference β (corresponding to the smallest awhich

Fig. 15. Fit of a2Gπ from DBW2 data at non-zero aµ as de-
scribed in the Appendix. The upper (lower) curve belongs to
β = 0.67 (β = 0.74)

appears in the fit) and we fit a correction to ZP for each
different a. These are not given in the table, but they are
always between 0.95 and 1.35.
We summarise our results for the plaquette gauge ac-

tion data in Table 11. No statistical errors are quoted, since
the systematic errors dominate, as the comparison of the
results from the different fit setups shows. We perform fits

Fig. 16. Fit of the charged pion mass squared from plaquette
data at non-zero aµ. The upper , intermediate and lower curves
refer to β = 5.1, β = 5.2 and β = 5.3, respectively

Fig. 17. Fit of the pion decay constant aFπ from plaquette
data at non-zero aµ. The upper , intermediate and lower curves
refer to β = 5.1, β = 5.2 and β = 5.3, respectively
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Fig. 18. Fit of a2Gπ from plaquette data at non-zero aµ. The
upper , intermediate and lower curves refer to β = 5.1, β = 5.2
and β = 5.3, respectively

including all data (top part of Table 11) or only data at
positive mass (bottom part of Table 11). In this second case
theW -parameters are set to zero.
In Figs. 16, 17 and 18 the fits of the plaquette gauge

action data are presented. Similarly to the DBW2 fits,
the W ’s are very unstable, depending on the chosen sub-
set of data, and in general they are consistent with zero
within errors. The physical combinations L54 and L86 are
consistent with the values obtained by the DBW2 gauge
action.
We also performed fits of all data and imposing W =

W̃ = 0. The values of the physical quantities are still rea-
sonable, however the curves fit the data worse. We have
also attempted fits where all the NLO parameters are set to
zero (Li =W = W̃ = 0), or where only lattice artefacts are
included (Li = 0). Both these assumptions result in very
poor fits, essentially because they cannot reproduce the
curvature in Fπ and Gπ.
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Abstract

We present results of dynamical simulations of Nf = 2 degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo
scalar masses 300 MeV � mPS � 550 MeV. Reaching such small masses was made possible owing to a recently developed variant of the HMC
algorithm. The simulations are performed at one value of the lattice spacing a � 0.1 fm. In order to have O(a) improvement and aiming at small
residual O(a2) cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the
pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants
F , l̄3 and l̄4 are evaluated with small statistical errors.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The Wilson twisted mass formulation of lattice QCD, though
a rather recent approach, has been by now well established.
It amounts to adding a twisted mass term to the standard, un-
improved Wilson–Dirac operator [1] leading to so-called Wil-
son twisted mass fermions [2,3].

Besides being a theoretically sound formulation of lattice
QCD, Wilson twisted mass fermions offer a number of advan-
tages when tuned to maximal twist: (i) in this case automatic

* Corresponding author.
E-mail address: karl.jansen@desy.de (K. Jansen).
0370-2693/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2007.04.054
O(a) improvement is obtained by tuning only one parameter,
the bare untwisted quark mass, while avoiding additional tuning
of operator-specific improvement-coefficients; (ii) the mixing
pattern in the renormalisation process can be significantly sim-
plified; (iii) the twisted mass provides an infra-red regulator
helping to overcome possible problems with ergodicity in mole-
cular dynamics based algorithms.1

1 Although in the light of recent algorithmic developments [4–9] this property
does not seem to be that important anymore, we consider it still to be an advan-
tage to have an infra-red regulator in the theory which helps in stabilising the
simulations. For a recent stability analysis of pure Wilson fermion simulations
see Ref. [10].

http://www.elsevier.com/locate/physletb
mailto:karl.jansen@desy.de
http://dx.doi.org/10.1016/j.physletb.2007.04.054
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In the quenched approximation, these expectations—based
on general field theoretical and chiral perturbation theory (χPT)
related arguments [2,3,11–16]—could be verified in actual sim-
ulations [17–20]: O(a) improvement is indeed realised when
the theory is tuned to maximal twist. Moreover, it has been
shown that a particular realisation of maximal twist, requir-
ing parity restoration, also suppresses the O(a2) cut-off ef-
fects substantially, even at small quark masses correspond-
ing to values of the pseudo scalar mass of mPS � 300 MeV.
In addition, with the twisted mass parameter as an infra-red
cut-off in place, substantially smaller quark masses could be
obtained, compared to those reachable by standard or O(a)

improved Wilson fermions which are plagued by so-called
exceptional configuration problems in the quenched approx-
imation. In Refs. [21–23] it was shown that “wrong chiral-
ity” mixing effects in the renormalisation process are sub-
stantially reduced. In Ref. [11] it was proved that all such
mixings can be eliminated if a mixed action with maximally
twisted sea quarks and appropriately chosen Osterwalder–
Seiler valence fermions is employed. For a further discus-
sion of the potential of twisted mass QCD on the lattice, see
Refs. [24–27].

The main drawback of the twisted mass approach is the
explicit breaking of parity and isospin symmetry which are
only restored when the continuum limit is reached. However,
due to O(a) improvement, this breaking is an O(a2) effect
as confirmed by simulations performed in the quenched ap-
proximation [28,29]. For recent reviews of the status of Wil-
son twisted mass fermions see Refs. [30–32] and references
therein.

It is the main goal of our collaboration to compute a
number of phenomenologically relevant quantities with dy-
namical quarks, in the continuum limit and at small values
of the pseudo scalar mass. As a first step in this direction
we here present results for Nf = 2 mass-degenerate quarks
at a fixed lattice spacing a � 0.1 fm. We have so far con-
centrated on the pseudo scalar mass mPS, covering a range
of values 300 MeV � mPS � 550 MeV, the pseudo scalar
decay constant fPS and the static inter-quark force parame-
ter r0 at five values of the quark mass. A wider range of
physical observables will be addressed in the future. The re-
sults for mPS and fPS are confronted with predictions of
χPT which allows extracting the low-energy constants l̄3, l̄4,
F and B0 of the corresponding effective chiral Lagrangian.
We also provide a determination of the size of isospin vio-
lation measured from the mass splitting between the light-
est charged and neutral pseudo scalar particles. First ac-
counts of our work were presented at recent conferences,
see Refs. [33,34]. In this publication we will focus on the
results of our present simulations obtained at one value of
β and one volume. We shall provide, in a forthcoming pa-
per [35], a comprehensive description of our analysis pro-
cedure and address systematic errors by including future
runs on larger lattices, at different values of β and with
extended statistics. Related works with Wilson fermions at
similar small pseudo scalar meson masses are published in
Refs. [36–38].
2. Choice of lattice action

The Wilson twisted mass fermionic lattice action for two
flavours of degenerate quarks reads (in the so-called twisted ba-
sis [2] and fermion fields with continuum dimensions)

Stm = a4
∑
x

{
χ̄x

[
m0 + iγ5τ3μ + 4r

a

]
χx

+ 1

2a

4∑
ν=1

χ̄x

[
Ux,ν(−r + γν)χx+ν̂

(1)+ U
†
x−ν̂,ν

(−r − γν)χx−ν̂

]}
,

where am0 is the bare untwisted quark mass and aμ the bare
twisted mass, τ3 is the third Pauli matrix acting in flavour space
and r is the Wilson parameter, which we set to one in our sim-
ulations. Twisted mass fermions are said to be at maximal twist
if the bare untwisted mass is tuned to its critical value, mcrit.
We will discuss later how this can be achieved in practise. Note
that mcrit can be determined at each β-value at some suitably
small value of the twisted mass parameter μ or even taken to be
a function of μ itself. With the latter choice the line of maximal
twist would become a non-trivial curve in parameter space.

In the gauge sector we use the so-called tree-level Symanzik
improved gauge action (tlSym) [39], which includes besides the
plaquette term U1×1

x,μ,ν also rectangular (1 × 2) Wilson loops
U1×2

x,μ,ν

Sg = β

3

∑
x

(
b0

4∑
μ,ν=1

1�μ<ν

{
1 − Re Tr

(
U1×1

x,μ,ν

)}

(2)+ b1

4∑
μ,ν=1
μ �=ν

{
1 − Re Tr

(
U1×2

x,μ,ν

)})

with β the bare inverse coupling, b1 = −1/12 and the (proper)
normalisation condition b0 = 1 − 8b1. Note that at b1 = 0 this
action becomes the usual Wilson plaquette gauge action.

2.1. O(a) improvement

As mentioned before, O(a) improvement can be obtained by
tuning Wilson twisted mass fermions to maximal twist. In fact,
it was first proved in Ref. [3] that parity even correlators are free
from O(a) lattice artifacts at maximal twist by using spurionic
symmetries of the lattice action. Later on it was realised [12,32]
that a simpler proof is possible based on the parity symmetry of
the continuum QCD action and the use of the Symanzik effec-
tive theory.

From this latter way of proving O(a) improvement, it be-
comes also clear how to define maximal twist: first, choose
an operator odd under parity (in the physical basis) which has
a zero expectation value in the continuum. Second, at a non-
vanishing value of the lattice spacing tune the expectation value
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of this operator to zero by adjusting the value of am0. This pro-
cedure, which has been proposed in [40,41] and has been theo-
retically analysed in [12], is sufficient to define maximal twist
independently of the chosen operator. To approach smoothly the
continuum limit this tuning has to be performed at fixed physi-
cal situation while decreasing the lattice spacing.

It was shown in an extended scaling test in the quenched ap-
proximation, that O(a) improvement works extremely well for
maximally twisted mass quarks [17–19]. In the context of this
scaling test, the method of setting the so-called PCAC mass to
zero was found to be very successful, in agreement with theo-
retical considerations [12,14,16]. Here the PCAC mass

(3)mPCAC =
∑

x〈∂0A
a
0(x)P a(0)〉

2
∑

x〈P a(x)P a(0)〉 , a = 1,2

is evaluated at large enough time separation, such that the pion
ground state is dominant. To see that the procedure of defining
amcrit from the vanishing of mPCAC is the appropriate one, it is
enough to recall that under that condition the multilocal oper-
ator

∑
x Aa

0(x)P a(0) becomes, in the physical basis, the parity
odd operator ε3ab

∑
x ψ̄γ0τ

bψ(x)ψ̄γ5τ
aψ(0).

In principle one could think of determining amcrit at each
value of aμ at which simulations are performed, possibly fol-
lowed by an extrapolation to vanishing aμ. The strategy we are
following in this Letter is, instead, to take the value of amcrit
from the simulation at the lowest available value aμmin �
aΛQCD. In this situation O(a) improvement is still guaranteed,
because working at μmin merely leads to O(aμminΛQCD) ef-
fects in mcrit and O(a2μminΛQCD) relative corrections in phys-
ical quantities [12]. Although these theoretical arguments show
that we are left with only O(a2) lattice artifacts, numerical com-
putations are required to determine the coefficient multiplying
the a2-term for the observables of interest. In the present Let-
ter with data at only one value of the lattice spacing we cannot
calculate these coefficients. However, for the observables we
consider here, first results from our collaboration presented in
Ref. [33,34] indicate that the O(a2) errors are indeed small.

2.2. Phase structure

In order to understand our choice of the gauge action, it
is important to realise that Wilson-type fermions have a non-
trivial phase structure at finite lattice spacing: in a series of
publications [30,40–44] the phase structure of lattice QCD was
explored. For lattice spacings a � 0.15 fm clear signals of
first order phase transitions at the chiral point were found. The
strength of those phase transitions weakens when the contin-
uum limit is approached. This phase transition was identified to
be a generic property of Wilson-type fermions since the phe-
nomenon takes place for the pure Wilson as well as the Wilson
twisted mass formulation [2,3] of lattice QCD. Also the proper-
ties of physical quantities measured in both metastable branches
of this first order phase transition were studied and compared
to results of χPT [13,14,16,45–48] finding that (lattice) χPT
describes the simulation data quite well. This is somewhat sur-
prising since the simulation data were obtained at rather coarse
values of the lattice spacing and at rather heavy pseudo scalar
masses, where the applicability of χPT may be questionable.

A very important consequence of the first order phase transi-
tion phenomenon is that at non-vanishing lattice spacing, simu-
lations cannot be performed with pseudo scalar mesons below a
certain minimal mass value. From lattice χPT analyses it is ex-
pected that this minimal value of the pseudo scalar mass goes to
zero with a rate of O(a). In different words, given a value of the
pseudo scalar mass, mPS, one can always find a value of the lat-
tice spacing amax(mPS), such that simulations at a < amax(mPS)

can be safely performed. For example, when the Wilson pla-
quette gauge action is used one finds amax ≈ 0.07 fm to realise
a pseudo scalar mass of about 300 MeV [44].

The phase structure of lattice QCD with Wilson-type fermi-
ons has previously been addressed: there have been investiga-
tions concerning the Aoki-phase [49] in Refs. [50,51] at large
gauge couplings corresponding to values of the lattice spac-
ing a � 0.2 fm. In other studies [52–54] signals of first order
phase transitions were found for Wilson fermions with and
without the clover term, see also Ref. [55]. In Ref. [56] a spec-
ulative picture of the phase structure of Wilson lattice QCD
has been given and in Ref. [57] an analysis within the frame-
work of χPT has been reported. A detailed understanding of
the generic phase structure was obtained in the 2-dimensional
Gross–Neveu model, see Refs. [58–60]. Of course, it is unclear
how much these last results are applicable to 4-dimensional lat-
tice QCD.

In order to choose a gauge action for our production simu-
lations we studied the phase structure employing a number of
different gauge actions: the standard Wilson plaquette gauge
action [1] (b1 = 0 in Eq. (2)), the DBW2 gauge action [61]
(b1 = −1.4088) and the tree-level Symanzik improved gauge
action [39] (b1 = −1/12). A marked dependence of the strength
of the phase transition on the choice of the gauge action has
been found. In particular, these investigations revealed that the
DBW2 and the tlSym gauge actions substantially weaken the
effect of the first order phase transition and in particular the
value of amax increases when the coefficient b1 in Eq. (2) is
moved away from zero [41,44]. We refer to Refs. [30,32] for
summaries of these results.

The DBW2 gauge action appears to lead to a bad scaling be-
haviour [62–64] and a slow convergence of perturbation theory
[65], whereas the tlSym gauge action is expected to show—
by construction—a good scaling behaviour and a fast conver-
gence of perturbation theory. Therefore, the tlSym gauge action
looks like a good compromise between the Wilson gauge action
which is most strongly affected by the first order phase transi-
tion and the DBW2 gauge action.

3. Numerical results

3.1. Set-up

In this Letter we will present results at a fixed value of the
lattice spacing of a � 0.1 fm only. In Table 1 we provide the
value of aμmin at which we imposed the vanishing of mPCAC
(Eq. (3)) and thus determined amcrit. In Table 2 we list the val-
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Table 1
Simulation parameters. We denote by aμmin the smallest value of the twisted
mass parameter aμ at which we have performed simulations. At this value of
aμ we determined the critical mass mcrit, or, equivalently the critical hopping
parameter κcrit = 1/(8 + 2amcrit). The value of r0/a has been extrapolated to
the physical point, where mPS = 139.6 MeV

β L3 · T aμmin κcrit(aμmin) r0/a

3.9 243 · 48 0.004 0.160856 5.22(2)

ues of the quark mass amPCAC, the pseudo scalar mass amPS,
the pseudo scalar decay constant afPS, r0/a and the plaquette
integrated autocorrelation time at all values of the twisted mass
parameter aμ. All other parameters were kept fixed as specified
in Table 1.

The algorithm we used is a HMC algorithm with mass
preconditioning [4,66] and multiple time scale integration de-
scribed in detail in Ref. [8]. The trajectory length τ was set
to τ = 1/2 in all our runs. Our estimates of the plaquette in-
tegrated autocorrelation time τint(P ) quoted in Table 2 are in
units of τ = 1/2. Note that our estimates of the autocorrela-
tion times of quantities such as amPS or afPS are found to be
substantially smaller, typically by a factor of 5–10, than those
reported in the table for the plaquette.

As discussed above, maximal twist is realised in our simu-
lations by tuning m0 to obtain a vanishing PCAC quark mass
amPCAC at the smallest value aμmin of the twisted mass pa-
rameter aμ. From Table 2 one can see that this condition has
been numerically realised with good accuracy, which in this
context means mPCAC(μmin)/μmin < aΛQCD within statistical
errors (aΛQCD ∼ 0.1 in our case). Once this is achieved, the
(weak) μ-dependence of mPCAC, which is visible in Fig. 1(a),
is an O(a) cutoff effect that merely modifies the O(a2) artifacts
in physical observables, as already mentioned in Section 2.1.

In order to make maximum use of the gauge configurations,
we evaluate connected meson correlators using a stochastic
method to include all spatial sources. The method involves a
stochastic source (Z(2)-noise in both real and imaginary part)
for all colour and spatial indices at one Euclidean time slice.
By solving for the propagator from this source for each of the
4 spin components, we can construct zero-momentum meson
correlators from any bilinear at the source and sink. Four in-
versions of the Dirac matrix per Euclidean time slice value are
necessary, since we chose to use only one stochastic sample per
gauge configuration. This “one-end” method is similar to that
pioneered in Ref. [67] and implemented in Ref. [68]. We also
employ a fuzzed source [69] of the extent of 6 lattice spacings to
enable studying non-local meson creation and destruction oper-
ators. This allowed us to obtain very stable effective masses and
to confirm the extraction of the pion ground state.

In general, we save a gauge configuration every second tra-
jectory and analyse meson correlators as described above from
a selection of different Euclidean time slice sources. To reduce
autocorrelations, we only use the same time slice source every
8–10 trajectories. Our primary statistical error was obtained
with the so-called �-method as described in Ref. [70] and cross-
checked with a bootstrap analysis and a jack-knife analysis of
Table 2
Results from simulations at β = 3.9 using the simulation parameters listed in
Table 1. The measurements were started after 1500 equilibration trajectories
and are based on 5000 equilibrated trajectories

aμ amPS afPS amPCAC r0/a τint(P )

0.0040 0.13587(68) 0.06531(40) −0.00001(27) 5.196(28) 55(17)

0.0064 0.16937(36) 0.07051(35) −0.00009(17) 5.216(27) 23(07)

0.0085 0.19403(50) 0.07420(24) −0.00052(17) 5.130(28) 13(03)

0.0100 0.21004(52) 0.07591(40) −0.00097(26) 5.143(25) 15(04)

0.0150 0.25864(70) 0.08307(34) −0.00145(42) 5.038(24) 06(02)

blocked data. For a detailed description of our error analysis we
refer to a forthcoming paper of our collaboration [35].

3.2. Force parameter r0

In simulations of the quenched approximation of lattice
QCD, the Sommer parameter r0 [71] with a value of 0.5 fm,
was widely used to set the lattice scale. While (r0/a) is mea-
surable to good accuracy in lattice QCD simulations it has the
drawback that its value in physical units is not known very well.
Therefore, it becomes necessary to determine the scale using
other quantities which are experimentally accessible with high
precision, such as mπ , fπ , mK, fK or mK∗ . In fact, in this Letter
we attempt to determine the lattice scale by fitting χPT based
formulae to our precise data for fPS and mPS, using the physical
values for mπ and fπ as inputs. From this analysis, we obtain a
value of the lattice spacing which is 10% lower than the value
obtained by setting r0 = 0.5 fm.

Our results for (r0/a) are reported in Table 2 and plotted in
Fig. 1(b). Within the current errors the mass dependence of this
quantity appears to be weak. Since r0 is a pure gauge quantity,
it should be a function of (aμ)2 and indeed, a linear fit in (aμ)2

describes the data rather well as shown in Fig. 1(b). From the
fit we obtain a value for r0/a = 5.22(2) at the physical point,
where aμ = aμπ (see below), as also quoted in Table 1.

3.3. fPS and mPS as a function of the quark mass

The charged pseudo scalar meson mass amPS is as usual
extracted from the time exponential decay of appropriate cor-
relation functions.2 In contrast to pure Wilson fermions, for
maximally twisted mass fermions an exact lattice Ward iden-
tity allows to extract the (charged) pseudo scalar meson decay
constant fPS from the relation

(4)fPS = 2μ

m2
PS

∣∣〈0|P 1(0)|π〉∣∣,
with no need to compute any renormalisation constant since
ZP = 1/Zμ [2]. We give our results for mPS and fPS in Ta-
ble 2.

We now discuss whether the continuum χPT formulae can
reproduce the data in Table 2 for amPS and afPS. In our χPT
based analysis, we take into account finite size corrections be-
cause on our lattices at the lowest and next-to-lowest μ-values

2 Concerning results on the neutral pion mass, am0
PS, see Section 3.4.
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Fig. 1. (a) PCAC quark mass amPCAC as function of aμ and (b) Sommer parameter (r0/a) as functions of (aμ)2. The solid line in subfigure (b) represents a linear
fit in (aμ)2 to the data.
they turn out to affect amPS and, in particular, afPS in a sig-
nificant way. We have used continuum χPT to describe con-
sistently the dependence of the data both on the finite spatial
size (L) and on μ.

We fit the appropriate (Nf = 2) χPT formulae [72,73]

(5)m2
PS(L) = 2B0μ

[
1 + 1

2
ξ g̃1(λ)

]2[
1 + ξ log

(
2B0μ/Λ2

3

)]
,

(6)fPS(L) = F
[
1 − 2ξ g̃1(λ)

][
1 − 2ξ log

(
2B0μ/Λ2

4

)]
,

to our raw data for mPS and fPS simultaneously. Here

(7)ξ = 2B0μ/(4πF)2, λ =
√

2B0μL2.

The finite size correction function g̃1(λ) was first computed
by Gasser and Leutwyler in Ref. [72] and is also discussed in
Ref. [73] from which we take our notation (except that our nor-
malisation of fπ is 130.7 MeV). In Eqs. (5) and (6) NNLO χPT
corrections are assumed to be negligible. The formulae above
depend on four unknown parameters, B0, F , Λ3 and Λ4, which
will be determined by the fit. For μ = 0.004 and μ = 0.0064 we
found the effect of finite size corrections to be 0.5% and 0.2%
for the pseudo scalar mass and 2.2% and 0.9% for the pseudo
scalar decay constant, respectively. For our larger values of μ

the finite size corrections are negligible.
We determine aμπ , the value of aμ at which the pion as-

sumes its physical mass, by requiring that the ratio

[
√

[m2
PS(L = ∞)]/fPS(L = ∞)] takes the value (139.6/

130.7) = 1.068. From the knowledge of aμπ we can evalu-
ate l̄3,4 ≡ log(Λ2

3,4/m2
π ) and using fπ the value of the lattice

spacing a in fm.
In order to estimate the statistical errors affecting our fit val-

ues we generate at each of the μ-values 1000 bootstrap samples
for mPS and fPS extracted from the bare correlators, blocked
with block-size of 32. For each sample (combining all masses)
we then fit m2

PS and fPS simultaneously as a function of μ.
From the 1000 fits we obtain 1000 bootstrap samples for 2aB0,
aF , log(a2Λ2 ), aμπ , a and l̄3,4, respectively, from which we
3,4
compute the corresponding error estimates, taking in this way
the statistical correlation between fPS and mPS into account.

For our lightest four μ-values, we find an excellent fit to our
data on fPS and mPS (see Figs. 2 and 3). The fitted values of the
four parameters are

2aB0 = 4.99(6),

aF = 0.0534(6),

log
(
a2Λ2

3

) = −1.93(10),

(8)log
(
a2Λ2

4

) = −1.06(4).

Our data are clearly sensitive to Λ3 as visualised in Fig. 2(a).
We obtain

(9)aμπ = 0.00078(2), l̄3 = 3.65(12), l̄4 = 4.52(06)

which compares nicely with other determinations (for a review
see Ref. [74]). Note that F , B0, Λ3 and Λ4 were also deter-
mined in another setup for dynamical twisted mass fermions
[43] with values in qualitative agreement, although those val-
ues could not be determined as precisely as in the present work.
Including also our results from aμ = 0.0150 in the fit gives an
acceptable description of m2

PS but misses the data for fPS, as
shown in Figs. 2 and 3. Note, however, that in Eqs. (5), (6), and
thus in the fit results (8), (9), a number of systematic errors as
discussed below are not included.

The values presented here should hence be taken as a first
estimate, the validity of which will be checked in the future.
Nevertheless, the statistical accuracy we are able to achieve im-
plies that there is a very good prospect of obtaining accurate
and reliable values for the low-energy constants from Wilson
twisted mass fermion simulations.

Since we have obtained an excellent description of our
pseudo scalar mesons, we can use our fit to extract the lattice
spacing. Based on the physical value of fπ , we get

(10)a = 0.087(1) fm.

Using the value of r0/a reported in Table 1, this lattice calibra-
tion method yields r0 = 0.454(7) fm.
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Fig. 2. In (a) we show (amPS)2/(aμ) as a function of aμ. We plot the χPT fit of Eq. (5) applied to the raw data on the L = 24 lattice from the lowest four μ-values.
We represent the finite size correction by the dashed line. In (b) we show (amPS)2 as a function of aμ. Here we present two χPT fits with Eq. (5), one taking all
data points and one leaving out the point at the largest value aμ = 0.015. Also in figure (b) we show the L = 24 data points.

Fig. 3. We show afPS as a function of aμ together with fits to χPT formula Eq. (6). In (a) we show the fit applied to the raw data on the L = 24 lattice at the 4
lowest values of aμ. We represent the finite size correction by the dashed curve. In (b) we present two fits, one taking all data and one leaving out the point at the
largest value aμ = 0.015. Here we show only the finite size corrected (L → ∞) data points.
We now discuss the possible sources of systematic error.
Our analysis is based on lattice determinations of properties of
pseudo scalar mesons with masses in the range 300 to 500 MeV
on lattices with a spatial size slightly above 2 fm. Systematic er-
rors can arise from several sources:

(i) Finite lattice spacing effects. Preliminary results at a
smaller value of the lattice spacing that were presented in Refs.
[33,34] suggest that O(a) improvement is nicely at work and
that residual O(a2) effects are small.

(ii) Finite size effects. In order to check that next to lead-
ing order (continuum) χPT adequately describes these, we are
presently performing a run at β = 3.9 and aμ = 0.004 on a
323 · 64 lattice.

(iii) Mass difference of charged and neutral pseudo scalar
meson. In the appropriate lattice χPT power-counting for our
values of the lattice spacing and quark masses, i.e. a ∼ μ ∼ p2,
one gets the order of magnitude relation (mPS)2 − (m0

PS)2 =
O(a2Λ4

QCD) = O(p4), from which it follows that to the order
we have been working the effects of the pion mass splitting
do not affect, in particular, the finite size correction factors for
mPS and fPS. In spite of these formal remarks, it is possible,
however, that the fact that the neutral pion is lighter than the
charged one (by about 20% at aμ = 0.0040, see Section 3.4)
makes inadequate the continuum χPT description of finite size
effects adopted in the present analysis. This caveat represents a
further motivation for simulations on larger lattices, which will
eventually resolve the issue.

(iv) Extrapolation to physical quark masses. We are assum-
ing that χPT at next to leading order for the Nf = 2 case is
appropriate to describe the quark mass dependence of m2

PS and
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fPS up to ∼450–500 MeV. Our lattice data are consistent with
this, but it would be useful to include higher order terms in the
χPT fits as well as more values of aμ to check this assumption.
The effect of strange quarks in the sea should also be explored.

3.4. Effects of isospin breaking

In this section we report the results of some quantitative in-
vestigation of the effects of isospin breaking in the twisted mass
formulation of lattice QCD at finite lattice spacing. This ef-
fect is expected to be largest in the mass splitting between the
lightest charged and uncharged pseudo scalar mesons. A first
analysis at aμ = 0.004, taking the disconnected contribution in
the neutral channel fully into account, shows that the uncharged
pseudo scalar meson is about 20% lighter than the charged one.
We obtain

am±
PS = 0.1359(7), am0

PS = 0.111(11),

or, expressed differently, r2
0 ((m0

PS)2 − (m±
PS)2) = c(a/r0)

2 with
c = −4.5(1.8). This coefficient is a factor of 2 smaller than the
value found in quenched investigations [29]. Note that the un-
charged pion being lighter than the charged one is compatible
with predictions from lattice χPT if the first order phase tran-
sition scenario is realised [45,46,48]. For an investigation of
isospin breaking effects in χPT see also Ref. [75]. From the
value of c one may estimate the value of the endpoint, μc, of
the first order phase transition, obtaining aμc ≈ 0.0013.

The disconnected correlations needed for the π0 meson are
evaluated using a stochastic (Gaussian) volume source with 4
levels of hopping-parameter variance reduction [76]. We use
24 stochastic sources per gauge configuration and evaluate the
relevant propagators every 10th trajectory.

4. Summary

In this Letter we have presented results of simulations of
lattice QCD with Nf = 2 maximally twisted Wilson quarks at
a fixed value of the lattice spacing a � 0.1 fm. We reached a
pseudo scalar meson mass of about 300 MeV. The numerical
stability and smoothness of the simulations allowed us to obtain
precise results for the pseudo scalar mass and decay constant
which in turn led to determine the low energy constants of the
effective chiral Lagrangian. In particular, we find for the pseudo
scalar decay constant in the chiral limit F = 121.3(7) MeV, and
l̄3 = 3.65(12) and l̄4 = 4.52(6) where only statistical errors are
given.

We do see effects of isospin breaking which are largest in
the mass splitting of the neutral and charged pions and turn out
to be about 20%. This is significantly smaller and opposite in
sign than the corresponding splitting obtained in the quenched
approximation.

Tuning to maximal twist had to be performed on lattices of
the same size as those used for the calculation of physical quan-
tities. The reason for this is that we need to single out cleanly
the one pion sector in order to impose the vanishing of the
PCAC quark mass (Eq. (3)) without being affected by finite
size effects or excited state contributions. Thus the tuning step
itself is rather expensive. But it has to be done only once, as
is the case for the determination of action improvement coef-
ficients in other Wilson based approaches. Note, however, that
with twisted mass fermions we do not have to compute further
operator-specific improvement coefficients.

The encouraging results presented here will be extended and
checked by future simulations that will cover one coarser and
one finer lattice spacing, double the statistics at one of our
present simulation points (β = 3.9, aμ = 0.004) and go to a
larger, 323 · 64, volume at the latter simulation point. In this
way, we will be able to obtain results in the continuum limit,
cross-check our autocorrelation times, improve our error esti-
mates and control the finite size effects in order to check χPT
predictions. The preliminary results presented in Refs. [33,34]
indicate a very good scaling behaviour already suggesting that
automatic O(a) improvement is indeed working well.
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Abstract. A first study of numerical Monte Carlo simulations with two quark doublets, a mass-degenerate
one and a mass-split one, interpreted as u, d, s and c quarks, is carried out in the framework of the twisted
mass Wilson lattice formulation. Tuning the bare parameters of this theory is explored on 123 ·24 and
163 ·32 lattices at lattice spacings a� 0.20 fm and a� 0.15 fm, respectively.

1 Introduction

In QCD the effect of virtual quark loops is most im-
portant for the three light quarks (u, d, s). In recent un-
quenched numerical simulations, besides the two lightest
quarks u and d, the s quark is also included (see, for in-
stance, [1–3]). The formulation of QCD with twisted-mass
Wilson fermions [4] is based on chiral rotations of the bare
mass (or, equivalently, of the Wilson term) within quark
doublets. Therefore, in this formulation there are two pos-
sibilities for unquenched simulations with (u, d, s) quarks:
either the s quark is taken alone and the twisted mass for-
mulation is restricted to the (u, d) doublet or, in addition
to the s quark, also the c quark is included in a mass-split
doublet using the formulation in [5]. In the present paper
we explore the latter possibility (for first results along this
line see the proceedings contribution [6]).
Numerical simulations with twisted-mass Wilson fer-

mions are usually performed at (or near) the critical (un-
twisted) bare quark mass, because there an automatic
O(a) improvement of the continuum limit is expected [7, 8].
Our collaboration has performed several studies of twisted-
mass QCD both in the quenched approximation [9–12]
and in unquenched simulations with dynamical (u, d)
quarks [13–16]. In the present paper we explore the possi-
bility of numerical simulations of QCD with a degenerate
doublet (u, d) and a mass-split doublet (c, s) of dynamical
quarks in the twisted mass Wilson formulation.
The plan of this paper is as follows: in the next section

we define the lattice action and describe the simulation

a e-mail: istvan.montvay@desy.de

algorithm. Section 3 is devoted to the introduction of phys-
ical fields and currents important for the interpretation of
results. In Sect. 4 we present our numerical results. The
last section contains a discussion and final remarks.

2 Lattice action and simulation algorithm

2.1 Lattice action

The notation for the lattice action of the light mass-
degenerate (u, d) doublet, denoted by a subscript l, is the
same as in our previous papers, for instance, [16]:

Sl =
∑

x

{
(χl,x[µκl+ iγ5τ3 aµl]χl,x)

−
1

2

±4∑

µ=±1

(χl,x+µ̂Uxµ[r+γµ]χl,x)

}

≡
∑

x,y

χl,xQ
(χ)
l,xyχl,y . (1)

Here, and in most cases below, colour-, spinor- and isospin
indices are suppressed. For the isospin indices later on we
shall also use a notation as, for instance, χl ≡ (χu χd). The
(“untwisted”) bare quark mass of the light doublet in lat-
tice units is denoted by

µκl ≡ am0l+4r=
1

2κl
, (2)
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r is the Wilson parameter, set in our simulations to r = 1,
am0l is another convention for the bare quark mass in lat-
tice units and κl is the conventional hopping parameter.
The twisted mass of the light doublet in lattice units is de-
noted by aµl. Uxµ ∈ SU(3) is the gauge link variable, and
we also defined Ux,−µ = U

†
x−µ̂,µ and γ−µ =−γµ.

Besides the quark doublet fields χl, χl in (1) it will
turn out convenient to introduce other fields by the
transformation

ψl,x ≡
1
√
2
(1+ iγ5τ3)χl,x ,

ψl,x ≡ χl,x
1
√
2
(1+ iγ5τ3) . (3)

The quark matrix on the χ basis Q
(χ)
l defined in (1) is

Q
(χ)
l,xy = δxy(µκl+ iγ5τ3 aµl)

−
1

2

±4∑

µ=±1

δx,y+µ̂Uyµ[r+γµ] (4)

or in a short notation, without the site indices,

Q
(χ)
l = µκl+ iγ5τ3aµl+N+R , (5)

with

Nxy ≡−
1

2

±4∑

µ=±1

δx,y+µ̂Uyµγµ ,

Rxy ≡−
r

2

±4∑

µ=±1

δx,y+µ̂Uyµ . (6)

On the ψ basis defined in (3) we have the quark matrix

Q
(ψ)
l =

1

2
(1− iγ5τ3)Q

(χ)
l (1− iγ5τ3)

= aµl+N − iγ5τ3(µκl+R) . (7)

As it has been shown by Frezzotti and Rossi in [5], a real
quark determinant with a mass-split doublet can be ob-
tained if the mass splitting is taken to be orthogonal in
isospin space to the twist direction. One could take, for in-
stance, the mass splitting in the τ1 direction if the twist is
in the τ3 direction, as in (1). It is, however, more natural
to exchange the two directions because then the bare mass
is diagonal in isospin. In this case, the lattice action of the
heavy mass-split (c, s) doublet, denoted by a subscript h, is
defined as

Sh =
∑

x,y

χh,xQ
(χ)
h,xyχh,y , (8)

with

Q
(χ)
h = µκh+ iγ5τ1aµσ+ τ3aµδ+N +R. (9)

For the isospin indices later on we shall also use a notation
as, for instance, χh ≡ (χc χs). The ψ basis is introduced

similarly to (3) by

ψh,x ≡
1
√
2
(1+ iγ5τ1)χh,x ,

ψh,x ≡ χh,x
1
√
2
(1+ iγ5τ1) , (10)

and the quark matrix on the ψ basis is for the heavy mass-
split doublet

Q
(ψ)
h =

1

2
(1− iγ5τ1)Q

(χ)
h (1− iγ5τ1)

= aµσ+ τ3aµδ+N− iγ5τ1(µκh+R) . (11)

For the SU(3) Yang–Mills gauge field we apply the tree-
level improved Symanzik (tlSym) action which belongs to
a one-parameter family of actions obtained by renormali-
sation group considerations and in the Symanzik improve-
ment scheme [17]. Those actions also include, besides the
usual (1×1) Wilson loop plaquette term, planar rectangu-
lar (1×2) Wilson loops:

Sg = β
∑

x

(
c0

4∑

µ<ν;µ,ν=1

{
1−
1

3
ReU1×1xµν

}

+ c1

4∑

µ�=ν;µ,ν=1

{
1−
1

3
ReU1×2xµν

})
, (12)

with the condition c0 = 1−8c1. For the tlSym action we
have c1 =−1/12 [18–20].

2.2 Simulation algorithm

For preparing the sequences of gauge configurations a poly-
nomial hybrid Monte Carlo (PHMC) updating algorithm
was used. This algorithm is based on multi-step (actu-
ally two-step) polynomial approximations of the inverse
fermion matrix with stochastic correction in the update
chain as described in [21]. It is based on the PHMC algo-
rithm as introduced in [22–24]. The polynomial approxi-
mation scheme and the stochastic correction in the update
chain is taken over from the two-step multi-boson algo-
rithm of [25]. (For an alternative updating algorithm in
QCDwithNf = 2+1+1 quark flavours, which will be used
for algorithmic comparisons in the future, see [26, 27].)

Table 1. Algorithmic parameters in two runs on a 163 ·32
lattice at β = 3.35, κl = κh = κ, aµl = 0.0075, aµσ = 0.2363,
aµδ = 0.2138 and with determinant break-up nB = 2. The first
line for a given κ shows the pion mass and the parameters for
the light doublet, the second line the kaon mass and the param-
eters for the heavy doublet

κ amπ,K ε λ n1 n̄1 n2 n̄2

0.1690 0.8237(13) 1.25e−2 25 70 110 120 160
0.9231(11) 3.25e−2 26 50 80 90 130

0.1705 0.3433(52) 1.875e−4 25 220 320 800 930
0.6503(18) 1.875e−2 26 60 100 120 160
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For typical values of the approximation interval and
polynomial orders on 163 ·32 lattices see Table 1. The nota-
tion is that of [21]: the approximation interval is [ε, λ], the
orders of the polynomials Pj(j = 1, 2) are nj and those of
P̄j(j = 1, 2) are n̄j , respectively. The simulations have been
done with determinant break-up nB = 2. On the 12

3 ·24, for
similar values of the pseudoscalar masses in lattice units,
the orders n2 and n̄2 are the same and the values of n1 and
n̄1 are somewhat smaller.

3 Physical fields and currents

The physical quark fields, which in the continuum limit
are proportional to the renormalised quark fields of both
flavours in the doublets, are obtained [4] by a chiral ro-
tation from the fields in the lattice action in (1) or from
those defined in (3) for the light doublet, and similarly
in (8)–(10) for the heavy doublet. On the χ basis we have

ψphysl,x = e
i
2ωlγ5τ3χl,x , ψ

phys

l,x = χl,xe
i
2ωlγ5τ3 ; (13)

ψphysh,x = e
i
2ωhγ5τ1χh,x , ψ

phys

h,x = χh,xe
i
2ωhγ5τ1 . (14)

Since the transformations in (3) and (10) correspond to
chiral rotations with ωl =

π
2 and ωh =

π
2 , respectively, we

have with

ω̄l ≡ ωl−
π

2
, ω̄h ≡ ωh−

π

2
(15)

the relations

ψphysl,x = e
i
2 ω̄lγ5τ3ψl,x , ψ

phys

l,x = ψl,xe
i
2 ω̄lγ5τ3 ; (16)

ψphysh,x = e
i
2 ω̄hγ5τ1ψh,x , ψ

phys

h,x = ψh,xe
i
2 ω̄hγ5τ1 . (17)

Since the simulations are usually performed near full twist
corresponding to ωl = ωh =

π
2 , the modified twist angles are

close to zero:

ω̄l � 0 , ω̄h � 0 . (18)

Therefore, near full twist the ψ fields are approximately
equal to the physical quark fields. At full twist the use of
the ψ basis is advantageous because the formulas are sim-
pler than in the χ basis.
The definition of the twist angles is not unique. There

are different viable possibilities to define them and the crit-
ical hopping parameters corresponding to them (see, for
instance, [10, 14, 28–33]).
Here, for the light doublet, we use the definition based

on the requirement of parity conservation for some matrix
element of the physical vector and axial-vector current, as
first introduced in [14, 28] and numerically studied in detail
in [16]. For this let us introduce the bare vector and axial-
vector bilinears

V al,xµ ≡ χl,x
1

2
τaγµχl,x ,

Aal,xµ ≡ χl,x
1

2
τaγµγ5χl,x (a= 1, 2) . (19)

The twist angle is introduced as the chiral rotation angle
between the renormalised (physical) chiral currents:

V̂ al,xµ = ZlV V
a
l,xµ cosωl+ εabZlAA

b
l,xµ sinωl , (20)

Âal,xµ = ZlAA
a
l,xµ cosωl+ εabZlV V

b
l,xµ sinωl , (21)

where only charged currents are considered (a = 1, 2), εab
is the antisymmetric unit tensor and ZlV and ZlA are the
multiplicative renormalisation factors of the vector and
axial-vector current, respectively. The exact requirements
defining ωl (and also yielding the value of ZlA/ZlV ) are
taken to be
〈
0
∣∣V̂ +l,x,µ=0

∣∣π−
〉
= 0 ,

〈
0
∣∣Â+l,x,µ=1,2,3

∣∣ρ−
〉
= 0 . (22)

For the heavy doublet, in principle, one could trans-
late and use this construction, too, but for applications in
the kaon and D-meson sector it is more natural to con-
sider bilinears between the light and the heavy doublet. In
addition, inside the heavy doublet, due to the off-diagonal
twist, one also would have to consider disconnected quark
contributions which are absent in the light–heavy sector.
Let us introduce the bare vector, axial-vector, scalar and
pseudoscalar bilinears in theK+ andD0 sector as

VK+,xµ ≡ χs,xγµχu,x , AK+,xµ ≡ χs,xγµγ5χu,x , (23)

SK+,x ≡ χs,xχu,x , PK+,x ≡ χs,xγ5χu,x , (24)

VD0,xµ ≡ χc,xγµχu,x , AD0,xµ ≡ χc,xγµγ5χu,x , (25)

SD0,x ≡ χc,xχu,x , PD0,x ≡ χc,xγ5χu,x , (26)

and similarly for the K0 and D− sector by changing
u→ d. Denoting the kaon and D-meson doublet by K ≡
(K+ K0) and D ≡ (D0 D−), respectively, and introducing
K̆ ≡ (K+ −K0) and D̆ ≡ (D0 −D−), the renormalised
vector and axial-vector currents of the kaon doublet are
given by

V̂K,xµ = cos
ωl

2
cos
ωh

2
ZV VK,xµ+sin

ωl

2
sin
ωh

2
ZV VD̆,xµ

+ i sin
ωl

2
cos
ωh

2
ZAAK̆,xµ

− i cos
ωl

2
sin
ωh

2
ZAAD,xµ , (27)

ÂK,xµ = cos
ωl

2
cos
ωh

2
ZAAK,xµ+sin

ωl

2
sin
ωh

2
ZAAD̆,xµ

+ i sin
ωl

2
cos
ωh

2
ZV VK̆,xµ

− i cos
ωl

2
sin
ωh

2
ZV VD,xµ . (28)

Analogously for the scalar bilinears:

ŜK,x = cos
ωl

2
cos
ωh

2
ZSSK,x− sin

ωl

2
sin
ωh

2
ZSSD̆,x

+ i sin
ωl

2
cos
ωh

2
ZPPK̆,x+ i cos

ωl

2
sin
ωh

2
ZPPD,x ,

(29)

P̂K,x = cos
ωl

2
cos
ωh

2
ZPPK,x− sin

ωl

2
sin
ωh

2
ZPPD̆,x

+ i sin
ωl

2
cos
ωh

2
ZSSK̆,x+ i cos

ωl

2
sin
ωh

2
ZSSD,x .

(30)
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Similar relations hold in the D-meson doublet, too. Equa-
tions (27) and (28) show that near full twist, ωl,h � π/2,
all four terms on the right hand sides have roughly equal
coefficients.
The requirement of parity symmetry in the isotriplets

(pions, rho mesons) allows one to fix the twist angle ωl,
cf. (22). In the case of the heavy–light isodoublet one has
to take into account the mixing between the kaons and
D mesons. In this case the twist angle ωh (and ωl) can
be fixed by requiring conservation of parity and/or flavour
symmetry.
The equations in (22) follow by considering [14, 16, 28]

the (vanishing) vector-current–pseudoscalar and axial-vec-
tor-current–vector-current correlators, which turns out to
be the most convenient choice for fixing the twist angle in
the light sector. In the heavy–light sector the mixing pat-
terns for currents and scalar bilinears are similar, so any
combination of operators gives similar expressions. How-
ever, correlators only made up of scalar bilinears are ex-
pected to give a better signal, so we concentrate on this
case for the discussion. Considering the upper components,
the four bilinears PK+ , PD0 , SK+ , SD0 and the respec-
tive charge-conjugated versions must be included in the
analysis. We define a four-dimensional vector of the multi-
plicatively renormalised bilinears:

V =

⎛

⎜⎜⎝

ZPPK+

ZPPD0

ZSSK+

ZSSD0

⎞

⎟⎟⎠ ,

V̄ = (−ZPPK− ,−ZPPD̄0 , ZSSK− , ZSSD̄0) , (31)

and analogously the vector V̂ of the fully renormalised bi-
linears according to (29) and (30) (and the analogous equa-
tions for the D mesons). Equations (29) and (30) can be
then reformulated in a compact notation as

V̂ =MV ,
¯̂
V = V̄M−1 , (32)

with the 4×4 matrixM given by

M(ωl, ωh) =

⎛

⎜⎝

clch −slsh islch ishcl
−slsh clch ishcl islch
islch ishcl clch −slsh
ishcl islch −slsh clch

⎞

⎟⎠ . (33)

(Here we define for brevity sl = sin
ωl
2 , sh = sin

ωh
2 , cl =

cos ωl2 , ch =cos
ωh
2 .)M is the unitary matrix describing the

mixing pattern between the kaon and D-meson doublets.
One can easily see that

MT =M ,

M†(ωl, ωh) =M
∗(ωl, ωh) =M(−ωl,−ωh)

=M−1(ωl, ωh) . (34)

(The last equality is expected since reversing the sign of the
angles corresponds to the inverse chiral transformation.)
One can at this point define a correlator matrix in the
kaon–D-meson sector by

C = 〈V ⊗ V̄〉 (35)

(for example, C11 ≡ −Z2P 〈PK+PK−〉) and its fully renor-

malised version Ĉ = 〈V̂ ⊗
¯̂
V〉. One has

Ĉ =M(ωl, ωh)CM
−1(ωl, ωh) , (36)

C =M−1(ωl, ωh)ĈM(ωl, ωh) . (37)

Restoration of parity and flavour symmetry implies that Ĉ
is a diagonal matrix with M(ωl, ωh) the matrix realizing
the diagonalisation. The off-diagonal elements of the ma-
trix equation (36) can in principle be used to determine
the angles ωl and ωh, while the diagonal elements give the
physical correlators from which e.g. the masses can be ob-
tained. Of course, in general, parity and flavour can only be
restored up to O(a) violations.
Taking also into account the residual discrete symme-

tries possessed by the action defined by (1), (8) and (9), the
only non-trivial conditions are obtained by imposing the
vanishing of the flavour violating matrix elements Ĉ12, Ĉ34
and transposed:

Ĉ12+ Ĉ21 =
[
(clch)

2+(slsh)
2
]
(C12+C21)

+
[
(slch)

2+(shcl)
2
]
(C34+C43)

−2clchslsh(C11+C22−C33−C44)

+ ishch
(
s2l − c

2
l

)
(C13−C31+C24−C42)

+ islcl(s
2
h− c

2
h)(C23−C32+C14−C41)

= 0 , (38)

Ĉ34+ Ĉ43 =
[
(chsl)

2+(clsh)
2
]
(C12+C21)

+
[
(clch)

2+(slsh)
2
]
(C34+C43)

+2clchslsh(C11+C22−C33−C44)

− ishch(s
2
l − c

2
l )(C13−C31+C24−C42)

− islcl(s
2
h− c

2
h)(C23−C32+C14−C41)

= 0 . (39)

The sum of the two above equations implies

C12+C21+C34+C43 = 0 . (40)

A non-trivial relation for the renormalisation constants of
the bilinears is obtained from (40):

Z2P /Z
2
S =
〈SK+SD̄0〉+ 〈SD0SK−〉

〈PK+PD̄0〉+ 〈PD0PK−〉
, (41)

which can be used for a non-perturbative determination
of ZP /ZS .
Using (40), (38) (or (39)) can be restated in a compact

way as a relation between cotωh and cotωl:

cotωh =

C11+C22−C33−C44+ i(C13−C31+C24−C42) cotωl
(C12+C21−C34−C43) cotωl− i(C23−C32+C14−C41)

.

(42)

This can be used to determine ωh once ωl is known. (ωl can
be obtained following the prescription of [14, 16, 28].)
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This discussion suggests that, especially near full twist
where the mixing is maximal, the analysis of the masses in
the kaon–D-meson sector should be performed by consid-
ering the 4-dimensional correlator matrix C.
For tuning the hopping parameters the untwisted

PCAC quark mass is also very useful. In the light doublet it
is defined by the PCAC relation containing the axial-vector
current Aal,xµ in (19) and the corresponding pseudoscalar

density P al,x = χl,x
1
2τaγ5χl,x:

amPCACχl ≡

〈
∂∗µA

+
l,xµP

−
l,y

〉

2
〈
P+l,xP

−
l,y

〉 , (43)

where τ± ≡ τ1± iτ2. The condition of full twist in the light
quark sector obtained from (22) by setting ωl = π/2 coin-
cides [16] withmPCACχl = 0.
In the heavy sector one can define an untwisted PCAC

quark mass mPCACχh , too. A natural definition is obtained
by considering the axial-vector Ward identity

∂∗µA
a
h,xµ = 2am

PCAC
χh P ah,x+

⎧
⎪⎨

⎪⎩

2iZ−1A aµσS
0
h,x , a= 1 ,

0 , a= 2 ,

(−2i)Z−1A aµδP
0
h,x , a= 3 ,

(44)

where, in analogy with the light sector in (19), we define

Aah,xµ ≡ χh,x
1

2
τaγµγ5χh,x (a= 1, 2, 3) ,

S0h,x ≡ χh,xχh,x , P
0
h,x ≡ χh,xγ5χh,x . (45)

(Observe that for uniformity with the definition (43) we in-
corporate a factor Z−1A in the definition of the untwisted
PCAC quark mass.) The above identity could in principle
be used to tune ωh to π/2 by imposing am

PCAC
χh = 0. How-

ever, as already mentioned, the presence of disconnected
contributions in the heavy sector are likely not to allow for
precise determinations.
One can consider also in this case the heavy–light sec-

tor. Here the axial-vector Ward identities read

∂∗µAK,xµ =
(
amPCACχs +amPCACχl

)
PK,xµ

+ iZ−1A aµlSK̆,xµ+ iZ
−1
A aµσSD,xµ , (46)

∂∗µAD,xµ =
(
amPCACχc +amPCACχl

)
PD,xµ

+ iZ−1A aµlSD̆,xµ+ iZ
−1
A aµσSK,xµ . (47)

The solution of the over-determined linear system, ob-
tained by taking a suitable matrix element (for instance,
〈∂∗µAK+,xµ PK−,y〉), allows one to determine numerically
(together with (43)) the untwisted PCAC mass of the
heavy quarksmPCACχc ,mPCACχs and the renormalisation fac-
tor ZA. The condition of full twist in the heavy doublet can
be written as

mPCACχh ≡mPCACχc +mPCACχs = 0 . (48)

The quark masses defined by (43), (46) and (47) are
untwisted components of bare quark masses. The physical

quark masses can be obtained by the corresponding PCAC
relations of the renormalised currents and densities:

amPCACl ≡

〈
∂∗µÂ

+
l,xµP̂

−
l,y

〉

2
〈
P̂+l,xP̂

−
l,y

〉 , (49)

amPCACs +amPCACl ≡

〈
∂∗µÂK+,xµP̂K−,y

〉
〈
P̂K+,xP̂K−,y

〉 , (50)

amPCACc +amPCACl ≡
〈∂∗µÂD+,xµP̂D−,y〉

〈P̂D+,xP̂D−,y〉
. (51)

They are related to the bare quark masses by

mPCACl = Z−1P

√(
ZAm

PCAC
χl

)2
+µ2l , (52)

mPCACc,s = Z−1P

√(
ZAm

PCAC
χh

)2
+µ2σ±Z

−1
S µδ . (53)

4 Numerical simulations

Our main goal in this work is to gain experience with
the tuning of lattice parameters for future large scale
simulations. Based on our recent work with Nf = 2 dy-
namical twisted mass Wilson fermion QCD simulations
in [13–16, 34], the main emphasis is on the effects of the
additional dynamical flavours s and c. As in the Nf = 2
case, we start with coarse lattices: lattice spacings about
a � 0.2 fm on a 123 ·24 lattice and a � 0.15 fm on a 163 ·
32 lattice. (This implies spatial lattice extensions of L �
2.4 fm.) The parameters of our main runs are on the 123 ·
24 lattice β = 3.25, aµl = 0.01, aµσ = 0.315, aµδ = 0.285
and on the 163 · 32 lattice β = 3.35, aµl = 0.0075, aµσ =
0.2363, aµδ = 0.2138. The statistics is between 500 and
1100 PHMC trajectories of length 0.4. (Of course, in order
to find the appropriate parameters, we also had to perform
at the beginning several additional short runs which we do
not include here.)
The tuning to full twist of the theory with an additional

heavy doublet is complicated by the fact that two indepen-
dent parameters κl and κh must be set to their respective
critical values, using e.g. for the heavy sector the procedure
outlined in the previous section. However, it can be shown
that in the continuum limit the deviation of the two critical
hopping parameters κl,cr and κh,cr goes to zero asO(a). An
argument is given in the appendix. This suggests that we
tune κl to the value wherem

PCAC
χl = 0 with κh = κl: in this

situation mPCACχh = O(a). Observe that since the average
quark mass in the heavy sector is typically large, the O(a)
error is expected not to affect the full twist improvement
in the sense of [7, 8], while it is critical to have good tuning
in the light quark sector. This can be checked by comput-
ing ωh as suggested in the previous section and verifying
ωh ≈ π/2.
In view of this, we have set the two hopping parame-

ters to be equal in our main runs: κ ≡ κl = κh. (In a few
additional runs we checked that small individual changes
of κh by ∆κh � 0.001 do not alter any of the qualitative
conclusions.)
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The average plaquette values as a function of the
hopping parameter κl = κh = κ, for fixed values of the
twisted masses, are shown by Figs. 1 and 2 on the 123 ·24
and 163 ·32 lattices, respectively. On the 123 ·24 lattice
a strong metastability is observed for 0.1745≤ κ≤ 0.1747,
which we interpret as the manifestation of a first order
phase transition. This behaviour agrees with one of the
scenarios predicted by ChPT including leading lattice
artifacts [35–38]. It has also been observed in our pre-
vious simulations; for instance, in [13]. On the 163 ·
32 lattice no metastability could be observed, although
there is a sharp rise of the average plaquette value be-
tween κ = 0.1705 and κ = 0.1706. This may also signal
a (weaker) first order phase transition or a cross-over.
To decide among these two possibilities, in principle, an
investigation of the infinite volume behaviour would be
necessary. In practice, in a finite volume, the effects of
a real first order phase transition and a cross-over are
similar.
We emphasise that this observed behaviour is not re-

lated to some imperfection of the simulation algorithm.
Due to the positive twisted masses the eigenvalues of
the fermion matrix have a positive lower bound. There-
fore, we could choose the HMC step size small enough
in order that the molecular dynamical force does not be-
come too large. The behaviour of the system when crossing
the phase transition region is nicely illustrated by the
run history in Fig. 3. One can recognise three stages in
the plot: a metastable start at mPCACχl > 0; crossing; sta-

ble thermalization at mPCACχl < 0. A high concentration
of small eigenvalues occurs during the crossing, because
a large portion of the Dirac spectrum (actually all the

Fig. 1. The average plaquette on 123 · 24 lattice at β =
3.25, aµl = 0.01, aµσ = 0.315, aµδ = 0.285 as a function of
κ≡ κl = κh

physically relevant eigenvalues) is moving from the right
half complex plane with Reλ > 0 to the left one with
Reλ < 0.
We determined several quantities in both the pion and

kaon sector. The values of some of them are collected
in Tables 2 and 3 (see also Figs. 4 and 5). As in our
previous work, we determined the lattice spacing from
the quark force by the Sommer scale parameter [39] as-
suming r0 ≡ 0.5 fm. Taking the values for positive un-
twisted PCAC quark masses (amPCACχl > 0), we get for

β = 3.25 on the 123 ·24 lattice a(β = 3.25)� 0.20 fm and
for β = 3.35 on the 163 ·32 lattice a(β = 3.35) � 0.15 fm.
These correspond to a−1 � 1.0GeV and a−1 � 1.3 GeV,
respectively.
It follows from the data in Tables 2 and 3 that the

pion, and hence the u- and d-quarkmasses, are not particu-
larly small in our runs (see also Figs. 4 and 5). Considering
only the points with positive untwisted PCAC quark mass
(amPCACχl > 0) outside the metastability region at β = 3.25
we have mπ ≥ 670MeV. At β = 3.35 the corresponding
value ismπ ≥ 450MeV. (The points with amPCACχl < 0 have
mπ ≥ 530MeV and mπ ≥ 560MeV for the two β values,
respectively, but they are usually not considered for large
scale simulations because of the strongly fluctuating small
eigenvalues as shown, for instance, by Fig. 3.)
The kaon masses are also given in Tables 2 and 3 (see

also Figs. 4 and 5). Let us note that, in the Frezzotti–Rossi
formulation of the split-mass doublet we use, the masses
in the kaon doublet (and D-meson doublet) are exactly
degenerate. This follows from an exact symmetry of the
lattice action defined in Sect. 2.1 (both in the χ and ψ basis
of quark fields) namely, simultaneous multiplication by an

Fig. 2. The average plaquette on 163 ·32 lattice at β = 3.35,
aµl = 0.0075, aµσ = 0.2363, aµδ = 0.2138 as a function of
κ≡ κl = κh
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Fig. 3. Run history on a 163 ·32 lattice at β =
3.35, aµl = 0.0075, aµσ = 0.2363, aµδ = 0.2138,
κl = κh = 0.1706. This run started from a pre-
vious one at κ = 0.1705. On the horizontal axis
the number of PHMC-trajectories (of length
∆τ = 0.4) is given. The average plaquette (up-
per curve, left scale) and the smallest eigenvalue
of the squared preconditioned fermion matrix
λmin (lower curve, right scale) are shown. The
horizontal lines indicate the average plaquette
after equilibration and the absolute minimum of
λmin, respectively

Table 2. Selected results of the runs on a 123 ·24 lattice at β = 3.25, aµl = 0.01, aµσ = 0.315,
aµδ = 0.285. The subscript on κ= κl = κh denotes L for “low” and H for “high” plaquette phase,
respectively

κl = κh r0/a amπ amρ amK amD amPCACχl

0.1740L 2.35(12) 0.7110(21) 0.9029(27) 0.9487(16) 1.4858(75) 0.08432(56)
0.1743L 2.279(56) 0.6718(59) 0.8756(30) 0.9277(22) 1.4543(99) 0.07515(45)
0.1745L 2.460(55) 0.5706(76) 0.7927(43) 0.8729(31) 1.4350(94) 0.0544(10)
0.1746L 2.489(54) 0.5616(47) 0.7891(33) 0.8700(19) 1.433(23) 0.05205(81)
0.1747L 2.457(48) 0.5303(74) 0.7566(75) 0.8566(38) 1.403(16) 0.04602(77)
0.1745H 3.840(81) 0.3991(86) 1.0635(84) 0.8232(27) 1.096(16) −0.0260(15)
0.1746H 3.85(11) 0.481(11) 0.881(48) 0.8395(22) 1.055(37) −0.0419(15)
0.1747H 3.98(11) 0.456(13) 0.996(36) 0.8375(26) 1.028(42) −0.0403(23)
0.1750H 3.884(91) 0.531(18) 1.0936(97) 0.8690(46) 1.064(37) −0.0525(24)
0.1755H 4.02(10) 0.7012(97) 1.1056(99) 0.9186(27) 1.219(41) −0.0868(17)

Table 3. Selected results of the runs on a 163 ·32 lattice at β = 3.35, aµl = 0.0075, aµσ = 0.2363,
aµδ = 0.2138

κl = κh r0/a amπ amρ amK amD amPCACχl

0.1690 2.222(54) 0.8237(13) 0.9684(20) 0.9231(11) 1.3192(87) 0.12113(40)
0.1695 2.503(41) 0.7329(11) 0.8916(15) 0.8652(11) 1.2827(58) 0.09738(34)
0.1700 2.812(48) 0.5857(18) 0.7631(35) 0.7739(12) 1.223(23) 0.06417(44)
0.1702 2.87(16) 0.5082(26) 0.7038(39) 0.7379(22) 1.187(21) 0.04837(30)
0.1704 3.28(12) 0.3695(22) 0.6041(44) 0.6553(21) 1.110(31) 0.02569(55)
0.1705 3.31(13) 0.3433(52) 0.5913(83) 0.6480(18) 1.080(35) 0.02117(53)
0.1706 4.50(20) 0.4331(74) 0.780(35) 0.6756(13) 0.943(46) −0.0428(22)
0.1708 4.378(37) 0.4721(81) 0.843(15) 0.7004(18) 0.983(52) −0.0492(31)
0.1710 4.59(16) 0.508(11) 0.812(16) 0.7216(17) 0.957(20) −0.0569(26)

isospin matrix and space reflection:

S :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

light: parity⊗ τ1 :

{
u(x)→ γ0d(xP ) ,

d(x)→ γ0u(xP ) ,

heavy: parity⊗ τ3 :

{
c(x)→ γ0c(xP ) ,

s(x)→−γ0s(xP ) .

(54)

This exact symmetry exchanges the u quark and the
d quark; hence the equality of the masses within kaon and
D-meson doublets follows.
Let us note that in a recent publication [40] a non-zero

kaon mass splitting has been calculated in the quenched
approximation using another formulation [41] of the mass-
split doublet where both the twist and the mass splitting
are in the same isospin direction. This formulation has,
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Fig. 4. The squared mass of the pion and kaon as a func-
tion of the untwisted PCAC quark mass on a 123 ·24 lattice at
β = 3.25, aµl = 0.01, aµσ = 0.315, aµδ = 0.285

however, the disadvantage that the fermion determinant
is non-real and therefore an unquenched computation is
practically impossible at present. The difference in the
presence and absence of the kaon mass splitting in the
two formulations comes from the fact that the states with
a given quark flavour correspond to different linear combi-
nations here and there.
Similarly to the pion masses, the kaon masses in Ta-

bles 2 and 3 have also higher than the physical values.
In the points cited above for the pion mass we have at
β = 3.25 and β = 3.35mK ≥ 920MeV andmK ≥ 850MeV,
respectively. The kaon mass can easily be lowered by tun-
ing the mass parameters in the heavy doublet. In order
to explore this we also performed simulations at β = 3.35,
aµl = 0.0075 on the 16

3 ·32 lattice with aµσ = aµδ = 0.15.
For instance, at κl = κh = 0.17 we got amπ = 0.4432(40)
and amK = 0.5918(22). Comparing to the third line in
Table 3 one can see that both the pion and the kaon mass
become smaller. In particular, the kaon mass is smaller
by a factor of about 3/4. This shows that the kaon mass
can probably be tuned to its physical value if wanted. An-
other possibility is to do the chiral extrapolation by fixing,
instead of mK , the pion–kaon mass ratio mπ/mK to its
physical value.
The D-meson masses in Tables 2 and 3 are typically

smaller than the physical value. In the points cited above
for the pion and kaon masses we have at β = 3.25 and β =
3.35 mD � 1450MeV and mD � 1400MeV, respectively.
mD can, in principle, also be tuned to its physical value.
However, on coarse lattices the D-meson mass is close to
the cut-off and, therefore, it is more reasonable to keep it
smaller than the physical value in order to be well below
the cut-off. In fact, in our runs the actual D-meson masses
are already at the cut-off because we have a−1 � 1 GeV and

Fig. 5. The squared mass of the pion and kaon as a func-
tion of the untwisted PCAC quark mass on a 163 ·32 lattice at
β = 3.35, aµl = 0.0075, aµσ = 0.2363, aµδ = 0.2138

a−1 � 1.3 GeV at β = 3.25 and β = 3.35, respectively. But
on a fine lattice, say with a−1 � 4 GeV, it will become pos-
sible to directly go to the physical value ofmD, too.
The machinery for the twist angle in the heavy dou-

blet ωh developed in Sect. 3 has been tested in a few
runs, too. The formulas worked fine and the results turned
out to be plausible. For instance, in the run at β =
3.35, κl = κh = 0.1704, aµl = 0.0075, aµσ = 0.2363, aµδ =
0.2138 on a 163 ·32 lattice we obtained from 400 gauge
configurations:

ωl/π = 0.0981(55) , ωh/π = 0.490(25) ,

ZP /ZS = 0.5739(65) , ZA = 0.897(11) ,

ZV = 0.5490(12) . (55)

As one sees, ωh is rather close to π/2 even if ωl is still far
from it. This is a consequence of µσ � µl. Using the rela-
tion (valid in the continuum) cot(ωh)/ cot(ωl) = µl/µσ and
the value of ωl given above, one would get ωh/π = 0.468.
The situation is very similar in the runs on a 123 ·24 lattice,
too. For instance, in the run with largest untwisted mass of
Table 2 at κl = κh = 0.1740l we obtained

ωl/π = 0.04298(34) , ωh/π = 0.4356(83) ,

ZP /ZS = 0.581(11) . (56)

These results imply that putting the untwisted quark
mass equal in the two sectors gives an elegant solution for
tuning to full twist: one can just do the same as in the
Nf = 2 case. Due to the large twisted component in the
heavy sector, the tuning of ωh to π/2 is no problem at all:
already at moderate values of ωl, ωh is almost equal to π/2.
Let us finally mention that using chiral perturbation

theory (ChPT) formulas one can also extrapolate from
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our simulation points to smaller pion and kaon masses. As
a simple example, let us take the squared pion–kaon mass
ratio in lowest order (LO) ChPT:

(mπ/mK)
2 =

2mud
mud+ms

. (57)

In terms of our parameters we can set

mud =

√(
ZAm

PCAC
χl

)2
+µ2l ,

ms =

√(
ZAmPCACχh

)2
+(µσ)2−

ZP

ZS
µδ , (58)

where ZP /ZS is a fitted relative renormalisation factor. In
our fits we set, for simplicity, ZA = 0.897 from (55), and we
also assumed mPCACχh =mPCACχl , which corresponds to the
assumption κh,cr = κl,cr. The results for both β values are
shown in Fig. 6. Note that although these fits look rather
good, clearly the validity of chiral perturbation theory in
general has to be checked in further simulations at small
values of a andmπ.
It turns out that the fitted values of ZP /ZS are well be-

low 1, namelyZP /ZS � 0.45, which implies that, as also di-
rectly shown by our simulation data, the kaon mass reacts
relativelyweakly to the changeof thebarequarkmassdiffer-
enceparameteraµδ.ThedeviationofZP /ZS obtained inthe
LO-ChPT fit from the values in (55) and (56) might be due
to lattice artifacts and/or to the fact that in (55) and (56) no
extrapolation to zero quarkmasses is performed.

Fig. 6. Lowest order ChPT fit of the squared pion to kaon
mass ratio as a function of the untwisted PCAC quark mass.
Squares and triangles are data at β = 3.35, aµl = 0.0075 for
aµσ = 0.2363, aµδ = 0.2138 and aµσ = 0.15, aµδ = 0.15, respec-
tively. The fit to (57) and (58) gives ZP /ZS = 0.446. Circles are
data at β = 3.25, aµl = 0.01, aµσ = 0.315, aµδ = 0.285. The fit
gives in this case ZP /ZS = 0.457

Note that the obtained values of ZP /ZS do not satisfy
the bound derived in [5], which would ensure the posi-
tivity of the quark determinant, because in case of the
(c, s) doublet this bound isZP /ZS > (mc−ms)/(mc+ms)
� 0.85. This means that in simulations with aµδ > aµσ
there might be some gauge configuration where the de-
terminant of the (c, s) doublet is negative. However, such
configurations have a very low probability, and hence they
practically never occur in Monte Carlo simulations. In
our runs (where actually aµδ ≤ aµσ) this is shown by
the eigenvalues of the fermion matrix which never come
close to zero: for the (c, s) doublet they always satisfy
λmin,h > 0.01. (This has to be compared to the mini-
mal eigenvalues in the (u, d) doublet which only satisfy
λmin,l > 0.0001.)
It is remarkable that the minimum value of the inter-

polated curves in Fig. 6 are not far away from the physical
value (mπ/mK)

2 � 0.082. This raises the interesting ques-
tion whether it would be possible to perform unconven-
tional chiral extrapolations from simulation data at fixed
twisted masses.

5 Discussion

The main conclusion of the present paper is that numerical
simulations of QCD with unquenched u, d, s and c quarks
are possible in the twisted-mass Wilson formulation.
The PHMC updating algorithm with multi-step poly-

nomial approximations and stochastic correction during
the update turned out to be effective even in difficult sit-
uations near a first order phase transition (or cross-over).
The autocorrelations of the quantities given in Tables 2
and 3 are typically of O(1) in number of PHMC tra-
jectories (most of the time of length 0.4); therefore, it
is worth to analyse the gauge configurations after every
trajectory.
At β = 3.25 (lattice spacing a� 0.20 fm) on our 123 ·24

lattice we observed strong metastabilities suggesting a first
order phase transition. This agrees with one of the sce-
narios predicted by ChPT including leading lattice arti-
facts [35–38] and has been observed previously in sev-
eral QCD simulations with Wilson fermions [13, 42–44].
At β = 3.35 (lattice spacing a � 0.15 fm) on our 163 · 32
lattice the phase transition becomes weaker but is still vis-
ible as a strong cross-over region with fast changes in sev-
eral quantities. Compared to Nf = 2 runs at similar lattice
spacings the first order phase transition becomes stronger
forNf = 2+1+1. (This agrees with the early observations
in [43].)
The smallest simulated pion mass in a stable point

with positive untwisted PCAC quark mass (amPCACχl > 0)
at β = 3.25 (a � 0.20 fm) and β = 3.35 (a � 0.15 fm) is
mπ � 670MeV and mπ � 450MeV, respectively. Our ex-
pectation based on the ChPT formulas and on our previous
experience is that, for instance, on a 243 ·48 lattice with
a � 0.10 fm the minimal pion mass at aµ = 0.005 will be
somewhere in the range 270MeV <mminπ < 300MeV. This
is because at vanishing twisted masses mminπ is going to
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zero as O(a) and for positive twisted mass the decrease
is somewhat faster. (The lower value of the estimate cor-
responds to the minimum of the extrapolated curve in
Fig. 6.)
The kaon mass in the present simulations is higher than

the physical value but can probably be properly tuned by
changing the twisted mass parameters in the (c, s) doublet.
The D-meson mass is smaller than the physical value (i.e.
the c–s mass splitting is smaller than in nature) but this
is reasonable on coarse lattices in order to stay with it be-
low the cut-off. On finer lattices (say, with a� 0.05 fm) one
can try to tune also theD-mesonmass to its physical value.
A possible difficulty in properly tuning the mass splittings
in the (c, s) doublet can be caused by the relative insensi-
tivity of the masses to the bare mass splitting parameter
aµδ. This may imply the necessity of some extrapolations
in the mass ratios.
If an extrapolation (or interpolation) in the s- and

c-quark mass is necessary, one can consider dimension-
less quantities as functions of the pseudoscalar mass ra-
tios. For the strange quark mass one can take the ratio
mK/mπ, which is in nature mK/mπ � 3.54. In the 163 ·
32 run at κ= 0.1705 of Table 3 we have mK/mπ = 1.888
and, as Fig. 6 shows, in a future run on 243 ·48 lattice with
a � 0.1 fm, also discussed above, one can expect that this
value can be tuned close to the physical value. As far as the
ratio of the c- to s-quark mass is concerned, one can con-
sider the variablemD/mK , which in the κ= 0.1705 run of
Table 3, ismD/mK � 1.67 (in nature it ismD/mK � 3.75).
Assuming that on the 243 ·48 lattice with a � 0.1 fm the
D-meson mass will be about 1 in lattice units, one will
have mD/mK � 2.0. This shows that the extrapolation in
mD/mK will not be a big problem either, especially be-
cause the results will probably not depend very strongly on
the heavy sea quark masses.
In case of the (c, s) doublet the mass splitting is rather

large in nature because the renormalised quark masses
satisfy (mc−ms)/(mc+ms) � 0.85. Therefore it is im-
portant to take into account the mass splitting. For the
(u, d) doublet, well above the scale of the u- and d-quark
masses, the mass degeneracy can be considered as a good
approximation, but even in this case we have in nature
(md−mu)/(md+mu)� 0.28. Hence also there, on a long
run, the problem of the quark mass splitting within the
doublet has to be tackled.
In summary, our experience in this paper is rather posi-

tive both for the twisted-mass Wilson fermion formulation
and for the PHMC algorithm we are using. This opens the
road for future large scale QCD simulations with dynami-
cal u, d, s and c quarks.
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Appendix

In the Nf = 2 theory, one possible definition of the criti-
cal quark massm0cr(g0, µ) is given by the vanishing of the

PCAC quark mass mPCACχ . Due to chirality breaking the
latter gets shifted:

mPCACχ =m0−a
−1f(g0, am0, aµ) , (A.1)

with f a dimensionless function. On the basis of the sym-
metry of the action under parity× (µ→−µ), one can show
that the additive renormalisation of the quark mass is even
in µ, and analyticity in turn implies

f(g0, am0, aµ) = f(g0, am0)+O(µ
2a2) , (A.2)

where f(g0, am0) is the shift for ordinary Nf = 2 QCD
without twisted mass term. So the twisted mass term in
the action only produces an O(a) effect on the quark mass
(with g0 andm0 held fixed):

mPCACχ =m0−a
−1f(g0, am0)+O(a) . (A.3)

The above argument can easily be generalised to the
Nf = 2+1+1 theory. Here one has to make a distinction
between the two sectors:

mPCACχl =m0l−a
−1fl(g0, am0l, am0h, aµl, aµσ, aµδ) ,

(A.4)

mPCACχh =m0h−a
−1fh(g0, am0h, am0l, aµσ, aµl, aµδ) .

(A.5)

The functions fl and fh are in this case even in µl, µh and
µδ
1: similarly to Nf = 2, the associated terms in the action

only affect the additive renormalisation of the quark mass
by O(a) terms. So we write

mPCACχl =m0l−a
−1f(g0, am0l, am0h)+O(a) ,

(A.6)

mPCACχh =m0h−a
−1f(g0, am0h, am0l)+O(a) ,

(A.7)

where on the r.h.s. we have now the mass shifts for the the-
ory without twist and mass splitting (Nf = 2+2 QCD):
here the distinction between the two sectors is immaterial.
From (A.6) and (A.7) it follows immediately that

m0l =m0h =m0⇒m
PCAC
χh =mPCACχl +O(a) . (A.8)

1 An additional symmetry in the heavy sector is needed
for the argument, namely χh,x → exp {i

π
2 τ1}χh,x, χ̄h,x →

χh,x exp {−i
π
2 τ1} composed with µδ →−µδ.



T. Chiarappa et al.: Numerical simulation of QCD with u, d, s and c quarks in the tm Wilson formulation 383

References

1. Fermilab Lattice, MILC and HPQCD Collaboration,
A.S. Kronfeld et al., PoS LAT2005, 206 (2005)

2. Fermilab Lattice, MILC and HPQCD Collaboration,
A.S. Kronfeld et al., Int. J. Mod. Phys. A 21, 713 (2006)
[hep-lat/0509169]

3. JLQCD Collaborations, CP-PACS et al., PoS LAT2005,
057 (2005) [hep-lat/0509142]

4. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz, Nucl. Phys.
Proc. Suppl. 83, 941 (2000) [hep-lat/9909003]

5. R. Frezzotti, G.C. Rossi, Nucl. Phys. Proc. Suppl. 128, 193
(2004) [hep-lat/0311008]

6. F. Farchioni et al., PoS LAT2005, 072 (2005) [hep-lat/
0509131]

7. R. Frezzotti, G.C. Rossi, JHEP 0408, 007 (2004) [hep-lat/
0306014]

8. R. Frezzotti, G.C. Rossi, Nucl. Phys. Proc. Suppl. 129, 880
(2004) [hep-lat/0309157]

9. XLF Collaboration, K. Jansen, A. Shindler, C. Urbach,
I. Wetzorke, Phys. Lett. B 586, 432 (2004) [hep-lat/
0312013]

10. XLF Collaboration, W. Bietenholz et al., JHEP 0412, 044
(2004) [hep-lat/0411001]

11. XLF Collaboration, K. Jansen, M. Papinutto, A. Shindler,
C. Urbach, I. Wetzorke, Phys. Lett. B 619, 184 (2005)
[hep-lat/0503031]

12. XLF Collaboration, K. Jansen, M. Papinutto, A. Shindler,
C. Urbach, I. Wetzorke, JHEP 0509, 071 (2005) [hep-lat/
0507010]

13. F. Farchioni et al., Eur. Phys. J. C 39, 421 (2005) [hep-lat/
0406039]

14. F. Farchioni et al., Eur. Phys. J. C 42, 73 (2005) [hep-lat/
0410031]

15. F. Farchioni et al., Phys. Lett. B 624, 324 (2005) [hep-lat/
0506025]

16. F. Farchioni et al., Eur. Phys. J. C 47, 453 (2006) [hep-lat/
0512017]

17. K. Symanzik, Nucl. Phys. B 226, 187 (1983)
18. P. Weisz, Nucl. Phys. B 212, 1 (1983)
19. P. Weisz, R. Wohlert, Nucl. Phys. B 236, 397 (1984)
20. P. Weisz, R. Wohlert, Nucl. Phys. B 247, 544 (1984) [Erra-
tum]

21. I. Montvay, E. Scholz, Phys. Lett. B 623, 73 (2005) [hep-
lat/0506006]

22. R. Frezzotti, K. Jansen, Phys. Lett. B 402, 328 (1997)
[hep-lat/9702016]

23. R. Frezzotti, K. Jansen, Nucl. Phys. B 555, 395 (1999)
[hep-lat/9808011]

24. R. Frezzotti, K. Jansen, Nucl. Phys. B 555, 432 (1999)
[hep-lat/9808038]

25. I. Montvay, Nucl. Phys. B 466, 259 (1996) [hep-lat/
9510042]

26. T. Chiarappa, R. Frezzotti, C. Urbach, PoS LAT2005, 103
(2006) [hep-lat/0509154]

27. T. Chiarappa, R. Frezzotti, C. Urbach, work in prepara-
tion

28. F. Farchioni et al., Nucl. Phys. Proc. Suppl. 140, 240
(2005) [hep-lat/0409098]

29. S. Aoki, O. Bär, Phys. Rev. D 70, 116011 (2004) [hep-lat/
0409006]

30. S. Aoki, O. Bär, Phys. Rev. D 74, 034511 (2006) [hep-lat/
0604018]

31. S.R. Sharpe, J.M.S. Wu, Phys. Rev. D 71, 074501 (2005)
[hep-lat/0411021]

32. R. Frezzotti, G. Martinelli, M. Papinutto, G.C. Rossi,
JHEP 0604, 038 (2006) [hep-lat/0503034]

33. S.R. Sharpe, Phys. Rev. D 72, 074510 (2005) [hep-lat/
0509009]

34. ETM Collaboration, Ph. Boucaud et al., hep-lat/
0701012

35. S.R. Sharpe, R.L. Singleton, Phys. Rev. D 58, 074501
(1998) [hep-lat/9804028]

36. G. Münster, JHEP 0409, 035 (2004) [hep-lat/0407006]
37. L. Scorzato, Eur. Phys. J. C 37, 445 (2004) [hep-lat/
0407023]

38. S.R. Sharpe, J.M.S. Wu, Phys. Rev. D 70, 094029 (2004)
[hep-lat/0407025]

39. R. Sommer, Nucl. Phys. B 411, 839 (1994) [hep-lat/
9310022]

40. A.M. Abdel-Rehim, R. Lewis, R.M. Woloshyn, J.M.S. Wu,
Phys. Rev. D 74, 014507 (2006) [hep-lat/0601036]

41. C. Pena, S. Sint, A. Vladikas, JHEP 0409, 069 (2004) [hep-
lat/0405028]

42. T. Blum et al., Phys. Rev. D 50, 3377 (1994) [hep-lat/
9404006]

43. JLQCD Collaboration, S. Aoki et al., Nucl. Phys. Proc.
Suppl. 106, 263 (2002) [hep-lat/0110088]

44. K. Jansen, Nucl. Phys. Proc. Suppl. 129, 3 (2004) [hep-
lat/0311039]





Publications

[SYM-1]

The supersymmetric Ward identities on the lattice

Eur. Phys. J. C23 719-734 (2002)

167



Publications

168



Digital Object Identifier (DOI) 10.1007/s100520200898
Eur. Phys. J. C 23, 719–734 (2002) THE EUROPEAN

PHYSICAL JOURNAL C

The supersymmetric Ward identities on the lattice
The DESY-Münster-Roma Collaboration

F. Farchioni1,�, C.Gebert1, R.Kirchner1,��, I.Montvay1, A. Feo2,���, G.Münster2, T.Galla3, A.Vladikas4

1 Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
2 Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
3 Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
4 INFN, Sezione di Roma 2, c/o Dipartimento di Fisica, Univ. di Roma “Tor Vergata”, Via della Ricerca Scientifica 1,
00133 Rome, Italy

Received: 8 November 2001 / Revised version: 14 January 2001 /
Published online: 15 March 2002 – c© Springer-Verlag / Società Italiana di Fisica 2002

Abstract. Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY Yang-Mills
theory discretized on the lattice with Wilson fermions (gluinos). They are used in order to compute non-
perturbatively a subtracted gluino mass and the mixing coefficient of the SUSY current. The computations
were performed at gauge coupling β = 2.3 and hopping parameter κ=0.1925, 0.194, 0.1955 using the two-
step multi-bosonic dynamical-fermion algorithm. Our results are consistent with a scenario where the Ward
identities are satisfied up to O(a) effects. The vanishing of the gluino mass occurs at a value of the hopping
parameter which is not fully consistent with the estimate based on the chiral phase transition. This suggests
that, although SUSY restoration appears to occur close to the continuum limit of the lattice theory, the
results are still affected by significant systematic effects.

1 Introduction

A better understanding of non-perturbative phenomena in
supersymmetric (SUSY) gauge theories could be gained in
the framework of the lattice regularization. An immediate
difficulty arises, however, because the lattice regularized
theory is not supersymmetric as the Poincaré invariance,
a sector of the superalgebra, is lost. This is evident if
one considers the super-algebra in the canonical formalism
(the notation is with Weyl spinors)

{Qα, Q̄β} = 2σµαβ Pµ . (1)

This relation cannot be fulfilled in a discrete space-time
manifold, where momenta are not generators of infinitesi-
mal space-time translations. More specific difficulties arise
in the fermionic sector where spurious states may violate
the balance between bosonic and fermionic degrees of free-
dom. In the standard approach to lattice gauge theories
with Wilson fermions (for an approach using domain-wall
fermions see [1]) the suppression of spurious states in the
� Address after October 1st: Institut für Theoretische Physik,
Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster,
Germany

�� Address after October 1st: Universidad Autònoma de
Madrid, Cantoblanco, Madrid 28049, Spain
��� Work supported by the Deutsche Forschungsgemeinschaft
(DFG). Address after November 1st: School of Mathematics,
Trinity College, Dublin 2, Ireland

continuum limit is obtained by adding to the action an
‘irrelevant’ term (Wilson term) which explicitly breaks
SUSY.

Some time ago Curci and Veneziano [2] proposed that
in spite of this substantial SUSY breaking the Wilson dis-
cretization may be safely applied to SUSY gauge theories:
the symmetry is recovered in the continuum limit by prop-
erly tuning the bare parameters of the action. They con-
sidered the simple example of the N=1 supersymmetric
Yang-Mills theory (SYM). This is the supersymmetrized
version of quantum gluodynamics where the N2

c −1 gluons
are accompanied by an equal number of fermionic part-
ners (gluinos) in the same (adjoint) representation of the
color group. The Wilson action for the N=1 SYM breaks
SUSY by the Wilson term for the gluino action and by a
gluino Majorana mass term. The lattice Ward identities
(WIs), considered in [3] for the case of the chiral symme-
try in QCD (see also [4,5]), provide a general theoretical
framework for properly dealing with the problem of the
restoration of the symmetry in the continuum limit. As
a consequence of the SUSY breaking, similarly to QCD,
the gluino mass is shifted: a tuning procedure on the bare
mass is required in order to recover massless gluino and
SUSY in the continuum limit.

The problem of the Monte Carlo simulation of the
N=1 SU(2) SYM with Wilson fermions was considered
by this collaboration in the past [6–10] (for a study in
the quenched approximation see [11]). The theory with
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dynamical gluino was simulated by the two-step multi-
bosonic (TSMB) algorithm defined in [12,13]. The formu-
lation of the algorithm, flexible with respect to the pa-
rameter Nf , allows to treat the gluino which is a Ma-
jorana fermion (Nf = 1/2). An extensive analysis of the
low-energy aspects of the SU(2) SYM was performed.

An intricate point in the N=1 SYM is the tuning of
the theory to the massless gluino limit. The straightfor-
ward spectroscopic method familiar in QCD cannot be
applied in the case of the N=1 SYM since the theory pos-
sesses only an anomalous axial chiral symmetry and no
Goldstone boson is available. The problem was consid-
ered in [9] by studying the behavior of the finite-volume
gluino condensate as a function of the hopping parame-
ter: the massless gluino is expected to correspond to two
degenerate vacua with symmetric probability distribution
of the gluino condensate. SUSY restoration can be also
verified by direct inspection of the low-energy mass spec-
trum [10]: this is expected to reproduce the SUSY mul-
tiplets predicted by the low-energy effective Lagrangians
[14,15]. An accurate analysis of the spectrum is however a
non-trivial task from the computational point of view and
an independent method for checking SUSY is welcome. A
possibility [11] is to use the SUSY WIs to determine the
gluino mass in the same way the chiral WIs are used in
QCD to determine the quark mass. A great simplification
consists in considering the on-shell regime. In addition the
WI approach improves the insight in the renormalization
of the lattice SUSY current. The properly renormalized
current defines the supercharge and satisfies the appropri-
ate superalgebra. The renormalization of the lattice SUSY
current is more complicated compared to the chiral case
since SUSY is more severely broken on the lattice. Explicit
one-loop calculations in lattice perturbation theory may
lead to a better understanding of this problem [16,17].

In this work we concentrate on the SUSYWI approach.
As we shall see, two unknown parameters appear in the
on-shell SUSY WIs. These are ratios of three coefficients
entering the WIs: ZS and ZT multiplying the divergences
of the SUSY current ∂µSµ(x) and of the mixing current
∂µTµ(x), and the subtracted gluino massmS . FormS = 0,
SUSY is expected to be restored in the continuum limit.
As a result of the study we obtain a non-perturbative
determination of the dimensionless ratios amSZ

−1
S and

ZTZ
−1
S . We consider the gauge coupling β = 2.3 on a

123 × 24 lattice and three values of the hopping parame-
ter κ=0.1925, 0.194, 0.1955, corresponding to decreasing
gluino mass. Preliminary results were presented in [18–20].

The paper is organized as follows. In Sect. 2 the Curci-
Veneziano approach is introduced in the case of the N=1
SYM. The lattice action is defined and its symmetries
are pointed out (see also Appendix A). The latter play
a special rôle in the analysis of the SUSY WIs. In Sect. 3
the formalism of the lattice WIs is reviewed. The funda-
mental issue in this context is the renormalization of the
‘irrelevant’ operator entering the WIs because of the ex-
plicit breaking of SUSY in the lattice model. A detailed
account is given in Appendix B with an analysis based
on the discrete hypercubic group. The result is that the

SUSY WIs assume a specific lattice form. We discuss in
this paper only the simplified case of the on-shell regime.
Suitable gluino-glue insertion operators are discussed in
Sect. 4. In Appendix C the rôle of the symmetries in this
context is clarified. In Sect. 5 we give an account of the
present setup of the TSMB algorithm. The parameters
have been tuned in order to get good performance for
light fermionic degrees of freedom. We also measure some
quantities (smallest eigenvalue, sign of the Pfaffian, the
scale r0) which characterize the set of configurations un-
der study. Sect. 6 is devoted to the numerical analysis of
the SUSY WIs with an outline of the method and the pre-
sentation of the numerical results. Conclusions are finally
drawn in Sect. 7.

2 The N=1 SYM on the lattice

We adopt the formulation of [2] for the lattice discretiza-
tion of the N=1 SYM with Nc colors. The pure gauge
action Sg is the standard plaquette one

Sg =
β

2

∑
x

∑
µ�=ν

(
1 − 1

Nc
ReTrUµν(x)

)
, (2)

where the plaquette is defined as

Uµν(x) = U†
ν (x)U

†
µ(x+ ν̂)Uν(x+ µ̂)Uµ(x) , (3)

and the bare gauge coupling is given by β ≡ 2Nc/g
2
0 . For

Wilson fermions the action (with Wilson parameter set to
r=1) reads

Sf =
∑
x

a4 Tr

[
1
2a

∑
µ

(
λ(x) (γµ − 1)U†

µ(x)λ(x+ µ̂)

×Uµ(x) − λ(x+ µ̂) (γµ + 1)Uµ(x)λ(x)U†
µ(x)

)

+(m0 +
4
a
)λ(x)λ(x)

]
, (4)

with a the lattice spacing and m0 the gluino bare mass.
The gluino field λ(x) is a Majorana spinor transforming
according to the adjoint representation of the gauge group.
The symbol ‘Tr’ denotes the trace over the color indices.
In this work we consider Nc = 2, for which the adjoint
gluino field is expressed in terms of Pauli matrices σr

λ =
3∑

r=1

1
2
σrλ

r . (5)

The following relation (Majorana condition) holds for an
Euclidean Majorana field:

λ(x) = λC(x) ≡ Cλ
T
(x) , (6)

where C = γ0γ2 is the spinorial matrix associated with
the charge-conjugation symmetry C. Boundary conditions
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are taken to be periodic except for fermionic fields in the
time direction, which are anti-periodic.

In Monte Carlo simulations a different parametrization
is used. The hopping parameter κ is defined as

κ =
1

2(4 +m0a)
(7)

and the fermionic action is expressed in terms of the
fermion matrix Q

Sf =
a3

2κ

∑
xr,ys

λ
s
(y)Qys,xrλ

r(x) (8)

(Dirac indices are implicit). The fermion matrix is given
by

Qys,xr ≡ Qys,xr[U ]

≡ δyxδsr − κ

4∑
µ=1

[
δy,x+µ̂(1 + γµ)Vsr,xµ

+δy+µ̂,x(1 − γµ)V T
sr,yµ

]
(9)

with the adjoint link Vrs,xµ(x) defined as

Vrs,xµ ≡ Vrs,xµ[U ]

≡ 1
2
Tr(U†

xµσrUxµσs) = V ∗
rs,xµ = V −1T

rs,xµ . (10)

The action (2)-(4) is invariant under the discrete sym-
metries P (parity), T (time-reversal) and C (charge-
conjugation). For the case under consideration the latter
symmetry implies the following relation for the fermion
matrix

QT
xr,ys[U ] = CQys,xr[U ]C−1 (11)

(transposition is intended on the suppressed Dirac in-
dices). The discrete symmetries of the lattice action play
an important rôle in the subsequent analysis of the WIs;
their explicit definition is given in Appendix A.

3 Lattice SUSY Ward identities

SUSY is explicitly broken in the action (2)-(4) by the
gluino mass term, by the Wilson term and by the lat-
tice discretization. Using lattice SUSYWIs a soft-breaking
subtracted gluino mass mS can be defined. The expecta-
tion is that the vanishing of mS , for asymptotically small
lattice spacings, ensures the restoration of SUSY up to
discretization effects. In this Section we discuss these is-
sues, which were first introduced in [2], and have also been
considered in [11] and [16].

Lattice SUSY transformations complying with gauge
invariance, P, T and the Majorana nature of the gluino
field are [21,16]1:

δUµ(x) = − ig0a

2

(
θ(x)γµUµ(x)λ(x)

1 Our definition of the link variable Uµ(x) differs from that of
[16] (see our definition of the plaquette (3)); the two definitions
are related by Hermitian conjugation

+θ(x+ µ̂)γµλ(x+ µ̂)Uµ(x)
)
,

δU†
µ(x) =

ig0a

2

(
θ(x)γµλ(x)U†

µ(x)

+θ(x+ µ̂)γµU†
µ(x)λ(x+ µ̂)

)
,

δλ(x) =
1
2
P (cl)
µν (x)σµνθ(x) ,

δλ(x) = −1
2
θ(x)σµνP (cl)

µν (x) , (12)

where θ(x), θ(x) are infinitesimal Majorana fermionic pa-
rameters. The lattice field tensor P

(cl)
µν (x) is clover-sym-

metrized so as to comply with P and T:

P (cl)
µν (x) =

1
4a

4∑
i=1

1
2ig0a

(
U (i)
µν (x) − U (i)†

µν (x)
)
, (13)

where

U (1)
µν (x) = U†

ν (x)U
†
µ(x+ ν̂)Uν(x+ µ̂)Uµ(x) ≡ Uµν(x) ,

U (2)
µν (x) = U†

µ(x)Uν(x+ µ̂ − ν̂)Uµ(x − ν̂)U†
ν (x − ν̂) ,

U (3)
µν (x) = Uν(x − ν̂)Uν(x − µ̂ − ν̂)

×U†
µ(x − µ̂ − ν̂)U†

µ(x − µ̂) ,

U (4)
µν (x) = Uµ(x − µ̂)U†

ν (x − µ̂)

×U†
µ(x − µ̂+ ν̂)Uν(x) . (14)

For any operator Q(y) the expectation value 〈Q(y)〉
is invariant if in the functional integral a change of vari-
ables according to the above SUSY transformations is per-
formed. In the case of a gauge invariant operator Q(y) this
results in the following WI

∑
µ

〈(
∇µS

(ps)
µ (x)

)
Q(y)

〉
(15)

= m0 〈χ(x)Q(y)〉 +
〈
X(ps)(x)Q(y)

〉
−
〈
δQ(y)
δθ(x)

〉
.

The SUSY current S(ps)
µ (x) is point-split (ps) [16]

S(ps)
µ (x) = −1

2

∑
ρσ

σρσγµTr
(
P (cl)
ρσ (x)U†

µ(x)λ(x+ µ̂)Uµ(x)

+P (cl)
ρσ (x+ µ)Uµ(x)λ(x)U†

µ(x)
)

, (16)

and the lattice derivative is the backward one ∇b
µf(x) =

(f(x) − f(x − µ̂))/a. We recall that SUSY is broken by
the presence of a non-zero bare mass in the action, by
the Wilson term and by the discretization. The first type
of SUSY breaking gives rise to the term of the WI (15)
involving the operator χ(x):

χ(x) =
∑
ρσ

σρσTr
(
P (cl)
ρσ (x)λ(x)

)
. (17)
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The rest of the SUSY breaking results in the presence of
the X(ps)(x) term. Its exact expression [16] is not needed
in the following. It suffices to know that in the naive con-
tinuum limit XS(x) ≈ aO11/2(x), where O11/2(x) is a
dimension-11/2 operator.

The last term in (15) is a contact term which vanishes
when the distance |x− y| is non-zero. This corresponds to
the on-shell situation. We shall restrict ourselves to this
regime in the numerical analysis of the WIs and contact
terms will be consequently disregarded in the following
discussions.

The definition of the SUSY current on the lattice is
arbitrary up to terms which vanish in the continuum limit.
Another choice is the local (loc) current

S(loc)
µ (x) = −

∑
ρσ

σρσγµTr
(
P (cl)
ρσ (x)λ(x)

)
. (18)

This definition is preferable on the classical level [21] and
is more convenient for analytic perturbative calculations.
The local current S(loc)

µ (x) satisfies a WI of the form (15),
with a symmetric lattice derivative ∇s

µf(x) = (f(x+µ)−
f(x− µ̂))/2a (required to preserve P and T) and a SUSY-
breaking term X(loc) = X(ps) +O(a).

3.1 Renormalization

The WI (15) is a relation between bare correlation func-
tions. The rôle of the symmetry-breaking operator
X(ps)(x) (or X(loc)(x)) is of particular interest, as it is
related to current normalization and gluino mass subtrac-
tion. Its treatment in the present case follows closely that
of the axial WIs in QCD [3,5].

We consider the renormalization of the dimension-11/2
operator O11/2(x). According to the usual prescriptions,
this implies mixing with operators of equal or lower dimen-
sions d, which have the same transformation properties
under the symmetries of the lattice action. A discussion
of the mixing pattern on the basis of the discrete hyper-
cubic group is carried out in Appendix B. The result is
that no Lorentz-breaking mixing arises at least in the on-
shell regime. The mixing pattern (involving operators with
7/2≤d ≤ 11/2) in the on-shell case is given by

OR
11/2(x) = Z11/2

[
O11/2(x) + a−1(ZS − 1)∇µSµ(x)

+a−1ZT ∇µTµ(x) + a−2Zχ χ(x)
]

+
∑
j

Z
(j)
11/2O

(j) R
11/2 (x) . (19)

Since it is not relevant to the present discussion we have
left unspecified the exact lattice form of the SUSY current
(point-split or local) and derivative (backward or symmet-
ric). The same applies to the other dimension-9/2 opera-
tor appearing in (19), namely the divergence of the mixing
current Tµ(x). It may be defined in analogy to Sµ(x) as
point-split

T (ps)
µ (x) =

∑
ν

γνTr
(
P (cl)
µν (x)U†

µ(x)λ(x+ µ̂)Uµ(x)

+P (cl)
µν (x+ µ)Uµ(x)λ(x)U†

µ(x)
)

(20)

or local

T (loc)
µ (x) = 2

∑
µν

γνTr
(
P (cl)
µν (x)λ(x)

)
, (21)

with the lattice derivative chosen as in the case of the
current Sµ(x). From the above discussion obviously fol-
lows that different lattice currents Sµ(x) and Tµ(x) are
associated with different values of ZS and ZT .

The last term on the r.h.s. of (19) reflects the mixing of
the operator O11/2(x) with other bare operators O(j)

11/2(x)
of equal dimension. The reason (19) has been expressed in
terms of the renormalized ones O(j) R

11/2 (x) will become clear
shortly. The multiplicative renormalization Z11/2 and the
mixing coefficients Z

(j)
11/2 are logarithmically divergent in

perturbation theory. Solving (19) for O11/2(x) and substi-
tuting it in WI (15) one gets

ZS 〈(∇µSµ(x))Q(y)〉 + ZT 〈(∇µTµ(x))Q(y)〉
= mS 〈χ(x)Q(y)〉 + O(a) , (22)

where the subtracted mass mS is given by

mS = m0 − a−1Zχ . (23)

In deriving (22) we have relied on the vanishing in the
continuum limit of the correlation

a

〈
[Z−1

11/2O
R
11/2(x) −

∑
j

Z
(j)
11/2O

(j) R
11/2 (x)]Q(y)

〉
= O(a) ,

(24)
which is valid on-shell, x �=y (recall that Z11/2, Z

(j)
11/2 are

only logarithmically divergent).
By using general renormalization group arguments (see

e.g. [5]) one can show that ZS , ZT and Zχ, being power-
subtraction coefficients, do not depend on the renormal-
ization scale µ defining the renormalized operator (19).
Consequently dimensional considerations imply ZS =
ZS(g0,m0a), ZT = ZT (g0,m0a), Zχ = Zχ(g0,m0a). The
requirement of a well defined chiral limit of the theory
implies in particular that the dependence of ZS and ZT

on the gluino mass is vanishingly small in the continuum
limit. In simulations at fixed lattice spacing this depen-
dence is treated as an O(a) effect.

In QCD the lattice chiral WI, a relation analogous to
(22), leads to the definition of an axial current Âµ(x) =
ZAA

lat
µ (x) where Alat

µ (x) is a generic discretization of the
chiral current. A rigorous argument [3,5] shows that the
current Âµ(x) coincides with the correctly normalized con-
tinuum chiral current. It satisfies the appropriate current
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algebra. It is tempting to associate by analogy the quan-
tity Ŝµ(x) = ZSSµ(x) + ZTTµ(x) with the correctly nor-
malized continuum SUSY current. An attempt to repro-
duce in this case the QCD argument fails. This is because
the proof in QCD relies on two key properties (cf. Sect. 3.1
of [5]):

1. The axial variation of the quark field is proportional
to the field itself.

2. The gauge fixing term is invariant under axial trans-
formations.

The above statements, valid for the axial symmetry, do not
apply to SUSY. Thus, to the best of our knowledge, SUSY
WIs cannot be used in a way analogous to the QCD chiral
ones in order to prove the non-renormalization theorem
for the current Ŝµ(x). Explicit one-loop calculations in
lattice perturbation theory may shed some light on this
issue [16,17]. If the correctly normalized SUSY current
coincides with Ŝµ(x) (or is related to it by multiplicative
renormalization), it is conserved when mS vanishes. This
is the restoration of SUSY in the continuum limit.

4 Insertion operators

In this Section we turn our attention to the insertion
operator Q(x) of the WI (22). The operators ∇µSµ(x),
∇µTµ(x) and χ(x), which will be in the following collec-
tively denoted as ‘sink operators’, transform according to
the bispinorial representation of the Poincaré group in the
continuum. In order to get a non-trivial WI, the insertion
operator Q(x) is required to contain (at least) one non-
zero spin-1/2 component. Thus, given a composite opera-
tor O which is a Majorana bispinor, Q(x) may be chosen
to be of the form

Q(x) = ŌT (x) ≡ C−1O(x) . (25)

Clearly this operator must also be gauge invariant.
We consider the zero spatial momentum WI obtained

by summation over the spatial coordinates of (22)∑
�x

〈
(∇0S0(x)) ŌT (y)

〉
+ ZTZ

−1
S

∑
�x

〈
(∇0T0(x)) ŌT (y)

〉
= mSZ

−1
S

∑
�x

〈
χ(x)ŌT (y)

〉
+O(a) . (26)

Note that in the above equation the three correlation func-
tions are 4×4 matrices in Dirac indices. In numerical sim-
ulations these bare correlation functions can be computed
at fixed lattice bare lattice parameters β = 2Nc/g

2
0 and

κ. Thus by choosing two elements of the 4 × 4 matrices,
a system of two equations can be solved for mSZ

−1
S and

ZTZ
−1
S .
One must clearly ensure that these two equations are

non-trivial and independent. To do this, let us consider the
correlations containing the SUSY current (identical con-
siderations apply for the other two correlations). Written
explicitly with its Dirac indices this reads

C
(S,O)
αβ (t) = adO+9/2

∑
�x

〈
(∇0S0)α(x) Ōβ(y)

〉
,

t = x0 − y0 . (27)

We consider dimensionless correlations, since these are the
quantities actually computed in simulations. The above
4× 4 matrix can be expanded in the basis of the 16 Dirac
matrices Γ

C
(S,O)
αβ (t) =

∑
Γ

C
(S,O)
Γ (t)Γαβ . (28)

Using discrete symmetries, see Appendix C, we can show
that the only surviving contributions are (here Dirac in-
dices are contracted)

C
(S,O)
11 (t) ≡

∑
�x

〈(∇0S0(x)O(y)
)〉

(29)

C(S,O)
γ0

(t) ≡
∑
�x

〈(∇0S0(x)γ0O(y)
)〉

. (30)

Due to the Majorana nature of the operators, the corre-
lations C(S,O)

11 (t) and C
(S,O)
γ0 (t) are real. In conclusion for

a given insertion operator we determine the dimensionless
quantities amSZ

−1
S and ZTZ

−1
S by solving the system of

two equations


C
(S,O)
11 (t) + (ZTZ

−1
S ) C(T,O)

11 (t)
= (amSZ

−1
S ) C(χ,O)

11 (t)

C
(S,O)
γ0 (t) + (ZTZ

−1
S ) C(T,O)

γ0 (t)
= (amSZ

−1
S ) C(χ,O)

γ0 (t) .

(31)

We now turn our attention to the choice of suitable
insertion operators Q(x). Practical considerations suggest
the use of the lowest-dimensional insertion operators with
the suitable symmetry properties. In our case this means
the d = 7/2 gauge invariant bispinor

Tr
[
P (cl)
µν (x)λ(x)

]
(32)

which is a tensor of 6 components in the Lorentz indices.
Since the sink operators have spin-1/2, we must project
out of the above Lorentz tensor the spin-1/2 components.
Examples are S0, T0, χ and

χ(sp)(x) =
∑
i<j

σijTr
[
P

(cl)
ij λ(x)

]
(33)

(only spatial plaquettes are taken into account). Since the
Lorentz tensor of (32) has only two independent spin-1/2
components (see Appendix C for a detailed discussion),
not all of the above operators can be independent. Indeed,
they are related by

χ(x) = γ0T0(x) − 2χ(sp)(x) (34)

S0(x) = 2γ0(γ0T0(x) − 2χ(sp)(x)) . (35)

We see that two independent systems of (31) exist for
two choices of dimension-7/2 insertion operators O. This
redundancy can in principle be used in order to check
lattice artifacts.
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Table 1. Parameters of the numerical simulations at β = 2.3. The run at κ=0.1925 was performed in
[10]. The notation is explained in the text

κ ε · 104 λ n1 n2 n3 n4 nHB nOB nM nNC updates offset Nlat

0.1925 3.0 3.7 32 150 220 400 1 3 1 1 216000 50 9
0.194 (a) 0.8 4.5 38 280 320 400 1 2 8 8 2250 50 9
0.194 (b) 1.0 4.5 24 160 200 400 1 2 8 8 2700 20 9
0.194 (c) 1.0 4.5 24 120 160 400 1 2 8 8 1620 20 9
0.194 (d) 1.0 4.5 28 160 210 400 2 2 8 8 35460 20 9
0.1955 (a) 0.2 5.0 32 420 560 840 2 10 4 4 5040 30 8
0.1955 (b) 0.125 5.0 32 480 640 960 2 10 4 4 27672 15 8
0.1955 (c) 0.125 5.0 32 480 640 960 6 6 12 12 33120 10 8

5 Simulation of the model with light gluinos

We simulate the N=1 SU(2) SYM on a 123 × 24 lattice
at β = 2.3. This value of β corresponds to the lower end
of the approximate scaling region in pure SU(2) lattice
gauge theory. In the full theory virtual loops of gluinos
contribute to the Callan-Symanzik β-function. The conse-
quence is that, for fixed β, the lattice spacing is decreased.

The scaling properties of the model with dynamical
gluinos were studied in detail in [10]. There values of κ
up to κ=0.1925 were considered. In that region of masses
the observed effect coming from the dynamics of the glu-
inos was mainly the overall renormalization of the lattice
spacing due to the fermionic virtual loops. The change of
dimensionless ratios of masses and string tension where
only moderate up to κ≤ 0.1925 where most of the simu-
lations were performed.

The set of configurations for the lightest gluino pro-
duced in [10], κ=0.1925, is taken here as a starting point.
We further simulate the model at lighter gluinos, at κ=
0.194 and 0.1955. The largest of these hopping parame-
ters coincides with the central value of the estimate of
κc from the study of the finite volume gluino condensate,
κc = 0.1955(5) [9]. That determination was however ob-
tained on a relatively small lattice (63 ×12) and the value
of κc is likely to be underestimated. In fact, anticipating
results of the present study, the gluino mass starts de-
creasing significantly only for κ � 0.194. For κ = 0.1955
the gluino mass is quite small but still appreciably dif-
ferent from zero. This is also evident in the simulation
process.

Simulating light fermions in a reasonably large physical
volume is a challenging task from the algorithmic point of
view. The difficulty is related to very small eigenvalues of
the fermion matrix. The relevant parameter in this context
is the condition number of Q̃2, where Q̃ ≡ γ5Q is the
Hermitian fermion matrix2. For a given simulation volume
the condition number gives an indication of the ‘lightness’
of the gluino. For the lightest gluino, at κ = 0.1955, we
had condition numbers O(105). A direct comparison with
the more familiar case of QCD is not possible since the
simulation of SYM is generally less demanding.

2 The condition number of a matrix is defined as the ratio
between its largest and smallest eigenvalue

Another difficulty related to light fermions is the shrin-
king of the physical volume due to the renormalization
of the lattice spacing by fermionic virtual loops. We ex-
pect that already at κ=0.194 the low energy bound-states
mass spectrum is strongly affected by the finite-size scal-
ing on our 123 × 24 lattice. (See also Sect. 5.5). The sit-
uation is different for the main subject of this work, the
SUSY WIs. The WIs hold also on a finite volume with
volume-dependent coefficients. These are however essen-
tially renormalizations defined at the scale of the UV cut-
off a−1. Our volumes should be consequently large enough
for an accurate determination.

All the numerical computations of this work were per-
formed on the two 512-nodes CRAY-T3E machines at
the John von Neumann Institute for Computing (NIC),
Jülich, with 307.2 and 614.4 GFLOPS peak-performance
respectively. The CPU cost of the simulation was ∼1
GFLOPS Year sustained (∼3 · 1016 f.p.o.) for each of the
two simulation points of this work.

5.1 The TSMB algorithm: simulation parameters

The TSMB algorithm used in the simulations is defined in
[12,13]. The multi-bosonic updating with the scalar pseud-
ofermion fields was performed by heatbath and overrelax-
ation for the scalar fields and Metropolis sweeps for the
gauge field; we refer to [10] for more details on the imple-
mentation of the TSMB algorithm in the case of the N=1
SU(2) SYM.

In Table 1 we report the parameters for the simulations
performed in this work. We also include for reference the
parameters for the simulation at κ=0.1925 performed in
[10]. We briefly explain the meaning of the various sym-
bols (see also [10]);
[ε, λ] (columns 2 and 3) is the presumed domain of the
eigenvalue spectrum of Q̃2; this is also the domain of va-
lidity of the polynomial approximation of the fermionic
measure; n1,...,4 (columns 4 to 7) are the orders of the poly-
nomial approximations used in the simulation and mea-
surement process; in particular, n1 and n2 are the orders
of the polynomial approximations in the local update and
in the global accept-reject step (noisy correction) respec-
tively; n3 is the order of the polynomial used for the gener-
ation of the noisy vector in the noisy correction; n4 is the
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Table 2. Exponential and integrated autocorrelation of the
plaquette measured in update cycles. In square brackets the
integrated autocorrelation is measured in no. of Dirac matrix
multiplications. The data at κ=0.1925 are taken from [10]

κ run τexp τint

0.1925 - 378(37) 675(200) [1.15(34) 106]
0.194 d 249(68) 272(83) [0.75(23) 106]
0.1955 b 220(50) 280(70) [1.49(37) 106]
0.1955 c 210(40) 250(40) [1.71(27) 106]
0.1955 b,c 260(30) 420(50)

order of the polynomial used for the computation of the
reweighting factors in the measurements; nHB , nOB , nM
(columns 8 to 10) indicate the heatbath, overrelaxation
and Metropolis sweeps performed at each step of the lo-
cal update; nNC (column 11) is the number of Metropo-
lis sweeps separating two consecutive global accept-reject
steps; finally columns 12 to 14 report the total number of
updates at equilibrium, the offset between measurements,
and the number of independent lattices simulated.

5.2 Autocorrelations

Tuning the various parameters of the algorithm (ε, λ,
n1,2,3, nHB , nOV , etc.) is essential to get an optimized
updating. As an optimization criterion we have consid-
ered the autocorrelation of the plaquette. In particular,
the order of the first polynomial n1 was increased until
the acceptance probability in the noisy correction reached
∼50%. With this choice the two steps of the updating
process equally contribute in shaping the distribution of
gauge configurations. Larger values of n1 have the effect of
increasing autocorrelations with no substantial improve-
ment of the algorithm. In the runs at κ=0.1955 the up-
date of the pseudofermionic fields was performed by iter-
ating twice a sub-sequence of nHB/2 heatbath and nOB/2
overrelaxation sweeps. In Table 2 the integrated autocor-
relations for the various runs are reported. The data for
κ=0.1925 are taken from [10]. A better tuning of the pa-
rameters of the algorithm allowed to keep autocorrelations
down at low levels in spite of an increasingly light gluino.

5.3 Smallest eigenvalues and reweighting factors

To monitor the accuracy of the polynomial approxima-
tion in the updating process, we constantly checked the
smallest and largest eigenvalue of Q̃2. The distribution of
the smallest eigenvalue for the two simulation points of
this work is reported in Fig. 1. The vertical dashed line
indicates the value of ε used in the simulation.

Extremely small eigenvalues can exceptionally occur
without substantial harm. The corresponding configura-
tion would then be suppressed at the measurement level by
the reweighting. We calculated reweighting factors for sub-
samples of configurations. These turn out to be gaussian
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Fig. 1. Distribution of the smallest eigenvalue of Q̃2 for the
two simulation points of this work. The dashed line indicates
the value of ε used in the simulation
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Fig. 2. Distribution of the reweighting factors with gaussian
fit

distributed with average ∼ 1, see Fig. 2. For κ=0.194 we
also observe a short tail towards small values. These distri-
butions are consistent with the absence of extremely small
eigenvalues in the ensembles. The effect of the reweighting
turns out to be negligible compared to the statistical fluc-
tuations for the quantities considered in this study. This
confirms the overall accuracy of the simulation algorithm.

5.4 The sign of the Pfaffian

The fermionic measure implemented in the updating algo-
rithm is given by

√
det(Q). The actual measure for Ma-

jorana fermions is instead given by the Pfaffian of the
anti-symmetric matrix M = CQ

Pf(M) =
√
det(Q) · sign(Pf(M)) . (36)

The previous formula implies that the configurations ob-
tained by Monte Carlo updating should be further re-
weighted in the measurements by sign(Pf(M)). This could
potentially introduce difficulties. Indeed, were positive and
negative signs almost equally distributed in our ensembles,
a cancellation could occur in the statistical averages. The
significance of the samples would then be close to zero.
This occurrence is know as ‘the sign problem’. In the N=1
SYM with Wilson fermions the two signs are expected to
be equally distributed for κ > κc. For κ < κc, sign-flips
should be suppressed if the volume is large enough (the
situation right at the critical point is still unclear).
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Fig. 3. The flow of eigenvalues as a function of the hopping
parameter for different configurations produced at β = 2.3 and
κ = 0.194. The vertical line indicates the hopping parameter
of the simulation

We determined the sign of the Pfaffian for a subsample
(10%) of configurations at κ=0.194 on our 123×24 lattice.
We used the method explained in [10] consisting in follow-
ing the flow of the eigenvalues of Q̃ as a function of the
hopping parameter. A theorem ensures sign(Pf(M)) = 1
for small κ’s. The sign of the Pfaffian flips whenever an
eigenvalue crosses zero in the flow. We never found such
zero-level crossings, implying that sign(Pf(M)) is always
positive for the considered sub-sample. Examples of eigen-
value flows are given in Fig. 3. We conclude that statis-
tically less than 0.5% of the configurations have nega-
tive sign. Negative Pfaffians were detected in [10] on a
smaller lattice (63 × 12) for κ ≥ 0.196. Absence of sign-
flip of the Pfaffian in our ensembles is also supported by
the observation that extremely small eigenvalues do not
occur and, consistently, the distribution of the reweight-
ing factors does not extend to zero. Indeed each sign-flip
under continuous modification of the gauge configuration
would imply the crossing of a configuration with an exact
fermionic zero-mode.

5.5 Determination of r0/a

In [22] the scale parameter r0 has been proposed as a
reference scale for gauge configurations. It is defined by

r2
0F (r0) = 1.65 (37)

where F (r) is the force between static fermionic color
sources in the fundamental representation. In our case the
determination of r0/a allows us to monitor the reduction
of the simulation volume with increasing κ.

Table 3. Determination of r0/a for the sets of configurations
considered in this study. We also report the ratio Lx/r0 where
Lx is the spatial lattice size

κ r0/a Lx/r0

0.1925 6.71(19) 1.79(5)
0.194 7.37(30) 1.63(7)
0.1955 7.98(48) 1.50(9)

We first calculated the static potential between color
sources in the fundamental representation V (r); this is
needed only at intermediate distances. The potential can
be estimated from Wilson loops W (r, t) by

V (r, t) = ln
(

W (r, t)
W (r, t+ 1)

)
. (38)

To reduce the noise we used APE smearing [23] on the
spatial links with nAPE = 12 iterations and εAPE = 0.5.
Nevertheless the results get unstable for the larger Wilson
loops, so we could not make an extrapolation to large t.
We instead took the result for t = 2, calculated r0/a for
these values and added the difference to the result from
t = 3 to the total error.

To get r0/a from the potential we followed [24,25].
Their general procedure would be to make a fit to

V (r) = V0 + σr − e

[
1
r

]
+ f

([
1
r

]
− 1

r

)
(39)

where [
1
r

]
= 4π

∫ π

−π

d3k

(2π)3
cos(k · r)

4
∑3

j=1 sin
2(kj/2)

(40)

removes lattice artifacts exactly to lowest order of pertur-
bation theory. However it was not possible with our data
to make fits to all four parameters. We therefore followed
[24] and made a three parameter fit fixing e = π/12 and a
two parameter fit fixing in addition f = 0. One can now
extract r0 as

r0 =

√
1.65 − e

σ
. (41)

Our final estimate for r0 comes from the three parameter
fit, and the difference to the two parameter fit was again
added to the Jackknife estimate for the error.

In Table 3 we report the results for r0/a for the three
sets of configurations considered in this study. From data
in column 3 we see that the reduction of the physical lat-
tice size is less than 20% for the lightest gluino in our
simulations.

6 Numerical analysis of the SUSY WIs

In Sect. 4 we have shown how the quantities amSZ
−1
S and

ZTZ
−1
S can be obtained by solving the system of (31) for
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a given insertion operator. We have argued that there are
two such independent dimension-7/2 operators. We choose
the operators χ(sp)(x) and T

(loc)
0 (x) defined in (33) and

(21) for our analysis. Discrepancies between results ob-
tained with these two operators signal the presence of sys-
tematic effects due to the lattice discretization.

In practice we use two methods to obtain amSZ
−1
S

and ZTZ
−1
S . The first method is the most straightfor-

ward, consisting simply in solving the system of (31) for
each time-separation t. Results obtained in this way are
reported in Figs. 4 and 5; they should be independent of
t when contact terms are absent for large enough time-
separations. The second method, explained in detail in
Appendix D, consists in constructing an overdetermined
system of equations for several consecutive time-separa-
tions (tmin, · · · , Lt/2) and fitting simultaneously for all
time-separations. Results obtained in this way are re-
ported in Tables 4–7. Care should be taken in choosing
tmin so as to avoid time-separations in which sink and
insertion operators give rise to contact terms.

Previous experience with the mass spectrum [10] shows
that point-like projection-operators give a poor signal for
the correlations. This is mainly due to the gluonic con-
tent of both sink and insertion operators. The inconve-
nience is expected to be even more severe in the present
case. Indeed sink operators involve time-derivatives which
are subject to large statistical fluctuations. The problem
was solved in [10,11] by smearing the projection-operator
for the gluino-glue bound state. Combined APE [23] and
Jacobi [26] smearing were performed on the gluon and
gluino fields respectively. In the present case we apply
the same procedure only for the insertion operator. We
searched for the optimal smearing parameters by analyz-
ing sub-samples of gauge configurations. The set of pa-
rameters employed in the final analysis was: NJacobi=18,
KJacobi=0.2, NAPE=9, εAPE=0.5 (set A). In one case
(κ = 0.1925 and insertion operator χ(sp)(x)) we have
also considered εAPE=0.1 and remaining parameters as
in set A (set B). The APE-Jacobi procedure is not com-
pletely satisfactory in the case of insertion operators ex-
tended in the time-direction such as T (loc)

0 (x). In our case
with dynamical gluinos, a multi-hit procedure [27] on the
temporal links would not work since the noisy correction
would be ineffective and anyway far too expensive.

The inversions of the fermion matrix Q required for
the computation of the correlations were performed by
the conjugate-gradient method. The number of iterations
necessary for a good accuracy on the final result increases
for light gluinos. Convergence was improved by precondi-
tioning the Hermitian fermion matrix. The residuum for
the conjugate-gradient was chosen by requiring that the fi-
nal accuracy on the determination of amSZ

−1
S and ZTZ

−1
S

was � 5 · 10−5. With this choice, ∼ 1100 iterations were
needed on average for the lightest gluino at κ = 0.1955.
The computing power used was correspondingly ∼6 · 1015

f.p.o.; this is about 20% of the amount employed for the
generation of the gauge-fields. The site y of the insertion
was chosen randomly for each configuration. We checked
correlations in simulation time between propagators in-
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volved in the WIs. With the random choice of y the corre-
lations between two consecutively measured propagators
turns out to be negligible (less than 0.05). Consequently a
naive jackknife procedure can be used for the error anal-
ysis on amSZ

−1
S and ZTZ

−1
S .

At κ = 0.1925 we have also used a version of the op-
erator χ(sp)(x) defined as in (33) but with the lattice field
tensor given by the simple plaquette

P (pl)
µν (x) =

1
2ig0a2

(
Uµν(x) − U†

µν(x)
)
. (42)

The drawback of this definition is that the properties of
transformation under P and T are not the same as in the
continuum. However comparison of results obtained with
the two definitions of χ(sp)(x) gives an indication of the
size of discretization errors.
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6.1 Results

In Figs. 4 and 5 we report the determinations of amSZ
−1
S

and ZTZ
−1
S respectively, as a function of the time-

separation t. The left column refers to the point-split
SUSY current S

(ps)
µ (x) while the right one to the local

current S(loc)
µ (x). The insertion operator is χ(sp)(x), which

generally gives the best signal. A behavior consistent with
a plateau can be observed for time-separations t ≥ 3 for
which there is no contamination from contact terms. The
signal is rapidly washed-out by the statistical fluctuations
for large time-separations.

The insertion operator T (loc)
0 (x) containing links in the

time direction gives larger fluctuations than the time-slice
operator χ(sp)(x). This is probably related to the poor
performance of the Jacobi-APE smearing on operators ex-
tended in the time direction.

For a given insertion operator, ZTZ
−1
S is subject to

larger statistical fluctuations than amSZ
−1
S as can be seen

from Fig. 5 (notice the different scale). We have no theo-
retical justification for this outcome.

The results for amSZ
−1
S and ZTZ

−1
S from a global fit

over a range of time-separations t ≥ tmin are reported
in Tables 4–7. Data are obtained by solving the overde-
termined linear system as explained in Appendix D. An
equivalent procedure consists in performing a least mean
square fit on amSZ

−1
S (t) and ZTZ

−1
S (t) for t ≥ tmin tak-

ing time correlations into account. This second procedure
gives results consistent with the first one, with χ2/d.o.f. ≈
1 when contact terms are absent. For the final estimates
we take tmin = 3 for time-slice operators and tmin = 4
for operators extended in the time-direction. This choice
ensures absence of contact terms.

Discretization effects can be checked by comparing de-
terminations obtained with the two independent insertions
χ(sp)(x) and T

(loc)
0 (x). For κ = 0.1925 one can also com-

pare between different definitions of χ(sp)(x) (simple pla-
quette definition of the lattice field tensor, (42), and dif-
ferent smearing parameters). It should be recalled at this
point that different discretizations of the currents give dif-
ferent values for ZS and ZT . Consequently data from dif-
ferent discretizations should not be confronted.

An interesting point is the dependence of ZTZ
−1
S and

amSZ
−1
S on the hopping parameter κ. This is reported in

Fig. 6 and 7 respectively. Data refer to determinations ob-
tained with tmin = 3 for insertion operator χ(sp)(x) and
tmin = 4 for insertion operator T

(loc)
0 (x). The definition

of χ(sp)(x) is the one with clover field tensor and smear-
ing parameters of set A (cf. Tables 4–7). We see that the
combination of renormalization factors ZTZ

−1
S shows no

appreciable dependence on κ. We recall (see discussion in
Sect. 3.1) that the latter is an O(a) effect. Fitting these
results (only for insertion χ(sp)(x)) with a constant in 1/κ
we obtain ZTZ

−1
S = −0.039(7), for the point-split cur-

rent, and ZTZ
−1
S = 0.185(7) for the local current. The

renormalization is surprisingly small in the case of the
point-split current. An estimate of ZTZ

−1
S for the point-

split current at β = 2.3 can be obtained from the 1-loop
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S as a function of 1/κ with the insertion operator

χ(sp)(x) (filled diamonds) and T
(loc)
0 (x) (filled triangles)
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Fig. 7. amSZ−1
S as a function of 1/κ with the insertion op-

erator χ(sp)(x) (diamonds) and T
(loc)
0 (x) (triangles). A linear

extrapolation is also reported. The filled triangle indicates the
determination of κc from the first order phase transition of [8]

Table 4. Summary of the results for amSZ−1
S at β = 2.3 with

point-split currents

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.176(5) 0.166(10) 0.135(14)
0.1925 χ(sp) (*) 0.182(6) 0.152(11) 0.150(16)
0.1925 χ(sp) (**) 0.1969(47) 0.168(9) 0.136(14)
0.1925 T

(loc)
0 0.132(16) 0.124(21)

0.194 χ(sp) 0.148(6) 0.130(11) 0.146(21)
0.194 T

(loc)
0 0.095(27) 0.090(27)

0.1955 χ(sp) 0.0839(35) 0.0820(7) 0.053(14)

* With plaquette field tensor.
** With plaquette field tensor and smearing parameters B.

perturbative calculation in [16]. At order g2
0 one obtains

ZTZ
−1
S ≡ ZT |1−loop = −0.074.

In Fig. 7 the determination of amSZ
−1
S is reported as

a function of the inverse hopping parameter. The expec-
tation is that amSZ

−1
S vanishes linearly when κ → κc.

We see a clear decrease when κ is increased towards κc;
amSZ

−1
S starts dropping abruptly at κ � 0.194. We refer

to data with insertion χ(sp)(x). Given the weak depen-
dence of the renormalization factors on the hopping pa-
rameter, the relative decrease of amSZ

−1
S as a function of

κ should roughly compare with that of the gluino mass
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Table 5. Summary of the results for amSZ−1
S at β = 2.3 with

local currents

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.166(6) 0.166(11) 0.146(16)
0.1925 χ(sp) (*) 0.173(6) 0.155(11) 0.135(19)
0.1925 χ(sp) (**) 0.1821(47) 0.173(11) 0.154(19)
0.1925 T

(loc)
0 0.144(18) 0.143(25)

0.194 χ(sp) 0.124(6) 0.126(12) 0.142(24)
0.194 T

(loc)
0 0.076(30) 0.098(35)

0.1955 χ(sp) 0.0532(40) 0.064(8) 0.047(15)

* With plaquette field tensor.
** With plaquette field tensor and smearing parameters B.

Table 6. Summary of the results for ZT Z−1
S at β = 2.3 with

point-split currents

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) −0.015(19) −0.036(31) 0.045(56)
0.1925 χ(sp) (*) −0.044(16) −0.096(33) 0.01(6)
0.1925 χ(sp) (**) −0.058(14) −0.044(32) −0.07(5)
0.1925 T

(loc)
0 0.11(7) −0.03(7)

0.194 χ(sp) −0.038(19) −0.024(43) −0.08(7)
0.194 T

(loc)
0 0.11(13) 0.02(13)

0.1955 χ(sp) −0.051(13) −0.064(26) −0.05(5)

* With plaquette field tensor.
** With plaquette field tensor and smearing parameters B.

Table 7. Summary of the results for ZT Z−1
S at β = 2.3 with

local currents

κ operator tmin = 3 tmin = 4 tmin = 5

0.1925 χ(sp) 0.183(14) 0.207(27) 0.19(5)
0.1925 χ(sp) (*) 0.176(14) 0.184(28) 0.21(5)
0.1925 χ(sp) (**) 0.146(11) 0.159(25) 0.139(45)
0.1925 T

(loc)
0 0.29(6) 0.22(6)

0.194 χ(sp) 0.202(15) 0.176(33) 0.186(6)
0.194 T

(loc)
0 0.27(9) 0.30(11)

0.1955 χ(sp) 0.179(10) 0.170(21) 0.170(45)

* With plaquette field tensor.
** With plaquette field tensor and smearing parameters B.

itself. In the case of the point-split current the latter al-
most halves when passing from κ=0.194 to κ=0.1955. In
the case of the local current we get an even smaller mass
at κ = 0.1955. Finally we obtain a determination κc by
performing an extrapolation to zero gluino mass from two
largest κ-values. The result is κc = 0.19750(38) with the
point-split current and κc = 0.19647(27) with the local

one. These values can be compared with the previous de-
termination from the phase transition κc = 0.1955(5) [8].

7 Summary and conclusions

The present study shows that the extraction of the ra-
tios amSZ

−1
S and ZTZ

−1
S from the on-shell SUSY Ward

identities is technically feasible with the computing re-
sources at hand. The main technical difficulty (related to
SUSY) is that high-dimensional operators with a mixed
gluonic-fermionic composition must be considered, intro-
ducing relatively large statistical fluctuations. This diffi-
culty can be handled with an appropriate smearing pro-
cedure. The non-perturbative determination of the ratio
amSZ

−1
S can be used for a determination of the critical

hopping parameter κc corresponding to massless gluinos.
This can be compared to the independent determination of
κc, based on the chiral phase transition [8]. The fact that
the two determinations are not in full agreement can be
explained by the presence of systematic effects. These are
predominantly O(a) effects in our case and finite volume
effects in the determination of [8]. The discretization error
in the present approach can be checked by comparing re-
sults from the two independent insertions. The statistical
uncertainty is however relatively large (10-40%) for the in-
sertion operator involving links in the time-direction. Our
results for amSZ

−1
S and ZTZ

−1
S are consistent with the

WIs (22) with O(a) effects comparable to the statistical
errors. The non-perturbative results here presented will
be complemented by an analytical perturbative calcula-
tion [17].

The overall conclusion of our study is that lattice
SUSY WIs can be implemented in the non-perturbative
determination of the correctly subtracted SUSY current
and provide a practicable method for the verification of
SUSY restoration in this framework, once the proper
SUSY current is identified and the usual lattice artefacts
(most notably finite cutoff effects) are kept under control.
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Appendix
A Discrete symmetries

The following Hermitian representation of the Euclidean
γ-matrices is adopted:

γ0 =

(
0 11
11 0

)
, γk = −i

(
0 σk

−σk 0

)
, (43)

with anti-commutation property:

{γµ, γν} = 2 δµν . (44)
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The matrix γ5 is defined as

γ5 = γ1γ2γ3γ0 =

(
11 0
0 −11

)
, (45)

and the anti-Hermitian matrix σµν reads

σµν =
1
2
[γµ, γν ] . (46)

A.1 Parity P

Denoting with xP the transformed coordinates, xP = (x0,
−x1,−x2,−x3), the field transformations are:

λP (x) = γ0λ(xP ) (47)

λ
P
(x) = λ(xP )γ0 (48)

UP
0 (x) = U0(xP ) (49)

UP
i (x) = U†

i (xP − î) . (50)

A.2 Time reversal T

In this case xT = (−x0, x1, x2, x3), and the field transfor-
mations are:

λT (x) = γ0γ5λ(xT ) (51)

λ
T
(x) = λ(xT )γ5γ0 (52)

UT
0 (x) = U†

0 (xT − 0̂) (53)

UT
i (x) = Ui(xT ) . (54)

The clover-symmetrized field tensor P
(cl)
µν (x) of (13)

has the same transformation properties under P and T as
its continuum counterpart Fµν(x). This does not apply to
the simple plaquette lattice field tensor P (pl)

µν (x) of (42).

A.3 Charge conjugation C

The invariance of the gluino field under charge conjugation
C (Majorana condition) reads

λ(x) = λC(x) = Cλ
T
(x) ,

λ(x) = λ
C
(x) = λT (x)C−1 . (55)

The spinorial matrix C is defined as

C ≡ γ0γ2 =

(
iσ2 0
0 −iσ2

)
, (56)

with the properties

C−1 = −C = CT (57)

and

C−1γµC = −γTµ , C−1σµνC = −σTµν ,

C−1γ5C = γ5 . (58)

B Renormalization of O11/2(x)

We discuss here the renormalization of the composite op-
erator O11/2(x) defining the continuum limit of X(x) ac-
cording to power-counting [2], see (19). In this context the
particular lattice form of the operators is immaterial and
continuum notation will be used for simplicity.

In the present work we consider gauge invariant corre-
lation functions of the operator O11/2(x). In this case one
can restrict the analysis to mixing with gauge invariant op-
erators. These operators must have in addition the same
transformation properties as O11/2(x) under the hypercu-
bic group and the discrete symmetries C, P and T. Finally,
dimensional considerations restrict the search to operators
of dimension d < 11/2 (dimension-11/2 or higher mixing
can be neglected as clarified in Sect. 3.1).

The operator O11/2(x) transforms under O(4) like the
gluino field

λα(x) →
∑
β

Sαβ(R)λβ(x)

S(R) = exp

{
−1
2

∑
µ<ν

ωµνσµν

}
. (59)

The connection with O(4) is given by

S(R)−1γµS(R) =
∑
ν

Rµνγν . (60)

The coefficient ωµν represents the rotation angle in the
plane (µ, ν); the hypercubic group, a discrete subgroup of
O(4), is obtained by restricting these angles to multiples
of π/2.

Gauge invariant operators are obtained by taking the
trace in color space of products of fields in the adjoint
representation. Available operators of this kind are the
gluino field itself, the field tensor Fµν(x) and the covariant
derivative in the adjoint representationDµ. Dirac and ten-
sorial indices should be combined in such a way that the
resulting operator transforms like (59) under hypercubic
transformations. By using the algebra of the Γ -matrices

Γ = {11, γ5, γµ, γ
5γµ, σµν} (61)

pairs of gluino fields can be assembled into bilinear ex-
pressions of the form

Obilin
... (x) = λ(x)Γ... λ(x) (62)

where Dirac indices are contracted and the dots indicate
possible tensorial indices of the Γ -matrix. The transfor-
mation properties of the bilinears (62) depend on the Γ -
matrix. They belong to irreducible representations of both
O(4) and the hypercubic group, see e.g. [28],

Γ = 11, γ5: scalar, I(+,−) (τ (1)
1,4 ) ,

Γ = γµ, γ
5γµ: vectorial, (1/2, 1/2)(+,−) (τ (4)

1,4 ) ,

Γ = σµν : tensorial, (1, 0) ⊕ (0, 1) (τ (6)
1 ) .
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The representations of O(4) are indicated in the notation
of [28]. In parenthesis we report the corresponding repre-
sentations of the hypercubic group in the notation used in
[29] (see the following).

General classification. The general operator can be
classified according to the number of contained gluino
fields λ(x), field tensors Fµν(x) and covariant derivatives
Dµ, nλ, nF and nD. In the case of an even number of
gluino fields, one can exploit the algebra of the Γ -matrices
and build bilinears of the form (62) with no unpaired
gluino field. Consequently all Dirac indices are contracted.
Products made up by these bilinears Obilin

... (x), field ten-
sors Fµν(x) and covariant derivatives Dµ transform ac-
cording to a general tensorial representation of the hyper-
cubic group Oµ1,...,µn

. An example is given by the dimen-
sion-4 operator

Oµ1µ2 = Tr
[
Dµ1(λ(x)γµ2λ(x))

]
. (63)

The decomposition into irreducible representations of
the hypercubic group of tensorial representations has been
studied in [29]. Of course the representation (59) cannot be
contained in these representations3. One can consequently
restrict the investigation to operators containing an odd
number of gluino fields. An additional restriction to the
possible structures of mixing operators comes from the
general relation

Tr [Dµ1 · · ·Dµn
A(x)] = ∂µ1 · · · ∂µn

Tr [A(x)] , (64)

holding for a generic adjoint field A(x). Since Tr[λ(x)] = 0
relation (64) excludes cases where nλ = 1 and nF = 0.
This leaves only three possibilities for d ≤ 9/2:

a) nλ = 3, nF = 0, nD = 0 (d = 9/2) ,
b) nλ = 1, nF = 1, nD = 1 (d = 9/2) ,
c) nλ = 1, nF = 1, nD = 0 (d = 7/2) .

B.1 nλ = 3, nF = 0, nD = 0

The most general gauge invariant three-gluino operator
can be expressed as

Oα,...(x) = Tr
[
(λ(x)Γ...λ(x)) (Γ ′

...λ(x))α
]
, (65)

where as usual the dots indicate possible tensorial indices.
Dirac indices are contracted in the bilinear. The trans-
formation rule in the free Dirac index α is the right one
given by (59). This Dirac index will be suppressed in the
future notation. Oα,...(x) defines a tensorial representa-
tion of O(4) (and of the hypercubic group) in the remain-
ing tensorial indices. Imposing invariance under O(4) is
equivalent to requiring that these indices are contracted

3 This is evident for example if one considers that a rotation
of 2π according to (59) is not the identical transformation as
in the tensorial representations. Relation (59) defines a double-
valued irreducible representation of O(4) and of the hypercubic
group

so as to obtain a scalar. The procedure is standard and
the result is

OS(x)=Tr
[
(λ(x)λ(x))λ(x)

]
(66)

OP (x)=Tr
[
(λ(x)γ5λ(x))γ5λ(x)

]
(67)

OV (x)=Tr

[∑
µ

(λ(x)γµλ(x))γµλ(x)

]
(68)

OA(x)=Tr

[∑
µ

(λ(x)γ5γµλ(x))γ5γµλ(x)

]
(69)

OT (x)=Tr

[∑
µν

(λ(x)σµνλ(x))σµνλ(x)

]
. (70)

For Majorana fermions any three-gluino operator comply-
ing with O(4) invariance, (66)-(70), vanishes. The Majo-
rana condition (55) can be directly used to show vanishing
of OS(x), OP (x) and OA(x):

OS(x) = OP (x) = OA(x) = 0 . (71)

Fierz rearrangements

OV (x)=−OA(x) = OS(x) − OP (x) , (72)
OT (x)=−OS(x) − OP (x) (73)

imply vanishing of the remaining two operators OV (x) and
OT (x).

The discussion is however not complete since the true
symmetry of the lattice is the hypercubic one. So the ques-
tion arises whether tensorial indices can be combined in
(65) in a different way from (68)-(70), while still comply-
ing with the hypercubic invariance. The resulting operator
would represent a potential Lorentz-breaking term in the
renormalization of O11/2(x). The argument can be made
more rigorous by considering that (65) defines tensorial
representations of the hypercubic group. The question is
whether singlet representations of the hypercubic group,
which are not O(4) scalars, are contained in the tenso-
rial representations (65). We rely in this on the detailed
discussion of the subject contained in [29].

Singlet representations of the hypercubic group which
are not necessarily O(4) scalars are contained in tensorial
representations with even number of indices n ≥ 4. In
the classification (65) the only possible candidate is the
operator with Γµν = Γ ′

µν = σµν containing four tensorial
indices(

O
(4)
T

)
µ1µ2µ3µ4

(x) = Tr
[
(λ(x)σµ1µ2λ(x))σµ3µ4λ(x)

]
.

(74)
This means that O(4)-breaking versions of the operator
OT (x), (70), are in principle possible. In order to decide
the question we consider the general case of an operator
with four tensorial indices O(4)

µ1µ2µ3µ4(x). One-dimensional
representations of the hypercubic group which do not co-
incide with O(4) scalars are given by [29]∑

µ

O(4)
µ,µ,µ,µ(x)

(
τ

(1)
1

)
, (75)

O
(4)
{0,1,2,3}(x)

(
τ

(1)
2

)
. (76)



732 The DESY-Münster-Roma Collaboration: The supersymmetric Ward identities on the lattice

The symbol {...} in (76) defines complete symmetrization
on the Lorentz indices. In the case we are interested in,
(O(4)

T )µ1µ2µ3µ4(x), antisymmetry of σµν implies trivially
vanishing of these new combinations of indices (combi-
nation (76) would have the wrong symmetry anyway).
Consequently no three-gluino operators complying with
hypercubic invariance can be built.

B.2 nλ = 1, nF = 1, nD = 1

Gauge invariance imposes the form

O(x)µ1,µ2,µ3,... = Tr [Dµ1{Fµ2µ3(x)Γ... λ(x)}] . (77)

The symbolic expression Dµ{ABC · · ·} is a collective rep-
resentation of all the ways the covariant derivative Dµ can
act on the products of the adjoint fields A,B,C . . .. Since
the adjoint covariant derivative satisfies the Leibniz rule,
it is sufficient to consider only operators where Dµ acts
on just one field A,B,C . . .. Again, tensorial indices must
be combined as to obtain singlets under the hypercubic
group. O(4)-invariance and P leave only two possibilities

Tr [Dµ{Fµν(x)γνλ(x)}] (i) (78)
Tr [εµνρσDµ{Fνρ(x)γ5γσλ(x)}] (ii) . (79)

Also in this case new hypercubic-invariant combinations
could come only from 4-index tensors, e.g.

O(x)µ1,µ2,µ3,µ4 = Tr [Dµ1{Fµ2µ3(x)γµ4λ(x)}] . (80)

An analysis analogous to the one performed in the previ-
ous Subsection leads to the conclusion that no new, non-
trivial operators arise from combinations (75),(76). In this
case antisymmetry of Fµν(x) plays the key rôle. So we
concentrate on the Lorentz-conserving operators (78) and
(79).
Case (i). The first possibility according to the Leibniz rule
for the covariant derivative in (78)

Tr [(DµFµν(x))γνλ(x)] (81)

vanishes on-shell. Indeed, using the equation of motion
for Fµν(x) it can be rewritten as a three-gluino operator,
vanishing identically according to the previous discussion.
The second possibility for the Leibniz rule

Tr [Fµν(x)γνDµλ(x)] (82)

is equivalent on shell to

Tr [Dµ(Fµν(x)γνλ(x))] , (83)

given the vanishing of (81). Using relation (64) we arrive
at the operator ∂µTµ(x).
Case (ii). This goes along the same lines as case (i). The
relation

εµνρσγ
5γσ = −σνργµ + (δµργν − δµνγρ) (84)

can be used. The part containing the γµ matrices reduces
to the case (i) already considered. The new combination
is:

Tr [Dµ{Fνρ(x)σνργµλ(x)}] . (85)

Again, there are essentially two possibilities:

Tr [Fµν(x)σµνD/λ(x)] (86)

and
Tr [Dµ(Fνρ(x)σνργµλ(x))] . (87)

On-shell, the first operator reduces to the lower dimen-
sional operator χ(x) (17) due to the equation of motion
for the field λ(x), and can be neglected in this discussion.
Rule (64) shows that the second operator is just the di-
vergence of the SUSY current ∂µSµ(x).

In summary, the systematic scan of all possible dimen-
sion-9/2 operators with the required symmetry properties
and the on-shell restriction leaves us with the two opera-
tors ∂µSµ(x) and ∂µTµ(x).

B.3 nλ = 1, nF = 1, nD = 0

Using gauge invariance one gets of the general form

O(x)µ1,µ2,... = Tr [Fµ1µ2(x)Γ...λ(x)] . (88)

The only hypercubic-invariant combination of indices is

Tr [Fµν(x)σµνλ(x)] = χ(x) . (89)

Again, no Lorentz-breaking combination appears.
This exhausts all possibilities for the power subtrac-

tions of O11/2(x) and implies the form (22) of the SUSY
WIs.

C Insertion operators

In this Appendix we use for simplicity, as in the previous
one, notions of the continuum. Even if the true symmetry
of the lattice is the hypercubic one, the analysis is car-
ried over by using the more restrictive Lorentz invariance.
Indeed Lorentz breaking terms should not be considered,
given that O(a) effects are neglected.

Consider an insertion operator transforming under a
generic representation of the Lorentz group (we restrict
the discussion to operators depending on one coordinate).
Due to the spinoral character of the SUSY WIs we need
spinorial operators. Operators of this type are

Oµ1...µn,α(x) = Tµ1...µn
(x)ψα(x) , (90)

where Tµ1...µn(x) is an operator transforming according
to the tensorial representation of the Lorentz group and
ψα(x) is a bispinor. Irreducible representations are
projected-out by suitable (anti)symmetrizations, extrac-
tion of traces on the free indices. We consider zero spatial
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momentum WIs (26). These are obtained by taking the
vacuum expectation value of operators like e.g.

Oµ1...µn,αβ(x0, y0)

=
1
Vs

∫
d?xd?y (∂0S0)α(?x, x0)Oµ1...µn,β(?y, y0) . (91)

The total angular momentum J of the above operator re-
sults from the composition of the spins of the two op-
erators

∫
d?x (∂0S0)α(?x, x0) and

∫
d?xOµ1...µnβ(?x, y0); the

‘orbital’ angular momentum is zero because of the sum-
mation on space coordinates. In order to get non-trivial
WIs one must have of course J = 0. Since the operator
∂µSµ(x) is a bispinor, the condition J = 0 implies that
the insertion operator must contain at least one spin-1/2
component. The irreducible representations of the Lorentz
group4 with this property are of the type ((S, S′)⊕(S′, S)),
with |S − S′| = 1/2.

The lowest dimensional gauge invariant operator has
dimension d = 7/2. It has the form (90) with tensorial
part given by Fµν(x) and ψ(x) = λ(x). Its transformation
properties under the Lorentz group are given by

((1, 0) ⊕ (0, 1)) ⊗
((

1
2
, 0
)

⊕
(
0,

1
2

))

=
((

1
2
, 0
)

⊕
(
0,

1
2

))
⊕
(
1
2
,
1
2

)
⊕
(
1
2
,
1
2

)

⊕
((

1
2
, 1
)

⊕
(
1,

1
2

))
. (92)

We see that two (and only two) representations on the
r.h.s. of the above decomposition contain spin-1/2, namely
(( 1

2 , 0)⊕ (0, 1
2 )) and ((1

2 , 1)⊕ (1, 1
2 )). The first component

is given by the operator χ(x), the second is present for
example in Sµ(x) and Tµ(x) transforming like(

1
2
,
1
2

)
⊗
((

1
2
, 0
)

⊕
(
0,

1
2

))

=
((

1
2
, 0
)

⊕
(
0,

1
2

))
⊕
((

1
2
, 1
)

⊕
(
1,

1
2

))
. (93)

Pure spin-1/2 operators are given by χ(x), S0(x) and
T0(x), while Si(x) and Ti(x) contain also spin-3/2 com-
ponents. Equation (92) implies that any spin-1/2 compo-
nent of any dimension-7/2 operator can be expressed as
a linear combination of two operators chosen as a basis,
for example χ(x) and T0(x) (see e.g. relations (34), (35)).
Consequently only two operators give independent WIs at
the lowest dimension.

For a given insertion operator the WIs consist of a
number of independent equations which equals the num-
ber of rotational invariant (spin-0) components contained
in the operatorial product (91). A straightforward anal-
ysis including also P reveals that these are two for O ≡
χ(x), S0(x), T0(x), as given in (29) and (30). It should be
stressed that considering other insertion operators like for

4 As usual we take into account also P

example Si(x) or Ti(x) would not give additional informa-
tion to that given by e.g. χ(x), T0(x). One would get only
different combinations of the same on-shell WIs.

The discrete symmetries T and C imply relations for
the correlations involved in the SUSY WIs. For the corre-
lations defined in (29), (30) these are

T : C(S,O)(t) = γ0γ5C
(S,O)(−t)γ5γ0 (94)

C : C(S,O)(t) = γ0γ2γ5(C(S,O))∗(t)γ5γ2γ0 . (95)

In terms of the components defined in (29), relation (94)
reads

C
(S,O)
11 (−t) = C

(S,O)
11 (t)

C(S,O)
γ0

(−t) = −C(S,O)
γ0

(t) . (96)

In the case O ≡ S0, T0 an extra minus sign must be in-
cluded. Relation (95) ensures reality of the two compo-
nents

C
(S,O)
11 (t) = (C(S,O)

11 (t))∗

C(S,O
γ0

(t) = (C(S,O)
γ0

(t))∗ . (97)

Properties related to P and T apply unchanged for the
lattice theory if the clover-symmetrized lattice field tensor
P

(cl)
µν (x) is used for the insertion operators. The simple

discretization P
(pl)
µν (x) breaks P and T and additional O(a)

pseudoscalar components are present in the correlations.
In this case, for operators extended in the time-direction,
the time-reflection properties (96) are violated.

D Linear fit

We perform a linear fit to solve the WI (31) for ZTZ
−1
S and

amSZ
−1
S including several consecutive time-separations

(tmin, · · · , Lt/2). We define

A = ZTZ
−1
S , B = amSZ

−1
S , (98)

and x1,t, y1,t and z1,t as the different components of the
correlation functions at different times (see (29),(30))

x1,t = C
(S,O)
11 (t) , y1,t = C

(T,O)
11 (t) , z1,t = C

(χ,O)
11 (t) ,

x2,t = C
(S,O)
γ0 (t) , y2,t = C

(T,O)
γ0 (t) , z2,t = C

(χ,O)
γ0 (t) .

(99)
The overdetermined system reads

xi,t +Ayi,t = Bzi,t, i = 1, 2 , t = tmin, · · · , Lt/2 .
(100)

We get the best estimates for ZTZ
−1
S and amSZ

−1
S (A and

B) by minimizing the quantity

H =
2∑

i=1

Lt/2∑
t=tmin

(xi,t +Ayi,t − Bzi,t)2 . (101)
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With the conditions

∂H

∂A
= 2

∑
i,t

yi,t (xi,t +Ayi,t − Bzi,t) = 0 (102)

∂H

∂B
= −2

∑
i,t

zi,t (xi,t +Ayi,t − Bzi,t) = 0 (103)

and the definition∑
i,t

xi,t yi,t = 〈x, y〉 , (104)

A and B are given by

A =
〈y, z〉 〈x, z〉 − 〈x, y〉 〈z, z〉

〈y, y〉 〈z, z〉 − 〈y, z〉2 , (105)

B =
〈x, z〉 〈y, y〉 − 〈x, y〉 〈y, z〉

〈y, y〉 〈z, z〉 − 〈y, z〉2 . (106)
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Abstract. We reconsider the volume source technique for the determination of flavor singlet quantities on
the lattice. We point out a difficulty arising in the case of fermions in real representations of the gauge
group and propose an improved version of the method (IVST) based on random gauge transformations of
the background configuration. We compare the performance of IVST with the method based on stochastic
estimators (SET). We consider the case of the N = 1 supersymmetric Yang–Mills theory, where just
one fermionic flavor is present, the gluino in the adjoint representation, and only flavor singlet states are
possible. This work is part of an inclusive analysis of the spectrum of the lightest particles of the theory,
based on the simulation of the model on a 163 · 32 lattice with dynamical gluinos in the Wilson scheme.

1 Introduction

Supersymmetry (SUSY) is broken on the lattice owing to
the finite lattice spacing a. We consider the N = 1 su-
persymmetric Yang–Mills theory (SYM) with gauge group
SU(2) and Wilson discretization in the fermion sector. Here
SUSY is also explicitly broken by the Wilson term. How-
ever, by properly tuning the (renormalized) gluino mass to
zero, SUSY is expected to be recovered in the continuum
limit [1] with exponentially small O(a) deviations.

The manifestation of SUSY occurs at the non-pertur-
bative level, the most interesting phenomenological im-
plication being the expected ordering of the bound-states
of the theory in supermultiplets. In the low-energy sector
in particular, effective Lagrangians for SYM predict [2, 3]
two Wess–Zumino supermultiplets. The spin-0 particles are
represented by meson-like bound states of the gluino and
by glueballs, respectively, of opposite parity (this classi-
fication is of course only valid in the absence of mixings,
which are however expected). The spin- 1

2 particle of the
multiplet is in both cases a gluino–glue bound-state.

We focus here on the problem of determining the masses
of meson-like gluino bound states. Borrowing the termi-
nology of QCD, these represent “flavor singlet” states. In-
deed, SYM resembles Nf = 1 QCD, with the quark in the
fundamental representation replaced by the gluino in the
adjoint representation. The lattice computation of flavor
singlet correlators is difficult because of the presence of
disconnected diagrams (see [4] for a recent review on the
topic). The exact evaluation of the correlator for these di-
agrams is not feasible since it requires the trace over color
and space-time indices of the fermion propagator in the
background of the gauge configuration, which in turn in-
volves the solution of an “all-points to all-points” inversion

a e-mail: farchion@uni-muenster.de

problem for any given gauge configuration. The first ap-
proach to the subject was based on a volume source [5],
the so-called “volume source technique” (VST). For a given
background configuration the method delivers an estimate
of the correlator which, however, contains spurious terms
represented by non-closed loops. In [5], where QCD was
considered, it was argued that these terms disappear in the
ensemble-average on the basis of gauge invariance. In this
paper we reconsider this argument more generally, showing
that it is not applicable to models where the fermions are
in real representations of the gauge group, as is the case
for any representation of SU(2) and for the adjoint rep-
resentation of SU(Nc). We propose a new formulation of
the method, based on random gauge transformations of the
background gauge configuration, which solves the problem.
Due to the randomness introduced by the gauge transfor-
mation, IVST is analogous to the well known stochastic
estimator technique SET [6]. In both cases the system-
atic error introduced by the computational procedure is
converted into a statistical one and can be controlled by
increasing the number of stochastic estimates. As a conse-
quence IVST and SET can be directly compared.

This work represents the sequel of a long-standing pro-
ject having the goal of a lattice verification of the non-per-
turbative low-energy properties of SYM. We refer to [7] and
the references therein for the scope and goals of past studies.
The model is simulated by means of the dynamical-gluino
two-step multi-bosonic algorithm. Details on the algorithm
canbe found in [8]. Thepresent analysis is based on a sample
of configurations of SU(2) SYM on a 163 ·32 lattice. Partial
results have been reported in [9].

In the next section we shall reconsider the theory of
VST and propose the improved version of it, IVST. In
Sect. 3 the numerical results will be presented, comparing
IVST and SET; finally Sect. 4 contains our conclusions.
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2 The volume source technique revisited

In this section we consider lattice gauge theory with gauge
group SU(Nc). The results of primary interest are for the
gauge group SU(2) or for models with fermions in the ad-
joint representation of the gauge group. This includes SYM
in particular. In the following, Greek letters denote Dirac
indices, Latin letters color, Trd and Trc are the respective
traces. With the usual bilinears ψ̄(x)Γψ(x) as insertion
operators for the singlet mesonic states, where Γ = 1 or
γ5, the disconnected part of the mesonic correlator in the
background of a gauge configuration {U} can be written as

CΓ,disc[U ](x0 − y0) =
1
Vs

Trd [ΓS(x0)] Trd [ΓS(y0)] , (1)

where the time-slice sum S(x0) represents the trace over
color and space indices of the inverse fermion-matrix, i.e.
the propagator in the background of the gauge configura-
tion {U}:

Sαβ(x0) =
∑
x

Trc

[
Q−1

xα,xβ

]
. (2)

VST delivers an estimate of Sαβ(x0) at the price of a single
inversion for each value of the color and Dirac index. The
inversion problem with the volume source ωV reads

QZ = ωV
[a,α] ,

(
ω

[a,α]
V

)
xbβ

= δab δαβ , (3)

with solution

Z
[a,α]
xbβ = [Q−1ω

[a,α]
V ]xbβ = Q−1

xbβ,xaα +
∑
y �=x

Q−1
xbβ,yaα (4)

When Z [a,α] in the above equation is used to estimate
the time-slice sum (2),

Sαβ(x0) → S̃αβ(x0) =
∑
x,a

Z [a,β]
xaα , (5)

the last term in (4) yields contributions to the disconnected
part of the correlator (1) which represent non-closed loops.
Such elements of the inverse fermion-matrix with x �= y are
non-gauge-invariant and are canceled in the average over
the gauge-ensemble (which is gauge-invariant). However,
there are also contact terms in the correlator, which are
potential sources of systematic errors.

In the original work [5], which introduced VST in the
context of QCD, these unwanted terms were avoided by
considering the correlator

ĈΓ,disc[U ](x0−y0) =
1
Vs

Trd

[
Γ S̃(x0)

]
Trd

[
Γ S̃†(y0)

]
(6)

with one of the time slices conjugated. Owing to the fact
that the product 3 ⊗ 3 of fundamental representations of
SU(3) does not contain the trivial representation, a gauge-
invariant contact term does not appear. The argument
holds more generally for the fundamental representation
of SU(Nc) for Nc > 2.

In the case of gauge group SU(2), which has real repre-
sentations only, or in the case of the adjoint representation
of SU(Nc), this prescription, however, does not help. For
SU(2) the product of two fundamental representations con-
tains the trivial one, which leads to non-vanishing contact
terms again. The same is true for the adjoint representa-
tions of SU(Nc).

We now want to consider the gauge invariance of the
contact terms in detail. We focus on the correlator (1);
for (6) the discussion is analogous.

Consider the following average over gauge transforma-
tions g(x) (gauge-average):〈

S̃αβ(x0)S̃γδ(y0)
〉

g

=

〈 ∑
x,w,a

Q−1
xaα,waβ [Ug]

∑
y,z,b

Q−1
ybγ,zbδ[U

g]

〉
g

. (7)

The gauge-average induces an average over the gauge-orbit
{Ug}. Using

Q−1
x,y[Ug] = g†(x)Q−1

x,y[U ]g(y) (8)

and the general formula〈
gab(x)g−1

a′b′(x′)
〉

g
= Aδxx′δab′δa′b ,

A =




1
Nc
, fundamental

1
N2

c −1 , adjoint
(9)

(in the adjoint representation g are real orthogonal matri-
ces of dimension N2

c − 1), the gauge-average of (7) reads
for x0 �= y0〈
S̃αβ(x0)S̃γδ(y0)

〉
g

=
∑
x

Trc

[
Q−1

xα,xβ

] ∑
y

Trc

[
Q−1

yγ,yδ

]

+A
∑
x,y

Trc

[
Q−1

xα,yβQ
−1
yγ,xδ

]
. (10)

The above expression represents the gauge-invariant part
of S̃αβ(x0)S̃γδ(y0).

Let us now consider the ensemble-average of S̃αβ(x0)
×S̃γδ(y0). In the limit of infinite statistics any given gauge-
orbit is completely covered, implying that the ensemble-
average delivers in particular a gauge-average. Using the
result in (10) this implies〈
S̃αβ(x0)S̃γδ(y0)

〉
U

(11)

= 〈Sαβ(x0)Sγδ(y0)〉U +A

〈∑
x,y

Trc

[
Q−1

xα,yβQ
−1
yγ,xδ

]〉
U

.

We thus obtain that replacement (5) in (1) produces an
error term for the full disconnected correlator

C̃Γ,disc(x0 − y0)
= CΓ,disc(x0 − y0) +∆CΓ,disc(x0 − y0) , (12)
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∆CΓ,disc(x0 − y0) (13)

= A
1
Vs

〈∑
x,y

Trc[Trd

[
Q−1

x,yΓ
]

Trd

[
Q−1

y,xΓ
]
]

〉
U

.

The conclusion is that the error term in (4) produces a
systematic error in the correlator, which does not vanish in
the ensemble-average even in the limit of infinite statistics.
This error is due to gauge-invariant contact terms in the
correlator, as shown above. The spurious term resembles
the connected contribution

CΓ,conn[U ](x0 − y0) = −f 1
Vs

∑
x,y

Trcd

[
Q−1

x,yΓ Q
−1
y,xΓ

]
,

f =

{
1, fundamental
2, adjoint

(14)

the only difference being in the Dirac structure and the nu-
merical factor. This outcome is not surprising considering
that gauge invariance strongly constrains the space-time
and color structure. We have checked the presence of the
error term numerically for both types of correlators (1)
and (6) for gauge group SU(2); see Sect. 3.

At this point we make the simple observation that the
error is removed by using the gauge-average of S̃αβ(x0) to
determine the time-slice sums, since〈

S̃αβ(x0)
〉

g
= Sαβ(x0) . (15)

In practice this is obtained by averaging S̃αβ(x0) over a suf-
ficiently large numberNg of gauge configurations obtained
from the original one by random gauge transformations [9]1
g(x), namely with a flat probability distribution

dp
dg

= 1 , (16)

where dg denotes the Haar measure on the gauge group. Be-
sides solving the problem of the error (13) in the correlator,
the method brings the additional benefit of disentangling
the systematic error inherent in VST from the statistical
one: in the limit of an infinite number of random gauge
transformations Ng → ∞ the former goes to zero, only the
second one surviving. In this view the improved version
of VST is analogous to the techniques based on stochastic
estimators, the randomness of the source being replaced by
that of the gauge transformation.2 This allows for a direct
comparison of the two methods, which is carried out in the
next section.

3 Numerical analysis

The simulation parameters of the gauge sample are β = 2.3
and κ = 0.194. The estimated value of the lattice spacing

1 After the completion of this study we noticed that the use
of random gauge transformations in VST was recently pointed
out in [4].

2 Actually on the basis of (8) IVST could be seen as a stochas-
tic estimator method with a particular stochastic volume source.

is, in QCD units, a ≈ 0.06 fm (a−1 ≈ 3.3 GeV); there
are indications [10] that the gluino is still relatively heavy
(mg̃ � 200 MeV on the basis of QCD-inspired arguments).
The set-up of the two-step multi-bosonic algorithm is the
same as in [11], and ∼ 4000 thermalized configurations
were stored every 5 or 10 cycles. In order to obtain an
estimate of the autocorrelation time of the disconnected
part of the mesonic correlator, an analysis of the autocor-
relation time of the smallest eigenvalue of the hermitian
fermion-matrix was performed. The procedure is based on
the expectation that the disconnected part of the mesonic
correlator is strongly related to the infrared behavior of the
fermion-matrix. After that, a subsample of 218 supposedly
uncorrelated configurations was selected. This constitutes
the sample for the numerical analysis.

3.1 Time-slice sums

For each configuration, 50 estimates of the time-slice sums
(2) were performed, each obtained by applying a random
gauge transformation on the original gauge configuration
as explained in the previous section. The computations
were performed in 64-bit arithmetic. Improved summation
techniques were employed to ensure accuracy.

In the case of SYM the Majorana nature of the gluino
field (invariance under charge conjugation) allows one to
compute the inverse of the fermion-matrix for only half of
the matrix-elements in Dirac space. This implies that, in
the case of SU(2) SYM, only 6 fermion-matrix inversions
must be performed for each configuration, compared to
12 inversions needed for QCD. So the total number of
inversions Ninv required for a determination of the time-
slice sum with Nest estimates is Ninv = 6Nest.3

As IVST is based on stochastic estimations, a compar-
ison with stochastic-source methods SET suggests itself.
We consider the SET variant with complex Z2 noise in the
spin explicit variant SEM [12]. In this case each estimate
of the time-slice sum is obtained by inverting the fermion-
matrix with source (ω[α]

S )xbβ = δαβ η
[α]
xb , where η

[α]
xb are

independent stochastic variables chosen at random among
1√
2
(±1 ± i). For SET one has then Ninv = 2Nest. (Again

a factor of 2 less comes from the symmetry of SYM.) We
computed 165 estimates of the time-slice sums, in this case
using 32-bit arithmetic.

In Fig. 1 the evolution of the estimated value of
Tr[Q−1Γ ] ≡ ∑

x0
Trd[S(x0)Γ ] for a chosen configuration is

displayed as a function of the number of needed inversions
Ninv. The error bounds represent the statistical uncertainty
on the stochastic estimation. For both IVST and SET the
value stabilizes after 150–200 inversions, with compatible
results. This test on a single configuration only serves as a
cross-check of the two methods, the physical information
being contained in the ensemble-averages, Fig. 2. In the
scalar case the two methods give compatible results after
only 50 inversions. In the pseudoscalar case, fluctuations

3 Nest coincides with Ng of previous section. The change of
notation is for the sake of the homogeneity when comparing
with SET.
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Fig. 1. Evolution of the estimated value of Tr[Q−1] and Tr[Q−1γ5] for a chosen configuration as a function of the number of
the needed inversions (with error bounds). Full lines: IVST, dashed lines: SET
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inv
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stat
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inv
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Tr[Q
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stat

Fig. 2. Evolution of the average value of Tr[Q−1] and Tr[Q−1γ5] over the complete sample as a function of the number of the
needed inversions (with error bounds). Full lines: IVST, dashed lines: SET

much larger than the error bounds indicate additional ef-
fects. The fluctuations appear to be more relevant for SET,
where 32-bit arithmetic was used. Moreover, in the latter
case the estimate has an offset, while in the case of IVST the
expected value (zero) is approached after ∼ 100 inversions.

The evolution of the statistical error of the estimation
for one configuration is displayed in Fig. 3, showing the a
priori non-obvious result that the two methods introduce
the same amount of stochastic uncertainty. The error in
the estimation of the ensemble-average is shown in Fig. 4.
We see that in both cases the error stabilizes after 100
inversions. In the pseudoscalar case, IVST seems to out-
perform SET, although the large instabilities prevent us
from drawing firm conclusions.

3.2 Correlators and masses

In order to show the effect of the error term (13), we com-
puted the disconnected correlator in two ways:

(i) following the correct procedure according to (15) (IVST);
(ii) performing the gauge-average as in (10). As one can
see in Fig. 5 for the pseudoscalar meson, the error term
produces a sizeable effect on the disconnected correlator.
IVST and SET are in good agreement. The effective mass
is shown in Fig. 6. The impact of the error on the effec-
tive mass is suppressed in the first time slices where the
connected contribution (14) plays a larger role. However
in the last time slices, where the disconnected contribu-
tion dominates, the effect of the error term shows-up in
the form of a pronounced instability of the effective mass
as a function of the time-separation (for ∆t = 13 an esti-
mate is not even possible). In the last few time-separations
∆t = 14, 15, IVST delivers a better result compared to
SET (no estimate is possible with SET for ∆t = 15). Since
the disconnected contribution to the mesonic correlator
is essentially of infrared nature, the region of large time-
separations is important for the determination of masses.
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Fig. 3. Evolution of the statistical error of the estimated value of Tr[Q−1] and Tr[Q−1γ5] for the same configuration as in Fig. 1,
as a function of the number of the needed inversions. Full lines: IVST, dashed lines: SET
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Fig. 4. Evolution of the statistical error on the average value of Tr[Q−1] and Tr[Q−1γ5] over the complete sample as a function
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4 Conclusions

We propose an improved version of the volume source tech-
nique which eliminates erroneous contact terms in the case
of fermions in real representations of the gauge group. The
improved version is based on random gauge transforma-
tions and is analogous to stochastic estimator methods.
Comparison between IVST and SET shows agreement and
substantial equivalence. In few cases, e.g. for the deter-
mination of effective masses, IVST seems to give slightly
better results. A study with higher statistical precision
should put these observations on firmer ground.
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Abstract. We analyze the low energy spectrum of bound states of the N = 1 SU(2) SUSY Yang-Mills Theory
(SYM). This work continues the investigation of the non-perturbative properties of SYM by Monte Carlo
simulations in the Wilson discretization with dynamical gluinos. The dynamics of the gluinos is included
by the Two-Step Multi-Bosonic Algorithm (TSMB) for dynamical fermions. A new set of configurations
has been generated on a 163 · 32 lattice at β = 2.3 and κ = 0.194. The analysis also includes sets of
configurations previously generated on a smaller (123 · 24) lattice at κ = 0.1925, 0.194 and 0.1955. Guided
by predictions from low energy Lagrangians, we consider spin-1/2, scalar and pseudoscalar particles. The
spectrum of SYM is a challenging subject of investigation because of the extremely noisy correlators.
In particular, meson-like correlators contain disconnected contributions. The larger time-extension of the
163 ·32 lattice allows to observe two-state signals in the effective mass. Finite-volume effects are monitored
by comparing results from the two lattice sizes.

1 Introduction

The N = 1 SU(Nc) SUSY Yang-Mills (SYM) theory is the
simplest instance of a SUSY gauge theory and presently the
only one viable for large-scale numerical investigations. It
describes N2

c-1 gluons accompanied by an equal number of
fermionic partners (gluinos) in the same (adjoint) represen-
tation of the color group. Veneziano and Yankielowicz [1]
have shown how the assumption of confinement in combi-
nation with SUSY strongly constrains the low energy struc-
ture of the theory. The expected degrees of freedom domi-
nating the low energy regime are composite operators of the
gluon and gluino field which can be arranged into a chiral
superfield. These are: the gluino scalar and pseudoscalar bi-
linears λ̄λ, λ̄γ5λ, the corresponding gluonic quantities F 2,
F̃F , and the spin-1/2 gluino-glue operator trc[Fσλ]. How-
ever the program of including the purely gluonic operators
(“glueballs”) as dynamical degrees of freedom turns out to
be non trivial [2–5]. In [2,4,5] the Veneziano-Yankielowicz
low energy Lagrangian was extended so as to include all
the desired low energy states, which are arranged into two
Wess-Zumino supermultiplets. The authors of [3] pointed
out on the other hand, that fulfillment of the program
requires dynamical SUSY breaking and its consequent ab-
sence from the particle spectrum. In a situation where the
theoretical framework seems to be still unsettled, a first-
principles approach is welcome. This can be provided by
lattice computations.

Our goal is to verify the low energy spectrum of SYM in
the case of SU(2) gauge group by numerical techniques. By

a e-mail: farchion@uni-muenster.de

doing this we continue past projects, see [6] for a review.
The direct approach to the spectrum of SYM consists in
studying the time-dependence of correlators of operators
having the expected quantum numbers of the low-lying
particles. The simplest operators of this type are the glue-
ball, gluino-glue and mesonic operators also entering the
low energy Lagrangians. Since gluino bilinears and glueball
operators of the same parity carry the same (conserved)
quantum numbers of the theory, it is natural to expect
mixing among them [2]. We have to stress here that when
the dynamics of the gluinos is taken into account beyond
the valence picture, the disentanglement of the “unmixed”
states with identical quantum numbers is not possible: only
the mixed physical states can be the object of investiga-
tion.1 The result is the determination of the mass of the
lightest particle with the same quantum numbers of the
projecting operator: from this point of view glueball and
mesonic operators are equivalent.

The action is discretized in the Wilson fashion [7]2
where, however, the gluino is a Majorana spinor in the
adjoint representation:

S = SG[U ] + Sf

[
U, λ̄, λ

]
; (1)

1 In order to avoid confusion with the mass pattern of QCD
we refrain to associate any name to the particle states of SYM
and will refer to them according to their quantum numbers
(spin and parity).

2 First simulations with domain wall fermions were performed
in [8].
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SG[U ] is the usual plaquette action and

Sf

[
U, λ̄, λ

]
=

1
2

∑
x

λ̄(x)λ(x) (2)

− κ

2

∑
x

∑
µ

[
λ̄(x + µ̂)Vµ(x)(r + γµ)λ(x)

+ λ̄(x)V T
µ (x)(r − γµ)λ(x + µ̂)] ;

r is the Wilson parameter set to r = 1 in our case. The
gluino field satisfies the Majorana condition

λ = λC = Cλ̄T , (3)

where the charge conjugation in the spinorial representa-
tion is C = γ0γ2; the gauge link in the adjoint representa-
tion reads:

[Vµ(x)]ab ≡ 2 tr[U†
µ(x)T aUµ(x)T b]

=
[
V ∗

µ (x)
]
ab

=
[
V T

µ (x)
]−1

ab
, (4)

where T a are the generators of the color group.
The dynamics of the gluinos is included by adopting the

two-step multi-bosonic algorithm (TSMB) for dynamical
fermions [9]. The algorithm has the nice feature of accom-
modating any, even fractional, number of flavors. This is
required for SYM since, schematically, the gluino has only
half of the degrees of freedom of a Dirac fermion and con-
sequently the fermion measure contains the square root of
the fermion determinant: this corresponds to Nf = 1/2.
In addition (cf. [10] for details) the design of TSMB is op-
timized to deal with light fermionic degrees of freedom, a
critical factor when approaching the SUSY limit. Tests of
the algorithm performance in QCD for light quark masses
can be found in [11].

In the Wilson discretization SUSY is broken in a two-
fold way: explicitly by the Wilson term ensuring the correct
balance between fermionic and bosonic degrees of freedom
in the continuum limit, and softly by the gluino mass term.
On the basis of the Ward identities [7, 12, 13], SUSY is
expected to be recovered in the continuum limit by tun-
ing the gluino mass to zero. (The situation is perfectly
analogous to that of QCD, where chirality is recovered by
tuning the quark mass to zero). However, O(a) and O(mg̃)
SUSY violating effects are expected to distort the SUSY
pattern in practical situations. A systematic analytical ex-
pansion in the gluino mass is missing in SYM; therefore it
is not obvious how to set the scale for the O(mg̃) breaking
(something analogous to Λχ = 4πfπ in chiral perturbation
theory). The only possibility, at least for the moment, to
gain some information on the effective “heaviness” of the
gluino is to force analogy with QCD. Needless to say, this
procedure is only of heuristic value. The strategy we adopt
is to gradually increase the hopping parameter κ in the
Wilson action at fixed value of the gauge coupling β = 2.3
corresponding to a fairly small lattice size in QCD units
(a ≈ 0.06 fm), pushing the simulation towards a lighter
and lighter gluino.

First large scale simulations of SYM were performed
in [10] on a 123·24 for κ = 0.1925. New sets of configurations

were produced in [13] for κ = 0.194, 0.1955. We now turn
to a 163 ·32 lattice, whose larger time extension allows for a
better analysis of the spectrum. We consider here κ = 0.194
(simulations at κ = 0.1955, 0.196 are in progress). The
larger space extension allows us to monitor finite-volume
effects in the spectrum.

The spectrum of SYM is challenging from the point
of view of numerical analysis. The signal for the corre-
lators of purely gluonic operators vanishes very rapidly
(ideally one should use anisotropic lattices). The mixed
gluonic-fermionic operators, typical for SUSY models, re-
ceive substantial fluctuations from the gluonic content. A
better asymptotic behavior of the effective mass, however,
can be obtained by combined smearing of the fermionic and
gluonic degrees of freedom. Finally for mesonic operators,
special techniques are required for the disconnected term
in the correlator. Here we employ stochastic estimators
(SET) [14]. Also, we apply an improved version [15] of the
volume source technique (VST) [16]. For fermions in the
real representation of the gauge group, as is the case for
SYM, the original formulation in [16] cannot be used. The
two independent techniques were tested in a comparative
study for SYM in [15].

A description and some results of this study have been
reported in [17].

The plan of the paper is as follows. In Sect. 2 we re-
port details of the simulations and characterize the gauge
sample, using analogy with QCD, by the Sommer scale
parameter r0 and the pseudo-pion mass; the gluino mass is
obtained from the soft-breaking term in the SUSY Ward
identities; Sect. 3 contains methodology and results for the
spectrum; in Sect. 4 we discuss results and indicate possible
directions of improvement.

2 The gauge sample

The gauge configurations were generated by the two-step
multi-bosonic algorithm for dynamical gluinos [9]. We refer
to [10] for a description of the algorithm. Table 1 reports
an overview of the β = 2.3 ensembles used in this work;
the set on the 163 · 32 lattice with κ = 0.194 was newly
generated. The setup of the TSMB was as follows. The
local part of the updating procedure (one cycle) consisted
of two steps of heat bath for the bosonic fields followed by
two steps of over-relaxation; the updating for the gauge
sector was obtained by 36 Metropolis sweeps. At the end
of each cycle an accept-reject test was performed on the
gauge configuration, along the lines of the general procedure
described in [10]. Every five cycles a global heat-bath step
was applied on the bosonic fields. The typical condition
number of the squared hermitian fermion matrix was ∼
104. The integrated autocorrelation time for the smallest
eigenvalue was ∼ 240 cycles.

2.1 Static potential, string tension
and Sommer scale parameter

We measured the potential between heavy sources in the
fundamental representation. The results on the larger 163 ·
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Table 1. Overview of the ensembles used in this work with determination of Som-
mer scale parameter and string tension. The fourth and fifth column, respectively,
report the total number of configurations and of update cycles at equilibrium,
the sixth column the number of replica lattices

reference Ls κ Nconfig Ncycle Nlat r0/a a
√

σ

[10] 8 0.19 20768 1038400 32 5.41(28) [10] 0.22(1)
[10] 12 0.1925 4320 216000 9 6.71(19) [13] 0.176(4)
[13] 12 0.194 2034 42030 9 7.37(30) [13] 0.160(6)
this study 16 0.194 3890 25650 4 7.16(25) 0.165(9)
[13] 12 0.1955 4272 65832 8 7.98(48) [13] 0.147(8)

0 2 4 6 8
R

0.2

0.4

0.6

0.8

V
(R

)

Fig. 1. Static potential between heavy sources in the funda-
mental representation on the 163 · 32 lattice, κ = 0.194; the
line is the fit with lattice formulae

32 lattice confirm the picture of confinement found in [10],
see Fig. 1. The Sommer scale parameter r0 and the string
tension

√
σ were measured by fitting the potential with the

lattice formula [18]

V (r) = V0 + σr − 4πe

∫ π

−π

d3k

(2π)3
cos(k · r)

4
∑3

j=1 sin2(kj/2)
; (5)

r0 is given by

r0 =

√
1.65 − e

σ
. (6)

The results are reported in Table 1.
Comparing the results on the two lattices, no finite-

size effect beyond statistical uncertainty is visible in the
Sommer scale parameter and the string-tension. Similarly
to QCD, the Sommer scale parameter displays a sizeable
gluino-mass dependence. A linear extrapolation to zero
gluino mass is performed in the next subsection.

2.2 Massless gluino limit

In QCD the massless quark limit can be determined by
inspection of the pion mass or use of the chiral Ward iden-
tities. In contrast, in SYM the U(1) chiral symmetry is
anomalous and the particle with the quantum numbers
of the chiral current (namely the pseudoscalar particle)
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Fig. 2. The gluino mass as obtained from the SUSY Ward
identities as a function of the time separation between current
and insertion operator on the 163 · 32 lattice, κ = 0.194. The
lines indicate bounds of the fit

picks up a mass by the anomaly. However, theoretical ar-
guments [1] (cf. also the discussion in [12]) support the pic-
ture that the anomaly is originated by OZI-rule violating
diagrams, while the remaining ones determine spontaneous
breaking of the chiral symmetry. The diagrams of the pseu-
doscalar correlator respecting the OZI-rule give rise to the
connected (one loop) term, corresponding in QCD to the
pion-correlator. The analogy with QCD suggests the name
“adjoint-pion” (a−π) for the associated pseudoparticle: in
the above picture this is expected to be a soft-mode of the
theory, the corresponding mass disappearing for mg̃ → 0.

The gluino mass can be directly determined by study-
ing the lattice SUSY Ward identities [7,12,13], where the
former enters the soft breaking term. We refer to [13] for the
illustration of the method and discussion of theoretical as-
pects. One can determine the combination aZ−1

S mg̃ where
ZS is the renormalization constant of the SUSY current,
which is expected to be a (finite) function of the gauge
coupling only. This quantity was determined in [13] for the
123 · 24 lattice. We repeat here the computation for the
163 ·32 lattice. The results are reported in Fig. 2, where the
gluino mass is plotted against the time separation between
current and insertion operator in the SUSYWard identities.
Compared to the 123 ·24 case of [13], the plateau establishes
for larger values of the time separation (five compared to
three); unfortunately, at these time separations the quality
of the signal is already quite deteriorated. Table 2 contains
the determinations of aZ−1

S mg̃ and ama−π in present and
past works. Comparison of 123 · 24 and 163 · 32 results at
κ = 0.194 reveals a sizeable finite volume effect for the
adjoint-pion mass. It should be noted that the sign of the
effect is opposite to the usual one (however this is no phys-
ical mass). The gluino mass comes in larger on the larger
lattice, however within a 1-σ effect.
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Table 2. Quantities determined in this and previous studies: the adjoint-pion mass,
gluino mass from SUSY Ward identities (with local SUSY current, insertion operator
χ(sp), cf. Table 5 in [13]), spin-1/2, 0+ and 0− bound state masses

Ls κ ama−π aZ−1
S mg̃ spin-1/2 0+(glueb.) 0−(λ̄γ5λ)

8 0.19 0.71(2) [10]
12 0.1925 0.550(1) 0.166(6) [13] 0.33(4) 0.53(10) [20] 0.52(10) [20]
12 0.194 0.470(4) 0.124(6) [13] 0.49(4) 0.40(11) 0.42(1)
16 0.194 0.484(1) 0.137(7) 0.43(1) 0.52(2)
12 0.1955 0.253(4) 0.053(4) [13] 0.35(4) 0.36(4) 0.24(2)
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Fig. 3. The gluino mass from the SUSY Ward identities and
the squared adjoint-pion mass ma−π as a function of 1/κ (from
the present and past studies [10,13]); aZ−1

S mg̃ on the 123 · 24
lattice (triangles), the same quantity on the 163 · 32 lattice
(star); squared adjoint-pion mass on 83 · 16 (circle), 123 · 24
(boxes), and 163 ·32 lattice (diamond). The burst indicates the
extrapolated massless limit from the two lightest gluino masses

In Fig. 3 aZ−1
S mg̃ is shown together with the squared

adjoint-pion mass. The two quantities appear to vanish for
a common value of κ ≡ κc. The estimate of κc from the
SUSY Ward identity gluino mass, κc ≈ 0.1965 [13], is not
changed by the inclusion of the point on the larger lattice.
Using this value of κc we can now extrapolate the Sommer
scale parameter in Table 1 to the massless gluino situation.
A linear extrapolation results in r0/a(mg̃ = 0) = 8.4(4);
the error takes into account the uncertainty in the deter-
mination of κc (assumed to be in the region κ=0.1965–
0.1975 [13]). The Sommer scale parameter signals the de-
gree of “smoothness” (or “coarseness”) of the gauge sample.
In QCD, the present value would correspond to a ≈ 0.06
fm (3.3 GeV), a fairly fine lattice. Further, assuming that
the adjoint-pion drives the low energy features of SYM, as
the pion does in QCD, one can estimate the degree of soft-
breaking of SUSY by considering the dimensionless quan-
tity Mr = (ma−πr0)2. In QCD, validity of NLO chiral per-
turbation theory requires [21] a Mr � 0.8 (corresponding
to mud � 1/4 ms). In our case we have Mr(κ = 0.194) ≈ 16
and Mr(κ = 0.1955) ≈ 4.5; our lightest case would cor-
respond in QCD to mud ≈ 1.5 ms. Alternatively one can
consider the gluino mass from the SUSY Ward identity ne-

glecting O(1) renormalizations, again fixing the scale by the
Sommer parameter with QCD units. In this case we obtain
for our lightest gluino mg̃ ≈ 174 MeV in rough agreement
with the previous estimate. Since QCD and SU(2) SYM
are different theories, the above indications are of course of
qualitative nature. On the other hand, the relatively large
average condition numbers of the fermion matrix, ∼ 104

for κ = 0.194 and ∼ 3.6 104 for κ = 0.1955, point towards
a lighter gluino.

3 The spectrum

As explained above, we concentrate our analysis of the
spectrum on particles with spin = 0 (both parities) and
spin = 1/2. We investigate the glueball operators, the
gluino scalar and pseudoscalar bilinears (meson-type op-
erators) and the gluino-glue operator.

3.1 Spin-1/2 bound states

We adopt here a lattice version [13] of the gluino-glue
operator trc[Fσλ] where the field-strength tensor Fµν(x)
is replaced by the clover-plaquette operator Pµν(x):

Oα
g̃g(x) =

∑
i<j

σαβ
ij trc

[
Pij(x)λβ(x)

]
; (7)

only spatial indices are taken into account in order to avoid
links in the time-direction. The clover-plaquette operator
is defined to be

Pµν(x) =
1

8ig0

4∑
i=1

(
U (i)

µν (x) − U (i)†
µν (x)

)
(8)

with

U (1)
µν (x) = U†

ν (x)U†
µ(x + ν̂)Uν(x + µ̂)Uµ(x)

U (2)
µν (x) = U†

µ(x)Uν(x − ν̂ + µ̂)Uµ(x − ν̂)U†
ν (x − ν̂)

U (3)
µν (x) = Uν(x − ν̂)Uν(x − ν̂ − µ̂)

×U†
µ(x − ν̂ − µ̂)U†

µ(x − µ̂)

U (4)
µν (x) = Uµ(x − µ̂)U†

ν (x − µ̂)U†
µ(x + ν̂ − µ̂)Uν(x) .(9)

The choice of the clover plaquette vs. the regular plaquette
as the gluonic field-strength operator in (7) is motivated
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by the correct behavior under parity and time reversal
transformations as opposed to simply Uµν(x). Because of
the spinorial character of the gluino-glue, the correlator
Cg̃g(t) has a specific structure in Dirac space. On the basis
of the symmetries of the theory, one can show [12] that only
two components are linearly independent, trD[Cg̃g(x)] and
trD[γ0Cg̃g(x)]. In our experience, the latter gives the best
signal. In order to get a better overlap with the ground
state, we apply APE smearing [22] on the link-variables
and Jacobi smearing [23] on the gluino field simultaneously.

3.2 0− bound states

The meson-type correlators require a separate discussion
because of the disconnected contribution. In the case of
SYM one has (with ∆ the gluino propagator):

Cmeson(x0 − y0) = Cconn(x0 − y0) − Cdisc(x0 − y0)

=
1
Vs

∑
x

〈tr[Γ∆x,yΓ∆y,x]〉 (10)

− 1
2Vs

∑
x

〈tr[Γ∆x,x] tr[Γ∆y,y]〉 ,

with Γ ∈ {1, γ0} (observe the factor 1/2 reflecting the
Majorana nature of the gluino). The disconnected term
requires the estimation of the time-slice sum of the gluino
propagator

Sαβ(x0) =
∑
x

trc[∆xα,xβ ] . (11)

For this, we use the stochastic estimator technique
(SET) [14] with complexZ2 noise in the spin explicit variant
SEM [19]. In this case each estimate of the time-slice sum
is obtained by inverting the fermion-matrix with source
(ω[α]

S )xbβ = δαβ η
[α]
xb where η

[α]
xb are independent stochastic

variables chosen at random from 1√
2
(±1 ± i). Here we use

point-like operators (i.e., no smearing on the gluino).
On the larger 163 ·32 lattice the computed meson corre-

lator displays an offset: its long-time behavior is not purely
exponential, since a constant term also appears. Such a con-
stant term is theoretically excluded in the correlator by the
symmetries of the theory. It is present in both SET and
VST (see below) determinations of the disconnected con-
tribution and does not decrease by increasing the number
of the random estimators. In contrast, it is absent in the
connected correlator. We conclude that its origin is to be
traced to some cumulative numerical effect in the stochastic
computation of the disconnected contribution.

In Fig. 4 we show the disconnected component of the
pseudoscalar meson correlator after subtraction of the con-
stant term. In Fig. 5 the ratio between the subtracted dis-
connected component and the connected one is reported.
For a comparison with the same quantity in the case of
QCD see e.g., [24,25]; we remark here that the case of SYM
is quite different since the connected correlator is not re-
lated to a physical particle, but rather to the pseudoparticle
a − π discussed above.
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Fig. 4. The disconnected component of the pseudoscalar meson
correlator after subtraction of the constant term on the 163 ·32
lattice, κ = 0.194 (SET)
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Fig. 5. Ratio of the disconnected (after subtraction) and con-
nected components of the pseudoscalar meson correlator on the
163 · 32 lattice, κ = 0.194 (SET)

We cross-check the SET with the improved version [15]
of the volume source technique (VST) [16], applying to
fermions in real representations of the color group. The
improvement consists in averaging the time-slice sums over
random gauge transformations and therefore eliminating
the gauge non-invariant spurious terms. The two methods
deliver consistent results of comparable quality at similar
computational cost. For the sake of brevity, we present here
only those from SET.

Another operator with the right quantum numbers (0−)
is the pseudoscalar glueball operator. This is given by a
linear combination of closed loops of link variables which
cannot be rotated into their mirror image (cf. e.g., [10]). We
considered the simplest loops of this kind. Unfortunately
this operator does not give a clear signal on our samples.
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Fig. 6. The effective mass of the spin-1/2 particle (γ0 component) for the different samples. Dotted lines are the bounds of
the mass fits (ground and first excited state). In the last case only a rough indication of the first excited state mass could
be obtained

3.3 0+ bound states

Since the meson-type correlator does not show any appre-
ciable signal for the 0+ state, we turn to the scalar glueball
operator. The standard operator in this case is

Oglueball(x) = trc[U12(x) + U23(x) + U31(x)] . (12)

We use fuzzy operators by applying APE smearing on the
link variables.

3.4 Results

For all particles we measured the effective masses (Figs. 6–
8). In many cases a clear plateau could not be determined.
In order to get a better determination of the ground state
mass, we used constrained two-mass fits (bounds in the
figures). In some cases (the spin-1/2 particle on the larger
lattice at κ = 0.194, Fig. 6, and the pseudoscalar particle
at the same κ value, Fig. 7) the two-mass fit can be cross-
checked against a plateau of the effective mass. We ensured
the stability of the two-mass fits by systematically varying
fit ranges (for details see [17]). The effective mass of the
pseudoscalar meson on the 163 · 32 lattice, lower panel of
Fig. 7, was determined after subtraction of the constant
term in the correlator discussed in Sect. 3.2.

In the case of the scalar glueball operator, a decrease
of the signal/noise ratio was observed on the larger lattice,
as a consequence of which no determination of the mass
was possible.
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Fig. 7. The comparison of the effective mass of the pseudoscalar
particle on the two lattices at κ = 0.194. Dotted lines are the
bounds of the mass fits (ground and first excited state)

Results on the determinations of the ground state
masses are reported in Table 2 and Fig. 9. A discussion
of the results will be presented in the following section.
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with glueball operator on the 123 · 24 lattice at
κ = 0.194, 0.1955. Dotted lines are the bounds of
one-mass fits
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Fig. 9. Mass of lightest bound states of SYM determined in this
work. The shaded region represents the presumed location of the
massless gluino on the basis of the SUSY Ward identity analysis

4 Discussion

Our analysis of the low-lying spectrum of SYM shows a
slow approach of the correlators to the asymptotic behavior
where only the ground state dominates. This is evident in
the case of the gluino-glue and mesonic correlators; in the
case of the glueball correlator, the quality of the signal
is not good enough to make definite statements. Excited
states with masses comparable to that of the ground state
are strongly coupled to these operators. In some cases a
plateau of the effective mass emerged and consequently
allowed us to cross-check the results of the two-mass fits.
The situation can be improved by implementing optimized
smearing on the operators (in the case of the gluino bilinears
we use point-like operators).

The excited states which hamper the determination of
the ground states are of physical interest by themselves.
According to [2, 4, 5], the first excited states should be
arranged in a second Wess-Zumino supermultiplet. The
“higher masses” in our two-mass fits can give a first in-
dication of the masses of these excited states: the ground
state masses lie in the region 0.2–0.5 (in lattice units), while
the higher masses are in the region 0.8–1. A more refined
analysis of the excited states, however, could be obtained
with matrix correlators. In the scalar sector, one would nat-
urally include the gluino scalar bilinear in addition to the
glueball operator. Given the large fluctuations observed on

the former, the employment of variational methods would
then be advisable. A similar analysis could be done in the
pseudoscalar sector with the corresponding gluino bilinear
and the pseudoscalar glueball operator.

A more fundamental question is whether the employed
operators are optimal in the sense of maximal overlap with
the low-lying bound states of SYM. Investigations could go
in the direction of different operators and different quantum
numbers [26].

In the following we restrict the discussion of our results
to the ground states (Fig. 9). One of the goals of this study
was to check finite volume effects by comparing lattices
with different spatial extension. This can be done for our
value of κ = 0.194 where two different lattice sizes are
available, Ls = 12 and 16. The direct comparison shows,
see Table 2, that a sizeable deviation is present for the
pseudoscalar particle. Contrary to expectations, the parti-
cle comes in heavier on the larger lattice. For this lattice,
however, an unexpected constant term is observed in the
long-time behavior of the correlator, which could hint at
some systematic effect in the stochastic determination of
the disconnected correlator on large lattices. The pseu-
doscalar particle is the lightest particle for our lightest
gluino (κ = 0.1955), though, in this case only data for the
smaller lattice are available. The scalar and the spin-1/2
particle have comparable masses, compatible within errors.

Conclusions on the relevance of soft breaking terms
require the control of finite lattice-spacing effects. Using
analogy with QCD in absence of other indications, we argue
that our mesh is relatively fine, while the gluino is still quite
heavy. Next steps will be therefore to consider larger values
of κ on large lattices.
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Abstract. One-flavour QCD – a gauge theory with SU(3) colour gauge group and a fermion in the funda-
mental representation – is studied by Monte Carlo simulations. The mass spectrum of the hadronic bound
states is investigated in a volume with extensions of L� 4.4r0 (� 2.2 fm) at two different lattice spacings:
a � 0.37r0 (� 0.19 fm) and a � 0.27r0 (� 0.13 fm). The lattice action is a Symanzik tree-level improved
Wilson action for the gauge field and an (unimproved) Wilson action for the fermion.

1 Introduction

QCD with one flavour of quarks is an interesting theoret-
ical laboratory to study some aspects of the strong interac-
tion dynamics, namely those not connected to spontaneous
chiral symmetry breaking and to the existence of light
pseudo-Goldstone bosons. As a consequence of a quan-
tum anomaly, the U(1) axial symmetry of the classical La-
grangian is broken and in the limit of vanishing quark mass
no massless Goldstone boson exists.
An intriguing possibility at negative quarkmasses is the

spontaneous breakdown of parity and charge conjugation
symmetry – a phenomenon first conjectured by Dashen [1]
in the three-flavour theory. This has to do with the pos-
sible negative sign of the fermion determinant at negative
quark masses, because under the assumption of the pos-
itiveness of the fermion determinant Vafa and Witten [2]
proved the impossibility of this kind of spontaneous sym-
metry breaking.
A dramatic consequence of the absence of (broken) chi-

ral symmetry is the difficulty to find a unique definition of
the point with zero quark mass in parameter space [3–5].
(For an excellent summary and discussion of this problem
see [6].)
Another line of recent theoretical developments is the

relation between one-flavour (Nf = 1) QCD and supersym-
metric Yang–Mills (SYM) theory with one supersymme-
try charge (N = 1) [7–10]. This connection is the conse-
quence of orientifold planar equivalence in the limit of large
number of colours (Nc →∞). This might imply approxi-
mate relations among hadron masses even at Nc = 3, for
instance, the approximate degeneracy of scalar and pseu-
doscalar bound states of quarks [11] reflecting the proper-
ties of the Veneziano–Yankielovicz low-energy effective ac-

a e-mail: montvay@mail.desy.de, istvan.montvay@desy.de

tion of N = 1 SYM [12] in the mass spectrum of Nf = 1
QCD. For instance, the ratio of the mass of the lowest pseu-
doscalarmeson to themass of the scalarmeson is predicted,
including 1/Nc corrections, to be (Nc−2)/Nc [13, 14]. An-
other prediction of orientifold equivalence is the size of the
quark condensate in one-flavour QCD, which has recently
been comparedwith numerical simulation results in [15].
In the present paper we start to explore the mass spec-

trum of hadronic states in one-flavour QCD by numerical
Monte Carlo simulations. This requires reasonably large
physical volumes at small quark masses and high statistics
– especially for determining glueball masses and contribu-
tions of disconnected quark diagrams. We apply the Wil-
son lattice fermion action, which has recently been shown
by several collaborations [16–20] to be well suited for such
an investigation. We start our exploratory studies here on
123 ·24 and 163 ·32 lattices with lattice spacing a� 0.19 fm
and a� 0.13 fm, respectively. This means that our present
setup roughly corresponds to the earlier simulations of the
qq+q Collaboration [16, 17], but we hope to continue these
investigations in the near future closer to the continuum
limit as in [18–20].
For setting the scale we use the Sommer parameter [21]

r0, which we set by definition to be r0 ≡ 0.5 fm. In other
words, whenever we speak about “1 fm” we always mean
“2r0” – having in mind that one-flavour QCD is a theory
different from QCD realised in nature.
Since the sign of the quark determinant is a sensitive

issue, we carefully determine it and take it into account
in determining the expectation values. In the present pa-
per we choose the quark mass to be sufficiently far away
from zero on the positive side, where the effect of the de-
terminant sign is not very strong. In spite of this, as we
shall see, we can investigate quite small quark masses down
to mq � 12MeV (that is mqr0 � 0.03), corresponding to
a pion massmπ � 270MeV.
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Let us mention that keeping the quarks sufficiently
heavy (choosing the hopping parameter κ in the Wilson

fermion action (2) below 18 ) the problem of negative quark
determinants can be avoided. (The thermodynamics of
Nf = 1 QCD for heavy quarks has been investigated under
this assumption in [22].) Our aim is, however, to reach
small quark masses and therefore we have to deal with the
possibly negative sign of the quark determinant.
For interpreting our results on the mass spectrum we

find it useful to embed the Nf = 1 QCD theory in a par-
tially quenched theory with more quark flavours. This em-
bedding is particularly useful if the additional quenched
valence quark flavours have the same mass as the dynam-
ical sea quark because of the exact SU(NF ) flavour sym-
metry in the combined sea- and valence-sectors (NF de-
notes here the total number of quenched and unquenched
flavours). In most cases we consider the natural choice
NF = 3, which is closest to the situation realised in na-
ture. We also work out some of the predictions of partially
quenched chiral perturbation theory (PQChPT) and com-
pare them to the numerical data.
The plan of this paper is as follows: in the next section

we define the lattice action and briefly discuss the updat-
ing algorithm. In Sect. 3 the partially quenched viewpoint
is introduced and PQChPT is considered for it. Section 4
is devoted to the presentation of our numerical simulation
data. The last section contains a discussion and summary.

2 Lattice action and simulation algorithm

2.1 Lattice action

For the SU(3) Yang–Mills gauge field we apply, follow-
ing [20], the tree-level improved Symanzik (tlSym) action,
which is a generalisation of the Wilson plaquette gauge
action. It belongs to a one-parameter family of actions
obtained by renormalisation group considerations in the
Symanzik improvement scheme [23]. Those actions also in-
clude, besides the usual (1×1)Wilson loop plaquette term,
planar rectangular (1×2) Wilson loops:

Sg = β
∑

x

(
c0

4∑

µ<ν, µ,ν=1

{
1−
1

3
ReU1×1xµν

}

+c1

4∑

µ�=ν,µ,ν=1

{
1−
1

3
ReU1×2xµν

}⎞

⎠ , (1)

with the normalisation condition c0 = 1− 8c1. For the
tlSym action we have c1 =−1/12 [24–26].
The fermionic part of the lattice action is the simple

(unimproved) Wilson action:

Sf =
∑

x

{
ψ
a

xψ
a
x−κ

4∑

µ=1

[
ψ
a

x+µ̂ Uab,xµ(1+γµ)ψ
b
x

+ψ
a

x U
†
ab,xµ(1−γµ)ψ

b
x+µ̂

]}
. (2)

Here κ is the hopping parameter related to the bare quark
mass in lattice units am0 by

1

2κ
= am0+4 . (3)

The Wilson parameter removing the fermion doublers in
the continuum limit is fixed in (2)–(3) to r = 1.

2.2 Simulation algorithm

For preparing the sequences of gauge configurations a Poly-
nomial Hybrid Monte Carlo (PHMC) updating algorithm
was used, which is well suited for theories with an odd
number of fermion species. This algorithm is based on
multi-step (actually two-step) polynomial approximations
of the inverse fermion matrix with stochastic correction in
the update chain as described in [27, 28]. The starting point
is the PHMC algorithm as introduced in [29–32]. The poly-
nomial approximation scheme and the stochastic correc-
tion in the update chain are taken over from the two-step
multi-boson algorithm of [33]. For details of the updating
algorithm and for notation related to it see [27, 28].
In order to speed up the updating, even–odd precon-

ditioning was used, which pushes the small eigenvalues of
the (squared Hermitean) fermion matrix Q[U ]2 to larger
values. The eigenvalues of Q[U ]2 are assumed to be cov-
ered on typical gauge configurations by the approximation
interval [ε, λ]. In exceptional cases some of the eigenvalues
(typically just the smallest one) are outside this interval.
In order to correct for this a correction factor C[U ] is as-
sociated with such configurations. The exact value of this
correction factor can be written as

C[U ] =

{
∏

i

[
λ
1/(2nB)
i P1(λi)P2(λi)

]}nB
. (4)

Here the product runs over the eigenvalues of Q[U ]2, the
polynomial P1(x) is an approximation for x

−1/(2nB), P2(x)
for [x1/(2nB)P1(x)]

−1. The positive integer nB defines the
determinant break-up which means that in the path inte-
gral the fermions are represented by

[(
detQ[U ]2

)1/(2nB)]nB . (5)

The part of the product in (4) where λi is inside the
interval [ε, λ] can be effectively replaced by a stochastic es-
timator and then

C[U ] =

{
∏

j

′
[
λ
1/(2nB)
j P1(λj)P2(λj)

]

×
1

N ′

N ′∑

n=1

exp

[
η†n

(
1−P ′(Q[U ]2)

)
ηn

]}nB
.

(6)

Here the
∏′
j runs over the eigenvalues outside the in-

terval [ε, λ], P ′(x) is a sufficiently good approximation



F. Farchioni et al.: Hadron masses in QCD with one quark flavour 307

of [x1/(2nB)P1(x)P2(x)]
−1, N ′ is the arbitrary number of

stochastic estimators and the ηn are Gaussian vectors in
the subspace orthogonal to the eigenvectors corresponding
to the eigenvalues λj . In practice, one can choose the poly-
nomial P2(x) to be such a good approximation that the
stochastic part in (6) has no noticeable effect on the expec-
tation values and therefore can completely be neglected. In
this case the correction factor is simply given by

C[U ] =

⎧
⎨

⎩
∏

j

′ [
λ
1/(2nB)
j P1(λj)P2(λj)

]
⎫
⎬

⎭

nB

. (7)

Besides the correction factor C[U ], the sign σ[U ] of the
fermion determinant detQ[U ] has also to be included in the
reweighting of the configurations and then the expectation
value of a quantity A is given by

〈A〉=

∫
d[U ]σ[U ]C[U ]A[U ]∫
d[U ]σ[U ]C[U ]

. (8)

This formula shows the dangerous sign problem, which can
arise due to the fluctuation of the determinant sign be-
cause in case of strong fluctuations of σ[U ] both nomina-
tor and denominator on the right hand side may become
small, spoiling the statistical accuracy. (Similarly, one can
also lose statistics if the correction factors C[U ] are much
smaller than 1 on many configurations.)
Typical values of the approximation interval and of the

polynomial orders at the lightest quark mass simulated
on 123 ·24 and 163 ·32 lattices, respectively, are collected
in Table 1. As in [27, 28], the orders of the polynomials Pj ,

(j = 1, 2) are denoted by nj and those of P̄j , (j = 1, 2) by n̄j ,
respectively. The simulations have been done with deter-
minant break-up nB = 2. (The polynomials P̄j are approxi-

mating (Pj)
− 12 . For more details see [27, 28] and references

therein.)
The last four columns of Table 1 show the values of the

deviation norm δ, which is minimised for a given poly-
nomial order n in the least-square approximation scheme
we are using. Generically δ is defined as

δ ≡

⎧
⎪⎨

⎪⎩

∫ λ
ε
dxw(x)

[
f(x)−Pn(x)

]2

∫ λ
ε
dxw(x)f(x)2

⎫
⎪⎬

⎪⎭

1
2

. (9)

Here f(x) is the function to be approximated and w(x) is
a positive weight function actually chosen in our case to be
w1(x) = w2(x) = x

1/(2nB) and w̄1(x) = w̄2(x) = 1, respec-
tively. The values of δ1 in Table 1 are such that the average

Table 1. Algorithmic parameters in the runs with lightest quark mass on 123 ·24 (first line) and
163 ·32 (second line) lattice, respectively. For notation see the text and also [27, 28]

ε λ n1 n̄1 n2 n̄2 δ1 δ̄1 δ2 δ̄2

3.25×10−6 2.6 350 550 1400 1600 4.9×10−4 6.7×10−7 9.9×10−7 8.8×10−7

1.20×10−5 2.4 250 370 1000 1150 5.4×10−4 8.2×10−7 4.8×10−7 3.1×10−7

acceptance rate of the stochastic correction at the end of
trajectory sequences is between 80%–90%. The other δ
values are small enough to ensure practically infinite pre-
cision of the expectation values. For more details on the
algorithmic setup in our runs see also Sect. 4.

3 Partially quenched viewpoint

Because the classical U(1)A axial symmetry is anomalous,
the single-flavour QCD theory does not have a continu-
ous chiral symmetry apart from the U(1) quark number
symmetry. Consequently it does not have spontaneous chi-
ral symmetry breaking and hence no (pseudo-) Goldstone
bosons and no easy definition of the quark mass [3–5]. In
the lattice regularisation it is, however, possible to enhance
the symmetry artificially by adding extra valence quarks,
which are quenched , that is, are not taken into account in
the Boltzmann weight of the gauge configurations by their
fermion determinants. In principle, one might consider any
number of quenched valence quarks with any mass values
but, to remain close to QCD realised in nature, the most
natural choice is to take two equal-mass valence quarks
and to call them u and d quarks. The original dynamical
quark can then be called s quark where “s” may stand for
sea or strange. The theory with dynamical s quark and
quenched u and d quarks is partially quenched . (Observe
that this partially quenching is somewhat unconventional,
since some of the valence quarks are quenched but taken
degenerate with the sea quark.)
Using this terminology, for instance, the pseudoscalar

bound state of s and s̄ can be called ηs. The corresponding
scalar state is then σs. The lowest baryon state consisting
of s quarks, which has to have spin 32 because of the Pauli

principle, can be named Ω− or e.g.∆s etc.
A theoretical description of partially quenched QCD

can be obtained through the introduction of ghost
quarks [36]. For each (quenched) valence quark a corres-
ponding bosonic ghost quark is added to the model. The
functional integral over the ghost quark fields then cancels
the fermion determinant of the valence quarks and only the
sea quark determinant remains in the measure. In our case
there are 2 flavours of valence quarks and ghost quarks,
each, with equal masses mV, and a single flavour of sea
quarks with massmS.
A particularly interesting point of the partially quen-

ched theory is the one where all the three quark masses
are equal. In this point there is an exact SU(3) vector-like
flavour symmetry in the valence plus sea quark sector, and
the hadronic bound states appear in exactly degenerate
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SU(3)-symmetric multiplets. For instance, there is a de-
generate octet of pseudoscalar mesons – the “pions” (πa,
a = 1, . . . , 8) satisfying an SU(3)-symmetric PCAC rela-
tion. With the help of the divergence of the axialvector
currentAaxµ and pseudoscalar density P

a
x one can define, as

usual, the bare PCAC quark mass amPCAC in lattice units:

amPCAC ≡
〈∂∗µA

+
xµP

−
y 〉

2〈P+x P
−
y 〉
. (10)

Here the indices + and − refer to the “charged” com-
ponents corresponding to λa± iλb (with λa,b some off-
diagonal Gell-Mann matrices) and ∂∗µ denotes the back-
ward lattice derivative. Due to the exact SU(3) symmetry,
the renormalised quark mass corresponding to mPCAC
can be defined by an SU(3)-symmetric multiplicative
renormalisation:

mRPCAC =
ZA

ZP
mPCAC . (11)

By tuning the bare quark mass on the lattice suitably,
the masses of the “pions” can be made to vanish, as the nu-
merical results indicate, and the renormalised quark mass
vanishes, too. At this point the partially quenched the-
ory has a graded SU(NF |NV)L⊗SU(NF |NV)R symmetry,
which is broken spontaneously to a “flavour” SU(NF |NV).
(Here NV is the number of additional valence quark fla-
vours and NF ≡ NV+Nf = NV+1.) In our case, with
NV = 2 flavours of valence quarks, the symmetry is thus
SU(3|2). The “pions” are the Goldstone bosons of the bro-
ken SU(3) subgroup.
Adding generic quark masses mV and mS, the sym-

metry group is explicitly broken down to SU(2|2). In the
special case mV =mS, considered here, the symmetry is
still SU(3|2), and its subgroup SU(3) is the flavour symme-
try mentioned above.
The “pions” are, of course, not physical particles in the

spectrum of Nf = 1 QCD. Nevertheless, their properties
such as masses and decay constants are well defined quanti-
ties, which can be computed on the lattice. The same is true
of thePCACquarkmassmRPCAC, which is therefore a poten-
tial candidate for a definition of a quarkmass of this theory.
The relation between the pion masses and the quark

masses can be considered in partially quenched chiral per-
turbation theory [37–39], including effects of the lattice
spacing a [40–44]. The pseudo-Goldstone fields are param-
eterized by a graded matrix,

U(x) = exp

(
i

F0
Φ(x)

)
(12)

in the supergroup SU(3|2). (Here the normalization of F0
is such that its phenomenological value is � 86MeV.) The
commuting elements of the graded matrix Φ represent the
pseudo-Goldstone bosons made from a quark and an anti-
quark with equal statistics, and the anticommuting elem-
ents of Φ represent pseudo-Goldstone fermions that are
built from one fermionic quark and one bosonic quark. The
supertrace of Φ has to vanish, which can be implemented
by a suitable choice of generators [45].

We have calculated the masses of the pseudo-Goldstone
bosons in next-to-leading order of partially quenched chiral
perturbation theory along the lines of [45], including O(a)
lattice effects [42]. The quark masses enter the expressions
in the combinations

χV = 2B0mV, χS = 2B0mS , (13)

with the usual low-energy constant B0, and the lattice
spacing occurs as

ρ= 2W0a , (14)

whereW0 is another, lattice-specific, low-energy constant.
For the pion masses we obtain

m2VV ≡m
2
π = χV+ρ+

χV+ρ

16π2F 20

[
χV−χS

+(2χV−χS+ρ) ln

(
χV+ρ

16π2F 20

)]

+
8

F 20

[
(2L8−L5)χ

2
V+(2L6−L4)χVχS

+(2W8+W6−W5−W4−L5)ρχV
+(W6−L4)ρχS] , (15)

where the usual low-energy parametersLi appear, together
with additional ones (Wi) describing lattice artifacts.
The mixed mesons, whose massesmVS we have also cal-

culated, become degenerate with the pions in the special
casemV =mS. In this case the expression reduces to

m2π = χ+ρ+
(χ+ρ)2

16π2F 20
ln

(
χ+ρ

16π2F 20

)

+
8

F 20

[
(2L8−L5+2L6−L4)χ

2

+(2W8+2W6−W5−W4−L5−L4)χρ
]
. (16)

To leading order the PCAC quark mass obeys 2B0
mRPCAC = χ+ρ, and we recognize the Gell-Mann–Oakes–
Renner relation

m2π = 2B0m
R
PCAC+NLO . (17)

Including terms in next-to-leading (NLO) order, we can ex-
pressm2π in terms ofm

R
PCAC as

m2π = χPCAC+
χ2PCAC
16π2F 20

ln
χPCAC

Λ2

+
8

F 20

[
(2L8−L5+2L6−L4)χ

2
PCAC

+(W8+W6−W5−W4
−2L8+L5−2L6+L4)χPCACρ] , (18)

where we define

χPCAC = 2B0m
R
PCAC . (19)

As a remark, in the case mV =mS the masses can al-
ternatively be obtained from the partially quenched theory
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with symmetry SU(2|1) by considering mixed pions made
from a valence quark and a degenerate sea quark. Indeed,
calculating the masses in this model reproduces (16).
The ηs can be included in the analysis by relaxing the

constraint of a vanishing supertrace [37, 45], and associat-
ing it with the field

Φ0(x) = sTrΦ(x). (20)

The effective Lagrangian then contains additional terms
depending on Φ0:

∆L= α∂µΦ0∂µΦ0+m
2
ΦΦ
2
0+O

(
Φ30

)
, (21)

where α and mΦ are free parameters in this context. We
content ourselves with displaying only the leading-order
expression for the mass of the ηs, which reads

m2ηs =
m2Φ+χPCAC
1+α

. (22)

Our numerical results formηs allow us to determine α and
mΦ.

4 Numerical simulations

After some preparatory search in the parameter space we
concentrated our runs on the 123 · 24 lattice to β = 3.8
and those on 163 · 32 to β = 4.0. The parameter values,
the number of analysed configurations, the average pla-
quette, its integrated autocorrelation and the value of the
Sommer scale parameter in lattice units r0/a are sum-
marised in Table 2. As one can see, taking the values of
r0/a at the highest κ (smallest quark masses), the exten-
sions of the 123 and 163 lattices are L= 4.46 r0 = 2.23 fm
and L = 4.29 r0 = 2.14 fm, respectively. Since we fix r0 =
0.5 fm by definition, these correspond to lattice spacings
a= 0.186 fm and a= 0.134 fm, respectively.
In the update chain by the PHMC algorithm with

stochastic correction [27, 28] a sequence of PHMC trajec-
tories is followed by a Metropolis accept–reject step with
a higher precision polynomial. The total length of the tra-
jectory sequence in the runs in Table 2 was between 1.5 and

Table 2. Summary of the runs: 123 ·24 and 163 ·32 lattices
have lowercase and uppercase labels, respectively. The number
of gauge configurations, which were saved after every trajectory
sequence, is Nconf. The average plaquette value, its autocorre-
lation in number of trajectory sequences τplaq and the value of
r0/a are also given

label β κ Nconf plaquette τplaq r0/a

a 3.80 0.1700 5424 0.546041(66) 12.5 2.66(4)
b 3.80 0.1705 3403 0.546881(46) 4.6 2.67(5)
c 3.80 0.1710 2884 0.547840(67) 7.6 2.69(5)

A 4.00 0.1600 1201 0.581427(36) 4.3 3.56(5)
B 4.00 0.1610 1035 0.582273(36) 4.1 3.61(5)
C 4.00 0.1615 1005 0.582781(32) 3.3 3.73(5)

1.8. The sequences consisted out of 3–6 individual trajecto-
ries. The precision of the first step of polynomial approxi-
mations was tuned such that the acceptance of the PHMC
trajectories was about 0.80–0.85. The total length of the
trajectory sequence was chosen such that the acceptance
of the Metropolis test was again 0.80–0.85. This ensured
a relatively high total acceptance of 0.64–0.72. During the
runs we tried to optimise the parameters of PHMC. The
different values of the integrated autocorrelation times for
the average plaquette in Table 2 are, in fact, mainly due to
increasingly better optimisations and not so much to the
dependence on the run parameters.
The second step approximations were more than good

enough to ensure that the expectation values were com-
pletely unaffected by the remaining small imprecision.
(See, for instance, the small relative deviations in Table 1.)
This has also been explicitly checked by performing a final
stochastic correction on a large sample of configurations
with polynomials P ′ of order 2500 in the stochastic part of
the right hand side of (6).
For the calculation of the expectation values the re-

weighting procedure according to (8) has to be carried out.
For this, besides the correction factor C[U ] from (7), also
the sign of the fermion determinant σ[U ] is needed. This
we calculated by the spectral flow method [34]. For the κ-
dependent computation of the low-lying eigenvalues of the
hermitean fermion matrixQ[U ] we followed [35].
It turned out that the effect of the correction factors

σ[U ]C[U ] is in most cases negligible. For instance, in run
b of Table 2 the average value of σ[U ]C[U ] in the denom-
inator is 0.9982. In run c it is 0.9842. In run b there are
34 configurations out of 3403, where some eigenvalue is
outside the approximation interval [ε, λ] and out of them
there is a single one with negative fermion determinant.
In run c there are 167 from 2884 outside [ε, λ] and out
of them there are 26 with negative correction factor due
to σ =−1.
Since the sign of the fermion determinant was not deter-

mined on every configuration, the question arises wheth-
er perhaps some negative signs were missed. This is very
improbable, because we determined the sign also on the
neighbouring configurations in addition to those with small
eigenvalues and out of the remaining configurations we
have chosen 100 randomly for sign determination. None of
these additional configurations turned out to have a nega-
tive determinant.
In the average plaquette and r0/a the effect of the cor-

rection factors is completely negligible. For instance, in
runs b and c the correction has an effect in the average value
of r0/a only in the fifth digit – whereas the statistical error
is in the third digit. In all other runs besides b and c every
eigenvalue is inside the approximation interval [ε, λ] and
therefore, according to (7), the correction factor is equal to
1 on every configuration.

4.1 Results for hadron masses

Starting with the mesonic states, we consider the sim-
plest interpolating operators in the pseudoscalar and scalar
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sectors:

0+ : P (x) = ψ̄(x)γ5ψ(x) , (23)

0− : S(x) = ψ̄(x)ψ(x) . (24)

We denote by ηs and σs the corresponding hadron states
at the lowest end of the energy spectrum (the usual nota-
tion JP is used for the respective quantum numbers). The
corresponding states in the QCD spectrum with the same
quantum numbers are η′(958) and f0(600) (or σ). (Note,
however, that the states in QCD are linear combinations
of ūu, d̄d and s̄s components – in contrast to the states in
Nf = 1 QCD which are built out of a single quark flavour.)
In the case of the pseudoscalar mesons, invariance

under the flavour group plays a special role when compar-
ing with QCD states because of the U(1) axial anomaly.
(This is not the case for baryons; see the following.)
Analogously to flavour singlet mesons in QCD, the cor-

relators of the above interpolating operators contain dis-
connected diagrams. These were computed by applying
stochastic estimator techniques (SET), and in particular
the variant of [46] with Z2 noise and spin dilution. The
method was already applied to the case of SYM [47] (as
mentioned in the introduction, SYM shares many similar-
ities with Nf = 1 QCD). In order to optimise the com-
putational load, taking also autocorrelations into account,
every fifth configuration was typically analysed, with 20
stochastic estimates each.
Spin 0 states can also be build by purely gluonic op-

erators. These are well known objects of investigation in
lattice QCD were they should describe the glueballs. Due
to the expected signal–noise ratio of their purely gluonic
correlation they belong to the most notorious particles to
measure. In particular the 0++ glueball has the same quan-
tum numbers as the σs meson. As a consequence, these two
states can also mix with each other but in this first inves-
tigation we neglect the mixing and consider only diagonal
correlators for both states.
We used the single spatial plaquette to obtain the mass

of the 0++ ground state. To increase the overlap of the
operator with this state we used APE smearing and also
performed variational methods to obtain optimal glueball
operators from linear combinations of the basic operators.
We now come to the baryon sector. The simplest bary-

onic interpolating field which can be built out of one quark
flavour is

∆i(x) = εabc
[
ψa(x)

TCγiψb(x)
]
ψc(x) . (25)

The above operator also contains a spin 1/2 component,
implying that the spin 3/2 component, on which we focus,
must be projected out from the spinorial correlator,

Gji(t) =
∑

x

〈
∆j(x, t)∆̄i(0)

〉
. (26)

We follow [48] and consider the spin-projected correlator

G3/2(t) =
1

6
Tr [Gji(t)γjγi+Gii(t)] . (27)

The low-lying hadron state contributing to the above cor-
relator is expected to have positive parity (32

+
). This cor-

responds to the∆(1232)++ of QCD if our dynamical fermi-
on is interpreted as an u quark. If the dynamical fermion is
taken to be the s quark then this would be the Ω− baryon.
(However, spin and parity of the corresponding particle
have not yet been measured, so the identification of this
state with the Ω− baryon is still uncertain [49].) In corres-
pondence to ηs and σs, in what follows we call this state
∆s. (Here one can interpret the index s as referring to the
“sea” quark.)
It should be noted at this point that the above QCD

states are not flavour singlets in Nf = 3 QCD (and in the
one flavour partially quenched theory). We recall here that
interpolating fields corresponding to flavour singlet baryon
states cannot be build in QCD if only quark fields are con-
sidered as ingredients.
The results of the hadronmasses are reported in Table 3

and, as a function of the bare PCAC quark mass mPCAC,
in Fig. 1. In the figure the masses are multiplied by the
Sommer scale parameter r0; therefore, one can put the re-
sults for both lattice spacings in a single plot and check
their scaling. (The expected small change of the multiplica-

Table 3. Results for light hadron masses in Nf = 1 QCD

run amηs amσs am0++ am∆s

a 0.462(13) 0.660(39) 0.777(11) 1.215(20)
b 0.403(11) 0.629(29) 0.685(10) 1.116(38)
c 0.398(28) 0.584(55) 0.842(16) 1.204(57)

A 0.455(17) 0.607(57) 1.083(79) 1.006(15)
B 0.380(18) 0.554(52) 1.032(66) 0.960(15)
C 0.316(22) 0.613(67) 0.980(97) 0.876(26)

Fig. 1. The mass of the lightest physical particles in one-
flavour QCD as a function of the PCAC quark mass. The
masses are multiplied by the scale parameter r0 in order to ob-
tain dimensionless quantities
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tive renormalisation factor ofmPCAC between β = 3.8 and
β = 4.0 is neglected here.)
Only in the case of run c the measurement correction

has a sizeable effect on the mass estimates. In this case con-
figurations with negative determinant where singled out:
the sign of the determinant has the effect of pushing the
masses up by 7%–10%.
The errors on the glueball mass are rather large – es-

pecially on the 163 ·32 lattice at β = 4.0 – therefore, they
are not shown in the figure. Obviously, our statistics is
not sufficient for this purpose. In general a larger number
of configurations would improve the determinations in the
glueball sector. Since the computational load is in this case
negligible, for future runs we plan a more frequent storage
of the gauge configuration.

4.1.1 Valence analysis

The connected contribution to the meson correlators can
be interpreted as a non-singlet meson made up of valence
quarks in the partially quenched picture; see Sect. 3. The
pseudoscalar channel corresponds in particular to the “va-
lence” pion. Since the computation of the connected dia-
grams is less demanding, we could afford the analysis of the
complete set of configurations.
In the baryon sector, one can define a “valence” nu-

cleon, with the usual projector operator

N(x) = εabc[ψa(x)
TCψ′b(x)]ψc(x) , (28)

where ψ′ can be interpreted as the field of the valence
quark.
The results concerning valence hadron masses are re-

ported in Table 4 and Fig. 2. In addition, the bare PCAC
quark mass according to the definition in (10) and the bare
pion decay constant in lattice units afπ are also included.

fπ and its renormalised counterpart f
R
π are defined as

afπ = (amπ)
−1〈0|A+x=0,µ=0|π

−(p= 0)〉 ,

fRπ = ZAfπ , (29)

whereA+xµ is theaxialvector currentas in (10)andπ
−(p= 0)

is a pion state with zero momentum. (The normalisation of

fπ is such that in nature we have f
R
π � 130MeV.) The value

of afπ on the lattice is obtained by the method described
in [50]. In Fig. 2 the masses are multiplied by the scale pa-

Table 4. The PCAC quark mass mPCAC, the pion mass mπ
and decay constant fπ , and the nucleon mass mN in lattice
units

run amPCAC amπ afπ amN

a 0.02771(45) 0.3908(24) 0.1838(11) 1.0439(54)
b 0.01951(39) 0.3292(25) 0.1730(15) 0.956(27)
c 0.0108(12) 0.253(10) 0.156(10) 1.011(51)

A 0.04290(36) 0.4132(21) 0.1449(9) 0.9018(44)
B 0.02561(31) 0.3199(22) 0.1289(10) 0.7978(53)
C 0.01700(30) 0.2635(24) 0.1188(12) 0.734(10)

Fig. 2. The mass of the valence pion and nucleon as a function
of the bare PCAC quark mass

rameter r0 in order to obtain dimensionless variables.

4.1.2 Chiral perturbation theory fits

The properties of the valence pion (pion mass mπ and de-
cay constant fRπ ) can be analysed in partially quenched

ChPT. We fit a2m2π and afπ simultaneously as a func-
tion of amPCAC including the data at both values of β.
There are not enough data to account for the lattice
artifacts. Therefore the fit is done with the continuum
formulae

m2π = χPCAC+
χ2PCAC
16π2F 20

ln
χPCAC

Λ23
,

fRπ

F0
√
2
= 1−

χPCAC

32π2F 20
ln
χPCAC

Λ24
, (30)

with the low-energy constants

Λ3 = 4πF0 exp{64π
2(L4+L5−2L6−2L8)} ,

Λ4 = 4πF0 exp{64π
2(L4+L5)} . (31)

The changes of the renormalisation constants ZA and ZP
between the two β values are neglected. The results are
displayed in Figs. 3 and 4.
Owing to the fact that the number of degrees of free-

dom in the fit is small, the uncertainty of the fit parameters
is relatively large. The determination of the universal low-
energy scalesΛ3/F0 andΛ4/F0 can be improved by consid-
ering the ratios [16, 17, 55]

m2π
m2π,ref

,
fπ

fπ,ref
, (32)

in which some of the coefficients cancel. We consider the
data on the larger lattice at β = 4.0 and take the quantities
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Fig. 3. Pion masses squared in lattice units and the results of
the PQChPT fit

Fig. 4. Pion decay constants in lattice units and the results of
the PQChPT fit

at κ= 0.1615 as reference. The fit yields

Λ3

F0
= 10.0±2.6 , (33)

Λ4

F0
= 31.5±14.3 , (34)

which is compatible with the phenomenological values
from ordinary QCD [51, 52].
In order to estimate the parameters α and mΦ, related

to the mass of the ηs (see Sect. 3), we made a fit ofm
2
π and

m2ηs at β = 4.0 in leading-order ChPT. The result is

α=−0.03(19) , amΦ = 0.18(8) , (35)

indicating the vanishing of α. Fixing α= 0 in the fit yields

amΦ = 0.19(2) or r0mΦ = 0.72(10) , (36)

where the value of r0/a extrapolated to vanishing PCAC
quark mass is used.
This constant, whose value in physical units is mΦ =

284(40)MeV, can be related to the quenched topological
susceptibility χt through the Witten–Veneziano
formula [53, 54]

m2Φ =
4Nf
(fRπ )

2
χt , (37)

which is valid in leading order of the 1/Nc expansion. With

χt = (193±9MeV)4 [56] and our value for fRπ we would ob-
tainmΦ = 426MeV.

5 Discussion

This first Monte Carlo investigation of the hadron masses
in QCD with Nf = 1 dynamical quark flavour reveals the
qualitative features of the low-lying particle spectrum in
this theory. The spatial extensions of our 123 ·24 and 163 ·
32 lattices are aboutL� 2.2 fm (see Table 2).1 This implies
lattice spacings a� 0.19 fm and a � 0.13 fm, respectively.
The (bare) quark masses are reasonably small – in a range
10–30MeV and 25–60MeV on the 123 ·24 and 163 ·32 lat-
tice, respectively. The updating algorithm we use (PHMC
with stochastic correction [27, 28]) works fine in this range,
making the extension of the Monte Carlo investigations to-
wards larger volumes, smaller quark masses and smaller
lattice spacings straightforward. In the present runs the
fluctuation of the eigenvalues of the fermion matrix to-
wards exceptionally small (or negative) values can be easily
handled by reweighting the configurations during the eval-
uation of the expectation values. In fact, except for the run
with the smallest quark mass on the 123 ·24 lattice where
the reweighting has a small effect, the reweighting is com-
pletely negligible or even unnecessary.
The lightest hadron is the pseudoscalar meson bound

state of a quark and an antiquark – the ηs meson
(see Table 3 and Fig. 1). The corresponding scalar bound
state – the σs meson – is in our points by about a fac-
tor 1.5 heavier. Compared to the estimate in [13, 14]
mσs/mηs �Nc/(Nc−2) = 3 this result is too low, but the
situation could be better in the zero quark mass limit that
the prediction of [13, 14] applies to. The lightest baryon –
the∆s baryon – is by a factor of about 3 heavier than the ηs
meson. The lightest glueball lies between the σs meson and
the ∆s baryon, but its mass could not be properly meas-
ured on the 163 ·32 lattice with our statistics. In general,
the mass measurements have relatively large errors – be-
tween 3%–10% – and no infinite volume and continuum
limit extrapolations could be performed with our present
data. We hope to return to these questions and to give
more precise results in future publications.
An interesting aspect of Nf = 1 QCD is the possibility

of a partially quenched extension with valence quarks. In

1 In order to have some relation to the scales in real QCD, we
set the Sommer scale parameter by definition to be r0 ≡ 0.5 fm.
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particular, adding two valence quarks, the model has sim-
ilarities to QCD in nature with its three light (u, d and s)
quark flavours. A theoretically interesting special case is if
all three quarks, the dynamical one and the two valence
ones, have exactly equal masses. In this case there is an ex-
act SU(3) flavour symmetry. This can be exploited for the
introduction of a quark mass by defining it as the PCAC
quark mass in the partially quenched theory. In this ex-
tended model there exist the usual light hadron states well
known from real QCD: the pseudoscalar pseudo-Goldstone
bosons (pions etc.), the nucleon etc. The results for the
masses of the lightest states and the decay constant of
the pseudoscalar bosons are collected in Table 4 and also
shown in Fig. 2.
Since the physical volumes of the 123 and 163 lattices

are to a good approximation equal, the comparison of the
results at the two different lattice spacings gives a hint for
the magnitude of the deviations from the continuum limit.
As one can see in Figs. 1 and 2, the scaling between β = 3.8
and β = 4.0 is reasonably good – especially for the lightest
states ηs and π. However, for reliable continuum limit esti-
mates more data at several lattice spacings are required.
In the pseudoscalar sector of the partially quenched

model one can apply partially quenched chiral perturba-
tion theory for fitting the mass and the decay constant. As
Figs. 3 and 4 show, the NLO formulae give good fits but
the number of degrees of freedom in the fits is small, and
therefore the uncertainty of the fit parameters is relatively
large.
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talo, JHEP 0602, 011 (2006) [hep-lat/0512021]
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