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Foreword

This work covers recent advances in the Monte Carlo simulation of lattice gauge field
theories containing light fermionic degrees of freedom. This aspect assumes special
relevance in the lattice simulation of QCD, the non-Abelian gauge theory describing
the dynamics of quark color at the basis of strong interactions.

The lattice approach represents the only way to access important quantities in
hadron physics which cannot otherwise be computed by standard analytical tech-
niques. Past lattice simulations of QCD were however confined to unphysically large
values for the up and down quark masses. In nature, these are the two lightest quarks,
with mass much lighter than the typical energy-scale of the underlying theory. The
low-energy dynamics of strong interactions is heavily affected by this feature of QCD
and must be therefore reproduced in an accurate way by simulations; large systematic
errors are otherwise introduced in the final estimates. Unfortunately, the lightness of
the up and down quarks besides being a distinctive feature of QCD also introduces
non-trivial technical difficulties in the simulation process. The simulation of QCD in
realistic conditions emerges as a computational challenge.

A dramatic progress has been witnessed in recent years in this field and now, for
the first time, lattice simulations of QCD with light quark masses near, or even at,
their physical values are possible. At the basis of this important achievement is not
only an increased computing power available for lattice computations, but also, and
this is the main point of this review, a substantial progress in the optimization of the
lattice formulations and of the simulation algorithms. These aspects are considered
in the first part of the review, which focuses on the simulation of QCD with light
up and down quarks, in the original Wilson formulation first (Chapters 1 and 2) and
thereafter in the so-called “twisted mass” formulation (Chapter 3). First simulations
with the inclusion of the heavier strange and charm quarks are reviewed in the last
section of this part.

The second part of the review is dedicated to the simulation of two “exotic” models,
in the sense that they do not find application in the real world. The first is a gauge
field theory characterized by supersymmetry, the supersymmetric Yang-Mills model
(SYM); the second is a modification of QCD in which just one quark species, or
“favor”, is included, “one flavor QCD”. These two theories are in some sense related:
the first is obtained from the second by replacing the Dirac spinor of the quark with
a Majorana spinor. This affinity can be made more rigorous in a generalization of the
two theories with a large number of colors: an exact equivalence can indeed be proven
in the limit of infinite number of colors.
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As is well known, supersymmetry is expected to play a role in particle physics at
high energies, while it is broken at low energies. Non-perturbative effects in super-
symmetric gauge theories, not accessible to analytical techniques, are nevertheless
relevant since they can provide the necessary symmetry breaking at low energies. The
supersymmetric Yang-Mills model offers a simplified framework in which such non-
perturbative effects can be studied. The relationship between SYM and one flavor
QCD on the other side, could help in understanding non-perturbative mechanisms in
a non-supersymmetric (and therefore less symmetric) theory as QCD.

The simulation of light fermionic degrees of freedom represents a central issue in
this second part of the review as well. Supersymmetry must be softly broken on the
lattice by a small gluino mass and recovered in the limit of a massless gluino. In this
limit the distinctive features of the theory related to supersymmetry, such as specific
patterns in the particle mass spectrum, can be verified. On the basis of the above
mentioned equivalence, “relics” of supersymmetry are expected in one flavor QCD,
with three colors of massless quarks, in particular in the low-lying hadron spectrum.

The following Introduction contains a brief overview on (lattice) QCD and the basics
of its Monte Carlo simulation. We refer to the standard monographs on the argument,
for example [139], for more details about the Wilson lattice formulation of QCD and its
Monte Carlo simulation. The last section of the Introduction presents a brief excursus
on some aspects related to the simulation of light fermionic degrees of freedom, from
which a more extended motivation for the main topic of this review should emerge.

The original publications, on which this review is based, are reported in the Ap-
pendix and are marked in the text with special reference labels ([Alg], [Chi-1], etc.).
Each of the four chapters of this write-up contains an introductory part, which is in-
tended to provide a wider perspective for these works. More space has been devoted
to those aspects which are not (yet) standard in the lattice literature, such as for
example details on the multi-boson simulation algorithm, chiral perturbation theory,
the twisted mass formulation, the main features of SYM and its lattice formulation. A
summary of the main results of the different works is given in specific sections towards
the end of each chapter. A brief overall summary is also given at the end of each part.

The material presented here is the result of a collaboration work. I thank all my
coauthors, the members of the Hamburg-Miinster-Rome, qq+q and European Twisted
Mass collaborations for pleasant and stimulating collaboration work. I wish to thank
in particular Istvan Montvay for having introduced me to the challenges of dynamical
simulations and Gernot Miinster and all the members of our research group for the
nice work atmosphere at the Institute for Theoretical Physics of the WWU University
of Miinster. Last but not least, a special thank goes to my wife Franziska for contin-
uous encouragement and endless patience during the completion of this work.

Miinster, May 2008 Federico Farchioni



Introduction

0.1. From QED to QCD

Quantum field theories based on a gauge principle appear to be extraordinarily suc-
cessful in describing quantum phenomena in high-energy physics. The first, simplest,
and perhaps most striking example is given by Quantum Electro-Dynamics (QED),
the theory of quantum phenomena in electromagnetism. A theory of this kind is
expected to apply for the nuclear or “strong” interactions, too.

As is well known, QED is a quantum field theory characterized, like its classical
counterpart, by gauge invariance and is therefore a gauge theory. The classical La-
grangian density describing photon-electron interactions,’

1 - .
Lopp(z) = — 1 Fu(@)F"(2) + d(2) " (10, + e Au(2)) —mld(z) . (0.1)
is invariant under gauge transformations of the electron and photon fields
Y(x) — @ () (0.2)
Aufa) = Aue)+0,0() . (0.3)

The transformation of the electron field can be interpreted as a local, namely depending
upon the space-time coordinate z, transformation under the Abelian group U(1); QED
is an Abelian gauge theory.

A candidate for the underlying fermionic degree of freedom of the nuclear forces was
independently proposed by M. Gell-Mann and G. Zweig in 1964, the “quark” [93, 199].
Particles observed in cosmic rays and collisions, the “hadrons”, could be interpreted
as composite bound states of the strong interactions, formed by two or three quarks,
mesons and baryons respectively. Three flavors of quarks, “up” (u), “down” (d) and
“strange” (s), could explain the approximate multiplet structure of the hadron spec-
trum in the so-called “Eightfold Way” [92, 149] on the basis of symmetry arguments.

Compared with the relatively simple case of electromagnetism, however, strong in-
teractions soon emerged as a theoretically much more challenging problem. Indeed,
nuclear forces appeared to encompass two seemingly contradictory features as confine-
ment and asymptotic freedom. Quarks could not be observed as isolated particles: the
strong interactions “confine” them inside the hadrons; however, as confirmed by a fa-
mous experiment at the Stanford Linear Collider in 1968 [30], the quarks, or spin-1/2

"'We use natural units throughout this write-up, for which 4 = ¢ = 1.
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“partons”, behave as almost free particles inside the hadrons in high-energy collisions:
in this regime strong interactions become weak. A decisive step towards a fundamental
theory of strong interactions was therefore represented by the discovery made in 1973
by D. Gross, H. Politzer and F. Wilczek,? that gauge field theories with a non-Abelian
gauge group can account for the mysterious property of asymptotic freedom, and at
the same time make confinement plausible.

In the non-Abelian case, gauge transformations act on an internal quantum number
of the fundamental fields. Already before Gross, Politzer and Wilczek’s discovery, it
was clear that, in order to be able to account for the complete hadron structure by sym-
metry arguments, the quarks had to possess such an “hidden” quantum number [98],
the “color” [85]. Quarks with three different colors fitted into this scenario [100].

The theory of strong interactions emerging from these phenomenological indications
is therefore a non-Abelian gauge theory with an SU(3) gauge group; the quark is
assumed to transform in the fundamental representation of the group. The U(1)
gauge transformation of the electron (0.2) is replaced in the case of the quark field by
a local SU(3) transformation:

@in(x) _ Z [eigo Yot ac(a:)TC]ij @Z}qj , 1=1,...,3, (()_4)

j=1

where T¢ ¢ =1,...,8, are the eight generators of SU(3), 7, j denote the colors, and gqg
is the universal coupling constant of the strong interactions, analogous to the electric
charge in electromagnetism.

The puzzle of the strong interactions was completed with the observation, made
in 1973 by H. Fritzsch, M. Gell-Mann and H. Leutwyler [85], that the gauge field of
nuclear forces, analogous to the four-potential of QED, should transform in the adjoint
representation of the gauge group SU(3). This implies that eight different colors are
associated to it. It is convenient to write in this case the gauge field AZ(:L‘), a=1,...,8,
in a matrix notation:

Auw) = D2 AT (05)

the transformations for the matrix field read:
_ 0 _
Au(z) — g(x)Au(z)g ' (z) — %(8119(‘%))9 ), (0.6)
with A .
g(x) = 6190 Le= c(@)T® (0.7)

Observe that (0.6) can be seen as a generalization of (0.3) in the case of a non-Abelian
group. The particles described by the gauge fields, known as gluons, are in analogy
with the photons of QED the carriers of the nuclear forces; they are responsible for
the binding of the quarks inside hadrons.

22004 Nobel laureates in physics.



0.1. From QED to QCD

We see, therefore, that a fundamental theory of the strong interactions is a theory
of the dynamics of the color quantum number, which assumes here the role of the

electric charge in electromagnetism. In analogy with QED, it is given the name of
“Quantum Chromo-Dynamics” (QCD).

The QCD Lagrangian is the straightforward generalization of the Lagrangian (0.1)
for the case of a non-Abelian gauge group:

Locp(z) = Ljeplr) + Z Loep(@) (0.8)
q=u,d,s,...
1 8
£éCD(x) = _ZZ F:VFC“V ) Fﬁy(x> = a,U»AZC/(x) - 81/142(‘%‘) +gOfcdeAﬁ(x>Ale/(x) )
c=1

3

Lhep(@) = Y Cgile) [V (1650, + go[Au(x)]iz) — my8i5]tby;(x) -

4,j=1

Peculiar to the non-Abelian case is the presence in the field strength tensor of terms
which are bilinear in the gauge fields and proportional to the structure constants of
the Lie algebra associated with the gauge group fu.; from these terms stem self-
interactions of the gauge fields which have no counterpart in the Abelian case.

We have previously mentioned that quarks are characterized, besides color, by an-
other quantum number, the flavor. It is in the meanwhile clear that six different quark
flavors exist in nature: besides u, d and s, “charm” (c), “bottom” (b) and “top” ().
Observe that the different quark flavors appear essentially in the same way in the
QCD Lagrangian, the only difference being represented by the mass m, associated
with each flavor. The latter mass is characterized by a pronounced hierarchy; indeed,
one finds (approximately)

My P Mg P M - M -y -y = 1:2:40: 500 : 1,700 : 74,000 . (0.9)

The u and d quark masses turn out to be small compared to the typical QCD energy
scale, Agcp; this means that the dynamics of the two lightest quarks plays a decisive
role down to the lowest end of the QCD particle spectrum. In opposition, the b and ¢
quarks are heavy and their role is less pronounced at low energies; the s and ¢ quarks
occupy an intermediate position; in particular the s quark is expected to give a sizeable
contribution to the low-energy dynamics.

The QCD Lagrangian assumes an extra symmetry when some of the quark flavors
become massless. With Ny massless quark flavors, the QCD Lagrangian is invariant
under unitary transformations mixing the different /Ny massless flavors with a definite
chirality (chiral multiplet); independent transformations associated to, respectively,
the left-handed (L) and right-handed (R) massless flavors define the chiral symmetry
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group:
( N() ( NO
qu - Z [gL]qq’ 7705 @Df - Z [gR]qq’ 7/15/{
SU(Ny)L v SU(No)g : T :
Q/JqL - Z wtf' 97 14 wf - Z 1/’(? [gﬁl]q’q
\ 7=1 \ ¢'=1
(0.10)
where ¢ = 1,..., Ny runs over the massless flavors and grr) € SU(No)r(r).-

The behavior of the theory at low energies is strongly influenced by the fact that,
in the massless limit, the SU(NVy)z, x SU(Ny) g chiral symmetry (0.10) is spontaneously
broken by the vacuum state. The chiral symmetry of massless QCD, and the spon-
taneous breaking thereof, allow to draw conclusions about the interactions of the
dominating degrees of freedom at low-energies. These are given by the pseudoscalar
mesons (pions, kaons and eta meson). In the resulting low-energy effective theory,
different properties of these particles, as for example the masses, can be determined
by an expansion in the light u, d and s quark masses, which are assumed to be small,
around the chiral-symmetric case. This analytical approach, known in the literature
as chiral perturbation theory [189, 88], allows in particular to determine the functional
dependence of the meson properties upon the light quark masses, when the latter are
considered as external tunable parameters. As we will see in the following, this in-
formation can be used in lattice QCD in order to extrapolate lattice determinations
in hadron physics, obtained for quark masses heavier than in nature for which simu-
lations are technically feasible, to the physical u and d quark masses. The interplay
between lattice QCD and chiral perturbation theory will be discussed in more detail
in Chapter 2.

0.2. From QCD to lattice QCD

As we have seen, hadrons can be interpreted as bound states of quarks and gluons,
whose interactions are described by QCD. In the quantized theory, hadrons are eigen-
states of the QCD Hamiltonian. The QCD Lagrangian (0.8) contains therefore all
the information required for the determination of hadron properties, once the few free
parameters of the renormalized theory are fixed. These are given by the renormal-
ized quark masses and coupling constant at some given energy-scale; the latter can be
replaced by the more natural QCD mass-scale parameter Agcp. The values of these
seven free parameters can be fixed by requiring that QCD predictions fit with the
experimental results for an equal number of hadron properties. A necessary step of
this program is solving QCD, which however turns out to hide formidable difficulties.

One possible approach to the solution of QCD, well known from QED, is based on
an expansion in the coupling constant gg (weak-coupling perturbation theory). The
method is very successful in QED, where it allows to obtain very precise determina-
tions. The perturbative approach is however not applicable to many relevant hadron
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I a

Figure 0.1.: Three-dimensional slice of an hyper-cubic lattice.

properties, starting with the masses. For such quantities indeed, QCD predicts a non-
analytical dependence on the gauge coupling, with an essential singularity at gy = 0: in
this case all the coefficients of the perturbative expansion vanish. Masses are generated
in QCD by a special dynamical mechanism, known as “dimensional transmutation”,
which is inherently non-perturbative.

In a situation in which standard analytical methods fail, numerical methods may
help. As we will see in the following, this is the case in a lattice formulation of QCD. In
the lattice formulation, quark and gluon fields are no longer functions of the continuous
space-time variable z: a four-dimensional Euclidean lattice manifold is introduced

A={zeR': z,=an,, n, €N, p=1,234} (a= lattice spacing) ;  (0.11)

similarly to a spin system, particle fields are associated only to sites (or links) of
this lattice. Since we want to deal with a finite number of total degrees of freedom,
we consider here a finite lattice; the lattice size L should be in this case larger than
the typical hadron length scale (see also in the following). Fig. 0.1 shows a three-
dimensional “slice” of a 4* lattice.

0.2.1. The Wilson discretization

We consider here the first lattice discretization of QCD introduced by K. Wilson in
1974 [195]. In this formulation, a quark field is associated to each site of the lattice
A; the gauge field A,(z) is replaced by a “link variable”, a color SU(3) matrix defined
through the path-ordered exponential of the gauge field along a link of the lattice:

T+afl

Ay@) — Ua) = Pexp {igo / A () dq:u} € SU®) : (0.12)

Fig. 0.2 gives a pictorial representation of the lattice quark field and link variables.
With the introduction of the link variables, playing the role of parallel transporters
for gauge transformations, the gauge invariance of QCD can be easily extended to the
discrete case. From (0.6) and the definition (0.12) the transformation property of the
link variables follows:

U(z) — gz +ap) Uu(z) g'(2) . (0.13)
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¢a X L{l(x) x+aﬁ
[ ] - {+ ’ {% A
1 J ol Yalx+ap)

U =1234

Figure 0.2.: Lattice quark fields and link variables.

The simplest lattice object of the link variables invariant under gauge transformations
is the plaquette variable, namely the color-trace of the product of link variables along
a a X a loop on the lattice (plaquette):

Ug = Ul(x) Uli(a:+a19) Uyx+ap)U,(x), (0.14)

where u, v, u < v, define the oriented loop. See Fig. 0.3 for a pictorial representation.

Gauge invariant interactions of the link variables are constructed in terms of the
plaquettes variables Up; the action associated to the Lagrangian density £€20D(x)
n (0.8), containing the self-interactions of the gluon fields, is replaced on the lattice
by the plaquette action:

1
/d:c LOep(®) — Syoep = ﬁz (1 — gﬁ%TrUD> e
]

where the sum extends over all possible lattice plaquettes. Gauge invariance follows
trivially from (0.13). In the limit a — 0, the lattice plaquette action converges to the
gluon action of QCD (in the Euclidean formulation)

Stocp = [dw Lyeop(z) = /da: TEn (@) F () (0.16)

The construction of the lattice action for the quarks relies on the definition of a gauge
covariant difference operator, replacing the covariant derivative of the continuum:

Du[A]¢q(x) = [0, — igo Au()] the(x) ; (0.17)

6

, 0.15
98 (0:15)

on the lattice:

Dpu[A]¢g(z) — é [Ul(@) gz + aft) = ()] = Vu[Ulty(2) . (0.18)

The fermion lattice action for a single quark flavor reads:

SWQCD =a Z¢q ’Yu (Vi +V, )¢q( ) + Mgo &q(x)qu)q(x)
— ag@zq(x)v*vq/zq(g;) , (0.19)

TV
“Wilson term”
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A Ural)
W

x+a(fi +0)

Figure 0.3.: Lattice plaquette variables.

with
ViU (a) = ) ~ Ual — af) gyle — )]

Observe that the last term in the quark lattice action (“Wilson term”) has no equiv-
alent in the continuum theory. It is needed in order to realize the decoupling, in the
limit @ — 0, of unphysical degrees of freedom otherwise present in the lattice theory
(“doublers”). The parameter r can be set arbitrarily in the range 0 < r < 1 with both
signs: each value corresponds to a different lattice formulation of QCD.3

A more explicit expression of the quark lattice action is:

Straon = a* Y o S [ y(ahy() — iyl -+ ai)U(@) (o + r)e(o)]

p==x1

+ mgo Yg(z)1bg(x) ,  (0.20)

where we define U_,(z) = Uj(x — api) and y_, = —v,. Another parametrization,
useful for numerical simulations, only involves dimensionless quantities
Stvacn = Y U5 (1) QU] vy (2) ; (021)
xy

VE(x), ¥E(x) are the dimensionless quark fields

Q/Jé:(x) = a3/2(mq0a—|—r)1/2 Py(z) QZL(JU) = a3/2(mq0a+r)1/2 qu(:z:) , (0.22)

q
Q&Q is the fermion matriz, whose indices run over the sites of the lattice (color and
Dirac indices are implicit):

+4
Q(q)[U]yz = Oya — Kq Z U(@) (Ve + 1) Oy0ap 5 (0.23)

p==x1

3Tt is normally set to one in lattice computations.



Introduction

the dimensionless hopping parameter k, is related to the quark mass parameter myg
by
1

2(mgoa + 4r)

The Wilson term in the quark lattice action (0.19) breaks the chiral symmetry (0.10)
of QCD in an explicit way. Even if the latter is expected to be recovered in the con-
tinuum limit, the symmetry breaking at finite lattice spacing introduces several (un-
wanted) effects in the lattice theory. One of these effects is an additive renormalization
of the quark mass: the (bare) quark mass m,, analogous to the quantity appearing in
the continuum Lagrangian (0.8), is related to the lattice action parameter m by:

(0.24)

l‘iq:

mg = Mg — Mo (0.25)

where mo. = f(go)/a is the additive mass renormalization diverging for a — 0.

Another inconvenience deriving from the explicit breaking of the chiral symmetry
in the lattice formulation is represented by large discretization errors, scaling linearly
with the lattice spacing, in physical quantities. In Chapter 3 a slight modification of
the Wilson discretization of QCD will be presented, which alleviates some of these
problems. The fermion action associated to this new formulation is an example of
an O(a) improved action; this is a lattice formulation for which discretization errors
linear in the lattice spacing are absent and only small O(a?) errors remain in lattice
determinations.

After Wilson’s breakthrough, different alternative lattice formulations of QCD have
been devised. Another formulation often applied in lattice computations is the Kogut-
Susskind formulation relying on the so-called staggered lattice fermions [125]. More
complicated lattice discretizations of QCD with an exact chiral symmetry have been
in the meanwhile constructed (Ginsparg-Wilson formulations) [95, 103, 151].

0.3. Monte Carlo simulation of lattice QCD

In the quantized lattice theory, the lattice spacing assumes the role of a regulator of
the ultraviolet divergences typical of a continuum quantum field theory: taking the
continuum limit of the lattice theory corresponds to removing the ultraviolet cutoff
~ 1/a. The renormalization group governs the dependence of the bare parameters of
the (lattice) theory for fixed physical renormalized parameters. It dictates therefore
how the “bare” gauge coupling gy should be varied with the ultraviolet cutoff ~ 1/a
at “constant physics”. The result is a relationship between gg and the lattice spacing
a which also involves the mass-scale parameter Agcp: go = go(aAgep).* By inverting
this relation, one sees that the lattice spacing can be adjusted by properly varying the
bare gauge coupling. Asymptotic freedom of QCD implies that the continuum limit
corresponds to the weak coupling of the lattice theory gy — 0.

4In a mass independent renormalization scheme this relation does not contain any dependence upon
the quark masses.



0.3. Monte Carlo simulation of lattice QCD

The lattice spacing represents the natural dimensional scale on the lattice and re-
places in this role Agcp. Lattice computations deliver results for dimensionful quanti-
ties in units of the lattice spacing. In order to convert the lattice results into physical
units, the lattice scale must be fixed by external input. One possibility for example
is to require that the nucleon mass assumes the experimental value once translated
into physical units; an analogous procedure must be applied to fix the quark masses,
which can be considered as free parameters in the QCD Lagrangian.

The mathematical objects to be computed in the quantum theory in order to get
information about hadron properties, are in general expectation values on the ground
state, namely the vacuum state, of composite operators of the fields. The numerical
techniques to be reviewed in the following are based on the Feynman quantization, in
which these expectation values assume the form of path integrals over the fields. On
a discrete space-time manifold, the Feynman path integrals reduce to ordinary inte-
grals, in which each field attached to a lattice site represents an integration variable.
The total amount of variables in these multiple-variable integrals, proportional to the
number of lattice sites N, is typically very large O(10° — 10®) and increasing with
the lattice resolution. Only a “Monte Carlo” evaluation of these integrals, with an
attached statistical error, is possible in practice.

0.3.1. Lattice expectation values

The lattice expectation value of a lattice operator OX[U; zﬂq, 1], corresponding to the
vacuum expectation value of a composite operator of the fields in the Euclidean theory,
can be written:

(O = — /HIUU quwu>”WwW%dew%]

zeN u q=u,d,..
(0.26)

where the normalization is given by

N = / IR Hd@ 2)diby () e~ Swaen[Usthg, ¥l (0.27)

TEN q=u,d,..

The fermion fields, which are Grassmann variables, cannot be included in the simula-
tion in a direct way; however they can explicitly integrated out. The Gaussian integral
over the Grassmann variables delivers (up to trivial factors) the determinant of the
fermion matrix (0.23)

q e
/ [T dtha(@)dirg(w) e SwaenlUi¥aba _ gegu] e R, (0.28)
z€A
the so-called fermion determinant. The result is therefore

o) = 5 [ I aute) T[aee@y e Sreeell oy, o0)

€A 1 q=u,d,...
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where O[U] is an appropriate function of the lattice link variables®. Observe that the
fermion determinant keeps track of the quark dynamics in this effective theory of the
lattice links.

Assuming positivity of the quark measure resulting from the product of the fermion
determinants, the expression on the RHS of Eq. (0.29) can be interpreted as a statistical
expectation value of O[U ] with multivariate probability density

HdetQ ~SiwaenlU] (0.30)
q=u,d,..
or, equivalently,
PlU] = % e Sers[U] (0.31)
where
SesslU] = SfyoeplU] — Y In (|detQ@[U]]) (0.32)
q=u,d,...

is the effective action of the link system also including the contribution of the quark
dynamics.

A Monte Carlo evaluation of the RHS of Eq. (0.29) by importance sampling can be
obtained by generating a set of N lattice link configurations (gauge configurations)

{Ulgi)(x); reN; n=1,2,34 i=1,...,N} (0.33)

distributed according to the probability (0.30). An unbiased estimator of the RHS
of Eq. (0.29) is given by the average value of O[U] over this set of configurations
(ensemble):

Ly A ~ 1 Y 3 ~
(OF) = (O[U])|piy =~ N; O[UY] = Oly . (0.34)

The sample average O|y can be assumed to be a Gaussian-distributed stochastic
variable, in which case the statistical error attached to the estimate is inversely pro-
portional to the square root of the sample statistic N: 6(O|y) ~ 1/v/N. The sign of
the fermion measure cannot be included in the 1mp0rtance sampling, which requires
positivity of the weight function. As we will see in the following in this review, posi-
tivity is only guaranteed in special situations, as for example two quark flavors with
equal mass. This means that in general the sign of the fermion determinant has to be
taken into account explicitly in the final average with potential efficiency loss of the
sampling.

Having found a viable numerical procedure for the estimation of the multiple-
variable integrals, the next problem to face, aiming at a precise determination of
the quantity (0.29), the ultimate goal of a lattice computation, is how to generate in
an efficient way a large number of statistically independent configurations distributed
according to the probability density (0.30). These configurations of the link system
represent the basis for any lattice determination in hadron physics by lattice compu-
tations.

®Build in terms of the inverse fermion matrix (quark propagator).

10



0.3. Monte Carlo simulation of lattice QCD

0.3.2. The update

In the case of many degrees of freedom, as the one we are considering here, a Markov
stochastic process turns out to be the most effective method for generating samples of
configurations of the link system. In this approach, one starts from some initial link
configuration {U,SO) (x)}, for example the “trivial” configuration

U9%) = 1, VypandzecA; (0.35)

a chain of configurations is produced by a stochastic iterative process®

Ui (@) — U(z), (0.36)
or update, characterized by a transition probability
PyranslU — U] . (0.37)

The set of procedures defining the transition probability (0.37), and resulting in the
so-called simulation algorithm, must be chosen such that the target distribution (0.30)
is left invariant by the update. This latter condition is usually substituted with the
stronger one, but easier to prove, of detailed balance. Under reasonable conditions
on the algorithm, this ensures that, after a transient, the configurations of the lattice
system along the Markov chain are distributed according to the target probability
density.

From Eq. (0.30) it is clear that any approach to this problem must involve some
estimation of the fermion determinant for a given link configuration, which represents
the quark contribution to the link dynamics. An ezact computation of the fermion
determinant in the update is however not affordable. Indeed, the fermion matrix is
a huge matrix with order 12 x N, ~ 107 or larger, and the computation should be
repeated many times during the update.

The first solution found to this problem, which will be briefly discussed in the fol-
lowing, is based on the pseudofermion representation of the fermion determinant [191].
In this case, one uses a relation similar to (0.28) but with an integration over bosonic
fields instead

/ [ déq(w)ds,(x) = P(QVUD ™00 — ety - (0.38)

TzEA

observe that in the case of bosonic fields, the inverse matrix appears in the expo-
nent. The pseudofermion field variables ¢,(x), ¢,(x) carry formally the same quantum
numbers of the quark fields but assume ordinary complex values and therefore can be
interpreted as random variables. Eq. (0.38) is at the basis of Monte Carlo methods
with a stochastic evaluation of the fermion determinant, a computationally feasible
task. A different representation, also allowing a stochastic evaluation of the fermion

50bserve that computer-based algorithms cannot be exactly stochastic; the resulting error (bias) is
however normally negligible.

11
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determinant, is the multi-boson representation [132]. This latter approach solves in a
radical way the problem of the non-locality introduced by the inverse fermion matrix
in the exponent of (0.38); it will be discussed in more detail in Chapter 1.

Due to the huge number of involved degrees of freedom, the computational costs
attached to the update of the lattice system are typically very large. These costs turn
out to increase very fast with the target accuracy of the computation. Two immediate
sources of systematic errors in lattice computations are represented by the finite size
of the four-dimensional domain and by the discretization of the space-time. As one
can intuitively understand, finite-size errors can be kept under control if the lattice
size L is taken to be (considerably) larger than the typical hadron scale ~ 1 fm (1 fm
= femtometer = 107 or “Fermi”). Lattice computations are currently performed
for L ~ 2 — 3 fm. On the other side, discretization errors are small if the lattice
spacing a is much smaller than the hadron size; this means normally a < 0.1 fm.
This requires therefore four-dimensional lattices with at least Ny = 160,000 sites and
5,120,000 degrees of freedom, increasing with the lattice resolution.

Another important factor influencing the computational cost of a lattice simulation
of QCD, and we are now approaching the central issue of this review, turns out to be
the lightness of the fermionic degrees of freedom. As a result of different physical and
algorithmic effects, which will be analyzed in some detail in the following, the compu-
tational cost of a simulation increases when the values of the quark masses inserted in
the simulation are reduced (recall that the quark mass can be tuned by changing my,
in the lattice QCD action (0.19)). Limitations in computational resources confined
past lattice simulations to values of the v and d quark masses much heavier than in
nature and in fact nearer to the physical s quark mass’. As a matter of fact, the
extrapolation of the lattice results to the physical situation where the light quarks
assume their actual masses is affected in this case by large, essentially uncontrolled
systematic errors.

Recently, considerable advance has been achieved in the optimization of the algo-
rithms with a substantial reduction of the simulation costs; new lattice formulations
of QCD have been conceived with small discretization errors. Thanks to these recent
progresses, the lattice community is now for the first time in a position to make real-
istic estimates about the computational costs required for accurate determinations in
hadron physics. The general expectation is that the multi-teraflop® supercomputers
becoming now accessible to lattice computations will allow to reach this goal.

The next and last section of this Introduction contains an excursus on the aspects
related to the simulation of QCD in physical conditions. The motivation for the inves-
tigation of new simulation algorithms and lattice formulations for QCD and related

"Recall (0.9); as we have seen, the u and d represent in nature the lightest quarks with mq < Agep
and, because of this feature, they are expected to strongly affect QCD dynamics down to low
energies.

8The teraflop is a measure of computing power, corresponding to 10'? floating point operations
per second; a typical scale for lattice computations in realistic conditions is the teraflop year,
corresponding to about 3 - 10 floating point operations.

12



0.4. Simulation of light fermionic degrees of freedom

theories will hopefully emerge.

0.4. Simulation of light fermionic degrees of freedom

Including the dynamics of light fermionic degrees of freedom in lattice simulations
of QCD and related theories turns out to be one of the most challenging problems
in today’s computational physics. The basic difficulties originate from an interplay
between features of the underlying theory (and the lattice version thereof) on the one
hand, and from algorithmic and computational limitations on the other. As a result,
QCD had to be simulated in the past with unphysically heavy masses for the two
lightest v and d quarks, larger than in nature. The systematic effects deriving from
this basic artifact of lattice QCD represented the main source of theoretical uncertainty
in lattice determinations in hadron physics.

The problem of the lightness of the quarks in the lattice simulation has gained more
and more attention from the lattice community in recent years, becoming today one
of the central issues, if not the central issue, of the general discussion. Developments
in computer technique have also played an important role in this context: with the
recent introduction of multi-teraflop supercomputers a substantially larger amount of
computing power is now available for lattice calculations.

At the time of the first lattice simulations of QCD in the early 80’s, the very inclusion
of the dynamics of the quarks was regarded as an almost intractable problem; for a
long time, a popular approach was to consider the light quarks as static (namely
infinitely heavy) and to disregard them tout court from the simulation. This is the
well-known “quenched approximation” [99]. The first problem to tackle at the time of
those first simulations was the high non-locality of the interactions among the lattice
links introduced by the fermion determinant. The latter, we recall, represents the
fermionic contribution to the partition function of the lattice theory, to be included
in the Monte Carlo simulation. The introduction later on of the idea of the stochastic
evaluation of the fermion determinant by pseudofermion auxiliary fields [191] opened
the way to modern Monte Carlo simulations of QCD with full inclusion of the dynamics
of the fermions. The next aspect to face was however the lightness of the simulated
fermions.

We confine the discussion to the case of Wilson fermions described in Sec. 0.2, which
are characterized by special features in the light quark regime. Early simulations with
Wilson fermions only included the two lightest quarks; these are taken for simplicity to
be degenerate, namely with equal masses (Ny = 2 QCD). A simulation algorithm using
pseudofermion fields, applicable and widely applied for simulations of two degenerate
Wilson fermions, is the so-called Hybrid Monte Carlo algorithm (HMC) [62]. In HMC
one considers the lattice links as canonical variables of an appropriate Hamiltonian
function. The transition in the Markov chain is realized by a hybrid Langevin—mol-
ecular-dynamics evolution, in a fictitious time, of the canonical system of the lattice
links and of their conjugate momenta; a final Metropolis correction renders the al-

13
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gorithm exact. As it turns out, HMC with Wilson fermions® efficiently updates the
system only for relatively heavy quarks. This fact limited past large-scale simulations
of QCD with Wilson fermions in a region of unphysically heavy v and d quark masses
near the s quark mass'® (see for example [7] and [110]).

A turning point in the discussion within the lattice community was marked in the
Lattice conference held in Berlin in 2001, where a first estimate of the computational
costs attached to simulations with light quarks was attempted. The main conclusion
was that, due to the fast increase of the computational load, the light quark masses
necessary for accurate determinations in hadron physics could not be attained in the
next foreseeable future, even taking into account mid-term evolution in computer
technique (see for example [184]).

Some of the difficulties in the light quark regime originate actually from peculiar-
ities of the Wilson formulation, and in particular from its explicit breaking of the
chiral symmetry at finite lattice spacing. As a consequence of the chirality breaking,
which causes the additive renormalization of the quark mass, the fermion matrix can
become (almost) singular during the Monte Carlo update; this results in large fluctua-
tions of the fermion determinant, which cannot be properly handled by the stochastic
estimate in HMC. A dramatic efficiency depletion and instable behavior in correspon-
dence of special configurations of the lattice links (“exceptional configurations”) is the
consequence.

Another fundamental limitation of past lattice computations of QCD was the ab-
sence of the s quark, which is however expected to contribute at low energies. The
inclusion of the s quark dynamics, another top issue of modern lattice simulations, and
more in perspective physical u and d quark masses with m, # my, necessarily requires
going beyond HMC. Indeed, in its first conception, HMC can only accommodate pairs
of degenerate quarks.

In this write-up, different approaches for tackling these new challenges in lattice
QCD will be reviewed. A variety of setups will be considered, including QCD with
one quark flavor (N; = 1 QCD), with two degenerate light quark flavors (N; = 2
QCD), with the addition of two heavier s and ¢ quarks (N;y = 24+ 1+ 1 QCD);
moreover a supersymmetric gauge field theory, the N'=1 supersymmetric Yang-Mills
theory, will be discussed; here the fermionic degree of freedom, the superpartner of
the gluon (gluino), is described by a Majorana spinor which effectively corresponds to
“half” flavor of quarks.

The first step towards more effective algorithms for dynamical fermions is histor-
ically represented by M. Liischer’s idea [132] of a multi-boson representation of the
fermion determinant. In opposition to the pseudofermion representation of HMC, the
multi-boson representation produces a local effective action for the system of lattice
links and pseudofermions including the dynamics of the quarks. Thanks to the local-
ity of the action, the instabilities associated to exceptional configurations typical of

90r modifications thereof with or without O(a) improvement, or additional terms in the gauge
action.

10With pion masses M, > 500 MeV.

~
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HMC are avoided. A large part of the simulations reviewed in this work is based on a
particular variant of Liischer’s multi-bosonic algorithm developed by I. Montvay: the
Two-Step Multi-Boson algorithm (TSMB) [136]. The latter is specifically optimized
for simulations in the light fermion regime. The first two chapters of this review in
particular will be devoted to simulations of Ny = 2 QCD. In this context TSMB al-
lowed to attain a substantial decrease of the quark masses applicable for simulations
with Wilson fermions.

An important aspect of the simulation of QCD with light quarks is the application
of chiral perturbation theory [189, 88]. Chiral perturbation theory indeed predicts
the dependence of hadron properties upon the light quark masses in a theoretically
well-founded framework and with control over systematic effects, coming essentially
from the neglected higher orders in the chiral expansion. The resulting formulae can
be used to extrapolate the lattice data for hadron properties to the physical point of
the quark masses: light quark masses in the simulation result in small systematic un-
certainties in the extrapolated values. In the present situation, in which the increased
computing power allows for the collection of large statistics, these systematic effects
often represent the main source of uncertainty in the final determinations. Simulations
with light quarks are therefore crucial.

A first check in a simulation with light quarks is, therefore, whether lattice data do
follow predictions from chiral perturbation theory. Another point of view [39, 169] is
that lattice data can provide the needed input for the determination of the unknown
coefficients in the chiral expansions, the so-called Gasser-Leutwyler coefficients. The
knowledge of these quantities is very important in hadron phenomenology, since it
allows to put non-trivial constraints in low-energy hadron physics.

In Chapter 1, TSMB is introduced and preliminary algorithmic tests performed
in [Alg] are reviewed. Simulations of Ny = 2 QCD with light quarks [Chi-1, Chi-
2, Chi-3] are reviewed in Chapter 2; lattice data for the pion sector are compared
with predictions from chiral perturbation theory. In consideration of the rather large
lattice spacings of the simulations in [Chi-1, Chi-2, Chi-3], a ~ 0.2 — 0.3 fm, lattice
corrections were included in the chiral perturbation theory formulae according to the
so-called “Wilson chiral perturbation theory” [170, 159]. These studies produced early
determinations of the Gasser-Leutwyler coefficients with Wilson fermions.

Designing lattice actions in view of an optimal simulation process for light quarks is
a new trend in modern lattice computations (a typical example in this sense is repre-
sented by the recently introduced fermion actions with “Stout-links” [142]). A minimal
modification of the Wilson action for two degenerate quarks turns out to solve one
fundamental problem of this formulation, namely the possibility for special link con-
figurations of a singular fermion matrix with vanishing fermion determinant. In this
new approach, proposed by R. Frezzotti and others in 1999 [76] and known as “twisted
mass” QCD (TMQCD), an additional chirally twisted mass term is added in the stan-
dard Wilson action for the u-d chiral doublet.!! For non-vanishing “twisted mass”

1 This term is obtained by transforming the u-d fields in the mass term of Wilson lattice QCD,
see (0.19), by a chiral transformation of the type (0.10) with Ny = 2.
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the fermion matrix of the two flavor theory is strictly positive, and the determinant
cannot get extremely small in the update. An additional, even more important benefit
of the twisted mass formulation is the “automatic” cancellation of O(a) discretization
errors for all physical quantities when the standard “untwisted” mass is tuned to zero,
namely at mazimal twist. TMQCD is expected to ensure small lattice artifacts and
stable simulations within the conceptually simple framework of the Wilson discretiza-
tion and therefore represents a competitive approach for lattice determinations with
small systematic effects.

A program of large-scale simulations with twisted mass fermions has been recently
initiated. These will be reviewed in Chapter 3. In particular, in [tIS-1] a region of
light quark masses could be accessed'?, for which chiral perturbation theory formulae
including leading order corrections are supposed to deliver reliable extrapolations to
the physical quark masses. A novel Europe-wide lattice collaboration, the “European
Twisted Mass” (ETM) collaboration was created especially for this purpose.

An important issue emerging when simulating QCD in presence of light quarks is the
phase structure of the underlying lattice theory. In QCD, the latter is tightly related
to the pattern of chiral symmetry breaking. As long as the quarks are sufficiently
heavy for a given lattice spacing, chirality is essentially broken by the quark masses
and the breaking from the Wilson term does not play a primary role: in this case the
phase structure of the continuum theory is reproduced by the lattice theory up to small
O(a) deviations. Thanks to the recent progresses in the numerical simulation however,
regions of parameter space can be now accessed where the chirality breaking of the
discretization potentially drives the phase structure of the lattice theory [122]. The
consequence is a large deviation from the continuum picture: the “Aoki phase” [12]
at strong coupling [108] or, at weak coupling towards the continuum limit [Wil-1], an
unphysical first order phase transition [170] near zero quark mass.

The important question is, therefore, which maximal lattice spacing can support
a program of simulations towards light quark masses with small deviations from the
continuum picture.

This question was addressed in [Wil-1, Wil-2, dbW-1, dbW-2], for different lattice
formulations in the gluon sector. The resulting information allowed to select the
safe regions of parameter space of the lattice theory for the subsequent large-scale
simulations of [tIS-1].

We considered up to now simulations with two degenerate quark flavors where the
dynamics of heavier quarks is neglected. As mentioned above, the inclusion of the
s quark in the simulation is another important issue in today’s lattice simulations of
QCD. A crucial observation from our point of view is that the twisted mass formulation
can also accommodate a doublet of quarks with different masses [82]. The way to
simulations of TMQCD with the inclusion of the s quark is therefore open. Since the
c quark has to be included as well in order to complete the twisted mass doublet with
the s quark, one arrives at Ny = 2+1+1 TMQCD.

First simulations in this setup [t1S-2] will be reviewed. Large-scale simulations

12Corresponding to M, ~ 300 MeV, with a lattice spacing a ~ 0.09 fm.
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within the ETM collaboration are in preparation [42]. An important goal of the
preparatory study [t1S-2] was to provide a feasible setup for tuning the theory to
maximal twist and to the physical values of the s and ¢ quark masses.

The second part of this review is mainly devoted to the problem of the lattice sim-
ulation of a supersymmetric model. Supersymmetry is expected to play a role in
particle physics but, as is well known, is not observed in low-energy phenomenology.
In a theoretically attractive scenario, the mechanism responsible for the (necessary)
breaking of supersymmetry takes place at a energy scale where supersymmetric inter-
actions become strong and therefore non-perturbative. This theoretical expectation
motivates the extensive study of strongly interacting supersymmetric gauge theories
in a lattice framework.

An immediate difficulty in this program is that supersymmetry cannot be preserved
on a lattice (at least not in its original form), so it must be broken in any lattice
formulation; however it can be recovered in the continuum limit similarly to chiral
symmetry in Wilson lattice QCD.

We consider here the case of the N/ = 1 supersymmetric Yang-Mills theory (SYM).
This is the minimal supersymmetric version of the gauge theory only describing the
self-interactions of gluons (this means, quarks are not included). The fermionic degree
of freedom is given in this case by the gluon superpartner, the gluino, which is described
by Majorana spinor. For reasons similar to those also applying to QCD and extensively
discussed above, supersymmetry must be broken on the lattice by a small gluino mass.
Also in this case, we consider a lattice formulation based on Wilson fermions [49], in
which chirality is also explicitly broken, at finite lattice spacing, by the Wilson term.

We discover here a parallelism with the typical themes of standard simulations of
QCD: the applied techniques and simulations costs are comparable as well. Also in
the case of SYM, the main challenge, with similar difficulties, is the simulation of the
lattice theory for light fermion masses: the supersymmetric case is realized in the limit
of a massless gluino.

SYM presents nevertheless peculiar features which are absent in the familiar example
of QCD. In SYM, indeed, the additional (super)symmetry imposes peculiar patterns
in the hadron mass spectrum: the supermultiplets. The latter represent a fingerprint
of restored supersymmetry in the continuum limit.

SYM represents a natural application target for TSMB, which is flexible in relation
to the spinorial structure of the fermion (as mentioned, Majorana spinors effectively
correspond to “half” Dirac fermion). Actually, the simulation of supersymmetric
models was historically the first motivation for TSMB [136].

In this work, the most recent developments of a long-standing project for the simu-
lation of SYM with the TSMB algorithm are reviewed [SYM-1, SYM-2, SYM-3]. We
concentrate here on the simulation of a simplified version of the theory with two colors
only (namely with color group SU(2)).

A crucial question in the case of Wilson fermions is the simultaneous restoration of
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the chiral symmetry and supersymmetry for massless gluino in the continuum limit.
As shown in [SYM-1], supersymmetry restoration can be studied in a numerical frame-
work by considering the associated supersymmetric Ward identities. The latter put
constraints on expectation values of certain composite operators of the fields; these
constraints can be verified by lattice calculations. The studies [SYM-2, SYM-3] ad-
dress the numerical investigation of the low-lying bound states spectrum, for which,
as mentioned above, supermultiplets are expected in the supersymmetric limit with
massless gluino.

N =1 SYM presents similarities with a special formulation of QCD where just one
quark flavor is included. In both cases, indeed, a continuous chiral symmetry is absent
due to a quantum anomaly. In fact, one flavor QCD can be obtained from N = 1
SYM just by replacing the Majorana spinor describing the gluino with the Dirac spinor
describing the quark. These similarities find a rigorous framework when one considers
the theories in the limit of infinite number of colors N.. At the lowest order (planar
level) of the so-called orientifold large N, expansion [17], the exact equivalence of the
two theories can be proven. One flavor QCD, with three colors, is expected therefore
to contain some ‘“relics” of supersymmetry. The second part of this review will also
cover first numerical simulations of QCD with one light quark flavor [Nf1]. The focus
is in particular on the low-lying bound states spectrum, where relics of supersymmetry
are expected to emerge.
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1. Algorithmic studies

The Hybrid Monte Carlo (HMC) algorithm [62] represented in the past the standard
algorithm for dynamical-fermion simulations of Ny = 2 QCD (u and d quarks with
equal masses). HMC is based on the Hamiltonian evolution of a dynamical system in
which the lattice links U, (x) assume the role of dynamical variables. The Hamiltonian
evolution (“trajectory”) is solved after discretization of the fictitious time parame-
ter (“Monte Carlo time”) in a hybrid Langevin-molecular-dynamics setup (we refer
to [139] for an exhaustive discussion of themes related to the Monte Carlo simulation
of lattice theories with fermions). After a transient, the gauge field configurations,
sampled at regular time separations along the Monte Carlo evolution, result to be dis-
tributed with probability density P[U] ~ exp{—S.s¢[U]}, where the effective action
SerrlU] (0.32) also includes the contribution of the quarks to the link dynamics, the
fermion determinant.

HMC, in its original formulation [62], is characterized by conceptual clarity and
straightforward implementation, which to some extent explains its popularity in lattice
simulations of QCD with two degenerate Wilson fermions. However, as we will briefly
discuss below, it turns out to be affected by severe limitations in the light fermion
regime and therefore unsuitable for a program of simulations down to small quark
masses. Moreover, it cannot be applied to the general case of a theory with non-
degenerate Dirac fermions, or to fermions with peculiar spin structures. The second
case is relevant for the N'=1 supersymmetric Yang-Mills theory (SYM), object of
investigation in Chapter 4 (a brief introduction to SYM is contained in the first three
sections of Chapter 4). The first applies for example to QCD including heavier quarks:
in Chapter 3 a theory with such a flavor structure, namely Ny = 2+1+41 QCD, will
be considered. Another case where standard HMC cannot be applied, also considered
in Chapter 4, is QCD with a single quark flavor.

These limitations of HMC motivate the search for alternative algorithms for simu-
lations of dynamical fermionic degrees of freedom in QCD and related theories.

1.1. Beyond Hybrid Monte Carlo

The basic limitation of HMC to degenerate pairs of Wilson fermions (or quartets of
Kogut-Susskind [125] fermions) can be simply understood by considering the design
of the algorithm. Its inefficiency in the light fermion regime is a less trivial subject
which deserves a separate discussion.

As a matter of fact, HMC turns out to be extremely sensitive to roundoff-error
accumulation along the time evolution. This aspect is critical in the case of light
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fermionic degrees of freedom (see [112] and references therein for an early review on the
topic, for more recent results see also [117, 9, 147]). In extreme cases [114] the HMC
dynamics assumes chaotic features where small deviations from the proper trajectory
of the Hamiltonian time evolution get exponentially amplified (with an associated
Liapunov exponent). In this case the algorithm in no longer exact, as signalled by loss
of reversibility in the Hamiltonian evolution.

A second aspect is related to the discretization of the time parameter in the Hamilto-
nian evolution, which necessarily introduces deviations from the exact classical trajec-
tory. The consequent violation of the energy-conservation at the end of the trajectory
must be compensated in HMC by a Metropolis accept-reject test with acceptance prob-
ability ~ e™2F where AFE is the energy-variation. It has been observed in [117, 147]
that a critical value of the time step-size exists, above which the dynamics of the
system switches from a (normal) elliptic behavior to a diverging hyperbolic one. In
this case, the energy-conservation violation becomes large and the acceptance rate of
the new link configuration in the Metropolis test very small. The critical step-size de-
pends on the magnitude of the driving force, which increases when the fermion mass
is decreased. This latter feature is especially critical in the case of the Wilson lattice
formulation of fermions, where due to the O(a) breaking of the chiral symmetry, an in-
frared cutoff is missing for the eigenvalue spectrum of the lattice Dirac operator. Even
for non-zero quark masses, the Wilson-Dirac operator can become almost singular
on special configurations (“exceptional configurations”). On these configurations the
fermionic contribution to the driving force in HMC can get extremely large!: “spikes”
are observed in the Monte Carlo time-history of this quantity [147]. As a result, the
acceptance of the Metropolis correction becomes practically zero and the system is
never updated.

In the case of simulations of QCD, the instability of HMC becomes critical for
values of the light quark masses m, below the reference value m,/2 [117, 9, 147],
while “safe” simulations are confined to quite large values (see [7, 8] for representative
simulations in this regime, and [110] for a more recent example). This clashes with an
analysis in chiral perturbation theory in the pseudoscalar meson sector [169]; the latter
indicates that extrapolations to the physical value of the v and d quark masses with
full control over theoretical errors, coming from neglected higher order corrections,
requires simulated light quark masses as light as m, ~ m,/5.

In consideration of these limitations, we conclude that HMC cannot really bridge the
gap between lattice QCD in the Wilson setup and nature, where m,q ~ (3 —5) MeV.

An efficient algorithm in the regime of light fermionic degrees of freedom is of course
also required for lattice supersymmetric models: for example in SYM, supersymmetry
is recovered in the limit of zero gluino mass. As already mentioned, however, HMC
cannot be applied in this case due to more fundamental algorithmic limitations.

Algorithms alternative to HMC can be designed by recurring to a multi-boson repre-
sentation [132] of the fermion measure in the path-integral. The resulting dynamical-
fermion algorithms are radically different from HMC, since they are based on con-

! According to [117] proportionally to 1/ m§, with a a positive exponent.
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ventional local update techniques. These procedures can be optimized for the case of
light fermion masses and are, due to their locality, free from the instability features of
HMC. In addition, they are flexible in relation to the spin structure of the fermions.
Simulations of Ny = 2 QCD with a multi-boson algorithm [136] will be reviewed in
the present and in the next two chapters, while the case of SYM will be considered in
Chapter 4.

In a different, more recent, line of algorithmic development, the underlying hybrid
Langevin—molecular-dynamics structure of HMC is maintained and different improve-
ments are introduced in order to stabilize and speed-up the algorithm in the light
quark regime [55, 166, 34, 102, 133]. However, these improvements do not really di-
rectly address the problem of the exceptional configurations; the intrinsic limitation
to degenerate flavor pairs also remains. In Chapter 3 we will see how the first of these
two issues can be solved by slightly modifying the Wilson formulation in the fermion
sector. The limitation of HMC to particular flavor configurations can be overcome
by introducing a polynomial expansion in the pseudofermion representation of the
fermion measure (“Polynomial Hybrid Monte Carlo”, PHMC [52, 78]). Applications
of a PHMC algorithm [140] to QCD with a split-mass quark doublet, and to QCD
with a single quark flavor will be considered in Chapters 3 and 4, respectively.

1.2. The Two-Step Multi-Boson Algorithm (TSMB)

A large part of the simulations discussed in this review are based on the Two-Step
Multi-Boson Algorithm (TSMB), a variant of Liischer’s multi-boson algorithm [132].
TSMB was developed in [136] and successively improved in the course of its practical
applications in the various setups considered in this review. In order to keep the
discussion self-contained, we give in the following a brief account of its main features.

1.2.1. Local update

TSMB is based on the multi-boson representation [132] of the fermion determinant.
In the most general setup considered in [136] the starting point is the relation:

1
= QetB (Q1Q)

In the above equation, @) denotes the fermion matrix in the Wilson setup (0.23), or
“Wilson-Dirac operator”, ny = 2« is the number of degenerate fermions of a given
mass present in the theory, and P,(x) is an order n polynomial approximating the
target function f(z) = x~*

|(det@)®| = det(Q1Q)" (1.1)

lim P,(z) = 27 “. (1.2)

n—oo

Observe that the quantity in the LHS of Eq. (1.1) represents in general only the
absolute value of the fermion measure for ny = 2o degenerate fermions; indeed, the
fermion determinant can be negative implying negative fermion measure for odd ny.
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The relation (1.1) can be expressed in terms of the squared Hermitian matrix @ =
75@ since due to the vs-Hermiticity of the Wilson-Dirac operator v:Q7; = QT one
has?

Q'Q = Q. (1.3)

Inserting the root decomposition of the polynomial P,(x) using explicitly the symme-
try of the roots under complex-conjugation,?

Py(z) = [[Ve=p)(VE—p) (1.4)

=1

into the last term in (1.1) also using (1.3), one obtains

det 2aN - _ _
ldet ) Edet@ pzx@—p@-)

/ Hdcw 1d0) exp(= 33 89 [(GIU] - p1)QW]  p)le @0} . (L5)

=1 zy

where the fields ! ),i = 1...n describe n species of bosonic particles carrying the
same quantum numbers of the original fermion fields.

The multi-boson action (1.5) contains interactions between the link variables and
the n species of boson fields with a finite range in lattice units*. Consequently, the
contribution to the total probability density P[U] given by the last term in (1.1) can
be reproduced by means of conventional local updating procedures.

1.2.2. Polynomial approximation

Liischer’s original proposal [132], designed for the case f(z) = 1/ (ny = 200 = 2), is
based on Chebyshev polynomials for the approximation (1.2). In this case the maximal
relative error [P, () — 1|s (Lo norm) is minimized for a given n and approximation
interval [¢, A]. The general scheme of [136], applicable to a generic value of «, relies on
the minimization of the quadratic relative deviation (Ls norm) with a weight w(z):

A
minimize 6% , 0% = / dzw(z) (27 — Pu(z))? . (1.6)

It is useful to consider the spectral decomposition of Eq. (1.1) on the eigenvalues
of the Hermitian matrix Q* = QQ. In this way, one sees that the limits of the

2A non-Hermitian multi-boson algorithm, in which the argument of the polynomial is the non-
Hermitian fermion matrix @), can also be conceived [33].

3Tt is assumed that all roots are complex, which is possible if the polynomial order n is chosen to
be even.

4Observe that the different species do not interact among themselves.
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optimization interval [¢, A] in (1.6) should be chosen such that the spectrum of the
positive semidefinite Hermitian matrix Q? lies inside it?.

The two minimization criteria with L., and L, norm differ in the way they treat
the approximation errors. The L. norm leads to an almost constant error in the
bulk of the spectrum and the location of an optimal value of ¢ becomes non trivial
in the case of small eigenvalues [33]. The Ly norm criterion (1.6), in opposition, is
characterized by smaller deviations in the bulk at the price of larger errors at the
boundaries of the approximation interval. This is more advantageous for simulations
of light fermions [137].

The general scheme defined by Eqs. (1.1), (1.5) and (1.6) is applicable to a generic
model with fermion measure, in modulus, |det(Q)[** where « is real and positive.
This includes supersymmetric models (v = 1/4) and, in QCD, a single non-degenerate
quark (for example the s quark, with o = 1/2). Moreover algorithmic improvements
based on the “breakup” of the fermion determinant [101], where fractional powers of
are required, can be easily implemented, see Subsec. 1.2.6.

1.2.3. Noisy correction

In the original conception of the multi-boson algorithm [132], the theory is simulated
with the multi-boson representation of the fermion determinant with a given poly-
nomial order n. The deviations from the canonical probability density of the gauge
ensemble P[U] ~ exp{—S.sf[U]} produced by the polynomial approximation for fi-
nite n is corrected in a second step by reweighting the gauge sample when building
the sample averages of the lattice operators. However, how one can easily infer, this
procedure becomes extremely inefficient in the case of light fermions. For small bare
fermion masses, indeed, the associated fermion matrix usually assumes large condition
numbers®. With almost singular matrices, large polynomial orders n are required in
the polynomial expansion (1.1), since the target function diverges at the origin. Large
values of n produce in turn large autocorrelations in the lattice system with n species
of bosons (1.1) and, consequently, a slowing down of the update algorithm [6]

A solution to this problem was put forward in [33] where a Metropolis test in
the update with a better polynomial approximation was proposed. This method is
feasible from the point of view of the computational load, since the correction factor
can be stochastically evaluated by a single noisy estimator while preserving detailed
balance [123] of the update algorithm. Here, a version [136] of the Metropolis test is
considered which is valid in the general case given by (1.1).

The idea is to replace the polynomial approximation (1.2) with a two-step approxi-

mation where a second polynomial Prg)(x) corrects for small deviations:

lim Pﬂg)(x)P@)(x) =z “. (1.7)

n2
ng—00

°An optimal choice turns out to be € < Apin/3 — Anin/2 [Alg] .
6In the case of a positive semidefinite Hermitian matrix, such as 2, the condition number is given
by the ratio between the largest and the smallest eigenvalue.
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The correction to the fermion measure given by
1
det Py (Q1Q)

is taken into account by a global Metropolis correction. A random vector 7 is generated
according to the normalized distribution

(1.8)

P(n) ~ e 1P @WDn (1.9)
the test configuration [U’], generated in the local update [U] — [U’], is submitted to
a Metropolis test, with acceptance probability”

min {1, A(n; [U] — [U'])} (1.10)
where
A U] = [U0)) = exp { =" PO@Q U+ PA@ U0} . (111)
The noise vector 7 is obtained from a Gauss-distributed vector 7,

n=[POQU])] 2 n, . (1.12)

The inverse square root on the right hand side of (1.12) is again estimated by polyno-
mial approximation. The latter approximation is the only possible source of systematic
errors in TSMB, even if high precision can be easily achieved by choosing the lower
limit of the approximation interval few order of magnitude smaller than € in (1.6).

The main advantage of this second approximation step is that the order of the poly-
nomial approximation in the local update nq, the first approximation step, can be kept
down to moderate values. The Metropolis step automatically corrects for deviations
from the target distribution during the update. Of course, a poor first polynomial
approximation results in low acceptances for the Metropolis step, so a balance must
be found: an optimal value of n; corresponds to an acceptance 2 50% [Alg].

1.2.4. Measurement correction

For finite values of ny, the correction (1.8) is normally not sufficient to render the
TSMB algorithm exact within the precision of the computer arithmetics, and a third
step is required®. A third polynomial P,g’) (x) is introduced such that

lim PY(x) PP (2) PO (z) = 27, z €N . (1.13)

T n,
00 2 3

"The multi-boson field configuration is always accepted. In this way the storage of the initial con-
figuration is not required; one can easily argue that this procedure does not affect the distribution
of the gauge fields.

8Exactness can be achieved, in the particular case ny = 2, by considering a non-Hermitian version
of the polynomial approximation [33].
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In this case €’ can be chosen to coincide with zero, in which case the algorithm becomes
exact in the limit n3 — oco. After reweighting, the expectation value of a quantity A
is given by the unbiased estimator

() = (Aexp {n'[1 — Pﬁ)(QTQ)]nDan
(exp {nf[1 — Pﬁ)(QTQ)]’W})Uﬂv

where 7 is a Gaussian noisy vector. Stochastic noise is reduced by increasing the
number of stochastic estimators, while ny can be easily taken very large, such that
the violation of the detailed balance is below the machine precision. In practice,
reweighting is only needed in the case of exceptionally small eigenvalues. A non-exact
first step of approximation is actually welcome since it enhances, in the dynamical
part of the update, the crossing of topological sectors. These crossings are normally
associated with small eigenvalues of the fermion matrix and therefore suppressed by
the fermion determinant. In the algorithmic studies of TSMB for light fermions, both
in SYM [SYM-1] and in Ny = 2 QCD [Alg], the effect of the reweighting was generally
negligible.

, (1.14)

1.2.5. Sign of the fermion measure

Only the absolute value of the fermion measure can be reproduced by Monte Carlo
methods (see Eq. (1.1)). The presence of a sign (or phase) must be taken into account
explicitly in the sample average, with possible cancellation effects. This is potentially
an issue in QCD for an odd number of light unpaired quarks; interesting cases are
Ny =1+1 QCD (non-degenerate u and d quarks), Ny = 3 QCD considered in [69]°,
Ny =1 QCD considered in [Nf1]; the sign can represent a problem in supersymmetric
models in general, where the Pfaffian of the fermion matrix takes the place of the
determinant (see also Chapter 4, Subsec. 4.3.1). Experiences with SYM [SYM-1],
Ny =2 QCD [Alg] and Ny = 3 QCD [69] show that the sign change is a rare event
even in presence of relatively light fermions if the lattices are fine enough, but it can
become an issue on coarse lattices and/or with extremely light quark masses.

1.2.6. Optimization

The local part of the update in TSMB consists in a sequence of heat-bath and over-
relaxation sweeps for the gauge and the boson fields. In the case of SYM, heat-bath
cannot be applied for the gauge field since the fermion action is quadratic in the link
variable, see Eq. (4.32) in the following Chapter 4, and the less effective Metropolis
algorithm has to be used!?. For details about the general implementation of the TSMB

9The interest in this setup is motivated by comparison with ChPT, see the Introduction to the next
chapter.

10Tn heat-bath, the new link variable does not depend on the old variable on that site, while this is
the case for the Metropolis algorithm. As a result the autocorrelation length increases by up to
a factor two.
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in SYM and QCD we refer to the publications [35] and [Alg], respectively!!.

TSMB can be optimized in various ways. Even/Odd (EO) preconditioning of the
fermion matrix [116] was applied already in [35]. The resulting reduction of the con-
dition number of the fermion matrix by almost a factor two allows to lower the order
of the first polynomial approximation n; by the same factor.

Global heat-bath in the “approximate” version of [51] (global quasi-heat-bath) was
introduced in [Alg] for the boson fields. A speedup of the algorithm results in this
case from the almost perfect decorrelation of the boson fields. The latter are generally
responsible for long tails in the autocorrelations of measured quantities along the
Monte Carlo history.

Finally, determinant breakup [101] was introduced in [71] and applied in subsequent
simulations with TSMB. In this case the fermion measure is decomposed in the product

of npp terms
npB

detQ** = T Idet@**/">2 (1.15)
k=1
each of which is expanded according to (1.1). The determinant breakup allows reduces
the fluctuations of the stochastic correction, Eqgs. (1.9)-(1.12), with a consequent in-
crease of the acceptance rate. The general setup of the TSMB considered here allows
a straightforward implementation of this technique.

1.3. Simulation tests of TSMB with light
fermions [Alg]

Both QCD and SYM contain light fermionic degrees of freedom, the u and d quarks in
QCD and the gluino in SYM (in this latter case exactly massless in the supersymmetric
limit of the theory). However numerical simulations cannot access the massless limit
of these theories, and in the case of SYM, supersymmetry has to be softly broken with
a Majorana mass term. Simulations can only be performed until a minimal fermion
mass and the physical point must be reached by extrapolation. Even not considering
possible instability phenomena, as the ones outlined in Sec. 1.1, the computational
load of a dynamical-fermion simulation increases dramatically when the masses of the
light fermions are reduced. One factor of this increase is represented by the depleted
performance of a generic simulation algorithm for large condition numbers of the
fermion matrix, which for example in the case of TSMB imply higher orders in the
polynomial approximation!?.

An additional difficulty in the light fermion regime emerges in the particular case of
QCD. Here, the massless quark limit corresponds to restoration of the chiral symmetry
and the mass gap of the theory vanishes as an effect of the spontaneous breaking of this
symmetry. For light quarks, the low-energy physics is dominated by almost massless

HFor more details, see also [177, 91, 162].
12Tn the case of HMC, the algorithm providing the solution of the lattice Dirac equation, the typical
problem in the molecular-dynamics evolution, becomes more and more inefficient.
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particles, the would-be Goldstone bosons coming from the spontaneous breaking of
the symmetry. In the case of Ny = 2 QCD, these pseudo-Goldstone bosons can be
identified with the lightest particles of the theory, the pions. The dependence of
physical quantities upon the quark masses can be determined in the framework of
Chiral Perturbation Theory (ChPT) [189, 88]. As we will see in more detail in the
next chapter, ChPT formulae provide a guidance for the extrapolation of lattice data
to the physical value of the light quark masses.

A consequence of the vanishing of the mass gap is the enhancement of finite-size
effects towards the chiral limit (the light pions “do not fit” in the finite volume enclosed
by the lattice). Moreover, and this is the relevant point for the present discussion,
HMC and local algorithms as TSMB have to face a critical slowing down produced
by the light pions, whose Compton wavelength sets the scale for the propagation of
the information throughout the lattice; as a result, the autocorrelation time 7 in the

Monte Carlo update increases as an inverse power the quark mass'.

The situation is somewhat alleviated in the case of SYM, where the mass gap persists
in the supersymmetric limit: the dependence of physical observables upon the gluino
mass is expected to be analytic with exponentially suppressed finite size effects for
large lattices. Slowing down is not critical since a diverging length scale in the massless
gluino limit is absent.

We have previously argued that TSMB, by its construction, can support the simu-
lation of very light fermion masses. First experience for light fermions, namely with
large O(10°) condition numbers of the fermion matrix, was accumulated for the case
of SYM in [SYM-1]. This situation roughly corresponds to m, ~ ms/4 in QCD [69].
In the case of SYM, proper tuning of the algorithm parameters allowed to keep sim-
ulation costs down to low levels for increasing condition numbers (see Chapter 4 and
Subsec. 4.4.4 in particular for a more detailed discussion, also including the physical
setup).

As already argued, the case of QCD is potentially more challenging and the behavior
of the algorithm for light quarks must be carefully tested. An important objective of
the study [Alg] was in particular to estimate the dependence of the simulation costs
upon the quark mass for Ny = 2 QCD with Wilson fermions. Unprecedently light
quarks m, 2 ms/5 were covered by the simulations, although on a relatively coarse
lattice with a ~ 0.27 fm. This region of parameter space is orthogonal to that of
a previous benchmarking of HMC with Wilson fermions [184] with ¢ < 0.1 fm and

mg > mg/2.

Further interesting aspects investigated in [Alg] are the influence of light dynami-
cal quarks on the eigenvalue spectrum of the non-Hermitian fermion matrix and the
comparison of lattice estimates for mesonic quantities with ChPT predictions.

13 Assuming random walk for the propagation of the information, one has 7 ~ 1/M2; since M2 ~ m,
one concludes 7 ~ m;l. This sets a lower limit for the critical exponent 7 ~ m_ *, 2z > 1 in the
case of local algorithms.
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1.3.1. Cost figure

The computational “cost” C' associated with the production of a a sample of n, inde-
pendent gauge configurations is given by

C =ns-17(fpo.), (1.16)

where 7 (f.p.0.) denotes the autocorrelation time along the Monte Carlo evolution in
terms of the corresponding number of floating point operations. For a given algorith-
mic setup and criterion for the definition of 7 (namely which quantity 7 refers to), the
“cost figure” C' is univocally determined by the simulation parameters. In the sim-
plest setups (including Ny = 2 QCD and SYM) these are given by the lattice coupling
constant (3, the hopping parameter x and the lattice extension in lattice units L/a.
For a given value of L, the parameters § and x can be replaced by any physical scale
which, expressed in lattice units, fix the position of the lattice model in the parameter
space. Typical dimensionless scales are given for example by the quark mass and the
Sommer scale parameter [176] in lattice units, am, and ro/a. It is generally assumed
that an analytic dependence of 7 (f.p.0.) upon these parameters applies. In this case,
Eq. (1.16) can be rewritten (we specialize the discussion to Ny =2 QCD):

C = F (rgmg)~*m (E)ZL (Q) . (1.17)

a a

(F is a proportionality constant). In the above formula, the lattice spacing dependence
of C for fixed L/a is entirely contained in the last factor, and the quark mass appears
in units of the (inverse) Sommer scale parameter. The ratio between the pion and
the p meson mass M, /M, is sometimes used in place of the quark mass (see for

example [184]).
In [Alg] it was argued that a better operational definition of the quark mass is given

by the quantity
M, = (roM;)? ; (1.18)

this latter quantity can be more easily determined in a region of light quark masses
where the p meson can potentially decay into pions. In terms of M,., the cost formula

reads: .
C=F M (£> (T—O) . (1.19)

a a

An alternative definition of the quark mass is given in the two flavor theory by the
“Partially-Conserved Axialvector-Current” (PCAC) relation:

mPCAC — 8;1(1;_7#75%1/}(%) O(y»
T 20T @) Oy)

where O(y) is a suitable composite operator of the quark fields. A dimensionless
quantity can be defined in units of the Sommer scale

(1.20)

pir = rombCAC (1.21)
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Observe that the definition (1.18) reproduces the usual definition of the quark mass
only for asymptotically light quarks masses; on the other side, the connection of (1.21)
with the physical quark mass requires the knowledge of a renormalization factor.

In the case of HMC, the definition of the cost figure in units of the number of
fermion-matrix-vector multiplications instead of floating point operations [77] has the
advantage of being independent of the details of the algorithmic implementation for a
given computer platform; moreover the trivial volume factor (L/a)* is rescaled away.
In [Alg] this definition of C' was adapted to the case of TSMB and chosen for the
estimate of the computational cost'4.

TSMB is a complex algorithm with many tunable parameters and therefore an
exact theoretical prediction about the dependence of the cost figure on the simulation
parameters is not available. In the local part of the update, the slowing down for light
quark masses is enhanced by the increased number (n1) of the boson fields required
for the more accurate polynomial approximation. In the most pessimistic case, one
has [6]

7 (updates) ~ ny/m, . (1.22)

On the other hand, in order to keep the approximation error down to low values, n;
has to be rescaled with m,: ny ~ InV/m,. After restoration of the lattice units, and
neglecting logarithmic volume terms, one gets

L\* 1 (L)'

T(f.p.o.) ~ ng <E> 7 (updates) ~ {amy)? (E) ) (1.23)
corresponding to z,,, = 2, = 3 and z; = 4 in the parametrization (1.17). The above
estimate is however incomplete since it does not include the stochastic step of the
Metropolis test. Global updates of the multi-boson fields may also play a role (global
quasi-heat-bath).

1.3.2. Results for the cost figure with TSMB

The study [Alg] is based on simulations on 8% - 16 lattices at a single value of the
lattice spacing a ~ 0.27 fm (L ~ 2.4 fm). Autocorrelations were measured for the
average plaquette value and for other basic physical quantities as the pion mass M
and decay constant F. An appropriate estimate of the autocorrelation length for non
primary quantities as M, and F; is obtained by applying the linearization method
proposed in [77] (or “I'method” [197]). The traditional procedure based on jackknife
and binning is usually not reliable in the case of marginal statistics.

In order to single out the dependence of the cost figure C' upon the quark mass,
see (1.17), the simulation parameters § and k were tuned to an approximate constant
value of rq/a; the final results were obtained by interpolation at the reference value
ro/a = 1.8. The quark masses range in the region my/5 — mg (M, = 300 — 900 MeV).

4The simulation costs with TSMB are not dominated by fermion-matrix-vector multiplications. An
“effective” fermion-matrix-vector multiplication number can be however defined and related to
the TSMB parameters of the simulation, see Eq. (13) of [Alg].
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When the average plaquette is used as a reference quantity for the computation
of the autocorrelations, the cost figure (1.19) results to increase towards small quark
masses with a critical exponent z ~ 2. This indicates that the additional slowing down
from the increased number of boson fields (see Eqgs. (1.22) and (1.23)) is compensated
by the optimization of the algorithm in the non local part of the update. The more
popular parametrization in terms of the ratio between the pion and p meson mass,
C ~ (My/M,)"*, gives z, ~ 6 in agreement with the estimates of [184] obtained
however for m, > m,/2 and smaller lattice spacings.

One important result of [Alg] is that TSMB displays a stable behavior down to the
smallest tested quark mass (m, =~ m/5). The absolute cost figure for the lightest
quark mass is compatible with the extrapolated value from heavier quark masses with
the HMC algorithm [184]. We recall however that HMC would not be really able to
simulate such small quark masses due to the aforementioned instability problems.

TSMB was tested in [Alg] on rather coarse lattices. Tests of TSMB for smaller
values of the lattice spacing (a ~ 0.06 fm in QQCD units) and larger condition numbers
O(10°) (corresponding in QCD to m, ~ mg/4) are available for SYM [SYM-1]. Also
in this case, TSMB displays a satisfactory behavior.

An interesting question is how the cost figure scales with the lattice size [71]. The
order of the first polynomial n; only increases with the logarithm of the volume (due
to the denser eigenvalue spectrum); further polynomial orders ny and n3 do not need
to be rescaled at all, as long as the smallest eigenvalue of Q2 is unchanged (which
is the case for large enough volumes). So the deviation from the trivial scaling law
with z;, = 4 in (1.17) can only come from an increased autocorrelation of the tested
quantity in update units. Comparison with a larger 163 - 32 lattice shows indeed a
volume scaling of the simulation costs compatible, or even slightly below, the z;, = 4
scaling law.

1.3.3. Eigenvalue spectrum of the fermion matrix

In the regime of small quark masses, the dynamics of the light quarks is expected to
show up in different contexts. An aspect, which is important also in relation to the
simulation process, is the eigenvalue spectrum of the Wilson-Dirac operator.

A clear effect is observed in the eigenvalue spectrum of the non-Hermitian matrix,
namely a depletion of the number of eigenvalues close to the origin of the complex
plane. This is expected, since configurations with small fermion determinants are
disfavored in the sampling process (recall (0.30)). A special role is played by the real
eigenvalues, which, being unpaired, can assume extremely small values. In particular
the smallest real eigenvalue sets a limit for the lightness of the quark mass in partially
quenched computations, see in the next chapter. Real eigenvalues are also responsible
for the flip of the determinant sign. This is of course an issue only in the case of
unpaired light flavors. An example is given by Ny = 1 QCD, where the determinant
sign plays a special role in connection to a possible phase transition [43], see also
Sec. 4.7 in Chapter 4. In the case of Ny = 2 dynamical fermions considered in [Alg] a
negative determinant sign tuns out to be a rare event even for the lightest investigated
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1.3. Simulation tests of TSMB with light fermions [Alg]

Test of XPT logarithms on 8°x16
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Figure 1.1.: Fits of the squared pseudoscalar meson mass with the one-loop ChPT formula.
The reported ratio is constant in tree-level ChPT. For the definition of M, and
pr, see Eqs. (1.18) and (1.21), respectively.

quark mass.

Monitoring the spectrum of the Hermitian (squared) matrix is important in relation
to the algorithmic performance. TSMB tends to stall on configurations with very small
eigenvalues. The representativity of such configurations in the canonical ensemble is
however marginal, as can be verified by measuring the associated correction factors.

1.3.4. Chiral logs?

Effects of the light quarks can also be observed in the functional dependence of hadron
quantities on the quark mass. An interesting case is represented by the pion mass and
decay constant. ChPT formulae for these quantities are characterized at next-to-
leading by a non-analytic dependence on the quark mass, the so-called “chiral logs”.
This feature qualifies the special pattern of chirality breaking in the massless limit of
QCD. More information about ChPT in relation to lattice computations will be given
in the next chapter.

A behavior compatible with next-to-leading ChPT corrections can be observed in
the data of [Alg]. The ratio M, /2u, reported in Fig. 1.1 taken from [70] is independent
of the quark mass in leading-order ChPT}; so, the observed deviation from the constant
behavior can be interpreted as an effect of the chiral logs.

Finite volume effects on the pion mass can potentially play a role in the behavior
of M, /2. In the present case with M, L 2 3.4, however, these are expected to be
small. For example for the point at the lightest quark mass, lattice size and pion mass
are L ~ 2.2 fm and M, ~ 300 MeV, respectively; ChPT predicts in this case [40] an
effect for F; and M, below the statistical precision. Due to the relatively large lattice
spacing, however, discretization errors could play a role: the inclusion of discretization
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1. Algorithmic studies

effects in ChPT formulae will be discussed in full detail in the next chapter.

The comparison of the data from [Alg] with ChPT predictions is not really simple,
since different quark masses are analyzed at different values of 3 in that work: this
strategy was motivated by the necessity of keeping ry/a fixed in the cost formula (1.17).
Of course, a better strategy in view of ChPT studies would be to analyze the quark
mass dependence at a fized value of the coupling constant. In a mass independent
scheme, indeed, the renormalization constants only depend on (8 and the quark mass
dependence of the hadron quantities is explicit up to an overall renormalization con-
stant. This strategy will be pursued in the next chapter.

34



2. Lattice QCD and chiral
perturbation theory

For the reasons explained in the previous chapter, lattice QCD must be presently
simulated for values of the u and d quark masses which are heavier than in nature.
As already mentioned, Chiral Perturbation Theory (ChPT) [189, 88] can provide the
necessary formulae for the extrapolation of the computed physical quantities to the
physical point, where the v and d quarks assume their actual masses.

In ChPT, constraints coming from the (spontaneously broken) chiral symmetry of
QCD are used for establishing relationships among different observables in hadron
physics. The missing information is contained in unknown low-energy constants and
coefficients appearing in the ChPT formulae. The latter can be fixed by additional
input from hadron physics.

For the hadron quantities considered here, the pion mass and decay constant, the
chiral expansion produces power-series in the light quark masses m, (also containing a
non-analytic dependence, the “chiral logs” mentioned in the previous chapter). These
series have (most likely) an asymptotic character. This implies that the accuracy of
the estimates for a fized quark mass does not necessarily improve when higher order
terms are included in the expansion; on the other hand, this is expected at a given
order of the expansion, if the quark mass m, is reduced to low enough values. The
latter statement may sound rather formal at this level, since in nature the masses of
quarks cannot be varied. However, in lattice QCD m, is a tunable parameter and this
issue must be taken into account when performing the extrapolations.

Due to proliferation of free parameters in the chiral formulae for increasing order
of the expansion, one has usually to rely on the next-to-leading order (NLO) ap-
proximation. In this case, two low-energy constants are relevant, F, and By, and
few low-energy coefficients, known in the literature as Gasser-Leutwyler coefficients
(GLC).

As it turns out, the program of closing the ChPT relations involving physical quan-
tities and the light quark masses cannot be completely accomplished, since chiral
symmetry is not able to provide all the required constraints. In particular, at NLO,
transformations of the light quark masses and of some low-energy coefficients can
be found, which leave the ChPT formulae invariant: as noticed by D. Kaplan and
A. Manohar [119], the light quark masses and the low-energy coefficients cannot be
univocally fixed by the phenomenological input.

The above mentioned ambiguity, known in the literature as the Kaplan-Manohar
ambiguity, was actually the first motivation for considering ChPT in the framework
of lattice computations [39, 169]. In lattice QCD, the quark masses can be fized as
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2. Lattice QCD and chiral perturbation theory

external parameters, and, therefore, the missing information for determining of the
low-energy coefficients and thus for closing the ChPT relations is provided. Moreover,
since in lattice QCD all quark masses can be in principle lowered to arbitrarily small
values (with some limitations), higher order ChPT corrections can be made negligible.
As we will see, a special lattice technique (partial quenching) can be exploited in order
to enhance the level of information about the quark mass dependence of hadronic
observables.

The values of the GLC, beyond being interesting for themselves, can also be used
for extrapolating the lattice data to the physical point for the light v and d quarks
(the starting point of this discussion). An unsettled issue in this context is the role
of the s quark. In nature the latter is considerably heavier than the v and d quarks
and it is not obvious at all that it can be viewed as “light” (the K and 7 masses are
not extremely small when compared to the typical cut-off scale of ChPT). In view of
very accurate lattice determinations, the amount of systematic uncertainty injected in
the final estimates by the ChPT formulae used for the extrapolations can potentially
represent an issue. A conservative approach in this sense would be to simulate the s
quark at the physical value of the mass and use chiral formulae for two light quarks for
the extrapolations in the and v and d quark masses. On the other hand, simulation
of the theory very near or even at the physical point for the two lightest quarks seems
to be now at reach.

In Section 2.3 of this chapter, first lattice determinations of the low-energy coeffi-
cients in Ny = 2 QCD will be presented. This represents an approximation of the
physical case where the dynamics of heavier quarks is also involved. The next two
sections will be devoted to a brief overview of ChPT and of its applications in lattice

QCD.

2.1. Chiral Perturbation Theory (ChPT)

Chiral Perturbation Theory (ChPT)! is an effective theory of the strong interactions
and therefore characterized by an intrinsic energy cut-off, conventionally denoted with
A, ~ 1 GeV. For energies £ < A, and up to a given precision O((E/A,)"), a finite
number of counterterms must be introduced in the chiral Lagrangian for the com-
putation of physical quantities. In opposition to a fundamental theory, however, the
number of counterterms (and related free parameters) needed for an arbitrary precision
increases indefinitely.
We recall here the few basic assumptions which are at the basis of ChPT.

i) In the case of Ny massless quarks the fundamental underlying theory (QCD) is
invariant under the chiral group

G = SU(Nf)L X SU(Nf)R (21)
(see also (0.10), here Ny = Ny).

LA brief introduction to ChPT can be found for example in [41].
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2.1. Chiral Perturbation Theory (ChPT)

ii) The vacuum breaks spontaneously the chiral symmetry into its diagonal sub-

group
SU(Ny)L x SU(Ng)r — SU(Np)y ; (2.2)

the bosonic massless states postulated by the Goldstone theorem are identified
with the octet of the pseudoscalar mesons for Ny = 3 (with the isotriplet of the
pions in the case Ny = 2). For non-vanishing quark masses, these states are not
exactly massless; they are however light compared to the typical hadron mass
scale and dominate the low-energy dynamics of strong interactions.

iii) The masses of the light quarks can be treated as a small perturbation around
the chiral limit.

Since we only consider pion properties, the discussion can be restricted to the sector
of the pseudo-Goldstone bosons.

The interactions among pseudo-Goldstone bosons is the ideal application field of
ChPT; here the discussion is particularly well-defined. The transformation properties
of the fields under the chiral group can be derived from assumption ii); these build a
non linear realization of G' [188]. Once the transformation properties are established,
assumption i) can be used to constrain the interaction terms. Chiral invariance forces
the introduction of a growing number of derivatives at higher orders in the chiral La-
grangian: a derivative expansion of the strong interactions is in this way obtained;
correspondingly, the amplitudes of the interactions are expanded in the external mo-
menta p of the mesons: at zero momentum the interactions vanish.

It is convenient to parametrize the meson fields in a flavor SU(Ny) matrix trans-
forming linearly under G:

G _
U—g.Ug,". (2.3)
Explicitly:
U(ﬂf) — ei\/iq)(x)/F()’

RN UE
o = =3 oA = - Ty g | 2.4
\/§ 1 ¢ i \/5 \/6 K ( )

in the above formula ); are the Gell-Mann matrices generating SU(3) and the first
free parameter Fj has been introduced, coinciding (as can be a posteriori inferred)
with the decay constant of the pseudo-Goldstone boson in the chiral limit. At leading
order (LO) in the chiral expansion, O(p?), just one term exists?

2
oy = Dauau (25)

2Here and in the following, the formulae appropriate for the Euclidean theory are reported.
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2. Lattice QCD and chiral perturbation theory

(---) denotes the trace over the flavor indices.

In the case of explicit chiral symmetry breaking by a non-zero quark mass, the chiral
transformations must be supplemented with a transformation of the quark mass matrix
M in order to maintain the invariance under the chiral group (spurion symmetry).
These transformations can be read-off from the (chirality-breaking) mass term in the
QCD Lagrangian

EJ\QfD = Yy Mipg + hc., M = diag(my, ma, ms) ; (2.6)
the required transformations follow:
M s g, Mgt (2.7)

The most general LO term invariant under this generalized symmetry is
F2
LY = f(@uUaMUT —XUT-UX", X =2BM, (2.8)

where By is a second arbitrary low-energy constant.

In the N; = 3 case, twelve terms appear at next-to-leading (NLO) order O(p?) [89);
these can be reduced to eight when external fields describing electroweak interactions
are set to zero and contact terms neglected?:

LY = —L(0,U'0,U) — Ly (0,U'0,U){0,U"0,U) — L3 (9,U'0,U0,U'0,U)(2.9)
+L4 (0,U0,UN (XU + XU + L5 (0,U'0,U(XU + XU™))
—Le (XU + XUN? — L (XU — XU — Ly (XTUXTU + XUTXUT) .

The coefficients L;, known in the literature as “Gasser-Leutwyler coefficients” (GLC),
together with the low-energy constants Fj and By, encode the missing information
from QCD at high energies above the cut-off scale A, .

As an example of application of ChPT we take here, and for the different extensions
of ChPT which will be considered in the following, the mass of the pseudo-Goldstone
bosons in presence of N light quarks with equal mass [88]. The chiral expansion
delivers in this case a correction to the Gell-Mann-Oaks-Renner formula [94]:

M?*/Fy = X(1 4+ 0n10.100p) + ONLO.tree + O(X?) | (2.10)
1 | X

_— n—

167N, X 1672

5NLO,t7"ee = 8[Nf(2L6 - L4) + (2L8 — L5)] X2 ,

5NLO, loop —

where, in view of the future lattice applications, we have introduced the “dimensionless

quark mass”
2Bym
X = ]22 ‘. (2.11)
0

3In the case N ¢ = 2 some of the terms are redundant.
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2.1. Chiral Perturbation Theory (ChPT)

As in any standard quantum field theory, the ultraviolet divergences from the virtual
pseudo-Goldstone boson loops call for renormalization. This means that the GLC
appearing in estimates like (2.10) are renormalized at some (arbitrary) scale?; the above
formula applies to the M S-scheme with renormalization scale fixed at a conventional
value

Li = L (fren) 3 Hren = Ny =4ATF . (2.12)

Observe that the correction to the squared pseudo-Goldstone boson masses coming
from the virtual loops, dnL0,i00p, 1S characterized by the already anticipated non-
analytic dependence upon the quark masses. This important prediction of ChPT,
related to the peculiar pattern of the chiral symmetry breaking, can be verified in

lattice QCD.

2.1.1. Gasser-Leutwyler coefficients from phenomenology

As already briefly mentioned in the introduction to this chapter, due to the Kaplan-
Manohar ambiguity, phenomenological input and ChPT formulae alone are not suf-
ficient to fix all the GLC. This ambiguity derives from an invariance of the NLO
chiral Lagrangian under redefinition of the quark masses and of some low-energy co-
efficients [89]

16
g
L6 — L6—(5, L7—>L7—6, L8—>L8+2(5 y (213)

X — X+6— (detX)X !

where ¢ is an arbitrary dimensionless parameter. Quantities which, expressed in terms
of GLC and quark masses, are not invariant under (2.13) cannot be fully determined
in ChPT [119].

One of such quantities is the NLO correction to the quark mass ratios. Relations
similar to (2.10), and phenomenological input for the pseudoscalar meson sector, can
in principle put constraints on the quark masses realized in nature. In particular, a
relation can be found between the two quark mass ratios m, /mg and mg/mg. In order
to pin down the mass ratios themselves, however, the NLO order correction is needed

Ay = %(Mf( — M?)(2Lg — Ls) + chiral logs . (2.14)
0
Since the combination of GLC contained in Ay is not invariant under (2.13), this
quantity is affected by the Kaplan-Manohar ambiguity. The value of the ratio m,/mgy
is theoretically relevant; in particular, the vanishing of the m, would solve the so-
called strong CP problem. (See [20] for a review on the subject. However, see also [46]
for a criticism to this solution of the strong CP problem.)

The example of Aj; shows that chiral symmetry alone cannot, in some cases, fully

constrain physical quantities in hadron phenomenology. One possible solution to this

4In order to keep the notation as simple as possible, we use for these renormalized coefficients the
same notation as for the bare ones appearing in the Lagrangian.
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2. Lattice QCD and chiral perturbation theory

problem is to introduce some additional information from the fundamental theory of
strong interactions (see [130] for a discussion on this topic). A combination of phe-
nomenological and large N, constraints can be used for example to fix all the GLC [65].
This additional information is however subject to large theoretical uncertainties, which
spoil the accuracy the determinations. For the GLC needed for Aj;, one obtains in
this way the estimates (see for example [109])

Ly = (0.6 £0.3)-107%, (2.15)
Ls = (04 £05)-107%. (2.16)

These values of the GLC imply a small and positive Ay:
0< Ay <0.13. (2.17)
On the other hand, a massless u quark requires [39]
Lg = (0.7 £0.3)-107% . (2.18)

implying a large negative NLO correction Aj;. This second scenario is theoretically
disfavored since it implies too large breaking effects of the SU(3) flavor symmetry [130].
However, due to the large uncertainties in the determinations (2.15), the question is
not yet completely settled.

An accurate determination of the GLC is in general important in order to constrain
QCD predictions. The intrinsic systematic errors on ChPT estimates coming from the
neglected NNLO corrections (assuming exact knowledge of the NLO GLC) are gener-
ally smaller than the uncertainties deriving from the present, rather poor, knowledge
of the GLC (a recent review of GLC determinations from phenomenology can be found
in [64]). As we will see in the following in this chapter, lattice QCD can provide the
additional information needed for a determination of the GLC with full control over
systematic errors.

2.2. Gasser-Leutwyler coefficients from lattice QCD

Lattice computations of hadron properties can be used for the determination of the
low-energy constants in NLO ChPT (see [97] for an early discussion). In lattice sim-
ulations the quark mass represents an external parameter which can be arbitrarily
fixed and the Kaplan-Manohar ambiguity, expressed by (2.13), is resolved. In this
approach, the GLC are determined by fitting the light quark mass dependence of the
different hadron properties with the functional form predicted by NLO ChPT.

In the following we briefly discuss the main systematic uncertainties affecting this
methodology. For the regime of moderate quark masses of the simulations considered
here, the systematic effects produced by the finite volume can be kept under control.
On the other side, the contribution of the neglected NNLO corrections in the chiral
formulae can be relevant. As we will see in the following when discussing the numerical
studies, this turns out to be the dominating source of systematic error.
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2.2. Gasser-Leutwyler coefficients from lattice QCD

A separate discussion must be reserved to the lattice discretization effects. Ideally,
the chiral fits should be performed after the extrapolation of the lattice data in the
continuum, where ChPT formulae apply. An alternative procedure consists in fitting
the lattice data at finite lattice spacing and extrapolating the resulting fitted param-
eters in the continuum. This can be improved by including in the chiral formulae the
leading corrections coming from the explicit chirality breaking of the lattice discretiza-
tion. A general discussion of the lattice corrections in ChPT is possible in the so-called
“Wilson chiral perturbation theory”, to be discussed in the following in this section.
Even in this improved approach however, a continuum extrapolation of the fitted pa-
rameters is eventually required, because of the neglected sub-leading discretization
effects. The convergence to the continuum is however faster, with a reduction of the
systematic uncertainties attached to the determinations of the low energy constants.

2.2.1. Partially quenching

The information about the light quark mass dependence of hadron properties is at the
basis of the determination of the GLC from the lattice. As noticed in [39, 169] the
possibility in lattice simulations to assign different masses to valence and sea quarks
allows to enhance this information.

Given a generic lattice operator of the lattice quark fields 1,1 and the gauge links
U, OF[U;4, 7], its vacuum expectation value can be written (recall the discussion in
Subs. 0.3.1)

= /HdU HdetQ (a) [U;mye WQCD[U] O[U;mq] 7 (2.19)

TEA ,p q=u,d,..

where the effective operator O[U, my is a complicated functional of the gauge links,
resulting after the explicit integration over the lattice quark field Grassmann variables.
In (2.19) the dependence of the vacuum expectation value upon the light quark masses
has been made explicit, in a collective notation, for future convenience.

It is possible to compute a generalization of the expectation value (2.19), in which
the wvalence and sea quarks have different masses; the sea mass is contained in the
fermion determinant contributing to the effective action of the link system, while the
valence mass applies for the effective operator. In formulae:

g -
F(Misea, Muar) = /HdU HdetQ [U; my, seal © SWQCD[U] OlU;mya| =

TeA NV q=u, d
< O[U7 mval] >P[U;msea] . (220)

The most expensive part of a lattice computation is generally represented by the
generation of the canonical ensemble of lattice gauge configurations {U} distributed
according to the multivariate probability density

g
PlU;mgeq] = Hdet@ [U; My sea) e_SWQCD[U]. (2.21)

qud
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2. Lattice QCD and chiral perturbation theory

On the other hand, the computation of O[U, myq] for each configuration of the gauge
sample is comparably less demanding. This suggests that more information about the
functional dependence upon the light quark masses of the hadron vacuum expectation
value (2.19) can be obtained in a relatively “cheap” way by computing the generalized
version (2.20) for different values of m,q at a fixed mge,.

If the step from (2.19) to (2.20) is trivial in the effective action formalism exploited
in lattice QCD, it requires more thought at the level of the (continuum) fundamental
theory. Here, the introduction of bosonic ghost quark fields iq is required in order to
cancel the fermion determinant of the valence quarks [141]. The resulting theory is no
longer unitary. In the case of two valence quarks having masses my, my, and Ny sea
quarks with masses (mg,, - - ,mng) for example, one is in presence of an extended
quark multiplet

1/1 = (dqula %vz; quh I 7quNf; &qua &qV2) ; (222)
the mass matrix in the generalized QCD Lagrangian is given by
M = diag(my, my; mgy, . .. SUCNREEE mys) . (2.23)

The low-energy theory of this generalization of the QCD Lagrangian gives rise to a
“partially quenched” ChPT [26].
As an illustration of this partially quenched ChPT we consider the generalization

of (2.10) with Ny degenerate sea quark masses mg; = mgy = ... = Mgy, = M and
valence quark masses (ma, mp) [167]:
1
Mig/F§ = §<XA +xB)(1 + dNLO,100p) + ONLO, tree + o) , (2.24)
ONLO, 100 B (xs — XxA)xXaln 22— (yg — y5)x5In 2 ! :
oop 162Ny 1672 16721 (xB — xa)

Onro,tree = ANp(2Le — La)xs(xa + x5) + 2(2Ls — L5) (x4 + x5)*

(x is the dimensionless quark mass defined in (2.10)). The basic point when us-
ing (2.24) and analogous partially quenched ChPT formulae is that [39, 169] the quark
mass dependence in the chiral Lagrangian is only explicit, and in particular the GLC
appearing in (2.24) are those of the unitary theory with m,, = Mg, and the same
number of sea quarks Ny.

That the partially quenched analysis provides more information than the standard
one is apparent already in (2.24): in this case, in opposition to the “unquenched”
case (2.10), the combination of GLC (2Lg — Ls) can be disentangled from the other
combination (2Lg — L4). Notice that exactly this combination of GLC is required in
order to settle the question of the vanishing of the u quark mass, see (2.14). When
the decay constants are included in the partially quenched analysis as well [105], all
four GLC Ly, L5, Lg and Lg can be separately determined.

Another advantage of partially quenching is a faster convergence of the chiral for-
mulae for myq < Myge, [169]; in particular, NLO corrections below 10% require light
quark masses m, as light as one eight of the physical strange quark mass [169].
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2.2. Gasser-Leutwyler coefficients from lattice QCD

2.2.2. Including lattice artifacts

The artifacts of the lattice discretization introduce corrections in the ChPT formulae.
These corrections can be computed in a systematic way in Wilson ChPT [170, 159].

As shown by K. Symanzik [179], the lattice artifacts of Green functions in Wilson
lattice QCD are described in a synthetic way by a continuum local effective Lagrangian
(LEL) £¢//. The latter can be written in form of an expansion in which the lattice
spacing a plays the role of an external expansion parameter:

£t = o vactt +oateg v (2.25)

The first, dimension four, term of the expansion ,cgf ! coincides with the continuum
QCD Lagrangian £9¢P while further higher dimensional terms account for the lattice
corrections. The residual symmetries of Wilson lattice QCD restrict the possible form
of these operators. Some of them are obtained by multiplying lower dimensional
operators with powers of the quark mass and only produce a renormalization of the
quark mass and of the coupling constant. Since these operators do not introduce a
lattice-specific breaking of the chiral symmetry, they do not generate new terms in the
chiral expansion®.
At O(a) one is left with two operators [173], which on shell reduce to one; this is
the Pauli term
LI = csw o, Fuib . (2.26)

The coefficient cgy is in general a function of the lattice coupling constant and of
the Wilson parameter r. It can be formally promoted to a matrix in flavor space
(analogous to the mass matrix M in Eq. (2.6)), in this way, we see that the pattern of
flavor breaking of the Pauli term is analogous to that of the mass term (2.6), producing
the same breaking terms in the chiral Lagrangian.

O(a?) terms in the effective action (2.25) introduce further breaking parameters [21]
associated with dimension six operators E;f 7. All these breaking parameters can be
treated as spurion fields with appropriate transformation properties under the chiral
group G (see Sec. 2.1) and the corresponding contributions to the low-energy La-
grangian evaluated in a spurion analysis.

We have now essentially two dimensionless expansion parameters

2
p 2BOan 2WOCL
€~ T~ ) 0 ~ ; (2.27)
A A

Wy is a low-energy constant with mass dimension three, related to the discretization
effects, and analogous to By, whose precise meaning will become clear in a while.

At this point the question arises about the appropriate power counting scheme. If
the magnitude of the breaking effects coming from the lattice discretization is compa-
rable to that of the chirality breaking from the quark mass, synthetically m, = O(a)

®Tn the case of the quark mass, these lattice artifacts can be reabsorbed in a lattice definition of the
quark mass, see (3.17).
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or € ~ ¢, the correct criterion for collecting terms in the LO and NLO Lagrangian
is [159] (we use the notation LY for the effective low-energy Lagrangian of the Wilson
theory):

LO: LY ~ O(e0), (2.28)
NLO: LY ~ O(e,€d,6%) .

A different power counting, more appropriate in the case of a small quark mass and
dominating O(a) breaking effects, is [12]

LO: LY ~ O(e,6,6%) , (2.29)
NLO: L)YV ~ O(e6,6%) ;

in this case it is assumed m, = O(a?). We will consider here an application of the first
power counting scheme (2.28). In this scheme, the LO and NLO lattice terms only
come from the chirality breaking parameters, since the chiral-symmetric corrections
coming for example from the lattice gauge action, but also from the fermion action,
are O(p?a®) and NNLO.
The generalization of the LO chiral Lagrangian (2.8) is simply obtained by making
the replacement
X—=X+R, R =2W,A , (2.30)

where, in order to highlight the formal analogy with the breaking from the quark mass,
the lattice spacing has been transformed into a matrix in flavor space A, to be set
eventually to A = al. In this way we get:

i

‘C;/V = Z(anguUT - (X + R)UT - U(XT + RT» : (2-31)

New terms appear in the NLO Lagrangian [159, 21]

£y = Lf + Wi(0,U'9,U)(R'U + RU) + W;5(d\UOU(R'U + RU"))
—We(XTU+XU") (RTU+RU") — W7 (XTU-XU") (R'U—RU")
~ Wy (RIUXU+he) — W (R'U + RUTY’ — W2 (RIU — RUT)®
—W{{(R'UR'U + h.c.) | (2.32)

with associated lattice low-energy coefficients W;, W/ (“Wilson Gasser-Leutwyler Co-
efficients”, Wilson GLC).

The main dependence upon the lattice spacing in the NLO Wilson ChPT La-
grangian, O(a) and O(p®a,mgya,a?), is explicit. In particular, the GLC in £} are
the ones of the continuum theory. This means that the Wilson ChPT formulae can
be used in order to determine the GLC from (Wilson) lattice data with leading dis-
cretization errors O(mZa, mga®, a®).

Since the Wilson GLC, as the GLC, contain information about the high energy
details of the underlying lattice theory, their actual value depends on the precise way
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the theory is discretized, the gauge sector included. For example in the case of an O(a)
improved fermion action, the LO Lagrangian coincides with the continuum one and
Wy, ... Ws = 0. Moreover the left-over discretization errors in the physical quantities
are in this case O(mg,a?, a?®).

On the other hand, using NLO Wilson ChPT with the unimproved Wilson ac-
tion for the extraction of physical quantities from lattice data is almost equivalent,
from the point of view of the lattice artifacts, to a standard ChPT analysis with a
non-perturbatively O(a) improved action. The only difference in the residual lattice
artifacts is indeed represented by the absence in the latter case of the (presumably
small) O(mpa),n > 2, corrections.

It should be recalled at this point that the chirality breaking parameters in the
Symanzik effective action depend in general upon the lattice bare coupling constant
go (and the Wilson parameter 7), in particular, csyw = csw(go, 7). This dependence is
in general inherited by the lattice low-energy constant W, and by the Wilson GLC.
The renormalization group dictates on the other hand a weak dependence of gy on the
lattice spacing for fixed renormalized theory: at leading order gy ~ In(aAgep). This
means that the dependence of the lattice low-energy constants upon gy can be seen as
a residual, not explicit, dependence of the Wilson ChPT Lagrangian upon the lattice
spacing.

We conclude this introductory section about Wilson ChPT with an example of how
lattice artifacts modify ChPT predictions. In the case of the pseudo-Goldstone boson
mass considered in Eq. (2.10) for example, one gets [21]

‘]\42/1702 = (X + p)(l + 51‘<7VLO,loop) + 5]%/L07tree + O(X37 X2p7 XPQaPB) ) (233)
1
i = —— 1 167
NLO,ZOOp 167T2Nf (X+p) n[(X+p)/ Q ] Y
ONLO tree = ONLOtree + B[Ny (2Wg — Wy — Ly) 4+ 2Ws — W5 — Ls] xp +

8Ny (2W5 — W) + (2Wg — W5)] p*

where we define here, in analogy with (2.11), a dimensionless lattice breaking param-
eter:

(2.34)

Observe that, due to (2.30), the LO and NLO loop corrections are simply obtained
by making the replacement y — x + p in the corresponding terms in the ChPT
result (2.10), while the tree-level NLO correction can be trivially derived from the
Lagrangian (2.32) by analogy with the continuum terms. For the sake of the com-
pleteness we also quote the partially quenched result, namely the lattice-corrected
version of (2.24):

1
‘]\4313/‘[702 = [§(XA + XB) + p](]' + 51V\;/L0,loop) + 5]I<If/LO,tree + O(X37 X2p’ XP2> p3) ’
1
ONLOJoor = T3 N, {(xs = xa)(xa + p) In[(xa + p)/167°]
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1
— (xs — x8) (x5 + p) In[(x5 + p) /1677 } ———
(xB — Xx4a)
5]V\[7/L07tree - 5NLO,t7“ee + 8Nf(W6 - L4) Xsp +
4[Nf(W6 — W4) + 2W8 — W5 — L5] p(XA + XB) +

+8[N(2W§ — Wy) + (W5 — Ws)] p° . (2.35)

2.3. Determination of the Gasser-Leutwyler
coefficients [Chi-1,Chi-2,Chi-3]

After the theoretical breakthrough of [39, 169], where the potentiality of lattice simula-
tions for the determination of the GLC was realized, several groups started numerical
investigations. In the first paper on the subject [105] (N; = 2 Wilson formulation in
the quenched approximation) the inclusion of the decay constants together with the
masses in the pseudo-Goldstone boson sector was suggested. These quantities can be
determined on the lattice with extremely high statistical precision. In [105] the advan-
tage of using in the analysis ratios of hadron quantities computed at different valence
(or sea) quark masses, was also pointed out. In the case of the pseudo-Goldstone boson
mass, with N, degenerate quarks, one may consider for example the combination [105]

Mip/(xa+ x5)
MZg/2xs
Since the quantities in numerator and denominator are highly correlated, the ratio
Rnyp can be determined with high statistical precision for different values of the
valence quark masses m4 p. An additional advantage is that, in a mass independent
renormalization scheme, the renormalization constants (of the quark mass in the above
case) cancel out between numerator and denominator. Mass independent discretiza-

tion effects cancel out, too, see in the following.
We consider here as an example the continuum partially quenched ChPT represen-
tation of the pseudo-Goldstone boson mass ratio [167] (see also [Chi-2])

Rnap = (2.36)

Riyy = 148(6 — 1)xs(2Lss — Lss) + 16:§N €~ 14 (26 —1)logé] + NNLO , (2.37)
f
where ¢ denotes the ratio between the valence and the sea quark mass
¢=X (2.38)
Xs

and we have introduced the GLC Lg; renormalized at the sea quark mass scale

Lgi :© fren = /2Bymgs = /xsFo ; (2.39)

with this choice, the sea quark mass dependence of the chiral logs is reabsorbed in the
renormalization scale®. In the case of Eq. (2.37), the sea quark mass plays the role of

6The Lg; are related to the standard GLC L;, renormalized at the scale i = 47F,, by a renormal-
ization group transformation, see for example [Chi-1], Egs. (5-13).
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a reference quark mass, while the valence quark mass is varied (valence quark mass
analysis).

If several quark masses are available, one can choose one of the sea masses (say
the largest one) as reference quark mass and study the mass ratios as a function of
the remaining sea quark masses (sea quark mass analysis). In this case the relevant
formula is (see [Chi-2]):

M3 /Xs
R’I’LSS = S5/ A5 = 2.40
MEr/XR ( )
1+ 8(c — 1)Xr(2NfLg + 2Lps — NyLpi — Lis) + —2—clogo + NNLO |

167T2Nf

where now the label R refers to the reference sea quark mass and the ratio o is defined
as
o= (2.41)

?

XR

in this case the GLC Lg; have been renormalized at the appropriate reference scale

LRi : Mren = V/ QBOm = \/XRFO . (242)

The two procedures can be of course combined. In the case of p > 1 simulation
points, with mgyg > mg1 > ... > mg,, one can define several o variables oy, ..., 0,.
Taking mgo as reference quark mass, mgy = mpg, one has of course o = 1, while
a generic valence quark mass for the ith simulation point is related to the reference
quark mass by

my = o;mpg ; (2.43)

the same relation holds for the dimensionless quark masses xy and xg.
The parameters £ and o can be easily determined by computing ratios of the ap-
propriate PCAC quark masses (1.20). The left-over parameter yg can be determined
by using the LO formula
Mjip
g

YR = (2.44)
(the NLO correction to the above formula enters at NNLO) and inserting for Mgg
the measured value of the pseudo-Goldstone boson mass at the reference quark mass
and for Fy the phenomenological value of Fy = 87 MeV [105]; this procedure however
requires fixing the lattice scale. Alternatively, this is the procedure considered here,
Xr can be viewed as an unknown parameter and fitted together with the GLC.

The method proposed in [105] foresees a prior continuum extrapolation of the hadron
ratios at fixed values of xg,&, 0.7 After continuum extrapolation, partially quenched
continuum ChPT formulae such as (2.37) can be applied.

"The dimensionless ratios (2.36), and other ratios with different combinations of the quark masses
(for example valence-sea “VS”), are after the continuum extrapolation universal functions of the
dimensionless parameters (xg, &, o).
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2. Lattice QCD and chiral perturbation theory

The optimal strategy would be to extrapolate the lattice data at a fixed value of the
quark mass. In this way, in particular, one can avoid large lattice artifacts occurring
when the quark mass is lighter than the typical mass scale of the chirality breaking at
finite lattice spacing (x < p). In this regime the phase structure, of the lattice theory
is expected to depart from the continuum one (these aspects will be discussed in more
detail in the next chapter and in particular in Sec. 3.3).

Performing the continuum extrapolation before the chiral fits can be however very
expensive in terms of computing time, especially in the case of light dynamical quarks.
An alternative procedure, which we consider here, consists in fitting the ChPT formu-
lae at fized lattice spacing.®

As we have seen in the previous section, the application of Wilson ChPT at NLO
allows to reduce the discretization errors in the determination of the low-energy con-
stants to O(mga) in the unimproved theory. The dimensionless lattice scale p and the
Wilson ChPT coefficients Wy, ..., Wy, which describe the main lattice artifacts linear
in a, enter as additional fit parameters (see for example (2.33)).

Observe that, since the mass independent cut-off effects cancel out in the ratios,
the primed Wilson GLC do not appear in the corresponding Wilson ChPT formulae.
For light quark masses, it is legitimate to assume that the residual O(mga) corrections
are equivalent to the O(m,a®) corrections affecting the standard analysis with a (non-
perturbatively) O(a) improved fermion action.

2.3.1. Setup

The analyzes of [Chi-1, Chi-2, Chi-3] are based on sets of configurations (N; = 2
theory) on lattices with extension in the space direction Ly = 16 and extensions
in the time direction L; = 16 [Chi-1,Chi-2] and 32 [Chi-3]. Lattice QCD in the
Wilson setup was simulated by the TSMB algorithm in the configuration described
in Sec. 1.2. Two values of # were considered, § = 4.8 in [Chi-1] corresponding to
a(4.8) ~ 0.27 fm and § = 5.1 in [Chi-2] and [Chi-3] corresponding to a smaller lattice
spacing a(5.1) ~ 0.19 fm. The analysis at § = 4.8 includes only one, fairly light, sea
quark mass mg ~ mg/4 (M, ~ 360 MeV); this point reflects one simulation point
of [Alg], where a behavior of hadron properties in the pseudo-Goldstone boson sector
compatible with ChPT predictions was observed, see discussion in Subsec. 1.3.4. The
simulations of [Chi-2] and [Chi-3| include several values of the quark mass, with mg
ranging between mg/3 and m,/2 (M, = 380 — 680 MeV). The simulations of [Chi-3]
differ from those of [Chi-2] for a doubled extension in the time direction, L; = 32, which
allows for an accurate determination of the hadron quantities; a fourth simulation point
was included at an intermediate value of the quark mass.

The valence analysis includes valence quark masses both lighter and heavier than
the sea mass. On the coarser lattice, ¢ (see definition (2.38)) could not be lowered
below the value 0.9 due to the appearance of exceptional configurations. On the finer

8In this case one has to make sure that, at the give regime of quark masses, the phase structure of
the lattice theory still reflects the continuum theory, see also Sec. 3.3.
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lattice and with heavier sea masses, £ could be lowered down to ~ 0.5 with a maximal
value £ ~ 2.

The physical lattice extension is large in the 8 = 4.8 simulation, Ly ~ 4.5 fm, while
for the # = 5.1 simulations, L, ~ 3 fm. This must be compared with the lightest pion
masses. In the present case, finite volume effects reside in the permille region and can
be safely neglected (see for example Tables 3 and 4 of [40]).

The evaluation of the remaining two main systematic effects, the discretization er-
rors and the contribution from NNLO terms in ChPT, is less straightforward. The
discretization effects can only be estimated by comparing simulations at different lat-
tice spacings and fixed remaining parameters, which is not possible in the present
case. An indirect estimate can be obtained from the evaluation of the breaking terms
in the Wilson ChPT formulae. The latter estimate relies however on the validity of the
lattice-corrected formulae for the given regime of lattice spacings and quark masses.
As we will see in the following section, this second indirect estimate points to small
lattice artifacts. The impact of the NNLO corrections will be estimated by including
a subset of NNLO terms in the chiral fits. The NNLO corrections turn out to be
essential for the quality of the fits in the case of the heavier sea masses.

2.3.2. Strategy

The chiral fits of [Chi-1,Chi-2,Chi-3] include various ratios of pseudo-Goldstone boson
masses and decay constants. We give in the following an overview. In the sea sector:

Mz Fgs

Rngs = , Rfsg = —. 2.45
88 = = M2, fss Frn (2.45)
In the valence sector, starting with the single ratios:
M?2 Fyy
Rnyy = —2~ Rfyy = — , 2.46
4% N2, fvv Fos (2.46)
M Fys
Rnyg = —22 Rfyg = —= . 2.47
Vs fMgS Vs FSS ( )

In order to better constrain the fits, it is convenient to consider in addition double
ratios in which the dependence on the GLC cancels out:

AEM

RR , 2.48

SN ET TR .
Fig

RRf = —V5 2.49

d Fyy Fss (2.49)

The double ratio (2.49) was proposed in [104] with the motivation that it delivers,
within NLO ChPT, a parameter-free prediction of the quark mass dependence in the
pseudo-Goldstone boson sector. The latter can be easily tested against lattice data
(with a negative result in that case of [104]).
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2. Lattice QCD and chiral perturbation theory

As an illustration, we report the representation in NLO Wilson ChPT of Rnyy,
now also including lattice corrections (compare with (2.37))?; observe that the O(a?)
mass independent corrections cancel out in the ratios:

My (€-1)

Rnyy = a2, -1 ¢
€-1)
+8(§ — 1)xs(2Lss — Lss) + 8Ny ¢ nxs(Lss — Wise)
xs (£—-1) Xs
+16W2Nf ¢ (€+mn)— 672N, (1 +2n)log(1+n)
Xs (28 —&—n+3nk)
+ 672N, : log(¢ + 1), (2.50)
where W
_ P, _ Moa
1= Bom (2.51)

parametrizes the lattice breaking effects.
The Wilson ChPT formula for the double ratio of the pseudo-Goldstone boson
masses reads:

_ My e ?
R = T, 0, T e )
L Xs(E HE+n+3ne%) log(€ +)  xs(2n+ 1) log(l +n)
167> NyE(€ + 1) 1672 N,
—1 SN _1)2
_XS(§167T23\(5;‘ n) n fg((znifm ) (Lsy — Wse) - (2.52)

In [Chi-2, Chi-3], the ratios (2.45)-(2.49) could not be fitted with satisfactory results
for the whole spectrum of the valence quark masses. Consequently, a subclass of (con-
tinuum) ChPT NNLO corrections, quadratic in the quark masses, had to be included
in the theoretical formulae. These corrections correspond to tree-level diagrams in the
perturbative expansion. In the valence sector, the quadratic corrections introduce two
additional parameters for each ratio. The correction for the ratio X (X = R,yv, etc.)
reads

5NNLO,tree = DX XQS + QX X%’(f - 1)2 : (253)

Constraints from ChPT reduce the number of free parameters [Chi-2].
The Wilson ChPT representations of the ratios used in the valence analysis (2.46)-
(2.49) contain two “reference parameters” xg and 71, two combinations of GLC, 2Lg —

9See [Chi-2], Egs. (3-4), (10-11), (12-13) and (22-23), for the Wilson ChPT formulae of all the
considered ratios.
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Table 2.1.: Parameters entering in the NLO chiral formulae for the different ratios
(in boldface the combinations with physical relevance).

Ratio ‘ Continuum | Lattice Correction
Sea Analysis

Rngg 2Lg +4Lg — 2Ly — Ly | 2Ws +4Ws — 2W4 — W5 — 2L4 — Ls
Rfss 2L4 + Ls 2Wy + Wi

Valence Analysis
Rnyvyyvs 2Lg — Ls Ly —Ws
Rfvvys Ls -
RRn - L4 - W6
RRf - -

Ls and L5 and the combination, associated with the mass-dependent NLO lattice arti-
facts, Ly—Ws. In Table 2.1, an overview of the combinations of GLC and Wilson GLC
contained in the NLO chiral representations of the various ratios is given. Observe
that in the valence analysis, due to the cancellation of lattice artifacts in the ratios,
lattice corrections only introduce two additional parameters (n and Ly, — W5).

One possible strategy, followed in [Chi-1], consists in determining the combinations
of (Wilson) GLC by performing a sequence of single or double parameter fits. One
starts with determining n and xg from the double ratio RRf (whose Wilson ChPT
representation does not contain additional free parameters, see Table 2.1). The so
obtained values of 1 and y g are then inserted in the fits for the remaining ratios. The
latter allow to determine the combinations of GLC in the second column (“Contin-
uum”) of Table 2.1.

In [Chi-2, Chi-3], global fits including all the available ratios were performed!. The
quadratic NNLO corrections (2.53) considered in [Chi-2, Chi-3] introduce eight (or
six, considering ChPT constraints) additional parameters in the fits.

2.3.3. Numerical results

Wilson ChPT formulae depend linearly upon all unknown parameters with the excep-
tion of 1, see (2.50)-(2.52). As it turns out, the chi-square associated with the (linear)
fits of the remaining twelve parameters is characterized by a weak dependence upon 7:
the chi-square presents a swallow minimum in correspondence of a small value < 0.1
(Fig. 4 of [Chi-3]). This indicates that, in spite of the rather large lattice spacing, the
lattice corrections play a minor role at least within the assumed form of the quark
mass dependence. As a consequence of this observation, lattice corrections were not
included in the fits of [Chi-3].

By contrast, the NNLO corrections play a major role. These are, as expected,

0Tn [Chi-2] xg was determined from the analysis of RRn.

51



2. Lattice QCD and chiral perturbation theory

Table 2.2.: Overview of the results for the Gasser-Leutwyler coefficients from the hereby
reviewed and other works in the Ny = 2 Wilson setup (sea quark mass analy-
518).

Ref. a(fm) m,/m; A3/ Fy A4/ Fy I3 Iy
[Chi-2] 0.19 0.28 6.51 £0.57 229415 2.86+0.17 5.38+£0.13
[Chi-3] 0.19 0.28 821 +£0.27 214415 3.32+0.07 524+0.14
[t1S-1] 0.10 0.16 9.66 £0.58 148404 3.65+0.12 4.524+0.06

Cern [56] 008 029 7.0+17 - 3.0+0.5 -

more relevant for the larger sea quark masses and in the region my > mg, see Fig. 3
of [Chi-2].

In [Chi-2, Chi-3] several simulations at different quark masses were performed, three
and four respectively, and a sea quark mass analysis was also possible!!. Also in this
case, ratios of the meson quantities were considered, see Eq. (2.45); this reduces to
two and three, respectively, the number of available data points.

This sea-quark analysis allows to determine two additional combinations of the GLC,
see Table 2.1. It is convenient to introduce the two universal low-energy scales (see
for example [131]) defined by

A3 = 4nFy exp|—8(4m)*(4Lg — Ls + 2Lg — 2Ly)] , (2.54)
Ay = 47F, exp[2(4n)*(2L4 + Ls)] (2.55)

(here the L; are renormalized at pi.,, = A, = 47Fp). The fits allow to determine the
dimensionless ratios Az 4/Fy. In order to be able to compare with other results present
in the literature (for a recent summary, see [129]), it is convenient to translate these
scales into the dimensionless coefficients

2

7 4

b =log(575) - (2.56)

where M is the physical pion mass. The physical values of Fy and M, are used as an
input for the conversions in (2.54)-(2.56).

An overview of the results is given in Tables 2.2 and 2.3, and in Fig. 2.1. The lattice

convention for the GLC is:

a; = 8(4m)°L; . (2.57)
Results from other determinations present in the literature in the Ny = 2 Wilson
setup are also reported (Del Debbio et Al [56], Irving et Al. (UKQCD) [109]); we
also report results obtained from a subsequent work [tIS-1], see in the next Chapter.

The reported errors on the determinations of [Chi-1, Chi-2, Chi-3, tIS-1] are statistical
only.

HTn this case, due to the low number of points at disposal, quadratic corrections were not included
in the fits.
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2.3. Determination of the Gasser-Leutwyler coefficients [Chi-1,Chi-2,Chi-3]

Table 2.3.: Overview of the results for the Gasser-Leutwyler coef-
ficients (valence quark mass analysis).

Ref. a(fm) my/ms as 208 —
[Chi-1] 0.28 025 1.6+£03 0.58+0.03
[Chi-2] 0.19 028 22+£02 0.76+0.05
[Chi-3] 0.19 028 21+£04 0.58+0.05

UKQCD [109] 0.10  0.67 12+0.6 0.36+0.24

2.3.4. Discussion

The relative dispersion of the different lattice determinations in Tables 2.2 and 2.3, in
some cases larger than the statistical error, is to be attributed to relevant systematic
effects. Indeed, the collective fit for a given quantity always delivers chi-square/d.o.f. >
2. The observations made in [Chi-2, Chi-3] support the hypothesis that, for the con-
sidered regime of light quark masses, the neglected NNLO contributions in the chiral
expansion could play a major role.!?

Nevertheless, all determinations of 2ag — a5 are compatible with the “standard”
phenomenological value [28] supporting a massive u quark, see Fig. 2.1, lower right
panel. It should be recalled, however, that the dynamics of the s quark was not
included in these lattice simulations.

The main result of the studies [Chi-2, Chi-3] is that, for the analyzed regime of
quark masses (ms/3 < m, < 2m,/3), higher order corrections in the chiral expan-
sion dominate over lattice corrections. A direct verification of this conclusion can be
obtained by considering the quantity

RRn + 2RRf —3 :{ NON(E)O ,
which vanishes in the continuum up to NLO order and, therefore, could be either
described by NNLO or O(a) terms. The two fits are shown in Fig. 5 of [Chi-3] for
the lightest sea quark mass. The chi-square of the fit is 1.3 for chiral fits including
some of the NNLO corrections and 7.2 for NLO fits with O(a) corrections. This
indicates that the NNLO corrections dominate. The systematic inclusion of all NNLO
corrections [27] in the fits, however, does not appear to be a viable possibility, since
it would involve too many free parameters.

We conclude that a light quark mass m, =~ my/3 is still outside the domain of
validity of NLO ChPT. This outcome motivates the simulation of lighter quarks. In

12In [150] a similar analysis was performed, in the Ny = 3 staggered-fermion formulation, only for
the pseudo-Goldstone boson masses. For 2ag — a5 values in the range 0.4 — 0.5 were found in the
region of quark masses considered here. For lighter quark masses, the value of 2ag — a5 tends
to decrease. Since the GLC depend non trivially upon Ny, a quantitative comparison of these
results with the Ny = 2 case is not possible.
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2. Lattice QCD and chiral perturbation theory

the next chapter we will present a different formulation of QCD with Wilson lattice
fermions and new simulations algorithms which allow to make substantial progresses
in this direction. The experience accumulated in the course of these studies will be
useful in future applications with lighter quarks.
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Figure 2.1.: Comparison of lattice and phenomenological determinations of
low-energy constants, from the sea analysis (upper panels) and
from the valence analysis (lower panel)
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3. Simulation of twisted mass QCD
(TMQCD)

In this chapter, a recently discovered phenomenon in Wilson lattice QCD in the regime
of light quarks will be discussed, characterized by the appearance of metastable vacua
in the phase structure of the lattice theory. This feature of the Wilson formulation is
theoretically well understood and related to the explicit breaking of the chiral sym-
metry.

Moreover, a modification of the original Wilson formulation will be introduced,
known as “twisted mass” lattice QCD (TMQCD) [76]. TMQCD solves in a rather
simple way the two main problems of the Wilson formulation, infrared instability and
large cut-off effects, while maintaining the important advantages of simplicity and
theoretical soundness. TMQCD seems therefore to provide a suitable framework for
large-scale simulations of QCD in view of precise determinations in hadron physics.
The first steps taken in this direction will be reviewed in this chapter.

The two above outlined topics of the chapter are actually interrelated: any lattice
simulation towards the chiral limit requires, as a preliminary step, the investigation of
the phase structure of the underlying lattice theory. This investigation turns out to
be easier in the twisted mass formulation due to the presence of an additional tunable
parameter.

3.1. Introduction

As we have seen previously in this review, the lattice simulation of QCD with light
quarks presents several difficulties. In this chapter, a new aspect of the light quark
mass regime in Wilson QCD will be discussed; its relevance in numerical simulations
has only recently been pointed out [Wil-1]. This aspect is actually quite general and
is related to the explicit breaking of chiral symmetry present in any non Ginsparg-
Wilson formulation of lattice fermions. An useful theoretical framework in this context
is provided by chiral perturbation theory with the inclusion of lattice corrections [170].
Wilson chiral perturbation theory applying for the Wilson formulation was discussed
in the previous Chapter.

At finite lattice spacing and for light quarks, the explicit chiral symmetry breaking
can dominate over the soft breaking produced by the quark masses and a faithful
reproduction of the physical phase structure of QCD is not guaranteed in the lattice
theory. In particular, unphysical metastable states can appear. In the case of Monte
Carlo algorithms characterized by local ergodicity, as TSMB and HMC, the link con-
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3. Simulation of twisted mass QCD (TMQCD)

figuration of the system can fluctuate for a rather long time during the update around
the local minimum represented by a “wrong vacuum”. Another unpleasant implication
of this unphysical regime is that the pion mass cannot be decreased below a certain
minimal value, a potential obstruction for the chiral limit.

As already anticipated, in this chapter a new formulation for lattice fermions,
TMQCD, will be introduced. It is obtained by a slight modification of the Wilson
formulation, which however introduces several substantial improvements. The mod-
ification consists in the introduction of a new (chirally twisted) mass term for the
quarks, which provides the already anticipated infrared regulator for the eigenvalue
spectrum of the Wilson-Dirac operator. The sharp infrared cut-off is expected to be
important in the simulation process and in the measurement of low-energy hadron
quantities, which are known to be affected by the fluctuations in the spectrum of the
Wilson-Dirac operator. In the twisted mass theory the standard “untwisted” mass can
be tuned to zero: in this case the theory is O(a) improved. The improvement follows
from a symmetry of the action and does not require additional improvements of the
operators.

After briefly introducing TMQCD for the Ny = 2 case in Sec. 3.2, the review will
concentrate on the phase diagram with Wilson fermions. In Sec. 3.3, the theoretical
picture will be given. Its numerical verification is contained in [Wil-1, Wil-2, dbW-1,
dbW-2], which will be reviewed in Sec. 3.4. The numerical results about the phase
structure of the lattice theory provided the basis for the large-scale simulations of
Ny =2 TMQCD of [tIS-1] reviewed in Sec. 3.6. In Sec. 3.5 the methodology for the
numerical determination of the twist angle w associated with the twisted theory is
explained.

QCD with only two light degenerate quark flavors has been considered until now
in this review. This formulation, however, is just an approximation of the physical
case where also heavier quarks are included. Inclusion of additional quark flavors in
the twisted mass formulation is not completely trivial, since reality of the fermion
action and improvement at maximal twist must be maintained. New flavors have to
be introduced in quark pairs forming isospin doublets. This means that, together
with the s quark, also the next heavier ¢ quark has to be included. In Sec. 3.7 we will
discuss a twisted mass formulation accommodating a split-mass doublet describing the
s and ¢ quarks (N = 24141 QCD). First simulations and the preliminary study of
the phase structure of this lattice theory [t1S-2] will be discussed.

3.2. Twisted mass Wilson fermions

The lattice action for two degenerate flavors of twisted mass Wilson quarks, arranged

in the isospin doublet
_ (X1
= ) 3.1
= (1) 3.1)
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can be written [76]

$1= 'S L S rx@) - X(o + i)l + )

p==+1
+X (@) [mo + ipo 573X () (3.2)

where we define as usual U_,(z) = Ul(z — afi) and v_, = —v,, 73 is the third Pauli
matrix (in flavor space). When comparing with the original Wilson action for the
quark sector, Eq. (0.20), we realize that lattice fermion action (3.2) contains, besides
the standard mass term for a degenerate doublet

mo X () x(z)

(mg will be referred in the following as to the untwisted mass), an unconventional mass
term (twisted mass term)

it X () 573X () (3.3)

An important point to notice here is that, in the continuum limit, the renormalized
theory associated to twisted mass lattice QCD only differs from the corresponding
renormalized theory of (conventional) Wilson lattice QCD by a redefinition of the
fermion fields by an axial chiral transformation [76]. This implies that the two theories
are equivalent in the continuum limit and both are expected to reproduce QCD. In
particular, the isospin and parity breakings introduced by the twisted mass term
disappear in the continuum limit: they represent discretization effects similar to, for
example, breaking of Lorentz invariance present in any lattice version of QCD.

More precisely, the renormalized theory associated to (3.2) may be identified with
QCD if the physical quark fields 1), 1 are identified according to:

— ) =ye'2P® | = arctan <ﬁ> : (3.4)
m

=

— l57573
X — P =e27y

The quantities m and p in the above relations denote the renormalized counterparts
of the untwisted and twisted masses in the continuum limit; these are related to the
lattice Lagrangian parameters (myg, po) by

m = Zg (mo—moc) 3.5)
po= Zpho; (3.6)

here, Zso and Zp are the multiplicative renormalization constants of the scalar singlet
and pseudoscalar non-singlet fermion bilinears S° = yy, P* = yy57%x (a = 1,2,3),
respectively; mo. = f(go)/a is the additive mass renormalization of standard Wilson
lattice QCD.

Another important point to observe here, is that the validity of the identification
stated by Eqgs. (3.4)-(3.6) strongly relies on the independence of the renormalization
scheme (defining the renormalized theory) of the actual value assumed by the quark
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masses (including both the untwisted and twisted masses in the twisted theory). Par-
ticularly convenient is the massless scheme, where the renormalization constants are
computed for vanishing quark masses. In this case twisted mass and standard (N; = 2)
QCD trivially coincide and the renormalization constants in (3.5) can be computed,
for the given value of the lattice coupling g, in the standard Wilson theory.

The physical quark mass m, is given in the twisted theory by the length of the two-
dimensional vector defined by the two components (untwisted, twisted) of the quark

mass:
Mg = \/m?+ p? ; (3.7)

observe that the twist angle w in (3.4) corresponds to the polar angle associated to
this “mass vector”.

Even if the chiral twist of the quark mass does not change the continuum limit of the
lattice theory, it does have an effect at finite lattice spacing. Indeed, the Wilson term
is not invariant under the chiral transformation (3.4). The two main improvements
introduced in the lattice theory by the twisted mass term will discussed in detail in
the following two subsections.

3.2.1. Positivity of the fermion measure

For pp # 0 the fermion measure resulting from the action (3.2), namely the determi-
nant of the associated fermion matrix, is characterized by a sharp infrared cut-off [76].

The fermion matrix of the twisted mass theory with degenerate quarks can be
written as (see Eq. (3.2))

Qrv = Q x 1 + dajgys73 , (3.8)

where () is the standard matrix for one flavor of Wilson lattice quarks defined in
Eq. (0.23); 1 is the unity matrix in the two-dimensional flavor space. Starting
from (3.8), one can quite simply derive the following relation for the fermion de-
terminant of the twisted mass theory:

det(Qrar) = det [(1:Q)* + (amo)?] (3.9)

where the determinant on the RHS is computed in the one flavor theory. The above
equation shows that the determinant of Qrj; is strictly positive for g # 0, and
consequently eigenvalues with arbitrarily small modulus cannot occur in the spectrum.
This feature of the twisted mass formulation, as discussed previously in this review, is
expected to ensure stability in the dynamical evolution of the lattice system in Monte
Carlo simulations.

3.2.2. O(a) improvement

O(a) improvement applies for the twisted mass theory [80] when the Lagrangian mass
parameter my is tuned to the critical value mg. for which the renormalized untwisted
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quark mass vanishes, m = 0, see Eq. (3.5). Improvement holds in this situation for
any value of the twisted quark mass p, which represents in this case the total quark
mass (see also in the following); however, in a massless renormalization scheme my,
must be in principle computed, for the given value of gy, in the limit of vanishing
(twisted) quark mass p — 0. According to (3.4) m = 0 for u # 0 implies w = 7/2,
corresponding to mazimal twist.

Summarizing briefly the argument of [80] (see also [79]), for m = 0 the lattice ac-
tion (3.2) enjoys an extra symmetry which protects physical quantities from lattice
corrections with an odd power of the lattice spacing, O(a?**1), k > 0. This ensures
in particular O(a) improvement of all quantities which can be expressed as expec-
tation values of parity-even (multi)local operators'. The improvement at maximal
twist is “automatic” [80], in the sense that the absence of O(a?*1) corrections only
relies on the symmetry properties of the lattice action (and of the insertion operators)
and the introduction of further counterterms in the action is not required. This has
to be compared with the standard Symanzik improvement program, where the non-
perturbative determination of the improvement coefficients for each composite field is
necessary [134].

The definition of maximal twist by the vanishing of the renormalized untwisted
quark mass m = 0 results in a natural way from the discussion of the cut-off effects in
the Symanzik expansion [179]. In this expansion, the renormalized continuum coun-
terpart of the quark mass appears. However, in the Wilson formulation of fermions, on
which the twisted mass formulation relies, the untwisted quark mass is not protected
from additive renormalizations due to the explicit breaking of the chiral symmetry?.
This fact introduces an O(a) ambiguity in the definition of the massless limit with
Wilson fermions. The consequence is that only a looser condition m = O(aAgqp) can
be enforced on the lattice without further action.

As already stated previously in this review, in an ideal approach the chiral extrap-
olation should be performed after the continuum limit. In this way, for fine enough
lattices, the soft chiral symmetry breaking in the lattice action always dominates over
the “sharp” O(a) breaking from the Wilson term. On the basis of a simple dimensional
analysis, one can conclude that the soft breaking introduces corrections of the order
~ qu%C p, while the lattice breaking corrections ~ GA%C p (the proportionality coef-
ficients can be reasonably assumed to be ~ 1). The aforementioned “ideal situation”
therefore applies if

mg > aljep - (3.10)

It can be argued [80] that in this regime of quark masses, the lattice ambiguity in
the condition of vanishing untwisted quark mass does not spoil the argument of au-

! Automatic improvement includes all expectation values of parity-even (multi)local operators. Fur-
ther action is required for lattice operators which are not trivially even under parity. An example
is given by the projecting operators for states which are not at rest; in this case, an average over
the two directions of the momentum may be required (parity-average). Observe that vacuum
expectation values of parity-odd operators are in general non-zero and O(a) (even at maximal
twist) as a consequence of the parity breaking of the twisted mass formulation.

2This is instead the case for the twisted component.
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tomatic improvement: the O(a) ambiguity only affects the even cut-off effects in the
lattice spacing (namely O(a?) or smaller). So, any “reasonable” lattice prescription is
acceptable.

Very often however, the condition (3.10) cannot be realized in practice, since it
implies very fine (and large) lattices for the light quark masses required for safe chiral
extrapolations. More realistic regimes of quark masses are

my ~ aAéCD (3.11)

or even
mq ~ azA?;)CD << aA2QCD . (312)

In these regimes of quark masses not all prescriptions for maximal twist are equally
good, since some of them may introduce large O(a?) discretization errors in the result-
ing maximally twisted theory. Improvement would be in this case spoiled [13]. These
large discretization errors can be discussed in the Symanzik’s effective Lagrangian
framework by assuming a pion dominance at low-energies [79]. In this approach one
concludes that infrared enhanced cut-off effects O((aAgep)®*/u"), 1 < h < 2k can
indeed be produced at maximal twist by the O(a) parity breaking term in the effec-
tive action. In a Wilson ChPT analysis [172] these terms are automatically resummed
delivering infrared finite results [168]. Both approaches agree in the conclusion that lat-
tice corrections become very large as soon as, at maximal twist, y ~ mg = O(aAdep).

An effective O(a) improvement, also holding in the regimes of quark masses (3.11),
and even (3.12) [168], is obtained if an “optimal” definition of the critical quark mass
is chosen [13, 168, 79]. For an optimal prescription of maximal twist, the infrared en-
hanced cut-off effects are reduced to O((aAgep)?*/u*~1) effects [79]. This suppression
can be understood in Wilson ChPT, where the leading cut-off effects are resummed:
for an optimal prescription the shifted untwisted quark mass incorporating lattice
corrections, see Eq. (3.17) in the following, vanishes with O(a®) precision, while it
vanishes with only O(a) precision [168] with a generic prescription. In the former case

improvement is effective down to quark masses mg 2 a*Adcp. As it turns out, the

O(a) improvement breaks down when the quark mass is reduced to a critical value in
the regime (3.12). At this point, as we will see in more detail in the next section, the
phase structure of the lattice theory departs from the picture of the continuum [170].

An optimal prescription for maximal twist in the sense of the above discussion
is obtained by requiring in the twisted theory the vanishing of matrix elements of
operators which are odd under parity in the physical theory [79]. Such a prescription for
tuning to maximal twist in numerical simulations was first proposed in [67] and [dbW-
1] (see also [dbW-2]). Details will be given in Sec. 3.5. This prescription based on
“parity restoration” is equivalent to imposing vanishing of the PCAC quark mass in
the twisted theory (see in the following).

Two different strategies can be at this point conceived for the simulation of the
theory at maximal twist; both turn out to ensure effective automatic improvement:

i) The theory is simulated, for different values of pg, at my = mg. where mq, is the
critical mass extrapolated at py = 0.
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ii) The theory is tuned to maximal twist only for the lightest quark mass 1 i, and
the so obtained value of my, is used in all simulations at heavier quark masses.

Choice i) is consistent with a massless renormalization scheme, while choice ii) pro-
duces only small deviations in physical quantities ~ G2Mo,mm/\Qc p < 1[79].

The two different prescriptions were tested in quenched simulations [115, 1]; small
lattice artifacts were indeed observed in both cases. The large-scale simulations with
dynamical fermions of [t1S-1], to be described in the following, rely on the procedure
ii).

For completeness, we mention that the question of the optimization of mg. becomes
immaterial if clover improvement [173] is performed in the twisted mass theory. In
this case indeed, the mass independent O(a) cut-off effects in the shifted untwisted
mass are canceled by the improvement term and only residual O(pu?a?) cut-off effects
remain. This strategy, which however requires the tuning of an extra coefficient, was
put forward in [23].

The freedom in the choice of the exact twisted formulation in the wvalence sector
can be used to simplify the complicated mixing patterns of composite operators in
the lattice theory; this is an important issue for example in the determination of the
parameter By [81], relevant for the By — By mixing (see also [157] for a different
approach). A simple example of this advantage of the twisted mass theory can be
already found in the unitary formulation given by (3.2): in the (maximally) twisted
theory the physical axial-vector current corresponds to the vector current, for which an
exactly conserved lattice version exists; no lattice renormalization is therefore involved
in the determination of the pion decay constant Fj.

3.3. The phase structure of lattice QCD with Wilson
fermions

In the continuum, the degeneracy of the QCD vacuum associated to the spontaneous
breaking of the chiral symmetry is resolved by the quark mass, which plays the same
role of an external magnetic field in a ferromagnet. The ground state corresponds to
a local minimum of the potential, which is symmetric in the chiral limit with massless
quarks. The properties of the resulting ground state, the vacuum, depend on the
detailed way the mass term in the QCD Lagrangian deforms the potential of the
theory. In the case of Wilson fermions, which we consider here, the quark mass does
not represent the only source of chirality breaking, since chirality is also explicitly
broken by the Wilson term (recall the discussion before Eq. (3.10)). Consequently,
the phase structure of the lattice theory may depart from the expected continuum
picture in regions of the parameter space in which the explicit breaking is comparable
in size with the soft breaking. In this case, extremely large discretization effects are
introduced in the lattice determinations.

The possible occurrence of such phenomena was realized already at a very early
stage in the theoretical discussion of lattice gauge theories [122]. The existence of
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an unphysical phase for the theory with more than one quark flavor was successively
conjectured by S. Aoki [12] (see also [44]). Aoki’s scenario corresponds to an extreme
situation, in which the QCD vacuum becomes unstable and the true vacuum breaks
both parity and flavor symmetry®. Numerical studies indicate [108] that the Aoki’s
scenario is realized in the strong-coupling regime of the lattice theory. In the more
interesting regime of weak couplings, near to the continuum limit, a milder scenario
is expected to apply. In this case, the lattice theory possesses a QCD-like vacuum,
however additional metastable states, corresponding to local minima of the free energy,
also appear in the phase structure of the theory. Findings in the numerical studies [31,
14, 15] may be interpreted as early evidences for the emergence of this latter scenario
in the regime of light quark masses. Clearly, the knowledge of the phase diagram of
the underlying lattice theory should be the prerequisite for any large-scale simulations
program.

A detailed investigation of the phase diagram of lattice QCD with Wilson fermions
and a twisted mass term was undertaken in [Wil-1, Wil-2, dbW-1, dbW-2, t1S-2]
and [68] in view of large-scale simulations of TMQCD (to be discussed in Sec. 3.6). The
objective of these studies was to map the “safe” region of parameter space, in which the
maximally twisted lattice theory is characterized by truly small O(a?) discretization
errors. In this section, a brief account of the underlying theoretical background is
given. Numerical results will be discussed in the next section.

We stress here that the hereby discussed complications, originating from the inter-
change of the chiral and the continuum limits, are generic for any non Ginsparg-Wilson
formulation which explicitly breaks the chiral symmetry. “Exotic” scenarios are also
possible for example in the case of the staggered fermions [19].

3.3.1. ChPT predictions

Wilson ChPT (discussed in the previous chapter, Sec. 2.2) provides the theoretical
background for the discussion of the phase structure of Wilson lattice QCD [170]. We
illustrate here the application to the standard theory. The inclusion of the twisted
mass term will be considered in the next subsection.

The vacuum of QCD is given by the absolute minimum of the potential, which at
low-energies is assumed to be dominated by the (pseudo) Goldstone bosons. In our
case, Ny = 2, these are given by the pions, whose fields can be parametrized as (see

the definition (2.4))
3
U =exp {iZWaaa/Fo } . (3.13)
a=1

On the basis of the vector symmetry (g, = gg in (2.3)), preserved by the Wilson
formulation, one can show that the potential must be a function of the flavor-trace

A:iTr(UJrUT), l<A<1. (3.14)

3In a different interpretation [29], this vacuum corresponds to one of the degenerate vacua associated
to the (continuum) chiral phase transition, see also the discussion in [170].

64



3.3. The phase structure of lattice QCD with Wilson fermions

In the continuum, the potential is a polynomial in A, of second order up to NLO or
O(m2):
q

V= —ClA —+ C2A2 N (315)

2

7) contains a combination

with ¢; = 2F% Bym,;, while the exact expression for c; = O(m
of Gasser-Leutwyler coefficients.
Inclusion of lattice corrections up to O(a?) in the sense of Wilson ChPT produces

an O(a) shift of the coefficient ¢;, ¢; = O(my, a), while the coefficient ¢y gets O(am,)

q
and O(a?) corrections: ¢ = O(m2, amg,a*).* After rewriting (3.15) in the convenient
form
c
V=cy(A—e?+const, e=— —1<A<1, (3.16)
(&)

one immediately concludes:
i) for |e| > 1 the potential has one (absolute) minimum at A = sgn(c;),

ii) for |¢|] < 1 and ¢z < 0 the potential has an absolute minimum at A = sgn(c;)
and in addition a local minimum at A = —sgn(c;),

iii) for || < 1 and ¢y > 0 the potential has one minimum at A =€ .

The scenario i) corresponds to the physical situation. This is what results from con-
tinuum NLO ChPT if the quark mass is not too large and ChPT is applicable (in the
continuum one has € ~ 1/m,). Scenarios ii) and iii) can only be realized, for small
quark masses for which the NLO chiral expansion is applicable, if the O(a) corrections
play a major role. Notice that € is a measure of the size of the LO term when compared
to the NLO correction.

The coefficient ¢; gives a possible lattice definition of the quark mass

m, ~ci with  m; = m, + O(a) . (3.17)

The crucial point is that € is not necessarily large if m/ ~ ¢; = O(a®). This situation
occurs when m, = O(a), also implying ¢; = O(a?): ¢; and ¢, are in this case of the
same order of magnitude O(a?) and their ratio € can be smaller than one. So, in this
regime of quark masses one of the two unphysical scenarios ii) or iii) can potentially
apply, depending on the sign of cs.

Case ii) is the “mild” scenario anticipated at the beginning of this section. Here
the metastable state corresponds to the vacuum appropriate for the opposite sign of
the quark mass mj. For mj = c¢; = 0 the potential is symmetric in A and the two
states with A = +1 are degenerate as one would expect for vanishing quark masses.
When ¢; (or m;) changes sign the two vacua are switched. For m; = 0, due to O(a)
terms, a different lattice definition of the quark mass, as for example the PCAC quark
mass (1.20), is expected not to vanish. The latter therefore changes sign and has a

4We omit here powers of Agcp needed to restore the right mass dimensions.
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[ Aoki phase
[ 1%t order phase transition plane

Figure 3.1.: Phase structure of twisted mass lattice QCD.

discontinuity at mfI = 0. Similarly, the pion mass does not vanish at m; = 0, while
assumes a (non-zero) minimal value [170]:

20ca| _

Fg

O(a?) . (3.18)

Case iii), less relevant for us, corresponds to the “extreme” scenario of the Aoki
phase. Here |Appm| < 1, which in turn implies U,,;,, # 1: the pion field must have a
non-zero vacuum expectation value, see (3.13) and (3.14). This latter scenario seems
to apply in a regime of strong couplings [108] and should not affect lattice simulations
towards the continuum limit.

3.3.2. Adding the twisted mass term

A twisted mass term in the lattice action introduces a third direction y in the param-
eter space of Wilson lattice QCD, besides the conventional untwisted quark mass and
the coupling constant, or in lattice notation the hopping parameter k = 1/2(mg + 4r)
and 3 = 6/g2. The resulting parameter space is therefore three-dimensional as de-
picted in Fig. 3.1. The phase diagram of Wilson lattice QCD in this extended pa-
rameter space was studied within Wilson ChPT in [144, 165, 171]; we report in the
following the main features relevant for the future discussion.

In the continuum limit and for fixed values of the quark mass in physical units,
the twisted mass term just produces a chiral rotation of the vacuum, see Eq. (3.4),
which is immaterial from the point of view of physics. The theory can be “rotated
back” to standard QCD by proper redefinition of the quark fields. Lattice corrections
produce in this case small O(a) deviations if |¢] > 1 (scenario i)). In this “safe” region
of parameter space an effective O(a) improvement can be realized at maximal twist,
with small O(a?) discretization errors, if an optimal definition of maximal twist is
chosen, see the discussion in Subsec. 3.2.2.
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For a given lattice formulation in the gauge sector, the coefficient ¢y in (3.15),
whose sign discriminates between the scenario ii) first order phase transition as in
the continuum and iii) Aoki phase, is a function of 5. As mentioned above, for low
values of [ (strong coupling) scenario iii), ¢ > 0, is expected to apply. In this case
the unphysical phase disappears for non-zero twisted mass: it only extends in the
untwisted mass (or ) direction (this is the blue region in Fig. 3.1).

The case of interest ii), on the contrary, is expected to apply at weak couplings,
on the right in the figure. Here the unphysical first order phase transition at m; =0
(maximal twist) extends in the twisted mass (1) direction: a critical segment appears,

defined by®
|2

NG

1l < pe(B) = = 0(a’) ; (3.19)
this is the red region in the figure.

The charged pion mass assumes on this segment the minimal value (3.18). The lat-
ter represents the absolute minimum for the charged pion mass in the (x,au)-plane for
fixed 8. The neutral pion mass vanishes at the endpoint of the first order phase tran-
sition at kK = ke, |pt| = fte, where the system undergoes, according to this discussion, a
second order phase transition.

3.4. Study of the phase diagram of TMQCD [Wil-1,
Wil-2, dbW-1, dbW-2]

As we have seen in the previous section ChPT predicts, for the Wilson lattice theory,
strong deviations in the phase structure from the continuum picture, when the region
of small quark masses m, = O(a) is entered. ChPT, however, does not predict the
precise region of parameter space affected by the unphysical phases, nor discriminates
between the two possible scenarios ii) and iii) of Sec. 2.1: the sign of the coefficient
co is a priori unknown. More in general, it is important to know whether the above
described exotic scenarios apply for values of the lattice spacing and of the quark
masses which are relevant in view of phenomenological applications. Open questions
are the dependence of the phase diagram of the lattice theory upon the lattice spacing
and the impact of the formulation for the gauge sector.

In [Wil-1] a microscopic interpretation for the first order phase transition was given.
According to this interpretation, the phase transition is related to a massive rearrange-
ment of the eigenvalues of the Wilson-Dirac operator in the infrared region. As will
be explained in Subsec. 3.4.4, the introduction of extended loops in the definition of
the gauge action is expected to produce an impact in this region of the Wilson-Dirac
spectrum. Examples already considered in the literature contemplate the introduction
of rectangular loops in the standard plaquette action (0.15); one can define a family

’Due to the symmetry of the lattice action, the sign of y is irrelevant.
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of lattice gauge actions:

S9 =3 {bo > (1 - %SRTrUD) + by (1 - %%TrUrec> } : (3.20)

O rec

where the new variable U, result from the product of links along a a x 2a lattice
loop; the normalization condition by = 1 — 8b; ensures the reproduction of the correct
continuum limit. The Wilson plaquette action corresponds to b; = 0. An optimal
choice of b; in view of reduction of lattice artifacts can be obtained in tree-level weak-
coupling perturbation theory. This leads to by = —1/12 [192] corresponding to the
tree-level Symanzik improved gauge action (tISym). An alternative approach relies on
the renormalization group theory: cases considered in the literature are the DBW2
gauge action [181], by = —1.4088, and the Iwasaki action [111], by = —0.331. The
extension and strength of the unphysical first order phase transition in the resulting
lattice theory will be considered as a further criterion for an optimal choice in the
gauge sector.

3.4.1. Algorithmic developments

Two different simulation algorithms were employed for the study of the phase structure
of Wilson lattice QCD: the TSMB algorithm described in Chapter 1 and a new version
of the HMC algorithm optimized for high efficiency in the light quark regime; this is
a multiple time-scale mass-preconditioned HMC (mtmp-HMC [185]). Cross-checking
results from two different simulation algorithms was important in order to disentangle
possible simulation artifacts from the observed emerging phenomena in the phase
structure.

The TSMB algorithm was already described in Sec. 1.2. The mtmp-HMC algo-
rithm differs from standard HMC of [62] by several improvements including mass-
preconditioning [102] and a multiple time-scales integration scheme [166]. A detailed
description of the algorithm can be found in [185], where a dramatic reduction of the
simulation costs for Wilson fermions in the light quark regime was proven. The com-
parative tests of [Wil-1] show that mtmp-HMC is superior to TSMB in decorrelating
configurations of the system for the considered regime of light quark masses.

This success of mtmp-HMC prompted further algorithmic developments: in [140]
a polynomial version of the HMC algorithm (PHMC [52, 78]) was designed including
the aforementioned improvements. In addition, some advanced features are inherited
from TSMB, as for example the stochastic correction in the update (see Sec. 1.2).
This optimized PHMC algorithm, which can be applied for arbitrary flavor structure,
is a promising starting point in particular for the Ny = 24141 twisted mass formu-
lation including the s and ¢ quarks (to be considered in Sec. 3.7). Applications of an
analogous algorithm in SYM and in Ny =1 QCD are also in progress [Nf1] [57, 72].
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3.4.2. Wilson plaquette action [Wil-1]

In [Wil-1] first investigations of the phase diagram were performed with the plaquette
action in the gauge sector, evidences for a first order phase transition were collected,
and the identification of the latter with the phase transition predicted by Wilson
ChPT [170] was put forward. The Wilson action was simulated in this case for a
single value of the coupling constant 3 = 5.2, corresponding to a(5.2) ~ 0.15 fm.5
Both the untwisted theory and a non-zero twisted mass apo = 0.01 were considered;
the latter mass corresponds to p >~ 12 MeV in physical units if renormalization factors
are neglected.

Hysteresis cycles. In a preliminary survey, the thermal cycles of the plaquette
as a function of the hopping parameters s (driving the untwisted quark mass) were
performed for different values of aug on small lattices. Hysteresis phenomena were
observed for small values of apug (Fig. 1 of [Wil-1]). This observation supports a first
order phase transition for p < p., as predicted by Wilson ChPT.

Metastability of the plaquette. The metastability of the plaquette was further
investigated on larger 123 -24 and 163 - 32 lattices. The existence of metastable vacua,
typical of a first order phase transition, was observed. As we have seen in Sec. 3.3,
for a given value of the twisted mass below the critical value (3.19), Wilson ChPT
predicts the existence, in addition to the true vacuum, of a metastable vacuum. The
latter becomes the true vacuum of the theory when the sign of the untwisted mass is
reversed.

The technique for a systematic investigation of the metastable vacua is based on the
observation that the vacuum associated with a negative quark mass is characterized
by smoother gauge configurations (signaled by a larger value of the average plaquette).
So the vacuum associated with the negative (positive) quark mass can be localized by
starting the thermalization from a cold (hot) configuration: the expectation is that the
local update algorithm remains in the metastable vacuum for a while before finding
the true minimum. The two time histories of the average plaquette, from cold and
hot start, are expected to display therefore different plateau values for intermediate
Monte Carlo times, corresponding to the two different vacua. In Fig. 2 of [Wil-2]
examples are shown. The full accomplishment of this procedure can be in practice
very expensive, especially for large volumes where the tunnelling is less probable. As
a matter of fact, the localization of the true minimum is in many cases not possible.
An unpleasant aspect of this situation is that a complete simulation can be performed
in the wrong vacuum.

Minimal pion mass. Further investigated quantities were the charged pion mass
M+ and the untwisted PCAC quark mass. The latter is defined by the PCAC relation,
holding for the charged axial-vector current in the twisted theory, with an appropriate

6The lattice spacing is estimated from the Sommer parameter after chiral extrapolation. However,
due to the metastabilities, a massless renormalization scheme is not really well defined. This
estimate and analogous ones given in the following should be interpreted therefore as indicative
values.
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insertion operator

— Tt — T+
peac _ Oy x(@) X955 x () (3.21)

X 2005 x () X5 X (1Y)

(5 = +in). m provides a lattice definition of the untwisted quark mass
alternative to the rather abstract one of Eq. (3.17).

While decreasing the untwisted quark mass for a fixed twisted mass, a switch of
the vacuum is at some point observed, signalled by the sign change of mf CAC (Fig. 4
of [Wil-1]). Consistently, the pion mass never vanishes but presents a minimum (Fig. 3
of [Wil-1]). These observations again support the picture of a first order phase tran-
sition predicted by Wilson ChPT.

The PCAC quark mass reabsorbs most of the O(a) discretization effects in the
quark mass dependence of the pion mass. In particular for meAC = 0 the theory
is at maximal twist and O(a) corrections are absent in physical quantities (as also
confirmed by NLO Wilson ChPT formulae [172]). This is illustrated by Fig. 5 of [Wil-
1], where the pion mass is reported as a function of mfz CAC. the extrapolated value of
the pion mass at maximal twist is very small, consistent with the relatively light quark
mass p ~ 12 MeV. This observation has an academic value only, since, due to the
metastabilities, the minimal simulated pion mass is rather large Mf:fm) ~ 550 MeV:
the chiral point can only be accessed after a rather long extrapolation. According to
Wilson ChPT this value of the pion mass, which depends on the lattice spacing, sets
an absolute lower limit for the lightness of the pion in lattice simulations.

PCAC
X

Discussion. Hints for a bulk phase transition in Wilson lattice QCD were previ-
ously found in the Ny = 3 theory [14, 15] and in the N; = 2 theory at finite tempera-
ture [31]. To what extent these observations are related to the present evidences of a
first order phase transition is however not yet completely clear.

An important question left unanswered by [Wil-1] is how the phase transition scales
with the lattice spacing, and in particular which is the largest lattice spacing suitable
for light quarks and a short chiral extrapolation. Taking for example the benchmark
value M, ~ 300 MeV, for which NLO ChPT is expected to give accurate predictions,
a maximal lattice spacing a can be defined by inverting the condition

a: M7 (@) =300 MeV . (3.22)

An answer to this question is given in the study [Wil-2], which will be discussed in
the next subsection.

3.4.3. Scaling of the phase diagram [Wil-2]

In order to probe the lattice spacing dependence of the phase diagram, the analysis
of [Wil-1] was extended in [Wil-2] to a coarser (5 = 5.1) and a finer (§ = 5.3) lattice.
Altogether the study includes three lattice spacings: a(5.1) ~ 0.17 fm, a(5.2) =~
0.15 fm, a(5.3) ~ 0.12 fm. The scaling test was performed at fixed physical conditions;
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in particular, the parameter aug was varied with § such that p is roughly constant
~ 12 MeV; the lattice extension is L ~ 2 fm.

Estimate of the minimal lattice spacing. In Sec. 3.3 a definition of the minimal
pion mass associated to the unphysical first order phase transition was given. This
corresponds to the value assumed by the charged pion mass when the shifted quark
mass my, (3.17) vanishes and the potential is symmetric. The precise value of the
hopping parameter for which the two vacua are degenerate cannot be easily established
in practice, however, and this definition cannot be directly implemented in numerical
simulations.

A numerically more accessible, though not completely rigorous, estimate of the mini-
mal pion mass is obtained by determining (by interpolation) the value of x correspond-
ing to equal values of aM .+ in the two phases. The so obtained pion mass is taken as
a definition of MiTm). This procedure results, for the three lattice spacings considered

in [Wil-2], in the following values: M (5.1) =~ 740 MeV, M7 (5.2) ~ 640 MeV
and MiTm)(&?)) ~ 480 MeV.
The benchmark lattice spacing @ defined in (3.22) can now be obtained by extrap-

olation, assuming on the basis of (3.18) a linear dependence of Mi’fm) on a. This
results in @ = 0.072 — 0.075 fm, depending on the number of included points (2 or 3).

The given definition of the minimal pion mass MfrTm) is anyway academic: this value
of the pion mass is obtained when the lattice theory is maximally metastable. A more
useful benchmark, in view of the computation of physical quantities by numerical
simulations, is given by the lightest pion mass which can be simulated in absence
of metastable vacua, namely outside the critical region of untwisted quark masses
centered at m; = 0. Only positive values of the untwisted mass should be taken into
account in this case, since lattice simulations are usually performed in this region of
quark masses (simulations with negative quark masses are generally subject to larger
fluctuations). This kind of analysis delivers a somewhat larger range for the benchmark
lattice spacing, a = 0.07 — 0.1 fm (the lowest value appears to be more likely than the
highest).

In view of these results, the Wilson plaquette action appears not to be well suited for
lattice simulations in the light quark regime. The largest lattice spacing allowing stable
simulations for light quarks is already rather demanding in terms of computational
load. The finer lattices required for the continuum extrapolation would be even more
demanding.

Scaling test. The work [Wil-2] also contains a scaling test for few elementary
quantities as the charged pion mass and decay constant. Since a (rigorous) chiral
extrapolation of the Sommer parameter is not possible due the metastabilities (see
the footnote to Subsec. 3.4.2), the lattice scale was fixed at a non-zero reference quark
mass by requiring (M +79)? = 1.5. Given a quantity O (pion mass or decay constant)
the dimensionless ratios

(3.23)
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were considered. Neglecting the effect of the (small) twisted mass p, R is a universal
function of the dimensionless ratio of untwisted quark masses

mPCAC

o= —2 . (3.24)
m£CAC|Tef

The results reported in Figs. 5, 6 and 7 of [Wil-2] for the functional dependence
of the dimensionless ratios Rp upon o reveal surprisingly small scaling violations.
Due the rather large values of the pion mass M, +rq > 500 MeV, the question arises,
whether these good properties are maintained closer to the chiral limit. Moreover,
the results could be affected by the first order phase transition. It would of course
desirable to perform such a test in absence of metastabilities. As we will see in the
following, this can be realized by using a different formulation in the gauge sector.

3.4.4. DBW2 gauge action [dbW-1, dbW-2]

As already mentioned at the beginning of this section, a gauge action with extended
Wilson loops is expected to improve the behavior of the lattice theory in relation to the
metastabilities. Prior observations [14, 15] indeed indicate reduction of metastabilities
in the case of a RG improved action with a rectangular term (Iwasaki action). We
consider here the DBW2 gauge action.

Simulation. Three values of § were studied with the DBW2 gauge action: 3 = 0.55
on a 8 - 16 lattice, 8 = 0.67 on a 123 - 24 lattice and 5 = 0.74 on a 16% - 32 lattice.
The first lattice is a rather coarse one: a(0.55) ~ 0.3 fm, while the two finer lattices
correspond to a(0.67) ~ 0.18 fm and a(0.74) ~ 0.13 fm respectively. These two
smaller lattice spacings are close to the ones considered for the Wilson gauge action
(a ~0.12 —0.17 fm).

Also in this case, both vanishing and non-vanishing twisted masses were studied,
app = 0.01 (8 =0.67) and apg = 0.0075 (8 = 0.74). The value of the twisted mass in
physical units, ¢ = 0.11 MeV, and the linear extension of the lattice, L ~ 2 fm, roughly
match those considered for the Wilson gauge action. The two consistent setups allow
a direct comparison between the Wilson plaquette action and the DBW2 action.

The DBW2 action displays nice properties in the simulation process: smoother
configurations are sampled and small real eigenvalues of the fermion matrix occur less
frequently. This produces a sizeable speed up of the TSMB algorithm even in the
untwisted theory.

In [dbW-2] the optimized HMC algorithm mtmp-HMC described in Subsec. 3.4.1
was compared with TSMB; the former algorithm appears to over-perform the latter
by a factor 10 in computer time, confirming that an optimized HMC algorithm is the
best choice for dynamical simulations in the light quark regime.

Phase transition. The expected improvement of the metastabilities is indeed
observed with the DBW2 gauge action. They are observed in the untwisted runs, see
in [dbW-1] the upper panels of Figs. 4 and 5. However for a non-zero twisted mass
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they disappear already at the moderate lattice spacing a(0.67) ~ 0.18 fm, see lower
panels of the figures. A small effect, probably a residuum of a weak phase transition
(or crossover) can be observed in the pion mass. The improvement is impressive, if
one compares with the corresponding case at 3 = 5.2, compare for example with Fig. 1
of [Wil-2]. For the § = 0.74 case studied in [dbW-2], the relatively small twisted quark
mass already brings the system to a safe region away from the phase transition. This
can be seen in the smooth behavior of the PCAC quark mass in Fig. 4 of [dbW-2].
In the Wilson plaquette case for similar conditions (5 = 5.3) the lattice model is still
clearly in the metastable region.

A consistent picture of the results with the Wilson plaquette and DBW2 gauge
actions can be obtained within Wilson ChPT (Secs. 3.3.1 and 3.3.2). In particular,
the extension of the critical segment in the twisted mass direction (3.19) is given by
the coefficient c,, whose size depends on the size of W and on a combination of Wilson
GLC [171], see Egs. (2.30)-(2.32). These quantities depend on the lattice gauge action
and the extension of the critical region is probably reduced in the DBW2 action as an
effect of the rectangular terms.

This is the right place to mention that, those discussed here are very special dis-
cretization effects: the (partial) improvement realized in the case of the potential is
not guaranteed for other important quantities, for example in the gluon sector. This
point will be further considered when discussing the choice of an optimal gauge action
in the light quark mass regime.

Minimal pion mass. In absence of metastabilities, the minimal pion mass ob-
tained at maximal twist corresponds, up to (small) O(a?) corrections, to the contin-
uum value for the given value of my = p. In particular, LO Wilson ChPT predicts for
1> p for the pion mass

(M2 = 2Bou + O(a?)  (mP4C =0, > p) (3.25)

X

(inside the critical region for p < p,. the continuum value is exceeded by a factor p./pu).
So in the present case outside the metastable region, the most appropriate estimate of
MiTm) is obtained by fitting the lattice data for the pion mass with the Wilson ChPT
formulae; see also in the following in this subsection and Figs. 9 and 10 of [dbW-2].
The results for the two values of § are similar (recall that p is constant ~ 11 MeV
in physical units): M:fm) = 270 — 280 MeV. This result must be compared with the
much larger values obtained with the Wilson plaquette action in a similar physical
situation (480 MeV and higher, see in Subsec. 3.4.3).

The DBW2 action displays an extremely nice behavior in relation to the metasta-
bilities: already for rather coarse lattices with a ~ 0.13 fm, pion masses as small as
M, < 300 MeV can be simulated without any influence from the phase transition. In
the case of the plaquette action, we recall, a lattice spacing as small as a ~ 0.07 fm is
required.

Chiral fits. Chiral fits have been performed in [dbW-2] on some of the pion
properties in the charged sector, including the mass and decay constant. Differently
from the studies described in Chapter 2, here the investigation is of qualitative nature
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only. The main goal was to verify whether chiral formulae are applicable in the vicinity
of or even across a phase transition, namely in a metastable vacuum. In particular, it
turns out that the parametrization of pion properties in terms of the untwisted PCAC
quark mass mfz CAC (3.21) removes most of the discretization effects.

The fits of [dbW-2| include lattice corrections up to O(a) precision. Wilson ChPT
for the twisted formulation was developed in [145, 146, 172, 165]. The expansion of the
pion mass in terms of the PCAC quark mass takes the form (compare with Eq. (2.33)
where the pion mass is parametrized in terms of the continuum quark mass)

X
X2 In (471')2 + 5]‘/\[7/[/0,157"6@ ) (326)

2 2
Mﬂ‘i/FO _X+327T2

SN 1O tree = ONLO,tree + 8(2W5 + Wy — 2Wy — Wy — 2Lg — Ls + 2Ly + Ls) pXpcac

where Onro, tree 18 the continuum correction given in Eq. (2.10). The dimensionless
quark mass xpcac (2.11) is in the present case defined in terms the renormalized
untwisted quark mass

m = ZaZp'mENC (3.27)

while in y the full quark mass is inserted:

my = 25\ /(ZamPOACY: + i3 (3.28)

The formula (3.26) can be used to fit lattice data across the phase transition. The
minimal pion mass in absence of metastabilities can be determined by extrapolating
(or interpolating) to m?¥ CAC — (). This procedure is particularly interesting in the case
of the simulation points with the Wilson plaquette action of Subsec. 3.4.2, which lie
in the metastable region.

The chiral fits relative to the DBW2 gauge action, given in Table 10 of [dbW-
2], give reasonable values for the physical quantities, even if with large fluctuations
related to systematic effects. The results for the low-energy constant Fj lie in the
range 70 — 80 MeV close to the phenomenological value Fy ~ 86 MeV.” The results
for the low-energy constants As/Fy and A4/ Fy (see definition (2.54)) lie in the range
7-8 and 17-20 respectively, in agreement with the results of Chapter 2, Table 2.1. The
determination of the low-energy coefficients describing the lattice artifacts is afflicted
with large statistical uncertainties. This indicates that the lattice corrections have
little significance for the basic description of the lattice data (this observation agrees
with the results of Chapter 2).

3.4.5. Tree-level Symanzik improved gauge action

The phase structure of the lattice theory is one important criterion for the choice
of the gauge action for large-scale simulations. As we have seen, a gauge action

"For comparison, the result obtained from the direct determination of the pion decay constant by
Eq. (3.41), to be discussed in the next subsection, is Fy = 76(5) MeV.
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containing a rectangular term with a negative coefficient (b;) has better properties in
this respect. We considered as a benchmark the maximal lattice spacing a allowing
stable simulations with pions as light as 300 MeV. We found for the Wilson plaquette
action (b = 0) @ ~ 0.07 fm, and for the DBW2 action (b; = —1.4088) a ~ 0.13 fm.

The metastabilities should not be however the only criterion for the choice of the
gauge action. In particular, one could be worried about the relatively large coefficient
attached to the rectangular term in the DBW?2 action; large scaling violations could be
injected somewhere else. In fact the DBW2 action is suspected of suppressing small size
instantons and therefore of introducing large distortions in the hadron spectrum [54].
Bad scaling behavior for DBW2 was observed in the pure gauge theory in [148]. Finally,
large corrections in weak-coupling perturbation theory were found in [107].

If the phase structure points towards a strictly negative value for b;, some freedom
is left in the range —1.4088 < b; < 0. A special point in this range is represented by
by = —1/12, where the pure gauge theory is improved at tree-level in weak-coupling
perturbation theory [192] (tree-level improved Symanzik action, tISym). Good scaling
and fast convergence in perturbation theory are in this case expected, but the behavior
in relation to the phase structure has to be checked.

The properties of the t1Sym action in relation to the phase structure where studied
in [68]. There, the phase transition was investigated for three values of 3, correspond-
ing to a ~ 0.1 — 0.13 fm. The basic result of this analysis is that for a < 0.1 fm a pion
as light as ~ 280 MeV can be simulated (x ~ 8 MeV) in absence of metastabilities.
On the basis of this result and of the other aforementioned expected good qualities,
t1Sym was taken as the gauge action of choice for the large-scale simulations of Ny = 2
TMQCD at maximal twist, to be discussed in Sec. 3.6.

3.5. Determination of the twist angle w
[dbW-1,dbW-2]

We recall that the twist angle w is defined by Eq. (3.4) as the angle of the chiral
rotation transforming, in the continuum limit, the twisted theory back to ordinary
QCD. In [dbW-1, dbW-2] (see also [67]) a methodology was proposed for the numerical
determination of the twist angle from the analysis of certain correlators of the chiral
currents in the twisted mass theory. As we will explain below, this methodology is
based on the requirement that, after the chiral rotation, the chiral currents assume
the expected symmetry properties valid in ordinary QCD.

The physical chiral currents of QCD can be related to the bilinears of the x-fields
in the twisted mass formulation,

Vo) = X(e)gmon®) , AL@) = X@gronsx(e) . (3:29)

by re-expressing the y-fields in terms of the physical fields ¢ (3.4) [76]. In the case of
the charged currents (a = 1,2) the relation assumes the simple form

V;(x) = ZvV}(x) cosw + €ap ZAAZ(x) sinw , (3.30)
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AZ(w) = Z4A%(x) cosw + eq Zy V) (z) sinw . (3.31)

The lattice renormalizations Zy (go) and Za(go) are needed in order to enforce the
correct normalization of the bilinears of the y-fields®.

As shown in [dbW-1, dbW-2], for a given choice of the lattice parameters mg and
lto the twist angle w can be determined by requiring that the physical currents Vlf(x)
and AZ({E) reproduce the correct transformation properties under the symmetries of
(continuum) QCD. Two conditions are required due to the presence in (3.30), (3.31)
of unknown lattice renormalization factors. Considering for example the symmetry
under parity, two possible conditions are:

(01 V5 () |7, 5 =0) = (0] Af(x)|p,7=0) = 0. (3.32)

At maximal twist w = 7/2 , the parity of the chiral currents is swapped in the
x-basis, see Egs. (3.30) and (3.31), and the first condition in (3.32) reads

(0] Ag(2) 7=, p=0) =0. (3.33)

The meaning of this condition becomes more transparent if one considers an equiv-
alent condition®

<0|VuA:(x)|7r_,ﬁ:0) =0, (3.34)
which is equivalent to imposing vanishing of the untwisted PCAC quark mass (3.21):
m{C =0 (3.35)

As pointed out in [168, 79], the definition of maximal twist given by (3.33) and the
equivalent condition (3.35) are optimal in the sense of the discussion of Subsec. 3.2.2.

Observe also that Eqs. (3.32) ensure parity restoration in the continuum limit only,
where Egs. (3.30), (3.31) become exact. At finite lattice spacing, residual O(a) isospin
and parity violations, O(a?) at maximal twist, are expected. The verification of the
relevance of these effects in lattice computations is therefore of utmost importance
(for first studies in the quenched approximation, see [1, 113].

3.5.1. Numerical determination of w

By inserting Egs. (3.30), (3.31) into the conditions (3.32), relations involving hadron
correlators and containing the two unknown “auxiliary angles”

wy = arctan(Z4Z;, tanw) ,  wa = arctan(Zy 2, tanw) (3.36)

are obtained. The two auxiliary angles wy,w,4 can be directly related to ratios of
hadron correlators of the twisted theory (Egs. (22) and (23) of [dbW-2]); a typical
example of such a determination can be found in Fig. 2 of [dbW-2]. The angle w

8In a massless scheme, these lattice renormalization coincide with those of standard QCD.
9Equivalence of the two conditions has been verified numerically: see Fig. 3 of [dbW-2].
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is determined, together with the ratio of the renormalization constants Z4/Zy, by
inverting the relations (3.36):

A
w = arctan (vtanwy tanwy) | Z—A = /tanwy/ tanwy . (3.37)
v

Fig. 6 of [dbW-1] shows the dependence of wy upon the untwisted quark mass for
fixed pg; the sharp, cross-over-like change of the twist angle around maximal twist
wy = /2 is probably explained by the nearby phase transition (the twist angle has
a jump across the critical segment and never assumes the value 7/2). As one can see
from Table 4 of [dbW-2], one run at 5 = 0.74 is practically at maximal twist (with
a~0.13 fm and M, ~ 300 MeV).

3.5.2. Renormalization constants

The enlarged parameter space of the twisted mass formulation opens new possibilities
for the non-perturbative determination of the renormalization constants of compos-
ite operators (this also applies for the Ny = 2+1+1 formulation to be discussed in
Sec. 3.7). In a massless renormalization scheme, the latter renormalization constants
are obtained after the chiral extrapolation and coincide with the corresponding renor-
malizations of Wilson lattice QCD.

As noticed in [dbW-1], the dependence of the twist angle upon the untwisted quark
mass allows to determine the ratio Zp/Zs — we have already shown how Z4/Zy can
be determined from the analysis of the twist angle. The twisted mass formulation
also opens a clean channel for the determination of Zy. For u # 0 the bilinear V{(z)
(see (3.29)) projects onto the pion state, and Zy can be obtained by

, (3.38)

where V is the conserved version of the current [32]. Atz = 0 the analogous procedure
has to rely on the noisier matrix elements of the vector current (with spatial indices)
or on more complicated three-point functions. By putting together the above deter-
mination of Z4/7Zy and the determination of the absolute normalizations Zy (3.38),
Z 4 can also be determined [dbW-1, dbW-2].

3.5.3. Physical quark mass and pion decay constant

The physical PCAC quark mass mf C4¢ (not to be confused with the untwisted PCAC
quark mass mfj CAC of Eq. (3.21)) and pion decay constants are defined in terms of the
physical currents (3.30), (3.31), which can be determined from the bilinears of twisted
theory once the angle w is known. One can for example show (Sec. 3.3 of [dbW-2]):

pcac _ Tl (6;17“*(90)P*(y))_ Lo
T 2sinw (PH@)P(y)  sinw’ (3:39)

m
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while the untwisted PCAC quark mass can be expressed as

PCAC _ r—1, PCAC
m, =7, m, CoSW . (3.40)

Analogously, the pion decay constant F is given by
Fp = M7 0|Af (2)|n, 5= 0) = —i( My sinw) " (O[Vy" (z)|7—, ;= 0) . (3.41)

By using the conserved current, a determination of the F} free of lattice renormaliza-
tions is obtained [84].

The dependence of F;; upon mt 4% is shown in Figs. 7 and 8 of [dbW-2] (diamonds).
Consistently with many observations in the literature, I, shows a pretty linear be-
havior for decreasing quark mass'. A (naive) linear extrapolation to am?“4¢ = 0 is
not far from the phenomenological value (Fyro)phen = 0.308:

Fore(0.67) = 0.333(10) ,  Fyrg(0.74) = 0.274(20) . (3.42)

Observe that these estimates are off maximal twist and consequently not O(a) im-
proved.

At maximal twist, one has w = 7/2 by construction. However in some conditions (for
example in the approach ii) for tuning to maximal twist discussed in Subsec. 3.2.2) the
maximal twist condition cannot be exactly maintained for all simulation parameters.
The deviation from maximal twist can be corrected by “back-rotating” results to
maximal twist using formulae similar to (3.30), (3.31).

3.6. Large-scale simulations of Ny = 2 TMQCD
[tIS-1]

The numerical studies of the previous sections (together with the cited theoretical
works) form the basis for a program of large-scale simulations of twisted mass lattice
QCD in view of accurate determinations in hadron physics.

As stressed already several times in this review, a basic prerequisite for accurate
determinations in lattice QCD are simulations with light quarks. The sharp infrared
regulator of the twisted mass formulation ensures smooth simulations in this regime.
Algorithmic advances (Subsec. 3.4.1) also play a fundamental role. The knowledge of
the main features of the phase structure of the lattice theory for light quark masses
is also important: regions of parameter space of the lattice theory, where lattice data
contain large lattice artifacts, can in this way avoided.

The O(a) improvement of the twisted mass formulation at maximal twist is expected
to reduce systematic uncertainties in the continuum extrapolation. The procedure
for tuning the theory to maximal twist, with small O(a?) effects, is supported by
theoretical arguments and its applicability has been verified in the simulations of
Secs. 3.4 and 3.5,

10The lightest point on the coarse lattice is probably still affected by the nearby phase transition.
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Since the accomplishment of a large-scale simulation program, and of the related
analysis program, calls for substantial human and computational resources, a new
Europe-wide collaboration was founded: the “European Twisted Mass” (ETM) col-
laboration [66]. The first step in the aforementioned program was taken in [t1S-1],
where the maximally twisted theory with two quark flavors was simulated and its ba-
sic properties investigated. Only the simplest quantities in the pion sector are included
in this first study.

The finite-volume effects are expected to become a critical aspect, for L = 2 fm,
in the regime of light quarks when M, < 300 MeV. ChPT NLO formulae can correct
for them, however at the price of introducing new systematic effects (which are not
totally under control). The latter can be reduced by involving larger lattices in the
computations.

Further systematic effects come from the neglected s quark in the Monte Carlo.
The size of these effects are a priori unknown. A twisted mass formulation including
the s quark and preserving all the advantages of the Ny = 2 formulation will be
introduced in the last section of this Chapter, Sec. 3.7. The first steps in the numerical
implementation will be presented there.

3.6.1. Simulation and analysis

In [tIS-1] the theory was simulated for one value of § = 3.9 by the mtmp-HMC
algorithm briefly described in Subsec. 3.4.1. (Simulations for one lower and one higher
value of # are under completion and results will soon be published [42].) Five values of
the quark mass were simulated at this value of 3 (the corresponding lattice parameters
are reported in the first column of Table 2 of [t1S-1]).

The lattice spacing was determined in two ways: from the Sommer scale parameter
ro [176] extrapolated at the physical value of the light quark mass, giving a ~ 0.0958(4)
with input value ro = 0.5 fm, and from the pion decay constant (see next section),
giving a slightly lower value a = 0.087(1). This latter value results in the estimate
ro = 0.454(7) fm'!. Using the lattice scale from to the ro-calibration, one arrives at
the estimate'? for the lightest quark mass (apo = 0.004): m, ~ 8 MeV. This value is
slightly below the reference value of the previous studies with the plaquette and the
DBW2 action (m, ~ 11 — 12 MeV).

The theory was tuned to maximal twist at the lightest quark mass apo = (apo)min =
0.004 by requiring the vanishing of the untwisted PCAC quark mass (3.21); the actual
value

ke(B = 3.9, apio = 0.004) = 0.160856 (3.43)

was determined by interpolation. The effect of the non-vanishing twisted quark mass
in the determination of k.(3) is O(a®*Agcppimin). This results in a permille effect, if
the actual values of the parameters (Agep =~ 300 MeV) are inserted in the estimate.

"The phenomenological estimate or 7 is affected by large uncertainties.
12Neglecting again the renormalization factor Z;l.
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As expected from the previous preparatory studies [68], no signs of metastability
were observed during the simulation, confirming that the covered parameter space is
outside the critical region.

The analysis also included the computation of the pion mass and decay constant.
As a result of smooth simulations with an infrared cut-off in place, extremely precise
determinations of these quantities in lattice units could be obtained, with an accuracy
in the range 5 — 6 permille even for the lightest quark mass, see Table 2 of [t]S-1].

3.6.2. ChPT analysis

The lattice determinations of the charged pion mass and decay constants were fitted
against the predictions of NLO continuum ChPT. In this case, also finite volume
effects [90] were taken into account. These amount to a multiplicative correction of
the infinite volume formula, see (2.10) for the case of the pion; in that notation (m, = p
at maximal twist)

X - 2 2Byp
WWRL] . x=TE . (34
0

M2, L) = M2 yro(n) [1+ 2
where §;(x) is a dimensionless function; an analogous formula can be written for
F.(u, L). By fitting the lattice data with the NLO chiral formulae, one can match
the quark mass to the physical point p = p, where the ratio M, nvro(p)/Fr.nro(p)
assumes its phenomenological value. The corresponding value of aF; nro(p-) can be
used to fix the lattice spacing a (the previously quoted value).

As a by-product of this analysis, the low-energy scales A3 4, see Eq. (2.54), contained
in the ChPT formulae for M, and F; could be determined. In terms of the low-energy
constants [3 4, defined in Eq. (2.56), the result is

I3 =3.65(12) I = 4.52(06) , (3.45)

in agreement with previous lattice determinations for light quark masses recently ap-
peared in the literature [129]. A comparison, also including the determinations dis-
cussed in Chapter 2, can be found in Table 2.2 and Fig. 2.1 of that chapter.

We see that the values obtained in Chapter 2 for the chiral fits in the untwisted
theory are not very far form the present ones. In the case of Iy, however, the light
quarks seem to have a sizeable impact on the lattice estimate, the latter getting into
agreement with the phenomenological one. The works reviewed in Chapter 2 are based
on simulations with M, = 380 MeV, for which, we recall, the NNLO corrections in
the ChPT formulae were found to be relevant; see the discussion in Subsec. 2.3.4.

The behavior predicted by the NLO ChPT formulae for the quark mass dependence
of the pion mass is clearly visible in Fig. 2, left panel, of [tIS-1].

3.6.3. Isospin breaking

O(a?) isospin breaking in the twisted mass theory is expected to lift the mass-dege-
neracy between the charged and neutral pion. This effect is maximal in vicinity of
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the phase transition endpoint, where the neutral pion mass vanishes while the charged
pion remains massive, see the discussion near the end of Subsec. 3.3.2.

It is important to quantify the size of this effect. The determination of the neutral
pion mass is particularly awkward in the twisted mass theory, where the neutral pion
correlator contains disconnected diagrams. The computation of the latter diagrams
requires the application of expensive stochastic techniques (analogous to the ones
employed in the next Chapter for the computation of the bound state spectrum of
SYM). In addition to this, the disconnected diagrams are intrinsically noisy and the
precision of the determination of the mass poorer than in the charged case.

For the lightest quark mass the result of the computation is

aM,+ = 0.1359(7)  aMyo = 0.111(11) , (3.46)

namely about a 10-30 % isospin breaking effect, even if the statistical errors on the
determination of the neutral pion mass are large!3. A lighter neutral pion is consistent
with ChPT predictions in the first order phase transition scenario [144, 171] also
confirmed by the numerical studies of Sec. 3.4.

The effect of this mass-split in the numerical determinations in the charged sector
can be understood in ChPT, where the neutral pion enters as a virtual particle. Being
lighter than the charged pion, its impact on the finite size scaling could be larger than
predicted by continuum ChPT where it is assumed to be degenerate with the heavier
charged pion. This shows that O(a?) effects are likely to play a relevant role at least in
the finite volume effects. The inclusion of these corrections in the chiral fits is planned
for future studies [42].

According to a theoretical argument [83], large O(a?) discretization errors in twisted
mass QCD are confined in the neutral pion sector. Therefore the charged pion proper-
ties, and in general all hadron properties outside the neutral pion sector, are expected
to contain small O(a?) errors, as expected from the discussion of subsection 3.2.2. In
the present case of degenerate u and d quarks, the charged pion gives of course the
most accurate determinations in the pion sector.

3.7. First simulations of Ny = 24+14+1 TMQCD [tIS-2]

After simulations with light dynamical u and d quarks, the next step towards realis-
tic simulations of QCD is the inclusion of the s quark. The mass of the s quark is
not extremely large compared to the typical energy scale of QCD and its dynamics
is therefore expected to have an impact down to the lowest end of the QCD energy
spectrum. The s quark is however much heavier than the light u, d quarks (a rough
bound is mgs/m,e > 12 [198]). The inclusion of the s quark, and possibly of the ¢
quark (meparm =~ 1.2 GeV [198]), is therefore not expected to substantially increase
the computational cost of the simulations, which as we have seen in Chapter 1 rapidly

13n this case, also (noisy) disconnected diagrams have to be taken into account.
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decreases for increasing quark masses. Similarly, a relatively heavy quark is not ex-
pected to dramatically change the phase structure of the lattice theory (described
in Sec. 3.3).

Including the s quark is however not completely trivial from point of view of the
algorithm; for example, the basic structure of the HMC algorithm, also inherited by
the optimized mtmp-HMC algorithm of the previous sections, foresees even numbers
of degenerate quarks'*. More work is required for tuning of the additional parameters
of the lattice action associated with the new degrees of freedom (this aspect will be
discussed in Subsec. 3.7.3).

As shown in [82], the s quark can be accommodated in the twisted mass setup
while preserving reality and positivity of the fermion measure, and O(a) improvement
at maximal twist. As we will show in the next sections, the resulting lattice action,
including u, d, s and ¢ quarks all in principle with different masses, can be simulated
in practice. For the near future, the ETM collaboration will concentrate on the four-
flavor theory with degenerate light quarks, Ny = 24+1+1, where the number of free
parameters is still manageable. The inclusion of (continuum) isospin breaking in
the light quark sector is conceivable and easily applicable in the two flavor theory,
Ny=1+1, while the case of four non-degenerate flavor requires a non trivial additional
study of the parameter tuning.

A suitable HMC-based algorithm for the case of non-degenerate twisted flavors
was developed in [140, 163] and an alternative one has been in the meanwhile com-
pleted [38]. First simulation tests of the Ny = 24+1+1 theory based on the former
algorithm were performed in [t1S-2] and will be reviewed in the following sections (see
also [68]). One of the objectives of [t1S-2] was the investigation, in this new context,
of the phase transition already observed in the Ny = 2 lattice theory at small quark
masses (Sec. 3.4).

A viable scheme for tuning the theory to the desired setup, namely light degenerate
w and d quarks and s and ¢ quarks at the physical point, was proposed in [tIS-2]. The
unitary scheme is considered there, in which the same formulation is adopted in the
valence and the sea sector. This implies that the quark propagator is not diagonal in
the heavy quark sector!®. The theoretical framework for the extraction of the hadron
masses containing the s and the ¢ quarks for this special case was also developed.

14The TSMB described in Chapter 1 can be easily applied to this case, but, as we have seen in the
present chapter, optimized HMC-based algorithms appear to be more efficient in the light quark
regime.

15 Alternatively, one can consider a different, flavor-diagonal, twisted mass formulation in the valence
sector. After proper matching valence and sea quark masses, the resulting unitarity violations,
and flavor non-diagonal interactions, are O(a?) in the maximally twisted theory, see [81] and
references therein for a theoretical discussion; a flavor-diagonal formulation was also put forward
in [157]. A quenched study including the s quark in a flavor-diagonal formulation was performed
in [2].
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3.7.1. Lattice formulation for the split doublet

A real fermion determinant with a split-mass doublet (denoted with the label “A” in
the following, since coinciding here with the heavy sector of the s and ¢ quarks) can
be obtained [82] if the mass splitting term is taken to be orthogonal in isospin space to
the twist direction. Opting for a diagonal untwisted mass matrix with mass splitting
term proportional to 73, the twisted mass term must be chosen in the 7 or 7 direction.
The resulting action is therefore not flavor diagonal. We consider in the following the
choice with twist in the 7, direction, in which case the action reads (compare with

Eq. (3.2)):

S = a3 o S () — Xl U)o r)(a)]

p==%1
+ X (@) [mon + ipoYsT1 + psT3) xn(2) - (3.47)

With this choice for the twist/split direction, the twist can be rotated away in the con-
tinuum limit exactly as in the degenerate case (Sec. 3.2): the unphysical off-diagonal
interactions are actually O(a) effects, O(a?) in the maximally twisted theory (analo-
gous to the unphysical isospin breaking in the degenerate theory). O(a) improvement
of the overall theory is obtained by tuning all doublets, in the present case (u,d) and
(¢,s), to maximal twist, see Subsec. 3.7.3 in the following for the exact definition in
the non-degenerate case.

For a twisted mass split-mass doublet positivity of the fermion determinant is not
guaranteed in the whole parameter space of the lattice theory'®. A sufficient condition
for positivity is given by the bound [82]'7

Lo > [ls - (3.48)

3.7.2. Simulation algorithm

Past experience (see in particular in Subsec. 3.4.1) indicates that an optimized HMC
algorithm is the best option in term of simulation efficiency in the regime of light
quarks. The fermion matrix @ associated with the action (3.47) is however not di-
agonal in flavor space. Consequently, the two flavors of the non degenerate quarks
must be included explicitly in the update similarly to the a single flavor in standard
QCD. This implies that standard HMC cannot be applied. The positive definite ma-
trix QTQ is indeed needed for the update, see Subsec. 1.2.1 for the case of TSMB, and
the fermion measure is given by the square root of its determinant \/det(QQ). With
npp-fold determinant breakup (Subsec. 1.2.6) the (2npp)-th root of the determinant
is required'®:

(det Q1Q) 75 . (3.49)

16This is expected, since in the continuum the fermion measure can be negative for two non-
degenerate quarks.

1"We always assume positive values of p, and ps.

8In the present case npg = 2.
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Fractional powers of the fermion determinant (3.49) can be handled in a HMC algo-
rithm by applying the idea of the polynomial expansion [132] as proposed in [52, 78]:
the resulting algorithm is a Polynomial Hybrid Monte Carlo (PHMC) algorithm. The
version used for the present simulations, developed in [140, 163], contains the opti-
mizations of mtmp-HMC (E/O and mass-preconditioning, multiple time-scales). The
error of the polynomial expansion is corrected by a stochastic step in the update (in
general multi-step, see [140]) along the lines of the noisy correction of TSMB described
in Subsec. 1.2.3, and, if needed, by measurement correction (Sec. 1.2.4).

3.7.3. Tuning

One of the main goals of the exploratory study [t]S-2] was to establish a practicable
procedure for tuning the twisted mass theory with an additional split-mass doublet to
maximal twist and realize the expected hierarchy of quark masses.

One possible method for tuning the degenerate twisted mass doublet to maximal
twist relies on the discussion of the chiral currents (as done in Sec. 3.5). Equiva-
lently, one can enforce vanishing of the untwisted PCAC quark mass (3.21). The
direct generalization of this method to the split-mass doublet involves the discussion
of the axial-vector Ward identities (defining in the degenerate case the PCAC quark
mass (3.21)). The PCAC relation is however more complicated in the non-degenerate
case:

217 lap,SY(x), a=1
o, Zu(x) = 2am§,?’40 P (x) + . 10, a=2 (3.50)
(—20)Z aps P)(z), a=3

where, in analogy with the light sector, we define

() = T)gTnan(a) (a=1,2,3),
S = Tlehale) . PR = Tle)sala) (3:51)

The maximal twist condition in the heavy sector is given by

miAC =0, (3.52)

This way of tuning the heavy sector is however not a viable option in practice. In-
deed, due to the flavor off diagonal terms in the quark propagator of the split-mass
doublet, all hadron correlators needed for the analysis of the Ward identities contain
disconnected diagrams (in the degenerate case these are present only for the neutral
currents via a different mechanism). Even not considering this problem, the simulta-
neous tuning of the two untwisted mass parameters mg and myg, such that

miAC =0 A miiA =0, (3.53)

could be in practice very complicated.
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An alternative solution to the tuning problem was proposed in [t1S-2], and is based
on the following argument. One can namely show that, when the untwisted Lagrangian
mass parameters are equal in the two sectors

mo; = Moy, , (354)

the discrepancy between the respective untwisted PCAC quark masses is an O(a)
effect:

Mo = Mop, =My~ = m)]z,?AC = m)]:lCAC + O(a) . (3.55)

This suggests to tune mg to the value where mflCAC = 0 while keeping mqg, = mqy =

mg: in this situation mf:hCAC = O(a). Observe that, since the twisted quark mass in
the heavy sector is typically much larger than the one in the light sector, the O(a)
error is not expected to affect the maximal twist improvement in the sense of [80]
(while it is critical to have good tuning in the light quark sector, recall the discussion
in Subsec. 3.2.2). This can be checked by computing the twist angle in the heavy
sector wy, as suggested in Subsec. 3.7.4, and verifying the accuracy of the condition
wp >~ 7/2.

On the basis of simple universality arguments, one can show that the physical quark
masses of the split-mass doublet are expressed in terms of the bare twisted and un-
twisted quark masses by

Mo = Zp' \J(ZamE{AO2 42 + 25 s (3.56)

The above equation can be considered as a generalization of Eq. (3.7). At maximal

twist mi ¢ = mEIA¢ = 0 and

A
Mes = ZI;I (MU + Z_ISDM(5> ; (357)

one is left with two additional tunable parameters, u, and ps. The latter should be
chosen such that

Ms 2 (M) phys Me 22 (Me)phys - (3.58)

The second condition is not critical as long as
Aot ~ a5 S (Me)phys =~ 1.2 GeV | (3.59)

since in this case the ¢ quark dynamics is anyhow distorted by discretization effects.
On finer lattices, say Acui—or =~ 2 GeV, however, the tuning of the ¢ quark becomes
an issue.
From Eq. (3.57) the relation for the relative split of the quark masses at maximal
twist follows
(me—ms) _ Zp ps : (3.60)
(mc + ms) Z S Mo
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the positivity bound (3.48) implies
(mc — ms) ZP

(e ) 7 (3.61)

After inserting the phenomenological values of the quark masses [198], we see that
the theory can be tuned to the desired configuration (maximal twist, physical quark
masses), while remaining in the region where positivity is guaranteed, if [82]
Z
ZF > 0.85. (3.62)
Zs
This condition potentially puts a lower bound for the values of § for which positivity
is guaranteed (the ratio of normalizations converges to one for weak couplings).

3.7.4. Physical fields and currents

The discussion of Sec. 3.5 can be extended to the non degenerate case. In the degen-
erate case, the charged pion (light-light) sector was considered. Here, a natural option
is given by the mixed heavy-light meson sector, the isospin doublets of the kaons and
of the D-mesons (and charge-conjugated versions thereof)

K=(K", K and D= (D", D). (3.63)

One considers bilinears in the twisted basis with the corresponding nominal flavor
quantum numbers

Vicr w(@) = Xo(2) 71X (@) A, u(®) =X (@) 0 5Xa(@) , (3.64)
Sk+(r) = Xo(@)xu(@) P+ (2) = Xs()15Xu(2) (3.65)
Voo u(2) = XelT)vuxu(T) | Apo,u(®) = Xe(@)Vur5Xu(z) , (3.66)
Spo(x) = Xe(®)xulz) | Ppo(z) = X (2)75Xu(2) ; (3.67)

the hadron correlators of the above operators do not contain disconnected diagrams
(present instead in the heavy-heavy sector). Here, each bilinear in a given doublet
mixes not only with the corresponding operator with opposite parity (see Egs. (3.30)
and (3.31)), but also with the corresponding operator in the “partner” doublet. This
means that the physical operators with definite physical flavor quantum numbers are
related to the bare heavy-light bilinears (3.64-3.67) by a linear transformation given
by a four-by-four matrix M. The latter contains the rotation angles in the heavy and
light sectors:

V=Muw,wn)V, V=DM w,w) . (3.68)
In the case of the (pseudo)scalar densities one can define
ZPPK+
ZpPpo -
V= V = (—ZpPx-,—ZpPpo, ZsSk-, ZsSpo) (3.69)
ZgSk+
ZsSpo
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(and similarly for the chiral currents). The exact form of the rotation matrix M can
be found in Eq. (33) of [t1S-2].

The condition of restoration of the flavor and parity symmetries for suitable matrix
elements of the physical operators, such as

(0] Pt (2) | Do, 5 =0) = (0] S (w) [ Dy, 7= 0) = 0 (3.70)
(analogous to (3.32) in the pion sector), leads to the relation

<SK+SD()> + <SDOSK—>
<PK+PDO> + <PDOPK7> ’

7272 = (3.71)

and a constraint relating wy, to wy, see Sec. 3 of [t1S-2] for details. These relations allow
the determination of wy, and of the ratio Zg/Zp from numerical data.

3.7.5. Numerical simulations

The Ny = 24141 twisted mass theory defined by Egs. (3.2), (3.47) in the fermion
sector and with t1Sym gauge action, the choice by = —1/12 in Eq. (3.20), was simulated
for two values of 3 = 3.25 (12% - 24 lattice) and 3.35 (163 - 32 lattice). The lattice
spacing was estimated to be a(3.25) = 0.2 fm and a(3.35) = 0.15 fm. For each value
of §, different values of the untwisted mass mqy = mqg, = mo where investigated at
fixed remaining parameters p, fio, fis, see Table 2 and 3 of [t1S-2]. Different values of
the untwisted mass were considered in order to investigate the metastabilities. The
positivity bound p, > ps is satisfied in all cases.

The twisted mass parameter in the light sector was chosen such that its value in
physical units was p; >~ 10 MeV approximately matching the one investigated in the
two-flavor theory?.

Metastabilities. The light sector is expected to drive the phase transition, since the
heavy sector is characterized by a much larger twisted mass, u, /1 = 31.5. However,
the additional degrees of freedom may have an effect on the strength of the transition.

The first lattice, with @ ~ 0.2 fm, roughly corresponds to the DBW2 point at
6 = 0.67 studied in Subsec. 3.4.4. In that case, we recall, only a residual cross-over
behavior was observed. In the present case, in opposition, strong metastabilities are
present, signalized by the behavior of the plaquette (Fig. 1, left panel, of [t1S-2]).
This can be explained on one side by the superior properties of the DBW2 action
in relation to the phase transition, but could be an effect of the increased number
of quark flavors as well. On the finer lattice, a ~ 0.15 fm, a sudden jump of the
plaquette value was observed when changing the untwisted quark mass, Fig. 2 of [t1S-
2], which could indicate a residual cross-over or a weaker phase transition in the region
not covered by the simulations. Direct comparison with the simulation tests of [68]
for the Ny = 2 theory with tISym gauge action (in particular the run at § = 3.75
with similar values of a and p in physical units) reveals an analogous behavior for the

19 As usual for these estimates renormalization factors are neglected.
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plaquette (compare with the left panel of Fig. 5 of [68]); in the present case, however,
the transition appears to be stronger.

Hadron masses. Few basic hadron quantities were measured, including the kaon
and D-meson masses. On the basis of the symmetries of the lattice action in the
present setup, it can be argued [t]S-2] that isospin breaking is absent in the heavy-
light doublets (3.63), whose members are exactly degenerate.

The simulated pion masses are not particularly small: the smallest pion mass out-
side the metastable region (from positive quark masses) is M, ~ 670 MeV on the
coarser lattice and M, ~ 450 MeV on the finer one. Assuming on the basis of the
Wilson ChPT prediction (3.18) a linear dependence of the minimal pion mass upon
the lattice spacing, it is possible to estimate the maximal lattice spacing (a) allowing
for safe simulations in the region M, < 300 MeV (the benchmark lattice spacing of
Eq. (3.22)). The result is @ ~ 0.1 fm; the same result was obtained in the Ny = 2
theory (Subsec. 3.4.5).

The simulated kaons are heavier than in nature (Mg > 850 MeV), but in this case
the mass can be easily reduced by properly tuning the mass parameters in the heavy

sector 1, and s (the present study was performed at a single value of y, and pus for
each ).

Twist angle wy, and Zp/Zgs. The twist angle in the heavy sector wy, was deter-
mined, according to the method of Subsec. 3.7.4, for one simulation point of each
lattice. One can see in this way that the condition wj, = 7/2 is very well satisfied in
the heavy sector, even when the light sector is still off maximal twist (recall that the
untwisted masses are equal in the two sectors up to O(a)). We conclude that in the
heavy quark sector, the tuning to maximal twist is not an issue at all.

The non-perturbative determination of the ratio Zp/Zg according to (3.71) reveals
quite small values Zp/Zg = 0.5 — 0.6, which can explain the quite heavy kaons: the
relative c-s mass-split is suppressed by this factor, see Eq. (3.60), and the resulting s
mass is larger than in absence of renormalizations. Observe that the estimated values
of Zp/Zs = 0.5 — 0.6 are below those ensuring the positivity of the measure in the
heavy sector at maximal twist and for physical values of the ¢ and s mass.

Chiral fits. In spite of the heaviness of the respective masses, LO continuum ChPT
seems to describe quite well the lattice data for the ratios of the pion and kaon masses,
see Fig. 6 of [t]S-2]. Interestingly, data from the two lattices (u, # ps) lie on the
same curve, confirming constant physics; moreover the interpolated value at maximal
twist of the mass ratio is close to the physical value M2 /M2 ~ 0.082.

3.7.6. Conclusions

This exploratory study of the Ny = 2+1+1 theory demonstrates the feasibility of
simulations of the twisted mass theory including a split-mass doublet. Tuning to
maximal twist is not more difficult than in the Ny = 2 theory, while the tuning of
the quark masses in the heavy sector appears to be practicable (the situation should
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improve for smaller lattice spacings).

The relatively heavy masses obtained for the kaon can be explained by the large
renormalization effects in the Wilson formulation. This issue could be less critical
at weaker lattice couplings, for which large-scale simulations are planned [42]. The
unphysical phase transition could be somewhat stronger than in the N; = 2 theory,
but present results do not allow to draw definite conclusions at this regard.
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The first part of this review addressed the problem of the lattice simulation of QCD
with light dynamical quarks. The difficulties encountered in this regime with the
standard HMC algorithm motivated the search for alternative algorithms with better
properties in the case of light quarks. The first simulations considered in this review
are based on a multi-boson algorithm, TSMB [132, 136], which historically represents a
first attempt towards an effective simulation of QCD at light quark masses. Only more
recently [102] it has been shown how the HMC algorithm can be made efficient in this
regime. Efficient HMC-based algorithms [185, 140] were employed for the simulations
reviewed in the concluding sections of this part.

Chapter 1 was dedicated to the testing and benchmarking of the TSMB algo-
rithm [Alg] in the case of Ny = 2 QCD. Simulations were considered down to rel-
atively light quark masses: one fifth of the physical s quark mass corresponding to
about M, ~ 300 MeV. In [Alg] the first example is given of a simulation with light
pions in the case of Wilson fermions, in a time when the bulk of the simulations with
Wilson fermions were confined in the region of pion masses M, ~ 500 — 600 MeV.
Due to limitations in computer power however, only coarse 8 - 16 lattices could be
considered in those tests, with a lattice spacing a ~ 0.27 fm.

The main result of [Alg] from the algorithmic point of view, is a stable behavior
of TSMB until the lightest simulated quark mass. The “cost figure”, growing pro-
portionally to the inverse squared quark mass, is consistent with extrapolations from
values at larger quark masses obtained with HMC [184].

Hints for chiral logs could be found for the first time in the behavior of the lattice
data for the pion mass and decay constant as a function of the light quark mass. This
latter result prompted the systematic analysis of the meson sector with Chiral Pertur-
bation Theory (ChPT) performed in [Chi-1, Chi-2, Chi-3] and reviewed in Chapter 2.
The simulation point of [Chi-1], corresponding to one of the simulation points of [Alg],
is characterized by a fairly light quark mass (m,q ~ ms/4) and a quite coarse lattice
(as mentioned above); in [Chi-2, Chi-3] a range of quark masses was simulated down
to myq S ms/3 on a finer lattice (a ~ 0.19 fm).

The study of the meson sector, accomplished by comparing lattice data with par-
tially quenched chiral perturbation theory at NLO, also including lattice corrections
(“Wilson chiral perturbation theory” [170, 159]), allowed the determination of the low-
energy constants l3 and I, (in the sea quark sector analysis) and a5, 2ag — a5 (in the
valence quark sector analysis). The analysis highlights the presence of still relevant
higher order (NNLO) corrections in the chiral formulae for the values of the quark
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mass considered in [Chi-2, Chi-3]. These corrections cannot be included in a easy way
in the fits and introduce relevant systematic effects in the lattice determinations of the
low-energy constants. A more accurate determination of I3 and I, could be obtained
from the sea quark analysis of [t1S-1] at lower quark masses and with substantially
higher statistics (see in the following).

The simulation of Chapters 1 and 2 are based on the original Wilson formulation of
QCD. The fermion sector of this formulation is characterized by O(a) discretization
effects, which potentially introduce large systematic errors in the continuum extrap-
olation. Moreover the fermion measure is not protected by infrared singularities. In
Chapter 3 a different lattice formulation in the fermion sector was considered, solving
both problems: “twisted mass” lattice QCD (TMQCD).

The results on the phase structure of the lattice theory with different formulations
in the gauge sector [Wil-1, Wil-2, dbW-1, dbW-2] prepared the way to the first large-
scale simulations, performed in [t1S-1], of the maximally twisted mass theory, which
is O(a) improved. The main objective of the former works was to map the region
of quark masses where, for a given lattice spacing, unacceptably large discretization
effects are avoided. These effects manifest themselves in form of an unphysical first
order phase transition and appearance of metastable vacua [170].

The comparison between the simple plaquette action [Wil-1, Wil-2] and the DBW2
gauge action [dbW-1, dbW-2| shows that gauge actions with a rectangular term are
characterized by an improved behavior in relation to the metastabilities at small quark
masses. An useful benchmark proposed in [Wil-2] is the maximal lattice spacing for
which simulations down to M, ~ 300 MeV are possible in absence of metastabilities.
For this value of the pion mass and lower, ChPT formulae at NLO are supposed to
allow precise extrapolations to the physical value of the quark mass. In the case of the
plaquette action the benchmark lattice spacing was estimated to be ap; ~ 0.07 fm, for
the DBW2 action apgws2 ~ 0.13 fm. An intermediate result was obtained with the
tree-level Symanzik improved gauge action (t1Sym), @ysym =~ 0.1 fm. These results
show that the plaquette action is not a suitable choice in view of large-scale simulations.
The tISym action was finally chosen, in opposition to DBW2, because of its good
scaling properties.

Another important aspect considered in some detail in [dbW-1, dbW-2] was the
determination of the twist angle of the twisted mass theory for a given choice of the
simulation parameters. The knowledge of the twist angle allows to extract physical
results from the twisted mass theory off maximal twist. The proposed method is based
on symmetry arguments and allows to obtain an “optimal” tuning of the theory to
maximal twist [13, 168, 79]; the latter ensures small O(a?) effects in the maximally
twisted mass theory down to light quark masses. A similar analysis also allowed to
extract finite lattice renormalization constants or combinations thereof.

As already mentioned, the tISym gauge action was finally chosen for the large-scale
simulations at maximal twist of [t1S-1], since it ensures stable simulations already at
a ~ 0.1 fm. At five simulation points, with light quark masses down to one sixth of
the physical s quark mass, precise determinations in the pion sector could be obtained
with numerical accuracy of one percent and below.
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These results could be achieved thanks to algorithmic developments as well [185]:
the stochastic evaluation of the quark determinant with several pseudofermion fields
(with different step-sizes in the molecular dynamics) appears to be the main ingredient
at the basis of the speed-up and stabilization of HMC at low quark masses [102, 133].

In perspective, the simulations of TMQCD will include the s and ¢ quarks in a
Ny=2+1+1 formulation [42]. In [tIS-2], a framework for tuning the various param-
eters of the theory was set up: maximal twist and s and ¢ quark masses at their
respective phenomenological values. A negative (even if expected) result of [t1S-2] is
the strengthening of the unphysical phase transition at small quark masses in com-
parison with the Ny = 2 case. This negative effects of this feature can be probably
compensated by an optimization of the formulation in the gauge and/or fermion sector.

We conclude this part by acknowledging very important recent progresses in the
simulation of light quarks in the Wilson framework, alternative to TMQCD and ob-
tained by several improvements in the simulation algorithms and in the lattice formu-
lation [133, 56, 96, 127, 63].
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4. Simulation of N =1 SYM
and one flavor QCD

Theoretical arguments support a picture in which supersymmetry (SUSY) plays a
role in particle physics down to low energy scales. Since, however, no trace of it is
observed in low-energy phenomenology, it must be broken at a higher scale by some,
yet unknown, mechanism. Non-renormalization theorems holding for SUSY quantum
field theories imply that such a breaking mechanism can occur either at tree-level by
a proper tuning of the Lagrangian parameters, or dynamically by non-perturbative
effects. In this latter case, the SUSY breaking has to take place at a scale where
SUSY interactions become strong. This second, theoretically more attractive scenario
provides the main motivation for studying non-perturbative aspects in SUSY gauge
theories.

There are few analytical methods suitable for a non-perturbative analysis of SUSY
gauge theories; they are based on general arguments (as for example the Witten in-
dex [196]), low-energy Lagrangians [187, 74], or explicit (sometimes exact) computa-
tions (for a comprehensive discussion for example of the instanton calculus in SUSY
theories, see [175]). These analytical methods can shed light on some aspects of
strongly interacting SUSY gauge theories. A systematic ab initio investigation of
their properties, however, can only be obtained in the lattice framework.

The basic problem one has to face when trying to put this program into practice was
already realized in the very first work on SUSY in a lattice quantum field theory [58].
It consists in the simple observation that in a discretized space-time manifold, SUSY
cannot be formulated. FExact SUSY only emerges in the continuum limit. In the
case of extended SUSY, the explicit breaking of the symmetry on the lattice can
potentially bring to the proliferation of counterterms needed for the renormalization
of the theory, in which case the recovery of SUSY in the continuum limit becomes a
non-trivial issue. Different approaches partially coping with this problem have been in
the meanwhile developed. In the case of extended SUSY, a prescription can be given
for the construction of a lattice model with a residual exact symmetry! interchanging
bosons and fermions [118, 36, 178]. The numerical implementation of these approaches
is however not (yet) practicable in the case of physically interesting models.

In the case of minimal (M=1) SUSY, the explicit SUSY breaking introduced by
the space-time discretization is harmless (in the above mentioned sense) and a sim-
ple discretization of the theory, based on the Wilson formulation of QCD, can be

!Generated by some of the supercharges which are not related to infinitesimal space-time transla-
tions.

97



4. Simulation of N =1 SYM and one flavor QCD

considered [49]. SUSY is in this case recovered in the continuum limit by a proper
renormalization of few bare parameters. The simplest four-dimensional non-Abelian
SUSY gauge theory with minimal SUSY will be considered here, the N'=1 SUSY Yang-
Mills theory (SYM). Only one tunable parameter exists in the Wilson discretization of
SYM, the bare gluino mass. The situation here is similar to the one applying for the
Wilson lattice formulation of QCD, discussed in the previous chapters, where chirality
is recovered in the continuum limit by properly tuning the bare quark mass.

The review will cover recent large-scale simulations of SYM with SU(2) gauge group
(N, = 2). The recovery of SUSY for vanishing gluino mass was verified in [SYM-1] by
the numerical study of the lattice SUSY Ward identities. The works [SYM-2, SYM-3]
focus on the bound state spectrum, where SUSY is expected to show up in form of
supermultiplets. A previous review of some of these themes can be found in [138].

QCD, in the special formulation where only one quark flavor is considered (Ny =1
QCD), shares many similarities with SYM. In particular, both theories lack a continu-
ous chiral symmetry. This affinity can be put on more rigorous grounds in a particular
“orientifold” large N, expansion [17]. At the planar level of this expansion, an exact
equivalence between SYM and Ny = 1 QCD can be established [17]. QCD with one
quark flavor represents therefore the case of a non-supersymmetric theory in which
relics of SUSY are expected [18].

One flavor QCD is interesting in itself, apart from the above mentioned equivalence
with SYM. Open questions in this theory regard in particular the hadron bound state
spectrum, the definition of the quark mass in absence of a (restored) chiral symmetry,
and a possible spontaneous breaking of the CP symmetry [48]. The latter two issues
also apply for the physical multi-flavor theory: they can be better understood in the
simplified framework of QCD with a single flavor.

Surprisingly, in spite of these interesting aspects, a systematic lattice investigation
of the model is still missing in the literature?. Here, first numerical simulations [Nf1] in
a starting project trying to close this gap will be reviewed. The focus in this first study
was on the low-lying bound states spectrum, where relics of SUSY can be verified.

This is the plan of the chapter. SYM is introduced in Sec. 4.1; Sec. 4.2 highlights
the interesting non-perturbative aspects of this theory, deserving lattice investigation;
the lattice formulation with Wilson fermions is given in Sec. 4.3; Secs. 4.4, 4.5 and 4.6
account for the numerical studies of SYM [SYM-1, SYM-2, SYM-3]. Sec. 4.7 and 4.8
are dedicated to QCD with one flavor; Sec. 4.7 contains a summary of open questions
in the theory while in Sec. 4.8 the first numerical results about the hadron spectrum
obtained in [Nf1] are described.

4.1. N =1 SUSY Yang-Mills theory (SYM)

SYM is the SUSY extension of the gauge theory describing the self-interactions of
SU(N) gauge fields (gluons). The SUSY partner of the gluon is a spin 1/2 particle,

2With recent exceptions [53].
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4.1. N =1 SUSY Yang-Mills theory (SYM)

the gluino (). The balance between fermionic and bosonic degrees of freedom implied
by SUSY can only be fulfilled if gluinos are described by real neutral fields, namely
Majorana spinors. Moreover, compatibility of SUSY with gauge invariance requires
that the gluinos transform in the adjoint representation of the color group. We consider
here the general case of a SU(N..) color group (N, = number of colors).

4.1.1. The model

A generalization of gluodynamics under the minimal assumptions of SUSY and gauge
invariance is easily obtained in the superfield formalism [160].> The basic degree
of freedom is represented in this case by a vector superfield V (z,#,6) satisfying the
constraint VT =V and transforming in the adjoint representation of the gauge group:

exp{V?} = exp{—iAT}exp{V}exp{iA} , A: chiral superfield . (4.1)

An action which is manifestly invariant under SUSY and gauge transformations can
be easily obtained in terms of the SUSY field strength W,, a chiral superfield:

1 e
ESYM = mlm {7_ Trcolor (W Wa)eg} . (42>

SUSY invariance follows from the fact that the 60 (or F') component of the chiral su-
perfield W*W,, is SUSY invariant (up to a total divergence, see in the following). The
factor k is conventional and related to the normalization of the generators of SU(V)
in a generic representation: Tr(T*T®) = kd4; 7 is an arbitrary complex parameter

which we identify with

© 471
- — 4.3
T 2 + gg ( )

The number of component fields can be reduced by a partial gauge fixing (Wess-
Zumino gauge). In terms of the ungauged fields the Lagrangian (4.2) reads®

1 ) - 1 O¢2
»CSYM = _Z F:VFQMV+% )\agupzb)\b+% Aaa-/lpzb)\b+§ DaDa+Z~ 90

Fo ponv (44
327_[_2 p,V b ( )

where we indicate the color indices explicitly.
The D field decouples and can be neglected in the remainder. The calligraphic
symbol D above denotes the covariant derivative in the adjoint representation:

Dzb = 5(117 au + 90 fabc AZ (45>

and Fy, is the conventional field strength tensor of Aj.

3For details on SUSY and the superfield formalism, see for example [193, 190].
4We revert here to the conventional normalization of the fields, related to that of the component
fields of the vector supermultiplet, see for example [193], by A — X/go, A, — A,/ 90.
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4. Simulation of N =1 SYM and one flavor QCD

We see from (4.4) that the Weyl spinor A\* interacts with the vector fields by min-
imal coupling and gauge invariance is manifest. Observe that, as anticipated, the
Lagrangian (4.4) can be naturally expressed in terms of a Majorana bispinor

v (;g) | (4.6)

The Lagrangian assumes in this case the compact form (we set here and in the following

0 =0)

1  _
Loya = —~ FO Famv | % Tt DOV (4.7)

4 H
The factor 1/2 in the fermion action is characteristic for the SUSY formulation (com-
pare with the case of the quarks, Eq. (0.8)).

The Lagrangian (4.7) is invariant, up to a surface term, under a global transformation

SeAS = iEy, 0
1

Bt = D oMELE
T 1 vV a
60 =~ ot E, (4.8)
We have ‘
¢ e v a \Jya
Ly = — DT FL") (1.9

Considering the variation under a local SUSY transformation (§ = £(z)), an expression
for the variation of the Lagrangian similar to (4.9) is obtained, however with +* and
ot F}, interchanged. The conserved Noether current associated with the transforma-
tions (4.8), the supercurrent, reads therefore

S, = —%aprfva\I/“ . (4.10)

For the following discussion, it is convenient to introduce a non-vanishing mass m
for the gluino. This can be obtained by regarding the parameter 7 in the action (4.2)
as a chiral superfield [156]. A non zero vacuum expectation value of the F' component
of 7 introduces a SUSY soft-breaking gluino mass term. The choice F, = i87wm;/g3
and the replacement

T — 7 + F.00 (4.11)
results in a Majorana mass term for the gluino
(mg) _ 1 a e uy i I, 0 ab,,b Mg saga .
Lovi = —1 FLFM + 3 VAt DPU” — 3 wepe (4.12)

in this case the SUSY Ward identities of the supercurrent contain a soft-breaking term

0,5,(z) = —% mg ot % W . (4.13)
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4.2. Quantum features of N =1 SYM

4.1.2. Euclidean theory

An Euclidean formulation of SYM is needed for a rigorous quantization of the theory in
the functional integral scheme; it is also needed for the two relevant non-perturbative
computational techniques in this context, instanton calculus and lattice field theory.
Euclidization is however not completely trivial in the case of SUSY models [153] due
to the presence of Majorana spinors. In Euclidean geometry indeed, real neutral
spinors cannot be build, with the consequence that Hermiticity of the action must
be abandoned if one wants to preserve the equivalence with the relativistic theory.
The latter can be established as it is well known [164] by analytic continuation to
imaginary times of the Green functions of the relativistic theory. In this approach the
conjugated Euclidean Majorana field W (z) is no longer an independent variable (as
it is the case for Dirac spinors) but it defined by the Majorana condition

Uy = —(Up)'C, (4.14)

where C' is the spinorial representation of the charge conjugation operator. The func-
tional integration is therefore performed over the Vg fields only:

The Euclidean version of the action (4.12) is obtained by applying the usual prescrip-
tions, with the result:

m 1 a a 1 Tra a mg T a
Covhp = 3 Fe)(Fe)y, + 5 VDI Wy + S U0, (4.16)

(with vF =% and 4 = —iy*, i = 1,2,3).

An Euclidean formulation for relativistic Weyl spinors as in (4.4), instead of Majo-
rana spinors, is also possible, but notationally more cumbersome (the two formulations
are of course equivalent). The calculation of matrix elements of products of Euclidean
Majorana fields according to the prescription (4.14)-(4.15) can be greatly simplified
by using an analogy with the corresponding matrix elements for Dirac spinors [136].

4.2. Quantum features of N = 1 SYM

4.2.1. U(1)g symmetry and its fate

Supersymmetric theories are characterized by a peculiar symmetry which does not
leave the supercharges unchanged, the so-called R-symmetry. In the case of N' = 1
SYM, with just one supercharge, this symmetry is Abelian:

Qo — €%Qn Qo — e Q, . (4.17)

In the superfield representation it corresponds to a U(1) transformation of the gluino
field

Ao — €9, Ao — 70N, , U — 95 (4.18)
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4. Simulation of N =1 SYM and one flavor QCD

with associated Noether current
g = Uy, 0 (4.19)

The U(1)g symmetry is (partially) broken by the triangular anomaly, which for adjoint
fermions reads

2
o5 = 2N.Q(z),  Qx) = % Fempe (4.20)
In the Euclidean formulation, @Q(x) corresponds to the topological charge density of
the gauge field. Due to the extra factor 2N, in Eq. (4.20), originating from the
adjoint representation of the gluino, the anomaly term does not break the R-symmetry
completely. This can be seen by following Fujikawa’s approach [87] to anomalies, after
having temporarily reintroduced the ©-term in the action of SYM, see Eq. (4.4). For
the Euclidean theory, an anomalous rotation produces a shift of the ©-parameter:

Lsyy(z) — Leyy(r) — 2N ¢ [dxQ(z) : O — O —2N.D . (4.21)

Since the topological charge is an integer corresponding to the winding number of the
(Euclidean) gauge configuration, v = [ dz Q(z) € N, rotations with angles

¢ =¢p=n—>1, neN (4.22)

do not produce any effect in the functional integrals. This means that a discrete
subgroup Z,y, is preserved by the anomaly.

Theoretical arguments indicate that the vacuum of SYM develops a non-vanishing
gluino condensate (A2A*), implying spontaneous breaking of the discrete chiral sym-
metry into Zy (A% — —A%). A first indication for gluino condensation in SYM comes
from the low-energy Lagrangian approach of [187], see also in the next section; a quan-
titative prediction for the magnitude of the condensate can be obtained by instanton
computations. Instanton calculus for supersymmetric theories [155] is characterized
by absence of perturbative corrections: the leading order of the saddle-point expansion
gives already the exact result. On general grounds one expects

2 \a )ao
<%> = O A® exp{2rik/N.} (4.23)
where k£ = 0,..., N, — 1 labels the N, degenerate vacua related by transformations

in the quotient group Zsy,/Zs and A is the dynamical scale developed, as in QCD,
through dimensional transmutation. Two different instanton computations present in
the literature come up however with two different values for C:

2

¢= (N, — 1)I(3N, — 1))1/Ne
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4.2. Quantum features of N =1 SYM

in a “strong-coupling” computation (SCI) [154, 158, 11, 10, 86], C = 1 in a “weak-
coupling” one (WCI) [86, 4, 5, 155, 174]. The discrepancy between the two results can
be explained by introducing in the theory an “extra” chiral symmetric phase where
the condensate vanishes [126] (however, see also the criticism expressed in [106] to this
argument). A third approach, based on the connection of N'=1 SYM with the exact
Seiberg-Witten solution of the A/ = 2 model, confirms the SCI result, C' = 1 [106].

The chiral group Zsy, being discrete, the Goldstone theorem does not apply to
the spontaneous breaking of this residual symmetry, and the mass gap of the theory
persists for massless gluino. In an approximation of SYM, however, the spontaneous
breaking of a continuous symmetry does occur: this is the Okubo-Zweig-lizuka (OZI)
approximation of the theory, in which Feynman diagrams containing disconnected
gluino loops® are neglected. In this case the anomaly vanishes and U(1)g is expected
to be broken by a mechanism analogous to the one expected for the chiral symmetry
in QCD [187]. This means that, in the OZI approximation, the theory should contain
pseudoscalar states with negative parity, which are massless for vanishing gluino mass
(the so-called “adjoint-pions”, see also in the following).

4.2.2. Color confinement and bound states spectrum

The analogy with QCD suggests the occurrence of color confinement in SYM. The
large N, expansion supports similarities with QCD in this respect (see for example the
discussion in [187]). The leading term of the expansion has indeed the same features
of the corresponding term in QCD for fixed Ny [180]°. Differently from QCD, where
only gluonic and gq bound states survive for N.—oc0, hadron bound states associated
with any combination of gluino and gluon fields are present in SYM. Observe that, the
gluino transforming in the adjoint representation, gauge invariant composite operators
can be built in SYM by taking the color trace of products of any number of gluino
and gluon fields:

ALyeQm

PR (T1y e Ty Y1y e ey Yn) =

Treotor[Vay (21) - -+ Vo, (Tim) Ay (Y1) -+ Ay, (yn)] - (4.24)

In consideration of the (partial) analogy with QCD, the question naturally arises
whether SYM confines static color sources. In QCD, dynamical quarks are expected to
screen the static fundamental charges so that the string tension vanishes. The situation
is different in SYM, since the dynamical fermions are in the adjoint representation and
are not expected to screen fundamental charges. It is therefore generally assumed that
SYM confines static quarks with a non-vanishing string tension.

If SUSY is not broken at the dynamical level, the colorless bound states of the
theory should form supermultiplets. The lowest end of the spectrum can be explored
in particular by means of low-energy Lagrangians.

®Diagrams which can be disconnected by cutting gluon lines.
SIn spite of the different counting of the fermionic degrees of freedom in the two theories (~ N, in
QCD and ~ N2 in SYM).
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4. Simulation of N =1 SYM and one flavor QCD

Starting from the analogy with QCD, Veneziano and Yankielowicz [187] take as ba-
sic degree of freedom a superfield S(x,#) containing the composite operators A*\* =
U4 P2 (and Hermitian conjugated) and F o B, The simplest choice is a chiral su-
perfield also containing Fyj, F** and " Fjj, \“:

_ 1 ~
S(a,0) ~ WU + 00" Fy G + o 07 (Fp, P 4 iF, ) 4 - (4.25)

(the ellipsis indicates further terms not relevant for the following discussion). The last
three operators in (4.25) correspond, respectively, to the superconformal, scale and
U(1)r anomalies of SYM. The kinetic term of the effective Lagrangian of the chiral
superfield S is a Kéhler potential of the form

9
Liin = a(S*S)}{?’ : (4.26)

where « is a free parameter. L;, enjoys all the symmetries of the fundamental La-
grangian (4.4) at the classical level. The superpotential W (S) is determined, on the
other side, by requiring that the anomalous transformations reproduce the correct
anomaly terms. This results in

W(S) = %(Slog S/u* — S)p + Hermitian conjugated . (4.27)

The effective Lagrangian of the superfield S allows to determine the Green functions
of the composite components fields, contained in (4.25), by a tree-level computation.
Since these composite operators represent interpolating fields for the bound states of
the theory, the mass spectrum of SYM follows immediately from the effective La-
grangian. In this, one assumes that S contains precisely those degrees of freedom
which dominate the dynamics of the theory at low-energies.

Purely gluonic operators do not possess any kinetic term in the Kahler potential
and consequently decouple in the Veneziano-Yankielowicz theory. The dynamical de-
grees of freedom are given by the gluino bilinear A*A* and the gluino-glue operator
0wy, Vi, They project over a Wess-Zumino supermultiplet containing two mesonic
gluino states with both parities and one gluino-glue spin 1/2 state. This picture is
obviously incomplete, since mixing with the states projected by the purely gluonic
operators in (4.25) (glueballs) is expected.

Again starting from an analogy with QCD, where the scalar glueball can be coupled
to the 7 by a three-form potential C,,,, the authors of [74] embedded the chiral
superfield S in a three-form superfield U. The former can be obtained from the latter
by the relation

DU = —i (S —pu?), (4.28)

which allows to re-express the Veneziano-Yankielowicz Lagrangian in terms of U. The
superfield U contains all the components of S and in addition the tree-form poten-
tial C),,, a scalar operator interpolating the glueball with positive parity’, and a

"The operator F, 1 F" 1s not dynamical as in the Veneziano-Yankielowicz approach.
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4.3. Lattice formulation of N =1 SYM

second Majorana spinor. The pseudoscalar glueball is described by the only physi-
cal component of the three-form potential C),,. The resulting low-energy spectrum
is characterized in this new effective theory by two Wess-Zumino multiplets. The
expected mixing between the two supermultiplets is obtained by introducing in the
Veneziano-Yankielowicz Lagrangian a new interaction term of the form

().

where ¢§ is a free parameter. In the limit 6 — 0 the mass-split and mixing between
the two supermultiplets vanishes and the scalar states of the lower multiplet have a
prevalent glueball component.

The problem of the inclusion of the glueballs in the bound state spectrum of SYM
was also considered in [37] and [135]. A different point of view is put forward in [25],
where the authors point out that the inclusion of glueballs in the spectrum of SYM
necessarily requires dynamical breaking of SUSY, where no supermultiplets appear.

The mass spectrum of SYM with a small gluino mass was studied in [75] by extending
the analysis of [74] . The effective Lagrangian of the theory with softly broken SUSY
can be obtained by rephrasing the procedure for the introduction of a gluino mass
term in the fundamental Lagrangian (see end of Subsec. 4.1.1).

The effects on the spectrum, resulting from this kind of analysis, are analytic in
the gluino mass, with a first O(my) correction and higher order corrections suppressed
by powers of mg/p. The gluino mass removes in particular the degeneracy between
the supermultiplet members. In the lower supermultiplet the ordering of the states is
(with increasing mass): scalar, spin 1/2, pseudoscalar. The ordering is reversed in the
higher multiplet. At O(mg), the energy levels in the supermultiplets are equispaced;
one has namely: mq/, = (mo+ +mp-)/2. In Fig. 4.1, taken from [75], the qualitative
behavior of the softly broken spectrum of SYM is given.

4.3. Lattice formulation of ' =1 SYM

As already anticipated in the introduction to this chapter, SUSY cannot be defined
in a straightforward way in a discretized space-time manifold. The basic problem
already emerges in the simplest case of the Wess-Zumino model [194] describing the
interactions of a chiral superfield ¢. ® In this model, the interactions are contained in a
term ~ ¢3, and the SUSY invariance relies on the (non trivial) property that products
of chiral superfields are themselves chiral superfields. Going back to the expression of
the supercharge in superspace (we consider minimal SUSY)

Qo = A (4.30)

a aea ad "o :

one sees that any lattice definition of the supercharge requires in turn a lattice version
of the differential operator d,. The presence of the latter operator in the supercharge

8We follow here the discussion in [58].
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M scalar +

M fermion +

M p-scalar +
SUSY -- unmixed SUSY -- mixed SUSY
ML M p-scalar -

— M fermion -
o S
M

scalar -

Figure 4.1.: Qualitative behavior of the mass spectrum of SYM when passing from the exact
SUSY model (unmized and mized cases, see in the text) to the softly broken
model in the effective low-energy Lagrangian picture.

comes from the superalgebra identity
{Qu:Qs} = 20", P, (4.31)

and the fact that in the superfield representation P, = —id,. The problem of the
absence of infinitesimal translations on the lattice can be bypassed by considering a
lattice version of the differential operator d,, Oﬁ, having the correct continuum limit.
The lattice version of the supercharge according to (4.30), with 9, — Oﬁ, satisfies the
identity (4.31) by construction®.

The point is now that for any local definition of the lattice differential operator Oﬁ,
the composite field ¢® does not transform like a chiral superfield, and the interaction
term ¢p,, in particular, is not invariant under lattice SUSY transformations. The
basic reason for this is that any local definition of the lattice derivative does not
satisfy the Leibniz rule. Explicit invariance of a lattice Lagrangian under a lattice
version of the SUSY transformation can only be obtained by introducing non local
definitions of the lattice differential operator (for example the “SLAC derivative” [61,
60]) and, consistently, non local interaction terms in the action (a first attempt in
this direction can be found for example in [22]). These formulations however violate
Lorentz invariance in the continuum limit [121].

Even if not relevant for the present discussion were minimal SUSY is considered,
we mention that, in the case of extended SUSY with several supercharges, lattice
models with a partial exact SUSY can be constructed [118, 36, 178]. The residual
SUSY is generated by supercharges which are not related to infinitesimal translations.

9However, the operator Oﬁ does not generate finite translations on the lattice, unless a non-local
definition is used.
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The motivation behind this line of research is that the residual exact symmetry may
protect the renormalized theory from many relevant SUSY-violating terms.

As we will see in the next section, in the case of N'=1 SYM only one SUSY-violating
term exists, associated with the gluino mass. The latter must be properly tuned in
order to recover SUSY in the continuum limit.*°

4.3.1. The Curci-Veneziano lattice action

In [49] Curci and Veneziano put forward a lattice formulation of SYM which rephrases
the Wilson discretization of QCD.

In this original proposal the standard plaquette action is taken for the gluon sector.
The Wilson discretization of the Euclidean fermion action (4.16) leads to (we omit
here and in the following the label E referring to the Euclidean manifold):

i 1
S9 = CL4 E Trcolm"{ 9
a

[r O (2)¥(2) — U2 + a)U(x) (v, + 1)U (2)U}(x)]

p==%1

+mo U(a)W(x) } . (4.32)

with U = WeT* (T are the generators of the fundamental representation of SU(N)),
a the lattice spacing and mg the gluino bare mass, related to the hopping parameter
by amy = 1/2k — 4r; the bare gauge coupling g, is related to the lattice parameter
3 by the usual relation 8 = 2N,/g2. Observe the analogy with the Wilson action for
quarks (0.20). The parallelism with the Wilson formulation of QCD becomes even
more evident if an adjoint link is introduced:

ij(a:) = 2Tr(UjL(x)TaUu(x)Tb) = V;b(x)* = (V_lT)Zb(x) : (4.33)

in this case, the Curci-Veneziano action assumes the more familiar form (observe,
again, the factor 1/2)

S7=a*) " 4—1a S [P (@) U (@) = Uz + ap) V(@) (v, + 1)U (x)] (4.34)

pn==x1

+ =0 (2) V() (4.35)

The adjoint link is a real orthogonal matrix; in this case V_,(z) = V][ (z — aj1) (and
Yy = —7, as usual).

In Wilson QCD, a chirality-breaking counterterm is required in order to recover
chiral symmetry in the renormalized theory in the continuum limit. Here similarly,
as can be argued in an analysis in weak-coupling perturbation theory, the SUSY and
anomalous Ug(1) Ward identities are recovered in the renormalized theory if mg is

10Gince the mass term breaks chirality too, this tuning is avoided in chiral-symmetric lattice formu-
lations [152, 120].
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tuned to a critical value mo.(go) # 0 corresponding to massless gluino. Observe
that, at finite lattice spacing, even for mgy = mo.(go) no lattice version of the SUSY
transformations (4.8) exists leaving the lattice action invariant. Assuming that the
Curci-Veneziano lattice action belongs to the universality class of SYM, this means
that features of SYM related with SUSY will only appear in the continuum limit, while
at finite lattice spacing O(a) deviations are expected. The same considerations hold
for the U(1) R-symmetry. An analysis of these issues in a non-perturbative context
will be reviewed in the Section 4.4.

Using relation (4.14), the fermion action (4.32) can be rewritten in terms of an
antisymmetric matrix M,3, where the Greek indices refer collectively to space-time,

color and Dirac indices
1

S9 = —5VaMas¥s - (4.36)
In this case the fermion measure reads:
1
/quf7 exp{—5VaMopWs} = PI(M) , (4.37)
-

where
1

Pf(M) = Wealﬂl---aNﬁNMalﬁ1 s MGN/@N ) (438)

is the Pfaffian of the antisymmetric matrix M (NN denotes its order). Similarly to
QCD, a non-Hermitian and a Hermitian fermion matrix can be defined; respectively:

Q=0"M Q=%Q, (4.39)

with the relation
det(Q) = det(Q) = Pf(M)? . (4.40)

Due to the property of Q, following from (4.39) and from the antisymmetry of M,
crQo = Q" (4.41)

the spectrum of Q is doubly degenerate and, consequently, the fermion determinant
is positive. Relation (4.40) implies in turn that Pf(M) is real’'. One can thus write:

PE(M) = \/det(Q) sgn(PE(M)) . (4.42)

On the basis of (4.42), the TSMB algorithm described in Sec. (1.2) can be applied
to SYM with the choice o = 1/4, while the sign of the Pfaffian must be taken into
account in the reweighting procedure (see in Sec. (1.2) and in [35] for more details).
The situation is in this sense similar to Ny = 1 QCD with a light quark mass to be
considered in the following in this chapter.

HTf the Majorana representation of the gamma-matrices is used the matrix M itself is real.
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4.3.2. First studies

A first numerical study of SYM with gauge group SU(2) and dynamical gluino was
accomplished in [124], where the phase structure of the theory was studied by analyzing
the gluino condensate for light gluino masses. In the continuum (Subsec. 4.2.1), a
gluino condensate is expected to produce the spontaneous breaking of the discrete
chiral symmetry: Z4; — Z, for gauge group SU(2). The gluino mass aligns the vacuum
into one specific direction in Z,/Z5 and the condensate changes sign when the gluino
mass becomes negative (Eq. (4.23)): a first order phase transition is expected for
vanishing gluino mass'?. In the Wilson formulation, the condensate is subject to an
additive and a multiplicative renormalization and only a jump of the condensate can
be detected directly from lattice data. It is not clear how lattice artifacts can change
this scenario. In the case of QCD, as we have seen in Sec. 3.3, O(a) effects can
substantially modify the phase structure when m < aAéCD; metastable vacua are in
particular produced for light quark masses.

In [124] evidences for a first order phase transition with metastable vacua were found,
with a double-peak structure of the sample-distribution of the gluino condensate. The
method allowed to determine the critical value of the bare lattice gluino mass mq
(vanishing gluino mass) corresponding to a symmetric distribution of the condensate.
The simulation was performed on a relatively small 62 - 12 lattice and for one value of
6 = 2.3. As we will see in Sec. 4.6, this value of # corresponds to a lattice spacing
a ~ 0.06 fm when QCD units are used to fix the lattice scale (an explanation of the
conversion to QCD units can be found in Sec. 4.6); this implies on the 6 - 12 lattice
a spatial volume of only (0.4 fm)3. The value found in [124] for the critical hopping
parameter, k. = 0.1955(5), is therefore expected to be affected by substantial finite
volume effects.

A new analysis of the chiral phase transition in SU(2) SYM, based on a new PHMC
simulation algorithm [140], see also in Subsec. 3.4.1, on larger volumes and several
values of the lattice spacing is in preparation [57].

In [35] first large-scale simulations of the theory with the TSMB algorithm were
realized at 3 = 2.3 and on 6°- 12, 8- 16 and 123 - 24 lattices. In this case, the analysis
focused on the inter-quark potential and the light bound state masses. The results of
this study will be compared with new results to be discussed in Sec. 4.6.

4.4. SUSY Ward identities on the lattice [SYM-1]

According to the discussion in Sec. 4.3, the Wilson discretization of SYM is not left
invariant by any lattice counterpart of the continuum SUSY transformations (4.8).
From the analysis in weak-coupling perturbation theory of [49], SUSY is however
expected to be recovered in the continuum renormalized theory. The situation is
similar to the one applying for chiral symmetry in QCD, with a substantial difference,

12Recall that no Goldstone boson is associated with this spontaneous symmetry breaking and the
mass gap of the theory does not vanish.
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however. In QCD, a lattice version of the non-renormalization theorem for conserved
currents [183] ensures the existence of the chiral currents in the continuum limit. The
latter are obtained by a finite multiplicative renormalization of the lattice operators®®.
The chiral currents satisfy softly broken Ward identities if the quark mass is properly
renormalized by an additive term ~ a~!. A similar scenario is expected to apply to
the SUSY Ward identities too, Eq. (4.13), but a rigorous proof is (still) missing. A
non-perturbative verification of SUSY restoration, complementing the weak-coupling
arguments of [49], is therefore of primary importance. A first non-perturbative study
of the SUSY Ward identities with dynamical gluino was performed in [SYM-1], where

also the theoretical issue of the renormalization was investigated in detail'4.

4.4.1. Lattice SUSY Ward identities

The SUSY Ward identities for lattice SYM are obtained by rephrasing the method
introduced in [32] for the case of the chiral Ward identities in Wilson QCD. One
considers the invariance of the vacuum expectation value of a local operator Q(y)
(insertion operator) under redefinition of the fields by a local SUSY transformation.
The invariance of the vacuum expectation value under redefinition of the field variables
at the site x implies

(—(0:9) Q(y) + 6:Q(y)) =0, (4.43)

where 6,5 and §,Q(y) denotes the variation of the action and of the insertion operator,
respectively. The variation of the symmetric part of the action results in the divergence
of the spinorial Noether current S, (x) (“supercurrent”); so one can rewrite Eq. (4.43)
in the form:

(0,S,() Q(Y)) = (0uSrear Q(y)) + contact terms ~ d(x — y) ; (4.44)

the contact term derives from the variation of the local insertion operator.

The first step is therefore to define a lattice analogous of the transformations (4.8)°.
The lattice SUSY transformations should commute with the lattice gauge transforma-
tions, the discrete symmetries of the action (P, T) and preserve the Majorana condition
for the gluino field (4.14). The simplest choice is

SUula) = B U)W () + T + i) ¥+ ap) V()
SUM(e) = LUE @I @)U} (@) + &+ o)y U (@)W + af)

SeU(e) = 5P @oud(r)

SU(r) = —E)ouW P () (1.45)

13The renormalization converges to one for gy — 0.
14SUSY Ward identities for SYM in the quenched approximation were considered in [59].
150Observe, however, that the equations of Subsec. 4.1.1 were derived for the Minkowski manifold.
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where £(z), £(z) are infinitesimal Majorana fermionic parameters. P (x) is a (clover-
symmetrized) lattice version of the field strength tensor F),, which complies with P
and T [SYM-1].

This results in the following Ward identities!®

6Q(y)
0& ()

5 ((T,5070) Q) = mo (@) + (X @)Q) —

I

> . (4.46)

The meaning of the various terms will be explained in the following.
The lattice SUSY current S¥*(z) is a point-split current [182]

1 i
S0 (@) = =5 > 0w Tr (P (@)U (@) ¥(x + af) Up(a) + (4.47)
po

P + af)U() W)U} (@)

V* is the backward lattice derivative V!, f(x) = (f(z) — f(z — aj1))/a.

The first two terms on the RHS of Eq. (4.46) result from the fact that the lattice
action is not invariant under a global SUSY transformations. In particular, the gluino
mass term gives rise to the expected soft breaking term (compare with Eq. (4.13)):

X(@) = 0 Tr (PP (2)U(x)) . (4.48)

The explicit SUSY breaking of the Curci-Veneziano action, including the one stem-
ming from the Wilson term, gives rise to an additional SUSY-breaking term, denoted
with X®*)(z) in Eq. (4.46). The exact expression of X ) (x) [182] is not needed for
the following discussion; it is enough to know that, in the naive continuum limit,
Xs(z) ~ aOq1/2(x), where Oqy/2(x) is a dimension 11/2 operator.

The last contact term in (4.46) will be disregarded in the following, where x # y
will always be taken.

The lattice definition of the SUSY current is univocal up to O(a) terms. In par-
ticular, a local choice for the current is also possible. The local current SELZOC) (x)
satisfies a Ward identities of the form (4.46), with a symmetric lattice derivative
Ve f(x) = (f(x+ap) — f(r —ajt))/2a (preserving P and T); the SUSY-breaking term,
which depends on the details of the discretization, differs from the point-split version
by O(a) terms: X109 = X®%) 1 O(a).

4.4.2. Renormalization

Eq. (4.46) is a relation among bare correlators, while the continuum limit can only be
taken after proper renormalization of the theory. The discussion of the renormaliza-
tion of the lattice SUSY Ward identities is closely related to that of the chiral Ward

16Tn view of non-perturbative studies, only gauge invariant insertion operators are considered; in this
case, SUSY-breaking gauge fixing terms in the action do not play any role.

111



4. Simulation of N =1 SYM and one flavor QCD

identities in QCD [32, 183]. In particular, the mixing of the SUSY-breaking oper-
ator Xg(z) with lower dimensional operators gives rise to logarithmically divergent
renormalizations and power subtractions.

The renormalization pattern of the operator Oy /2(x), related to the SUSY-breaking
lattice term Xg(z), is discussed in detail in Appendix B of [SYM-1]. By using the
available symmetries of the lattice action (gauge invariance, C, P, T, hyper-cubic),
one can make restrictions on the mixing pattern of Oy;/5. In particular, hyper-cubic
invariance excludes Lorentz violating mixing terms.

In the on-shell case, the resulting general mixing pattern involves operators with
dimensions 7/2<d < 11/2:

011/2( ) =
Zi1y2 [Orrye(w) + 71(25 — 1) VuSu(z) + a~ Zy V. 1u(x) + a=*Zy x(z)]

(
+ 221]1/2 11/2 : (4.49)

An additional dimension 7/2 operator (besides the SUSY current) appears in (4.49),
the mizing current T,,(z). In the point-split case it may be defined as

ps) Z’y,,Tr( UT( )V (z + ap)Uy(z) + (4.50)
PO+ a) Up() W) US(2) )

The last term on the RHS of Eq. (4.49) reflects the mixing of the operator O11/2(x)
with other bare operators Og)ﬂ(x) with the same dimension. Solving Eq. (4.49) for

O11/2(x) and substituting it in the Ward identities (4.46), one gets the new renormal-
ized Ward identities

Zs (VuSu(2)) QY)) + Zr (Vi Tu(2)) Qy)) = ms (x(z)Q(y)) + Ofa) ,  (4.51)

where the subtracted mass mg is given by
ms=mg—a ' Z, . (4.52)

In deriving Eq. (4.51) we have relied on the vanishing in the continuum limit of the
correlation

<[le/2011/2 )—Zzﬁ)/z()ﬁ)/f(w)] Q(y)> = O(a) , (4.53)

which is valid on-shell, z #y (Z11/2, Zl({)/2 are logarithmically divergent renormaliza-
tions).
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By using general renormalization group arguments (see for example [183]) one can
show that the power-subtraction coefficients Zg, Zr and Z, are independent of the
renormalization scale. Dimensional considerations imply in this case:

Zs = Zs(go,moa) ,  Zp = Zp(go,moa) , Zy = Zy(go, moa) . (4.54)

In particular, the dependence of Zg and Zr on the gluino mass is vanishingly small in
the continuum limit!".

In QCD, the lattice chiral Ward identities lead to the definition of a multiplicatively
renormalized chiral current. A rigorous argument [32, 183] shows in this case that
the renormalized current coincides with the physical current in the continuum limit.

It satisfies in particular the appropriate current algebra. The analogous quantity for
SUSY would be (see Eq. (4.51)):

Su(x) = ZgSu(x)+ ZpT,(x) . (4.55)

As discussed in [SYM-1], an attempt to reproduce the QCD argument in the case of
the SUSY current however fails. Explicit one-loop calculations in lattice perturbation
theory may shed some light on this issue [182]. If the correctly normalized SUSY
current coincides with S’u(x) (or is related to it by multiplicative renormalization),
then Eq. (4.51) implies that it is conserved when mg vanishes. In this case SUSY is
restored in the continuum limit at mg = 0.

The renormalized SUSY Ward identities (4.51) are the object of the numerical in-
vestigations which will be reviewed in the following. In particular, the Ward identities
are used to determine, in a non-perturbative way, mg. The issue of the renormaliza-
tion of the supercurrent, which can only be settled by studying the continuum limit
of lattice SYM, is beyond the scope of this analysis taking place at a single value of
the lattice spacing.

4.4.3. Insertion operators

The choice of the insertion operator for the SUSY Ward identities (4.51) is not com-
pletely trivial due to the spinorial nature of the SUSY current. Since the Ward identi-
ties are considered at zero spatial momentum, the “orbital” angular momentum van-
ishes and rotational invariance requires that the insertion operator contains at least
one spin 1/2 component (O(a) corrections are neglected in the Ward identities, mean-
ing that the more restrictive Lorenz invariance of the continuum applies). So, as one
would naively expect, only insertion operators containing spin 1/2 representations of
the rotational group result in non trivial Ward identities. It is possible to classify the
representations of the Lorentz group having this property (Appendix C of [SYM-1)).

For the optimization of the signal-to-noise ratio, it is convenient to choose low
dimensional composite operators. The best candidate according to these criteria is

1"Tn simulations at fixed lattice spacing this dependence is treated as an O(a) effect.
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the dimension 7/2 operator confined on a time-slice

o)ZZX(S”)(f,xo S oy [P(Cl W(Z, )] . (4.56)

Z,i<j

Another possible choice is given by the temporal component of the mixing current
(4.50), which however is not confined on a time-slice.

Each spinorial dimension 7/2 operator delivers two independent equations when in-
serted in the Ward identities (4.51), corresponding to the two spin 0 components in
the sink-source operator product. The two resulting Ward identities can be used to
determine the bare soft-breaking gluino mass Z§1m5 and the combination of renoma-
lization constants Zg Y.

4.4.4. Simulation

The investigation of [SYM-1] relies on samples of configurations on a 123 - 24 lattice
at 0 = 2.3. Besides the set at k = 0.1925 of [35], two further sets at lighter values of
the gluino mass, k = 0.194 and 0.1955, were generated. The motivation for simulating
with a light gluino is of course that the restoration of SUSY can only be verified after
an extrapolation to zero gluino mass.

From the algorithmic point of view, the simulation allowed to test for the first time
the behavior of TSMB in the case of extremely light fermionic degrees of freedom.
This was also important in view of the future applications in QCD, covered in the first
three Chapters.

The possibility given by TSMB of tuning various algorithmic parameters allowed to
avoid a dramatic increase of the autocorrelations for decreasing gluino mass, see Table
2 of [SYM-1]. A more detailed analysis of the behavior of TSMB for light quarks was
given in Chapter 1.

A potential problem in lattice SYM is the fast fluctuation of the sign of the Pfaffian
during the update. Such a behavior is expected in the vicinity of the chiral phase
transition at zero gluino mass (Secs. 4.2.1 and 4.3.2). In the present case, up to the
lightest simulated gluino mass, occurrence of sign flips turned out to be statistically
negligible.

Missing any connection to phenomenology, in SYM it is not possible to fix the
lattice scale; nevertheless one can exploit the analogy with the physical theory QCD
in order to get qualitative indications. Using the Sommer scale parameter ry [176],
extrapolated to zero gluino mass, to fix the scale (see Sec. 4.6 in the following) one
obtains for the lattice spacing a ~ 0.06 fm. This corresponds to a quite small lattice
spacing in QCD computations. If analogy with QCD holds, O(a) SUSY-breaking
effects are not expected to play a major role at this S-value (even if the lattice theory
is not improved). The physical volume is on the other hand relatively small: (0.7 fm)3.
In the case of SYM however the mass gap does not vanish in the massless gluino limit
and the finite size scaling may be radically different from the one applying to QCD.
In the case of the SUSY Ward identities, finite volume effects come into play through
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the (SUSY-breaking) anti-periodic boundary conditions in the time direction for the
fermions.

4.4.5. Results from the SUSY Ward identities

As mentioned above, the study of the SUSY Ward identities allows to determine the
bare SUSY soft-breaking gluino mass Zg 'mg and the combination of finite renormal-
ization constants ZngT. The numerical results for these quantities i