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Abstract

The N = 1 supersymmetric Yang-Mills (SYM) theory describes the inter-
action between the gluon and its supersymmetric partner, the gluino. We
investigate this theory on the 4D space-time lattice. The introduction of
the lattice as a regulator of the theory breaks the supersymmetry explicitly.
Additionally, the supersymmetry is broken softly by a non-zero gluino mass.
The supersymmetric Ward identity is a key instrument for extrapolating the
theory to the chiral limit where it is characterised by massless gluinos, and for
probing the size of supersymmetry breaking by the lattice regulator. In this
thesis we present improved methods for the analysis of the supersymmetric
Ward identity of SYM theory with the gauge group SU(3) and formulate a
method based on the generalised least squares fit, the so-called GLS method.
This method considers the correlations among different observables present
in the formula of the supersymmetric Ward identity. We obtain the sub-
tracted gluino mass by the GLS method for each gauge ensemble and obtain
the remnant gluino mass in the chiral limit. The lattice artifacts for the rem-
nant gluino mass at finite lattice spacing are of the order a2 and vanish in
the zero lattice spacing limit. This agrees with our theoretical expectations.

In addition, this thesis discusses baryonic states composed of three gluino
fields. We derive correlation functions of these states and implement them
in the simulation code. Preliminary results of the effective masses of the
baryonic states for SYM theory with the gauge group SU(2) are presented.
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Zusammenfassung

Die N = 1 Supersymmetrische Yang-Mills-Theorie beschreibt die Wechsel-
wirkung zwischen dem Gluon und seinem supersymmetrischen Partnerteilchen
dem Gluino. Wir untersuchen diese Theorie auf dem 4D-Raum-Zeit-Gitter.
Die Einführung des Gitters als Regulator der Theorie bricht die Supersym-
metrie explizit. Zusätzlich wird die Supersymmetrie durch einen Gluino-
Massenterm weich gebrochen. Die supersymmetrische Ward-Identität ist ein
Schlüsselinstrument, um die Theorie zum chiralen Limes zu extrapolieren,
wo sie durch masselose Gluinos charakterisiert ist, und um die Größe der Su-
persymmetriebrechung durch den Gitterregulator zu untersuchen. In dieser
Arbeit stellen wir für SYM verbesserte Methoden zur Analyse der supersym-
metrischen Ward-Identität mit der Eichgruppe SU(3) vor und formulieren
eine Methode, die auf der verallgemeinerten Methode der kleinsten Fehlerquadrate
basiert. Diese Methode berücksichtigt die Korrelationen zwischen verschiede-
nen Observablen in der Formel der supersymmetrischen Ward-Identität. Die
Gitterartefakte in Form einer nicht verschwindenden Gluino Masse im chi-
ralen Limes sind von Ordnung a2 und verschwinden im Limes des Gitterab-
stands Null. Dies stimmt mit unseren theoretischen Erwartungen überein.

Darüber hinaus behandelt diese Arbeit Baryonenzustände, die aus drei
Gluino-Feldern bestehen. Wir leiten Korrelationsfunktionen dieser Zustände
her und implementieren sie im Simulationscode. Es werden vorläufige Ergeb-
nisse der effektiven Massen mit der Eichgruppe SU(2) vorgestellt.
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Chapter 1

Introduction

The fundamental constituents, of which the whole known matter is com-
posed of, are leptons and quarks. They interact via four fundamental forces
of nature, namely strong, weak, electromagnetic and gravitational forces[1].
In particle physics, the Standard Model (SM) describes the electromagnetic,
weak and strong interactions within the framework of Quantum Field Theory
(QFT ). Despite the fact that the Standard Model is the most successful the-
ory valid up to the weak scale (100 GeV), some problems are still unsolved,
i. e. what happens at smaller distances (higher energies), large number of
free parameters, smallness of the weak scale, mismatch of three couplings at
higher energies, mass hierarchy, neutrino masses, dark matter, etc [2]. There-
fore, it is natural to study physics beyond the Standard Model (BSM), for
example, Grand Unified Theories (GUT), technicolor theories, string theo-
ries and supersymmetric theories. These theories have been proposed and
studied over the past decades. Supersymmetric extensions of the Standard
Model have become very popular among theorists and experimentalists since
they provide natural solutions to some non-trivial problems of the SM.

N = 1 supersymmetric Yang-Mills (SYM) theory is a supersymmetric
extension of pure gauge part of the SM [3]. In this thesis we focus on the non-
perturbative dynamics of the strong interaction between the gluon and its
superpartner, the gluino in N = 1 SUSY Yang-Mills theory. Supersymmetry
on the lattice at non-zero gluino mass is broken explicitly. To find the point
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CHAPTER 1. INTRODUCTION

in parameter space where supersymmetry is restored and the theory has
vanishing gluino mass as well as zero lattice spacing a, we have to fine tune
the theory. For this purpose it is sufficient to tune the hopping parameter
κ which is related to the gluino mass, and the inverse gauge coupling β

which is related to the lattice spacing. In addition to the adjoint pion mass
squared we employ supersymmetric Ward identities in order to tune N = 1
SUSY Yang-Mills theory on the lattice [4]. In our collaboration, the major
goal is to study, among other quantities, the mass spectrum of bound states
in N = 1 SUSY Yang-Mills theory on the lattice [3, 5, 6, 7, 8], to confirm
the theoretical prediction based on effective actions [9, 10]. The particles
of the spectrum arrange themselves in supermultiplets with same mass, this
is the major motivation to investigate this model non-perturbatively. We
also investigate the soft breaking of supersymmetry introduced by a non-zero
gluino mass and the difference of mass between the particles belonging to the
same supermultiplet. We also, for the first time, investigate an interesting
particle composed of three gluinos called “baryon”. This object is not a part
of a chiral supermultiplet of effective actions VY [9] and and generalisation of
VY [10]. The major focus of this thesis is the search for the supersymmetric
point with the help of supersymmetric Ward identities. In addition, we also
derive the correlation functions of the baryon and simulate them in order to
find the mass of the baryon in N = 1 supersymmetric Yang-Mills theory. In
this thesis we proceed in the following way

1. In the first chapter, besides the general introduction we introduce su-
persymmetry and explain the importance of this symmetry. In addi-
tion, we also give a concise review of chiral and vector superfields.

2. In the second chapter we briefly explain N = 1 SUSY Yang-Mills the-
ory in the continuum reviewing the construction of the supersymmetric
Yang-Mills action with UA(1) anomaly and the first order phase tran-
sition. We also discuss predictions based on effective actions about the
mass spectrum of N = 1 SUSY Yang-Mills theory and consequences
of soft breaking of supersymmetry. In addition, we describe how the
N = 1 SUSY Yang-Mills theory can be simulated on the lattice, re-
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CHAPTER 1. INTRODUCTION

lated challenges and techniques. Moreover, we give the details of the
simulation parameters and perform the chiral and continuum extrap-
olations of our results to verify the mass degeneracy formation of the
supermultiplet.

3. Chapter three essentially is about the data analysis techniques includ-
ing effective mass, fitting correlation functions and variational analysis
that we use to determine expectation values of masses and their uncer-
tainties. These techniques rely on theoretical considerations of corre-
lation functions and their lattice prescriptions which are also discussed
in this chapter. For the measurements of the correlation functions with
the help of powerful computing machines we need gauge ensembles
which can be produced using a variety of algorithms. In particular,
we discuss very briefly the two-step multi-boson (TSMB) algorithm for
SYM theory with the gauge group SU(2) and the rational hybrid Monte
Carlo (RHMC) algorithm with the gauge group SU(3).

4. The full analysis of supersymmetric Ward identities is provided in chap-
ter four. We start from the derivation of the master formula for the
Ward identities and then specify it for N = 1 SUSY Yang-Mills the-
ory in the continuum. To answer the question whether an anomaly
appears in the supersymmetric Ward identity, we renormalise it. We
also show numerical results of the correlation functions appearing in
the formula of the Ward identities and do discrete symmetry tests in
order to check the correctness of the numerical data from simulations.
An important task is to estimate the subtracted gluino mass, which is
done by three different methods that we call the Local, the Global and
the GLS methods. Finally, the remnant gluino mass is obtained at van-
ishing adjoint pion mass squared to perform the chiral and continuum
extrapolations in order to find the supersymmetric point.

5. The fifth chapter comprises the derivation of baryon correlation func-
tions starting from the Rarita Schwinger field for SYM theory with the
SU(2) and SU(3) gauge groups. We use discrete symmetries in order to
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CHAPTER 1. INTRODUCTION

check the correctness of correlation function obtained numerically. The
baryon correlation function has two contributions, the so-called sunset
piece and the spectacle piece. The implementation of the sunset piece
in the simulation code is simple whereas the spectacle piece is rather
challenging. The signal for the spectacle piece obtained so far is noisy
and the work is in progress to improve the signal-to-noise ratio.

6. The chapter six summarises the overall work and discusses possible
future perspectives.

1.1 Supersymmetry (SUSY)

Since the seventies SUSY has played a vital role in the progress of theoretical
physics, introduced in 2D world sheet theory in the context of string theory
as a theoretical tool [11]. Soon after, it was believed that SUSY could be
adopted in the elementary particle physics as a space-time symmetry in QFT:
it was the birth of superstrings. Thereafter, innumerable supersymmetric
theories have been formulated. These theories are invariant under global
supersymmetry transformation or even under local SUSY i. e. supergravity.

Supersymmetry is a fascinating and an elegant idea that relates fermions
to bosons whose spin differs by 1

2 through the supercharge Q as

Q |Boson〉 ∼ |Fermion〉 , Q |Fermion〉 ∼ |Boson〉 . (1.1)

SUSY requires each particle to have its SUSY partner with equal mass, other
properties could also be different but with spin difference of 1

2 [12]. The
bound states of fundamental particles arrange themselves into supermulti-
plets. SUSY transforms the members of multiplets into each other. Each
supermultiplet is forced to include at least one fermion and one boson with
spin difference of 1

2 . Many supersymmetric models are toy models. They
have a high degree of symmetry, are simple to be solved, and serve as a guide
towards realistic theories. As an example, the SUSY Yang-Mills theory may
provide insights of the strong dynamics and quark confinement expected in
Super QCD [13]. These models are dual between weak and strong coupling
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CHAPTER 1. INTRODUCTION

and therefore are easily solvable whereas it is way more difficult to extend
the same duality to non-symmetric theories. Up to now SUSY has not yet
been observed in any of the experiments despite many searches at CERN lab-
oratory. Hence SUSY is not exactly realised in nature otherwise we would
have observed superpartners of the Standard Model particles, for example
selectron with mass 0.51 MeV. However, there are several motivations to
investigate the theories comprising supersymmetry.

To fill some of the gaps, SUSY is a potential extension of the Standard
Model. Among the several reasons that particle physicists are interested in
SUSY theories, the major motivation is that, in perturbation theory, the
fermion and boson loops cancel each other which results in severe radiative
corrections [11]. Outstanding examples consist of “the hierarchy problem”
(large gap between the Higgs mass and the Planck scale), “extreme small-
ness of the cosmological constant”, and “renormalisation of quantum gravity”.
Low energy limit of superstring theory is a promising candidate for unifica-
tion of four fundamental forces. Supersymmetric theories unify three running
couplings at large energy scale (1016 GeV) [14, 15]. SUSY has become a nec-
essary ingredient so that the theories are consistent and more importantly
it is being vastly used in non-abelian Yang-Mills theories which are strongly
coupled theories like QCD [13]. A large number of new results on strong
coupling and in non-perturbative sector of Yang-Mills theories have been
obtained by supersymmetrising these theories. For the dark matter, an ad-
ditional component of matter density, the “lightest supersymmetric particles
(LSP)” are good candidates [16].

For the sake of completeness, we introduce briefly the SUSY-algebra and
the superfields. For further reading and definitions of the quantities being
used, references are given accordingly.

1.2 SUSY-algebra

SUSY-algebras are Z2-graded Lie algebras which means that operators have
“even” or “odd” labels. These operators obey the following (anti-)commutator
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relations [13]

[even, even] = even, (1.2)

[odd, even] = odd, (1.3)

{odd, odd} = even. (1.4)

To determine the structure of general SUSY-algebra, let’s consider [odd, even] =
odd first [

Qi
α, Ba

]
= −(ha)βiαjQ

j
β. (1.5)

where Qi
α, i = 1, . . . ,N are the supercharges and Ba are the generators of

the Poincaré group (Translations plus Lorentz group) with the index a as
the number of generators. Further, ha are structure constants of the graded
algebra. The (Q,Ba, Bb)-Jacobi identity forces ha matrices to show bosonic
symmetry algebra

[ha, hb] = ifabchc, (1.6)

where fabc are the structure constants. Particular examples of Ba are Pµ
(Translations) and Jµν (Lorentz generators)

[
Qi
α, Pµ

]
= 0, (1.7)[

Qi
α, Jµν

]
= (bµν)αβQi

β, (1.8)

where bµν = 1
2σµν is required for Qi

α to be in the Lorentz group representation
(0, 1

2)⊕ (1
2 , 0). Similarly

[
Qi
α, T

a
]

= (la)ijQj
α + i(ta)ij(γ5)αβQj

β, (1.9)

where la + itaγ5 is an element of the Lie algebra of the internal symmetry
group and T a are the group generators.

For {odd, odd} = even, the most general relation compatible with Coleman-
Mandula theorem

{
Qi
α, Q

j
β

}
= −2δij (γµC)αβ Pµ + CαβU

ij + (γ5C)αβ V
ij, (1.10)
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CHAPTER 1. INTRODUCTION

here U and V are “central charges” and commute with everything. The
matrix C is charge conjugation matrix.

1.2.1 Irreducible representation

Some properties, independent of representation, of the SUSY algebra are
given as follows [13]

SUSY Hamiltonian:

Eq. (1.10) together with the Majorana condition Q̄i = (Qi)TC, leads to

{
Qi
α, Q̄

j
β

}
= 2δij /Pαβ + δαβU

ij + (γ5)αβ V
ij. (1.11)

By multiplying with γ0 on both sides and taking the trace, we get

P0 = 1
8N

{
Qi
α

(
Qi
α

)†
+ h.c.

}
≥ 0. (1.12)

This simply means that the Hamiltonian of SUSY theory is positive definite.

Same number of fermionic and bosonic degrees of freedom:

If NF be the fermion number operator then we define a trace as

Nb−f = tr
[
(−1)NF

{
Qi
α, Q̄

i
β

}]
. (1.13)

Using (−1)NFQi
α = −Qi

α(−1)NF , we have

Nb−f = 2/Pαβtr
[
(−1)NF

]
, (1.14)

Nb−f = 0, for P0 6= 0, (1.15)

here w = tr
[
(−1)NF

]
= nboson − nfermion is called Witten index, where nboson

is number of zero energy bosonic states and nfermion is number of zero energy
fermionic states. Note here that the Witten index w is zero, therefore nboson
and nfermion degree of freedom is same. However, we can not generalise this,
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for example in the adjoint representation of SUSY-algebra at P = 0, the
nboson and the nfermion are different from each other.

Regarding the breaking of SUSY we have the following cases [17]:

Case I, w 6= 0:

If there is imbalance between nboson and the nfermion then SUSY is not broken
spontaneously.

Case II, w = 0 and nboson = nfermion 6= 0:

In this case SUSY is not broken spontaneously.

Case III, w = 0 and nboson = nfermion = 0:

If there are not zero energy states at all then SUSY is broken spontaneously.

1.2.2 Chiral superfield

In order to obtain chiral supermultiplet we consider Sχ(x, θ, θ̄) as chiral (or
left chiral) superfield and its complex conjugate field S∗χ(x, θ, θ̄) as anti-chiral
(or right chiral) superfield [18]. Where θ and θ̄ are anti-commuting Grass-
mannian coordinates whereas x is a space-time coordinate, they span a su-
perspace. Introducing the coordinates yµ = xµ+iθσµθ̄, these superfields have
the following constraints

D̄α̇Sχ = 0, (1.16)

DαS
∗
χ = 0. (1.17)

with the chiral covariant derivatives

Dα = ∂

∂θα
+ 2i

(
σµθ̄

)
α

∂

∂yµ
, (1.18)

D̄α̇ = ∂

∂θ̄α̇
, (1.19)
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where σµ are the Pauli matrices with σ0 as 2× 2 identity matrix [18]. From
Eq. (1.19) it is obvious that Sχ(y, θ, θ̄) can be chosen as any function ex-
cluding θ̄ dependence. In the simplest model, for the case of a free chiral
supermultiplet, one possible choice for chiral superfield can be

Sχ(y, θ) = φ(y) +
√

2θχ(y) + θ2H(y). (1.20)

The factor
√

2 is conventional. The fields represent

• φ(y) is a complex scalar field,

• χ(y) is a two-component fermion field,

• H(y) is an auxiliary field.

Their explicit forms will be given in Sec. (2.1.4)

1.2.3 Vector superfield

To obtain a vector (or real) superfield V (x, θ, θ̄), we impose the condition
V † = V . The vector superfield in terms of its components reads [18]

V (x, θ, θ̄) = φ(x) +
√

2θχ(x) +
√

2θ̄χ̄(x) + θ2H(x) + θ̄2H̄(x) (1.21)

+ θσµθ̄Aµ(x) + θ̄2θηα(x) + θ2θ̄η̄α(x) + θ2θ̄2d(x), (1.22)

where

ηα(x) = λα(x)− i√
2

(σ̄µ∂µχ̄) , (1.23)

d(x) = 1
2D(x) + 1

4∂µ∂
µφ(x). (1.24)

This vector supermultiplet consists of

• Aµ(x) is a gluon field,

• λ(x) is a gluino field,

• D(x) is a gauge auxiliary field.
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To make full field theory representation we have to formulate an invariant
action for the multiplets that will be given in the next chapter.

1.3 Motivations

N = 1 SUSY Yang-Mills theory is the minimal supersymmetric extension of
the gluonic part of the Standard Model of particle physics. It describes the
strong interaction of the gluon and the gluino, the supersymmetric partner of
the gluon [3]. It is a simple model with gauge invariance and supersymmetry.
Moreover, it is similar to QCD [19], where we have the asymptotic freedom
and the confinement of fundamental constituents. In the low energy regime,
the numerical simulations are possible. In addition, we verify the mass spec-
trum predicted by effective actions [9, 10]. In this model, the bound states of
the spectrum arrange themselves in a chiral supermultiplet, if SUSY is not
broken. However, on the lattice SUSY is broken due to a non-zero gluino
mass and due to the lattice regulator, which motivates us to study it on the
lattice to check whether the chiral supermultiplet is still formed in the chiral
and in the continuum limits.
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Chapter 2

N = 1 SUSY Yang-Mills theory

In this chapter we shall briefly introduce theoretical background of theN = 1
SUSY Yang-Mills theory. The answer of a very interesting and important
question regarding spontaneous breaking of SUSY will also be addressed
here. We include predictions for the bound states of the theory from the
effective actions, these bound state form mass degenerate supermultiplets
at vanishing gluino mass. At non-zero gluino mass the degeneracy of the
spectrum is broken, this scenario is called soft breaking of SUSY and will also
be addressed. In addition, we give the lattice formalism of SYM theory and
discuss related challenges. Finally, we show the mass degeneracy formation
of the chiral supermultiplet by performing the chiral and the continuum
extrapolations.

2.1 N = 1 SUSY Yang-Mills theory in the
continuum

N = 1 SUSY Yang-Mills theory (SYM) is the minimal supersymmetric ex-
tension of the pure gauge part of the Standard Model of particle physics. It
describes the strong interaction of gluons and gluinos, the supersymmetric
partners of gluons. It is a gauge theory with fermions as degrees of free-
dom and similar to QCD in this respect, see Ref. [3] and Refs. therein. An
important difference is, however, that the gauge invariance together with
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supersymmetry requires the gluinos to be Majorana fermions transforming
in the adjoint representation of SU(Nc). In order to construct a model with
SUSY and gauge invariance, one has to consider a vector superfield V (x, θ̄, θ),
satisfying V † = V , and in Wess-Zumino gauge [20] it is given as

VWZ(x, θ, θ̄) = θσµθ̄Aµ + i(θθ)θ̄ψ̄ − i(θ̄θ̄)ψ + 1
2(θθ)(θ̄θ̄)D, (2.1)

where the gauge boson Aµ is a real vector field of gauge boson, ψ is complex
Weyl-spinor field representing the superpartner of the gauge boson and D is
an auxiliary field. This vector superfield transforms under the non-abelian
gauge transformation according to [11]

eV
′

= e−iΛ†eV eiΛ, (2.2)

where Λ is a chiral superfield. To obtain an action that contains SUSY
together with gauge invariance, based on “superfields” [21, 22, 23], we intro-
duce the spinorial field strength superfield Wα ≡ Wα(x, θα, θ̄α̇) that depends
upon space time coordinates xµ for µ = 0, 1, 2, 3 and on the anti-commuting
Weyl-spinor variables θα, θ̄α̇ for α, α̇ = 1, 2, and it is given as [18]

Wα = −1
8(D̄D̄)e−2VDαe

2V , (2.3)

with the superspace derivatives

D̄α̇ = −∂̄α̇ − iθβσµβα̇∂µ, Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ. (2.4)

The general form of Wess-Zumino gauge action in Minkowski space forN = 1
SUSY Yang-Mills theory with SU(Nc) gauge group in terms of Wα is written
as

SSYM = Re
{ ∫

d4x d2θ trc
[
WαWα

]}
, (2.5)

where trc represents the trace over colour indices. In the Wess-Zumino gauge
the bosonic vector field Aµ reads

Aµ = −igT aAaµ, (2.6)
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where g is the gauge coupling and a is the colour index, where a = 1, . . . ,N2
c−

1. T a is Nc × Nc matrix called generators of the gauge group SU(Nc) with
the normalisation relation 2 tr[T aT b] = δab, its explicit form is given in Ap-
pendix (A.1). SUSY requires a fermionic superpartner of the bosonic field
Aµ which is a spin-1

2 complex Weyl-spinor field, and is defined as

ψα = ψaαT
a. (2.7)

The invariance of the action under SUSY and gauge transformation demands
the fermionic fields to be in the adjoint representation of the gauge group
SU(Nc). Therefore the fermion, associated to fermion field, is spin-1

2 Majo-
rana particle satisfying the following Majorana condition

ψ̄ = ψTC, (2.8)

where C is the charge conjugation matrix that relates particle and anti-
particle fields, which means that particles and anti-particles in this model
are same. Note that Eq. (2.8) is derived from analytical continuation of
correlation functions from Minkowski to Euclidean space and holds for a
Euclidean Majorana field [25, 26]. The Grassmannian integration w.r.t. θ of
the action in Eq. (2.5) leaves the following result

SSYM =
∫
d4x

{
− 1

4F
a
µνF

a
µν + i

2ψ
aσµ(Dµψ̄)a − i

2(Dµψ̄)aσ̄µψa + 1
2D

aDa
}
,

(2.9)
where Da is the auxiliary scalar field which lacks a kinetic term and can be
integrated out by Gaussian integration, and F a

µν is the field strength tensor
which is given as

Fµν = −igF a
µνT

a = ∂µAν − ∂νAµ + [Aµ, Aν ], (2.10)

and Dµ is the covariant derivative in the adjoint representation

(Dµψ̄)a = ∂µψ̄
a + gfabcA

b
µψ̄

c. (2.11)
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Let λ be a Majorana bi-spinor in the adjoint representation of the gauge
group SU(Nc). It can be represented in terms of the Weyl-spinors ψ and ψ̄
as

λ =
ψα
ψ̄α̇

 . (2.12)

The following transformations change the Lagrangian density leading to the
action of Eq. (2.9) only by a total divergence δL = ∂µj̄µε = ε̄∂µjµ [27]

δAµ = −2gλ̄γµε, (2.13)

δλ = − i
g
σµνF

µνε, (2.14)

δλ̄ = + i
g
ε̄σµνF

µν , (2.15)

where ε is a Grassmannian spinor parameter and jµ = −1
2Sµ. This leaves the

supercurrent Sµ conserved, and for N = 1 SUSY Yang-Mills theory it gets
the following form

Sµ = − i
g
σνρF a

νργµλa, (2.16)

The on-shell Lagrangian density LSYM in Minkowski space from the action
in Eq. (2.9) reads

LSYM = −1
4F

a
µνF

µν
a + i

2 λ̄
aγµ (Dµλ)a . (2.17)

2.1.1 UA(1) anomaly and first order phase transition

In addition to the SUSY and the gauge transformations, the Lagrangian
density is also invariant under UA(1) transformation of the field λ which
coincides with R-symmetry of the SUSY supercharges. The UA(1) symmetry
transformation is given as [27]

λ
′ = eiφγ5λ, (2.18)

the corresponding axial current
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J5
µ = ψ̄aγµγ5ψ

a, (2.19)

has a divergence equal to

∂µJ5
µ = Ncg

2

32π2 εµνρσF
a
µνF

a
ρσ. (2.20)

Therefore, UA(1) symmetry (global chiral symmetry in this case) is anoma-
lous. However, a subgroup Z2Nc of UA(1) is still unbroken for [27]

φ = φk ≡
kπ

Nc
, where k = 0, 1, . . . , 2Nc − 1. (2.21)

Moreover, when the fermionic condensate 〈λ̄λ〉

〈λ̄λ〉 ∝ µ3e2πk/Nc , where k = 0, 1, . . . ,Nc − 1, (2.22)

is non-zero [28, 29], the residual discrete global chiral symmetry Z2Nc is ex-
pected to be broken spontaneously to Z2, where Z2 is change of sign i. e.
λ → −λ. The parameter µ is the scale parameter for the gauge group
SU(Nc). The breaking of this discrete global chiral symmetry results in a
first order phase transition at mg̃ = 0, see Fig. (2.5). As a consequence, Nc

number of degenerate vacua exist which are related by transformations of
the quotient group Z2Nc

Z2
.

2.1.2 Is SUSY broken spontaneously?

The answer of this essential and interesting question is given by the value of
the Witten index w [30]

w ≡ tr
[
(−1)NF

]
= nboson − nfermion, (2.23)

it is the difference of bosonic and fermionic ground states. In pure SUSY
Yang-Mills theory, in the absence of additional matter supermultiplets, the
Witten index wSYM is equal to number of colours Nc because there are not
any fermionic ground states and bosonic states are equal to Nc [31]. There-
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fore, as a consequence, the SUSY is not broken spontaneously.

2.1.3 Spectrum of N = 1 SUSY Yang-Mills theory

Just like QCD, in N = 1 SUSY Yang-Mills theory at low energy the fun-
damental particles are confined into colour-neutral bound states. Some of
these states consist of mesons, glueballs and the gluino-glue. If the SUSY
is realised in this model then the bound states form a chiral supermultiplet
with same masses. This scenario is shown in Fig. (2.1)

Figure 2.1: In N = 1 SUSY Yang-Mills theory, the fundamental particles
are gluon and its superpartner, the gluino. Due to asymptotic freedom they
are free at high energy. At low energy, however, they show confinement and
form colour-neutral bound states that result into glueballs, mesons and the
gluino-glue. At zero gluino mass they have same masses belonging to the
same supermultiplet. This figure is take from Ref. [17] and modified.

2.1.4 Predictions from the effective actions

The spectrum of masses is independent of the effective actions, but different
effective actions provide insights into different parts of the spectrum. Here
we consider the predictions from the VY effective action [9] and from the
generalisation of the VY effective action [10].
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The VY effective action [9]:

At the classical level, the action of N = 1 SUSY Yang-Mills theory is sym-
metric under UA(1), and superconformal transformations. At the quantum
level, however, these symmetries are broken by their corresponding anoma-
lies. The chiral supermultiplet Sχ can the be expressed in terms of linear
combination of operators that appear in the formulas of anomalies [32, 33]

Sχ(x, θ) = φ(x) +
√

2θχ(x) + θ2H(x), (2.24)

where φ(x) is the lowest component containing scalar and pseudoscalar com-
posites with corresponding quantum numbers whereas χ(x) is a fermionic
component describing the gluino-glue bound states. Apparently, there is no
kinetic term in H(x), for details see Ref. [9], and it can be integrated out
from Sχ with the help of Euler-Lagrange equation. The lowest-spin scalar,
pseudoscalar and fermionic operators are given as

φ(x) = −β(g)
2g λαλα, χ(x) = β(g)

23/2g

{
− iλαD + (σµνλ)αFµν

}
. (2.25)

Here β(g) is defined in Ref. [34], and D is component of non-abelian vector
superfield which is eliminated by means of the equations of motion. The
composite operators in Eq. (2.24) are interpolating fields for N = 1 SUSY
Yang-Mills theory and have zero anomalous dimensions. Therefore, the mass
of the corresponding particles can be obtained by the correlation functions
(correlators) of those fields. Moreover, the VY effective action in terms of
chiral superfield Sχ can be written as

SV Y =
∫
d4x

1
α

(
S+
χ Sχ

)1/3∣∣∣
D

+ γ

[(
Sχ log

(Sχ
µ3

)
− Sχ

)∣∣∣∣∣
H

+ h.c.

]
, (2.26)

where (S+
χ Sχ)1/3 is the Kähler potential that obeys scale, UA(1), and su-

perconformal symmetries. α and γ are positive constants. Based on these
correlation functions, one expects the following lowest-spin supermultiplet of
JPC eigenstates with corresponding operators
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• scalar, 0++, l = 1, s = 1 ∼ λ̄λ (a-f0)
gluino-gluino bound state (gluinoball);

• pscalar, 0−+, l = 0, s = 0 ∼ λ̄γ5λ (a-η′)
gluino-gluino bound state (gluinoball);

• spinor, 1
2
i+,l = 1, s = 1

2 ∼ σµνFµνλ (gg̃)
gluon-gluino bound state (gluino-glueball).

Generalisation of the VY effective action [10]:

The VY effective action does not contain all possible lowest-spin composites.
The bound states of gluon-gluon, after this referred as “glueballs”, are absent.
In order to include glueballs in the spectrum, we have to concentrate on the
field H(x) from Eq. (2.24) which has been ignored in VY action. By using
the equations of motion for D and for λ in H(x), we obtain

H(x) ≡ β(g)
4g

[
F µνFµν + i

2F
µνεµνρσF

ρσ
]
, (2.27)

The first term of Eq. (2.27) represents a scalar glueball and from the second
term, by means of three-form potential and real tensor superfield, one obtains
a pseudo-scalar glueball and a gluino-glue, for further details see Ref. [10].
As a consequence, an additional chiral supermultiplet with corresponding
quantum numbers is given as

• scalar, 0++, l = 0, s = 0 ∼ F µνFµν (gb)
gluon-gluon bound state (glueball);

• pscalar, 0−+, l = 1, s = 1 ∼ F µνεµνρσF
ρσ (gb)

gluon-gluon bound state (glueball);

• spinor, 1
2

(−i)+, l = 0, s = 1
2 ∼ σµνFµνλ (gg̃)

gluon-gluino bound state (gluino-glueball).

Generally, the operators of physical states have mixing when they share com-
mon transformation properties. Physical states of the above supermultiplets
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are not purely gluon-gluon, gluino-gluino or the gluino-glue, but are rather
mixtures of these composites. Therefore, it is natural to expect mixing among
scalar and pseudo-scalar glueballs with corresponding mesons. The investiga-
tion of the model including mixing shows that the physical states are settled
from two distinct mass “multiplets” [32]. The heavier set of physical states
(m+) from VY effective action has:

• A scalar meson without mixing−−−−−−−−→ a-f0.

• A pseudoscalar meson without mixing−−−−−−−−→ a-η′.

• A gluino-glue fermion (gg̃).

The lighter set of physical states (m−) obtained from the generalisation of
the VY effective action contains:

• A scalar state without mixing−−−−−−−−→ 0++ glueball.

• A pseudoscalar state without mixing−−−−−−−−→ 0−+ glueball.

• A gluino-glue fermion (gg̃).

This scenario together with soft breaking of SUSY is shown in Fig. (2.2).
In addition to these supermultiplets, besides others an other interesting

object interpolated by operators composed of three gluino fields. We call
these objects “baryons” in analogy to the baryons in QCD with three quarks
(anti)-quarks. This bound state is not present in the effective actions [9,
10], however, there is no any argument against the presence of this state.
Therefore, we develop and construct the corresponding operator and discuss
it in details in Ch. (5).

2.1.5 Ward identity in N = 1 SUSY Yang-Mills theory

The SUSY Ward identity is the quantum version of the Noether theorem
in the classical theory which gives a conserved current corresponding to the
symmetric action of a physical system corresponding each continuous sym-
metry of the action of the system [35]. Due to quantum effects, however, an
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Figure 2.2: Theoretical spectrum predicted by the VY and by the general-
isation of VY form two distinct supermultiplets without mixing. Physical
states, however, are mixtures of particles and supermultiplets are different
from the unmixed states. Furthermore, non-zero gluino mass in the action
breaks the SUSY softly and the particle spectrum is shifted. The subscripts
s, p and f stand for scalar, pseudoscalar and fermion. This figure is based
on Ref. [32].

additional term appears which is called the contact term. If we ignore this
term then the divergence of the supercurrent will be zero and one obtains a
conserved supercurrent. This identity is very useful in the case where SUSY
is explicitly broken. By making use of this identity one can tune the theory
in order to obtain SUSY point where broken SUSY is recovered. Therefore,
among the other quantities the SUSY Ward identity can also be used to
tune the theory and ensures the recovery of the explicitly broken SUSY. In
Ch. (4) we shall discuss its forms in the continuum and on the lattice. We
also renormalise it in order to check the existence of the anomalies and treat
properly the additional symmetry breaking terms [4]. SUSY Ward identity
is a good candidate for a cross check of correctness of tuning of the theory
in its numerical simulations.

2.1.6 Soft breaking of SUSY

In the case where the gluino has a non-zero mass (mg̃ 6= 0), an additional
mass term (−1

2mg̃λ̄
aλa) will appear in the potential of Lagrangian density
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which modifies it as follows [3]

LSYM = −1
4F

a
µνF

µν
a + i

2 λ̄
aγµ (Dµλ)a −

1
2mg̃λ̄

aλa. (2.28)

This Lagrangian density is not invariant under SUSY transformation any-
more. Due to the non-zero mass of the gluino field, the breaking of SUSY is
soft. The degeneracy of Nc vacua is broken, this means that there exist Nc

non-degenerate vacuum states for mg̃ 6= 0. According to Eq. (2.22), in Dirac
representation, one gets two condensates: a scalar condensate 〈λ̄λ〉 and a
pseudoscalar condensate 〈λ̄γ5λ〉. In N = 1 SUSY Yang-Mills theory with
the gauge group SU(2) we expect that the theory is characterised by 2 vacua
whereas with the gauge group SU(3) it is characterised by 3 vacua. Quali-
tatively, it is represented in Fig. (2.3) where x-axis has 〈λ̄λ〉 and on y-axis
we put 〈λ̄γ5λ〉, for details see Ref. [31] and Refs. therein. The spectrum of
particle masses predicted by means of the effective actions is modified too.
According to Ref. [32], masses of the physical states in the m+ multiplet at
non-zero gluino mass gets lowered whereas this behavior is opposite in them−

multiplet. In the scalar channel this shift is small and the pseudoscalar chan-
nel gets the largest change, whereas the fermion stays in between the scalar
and pseudoscalar in both multiplets. The whole shift, due to softly broken
SUSY of mixed case and of unmixed case, is demonstrated in Fig. (2.2).

2.2 N = 1 SUSY Yang-Mills theory on the
lattice

Discretisation of the space-time with lattice spacing a spoils most of the
symmetries related to space-time and Poincaré invariance. Eq. (1.10) for
SYM theory reads

{Qα, Qβ} = (Cγµ)αβ Pµ, (2.29)

It is apparent from Eq. (2.29) that SUSY itself is broken on the lattice.
Here Qα are the SUSY generators and Pµ are the generators of translations.
The infinitesimal translations generated by Pµ are not possible any more if
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(a) SU(2) (b) SU(3)

Figure 2.3: Vacua of N = 1 SUSY Yang-Mills theory with SU(2) and SU(3)
gauge groups.

the formalism is put onto the lattice, which breaks SUSY unavoidably, for
details see [36]. The restoration of broken SUSY is an important test for the
validity of numerical simulations for N = 1 SUSY Yang-Mills theory where
this restoration is shown in terms of degeneracies of the mass spectrum of
bound states [8] and can be cross checked by SUSY Ward identities [37]. For
this purpose, we have to tune some parameters, see Sec. (2.3.1).

2.2.1 Lattice formulation

To put the whole formulation of N = 1 SUSY Yang-Mills theory on the
hypercubic space-time lattice, we consider the lattice action (SlatCV ) suggested
by Curci and Veneziano [38] in the Wilsonian framework. It consists of a
gauge part (Sg) and the fermionic part (Sf ) as

SlatCV = Sg + Sf , (2.30)

where
Sg = β

∑
µν

(
1− 1

Nc

Re
[
tr[Uµν ]

])
, (2.31)
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with the inverse gauge coupling β = 2Nc
g2 . The trace is over the colour indices

and over all lattice sites. The plaquette variable Uµν(x), which is related
to the field strength by Uµν(x) = e−a

2Fµν(x), is the product of path-ordered
links Uµ(x) around the boundary of “U” [24]. It is shown in Fig. (2.4) and
mathematically given as

Figure 2.4: Elementary plaquette Uµν(x) at space-time coordinate x in the
µν-plane.

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x), (2.32)

here gauge link is connected to gauge field by the relation Uµ(x) = e−aAµ(x).
We define the anti-symmetrized clover plaquette P (cl)

µν (x) as

P (cl)
µν (x) = 1

8 ig
(
U (cl)
µν (x)− U (cl)†

µν (x)
)
. (2.33)

The P (cl)
µν (x) is constructed from the clover plaquette U (cl)

µν (x) in fundamental
representation that shares the same time-reversal and parity transformation
as the field strength tensor Fµν [39]. In terms of link variables the clover
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plaquette is given as [51]

U (cl)
µν = Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν(x) (2.34)

+U †ν(x− ν)Uµ(x− ν)Uν(x− ν + µ)U †µ(x)

+U †µ(x− µ)U †ν(x− µ− ν)Uµ(x− µ− ν)Uν(x− ν)

+Uν(x)U †µ(x+ ν − µ)U †ν(x− µ)Uµ(x− µ).

The fermionic part (Sf ) of the full action (SlatCV ) reads

Sf = 1
2
∑
x

{
λ̄αa (x)λαa (x)− κ

4∑
µ=1

[
λ̄αa (x+ µ̂)Vab,µ(x)(1 + γµ)αβλβb (x) (2.35)

+ λ̄αa (x)V T
ab,µ(x)(1− γµ)αβλβb (x+ µ̂)

]}
,

where the λ and λ̄ are not independent, but are related by the Majorana
condition λ = Cλ̄T . The hopping parameter κ is related to the gluino mass
by the relation given in Eq. (2.49). The adjoint link variables get the form [52]

Vab,µ(x) = 2 tr
[
U †µ(x)TaUµ(x)Tb

]
, (2.36)

where Vab,µ(x) satisfies the following properties

Vab,µ(x) = V ∗ab,µ(x) =
(
V T
ab,µ(x)

)−1
. (2.37)

The Sf can also be written like

Sf = 1
2
∑
x,y

λ̄αa (x)(Dw)αβab (x, y)λβb (y), (2.38)

where the fermionic matrix (Dw) reads

(Dw)αβab (x, y) = δabδxyδ
αβ − κ

4∑
µ=1

[
δy,x+µ̂Vab,µ(x)(1 + γµ)αβ (2.39)

+ δy+µ̂,xV
T
ab,µ(y)(1− γµ)αβ

]
.
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The eigenvalues of matrix Dw are not real. We define D̃w = γ5Dw which is
Hermitian due to the γ5 hermiticity of Dw (D†w = γ5Dwγ5) and has doubly
degenerate real eigenvalues. Furthermore, Dw satisfies the following relations

Cγ5Dwγ5C
−1 = D∗w, CDwC

−1 = DT
w, (2.40)

det(Dw) = det(D̃w) =
∏
i

w̃2
i ≥ 0. (2.41)

Where w̃i are the eigenvalues of matrix D̃w. The following path integral
representation in Euclidean space gives the two point correlation function
for the gluino field

〈T{λ(x)λ̄(y)}〉 =
∫

[dU ][dλ]λ(x)λ̄(y) e−SlatCV∫
[dU ][dλ] e−SlatCV

. (2.42)

Here the integration is over [dλ̄] is ignored because λ and λ̄ are not indepen-
dent. Moreover, number of degrees of freedom for Majorana fermions is half
than the one of Dirac fermions. For the sake of convenience we integrate out
the gluino field from the above path integral. The integral

∫
[dλ] e− 1

2 λ̄Dwλ, (2.43)

is the “Pfaffian” of the anti-symmetric matrix M = CDw and it is related to
the determinant as [27]

Pf(M)2 = det(Dw) = det(M), (2.44)

it can also be written as

Pf(M) =
√
det(Dw)× sign

(
Pf(M)

)
. (2.45)

In terms of polynomial of M the above Pfaffian reads

Pf(M) = 1
N !2N εα1β1...αNβNMα1β1 . . .MαNβN , (2.46)
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where α, β = 1, . . . , 2N . Using the definition D−1
w (x, y) = 4(x, y) the resul-

tant gluino propagator is given as

〈T{λ(x)λ̄(y)}〉 = Z−1
0

∫
[dU ]Pf(M)4 (x, y)e−Sg , (2.47)

where
Z0 =

∫
[dU ]Pf(M)e−Sg . (2.48)

Now the variables depend mainly on gauge link on the gauge field U which
can be produced using some Monte Carlo algorithms, discussed in Sec. (3.1).
Alternatively, one can also find the result (2.47) by considering some source
J(x) of gluino field in the path integral approach and doing shift in the gluino
field where this field is easily integrated out, for details see Ref [39]. The two
point function in Eq. (2.47) is the basic ingredient of different operators on
the lattice and this integral can be solved numerically by means of Monte
Carlo simulations.

2.2.2 Non-zero gluino mass and hopping parameter

The hopping parameter κ and bare gluino mass mg̃ are related as follows [40]

κ = 1
2(mg̃ + 4) . (2.49)

We calculate adjoint pion mass squared m2
a-π which is related to κ by

m2
a-π = A

(1
κ
− 1
κc

)
. (2.50)

The above relation is analogous to the PCAC relation. We also obtain the
subtracted gluino mass from the Ward identities and calculate it numerically
in simulations, full details are given in Ch. (4). As a consequence of the non-
zero gluino mass, the chiral symmetry is broken. We change κ in small steps
and monitor the above masses in order to approach to the critical value of the
hopping parameter κc where m2

a-π and the subtracted gluino mass vanish. At
this point, the first order phase transition occurs and we observe a jump in
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gluino condensate 〈λ̄λ〉, it is shown in Fig. (2.5) qualitatively. Furthermore,
in the chiral and in the continuum limits the formation of the supermultiplet
with degenerate masses is expected, and broken SUSY is recovered.

Figure 2.5: The phase structure of N = 1 SUSY Yang-Mills theory. The
dotted curve represents 1st order phase transition corresponding to mg̃ = 0.
At this point Nc degenerate vacua of the theory are expected. The degeneracy
of these vacua is, however, shifted when mg̃ is switched on.

2.2.3 Sign of the Pfaffian

The Pfaffian (2.45) is gauge invariant and uniquely defined. Nevertheless,
in numerical simulations especially at coarser lattices (larger lattice spacings
a) and at smaller gluino masses (closer to the chiral limit) it appears to be
negative for several configurations. To resolve this issue the absolute value
of the Pfaffian is taken

|Pf(M)| = |det(D̃2
w)− 1

4 |, (2.51)

and it is balanced by the reweighting procedure as

〈O〉 =

〈
O × sign

(
Pf(M)

)〉
〈
sign

(
Pf(M)

)〉 . (2.52)
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In the case when a considerable number of configurations have a negative
sign, large cancellations in the reweighting procedure occur which leads to
large statistical fluctuations. Therefore, it is important to stay away from
such regions.

To compute the Pf(M), one can construct the anti-symmetric matrix M
in terms of a block-diagonal matrix J and in terms of a triangular matrix P
as

M = P TJP, (2.53)

for the definitions of P and J , see Ref. [41]. The Pfaffian will be given as

Pf(M) = det(P ). (2.54)

This procedure, nevertheless, can only be used for small lattice due to large
storage requirements, for details see Ref. [27] and Refs. therein.

2.2.4 Improved actions

There are different ways to define the action (2.30) on the lattice with the
condition that they must respect all the concerned lattice symmetries. The
choice is, however, made on the basis of full recovery of the continuum sym-
metry and a faster approach towards the continuum limit is possible if one
choose a lattice formulation based on domain wall fermions [42]. In this case
the chiral limit is achieved without fine tuning and an additional dimension
is introduced where a massless fermion is supported by 4D domain wall. An-
other approach is to make use of overlap fermions [43, 44]. The advantage of
these formalisms is that the chiral symmetry is improved and well protected.

Most of the work has been done by using Wilson type actions. In the
previous investigations of our collaboration [3, 5], the tree-level Symanzik
improved gauge action [45] has been used instead of simple Wilson action
with the gauge group SU(2) along with one level of stout smearing to reduce
fluctuations of the low modes of the Dirac operator. In our recent investiga-
tions [6, 7, 8], for the case of the gauge group SU(3), we have used a clover
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improved fermion action. This improvement is made by adding a term

− csw
4 λ̄(x)σµνF µνλ(x), (2.55)

in the action (2.9). The main advantage of this improvement is that it
reduces the O(a) lattice artifacts significantly. The coefficient csw is called
the Sheikholeslami-Wohlert coefficient and its one loop value has been used
for the gauge group SU(3). Alternatively, in order to obtain the value of csw
the tadpole resummation [3] has also been tested for SU(2) case that lead to
a large development in obtaining the degeneracy of masses at finite lattices.
Moreover, the values of csw from one loop predictions are in the same range
of values obtained from the tadpole formula.

2.2.5 Smearing techniques

In order to improve the precision of the quantities measured on lattice with-
out putting much effort on statistics and numerics, the overlap of the op-
erators with the ground state of the particle should be enhanced. However,
some operators are not well suited to achieve the overlap. In order to enhance
this overlap with ground state, one can use so-called smearing techniques. In
addition, the smearing removes quantum fluctuations at short distances and
improves the signal-to-noise ratio. Furthermore, the smearing techniques are
applied in variational analysis to construct a set of different operators used
in the analysis [7]. We use APE and Jacobi smearings in N = 1 SUSY Yang-
Mills theory on the lattice for these purposes. The details of these smearing
techniques are as follows [5]:

APE smearing:

In APE smearing, gauge links are smeared. Smearing of gauge links is used as
a powerful tool in order to reduce UV-fluctuations of gauge configurations.
In APE smearing, the individual spatial link variable Ui(x), i = 1, 2, 3 is
extended by the sum of itself and weighted staples orthogonal to the original
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spatial link as

Ui(x) APE−−→ U ′i(x) = Ui(x) + εAPE

±3∑
j=±1
j 6=i

Uj(x)Ui(x+ ĵ)U †j (x+ î), (2.56)

where the parameter εAPE affects the strength of smearing. This procedure
is shown in Fig. (2.6). The new smeared link is given by

Figure 2.6: Graphical representation of APE smearing in which each link is
replaced by itself plus orthogonal staples.

U s
i (x) = U ′i(x)√

1
2trU ′†i (x)U ′i(x)

. (2.57)

This procedure is equivalent to solving the diffusion equation with small value
of εAPE. In terms of εAPE and NAPE, the smearing radius reads

Rs =
√
NAPE × εAPE, (2.58)

where NAPE is the APE smearing level which represents that how many times
the APE smearing is applied. NAPE should not be much larger otherwise
it would just ruin the signal. Comparison Rs to the lattice size gives an
estimate about the size of the lattice volume to contain sufficiently the wave
function of the particle to be simulated. The parameters εAPE andNAPE have
to be tuned in order to obtain best estimates of the quantities of interest.
Furthermore, the choice of the parameters for different observables will be
explained in Sec. (2.3.1).
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Jacobi smearing:

To gain the same objective, it is important to replace also fermion operator
with a smeared one. Therefore, Jacobi smearing is used for the construction
of the fermion source as [46]

λβb (~x) Jacobi−−−→ λ′
β
b (~x) =

∑
a,α,~y

F βα
ba (~x, ~y)λαa (~y). (2.59)

Where F is the Jacobi smearing operator which uses APE smeared adjoint
gauge link variable Vi(x) and its suitable choice is given as [7, 46]

F βα
ba (~x, ~y) = CNJ

J δβα

δ~x,~y +
NJ∑
i=1

(H i)ba(~x, ~y)
 , (2.60)

with
Hba(~x, ~y) = κJ

3∑
i=1

[
δ~y,~x+îVi,ba(~x) + δ~y,~x−îV

†
î,ba

(~x− î)
]
. (2.61)

Where NJ represents Jacobi smearing level, κJ is smearing coefficient and
responsible for convergence, and CJ is a normalisation constant. The optimal
choice of the set {NJ , κJ , CJ} will be explained in Sec. (2.3.1). In terms of
F , 3D Klein-Gordon equation in the limit NJ →∞ is written as

∑
a′,x′

Kaa′(~x, ~x′)Fa′b(~x′, ~y) = δ~x~yδab, (2.62)

here spin indices are omitted. The kernel K is given as

Kaa′(~x, ~x′) = δ~x~x′δaa′ − κJ
3∑
i=1

[
δ~x′,~x+îVi,aa′(~x) + δ~x′,~x−îV

†
î,aa′

(~x− î)
]
. (2.63)

The Jacobi smearing radius RJ reads

R2
J =

∑
~x
|x|2 |F (~x, 0)|2∑
~x
|F (~x, 0)|2 . (2.64)
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For further details on how the Jacobi smearing operator acts on different
pieces of correlation functions see Ref. [7].

2.2.6 Stochastic estimator technique

In N = 1 SUSY Yang-Mills theory, the computation of the disconnected
contribution to the correlator of the adjoint meson and the spectacle contri-
bution in baryonic states is a challenging task. It requires the computation of
all-to-all propagators. The major difficulty in the determination of all-to-all
propagators is to obtain the inverse of the Wilson-Dirac operator Dw. Di-
rect inversion can only be done on small lattice volumes. However, for large
volumes it is too expensive within current computational resources. There-
fore, a reasonable approximation for the inverse with a reliable precision is
required. The stochastic estimator technique (SET) is among the various
important techniques to do this job, for details see Refs. [7, 47]. The SET is
based on a set of random noise vectors |ηi〉 satisfying the following relation

1
Ns

Ns∑
i

|ηi〉 〈ηi| = 1 +O( 1√
Ns

). (2.65)

The noise, in our case, belongs to Z4 i. e. ±1±i√
2 . As a result the approximated

inverse of preconditioned Wilson-Dirac operator will be

D−1
pc = 1

Ns

Ns∑
i

|si〉 〈ηi|+O( 1√
Ns

), (2.66)

where the source vector |si〉 = D−1
pc |ηi〉 can be computed using conjugate gra-

dient method. Concerning the convergence in the approximation of the in-
verse Wilson-Dirac matrix it has been found that the SET is considerably fast
once it is combined with the truncated eigenmode approximation and even-
odd preconditioning [48]. From the lowest eigenvalues λi and corresponding
eigenvectors |vi〉 of γ5Dpc (the Hermitian version of Dpc) the approximated
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inverse of preconditioned Wilson-Dirac matrix is

D−1
pc ≈

Ne∑
i

1
λi
|vi〉 〈vi| . (2.67)

The Eq. (2.67) is combined with the noise vectors of SET [7] as

D−1
pc ≈

Ne∑
i

1
λi
|vi〉〈vi| + 1

Ns

Ns∑
i

∣∣∣si⊥〉 〈ηi⊥∣∣∣ .= Ne+Ns∑
i

ai|wi〉〈ui| , (2.68)

where |si⊥〉 and |ηi⊥〉 are the source and noise vectors which are projected or-
thogonal to the lowest eigenvectors. The combination of above both approx-
imations described above together with better choice of number of stochastic
estimator, not only speeds up the code but also converges to the better esti-
mation of the inverse of preconditioned Wilson-Dirac matrix.

2.3 Strategy

2.3.1 Simulation parameters

InN = 1 SUSY Yang-Mills theory on the lattice, we need to tune two param-
eters. The first parameter is the inverse gauge coupling β which is related to
the lattice spacing a, we tune this parameter such that the continuum limit is
approached where broken SUSY due to the lattice regulator is recovered. We
have generated ensembles with the gauge group SU(3) using the RHMC algo-
rithm; the set of simulated values of β is {5.2, 5.3, 5.4, 5.45, 5.5, 5.6, 5.8}. The
values 5.2 and 5.3 are excluded because there might be bulk phase traditions
and algorithm does not converge. Whereas the value 5.8 is ignored as well be-
cause the corresponding lattice spacing is too small such that the topological
sectors can not be sampled properly and there appear to be the large finite
volume effects, the topological charge freezes and relevant quantities mea-
sured at this value are not reliable. Moreover, the value of Sheikholeslami-
Wohlert coefficient csw is determined from the one-loop calculation, this value
is used in the clover part of the action. The Second parameter is called the
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hopping parameter κ which is related to the gluino mass by the relation given
in Eq. (2.49). This parameter is tuned such that the chiral limit is obtained
where theory is characterised by a massless gluino. For the case of SU(3),
our choices for the inverse gauge coupling β and for the hopping parameter
κ are shown in Tab. (2.1).

β = 5.4 β = 5.4 β = 5.45 β = 5.5 β = 5.6
csw = 1609 csw = 1603 csw = 1598 csw = 1587 csw = 1609
V = 123 × 24 V = 163 × 32 V = 163 × 32 V = 163 × 32 V = 243 × 48
κ Ncnfg κ Ncnfg κ Ncnfg κ Ncnfg κ Ncnfg

0.1690 5642 0.1692 8080 0.1685 2314 0.1649 3212 0.1645 08611
0.1695 8199 0.1695 4277 0.1687 3333 0.1667 4515 0.1650 10286
0.1700 5962 0.1697 3896 0.1690 2637 0.1673 5108 0.1655 13986
0.1703 6076 0.1700 6152 0.1692 2126 0.1678 3603 0.1660 12760
0.1705 5070 0.1703 10513 0.1693 2394 0.1680 1511 - -

- - 0.1705 9868 - - 0.1683 0917 - -

Table 2.1: Gauge ensambles corresponding to the optimal values of inverse
gauge coupling β for different lattice volumes. The csw values are used in
clover part of the action. Here Ncnfg represents the total number of gauge
configurations produced.

Smearing parameters for Ward identities:

For the Ward identities the best parameters are given in the Tab. (2.2). The
dependence of the gluino-glue Ward identity correlation functions on these
parameters is mild.

APE Jacobi
NAPE εAPE NJ κJ

4 0.5 6 0.2

Table 2.2: The optimal values of parameters used in APE and Jacobi smear-
ings for the Ward identities.
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Smearing parameters for adjoint Mesons (a-η′ and a-f0):

The disconnected contributions of the mesons are challenging to be computed
on the lattice. We apply Jacobi smearing in order to improve the signal which
introduces additional noise. To cope with this, we first apply APE smearing
on the gauge links and then use these links in the Jacobi smearing opera-
tor [7]. To avoid large errors, we optimise the κJ and to keep the correlation
function of the same order of magnitude, we tune CJ . The Tab. (2.3) shows
the optimal choices of smearing parameters for mesons.

APE Jacobi
NAPE εAPE NJ κJ CJ

20 0.5 upto 80 0.2 0.87

Table 2.3: The best smearing parameters used in APE and Jacobi smearings
for mesons.

Smearing parameters for the gluino-glue and glueballs:

For the gluino-glue and glueballs bound states we apply the APE smearing
only and use 0.4 and 0.5 as values of εAPE respectively with NAPE = 20.

Stochastic estimators and number of lowest eigenvalues for mesons
and baryons:

In our current measurement of mesons, we choose 40 stochastic estimators
along with the 20 lowest eigenvalues. For further discussions and details see
Ref. [7]

Results of autocorrelation time and estimated bin size:

Tab. (2.4) shows the numerical values of integrated autocorrelation time τO,int
calculated from Eq. (3.59) and estimated bin size LB from Eq. (3.65).
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β = 5.5 β = 5.6
κ Ncnfg τO,int LB κ Ncnfg τO,int LB

0.1649 08611 1.4997 24 0.1645 08611 1.4999 33
0.1667 10286 1.4998 27 0.1650 10286 1.4999 35
0.1673 13986 1.4998 28 0.1655 13986 1.4999 39
0.1678 12760 1.4997 25 0.1660 12760 1.4999 38
0.1680 10286 1.4993 18 - - - -
0.1683 13986 1.4989 16 - - - -

Table 2.4: Results for integrated autocorrelation time of the correlation func-
tions appearing in the Ward identities and estimated bin size.

2.3.2 Finite size effects

The determination of the mass spectrum of the theory on the lattice is af-
fected by the finite size effects. The degeneracy of the supermultiplet pre-
dicted by the effective actions [9, 10] can be lost if they are not considered
and estimated properly. In principle, one should simulate the theory in in-
finitely large volume, but practically it is impossible. Therefore one should
be very careful in choosing the size of the box. Relatively larger volumes are
preferred, on the other hand the simulations are very expensive especially
when fermions are in the adjoint representation. Hence, some optimal size of
the box should be taken. In the lattice field theories the measurement of the
physical quantities in a finite box is different from those in infinitely large
box. The shifted mass due to definite size L of the box is given as

m(L) = m0 +4m(L), (2.69)

where m0 is the mass in an infinitely large box and 4m(L) is the shift that
has been investigated to all orders in PT [49]. In the lattice field theory the
analogous investigations have been presented in [50] where the mass shift
gets the form

4m(L) ∼ C

L
e−αm0L. (2.70)
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This behavior is generic and does not depend on the types of interactions.
In N = 1 SUSY Yang-Mills theory the finite size L dependent mass m(L) is
obtained and fitted to infinite volume limit. In the fit the constants C, α and
m0 are calculated. The mass gap between the gluino-glue and a-η′ is shown in
Ref. [51]. It has also been argued that the functional dependence in Eq. (2.70)
is valid only for sufficiently large lattice volumes. Furthermore, Fig. (2.7)
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Figure 2.7: Lattice volume size dependence of the gluino-glue (blue) and
a-π (red) masses. The numerical simulations are performed at β = 5.6 and
κ = 0.1660. The results are obtained by fitting the data to the functional
form in the Eq. (2.70).

shows the masses of the gluino-glue and a-π particles plotted against size L/r0

at the finest lattice spacing corresponding to the inverse gauge coupling β =
5.6 and the hopping parameter κ = 0.1660 (very close to κc). We choose a set
of different lattice volumes i. e. {83×32, 123×32, 163×32, 203×40, 243×48}
to see the dependence of the mass on L/r0. It seems that we are already in
the safe region for volume 163 × 32 where the masses are constant and their
dependence on the volume is negligible, even though we have preferred to
perform simulations at the volume 243× 48. At this lattice volume the finite
size effects are irrelevant [6].

2.3.3 The sampling of topological sectors

Topological quantities have large autocorrelation time and topological charge
is frozen towards the zero lattice spacing limit at the finest lattice spacing
(< 0.05 fm in QCD units). The autocorrelation time increases very quickly
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when the lattice spacing a is decreased, see Refs. [53, 54] for details. Monte
Carlo simulations loose ergodicity if topological sectors are not treated prop-
erly. We have already very fine lattice spacing corresponding to β = 5.6,
hence it is very important to sample the topological sector accordingly. The
mean value of the topological charge 〈Q〉, the integrated autocorrelation time
τQ and the susceptibility χQ have been measured in our recent numerical sim-
ulations. For β = 5.5 the τQ seems to be reasonable and it becomes more
important at β = 5.6 where it is relatively large but still under control, see
Fig. (2.8) which is taken from Ref. [6]. In addition, we have also performed
simulations and calculated these quantities for β = 5.8 (very close to contin-
uum), and found out that the topological charge is frozen. Hence, all related
quantities at β = 5.8 are not reliable and these ensembles are excluded.
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Figure 2.8: The history (β dependence) of the topological charge on a lattice
volume 163 × 32 (left). The history (Volume dependence) of the topological
charge at inverse gauge coupling β = 5.6 and hopping parameter κ = 0.1660
(right).

2.3.4 Scale setting

Numerical simulations give dimensionless numbers. To represent them into
physical units one needs to set a scale. On the lattice, it is equivalent to
put lattice spacing a to a fixed value. In principle, any dimensionful physical
observable can be used for this purpose. Nevertheless, the calculation of any
physical quantity from the lattice can only be as good as the determination of
its scale in physical units. In addition to the physical scale, it is equally im-
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portant to determine the lattice spacing at different inverse gauge couplings
to perform the continuum extrapolation. To express physical quantities in
terms of an accurately measured quantity it might be useful to choose a quan-
tity which is not directly measured in experiments, but easy to be calculated
with high precision and accuracy.

The Sommer parameter r0 is one of this type which is introduced in
Ref. [55]. This has been used in N = 1 SUSY Yang-Mills theory with the
gauge group SU(2) [3]. The advantage of this scale is that it makes use
of the static quark anti-quark potential V (r/a) from gauge fields and fits
the data to extract r0/a or string tension a

√
σ without any expensive com-

putation of quark propagators etc. However, its computation is non-trivial
and requires asymptotic behavior of Wilson-loops. Moreover, its analysis is
complicated [56] which results in large error of the scale.

Alternatively, the w0 scale from gradient flow can be obtained with high
precision. It is considered in Ref. [57] and the method how to determine w0

scale is explained in Ref. [58]. To obtain w0 scale, the following observable
is considered

W (t) = t
d

dt

(
t2 〈E (t)〉

)
, (2.71)

with the condition
W (t)t=w2

0
= u, (2.72)

where u is a reference scale. Different choices of u change the autocorrelation
strongly. Different values have been tried in Ref. [59] and it has been found
that the small value of u reduces fluctuations and spikes of wu0 . We used
u = 0.2 in our previous investigation [6] where topological sampling was
insufficient. In our recent work [7, 8], we have used u = 0.3 where topological
sectors are under control. 〈E(t)〉 is the expectation value of continuum-like
action density E that reads

E = 1
4G

a
µνG

a
µν , (2.73)

where Ga
µν is the chromoelectric field strength tensor. The reason why W (t)

is preferred over t2 〈E(t)〉 of Ref. [57] is that W (t) is less influenced than
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t2 〈E(t)〉 by the cutoff effects (discretisation effects). Moreover, t yields dif-
ferent relative scales for different values of t2 〈E(t)〉 whereas W (t) gives very
similar values of the scale.

We compute the scale w0 for each β and for the full range of κ as a
function of m2

a-π. The data is fitted to a function of second order polynomial
of m2

a-π, the function reads

w0(m2
a-π) = w0,χ + c(1)m2

a-π + c(2)m4
a-π, (2.74)

where w0,χ is desired value of the scale.

2.3.5 Chiral and continuum extrapolations

In our previous investigations, we extrapolated masses to the chiral and in
the continuum limits separately in a two step procedure. Contrary to that,
we now perform a combined one 2D fit to obtain values of observables Oχ,cont.

in terms of the scale w0 by the function

O(m2
a-π, w0,χ) = Oχ,cont. + c(1)m2

a-π + c(2) a

β2 + c(3)m2
a-π

a

β2 . (2.75)

Instead of a we have used a/β2 in Eq. (2.75) because lattice articfacts for on-
shell quantities are expected to be O(a/β2) due to one-loop clover improved
action [8]. In order to show the mass gap, we show the chiral extrapolation of
the gluino-glue, the pseudoscalar a-η′ and the 0++ glueball in Figs. (2.9,2.10)
for a set of coarser and finer lattice spacings. At the coarsest lattice spacings
corresponding to β = 5.4 one can see a mass gap between the gluino-glue
and other observables (a-η′ and 0++). This gap squeezes already at β = 5.45.
For β = 5.5 and β = 5.6 their is no mass gap present between the particles
indicating the formation of supermultiplet in the chiral limit. Fig. (2.11)
shows the continuum extrapolations of the masses using the fit function of
Eq. (2.75). It is very much clear from the extrapolations that the masses
are degenerate and hence form a chiral supermultiplet which indicates the
restoration of broken SUSY. Moreover, a quadratic fit in the lattice spacing
a has also been performed, however, the dependence of masses on the lattice
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Figure 2.9: The extrapolations of the ground state masses towards the chiral
point κc where m2

a-π vanishes at two coarser lattice spacings. These masses
consist of the gluino-glue gg(0) which is purely fermionic state, the scalar
channel 0++(0) which is mixed state of 0++ glueballs and a-f0, and the pseu-
doscalar channel a-η′(0) which is purely mesonic state.
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Figure 2.10: The extrapolations of the ground state masses towards the chiral
point κc where m2

a-π vanishes at two finer lattice spacings. It is important
to note here that as the lattice spacing a becomes smaller (at larger β) the
lattice artifacts are significantly reduced and formation of supermultiplet is
quite clear which is the hint of restoration of the broken SUSY.

spacing is mild, see Ref. [8]. Additionally, SUSY Ward identities have been
employed in order to show the recovery of broken SUSY, full detail is given
in Ch. (4).
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Figure 2.11: The extrapolations of the ground state masses towards the
continuum limit performed at 4 different lattice spacings. These physical
states are same as shown in Figs. (2.9,2.10). The masses are compatible
within errors at a = 0, therefore they form a chiral supermultplet as predicted
in Refs. [9, 10].
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Chapter 3

Correlators and determination
of masses

In this chapter we shall consider algorithms for the production of gauge en-
sembles which have been used for the determination of different observables.
Moreover we discuss the correlation functions required to measure the spec-
trum of bound states. In addition, we review some data analysis techniques
for our research work.

3.1 Production of configurations and algorithms

The gauge field configurations are the basic requirements to perform Monte
Carlo simulations of N = 1 SUSY Yang-Mills theory. The implementation
of fermions on the lattice is expensive especially when they are in adjoint
representation. In N = 1 SUSY Yang-Mills theory it is more challenging to
simulate the theory near the chiral and the zero lattice spacing limits. We
focus mainly on algorithms which produce the gauge field configurations in
order to significantly reduce computational power.

On the lattice, we compute expectation values of observables, as an ex-
ample see Eq. (2.42). The exponential may suppress some regions of con-
figuration space, therefore it is crucial to find an algorithm that produces
configurations with a significant weight. This is achieved by the “importance
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sampling”. Moreover, we employ Markov chain process producing new con-
figuration from the previous one, which may result into autocorrelations that
can be controlled as explained in Sec. (3.3.4).

There are many algorithms to achieve the similar results. However, in
our case we have used the two-step multi-boson (TSMB) and the PHMC
algorithm for the gauge group SU(2) and the Rational Hybrid Monte Carlo
(RHMC) algorithm for the gauge group SU(3).

3.1.1 Two-step multi-boson (TSMB) algorithm

Many pseudofermion fields are required in order to have highly precise ap-
proximations of

[
det(D̃2

w)
] 1

4 which might result into the requirement of large
storage space and long autocorrelations. To solve this issue, a two-step ap-
proximation scheme is introduced in Ref. [52] and extended to multi-step in
Ref. [60]. These two steps are explained as

Step 1:[
det(D̃2

w)
] 1

4 is approximated by a polynomial P̄ (x) as

[
det(D̃2

w)
] 1

4 δ̄−→ 1
det

(
P̄
(
D̃2
w

)) . (3.1)

With δ̄ as a deviation norm.

Step 2:

The polynomial P (x) is factorised as

[
det(D̃2

w)
] 1

4 δ−→ 1
det

(
P̄
(
D̃2
w

))
det

(
P
(
D̃2
w

)) . (3.2)

Where det
(
P
(
D̃2
w

))
is called “noisy correction” and considered in Metropo-

lis correction step. The canonical gauge field distribution in terms of only U
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is
w [U ] = e−Sg [U ]

det
(
P̄
(
D̃2
w[U ]

))
det

(
P
(
D̃2
w[U ]

)) . (3.3)

w in terms of U and pseudofermion field φ(x) reads

w [U, φ] = e−SgP̄ [U,φ]

det
(
P
(
D̃2
w[U ]

)) . (3.4)

The acceptance probability has to satisfy the condition

PA ([U ′]← [U ])
PA ([U ]← [U ′]) =

det
(
P
(
D̃2
w[U ]

))
det

(
P
(
D̃2
w[U ′]

)) . (3.5)

Where PA ([U ′]← [U ]) is the probability of acceptance in the correction step.
To avoid prohibitively expensive simulations, we consider the simple distri-
bution of Gaussian type

e−η
′†η′∫

[dη′]e−η′†η′ , (3.6)

where η can be obtained from η′ as

η = P
(
D̃2
w[U ′]

)− 1
2 η′. (3.7)

This η will then be used in

PA ([U ′]← [U ]) =
∫
A>1[dη]e−η†P(D̃2

w[U ])η +
∫
A<1[dη]e−η†P(D̃2

w[U ′])η∫
[dη]e−η†P(D̃2

w[U ])η , (3.8)

where
A (η; [U ′]← [U ]) = e−η

†{P(D̃2
w[U ′])−P(D̃2

w[U ])}η, (3.9)

with the following step to accept the change [U ′]← [U ]

min{1, A (η; [U ′]← [U ])}. (3.10)

The exact solution is much more difficult. However, the two-step polynomial
approximation can be used for the result. The two-step multi-boson (TSMB)
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algorithm is not “exact” but still good enough to have the required precision
where we monitor the spectrum of the dirac operator to check whether the
approximation is good enough.

3.1.2 Rational hybrid Monte Carlo (RHMC) algorithm

In our collaboration, the RHMC algorithm has been used for the production
of configurations for the gauge group SU(3). This review, in order to make
the whole story complete, is based on Ref. [17]. For the complex vector φ(x),
the 4

√
det(D̃2

w) can be calculated as

∫
d[φ(x)]d[φ†(x)]e−φ

†(x)
(

[D̃2
w]−

1
4
)

(x,y)φ(y) = 4
√
det(D̃2

w), (3.11)

where D̃w = γ5Dw and φ(x) fields represent pseudofermions. The φ(x) can
be computed from ψ(x) and D̃2

w as

φ(x) =
(
[D̃2

w] 1
8
)

(x, y)ψ(x), (3.12)

here ψ(x) is a complex random vector and has Gaussian distributed entries.
To compute

(
[D̃2

w] 1
8
)

(x, y), we introduce the rational approximation x 1
8

x
1
8 =

∑
k

ck
x+ bk

. (3.13)

The coefficients ck and bk are calculated by the Remez algorithm. The Dirac
Eq.

(D̃2
w + bk)ηk = ψ, (3.14)

is solved to compute Eq. (3.12) as

φ(x) =
∑
k

ckηk. (3.15)

If
(
[D̃2

w]− 1
4
)

(x, y) is represented as a new rational approximation as in Eq. (3.13)
then the force can be calculated, that leads to the Rational Hybrid Monte
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Carlo (RHMC). In the rational approximation the derivative is

∂

∂Uµ(x)

{
φ†

ck

D̃2
w + bk

φ

}
= ckη

†
k

∂
(
D̃2
w + bk

)
∂Uµ(x) . (3.16)

The detailed steps of the algorithms are given in Ref. [17].

3.2 Measurement of correlators

To obtain the masses of bound states formed by gluons and gluinos, suitable
gauge invariant operators are considered. According to the total spin of
the bound states, they are divided into bosons and fermions just like the
classification of particles in the Standard Model. Additionally, there is a
bound state with only one valence fermion that has no analogue in QCD, the
gluino-glue.

3.2.1 Bosons

Adjoint mesons:

The bound state of two Majorana gluino fields in the adjoint representation
form an adjoint meson just like mesons in QCD where they are formed out
of two quarks (one quark and one anti-quark). The meson with JPC = 0++

is called a-f0 and can be interpolated by the following operator

Õa-f0(x) = λ̄(x)λ(x), (3.17)

whereas the meson with quantum numbers JPC = 0−+ is called a-η′ (in
analogy to the η′ of QCD). Its interpolating field reads

Õa-η′(x) = λ̄(x)γ5λ(x), (3.18)
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where the prefix “a” in both of mesons represents the adjoint representation.
The corresponding lattice transcription is given as

Cg̃g̃(∆t) = tr [Γ4 (x, x)] tr [Γ4 (y, y)]︸ ︷︷ ︸
Disconnected contribution

−2 tr [Γ4 (x, y)Γ4 (y, x)]︸ ︷︷ ︸
Connected contribution

, (3.19)

where tr is over color and spin indices. The factor 2 is due to the Majorana
nature of the field λ(x) and4 = D−1

w . The matrix Γ is 1 for the a-f0 whereas
it is γ5 for the a-η′. The graphical representation of the connected and the
disconnected contributions is shown in Fig. (3.1).

The contribution of the connected part is rather easy to computer where
we only need to compute the inversion of a δ-source for each combination of
spin and gauge indices. This inversion is achieved by the Conjugate Gradi-
ent (CG) method. The disconnected piece is challenging and computation-
ally expensive. We use the Stochastic Estimator Technique (SET) together
with the truncated lowest eigenmode approximation of the operator, which
is explained in Sec. (2.2.6).

Figure 3.1: Graphical representation of “Connected” and “Disconnected”
contributions of mesonic correlation functions.
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Glueballs:

Glueballs are the bound states made of gluons, predicted in the generalisa-
tion of the effective action of Ref. [10]. There are scalar and pseudoscalar
bosonic glueballs. The operators and their lattice versions are discussed as
follows:

0++ glueballs

The operator of the JPC = 0++ (scalar) glueball reads

Õgb++ =
∑
µν

F µνFµν , (3.20)

and its lattice form in terms of space-like plaquette is given as

Õgb++(x) = tr [P12(x) + P23(x) + P31(x)] , (3.21)

where Pij is a spacial plaquette given in Eq. (2.33). All the plaquettes which
take part in the glueball operator are symmetric and connected to the same
space-time lattice point x.

0−+ glueballs

The following operator corresponds to the glueball with the quantum
numbers 0−+ (pseudo-scalar)

Õgb−+ =
∑
µνρσ

F µνεµνρσF
ρσ. (3.22)

There is a difficulty in using this operator to create a gluonic state with
required quantum numbers because this operator has two plaquettes which
are orthogonal and do not fit onto a single time-slice. Therefore the following
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form of the operator is chosen

Ogb−+(x) =
∑
R∈Oh

{
tr [C(x)] -tr [PC(x)]

}
, (3.23)

where C is the loop that is shown in Fig. (3.2), PC (parity conjugate) rep-
resents the mirroring of C. Oh is the cubic group and the sum is over all
possible rotations. From the numerical results it turns out that the signal for

Figure 3.2: Glueballs in N = 1 SUSY Yang-Mills theory.

glueballs is too noisy and requires some smearing techniques. APE-smearing
is applied in order to improve the signal-to-noise ratio. Its details along with
the choice of smearing parameters is explained in Sec. (2.2.5). For a detailed
analysis see Ref. [7].

3.2.2 Fermions

Gluino-glue:

The investigations of N = 1 SUSY Yang-Mills theory also comprises the
bound state of the gluon and its fermionic superpartner, the gluino. This
bound state is called the gluino-glue and predicted by effective actions [9, 10].
It is a spin-1

2 Majorana fermion, the superpartner of glueballs. Such a particle
does not exist in pure QCD. However, similar bound states are present in
QCD-like models with quarks in the adjoint representation of gauge group,
for details see Refs. [6, 51]. The operator of such a bound state can be
constructed from the gluino field and the field strength tensor as follows

Õgg̃ =
∑
µν

σµνtr [F µνλ] , (3.24)

63



CHAPTER 3. CORRELATORS AND DETERMINATION OF MASSES

where σµν = 1
2 [γµ, γν ]. The lattice prescription of a related operator is given

as
Oα
gg̃ =

∑
i<j,β

σαβij tr
[
P

(cl)
ij λβ

]
, (3.25)

where P (cl)
µν (x) is the clover-symmetrized plaquette, the lattice version of field

strength tensor Fµν(x), and defined in Eq. (2.33). The indices i and j are
along space coordinates. It is graphically represented in Fig. (3.3). The

Figure 3.3: Correlation function of the gluino-glue particle in N = 1 SUSY
Yang-Mills theory.

correlation function corresponding to the identity of the Dirac basis is

Cgg̃(∆t) = −1
4
∑
i,j,k,l

∑
~x,~y

∑
α,β,ρ

∑
ab

〈σαβij tr [Pij (x)T a]
(
D−1
w

)βρ
ab

(x, y) tr
[
Pkl (y)T b

]
σαρkl 〉,

(3.26)
where ∆t = x0 − y0 is the time slice distance. The correlation function
Cgg̃(∆t) can be expanded in the basis of 16 Dirac matrices, using discrete
symmetries one can show that the non-vanishing contributions are only the
ones proportional to the identity 1 and with γ4, hence

Cαβ
gg̃ (∆t) = C1 (∆t) δαβ + C2 (∆t) γαβ4 . (3.27)

The time reversal gives [39]

C1 (∆t) = −C1 (Nt −∆t) , C2 (∆t) = C2 (Nt −∆t) . (3.28)
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Where C1 is anti-symmetric and C2 is symmetric. In order to verify the
correctness of the correlation function of the gluino-glue the above relations
can be used.

Baryons:

An interesting object that can be constructed from three gluinos is called
“baryon” in analogy to the baryon of QCD. The interpolating field of such
an object reads

Õbar(x) = tabcΓAλa(x)
(
λTb (x)ΓBλc(x)

)
, (3.29)

here tabc is the structure constant and it is given explicitly in Appendix (B.3)
whereas Γ is the spin matrix. The correlation function of baryon splits up
into a “Sunset piece” and a “Spectacle piece”, it is given as

B(x, y) = 〈BSset(x, y) +BSpec(x, y)〉 , (3.30)

where

BSset(x, y) = θ ta′b′c′tabcΓβγΓβ
′γ′Pαα′

± × {

+ 24αα′

aa′ (x, y)4ββ′

bb′ (x, y)4γγ′

cc′ (x, y)

+ 44αβ′

ab′ (x, y)4βγ′

bc′ (x, y)4γα′

ca′ (x, y)}, (3.31)

BSpec(x, y) = θ ta′b′c′tabcΓβγΓβ
′γ′Pαα′

± × {

+ 24αβ
ab (x, x)4δα′

ca′ (x, y)4δ′β′

c′b′ (y, y)CγδCγ′δ′

+ 44αβ
ab (x, x)4β′γ

b′c (y, x)4γ′α′

c′a′ (y, y)

+ 14αα′

aa′ (x, y)4βδ
bc (x, x)4δ′β′

c′b′ (y, y)CγδCδ′γ′

+ 24αδ′

ac (x, y)4βδ
bc (x, x)4β′α′

b′a′ (y, y)CγδCγ′δ′}, (3.32)

here P± are parity projectors, defined as P± = 1
2(1±γ4) and θ is defined in

Tab. (5.1). The calculations, choice of spin matrices, and numerical strategies
are explained in Ch. (5). The presence of the “Spectacle graph” is due to the
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fact that we have a single flavour gluino field. The graphical representation
of the two contributions above is depicted in Fig. (3.4).

Figure 3.4: The “Spectacle” and “Sunset” contributions of baryon correlation
function in N = 1 SUSY Yang-Mills theory.

3.2.3 Mixing

The adjoint mesons and glueballs with the same quantum numbers are mixed.
The physical states might not be purely gluonic or mesonic but rather be
mixed. This mixing is predicted in Ref. [10] where the authors have shown
that when a mixing term is included in the Lagrangian, the heavier state
m+ becomes even heavier and lighter state m− gets even lighter. In our
recent investigation [7], we have enlarged the variational basis in the vari-
ational analysis to take into account mixing between mesons and glueballs.
The physical state |n〉 in terms of glueball contribution |φ(g)

n 〉 and meson
contribution |φ(m)

n 〉 is written as

|n〉 = |φ(g)
n 〉+ |φ(m)

n 〉 , (3.33)
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with,

|φ(g)
n 〉 =

ng∑
i=1

v
(g)
ni |φ

(g)
i 〉 , (3.34)

|φ(m)
n 〉 =

nm∑
i=1

v
(m)
ni |φ

(m)
i 〉 . (3.35)

Where v(g)
ni and v

(m)
ni are the components of the generalized eigenvectors in

the variational method [7]. The glueball content c(g)
n and the meson content

c(m)
n are defined as

c(g)
n = 1

N
(g)
n Nn

〈φ(g)|n〉 = 1
N

(g)
n Nn

∑
i

v
∗(g)
ni c

(g)
ni , (3.36)

c(m)
n = 1

N
(m)
n Nn

〈φ(m)|n〉 = 1
N

(m)
n Nn

∑
i

v
∗(m)
ni c

(m)
ni . (3.37)

where Nn’s are normalisation constants. It has been found that in the scalar
channel the ground state is more glueball like whereas this behavior is oppo-
site in the excited state. In the pseudoscalar channel, however, the physical
state is dominated by a-η′ and hence 0−+ glueball is ignored. The numerical
results of mixing and details of the full analysis is given in Ref. [7].

3.3 Determination of masses

To determine the masses of the bound states predicted by effective actions [9,
10] in N = 1 SUSY Yang-Mills theory we construct suitable operators with
corresponding quantum numbers. These operators are gauge invariant and
respect required symmetries. We exploit asymptotic behavior of Euclidean
time correlators of these operators to obtain their masses. There is a large
variety of the operators which keep the same quantum numbers as that of
the particles. The choice, however, is made on the basis of large overlap with
ground states and good signal-to-noise ratio. The choice of the operators and
their lattice prescriptions is discussed in Sec. (3.2).

Numerical data of correlation functions obtained from Monte Carlo sim-
ulations on the lattice is fitted to the functional form of the operators. As a
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first result, the effective mass meff of each correlation function is calculated
to have a rough estimate of the mass. Let’s first discuss how meff is obtained
from the correlation functions.

3.3.1 Effective mass

In order to obtain the effective mass, a typical correlation function is given
as

C(x, y) = 〈O†(x)O(y)〉. (3.38)

We fix the position y at 0 and apply Fourier transformation on spatial coor-
dinates as

C(t, ~p) = 1
L3

∑
~x

C(x, 0)e−i~p.~x. (3.39)

We are interested in the mass only, therefore a zero-momentum interpolating
field is considered as

S(t) = 1
L3/2

∑
~x

O(t, ~x), (3.40)

and
C(∆t) = 〈S†(t+ ∆t)S(t)〉, (3.41)

where ∆t = x0−y0. With the help of the identity ∑
n
|n〉〈n| = 1 for n possible

eigenstates of the Hamiltonian. The correlation function C(∆t) gives the
spectral decomposition as [61]

C(∆t) =
∑
n=0

(
|〈n|S (t) |0〉|2e−En∆t ± |〈0|S† (t) |n〉|2e−En(Nt−∆t)

)
,

= a2
0 +

∑
n=1

(
a2
ne
−En∆t ± a2

ne
−En(Nt−∆t)

)
. (3.42)

As far as the sign ± is concerned, for the periodic boundary conditions +,
whereas for the anti-periodic BCs − is chosen. It is preferred to choose
periodic BCs for spatial direction. In temporal direction the periodic BCs
are used for bosons, whereas anti-periodic BCs for fermions. The correlation
function of Eq. (3.42) decays exponentially and the lowest state corresponds
to n = 1 with energy E1 = m1 as t → ∞. The quantum numbers of this
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lower energy state are the same as of the corresponding operator itself. The
constant a2

0 is non-zero for scalars and can be omitted by redefinition of the
operator as

S̃(t) = S(t)− 〈S(t)〉U . (3.43)

Here U represents the gauge configuration ensemble. The numerical data of
C(∆t) is fitted to the following function to obtain the mass m1 = E1 = m of
the particle

C(∆t) = a2
(
e−m∆t ± e−m(Nt−∆t)

)
. (3.44)

The effective mass can be obtained as follows

meff = ln
(

C(∆t)
C(∆t+ 1)

)
. (3.45)

When plotting meff against ∆t one sees a plateau, that can be used to set
the fitting interval. Note that the meff is just a guide towards the estimation
of mass, in order to obtain more reliable results one has to adopt a proper
fitting procedure.

3.3.2 Fitting correlators

In order to obtain the best estimates of masses from numerical data of the
correlation function evaluated on the hypercubic lattice with the help of
Monte Carlo simulations, we need to have the functional form of the these
correlators. The functional form of the correlation function at large distance
in case of periodic BCs is given as [40]

C (t) ≈ c0 + c1 cosh
(
m
(
t− Nt

2

))
, (3.46)

whereas for the case of anti-periodic BCs it reads

C (t) ≈ c1 sinh
(
m
(
t− Nt

2

))
, (3.47)

where c0 is a constant that is zero if 〈0|S(t) |0〉 = 0, Nt is the time extent of
the lattice and m is the mass of the particle. The mass can be obtained by
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fitting the functional forms of Eqs. (3.46,3.47) to the numerical data of the
correlators of Sec. (3.2). At early time slice distance t there is a contribution
from excited state and at large t the noise shows up. Therefore, for a the good
estimate of the mass, the fit range should be taken appropriately. To improve
the signal-to-noise ratio APE and Jacobi smearings are performed depending
upon the interpolating field. These smearing techniques are explained in
Sec. (2.2.5).

3.3.3 Variational method

The variational method is used in order to further improve the determination
of the ground state mass and to separate it from the excited state. As a result
of this improvement, the variational method has a significant influence on the
mass determination of excited states, too.

The main idea is to build a set of interpolating operatorsOi, i = 1, 2, . . . , N
with the same quantum numbers JPC as that of physical state of choice. The
construction and the choice of these operators influence the precision directly,
therefore it is crucial to optimise these operators. Ideally, the interpolating
operators should have large overlap with the physical state of interest. The
cross correlation matrix in terms of time-slice correlation functions is given
as

Cij(t) =
〈
O†i (t)Oj(0)

〉
. (3.48)

Smearing techniques play a crucial role in the construction of these operators.
APE and Jacobi smearings are used in order to have a full correlation matrix
of the operators. Each operator differs from the other by taking different
set of smearing parameters. The spectral decomposition of the correlation
function reads

Cij(t) =
∑
n

〈0|O†i |n〉 〈n|Oj |0〉 e−mnt. (3.49)

Where mn is the mass of nth state. The corresponding solution of the Cij(t)
by generalised eigenvalue problem (GEVP) is

C(t)~v (n) = λ(n)(t, t0)C(t0)~v (n), (3.50)
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where the λ(n), n = 1, 2, . . . , N are the eigenvalues and ~v (n) are the corre-
sponding eigenvectors. The eigenvalues λ(n) decay exponentially with t, it is
given by the relation [62]

lim
t→∞

λ(n)(t, t0) ∝ e−mn(t−t0)
[
1 +O

(
e−∆mn(t−t0)

)]
, (3.51)

here
∆mn = min

l 6=n
|ml −mn| . (3.52)

The largest eigenvalue contains the mass of the ground state and second
largest has the mass of the 1st excited state. There is a possibility of excited
state contamination in the ground state; to get rid of that, in principle, one
should consider the results at t0 ≥ t/2, for details see Ref. [63]. To have an
idea about the mass one calculates the effective mass as a first result as

m
(n)
eff (t, t0) = ln

[
λ(n)(t, t0)

λ(n)(t+ 1, t0)

]
. (3.53)

For more precise and reliable results of the mass with proper estimation of
errors, it is important to fit a proper function to the data from numerical
simulations. The numerical results obtained by the variational method and
full details of the analysis are explained in Ref. [7].

3.3.4 Error analysis

The data obtained by Monte Carlo lattice simulations has unavoidable er-
rors. It is important to distinguish between statistical errors and systematic
errors. Let’s first discuss about possible systematic errors. Systematic errors
have multiple sources namely lattice discretisation and finite volume effects.
Furthermore, in the evaluation of the data, systematic errors can occur in
the mass determination when fitting to the correlation function. One can get
rid of these errors by continuum extrapolation, performing simulations on a
lattice with a larger volume and choosing the proper fit interval, etc [64].

In Monte Carlo simulations the random variables are used repeatedly
causing fluctuations around the true values of the observable of interest and
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give approximate results. Therefore, it is pertinent to estimate their sta-
tistical errors with the help of statistical methods. The values of primary
observables xi are obtained by averaging the values measured on the N con-
figurations. Where x̄ is only an estimate of the true value of x and must
therefore always be given in together with its statistical error. For uncorre-
lated data

x̄ =
N∑
i=1

xi, σ2
x = 1

N − 1

N∑
i=1

(xi − x̄)2 . (3.54)

It is shown in [65] that the mean value of measurement xi with its statistical
error is given as

x̄ ±σ, with σ = σx√
N
. (3.55)

Note that the accuracy depends strongly on the number of measurements
and the statistical error decreases inversely with

√
N .

Integrated autocorrelation time:

In the process of generation of the configurations in a Markov chain where
new configurations are generated from previous ones, configurations are cor-
related in Monte Carlo time. If the error for correlated data is determined
by the above method, it will be underestimated. To compensate for this, we
need to calculate the integrated autocorrelation time [66]. It is given as

τO,int = 1
2 +

N∑
j=1

A(j)
(

1− j

N

)
, (3.56)

with
A(j) = 〈OiOi+j〉 − 〈Oi〉

2

〈O2
i 〉 − 〈Oi〉2

(3.57)

For normalised autocorrelation function we put A(0) = 1. If the time sepa-
ration is sufficiently large then this function decays exponential as

A(j) j→∞−−−→ ae
− j
τO,exp , (3.58)
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where a is constant and τO,exp represents the exponential autocorrelation
time. The exponential behavior of A(j) and for N � τO,exp the quantity(
1− j

N

)
is neglected without any problem. Thus the integrated autocorre-

lation time is
τO,int = 1

2 +
N∑
j=1

A(j). (3.59)

The error from Eq. (3.55) of the correlated data now modifies to

σ =
√

2 τO,int
N

σx. (3.60)

Data blocking method (Binning):

For large data produced in Monte Carlo simulations if it is expensive to
compute autocorrelation time, the simplest way to obtain the statistically
independent data is to apply binning. In this procedure the data xi is divided
into NB sub-blocks called bins with bin size LB. The number of new data
points will be

NB = N

LB
(3.61)

where N is total number of data points. The mean values of sub-blocks xB,i
will then serve as new data points. The variance of new data set is

σ2
B = 1

NB (NB − 1)

NB∑
i=1

(xB,i − x̄)2 . (3.62)

The variance σ2
B of the new data set should decrease with 1

NB
. The bin

size should be large enough to have statistically independent data. One way
to estimate size of LB is: increase LB, the corresponding variance will also
increase, choose LB where the variance is stable. The autocorrelation time
can also be calculated from this procedure as [66]

τint = LB
σ2
B

2σ2
x

. (3.63)
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where σ2
x is from Eq. (3.54). This estimation of the integrated autocorrelation

time is not as accurate as determined by the autocorrelation function, but it
can be implemented easily. The error of the variance σ2

B of the binned mean
value xB,i, it can be found in [68], is

∆σ2
B =

√
2

NB − 1 σ
2
B. (3.64)

Estimation of bin size (LB):

Once the integrated autocorrelation time is known, the optimal bin size can
be estimated to make the data statistically independent. In this case the error
calculated by Jackknife procedure will be reliable. According to Ref. [69], the
optimal bin size is given as

L
(opt)
B = τO,exp

(
2N
τO,exp

) 1
3

. (3.65)

This formula keeps the balance between number of resultant data points NB

after binning and statistical errors. If LB is too large then NB will be small,
resulting in large statistical errors as σB ∝ 1√

NB
.

Jackknife:

For normal observables, the expectation value together with its statistical er-
ror can be obtained using standard way of taking its mean value and variance,
or fitting observable etc. However, for functions which depend non-linearly
upon the expectation values of the correlation functions, the standard error
propagation methods are more complicated. Therefore, we use an alterna-
tive approach called Jackknife method. It is a systematic way of getting the
standard error of stochastic measurements.

Let’s consider a set of N data points in a measurement and let θ̂ be an
observable computed from this original set. N subsets can be constructed by
omitting ith entry of the given set. The mean value θi is obtained from each
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subset. The standard error of θ̂ reads [65]

σθ̂ =

√√√√N − 1
N

N∑
i=1

(
θi − θ̂

)2
. (3.66)

The final result would be
〈θ〉 = θ̂ ±σθ̂. (3.67)

If the θ̂ is biased , it is replaced by the unbiased estimator θ̂− (N −1)(θ̃− θ̂),
where

θ̃ = 1
N

N∑
i=1

θi. (3.68)

Bootstrap:

Just like Jackknife let’s consider again a data set of N entries. Suppose that
the object of interest is θ. Let’s call the observable obtained from the original
set θ̂. The θ̂ can be obtained by taking simple mean or by fitting the data.
Let’s take K number of sets each of N data points. This recycling of the
data actually costs nothing. Some data points may appear more than once,
that would not harm. From each set θj is computed. The mean value of the
θj and its error is calculated as [65]

θ̃ = 1
N

N∑
j=1

θj, σθ̃ =

√√√√√ 1
K

K∑
j=1

(
θj − θ̃

)2
. (3.69)

The final result would be
〈θ〉 = θ̃ ±σθ̃. (3.70)

If the observables are biased, then θ̃ 6= θ̂. The difference gives the bias and
provides an estimate of divergence from the true value 〈θ〉.
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Chapter 4

Ward identities in N = 1 SYM
theory

4.1 Introduction

In this chapter we shall discuss the full analysis of the SUSY Ward identi-
ties (WIs). We start with the derivation of a master formula for the Ward
indentity followed by its supersymmetric form in the continuum and on the
lattice. We renormalise it and include all relevant operators of dimensions
9/2 and lower. Furthermore, we determine numerical results of correlation
functions appearing in the formula of the Ward identities. We explain three
different methods, namely the Local method, the Global method and the
GLS method to estimate the subtracted gluino mass which will then be used
together with the adjoint pion mass squared to obtain the remnant gluino
mass in the chiral limit. Finally, we perform the continuum extrapolation
using the remnant gluino mass in physical units as a function of the physical
lattice spacing squared to see whether SUSY is recovered.

4.1.1 Noether’s theorem

The Noether’s theorem provides, at the classical level, the relation between
symmetries and conservation laws [35]. It is stated as “every symmetry of
the action of a physical system has corresponding conservation law” [70].

76



CHAPTER 4. WARD IDENTITIES IN N = 1 SYM THEORY

Let’s consider a field φ(x) =
(
φk(x)

)
at space-time coordinates x in a field

theory. An infinitesimal transformation of the field by a set of infinitesimal
real valued parameters ωa(x), with a = 1, . . . , N , results

φ(x)→ φ
′(x) = eiωa(x)Taφ(x) = (1 + iωa(x)T a + · · · )φ(x), (4.1)

as ωa(x) are small, the higher order terms can be ignored, therefore the
variation of the field reads

δφ(x) = φ
′(x)− φ(x) = iωa(x)T aφ(x). (4.2)

Here we assume that internal symmetries hold and they do not change the
coordinates x. In Eq. (4.1) eiωa(x)Ta is an element of Lie group and the
matrices T a are the group generators satisfying

[
T a, T b

]
= ifabcT c, (4.3)

where fabc are the structure constants, they can in general be the real or the
complex numbers. Now let’s consider the variation of the action in a given
theory

δS =
∫
d4x

(
∂L
∂φ(x)δφ(x) + ∂L

∂
(
∂µφ(x)

)δ(∂µφ(x)
))

(4.4)

=
∫
d4x

(
∂L
∂φ(x) + πµ∂µ

)
δφ(x), (4.5)

with πµ = ∂L
∂(∂µφ(x)) . The Lagrangian density L (φ(x), ∂µφ(x)) depends upon

field φ(x) and its first derivative. By partial integration and assuming the
boundary terms to vanish, Eq. (4.5) is reduced to

δS =
∫
d4x

δS

δφ(x)δφ(x), (4.6)
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where δS
δφ(x) = ∂L

∂φ(x) − ∂µπ
µ. Plugging Eq. (4.2) into Eq. (4.6) we get

δS = i
∫
d4x

δS

δφ(x)ω
a(x)T aφ(x). (4.7)

Here δS
δφ(x) are the classical field equations and this expression vanishes

δS

δφ(x) = 0. (4.8)

Let’s take the functional derivative of Eq. (4.7) with respect to ωa(x). We
have

δS[φ′]
δωa(x) = i δS

δφ(x)T
aφ(x). (4.9)

Suppose that, there exist some local functions jaµ(x) and ∆a(x) of field φ(x)
such that

δS

δωa(x) = −∂µjaµ(x) + ∆a(x). (4.10)

If the equations of motion are satisfied then the left hand side of Eq. (4.10)
will be zero. Hence we are left with ∂µjaµ(x) = ∆a(x) where ∆a(x) is sym-
metry breaking term. If symmerty holds then ∆a(x) = 0 and ∂µjaµ(x) = 0,
which is a continuity equation where jaµ(x) is conserved current according to
Noether’s theorem. In this case the action is invariant under transformation
with constant ωa(x) = ωa

∂S

∂ωa
=
∫
d4x

δS

δωa(x) = −
∫
d4x ∂µjaµ(x) = 0. (4.11)

To determine the jaµ(x) of Eq. (4.10), we consider the variation of L as

δL = ∂L
∂φ(x)δφ(x) + ∂L

∂ (∂µφ(x))∂
µ (δφ(x)) (4.12)

= ∂L
∂φ(x)δφ(x) + πµ(x)∂µδ (φ(x)) (4.13)

=
(

∂L
∂φ(x) − ∂

µπµ(x)
)
δφ(x) + ∂µ (πµ(x)δφ(x)) , (4.14)
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from Eq. (4.2)

δL = i δS

δφ(x)ω
a(x)T aφ(x) + i∂µ (πµ(x)ωa(x)T aφ(x)) , (4.15)

from Eq. (4.9)

δL = ωa(x) δS

δωa(x) + i∂µ
(
πµ(x)ωa(x)T aφ(x)

)
, (4.16)

from Eq. (4.10)

δL =− ωa(x)
(
∂µjaµ(x)−∆a(x)

)
+ i∂µ (πµ(x)ωa(x)T aφ(x)) (4.17)

=− ωa(x)∂µ
(
jaµ(x)− iπµ(x)T aφ(x)

)
+ ωa(x)∆a(x) (4.18)

+ iπµ(x) (∂µωa(x))T aφ(x).

If ωa(x) ≡ ωa, it is global in this case

δL = −ωa∂µ
(
jaµ(x)− iπµ(x)T aφ(x)

)
+ ωa∆a(x). (4.19)

As ∆a(x) is a symmetry breaking term, if ∆a(x) = 0 then

δL = −ωa∂µ
(
jaµ(x)− iπµ(x)T aφ(x)

)
. (4.20)

Let
faµ(x) = jaµ(x)− iπµ(x)T aφ(x), (4.21)

we have
δL = −ωa∂µfaµ(x), (4.22)

Let’s consider a case in which L is invariant under the given transformation,
that means δL = 0 and Eq. (4.22) reduces to

∂µfaµ(x) = 0, (4.23)
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hence faµ(x) is a constant and we choose it to be 0 without loss of generality.
Consequently, Eq. (4.21) gets the form

jaµ(x) = iπµ(x)T aφ(x). (4.24)

4.1.2 Ward identities

In the classical field theory, the Noether’s theorem gives the conserved cur-
rent jµ(x). If field equations are satisfied then the divergence of the current
vanishes i. e. ∂µjµ(x) = 0. However, in quantum field theory the functional
integral integrates over all field configurations and the field equations are not
satisfied. In this case we use quantum version of the Noether’s theorem, the
so-called Ward identities.

Now lets consider the generating functional of Green’s functions

Z[J ] =
∫

[dφ]e−S[φ]+(J,φ), (4.25)

where
(J, φ) =

∫
d4x J(x)φ(x), (4.26)

and J(x) is a source term. In the end we will set this source term to zero. Sup-
pose that [dφ] is invariant under the symmetry transformation (4.1). Then

Z[J ] =
∫

[dφ′]e−S[φ′]+(J,φ′)

=
∫

[dφ]e−S[φ′]+(J,φ′)

=: Z[J, ω]. (4.27)

Therefore

0 = δZ[J, ω]
δωa(x)

∣∣∣
ω=0

=
∫

[dφ]
{
− δS[φ]
δωa(x) + δ(J, φ)

δωa(x)

}
e−S[φ]+(J,φ). (4.28)
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Also

δ(J, φ)
δωa(x) =

∫
d4y

δ
(
J(y)φ(y)eiωa(y)Ta

)
δωa(x)

= iT aJ(x)φ(x). (4.29)

Put Eqs. (4.10,4.29) in Eq. (4.28) we get

〈{
∂µjaµ(x)−∆a(x) + iT aJ(x)φ(x)

}
e(J,φ)

〉
= 0 . (4.30)

This is the master formula for the Ward identities. If we set J(x) = 0 in
Eq. (4.30) naively it becomes

〈
∂µjaµ(x)

〉
= 〈∆a(x)〉 , (4.31)

where ∆a(x) is symmetry breaking term. If we take the derivative of Eq. (4.30)
with respect to J(y) and set J(x) = 0 we obtain

〈
∂µjaµ(x)φ(y)

〉
︸ ︷︷ ︸
Divergence of current

= 〈∆a(x)φ(y)〉︸ ︷︷ ︸
Symmetry breaking term

+ iδ(x− y) 〈T aφ(y)〉 .︸ ︷︷ ︸
Contact term

(4.32)

In general, for fields φki(yi) we get

〈
∂µjaµ(x)φk1(y1) . . . φkn(yn)

〉
=
〈
∆a(x)φk1(y1) . . . φkn(yn)

〉
(4.33)

+i
n∑
l=1

δ(x− yl)
〈
φk1(y1) . . . (T aφ(yl))kl . . . φkn(yn)

〉
.

4.1.3 SUSY Ward identities in the continuum

The supersymmetric version of Ward identities of Eq. (4.32) in the contin-
uum, for any gauge invariant operator Q(x) and for the supercurrent Sµ(x),
reads

〈∂µSµ(x)Q(y)〉 = mg̃ 〈χ(x)Q(y)〉 −
〈
δQ(y)
δε̄(x)

〉
, (4.34)

where the symmetry-breaking term mg̃ 〈χ(x)Q(y)〉 appears due to non-zero
gluino mass in the action of the theory and the last term of Eq. (4.34) is a
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contact term. The continuum versions of the supercurrent Sµ(x) and of χ(x)
have the following forms

Sµ(x) = −2i
g

tr
[
Fνρ(x)σνργµλ(x)

]
, (4.35)

χ(x) = +2i
g

tr
[
Fµν(x)σµνλ(x)

]
. (4.36)

The massless limit can be obtained by determination of the subtracted gluino
mass non-perturbatively on the lattice. For this purpose, we need to have a
lattice version of the Ward identity and corresponding operators.

4.1.4 SUSY Ward identities on the lattice

SUSY transformations on the lattice complying with parity (P), charge con-
jugation (C), time-reversal (T ) and gauge invariance are [71]

δUµ(x) = − ig0a

2
(
ε̄(x)γµUµ(x)λ(x) + ε̄(x+ µ̂)γµλ(x+ µ̂)Uµ(x)

)
, (4.37)

δU †µ(x) = +ig0a

2
(
ε̄(x)γµλ(x)U †µ(x) + ε̄(x+ µ̂)γµU †µ(x)λ(x+ µ̂)

)
, (4.38)

δλ(x) = +1
2P

(cl)
µν (x)σµνε(x), (4.39)

δλ̄(x) = −1
2 ε̄(x)σµνP (cl)

µν (x), (4.40)

where ε(x) and ε̄(x) are fermionic parameters, and P (cl)
µν (x) is the clover-

symmetrised plaquette defined in Eq. (2.33). For any local insertion operator
Q(x), the above transformations result in the following form of the lattice
Ward identity

∑
µ

〈(∇µSµ(x))Q(y)〉 = mg̃ 〈χ(x)Q(y)〉+ 〈XS(x)Q(y)〉 −
〈
δQ(y)
δε̄(x)

〉
. (4.41)

In Eq. (4.41) the operators ∇µSµ(x) and χ(x) serve as “sink” operators
whereas the opeator Q(x) is the “source” operator in numerical simulations.
The operator Q(x) should have at least one non-zero spin-1

2 component. It
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may be chosen as
Q(x) = ŌT (x) ≡ C−1O(x), (4.42)

where O(x) is a Majorana bispinor and must be gauge invariant. Its optimal
choice can be χ(sp)(x), sp stands for “spatial plaquette”, the reason behind
this choice is that it gives the best signal, see Ref. [4] for detailed discussion.
χ(sp)(x) reads

χ(sp)(x) =
∑
i<j

σijtr
[
P

(cl)
ij (x)λ(x)

]
. (4.43)

The contact term of Eq. (4.41) is proportional to a strongly peaked function
(Dirac delta function) and has only contribution when the distance |x− y| is
zero. In numerical simulations, if source and sink are placed apart, then the
distance |x−y| is non-zero, and consequently the contact term can be ignored
in the following discussions. The resultant Ward identity now becomes

∑
µ

〈(∇µSµ(x))Q(y)〉 = mg̃ 〈χ(x)Q(y)〉+ 〈XS(x)Q(y)〉 . (4.44)

The term containing χ(x) arises due to the non-zero gluino mass in the action
that breaks the SUSY softly and can only be recovered in the chiral limit.
The term XS(x) is introduced by the lattice regulator and gives rise to a non-
trivial contribution which breaks the SUSY explicitly. The broken SUSY due
to the lattice regulator can only be recovered in the zero lattice spacing limit.
For the moment, the term XS(x) is irrelevant because at tree level it is of
the order a and will vanish in the continuum limit.

There are many definitions of the supercurrent Sµ(x), they differ from
each other up to terms which go to zero in the continuum limit [4]. One
choice could be the point split (ps) [72]

S(ps)
µ (x) = −1

2
∑
ρσ

σρσγµtr
[
P (cl)
ρσ (x)U †µ(x)λ(x+ µ̂)Uµ(x) (4.45)

+P (cl)
ρσ (x+ µ)Uµ(x)λ(x)U †µ(x)

]
,

together with backward derivative ∇bd
µ f(x) = f(x)−f(x−µ̂)

a
. Another possible
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definition of the SUSY current is the local (loc) one, that is

S(loc)
µ (x) = −

∑
ρσ

σρσγµtr
[
P (cl)
ρσ (x)λ(x)

]
. (4.46)

To fulfill the Ward identity (4.44), as required by parity and by time reversal,
the symmetric lattice derivative ∇sym

µ f(x) = f(x+µ̂)−f(x−µ̂)
2a for local definition

is used. Moreover, the symmetry breaking terms due to the lattice regulator
for the case of local and point split agree up to O(a) effects i. e. X(loc)

S (x) =
X

(ps)
S (x) + O(a). Finally, the operator χ(x) which is involved in the soft

breaking term has the following form

χ(x) =
∑
ρσ

σρσtr
[
P (cl)
ρσ (x)λ(x)

]
. (4.47)

The SUSYWard identity in Eq. (4.44) connects bare correlation functions. In
numerical simulations, the gluino mass has non-zero value. For small gluino
mass (large κ), the inversion of Wilson-Dirac operator Dw is prohibitively
expensive and additionally there is a problem of the Pfaffian sign. This
symmetry breaking term has an obvious dependence on the choice of lattice
SUSY transformations. Naively the symmetry breaking term XS(x) vanishes
in the continuum and SUSY WI is recovered [72].

At leading order the term XS(x) gives a finite contribution, and the re-
covery of the broken symmetry is a challenging task. The axial Ward identity
is anomalous due to this situation. If the SUSY Ward identity is anomolous
too, then SUSY itself is intrinsically broken and can not be used in super-
symmetrically extended Standard Model. We have to renormalise the gluino
mass and the supersymmetric current in order to make this situation clear.

4.1.5 Renormalisation of SUSY Ward identities

In the renormalisation process we have to consider all operators having di-
mensions ≤ 9/2. These operators should be gauge invariant and should have
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same quantum numbers as that of XS. At tree level

XS = aYS, (4.48)

and the definition of the subtracted X̄S is [38, 73]

X̄S = aȲS = a[YS +
∑
i

ZiOi], (4.49)

where the operators Oi have dimensions ≤ 11/2. The renormalisation coef-
ficient Z11/2, by power counting, is logarithmically divergent

Z11/2 ∼ ln(aµ). (4.50)

Since Eq. (4.49) has an overall multiplicative factor a, therefore, in the con-
tinuum its contribution vanishes.

Let’s now analyse gauge invariant operators with dimensions ≤ 9/2 with
the same quantum numbers as that of ∂µSµ, see analysis in [40]. To construct
these operators the fields at hand are the gluino field λ(x) and the gauge field
Fµν(x) with dimensions 3/2 and 2 respectively. Further constraints on the
construction of these operators are that they must have the same behavior as
∂µSµ, χ(x) and XS under parity transformation, and they are spin-1

2 colour-
neutral operators. These constraints leave us no choice other than the number
of gluino fields to be one or three.

The most general construction of spin-1
2 operators with dimensions ≤ 9/2

built from three gluino fields can be written as

W (x) = εabc
(
λTa (x)CΓλb(x)

)
Γ′λc(x), (4.51)

where C is the charge conjugation matrix, Γ and Γ′ are Dirac matrices and
can be any element of Dirac space (A.3). Since εabc is an anti-symmetric
tensor, therefore the product CΓ must be symmetric otherwise W (x) will be
zero identically. Explicit forms of these matrices are given in Appendix (A.2).
The possible choices for Γ are γµ and σµν . Furthermore, the Lorentz indices
of Γ and Γ′ must be contracted because W (x) has to be transformed as a
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spin-1
2 object under the Lorentz group. The object with Γ′ = γ5γµ behaves

differently under parity transformations, therefore we are left with the fol-
lowing choices of Γ and Γ′ only

Γ,Γ′ = γµ, σµν . (4.52)

Using Fierz identities given in Appendix (A.4), it can be shown thatW (x) =
0 in all cases.

Now we have to proceed further with the choice of only one gluino field.
The objectW (x) can contain, in addition to the gluino field, the field strength
tensor defined in Eq. (2.10) or from the covariant derivative defined in Eq. (2.11)
or from combinations of these two i. e.

tr
[
DµDνDρΓ̃µνρλ(x)

]
, (4.53)

tr
[
DµFνρ(x)Γ̃µνρλ(x)

]
, (4.54)

∂µtr
[
Fνρ(x)Γ̃µνρλ(x)

]
. (4.55)

The trace is over colour indices. The covariant derivative defined in Eq. (2.11)
for the field w(x), which can either be λ(x) or Fµν(x), is written as

Dµw(x) = ∂µw(x) + i [Aµ(x), w(x)] . (4.56)

The trace commutator is zero and we get

tr [Dµ1 ...Dµnw(x)] = ∂µ1 ...∂µntr [w(x)] . (4.57)

One can easily show that the operators of Eq. (4.53) vanish identically
and the operators in Eq. (4.54) can be written in the form of operators
in Eq. (4.55) [4]. Hence, we conclude that the gauge invariant operators of
dimension 9/2 are only of the type which is in Eq. (4.54).

We can use the tensors δµν and εµνρσ together with Γ in order to con-
struct Γ̃ for Eq. (4.54). As δµν and εµνρσ have an even number of in-
dices, therefore Γ must have an odd number of indices which leaves us with
{γµ, γ5γµ, σµνγρ, γµσνρ}. However, not all of them are independent, see Ap-
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pendix (A.3). Hence the possible choices for Γ now are γµ and γ5γµ.

1. Case 1, Γ = γµ:
In this case the structure of Γ̃ will be

(a) Γ̃µνρ = δµνγρ

(b) Γ̃µνρ = εµνρσγσ

The choice (1b) is forbidden by the parity. The operator in Eq. (4.54)
for the case (1a) becomes

tr [DµFµν(x)γνλ(x)] . (4.58)

There are three different combinations that can be formed depending
upon how Dµ acts on the fields.

tr [Dµ (Fµν(x)γνλ(x))] , (4.59)

tr [Dµ (Fµν(x)) γνλ(x)] , (4.60)

tr [Fµν(x)γνDµ (λ(x))] . (4.61)

Using the equations of motion

DµF
a
µν(x) = −igεabcλ̄b(x)γµλc(x), (4.62)

in Eq. (4.60) together with the Fierz identities of Appendix (A.4)

tr
[(
λ̄(x)γνλ(x)

)
γνλ(x)

]
= 0. (4.63)

Eq. (4.59) is just the sum of Eqs. (4.60,4.61) by Leibniz rule. Therefore,
the only independent operator is

tr [Dµ (Fµν(x)γνλ(x))] ≡ ∂µtr [Fµν(x)γνλ(x)] ≡ g

2i∂µTµ(x), (4.64)

where we call Tµ(x) the mixing current.

2. Case 2, Γ = γ5γµ:
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This case can also be handled in a more or less similar way as in (1).
In this case the structure of Γ̃ will be

(a) Γ̃µνρ = δµνγ5γρ

(b) Γ̃µνρ = εµνρσγ5γσ

Again, (2a) is excluded by parity and (2b) becomes

Γ̃µνρ = εµνρσγ5γσ = −σνργµ + (δµνγρ − δµργν). (4.65)

Only the first part of Eq. (4.65) is new, the rest has the same form as
the operator in (4.58). The operator (4.54) with new part of Eq. (4.65)
is given as

− tr [DµFνρ(x)σνργµλ(x)] . (4.66)

Again, applying Leibniz rule to reduce the number of independent op-
erators from three to two

−tr [Dµ (Fνρ(x)σνργµλ(x))] , (4.67)

−tr [Fνρ(x)σνργµDµ (λ(x))] . (4.68)

The operator in (4.67) is proportional to the divergence of the super-
symmetric current in Eq. (4.35)

− tr [Dµ (Fνρ(x)σνργµλ(x))] = g

2i∂µSµ(x). (4.69)

The operator in (4.68), by using equation of motion (γµDµ +mg̃)λ = 0,
gets the form

− tr [Fνρ(x)σνργµDµ (λ(x))] = mg̃tr [Fνρ(x)σνρ (λ(x))] = g

2img̃χ(x).
(4.70)

Where χ(x) is the mass term that is given in Eq. (4.36) and mg̃ is the
bare gluino mass. The operators of dimensions 9/2 which contribute
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to the expression of the SUSY Ward identity are

Sµ(x) = −2i
g

tr
[
Fνρ(x)σνργµλ(x)

]
, (4.71)

Tµ(x) = +2i
g

tr
[
Fµν(x)γνλ(x)

]
, (4.72)

χ(x) = +2i
g

tr
[
Fµν(x)σµνλ(x)

]
. (4.73)

The next step is to find operators with dimensions 7/2. They must contain
only one gluino field together with the covariant derivative and the field
strength tensor

tr
[
DµDνΓµνλ(x)

]
, (4.74)

tr
[
FµνΓµνλ(x)

]
, (4.75)

(4.76)

the operators in (4.74) vanish because of Eq. (4.57). Γµν has to be an anti-
symmetric tensor with even parity, therefore the only possibility is σµν . The
corresponding operator is

tr [Fµνσµνλ(x)] = g

2iχ(x). (4.77)

The presence of this operator produces a mass subtraction m̄(κ, β,mg̃).
For dimension 5/2 and 3/2, the relevant operators are

tr
[
DµΓµλ(x)

]
, (4.78)

tr
[
Γλ(x)

]
, (4.79)

they vanish identically.
With this we conclude renormalisation process of the SUSY current and

the gluino mass. As a result we obtain the following form of properly renor-
malised supersymmetric Ward identity.

ZS
〈
∂µSµ(x)Q(y)

〉
+ ZT

〈
∂µTµ(x)Q(y)

〉
= (mg̃ − m̄)

〈
χ(x)Q(y)

〉
. (4.80)
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Where ZS and ZT are renormalisation coefficients of currents Sµ(x) and
Tµ(x). According to Ref. [40, 72] they have the forms

ZS = 1 +O(g2
0), (4.81)

ZT = O(g2
0). (4.82)

We define mS = mg̃ − m̄ as the subtracted gluino mass and rearrange the
renormalisation coefficients to get the following Ward identity.

〈
∂µSµ(x)Q(y)

〉
+ ZTZ

−1
S

〈
∂µTµ(x)Q(y)

〉
= mSZ

−1
S

〈
χ(x)Q(y)

〉
. (4.83)

By defining the renormalised SUSY current S(R)
µ (x) as

S(R)
µ (x) = ZSSµ(x) + ZTTµ(x), (4.84)

and renormalise the operator χ(x) multiplicatively, for the fully renormalised
Ward identity we obtain

〈
∂µS

(R)
µ (x)Q(y)

〉
= m

(R)
g̃

〈
χ(R)(x)Q(y)

〉
. (4.85)

Where m(R)
g̃ is the renormalised gluino mass and proportional to subtracted

gluino mass by
mS = m

(R)
g̃ Z−1

χ , (4.86)

here Zχ is renormalisation coefficient of the operator χ(R)(x) which is ex-
pected to diverge in the continuum limit [40].

For numerical analysis we use the Eq. (4.83) because we are interested
in a limit where mS is zero, this limit is called the chiral limit. The critical
value of the gluino mass (mc) at κc is mc ∝ 1/κc, and m̄(κc, β, r) = mg̃(κc),
therefore mS vanishes in this limit.

The value of amSZ
−1
S can be obtained in numerical simulation at fixed β

and κ. More importantly its value can be used in order to tune the theory.
It has been shown in [38] that the chiral and supersymmetric limits coincide
in the continuum limit.

90



CHAPTER 4. WARD IDENTITIES IN N = 1 SYM THEORY

4.1.6 Zero spatial momentum and lattice prescription
of the operators

Numerically it is convenient to consider zero spatial momentum Ward iden-
tity by performing a sum over all three space coordinates of the correlation
functions. As a result, one obtains a Ward identity for each time slice sepa-
ration t = x4 − y4. Each term in Eq. (4.83) is a 4× 4 matrix in Dirac space
and can be expanded in the basis of 16 Dirac matrices (Γi) as

C(t) =
∑
Γi
CΓi(t) Γi, (4.87)

where CΓi(t) = 1
4tr [C(t)Γi] and tr is over Dirac indices which are not written

explicitly. The elements of Dirac space are given in Appendix (A.3). Now
Eq. (4.83) becomes

C
(S,O)
Γi,t + (ZTZ−1

S )C(T,O)
Γi,t = (amSZ

−1
S )C(χ,O)

Γi,t , (4.88)

where the expectation values of lattice operators are

C
(S,O)
Γi (t) =

∑
~x

〈
∇4S

(loc)
4 (x)ΓiO(y)

〉
(4.89)

= −
∑

~x,ρ,σ,i,j

〈1
2σ

αγ′

ρσ γ
γ′α′

4 Γαβi
{

tr [Pρσ(x+ µ̂4)T a]4bβ′

aα′ (x+ µ̂4, y)

− tr [Pρσ(x− µ̂4)T a]4bβ′

aα′ (x− µ̂4, y)
}

tr
[
Pij(y)T b

]
σβ
′β

ij

〉
,

C
(T,O)
Γi (t) =

∑
~x

〈
∇4T

(loc)
4 (x)ΓiO(y)

〉
(4.90)

=
∑
~x,ν,i,j

〈
γαα

′

ν Γαβi
{

tr [P4ν(x+ µ̂4)T a]4bβ′

aα′ (x+ µ̂4, y)

− tr [P4ν(x− µ̂4)T a]4bβ′

aα′ (x− µ̂4, y)
}

tr
[
Pij(y)T b

]
σβ
′β

ij

〉
,

C
(χ,O)
Γi (t) =

∑
~x

〈
χ(x)ΓiO(y)

〉
(4.91)

=
∑

~x,µ,ν,i,j

〈
σαα

′

µν Γαβi
{

tr [Pµν(x)T a]4bβ′

aα′ (x, y)
}

tr
[
Pij(y)T b

]
σβ
′β

ij

〉
.
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The space time position y is fixed at any point on the lattice, usually the
origin is chosen for this purpose. With the help of discrete symmetries, it is
possible to show that the contributions of correlation functions of Eq. (4.88)
are non-vanishing only for Γi = 1, γ4 [39]. This forms a set of two overdeter-
mined, non-trivial and independent equations [4]

C
(S,O)
1,t + (ZTZ−1

S )C(T,O)
1,t = (amSZ

−1
S )C(χ,O)

1,t , (4.92)

C
(S,O)
γ4,t + (ZTZ−1

S )C(T,O)
γ4,t = (amSZ

−1
S )C(χ,O)

γ4,t . (4.93)

These equations will now be solved for the ratio ZTZ−1
S and for the subtracted

gluino mass 1 amSZ
−1
S using different methods which will be explained below

in details.

4.1.7 Smeared sources

From the previous experience of our collaboration, it has been seen that APE
and Jacobi smearings provide great improvement in the gluino-glue signal-to-
noise ratio which allowed proper determination of ground state masses. Since
the structure of operators of SUSY Ward identities2 is similar as that of the
gluino-glue, therefore we apply same smearing techniques on these operators.
Usually smearing is applied on both source and sink sides, however, in Ward
identities case the situation is slightly different. We apply smearing only on
source side i. e. on the local insersion operator of Eq. (4.47). We have tested
wide range of smearing parameters for APE and Jacobi smearings and have
found that the dependence of signal on the parameters is mild. Nevertheless,
the optimal choice of parameters used for our analysis is given in Sec. (2.2).

1In fact, amSZ
−1
S is subtracted mass times the renormalisation constant in lattice units,

but for the sake of convenience we shall call this quantity the “subtracted gluino mass”.
2From now on we shall call Ward identities instead of Ward identity because of the set

of two independent Eqs. (4.92,4.93).
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4.1.8 Numerical results of correlation functions

The 6 correlation functions of Eqs. (4.92,4.93) at each time slice distance
t3 are calculated numerically with the help of high performance facilities.
The numerical results of their expectation values with errors, estimated by
Jackknife procedure, are shown in Fig. (4.1).

It is very interesting to note that the data points in the correlation func-
tions of Fig. (4.1) at the smallest and at the largest value of the time-slice
distance do not behave properly and are off from the expected pattern, actu-
ally this is the price we have to pay for ignoring the contact term of Eq. (4.41).
Of course, this effect will also be seen in the estimated quantities from these
correlation functions. Therefore, it is pertinent to consider some reliable
starting value of t.

4.1.9 Discrete symmetry test

In order to check correctness and validity of numerical data of the correlation
functions, it is easy with the help of discrete symmetries to show that these
functions follow some rules. We employ parity (P) and time reversal (T ) for
that purpose. We follow similar steps as have been followed in Sec. (5.1.4),
on the basis of Ref. [39], to show that the correlation functions obey

C
(S,O)
1,t = −C(S,O)

1,Nt−t, C
(S,O)
γ4,t = C

(S,O)
γ4,Nt−t,

C
(T,O)
1,t = −C(T,O)

1,Nt−t, C
(T,O)
γ4,t = C

(T,O)
γ4,Nt−t, (4.94)

C
(χ,O)
1,t = −C(χ,O)

1,Nt−t, C
(χ,O)
γ4,t = C

(χ,O)
γ4,Nt−t.

Numerical values of the correlation functions are given in Appendix (B.1)
and are plotted in Fig. (4.1). They clearly depict that these symmetries are
being respected by these correlation functions within errors.

3It is t
a , we ignore a for convenience
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Figure 4.1: Average values of 6 correlation functions present in a set of two
non-trivial Eqs. (4.92,4.93) for an ensemble where we have maximum statis-
tics available i. e. β = 5.6 and κ = 0.1655.

4.1.10 Symmetrisation of correlation functions

From Eq. (4.94) it is now possible to (anti-)symmetrise the data in order to
reduce statistical uncertainties. We combine the data at t and Nt − t, which
makes the time extent of the data simply one half (Nt/2). In this way, we
do not throw out the useful information.
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4.2 Numerical analysis of SUSY Ward iden-
tities

The purpose of eployment of SUSY Ward identities is to estimate the ex-
pectation value of the subtracted gluino mass for each gauge ensemble. This
will be used to tune the N = 1 SYM theory as well as to ensure the recovery
of broken SUSY on the lattice.

4.2.1 Estimation of the subtracted gluino mass amSZ
−1
S

To obtain the best estimate for A = ZTZ
−1
S and B = amSZ

−1
S we proceed as

follows. Let

x̂1,t,1 = C
(S,O)
1,t , x̂1,t,2 = C

(T,O)
1,t , x̂1,t,3 = C

(χ,O)
1,t , (4.95)

x̂2,t,1 = C
(S,O)
γ4,t , x̂2,t,2 = C

(T,O)
γ4,t , x̂2,t,3 = C

(χ,O)
γ4,t . (4.96)

be the expectation values of the measured values xb,t,α in Monte Carlo simu-
lations. They are random variables with expectation values x̂b,t,α ≡ 〈xb,t,α〉.

x̂b,t,1 + Ax̂b,t,2 −Bx̂b,t,3 = 0, where b = 1, 2, (4.97)

The Eq. (4.97) with the notation

A1 = 1, A2 = A, A3 = −B, (4.98)

leads to ∑
α

Aα x̂b,t,α = 0, where α = 1, 2, 3. (4.99)

With double index i = (b, t), running over a number of 2Nt values, Eq. (4.99)
becomes ∑

α

Aαx̂iα = 0. (4.100)

Now the challange is to determine Aα, with A1=1, in an overdetermined
system of two non-trivial equations. Two methods for the analysis of SUSY
Ward identities have already been used in our collaboration in the previous
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studies of N = 1 SYM theory with gauge group SU(2) in order to solve the
Eqs. (4.100) for A and B; for details see [4] and for recent results see [3].
We call these methods “the Local method” and “the Global method”. These
methods do not consider proper weights in the solution of A and B, where
the quantities with smaller errors have higher weights. Moreover, the statis-
tical errors are over estimated and systematic errors, if they exist, are not
considered at all. In this thesis, we shall consider proper weights for the
Local and for the Global methods. In order to include correlations among
the different correlators appearing in the expression of Ward identities we
formulate a method based on generalised least squares fit called the GLS
method.

4.2.2 The Local method

This method is based on linear fit and has been previously discussed in
Ref. [4]. We improve this method by proper estimation of weighted averages.
In this method, we proceed by minimising the following quantity from the
Eq. (4.99)

F loc
t =

∑
b

(∑
α

Aα x̂b,t,α

)2

, (4.101)

With the condition
∂F loc

t

∂Aα
= 0, (4.102)

and the definition ∑b x̂b,t,1x̂b,t,2 = X̂12,t results in

Ât = X̂t,13X̂t,23 − X̂t,12X̂t,33

X̂t,22X̂t,33 −X2
t,23

(4.103)

B̂t = X̂t,13X̂t,22 − X̂t,12X̂t,23

X̂t,22X̂t,33 −X2
t,23

(4.104)

Eqs. (4.103,4.104) are valid only for averages over the whole Monte Carlo
ensemble. The quantity B is of particular interest, therefore we shall only
focuss on this quantity, of course the analysis techniques which are valid for
B are also true for A. The estimator for the statistical variance of B̂t is
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obtained by standard Jackknife procedure, for further details see [65], and is
given by the following formula:

(
σstatt

)2
= N − 1

N

N∑
i=1

(
B̂t −Bt,i

)2
, (4.105)

where i = 1, ..., N represents a set of N Jackknife samples and Bt,i is de-
termined from each sample. If it turns out that the differences between the
various B̂t are typically larger than the statistical errors σstatt (for a more
quantitative statement see Ref. [74]), we have to suspect that there are fur-
ther sources of errors σsyst .

B̄ =
∑
twtBt∑
j wj

, where wt = 1
σ2
t

= 1
(σstatt )2 + (σsys)2 , (4.106)

and its total error σ would be given by

1
σ2 =

∑
t

1
σ2
t

. (4.107)

In our case, however, we do not consider systematic error for this method,
therefore σsys = 0.

The Local method has been deployed for all gauge ensembles. Fig. (4.2(a))
shows the numerical outcome of B = amSZ

−1
S for β = 5.6 (corresponds to the

finest lattice spacing) and κ = 0.1655 (maximum statistics) by this method
using Eq. (4.104). The x-axis represents simply the time slice distance (t),
the maximum time extent in the figure is 24 instead of 48 because of sym-
metrisation of the data. We see a plateau as expected. To extract the value
of subtracted gluino mass in lattice units by Local method we take a weighted
average using Eq. (4.106). This weighted average together with its error band
is also shown in the same figure.

4.2.3 The Global method

This method makes use of global fit and has also been used previously in
our collaboration. We improve this method by taking proper weights into
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account. In this method the following quantity from the Eq. (4.100) is min-
imized

F
(glb)
t =

∑
i

(∑
αAαx̂iα
σt

)2

, (4.108)

where the total variance σ2
t = ∑

b,α σ
2
b,t,α serves as weight at each t and could

be obtained from correlation functions xiα by using Jackknife procedure.
In this method an additional sum over t is performed, where t = tmin, ..., tmax.

The choice of tmin4 depends upon the contact term present in Eq. (4.44). In
principle it should influence the results only at t = 0, but due the presence
of symmetric derivative in t direction, two more points are contaminated,
therefore it is better to take tmin ≥ 3. The correlation functions present
in Eq. (4.95) are symmetric (anti-)symmetric, therefore they can be (anti-
)symmetrised and tmax is then defined as tmax = Nt

2 + 1, where Nt is the
time extent of the hypercubic lattice. We apply the same condition as in
Eq. (4.102) with the definition ∑i x̂i,1x̂i,2 = X̂12,tmin , where i = (b, t), which
results in the following expectation value of A and B.

Âtmin = X̂tmin,13X̂tmin,23 − X̂tmin,12X̂tmin,33

X̂tmin,22X̂tmin,33 −X2
t,23

(4.109)

B̂tmin = X̂tmin,13X̂tmin,22 − X̂tmin,12X̂tmin,23

X̂tmin,22X̂tmin,33 −X2
t,23

(4.110)

Similar to the Local method, the estimation of error is done by using Jack-
knife procedure. This method takes full data into account at each t, there-
fore, there is no need to perform fit or weighted average. One has to choose
values of the quatities A and B at some optimal choice of tmin. Using
Eq. (4.110) of the Global method to estimate subtracted gluino mass we
obtain Fig. (4.2(b)).

4.2.4 The GLS method

The Local and the Global methods have been used previously and discussed
in the above subsections in order to find solutions for A and B numerically

4Actually it is tmin

a , but for simplicity we use only tmin
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Figure 4.2: Numerical results at β = 5.6 and κ = 0.1655 by the Local and
by the Global methods for SYM theory with gauge group SU(3).

such that with the measured averages x̂b,t,α the equations are satisfied approx-
imately in an optimal way. None of the above two methods have considered
correlations among various quantities at different time slices. To consider the
correlations in our present studies of N = 1 SUSY Yang-Mills theory with
gauge group SU(3) we develop a method, based on generalised least squares
fit (GLS). Here we describe complete analytical calculations.

Let’s assume x̄iα be the true values, and the measured values xiα differ
from the true ones by

yiα = xiα − x̄iα, (4.111)

where yiα are stochastic variables with 〈yiα〉 = 0 and

〈yiαyjβ〉 ≡ Ciα,jβ, (4.112)

where Ciα,jβ = 〈xiαxjβ〉 − 〈xiα〉〈xjβ〉 is the covariance matrix of xiα. The
probability distribution of the yiα is given by

P ∼ exp

−1
2
∑
i,α,j,β

yiαMiα;jβyjβ

 , (4.113)
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where M = C−1. The aim is to calculate Aα. We employ the method of
maximum likelihood in the following way.

1. For given xiα, consider Aα to be fixed and find x̂iα such that P is
maximum. The value at maximised (Pmax) depends on the Aα.

2. Find Aα such that Pmax(Aα) is maximum.

1. Let’s consider

L = 1
2
∑
i,α,j,β

(xiα − x̂iα)Miα;jβ(xjβ − x̂jβ). (4.114)

We want L to be minimum with constraint ∑αAαx̂iα = 0 from Eq. (4.100).

L′ = L+
∑
i

λi
∑
α

Aαx̂iα, (4.115)

where λi are Lagrange multipliers, and

∂L′

∂x̂iα
= 0, ∂L′

∂λi
= 0. (4.116)

Now
∂L′

∂x̂iα
=
∑
j,β

Miα;jβ(x̂jβ − xjβ) + λiAα = 0 (4.117)

Multiplying Eq. (4.117) by Ciα,jβ we have

x̂iα − xiα = −
∑
j,β

Ciα,jβλjAβ. (4.118)

Multiplying Eq. (4.118) by ∑αAα we get

∑
α

Aαxiα =
∑
j

λj
∑
α,β

AαCiα,jβAβ. (4.119)

We denote ∑
α,β

AαCiα,jβAβ
.= Dij, (4.120)
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so that ∑
α

Aαxiα =
∑
j

Dijλj. (4.121)

From this it follows
λi =

∑
j

(D−1)ij
∑
α

Aαxjα. (4.122)

Putting this result for λi into Eq. (4.118) gives

xiα − x̂iα =
∑
j,β

Ciα,jβAβ
∑
kγ

(D−1)jkxkγAγ. (4.123)

By using Eqs. (4.120,4.123) in Eq. (4.114), we obtain

Lmin = 1
2
∑
i,α,j,β

(Aαxiα)(D−1)ij(Aβxjβ). (4.124)

This is the result of the first step in the maximum likelihood method. Now,
for the averages x̂iα the corresponding quantity is given by

Lmin = 1
2
∑
i,α,j,β

(Aαx̂iα)(D−1)ij(Aβx̂jβ), (4.125)

where Dij is estimated from the measured values by

Dij =
∑
α,β

AαAβ(〈xiαxjβ〉 − x̂iαx̂jβ). (4.126)

2. In the second step we have to find the minimum of Lmin as a function
of the parameters Aα, where we use A1 = 1, so that it remains to find
A2 and A3. The minimisation of Lmin(Aα) with respect to Aα must be
done numerically, because Dij depends on the Aα, it is impossible to find
the solution analytically. We employ standard Jackknife method to obtain
statistical errors by re-sampling the data and making subsets of the full
sample by removing nth entry. We calculate A2 and A3 where there is global
minimun of Lmin for each subset and repeat the whole procedure for all
subsets. In this way we arrive at our final result for B = amSZ

−1
S with

error. Tab. (4.1) compares the results from these methods. The values are
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compatible within errors, however, with GLS method we have more reliable
measure on errors.

κ The Local method The Global method The GLS method
0.1645 0.1306(18) 0.1317(17) 0.1333(20)
0.1650 0.1054(14) 0.1057(12) 0.1040(14)
0.1655 0.0712(19) 0.0706(16) 0.0701(09)
0.1660 0.0352(11) 0.0364(09) 0.0352(13)

Table 4.1: For comparison, the results of amSZ
−1
S from these three methods

at the inverse gauge coupling β = 5.6. The subtracted gluino mass by the
Global and the GLS methods is considered at tmin = 5. The weighted average
of the mass by the Local method is also considered from t = 5 to t = Nt+1

2 .

4.2.5 Adjoint pion mass (ma-π)

The adjoint pion (a-π) is an unphysical particle in supersymmetric Yang-
Mills theory with a fermion (the gluino) in the adjoint representation. It is
related to the fermion mass by partially quenched chiral perturbation theory
(χPT ) and can be computed in the numerical simulation of N = 1 SUSY
Yang-Mills theory on the lattice from the connected piece of a meson whose
interpolating field is λ̄(x)γ5λ(x), for details see Ref. [75]. This meson is
a colour-neutral bound state called a-η′ with quantum numbers 0−+. The
correlation function of a-π is given by

C(x, y) = 〈trsc
[
γ5(γµDµ)−1(x, y)γ5(γµDµ)−1(y, x)

]
〉, (4.127)

where trsc is trace over spin and colour indices. The adjoint pion mass
squared (m2

a-π) scales linear with the gluino mass (mg̃) near the chiral point,
a point in the theory where SYM theory is characterised by a massless gluino.
Mathematically

m2
a-π ∝ mg̃ . (4.128)

This relation is in analogy with Gell-Mann-Oakes-Renner (GOR) relation of
QCD [9]. Therefore, the adjoint pion mass can also be used for the tuning

102



CHAPTER 4. WARD IDENTITIES IN N = 1 SYM THEORY

of the chiral limit, see Ref. [76]. Fig. (4.4) shows the numerical results of the
subtracted gluino mass and the adjoint pion mass squared in lattice units.
Both are proportional to each other, however, there is a small discrepancy
at κc which should be due to lattice artifacts and would go away in the zero
lattice spacing limit. With recent developments, see Ref. [37], the subtracted
gluino mass is also precise enough to be used for the tuning of SYM theory
in the same spirit of the adjoint pion mass squared. However, the pion mass
is less expensive to be computed in simulations and is used for the tuning
preferably.

4.2.6 Handling of discretisation effects

In the derivation of Eq. (4.83) we have ignored the term 〈XS(x)Q(y)〉 of
Eq. (4.41). This term is introduced by the lattice discretisation and its lead-
ing order is hence O(a). It has a form of a correlation function. Moreover, it
is expected to depend on time slice distance t exponetially and decays with
t, as this can be seen in Fig. (4.3). In principle, it vanishes in the continuum
limit, however, it can be problematic in the continuum extrapolation if it is
not handled with care. In N = 1 SUSY Yang-Mills theory on the lattice we
simulate the theory for different values of lattice spacing which leads to dif-
ferent O(a) effects. This potentially influences the continuum extrapolation,
see Fig. (B.1(a)) where we have used tmin = 4. Due to O(a) effects the fit
does not converge to zero.

To have a simplified version of the continuum extrapolations, one pos-
sibility will be to have sufficiently large tmin such that the contribution of
the term disappears. Another way out can be to choose the fixed physical
time slice distance (not the time slice distance in lattice units) so that the
contribution of this term will be the same for all lattice spacings. In this
way all the data points in the continuum extrapolation will be influenced
equally which will lead to a constant shift (can be regarded as a systematic
uncertainty). This additional shift in the data points will vanish in the zero
lattice spacing limit.
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4.2.7 Sufficiently large time slice distance

In principle, the subtracted gluino mass should show a plateau at earlier
t/tmin5, however, this is not the case due to contribution of the contact
term and due to discretisation effects at first few values of t/tmin, and due
to noise at large t/tmin. Therefore, the plateau can only be seen at some
intermediate values of t/tmin. One way to get rid of these effects is to consider
the data from some optimal value of t/tmin where the plateau is formed and
other contributions vanish, one can see this in Fig. (4.3). An additional
check on this choice is the χ2/DoF calculated from Eq. (4.114). This also
stabilises when discretisation effects are just absent, see Tab. (B.3). We
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Figure 4.3: The subtracted gluino mass amSZ
−1
S as function of tmin calculated

from GLS method for β = 5.6. At small values of tmin the signal of the mass
is larger than the plateau value. This effect decays with tmin and can be
explained by O(a) discretisation effects.

repeat the same procedure for the selection of tmin to extract the subtracted
5The term t/tmin means t or tmin, not the ratio.
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gluino mass for a full range of the inverse gauge coupling (β) and the hoping
parameter (κ), the results are presented in Tab. (4.2).

β = 5.4 β = 5.4 β = 5.45 β = 5.5 β = 5.6
V = 123 × 24 V = 163 × 32 V = 163 × 32 V = 163 × 32 V = 243 × 48

κ tmin κ tmin κ tmin κ tmin κ tmin

0.1695 4 0.1692 4 0.1685 5 0.1667 5 0.1645 7
0.1700 4 0.1695 4 0.1687 5 0.1673 5 0.1650 7
0.1703 4 0.1697 4 0.1690 5 0.1678 5 0.1655 6
0.1705 4 0.1700 4 0.1692 5 0.1680 5 0.1660 7

- - 0.1703 4 0.1693 4 0.1683 5 - -
- - 0.1705 4 - - - - - -

Table 4.2: The choice of tmin for a set of all gauge ensembles corresponding
to each β. This selection is made by considering sufficiently large tmin where
plateau is formed and O(a) effects go away. The shaded values have different
tmin from the rest of gauge ensembles for each β.

4.2.8 Fixed physical time slice distance

An alternative way could be to consider the values of amSZ
−1
S at the same

physical time slice distance for all lattice spacings. In this case, the excited
state contamination would be the same for all data points and would vanish
in the continuum limit. To find tmin corresponding the same physical time
distance for each β we use the gluino-glue mass mgg̃ and the Wilson flow
parameter w0. We select maximum possible value of tmin for one lattice
spacing and find the tmin for other values of β as

tmin,βi = tmin,β0

mgg̃,β0

mgg̃,βi

, (4.129)

tmin,βi = tmin,β0

w0,βi
w0,β0

, (4.130)

where i = 1, 2, 3, β0 = 5.4 and βi = 5.45, 5.5, 5.6. The resultant tmin is
a real number and rounded to nearest integer value, see Tab. (4.3). The
Tab. (B.1) has chirally extrapolated values of mgg̃ and w0 which are used in
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β tmin from mgg̃ tmin from w0

5.4 4 4
5.45 5 5
5.5 5 6
5.6 7 7

Table 4.3: The choice of tmin at a fixed physical time slice distance from the
gluino-glue mass (mgg̃) and from the physical scale w0 by Eqs. (4.129,4.130).
The value of tmin at β = 5.5, obtained from mgg̃ and from w0, is different.

Eqs. (4.129,4.130) to produce Tab. (4.3).

4.2.9 Chiral limit

The chiral limit is a point in parametric space where the theory has massless
adjoint pion and massless gluino. This limit can be achieved by plotting
adjoint pion and gluino masses as a function of 1/2κ, and extrapolating
them to the zero masses. The value of κ at the critical point is called κc.
The κc assists in order to tune further values of κ. Fig. (4.4) shows chiral
extrapolations towards κc. The Tab. (4.4) shows all κc from all available
ensembles.

β κc from (ama-π)2 κc from amSZ
−1
S

5.4 0.170814(27) 0.170984(34)
5.45 0.169541(52) 0.169730(54)
5.5 0.168400(31) 0.168644(74)
5.6 0.166366(12) 0.166635(54)

Table 4.4: Values of κc obtained from (ama-π)2 and from amSZ
−1
S by extrap-

olation towards the chiral limit for 4 optimal values of β.

4.2.10 Remnant gluino mass ∆(amSZ
−1
S )

The remnant gluino mass is the subtracted gluino mass at vanishing adjoint
pion mass squared. In principle, it should vanish at vanishing adjoint pion
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Figure 4.4: The subtracted gluino mass amSZ
−1
S and the adjoint pion mass

squared (ama-π)2 in lattice units as a function of 1/(2κ), and the correspond-
ing extrapolations towards the chiral point (κc) for all available values of
β.

mass squared according to the Eq. (4.128). However, due to lattice artifacts
there appears a small discrepancy. It is expected to disappear in the zero
lattice spacing limit. The remnant gluino masses are presented in Tab. (4.5),
these values are obtained by taking an average of the values calculated using
procedures explained in Secs. (4.2.7,4.2.8).

β 5.4 5.45 5.5 5.6
∆(amSZ

−1
S ) 0.0334(48) 0.019(12) 0.0099(88) 0.0103(33)

Table 4.5: The remnant gluino mass ∆(amSZ
−1
S ) obtained at m2

a-π = 0
for 4 available values of β in two step procedure by taking the average of
∆(amSZ

−1
S ) for repeated values of β from Tab. (B.4).
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Figure 4.5: The subtracted gluino mass amSZ
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S calculated by the GLS

method as function of the adjoint pion mass squared (ama-π)2 for all available
values of β in order to obtain the remnant gluino mass ∆(amSZ

−1
S ). The

remnant gluino mass is the value of amSZ
−1
S at vanishing (ama-π)2.

4.2.11 Continuum limit

After careful determination of remnant gluino mass in the chiral limit, now
we perform an extrapolation towards the zero lattice spacing. It is crucial to
know how the remnant gluino mass should depend on the lattice spacing a.
In the case of lattice QCD, the pion mass squared in leading order Wilson
χPT depends linearly on the quark mass plus order a term as

m2
π,LO = 2B0mq + 2W0a, (4.131)

where B0 and W0 are low energy constants, see details in Refs. [77, 78]. On
the other hand PCAC quark mass in leading order from the chiral Ward
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Figure 4.6: The remnant gluino mass ∆(w0mSZ
−1
S ) in physical units (w0) as

a function of the physical lattice spacing squared, and its linear extrapolation
towards the continuum limit.

identity exhibits the same shift [79],

2B0mPCAC,LO = 2B0mq + 2W0a. (4.132)

Therefore,
mPCAC = m2

π

2B0
+O(a2), (4.133)

as a result, at zero pion mass the remnant PCAC quark mass is O(a2), and
this result is true for all orders of χPT

mPCAC = O(a2) at m2
π = 0 . (4.134)

The structure of the terms in N = 1 SUSY Yang-Mills theory is similar to
QCD, therefore we believe that the remnant gluino mass in some physical
units from SUSY Ward identities at vanishing adjoint pion mass squared is
also of the order a2. We express the masses in the physical scale w0, which
is defined through the gradient flow; for details see [6]. Fig. (4.6(a)) shows
the remnant gluino mass of Tab. (4.5) in the physical scale as a function of
a2 in the same scale w0. With current statistics, 4 different lattice spacings
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have been used for the linear extrapolation towards the zero lattice spacing
limit, and the remnant gluino mass is consistant with zero within errors, as
expected. Fig. (4.6(b)) is obtained by performing 3D fit using fit function
of Eq. (2.75). This fit function is implemented by Mr. Henning Gerber, the
complete method is explained in his Ph.D. thesis [80]. In addition to that
Fig. (B.1(b)) shows the same extrapolation, however, the remnant gluino
mass is obtained by the choice of tmin of Tab. (4.2). Finally, the tmin obtained
from mgg̃ and from w0, see Tab. (4.3), is used to obtain Figs. (B.1(c),B.1(d)).

We have presented our first complete result of the continuum extrapo-
lation in Ref. [37] with two data points. Now we have more statistics and
more data points to confirm rigorously the restoration of broken SUSY in
the continuum in N = 1 SUSY Yang-Mills theory. This result also confirms
the correctness of Eq. (4.134), where the remnant gluino mass is propotional
to a2 in the continuum.
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Chapter 5

Baryonic states in N = 1 SYM
theory

5.1 Rarita Schwinger object for baryons

In N = 1 SUSY Yang-Mills theory, besides the gluon field Aµ(x), we have
the gluino field λ(x), the superpartner of the gluon. Combination of three
λ’s can make a colourless object provided that all the colour indices must
be contracted with the indices of structure constants tabc where a, b, c =
1, . . . ,N2

c − 1, which is analogous to baryons in Quantum Chromodynamics
(QCD). Due to the fact that fermions are in the adjoint representation, this
object can be constructed for both SU(2) and SU(3) gauge groups. We would
also call this object a “baryon”. A possible general construction in matrix
notation of Dirac indices is given by

W (x) = tabcΓAλa(x)
(
λTb (x)ΓBλc(x)

)
, (5.1)

which represents a Rarita Schwinger field [81]. Where ΓA and ΓB are the spin
matrices, for the sake of convenience one can choose ΓA = 1 and ΓB = Γ.
With all Lorentz components we consider Γ = Cγµ

Wµ(x) = tabcλa(x)
(
λTb (x)Cγµλc(x)

)
. (5.2)
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If this field satisfies the following conditions, the spin-1
2 is completely pro-

jected out and this will purely be spin-3
2

γµWµ = 0, (5.3)

∂µWµ = 0. (5.4)

Using Fierz identities, the first condition is satisfied. The second condition,
however, is not fulfilled, therefore we must have spin-3

2 and spin-1
2components

in the fieldW (x). There are three possible choices, all giving rise to quantum
numbers JP = 1

2
+, namely Γ = Cγ4, Cγ5, iγ4Cγ5. Baryons with JP = 3

2 , are
obtained from Γ = Cγi, i = 1, 2, 3, where γi are spatial gamma matrices.
Two gluino fields give rise to di-gluino state with J = 1 and together with
the left over gluino field it gives J = 3

2 contributions, but also an admixture
of J = 1

2 [65].

5.1.1 Baryons with gauge group SU(2)

For SU(2) tabc is simply replaced by an anti-symmetric tensor εabc, its val-
ues are given in Appendix (B.3.1). We choose Γ = Cγ4, the reason for
this choice is that the spin matrix Γ must be symmetric if tabc is chosen
to be anti-symmetric, to prove this the analytical calculations are given in
Appendix (B.4). As a result of this replacement Rarita Schwinger field reads

W (x) = εabcλa(x)
(
λTb (x)Cγ4λc(x)

)
. (5.5)

In addition to colour indices, the gluino field λ(x) has Dirac index which is
omitted for convenience.

5.1.2 Baryons with gauge group SU(3)

For SU(3) there are two possibilities for tabc, either it is dabc which is com-
pletely symmetric or fabc which is anti-symmetric, for their numerical values
see Appendix (B.3.2). One possible choice of Γ for SU(3) is Cγ5 which is
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symmetric, therefore we have to use fabc. The conjugate field is

W (x) = fabcλa(x)
(
λTb (x)Cγ5λc(x)

)
. (5.6)

Now we need to construct the correlation function which will be computed
on the lattice with the help of high performance facilities.

5.1.3 Baryon correlation function

For the computation of the baryon mass the basic building block is the corre-
lation function. A suitable function is fitted to the numerical data obtained
from each gauge ensemble. To achieve this we consider here the following
correlation function obtained from the interpolating field W (x) and from its
conjugate field W (x)

B(x, y) = 〈W (x)W (y)〉 , (5.7)

where conjugate field W (x) for Γ = Cγ5 is given as

W (x) = −
(
CW (x)

)T
. (5.8)

For its derivation, see Appendix (B.2). Now we write correlation function
B(x, y) with its Dirac indices explicitly

Bαδ(x, y) = 〈Wα(x)W δ(y)〉

=− 〈Wα(x)Cδα′Wα′(y)〉

=− 〈fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′Cδα′×

λαa (x)λβb (x)λγc (x)λα′a′ (y)λβ
′

b′ (y)λγ
′

c′ (y)〉. (5.9)

The easiest way to evaluate this further, combining terms by using symme-
tries, is to represent the correlation function in terms of six λ, and not to
write it in terms of λ and λ. With all possible contractions

λαa (x)λβb (y) = Kαβ
ab (x, y) = −(4(x, y)C)αβab , (5.10)
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where the fermion propagator is simply the inverse of the Wilson-Dirac ma-
trix i. e. 4(x, y) = D−1

w (x, y). By taking into account the fermionic signs, we
get the following 15 terms

λαa (x)λβb (x)λγc (x)λα′a′ (y)λβ
′

b′ (y)λγ
′

c′ (y) =

+Kαβ
ab (x, x)Kγα′

ca′ (x, y)Kβ′γ′

b′c′ (y, y) (5.11)

−Kαβ
ab (x, x)Kγβ′

cb′ (x, y)Kα′γ′

a′c′ (y, y) (5.12)

+Kαβ
ab (x, x)Kγγ′

cc′ (x, y)Kα′β′

a′b′ (y, y) (5.13)

−Kαγ
ac (x, x)Kβα′

ba′ (x, y)Kβ′γ′

b′c′ (y, y) (5.14)

+Kαγ
ac (x, x)Kββ′

bb′ (x, y)Kα′γ′

a′c′ (y, y) (5.15)

−Kαγ
ac (x, x)Kβγ′

bc′ (x, y)Kα′β′

a′b′ (y, y) (5.16)

+Kαα′

aa′ (x, y)Kβγ
bc (x, x)Kβ′γ′

b′c′ (y, y) (5.17)

−Kαα′

aa′ (x, y)Kββ′

bb′ (x, y)Kγγ′

cc′ (x, y) (5.18)

+Kαα′

aa′ (x, y)Kβγ′

bc′ (x, y)Kγβ′

cb′ (x, y) (5.19)

−Kαβ′

ab′ (x, y)Kβγ
bc (x, x)Kα′γ′

a′c′ (y, y) (5.20)

+Kαβ′

ab′ (x, y)Kβα′

ba′ (x, y)Kγγ′

cc′ (x, y) (5.21)

−Kαβ′

ab′ (x, y)Kβγ′

bc′ (x, y)Kγ′α′

c′a′ (y, y) (5.22)

+Kαγ′

ac′ (x, y)Kβγ
bc (x, x)Kα′β′

a′b′ (y, y) (5.23)

−Kαγ′

ac′ (x, y)Kβα′

ba′ (x, y)Kγβ′

cb′ (x, y) (5.24)

+Kαγ′

ac′ (x, y)Kββ′

bb′ (x, y)Kγα′

ca′ (x, y) (5.25)

The term (5.11) can be combined with (5.14) and term the (5.12) with
(5.13),(5.15) and (5.16). Terms (5.20) and (5.23) can be united to one. Terms
(5.18) and (5.19) can be joined. Similarly terms (5.21), (5.22), (5.24) and
(5.25) can also be merged to one. After combining most of the terms we are
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left with only 6 terms and substituting back into the Eq. (5.9) we get

Bαδ(x, y) =− 〈fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′Cδα′{ (5.26)

− 2Kαα′

aa′ (x, y)Kββ′

bb′ (x, y)Kγγ′

cc′ (x, y)

− 4Kαβ′

ab′ (x, y)Kβγ′

bc′ (x, y)Kγα′

ca′ (x, y)

− 2Kαβ
ab (x, x)Kγα′

ca′ (x, y)Kγ′β′

c′b′ (y, y)

− 4Kαβ
ab (x, x)Kβ′γ

bc′ (y, x)Kγ′α′

c′a′ (y, y)

− 1Kαα′

aa′ (x, y)Kβγ
bc (x, x)Kγ′β′

c′b′ (y, y)

− 2Kαβ′

ab′ (x, y)Kβγ
bc (x, x)Kγ′α′

c′a′ (y, y)}〉.

Explicit calculations of each term in Eq. (5.26) are then able to representK in
terms of propagator 4, see Appendix (B.5) for the derivations. Further, we
have tried different choices of Γ, all of them give rise to the same result leaving
different signs. These signs are accumodatd in variable θ, see Tab. (5.1). The
resulting correlation function gets the form

Bαα′(x, y) = 〈θ ta′b′c′tabcΓβγΓβ
′γ′ × { (5.27)

+ 24αα′

aa′ (x, y)4ββ′

bb′ (x, y)4γγ′

cc′ (x, y)

+ 44αβ′

ab′ (x, y)4βγ′

bc′ (x, y)4γα′

ca′ (x, y)

+ 24αβ
ab (x, x)4δα′

ca′ (x, y)4δ′β′

c′b′ (y, y)CγδCγ′δ′

+ 44αβ
ab (x, x)4β′γ

b′c (y, x)4γ′α′

c′a′ (y, y)

+ 14αα′

aa′ (x, y)4βδ
bc (x, x)4δ′β′

c′b′ (y, y)CγδCδ′γ′

+ 24αδ′

ac (x, y)4βδ
bc (x, x)4β′α′

b′a′ (y, y)CγδCγ′δ′}〉.

This correlation function can be categorised into two parts, the sunset piece
BSset(x, y) and the spectacle piece BSpec(x, y). The graphical representation
of these pieces is given in Fig. (3.4). Projection to the parity states and the
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θ

+1 -1
Γ = C, Cγ1,3,4 Γ = Cγ2,5, iγ4Cγ5

tabc

fabc dabc
Γ = C, Cγ1,3,4 Γ = Cγ2,5, iγ4Cγ5

Table 5.1: The values of θ and choice of tabc for corresponding spin matrices.

trace over Dirac indices leave

BSset(x, y) = θ ta′b′c′tabcΓβγΓβ
′γ′Pαα′

± × {

+ 24αα′

aa′ (x, y)4ββ′

bb′ (x, y)4γγ′

cc′ (x, y)

+ 44αβ′

ab′ (x, y)4βγ′

bc′ (x, y)4γα′

ca′ (x, y)}, (5.28)

and

BSpec(x, y) = θ ta′b′c′tabcΓβγΓβ
′γ′Pαα′

± × {

+ 24αβ
ab (x, x)4δα′

ca′ (x, y)4δ′β′

c′b′ (y, y)CγδCγ′δ′

+ 44αβ
ab (x, x)4β′γ

b′c (y, x)4γ′α′

c′a′ (y, y)

+ 14αα′

aa′ (x, y)4βδ
bc (x, x)4δ′β′

c′b′ (y, y)CγδCδ′γ′

+ 24αδ′

ac (x, y)4βδ
bc (x, x)4β′α′

b′a′ (y, y)CγδCγ′δ′}, (5.29)

where P± are parity projectors and for zero momentum they are defined as
P± = 1

2(1±γ4). It is important to note here that the total correlation function
in terms of these two pieces can be written as

B(x, y) = 〈BSset(x, y) +BSpec(x, y)〉 . (5.30)

We compute them separately then add the data configuration by configura-
tion and then take the average.
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5.1.4 Discrete symmetry test of correlation function

In order to cross check whether the correlation function of Eq. (5.27) is
correct, we use some symmetries. The fermionic interpolating field W (x)
transform in the same way as spinors under time reversal (T ) and parity (P)
transformations [82, 39]

W (x) → WP(xP) = γ4W (xP), (5.31)

W (x) → W
P(xP) = W (xP)γ4, (5.32)

W (x) → W T (xT ) = γ4γ5W (xT ), (5.33)

W (x) → W
T (xT ) = W (xT )γ5γ4. (5.34)

For convenience we drop out the Dirac indices. The correlation function
transforms as

B(x, y) → BP(xP , yP)=〈WP(xP)WP(yP)〉=γ4B(xP , yP)γ4, (5.35)

B(x, y) → BT (xT , yT )=〈W T (xT )W T (yT )〉=γ4γ5B(xT , yT )γ5γ4.(5.36)

Taking zero spatial momentum correlation function

B(t) =
∑
−→x ,−→y

t=x0−y0

B(x, y), (5.37)

Eq. (5.35) implies that

B(t) = γ4B(t)γ4. (5.38)

Eq. (5.36) together with anti-periodicity gives

B(t) = −γ4γ5B(Nt − t)γ5γ4. (5.39)

γ5 Hermiticity (t = x0-y0, with transpose of B(t) it becomes −t) and anti-
periodicity gives

B(t) = −γ5B
†(Nt − t)γ5. (5.40)
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Property of inverse Dirac matrix together with anti-periodicity

B(t) = −C−1BT (Nt − t)C. (5.41)

Combining Eq. (5.39) with Eq. (5.40), we obtain

B(t) = γ4B
†(t)γ4. (5.42)

Combining Eq. (5.40) with Eq. (5.41), we get

B(t) = C−1γ5B
∗(t)γ5C. (5.43)

From Eqs. (5.38,5.42) we conclude that B(t) is 4 × 4 Hermitian matrix in
Dirac indices and can be expanded in the basis of 16 Dirac matrices (Γi) as

B(t) =
∑
Γi
BΓi(t) Γi, (5.44)

these Γi are given in Appendix (A.3). By using the Eqs. (5.38,5.42,5.43), the
above expression is reduced to

B(t) = B1(t)1 +Bγ4(t)γ4. (5.45)

whereB1(t) = 1
4tr [B(t)] andBγ4(t) = 1

4tr [B(t)γ4]. Moreover, from Eq. (5.39)
we derive that

B1(t) = −B1(Nt − t), (5.46)

Bγ4(t) = Bγ4(Nt − t), (5.47)

Furthermore, B1(t) and Bγ4(t) are also real.

In principle each term of Eq. (5.27) should obey symmetricity and anti-
symmetricity of Eqs. (5.46,5.47). The Fig. (5.1) shows the numerical results
of the sunset piece of the correlation functions B1(t) and Bγ4(t). It is clear
from the figure that the correlation functions satisfy the Eqs. (5.46,5.47).
The spectacle piece is obtained using stochastic estimator technique for the
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inverse Wilson-Dirac operator D−1
w , however, it is noisy and requires some

additional techniques as well as efforts to get reasonable results.
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Figure 5.1: Numerical results of the sunset piece of baryon correlation
functions B1(t) and Bγ4(t) to varify associated symmetries at β=1.75 and
κ = 0.14925 with gauge group SU(2).

5.1.5 Numerical results

For N = 1 SYM theory, the major task to compute a correlation function
is to compute the inverse of the Wilson-Dirac operator. The inverse of the
Wilson-Dirac operator for the sunset piece is computed easily, where we only
need to compute the inversion of a δ-source for each combination of spin and
gauge indices. This inversion is achieved by the Conjugate Gradient (CG)
method. However, for the spectacle piece it is calculated using stochastic
estimator technique together with the truncated eigenmode approximation
as explained in Sec. (2.2.6). Fig. (5.2) shows the full correlation function
(including the sunset piece and the spectacle piece) and its effective mass.
The results are not satisfactory at the moment and we need to test which
part of the correlation function is noisy. In Fig. (B.2) we have shown the
effective mass of both pieces separately and it is clear that the spectacle
piece is noisy. In order to further investigate the source of noise, we have
estimated the gauge noise and the stochastic noise of the spectacle piece,
and the reuslts are given in Tab. (B.5). It turned out the stochastic noise is
larger as compared to the gauge noise. Therefore, we need to focus on how to
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improve this signal-to-noise ratio. One way could be to increase the number
of stochastic estimators and to repeat the measurement for several positions
of the wall-source tsource.
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(a) Spectacle, sunset and full baryon corre-
lation function.
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(b) Effective mass of full baryon correlation
function.

Figure 5.2: Numerical results of the baryon correlation function and the
effective mass at β = 1.75 and κ = 0.14925. In spectacle part, 40 stochastic
estimators have been used for the computation of D−1

w with no smearing.
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Chapter 6

Conclusion and outlook

The N = 1 SUSY Yang-Mills theory is the supersymmetric extension of the
pure gluonic part of the Standard Model of particle physics. It describes
the strong interaction of the gluon and its SUSY partner, the gluino. The
gluino is a Majorana fermion and it transforms according to the adjoint rep-
resentation under gauge group SU(Nc). At low energy these fundamental
particles exhibit confinement. According to the predictions on the basis of
effective actions [9, 10] these bound states, among others, consist of mesons,
glueballs and a spin-1

2 gluino-glue which form, if SUSY is realised, a chiral
supermultiplet. In our collaboration we have calculated the masses of these
states of N = 1 SUSY Yang-Mills theory non-perturbatively. To do this we
employed the framework of lattice QFT. The introduction of the space-time
lattice as a regulator breaks SUSY explicitly. Additionally, the supersym-
metry is broken softly by a non-zero gluino mass. Similar to the previous
studies [3, 6, 4], we have employed SUSY Ward identities in order to obtain
a limit where N = 1 SYM theory is characterised by the massless gluino,
the so-called chiral limit. In order to test whether the SUSY Ward identity
is anomalous or not it has been renormalised and all relevant operators of
dimensions ≤ 9/2 have been included [4]. The resulting equations contain a
ratio of renormalisation coefficients and subtracted gluino mass.

In this thesis we have explained how the subtracted gluino mass is ob-
tained from correlation functions which are computed numerically on the lat-
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tice with the help of the simulation code and supercomputers. For the data
analysis we have improved the methods, namely the Local method and the
Global method which have been used previously in our collaboration [3, 31].
Despite being improved these methods do not take into account the correla-
tions present among the relevant observables. To consider these correlations
we have formulated a method called the GLS method and have obtained the
subtracted gluino mass for each gauge ensemble. We have extrapolated the
subtracted gluino mass as a function of the adjoint pion mass squared (m2

a-π)
to the chiral limit. In principle, the subtracted gluino mass should have van-
ished at m2

a-π = 0 according to Eq. (4.128), however, due to lattice artifacts
there has been a small discrepancy. This remaining mass has been called
remnant gluino mass. We have computed it for each lattice spacing and have
discussed in Sec. (4.2.11) that it is of the order a2. The w0 scale based on
Wilson flow has been used to represent the remnant gluino mass and lat-
tice spacing in physical units. We have properly handled additional lattice
artifacts and have extrapolated the remnant gluino mass to the zero lattice
spacing limit where the remnant gluino mass is consistent with zero within
error. This is exactly in accordance with the theoretical predictions.

In addition, we have investigated a bound state composed of three gluino
fields, the so-called baryons in N = 1 SUSY Yang-Mills theory. We have
derived correlation functions of the baryons and implemented them in the
simulation code to determine their masses non-perturbatively. The baryon
correlation function consists of two parts, namely the sunset piece and the
spectacle piece. Furthermore, we have used discrete symmetries to check the
correctness of the numerical data of the correlation function obtained from
lattice simulations. The numerical results of the sunset piece are quite en-
couraging whereas the spectacle piece is still noisy. Finally, we have presented
numerical results of the baryon correlation functions and of the effective mass.

For the future, to improve the signal-to-noise ratio, one possibility could
be to use large number of stochastic estimators and to use the full time extent
of the lattice for the sources.

We have successfully determined masses of particles in N = 1 SUSY
Yang-Mills theory and have shown that they form a chiral supermultiplet [8].
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This means that SUSY is realised on the lattice. This project could possibly
be extended to super QCD or to extended SUSY (particularly N = 2 SYM
theory). Moreover, we have started to study the spectrum of baryons in
N = 1 SUSY Yang-Mills theory. There might be more states which can be
investigated in the future.
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Appendix A

Group generators and matrices

A.1 Group generators of SU(Nc)

The group generators, in matrix representation, are Nc × Nc matrices and
are N2

c − 1 in number. We shall restrict ourself only to the generators for
SU(2) and SU(3) because we have investigated the N = 1 SUSY Yang-Mills
theory only for these two gauge groups.

A.1.1 Group generators of SU(2)

For the case of SU(2) we have following three generators

T a = σa

2 , with a = 1, 2, 3. (A.1)

Where σa are Pauli matrices given in Sec. (A.2).

A.1.2 Group generators of SU(3)

In this case they are 8 in number and acquire the following forms

T a = λa

2 , with a = 1, 2, . . . , 8. (A.2)
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Where λa are Gell-Mann matrices and their conventional representation is

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0

 , (A.3)

λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 , λ6 =


0 0 0
0 0 1
0 1 0

 , (A.4)

λ7 =


0 0 0
0 0 −i
0 i 0

 , λ8 =


1√
3 0 0

0 1√
3 0

0 0 − 2√
3

 . (A.5)

A.2 Gamma matrices

Explicit representation of Euclidean Dirac matrices (γ matrices) in a 2⊗ 2
block notations

γ1,2,3 =
 0 −iσ1,2,3

iσ1,2,3 0

 , (A.6)

Where Pauli matrices are

σ1 =
0 1

1 0

 , σ2 =
0 −i

i 0

 , σ3 =
1 0

0 −1

 . (A.7)

Chiral representation of γ4 and γ5 is

γ4 =
0 1

1 0

 , γ5 =
1 0

0 −1

 . (A.8)

These matrices obey
{γµ, γµ} = δµν . (A.9)
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The charge conjugation Dirac matrix

C ≡ γ4γ2 = −γ1γ3γ5


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , (A.10)

satisfies

C2 = −1, C† = CT = C−1 = −C, (A.11)

Cγ1,3,5 = γ1,3,5C, Cγ2,4 = −γ2,4C, (A.12)

(Cγµ,5)T = Cγµ,5, CγµC
−1 = −γTµ . (A.13)

A.3 Dirac space

Dirac space consists of a set of following matrices

Γi = {1, γ5, γµ, γµγ5, iσµν} , (A.14)

where γ and σ satisfy the following relations

[γµ, σνρ] = 2 (δµνγρ − δµργν) , (A.15)

{γµ, σνρ} = −2εµνρηγηγ5. (A.16)

A.4 Fierz identities

Fierz identities are defined as [40]

OV (x) = −OA(x) = OS(x)−OP (x), (A.17)

OT (x) = −
(
OS(x) +OP (x)

)
. (A.18)
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where

OS(x) = tr
[(
ψ̄(x)ψ(x)

)
ψ(x)

]
, (A.19)

OP (x) = tr
[(
ψ̄(x)γ5ψ(x)

)
γ5ψ(x)

]
, (A.20)

OV (x) = tr
[(
ψ̄(x)γµψ(x)

)
γµψ(x)

]
, (A.21)

OA(x) = tr
[(
ψ̄(x)γ5γµψ(x)

)
γ5γµψ(x)

]
, (A.22)

OT (x) = tr
[(
ψ̄(x)σµνψ(x)

)
σµνψ(x)

]
. (A.23)

Here ψ(x) is 4-component Dirac spinor. For the case of Majorana spinor the
follwing results hold

OS(x) = OP (x) = OA(x) = 0. (A.24)
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Appendix B

Derivations and results

β mgg̃ w0

5.4 0.5272(86) 2.046(16)
5.45 0.4040(81) 2.577(43)
5.5 0.4292(79) 2.925(38)
5.6 0.2997(71) 3.422(48)

Table B.1: Chirally extrapolated values of the gluino-glue mass (mgg̃) and of
the scale w0 which are used to obtain tmin of Tab. (4.3).

B.1 Ward identity correlation functions
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(a) tmin = 4 is used for all gauge ensem-
bles. Incompatibility with zero is due to
discretisation effects.
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Tab. (4.2).
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Tab. (4.3).
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(d) tmin =4, 5, 6, 7 for β = 5.4, 5.45, 5.5, 5.6
respectively using tmin from w0 of
Tab. (4.3).

Figure B.1: The remnant gluino mass ∆(w0mSZ
−1
S ) in physical units (w0)

as a function of physical lattice spacing squared, and its linear extrapolation
towards the continuum limit by two step procedure where we perform chiral
extrapolation followed by the continuum extrapolation.

B.2 Rarita Schwinger field

The Rarita Schwinger field for Γ = Cγ5 is

W = fabcλa
(
λTb Cγ5λc

)
, (B.1)
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we omit dependence of fields on space-time points for the sake of simplicity.
As Cγ5 is symmetric, therefore we choose anti-symmetric structure constant
fabc. Using properties of Eqs. (B.11,B.13) one obtains

W = fabcλa
(
λbγ5λc

)
. (B.2)

The conjugate field W = W †γ4 reads

W = fabc
[
λa
(
λbγ5λc

)]†
γ4, (B.3)

= fabc
(
−λ†cγ

†
5 λ
†
b

)
λa, (B.4)

= fabc
(
λcγ

†
5 λb

)
λTaC, (B.5)

= fabc
[
λa
(
λbγ5λc

)]T
C, (B.6)

= −
(
CW

)T
. (B.7)

Note that

W = −
(
CW

)T
, for Γ = Cγ4,5. (B.8)

W = +
(
CW

)T
, for Γ = Cγi, i = 1, 2, 3. (B.9)

(B.10)

In the derivation of above conjugate field, the following properties have been
employed

λ = λTC, Majoran condition, (B.11)

λ = λ†γ4, (B.12)

C2 = −1, C−1 = CT = −C, (B.13)

λaλb = −λbλa, Grassmannian nature, (B.14)

Cγ1,3,5 = γ1,3,5C, Cγ2,4 = −γ2,4C, (B.15)

γ4γi,5 = −γi,5γ4, γ
†
µ,5 = γµ,5, (B.16)

γT2,4,5 = γ2,4,5, γ
T
1,3 = −γ1,3,

(
Cγµ,5

)T
=
(
Cγµ,5

)
. (B.17)
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B.3 Structure constants

Depending upon the choice of the gauge group and spin matrices one can use
(anti-)symmetric structure constant which will be given below

B.3.1 Structure constants εabc

The anti-symmetric εabc reads

ε123 = ε231 = ε312 = +1, (B.18)

ε321 = ε213 = ε132 = −1. (B.19)

All other values of εabc are zero.

B.3.2 Structure constants dabc and fabc

These structure constrants take the following values

d118 = d228 = d338 = −d888 = 1√
3
, (B.20)

d448 = d558 = d668 = d778 = − 1
2
√

3
, (B.21)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1
2 , (B.22)

f123 = +1, (B.23)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2 , (B.24)

f458 = f678 =
√

3
2 . (B.25)

All other dabc and fabc not related to these by permutation are zero.

134



APPENDIX B. DERIVATIONS AND RESULTS

B.4 Choice of structure constants and spin
matrices

For Γ = C and tabc = dabc, the Eq (5.1), in Dirac indices, is given by

W σ = dabcC
βγλαaλ

β
bλ

γ
c , (B.26)

using numerical values of C from Eq. (A.10), the Eq (B.26) reduces to

W σ = dabcλ
α
a

{
λ1
bλ

2
c − λ2

bλ
1
c − λ3

bλ
4
c + λ4

bλ
3
c

}
, (B.27)

here
λ2
bλ

1
c = −λ1

cλ
2
b = −λ1

bλ
2
c . (B.28)

As λ’s are Grassmannian objects, interchange of the two λ’s gives an addi-
tional minus sign. It does not matter if we interchange color indices b and c
because dabc is symmetric in a, b and c

W σ = 2 dabcλαa
{
λ1
bλ

2
c + λ4

bλ
3
c

}
, (B.29)

this implies that
W σ = dabcC

βγλαaλ
β
bλ

γ
c 6= 0. (B.30)

Note that the charge conjugation matrix C is anti-symmetric whereas the
structure constant dabc is symmetric. We can show that, by performing sim-
ilar steps of calculations, W 6= 0 for all Γ’s which are anti-symmetric. It is
also possible to use same analogy to show that W = 0 for all Γ’s which are
symmetric. We conclude that the field W will be non-vanishing: if tabc is
symmetric and Γ is anti-symmetric, and vice versa.
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B.5 Derivation of different terms of baryon
correlation function

In order to simplify each term of Eq. (5.26), let’s consider the 1st

Dαδ
1 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′Cδα′× (B.31){

− 2Kαα′

aa′ (x, y)Kββ′

bb′ (x, y)Kγγ′

cc′ (x, y)
}
.

Consider

Cδα′Kαα′

aa′ (x, y) = −(−4 (x, y)C)αα′aa′ C
α′δ (B.32)

= (4(x, y)C2)αδaa′ = −4αδ
aa′ (x, y).

Dαδ
1 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.33){

+ 24αδ
aa′ (x, y)4βσ′

bb′ (x, y)Cσ′β′ 4γρ′

cc′ (x, y)Cρ′γ′
}
,

Cσ′β′(Cγ5)β′γ′Cσρ′ = −(C2γ5C)σ′ρ′ = (Cγ5)σ′ρ′ . (B.34)

By interchanging the idices, δ ↔ α′, σ′ ↔ β′, ρ′ ↔ γ′, we get

Dαα′

1 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.35){
+ 24αα′

aa′ (x, y)4ββ′

bb′ (x, y)4γγ′

cc′ (x, y)
}
.

Similarly

Dαα′

2 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.36){
+ 44αβ′

ab′ (x, y)4βγ′

bc′ (x, y)4γα′

ca′ (x, y)
}
,

now

Dαδ
3 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′Cδα′× (B.37){

− 2Kαβ
ab (x, x)Kγα′

ca′ (x, y)Kγ′β′

c′b′ (y, y)
}
,

136



APPENDIX B. DERIVATIONS AND RESULTS

Cδα′Kγα′

ca′ (x, y) = −(−4 (x, y)C)γα
′

ca′ C
α′δ

= (4(x, y)C2)γδca′ = −4γδ
ca′ (x, y). (B.38)

Interchanging δ ↔ α′,

Dαα′

3 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.39){
+ 24ασ

ab (x, x)Cσβ 4γα′

ca′ (x, y)4γ′σ′

c′b′ (y, y)Cσ′β′
}
,

now
Cσβ(Cγ5)βγ = −γσγ5 = (γ5C

2)σγ = (Cγ5)σδCσδ, (B.40)

and
Cσ′β′(Cγ5)β′γ′ = −γσ

′γ′

5 = (γ5C
2)σ′γ′ = (Cγ5)σ′δ′Cσ′δ′ . (B.41)

By interchanging the indices, σ ↔ β, σ′ ↔ β′, δ ↔ γ, δ′ ↔ γ′, we obtain

Dαα′

3 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.42){
+ 24αβ

ab (x, x)4δα′

ca′ (x, y)4δ′β′

c′b′ (y, y)CγδCγ′δ′
}
.

Using the similar calculations on gets the other terms as follows

Dαα′

4 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.43){
+ 44αβ

ab (x, x)4β′γ
b′c (y, x)4γ′α′

c′a′ (y, y)
}
,

Dαα′

5 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.44){
+ 14αα′

aa′ (x, y)4βδ
bc (x, x)4δ′β′

c′b′ (y, y)CγδCδ′γ′
}
,

and

Dαα′

6 (x, y) =− fabcfa′b′c′(Cγ5)βγ(Cγ5)β′γ′× (B.45){
+ 24αδ′

ac (x, y)4βδ
bc (x, x)4β′α′

b′a′ (y, y)CγδCγ′δ′
}
.
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B.6 Implementation of spectacle piece

In order to implement the spectacle piece we need to have each term of the
correlation function of the following form

B =
∑

M 4 S. (B.46)

The 1st term of the Eq. (5.29) can be written as

B
(1)
Spec(t) = 2 θ

∑
−→x ,−→y

x0=y0+t

∑
α,α′

c,a′

Pαα′
± Mαδ

c (x, x)4δα′

ca′ (x, y)Sa′(y, y), (B.47)

where

Mαδ
c (x, x) =

∑
β,γ
a,b

tabc4αβ
ab (x, x)ΓβγCγδ,

Sa′(y, y) =
∑

β′,γ′,δ′

b′,c′

ta′b′c′ 4δ′β′

c′b′ (y, y)Γβ′γ′Cγ′δ′ . (B.48)

For Γ = Cγ4

Mαδ
c (x, x) =

∑
a,b

tabc(4γ4)αδab (x, x),

Sa′(y, y) =
∑
δ′,b′,c′

ta′b′c′(4γ4)δ′δ′c′b′ (y, y). (B.49)

For Γ = Cγ5

Mαδ
c (x, x) =−

∑
a,b

tabc(4γ5)αδab (x, x),

Sa′(y, y) =−
∑
δ′,b′,c′

ta′b′c′(4γ5)δ′δ′c′b′ (y, y). (B.50)
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The 2nd term of the Eq. (5.29) can be written as

B
(2)
Spec(t) = −4 θ

∑
−→x ,−→y

x0=y0+t

∑
α,α′,δ,δ′

c,b′

Pαα′
± Mαδ

c (x, x)4δδ′

cb′ (x, y)Sδ′α′b′ (y, y), (B.51)

where

Mαδ
c (x, x) =

∑
β,γ
a,b

tabc4αβ
ab (x, x)ΓβγCγδ,

Sδ
′α′

b′ (y, y) =
∑
β′,γ′

a′,c′

ta′b′c′C
δ′β′Γβ′γ′ 4γ′α′

c′a′ (y, y). (B.52)

For Γ = Cγ4

Mαδ
c (x, x) =

∑
a,b

tabc(4γ4)αδab (x, x),

Sδ
′α′

b′ (y, y) =−
∑
a′,c′

ta′b′c′(γ44)δ′α′c′a′ (y, y). (B.53)

For Γ = Cγ5

Mαδ
c (x, x) =−

∑
a,b

tabc(4γ5)αδab (x, x),

Sδ
′α′

b′ (y, y) =−
∑
a′,c′

ta′b′c′(γ54)δ′α′c′a′ (y, y). (B.54)

The 3rd term of the Eq. (5.29) can be written as

B
(3)
Spec(t) = ± θ

∑
−→x ,−→y

x0=y0+t

∑
α,α′

a,a′

Pαα′
± Ma(x, x)4αα′

aa′ (x, y)Sa′(y, y), (B.55)
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where “+” is for the symmetric Γ and “−” in the case when it is anti-
symmetric.

Ma(x, x) =
∑
β,γ,δ
b,c

tabcC
δγΓγβ 4βδ

bc (x, x),

Sa′(y, y) =
∑

β′,γ′,δ′

b′,c′

ta′b′c′ 4δ′β′

c′b′ (y, y)Γβ′γ′Cγ′δ′ . (B.56)

For Γ = Cγ4

Ma(x, x) =−
∑
δ,b,c

tabc(γ44)δδbc(x, x),

Sa′(y, y) =
∑
δ′,b′,c′

ta′b′c′(4γ4)δ′δ′c′b′ (y, y). (B.57)

For Γ = Cγ5

Ma(x, x) =−
∑
δ,b,c

tabc(γ54)δδbc(x, x),

Sa′(y, y) =−
∑
δ′,b′,c′

ta′b′c′(4γ5)δ′δ′c′b′ (y, y). (B.58)

The 4th term of the Eq. (5.29) can be written as

B
(4)
Spec(t) = 2 θ

∑
−→x ,−→y

x0=y0+t

∑
α,α′

a,c′

Pαα′
± Ma(x, x)4αδ′

ac′ (x, y)Sδ′α′c′ (y, y), (B.59)

where

Ma(x, x) =
∑
β,γ,δ
b,c

tabcC
δγΓγβ 4βδ

bc (x, x),

Sδ
′α′

c′ (y, y) =
∑
β′,γ′

a′,b′

ta′b′c′C
δ′γ′Γγ′β′ 4β′α′

b′a′ (y, y). (B.60)
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For Γ = Cγ4

Ma(x, x) =−
∑
δ,b,c

tabc(γ44)δδbc(x, x),

Sδ
′α′

c′ (y, y) =−
∑
a′,b′

ta′b′c′(γ44)δ′α′b′a′ (y, y). (B.61)

For Γ = Cγ5

Ma(x, x) =−
∑
δ,b,c

tabc(γ54)δδbc(x, x),

Sδ
′α′

c′ (y, y) =−
∑
a′,b′

ta′b′c′(γ54)δ′α′b′a′ (y, y). (B.62)

B.7 Effective mass of sunset and spectacle
pieces

−6

−4

−2

0

2

4

6

0 4 8 12 16 20 24 28 32 36 40 44 48

m
ef

f

t

(a) Sunset.

−5
−4
−3
−2
−1

0
1
2
3
4
5

0 4 8 12 16 20 24 28 32 36 40 44 48
t

(b) Spectacle.

Figure B.2: Effective masses of sunset and spectacle pieces of correlation
function with error bars at β=2.75 and κ = 0.14925 for for SYM theory with
gauge group SU(2).
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B.8 Comparison of stochastic noise with gauge
noise

t BSpec(t) Bstoch(t)
1 -0.071877(1386) -0.070431(1955)
2 -0.006160(580) -0.006384(947)
3 0.000134(353) 0.000659(522)
4 -0.000147(277) 0.000136(318)
5 -0.000275(224) -0.000116(344)
6 0.000419(203) -0.000656(309)
7 -0.000504(184) 0.000218(230)
8 0.000029(165) -0.000005(240)
9 0.000063(139) 0.000206(161)
10 -0.000136(145) -0.000047(157)
11 -0.000060(149) 0.000335(202)
12 -0.000068(115) -0.000098(154)

Table B.5: BSpec(t) is baryon spectacle piece (40 stochastic estimators and
20 lowest eigenvalues with no smearing) with full statistics whereas Bstoch(t)
is the spectacle piece of the correlation function measured 50 times on one
configuration by keeping the source fixed in order to estimate the stochastic
noise at β=2.75 and κ = 0.14925 for gauge group SU(2). The overall noise of
the correlation function is due to stochastic noise. For convenience we have
shown only first 12 values of time slice distance and corresponding correlation
functions.
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