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Abstract

The calculation of precise predictions from a given theoretical framework is of great importance,
for extracting free parameters of a theory from observations as well as for determining the specific
limitations of a given theory in describing our Universe. Two crucial observables in modern cosmology
are the dark matter (DM) relic density Ωχh

2 and the effective number of relativistic degrees of
freedom Neff , both of which are measured within the ΛCDM model through the temperature
anisotropies in the Cosmic Microwave Background (CMB) radiation.

Given that today’s amount of dark matter is deduced with sub-percent level accuracy, it is
one of the most stringent constraints on the valid parameter space of dark matter models. To
actually profit from this experimental accuracy, theoretical predictions should be at least equally
precise. Due to its predictivity and testability in current and future experiments, one of the
currently most favored dark matter theories is that dark matter is made up of a new elementary
particle species that has been in thermal equilibrium with the Standard Model (SM) in the early
Universe, i.e., a Weakly Interacting Massive Particle (WIMP). In this setting, today’s dark matter
abundance is then mainly determined through all possible (co)annihilation channels of the dark
matter candidate into Standard Model particles. While it is known that loop corrections to the
associated annihilation cross sections can shift the predicted relic density beyond the experimental
error, such calculations are so far limited in their automation due to challenges in the treatment of
infrared divergences. Therefore, the dipole subtraction method designed to cancel infrared divergent
pieces between virtual and real corrections while allowing for a numerical integration of the real
emission contribution, is generalized in this thesis to massive initial-states. These results then
allow to more easily treat dark matter annihilation beyond leading order in non-Abelian theories.
To showcase the application of this generalized subtraction procedure and to study further the
effect of higher-order corrections on the relic density, the complete next-to-leading order (NLO)
corrections in the strong coupling αs to stop-antistop annihilation into gluons and light quarks in
the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) are calculated with the
lightest neutralino being the dark matter candidate. The analysis is supplemented by including the
non-perturbative Sommerfeld enhancement effect from the exchange of multiple gluons between the
incoming stops, finding corrections of order 10 % to the neutralino relic density. These corrections
have been implemented in the software package DM@NLO which already provides the O(αs)

corrections to many (co)annihilation channels in the MSSM besides stop-antistop annihilation. For
the public release of the entire code, it has been equipped with a user-friendly interface to allow for
a simple usage from within other dark matter software.

Another assumption usually entering the WIMP paradigm is that kinetic equilibrium with the
Standard Model is maintained until long after chemical decoupling. However, this approach is known
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to fail for forbidden dark matter models since only the high momentum tail of the dark matter
phase space distribution function contributes significantly to dark matter annihilations. Therefore,
in this thesis, the full elastic collision term is included in the momentum-dependent Boltzmann
equation as well as in a set of fluid equations that couple the evolution of the number density and
dark matter temperature for a simplified model featuring forbidden dark matter annihilations into
muon or tau leptons through a scalar mediator. The overall phenomenological outcome is that the
updated relic density calculation results in a significant reduction of the experimentally allowed
parameter space compared to the traditional approach.

While Neff is also an important probe of Beyond the Standard Model (BSM) physics, its
theoretical value in the Standard Model is still under debate. To date, there has been no systematic
and complete study of next-to-leading order corrections in the electromagnetic coupling αem to the
weak scattering processes determining neutrino decoupling. To capture both vacuum and finite-
temperature quantum electrodynamics (QED) corrections, the dominant O(αem) contribution to
the thermal neutrino interaction is computed in the Keldysh-Schwinger formalism of nonequilibrium
quantum field theory (QFT). In this context, a basic introduction to (non)equilibrium QFT
orientated towards practical calculations is provided for a better understanding. In particular, the
Kadanoff-Baym equations and the finite-temperature Feynman rules are derived. Based on entropy
conservation arguments and a solution of the Boltzmann equation in the damping approximation
coupled to the continuity equation in Friedmann–Lemaître–Robertson–Walker spacetimes, the afore
mentioned corrections are found to be within the error margin of the current theory benchmark
NSM

eff = 3.0440± 0.0002.
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Kurzfassung

Die Berechnung präziser Vorhersagen ist von großer Bedeutung, um zum einen freie Parameter
einer Theorie aus Messungen zu extrahieren und zum anderen verlässlich testen zu können, wann
eine Theorie bei der Beschreibung unseres Universums versagt. Zwei wichtige Messgrößen in der
modernen Kosmologie sind die Reliktdichte der Dunklen Materie Ωχh

2 und die effektive Anzahl
der relativistischen Freiheitsgrade Neff . Beide werden im Rahmen des ΛCDM-Modells mittels der
Temperaturanisotropien der kosmischen Mikrowellenhintergrundstrahlung bestimmt.

In Anbetracht der Tatsache, dass die Menge der Dunklen Materie heute mit einer Unsicherheit
von weniger als einem Prozent bestimmt ist, ist dies eine der strengsten Beschränkungen auf den
gültigen Parameterraum von Dunkle Materie Modellen. Um tatsächlich von dieser experimentellen
Genauigkeit zu profitieren, sollten die theoretischen Vorhersagen mindestens ebenso präzise sein.
Aufgrund ihrer Vorhersagbarkeit und Überprüfbarkeit in aktuellen und zukünftigen Experimenten
besteht eine der derzeit beliebtesten Theorien zur Dunklen Materie darin, dass Dunkle Materie
aus einer neuen Elementarteilchenspezies besteht, die sich im frühen Universum im thermischen
Gleichgewicht mit den Standardmodellteilchen befand und aufgrund ihrer Eigenschaften als „Weakly
Interacting Massive Particle“ bezeichnet wird. Unter diesen Bedingungen wird die heutige Re-
liktdichte Dunkler Materie hauptsächlich durch alle möglichen (Ko)Annihilationskanäle Dunkler
Materie in Standardmodellteilchen bestimmt. Es ist zwar bekannt, dass Schleifenkorrekturen
zu den zugehörigen Annihilationswirkungsquerschnitten die vorhergesagte Reliktdichte über die
experimentelle Unsicherheit hinaus verschieben können, doch sind solche Berechnungen aufgrund
von Problemen bei der Behandlung von infraroten Divergenzen in ihrer Automatisierung bisher
begrenzt. Daher wird die „dipole subtraction method“, welche entwickelt wurde, um infrarote
Divergenzen zwischen virtuellen und reellen Korrekturen zu kompensieren und gleichzeitig eine
numerische Integration der reellen Korrekturen zu ermöglichen, in der vorliegenden Dissertation
auf massive Anfangszustände verallgemeinert. Diese Ergebnisse ermöglichen dann eine einfachere
störungstheoretische Behandlung der Annihilation Dunkler Materie jenseits der führenden Ordnung
in nicht-Abelschen Theorien. Um die Anwendung dieses verallgemeinerten Subtraktionsverfahrens
zu demonstrieren und die Auswirkungen von Korrekturen höherer Ordnung auf die Reliktdichte
weiter zu untersuchen, werden die vollständigen Korrekturen in der starken Kopplung αs zur
Stop-Antistop Annihilation in Gluonen und leichte Quarks im minimalen supersymmetrischen
Standardmodell (MSSM) mit erhaltener R-Parität berechnet, wobei das leichteste Neutralino als
Kandidat für Dunkle Materie angenommen wird. Die Analyse wird ergänzt durch die Einbeziehung
des nicht-perturbativen Sommerfeldeffekts, der sich aus dem Austausch mehrerer Gluonen zwischen
den eingehenden skalaren Top Quarks ergibt, wobei Korrekturen in der Größenordnung von 10 %

für die Neutralino-Reliktdichte gefunden werden. Diese Korrekturen wurden in das Softwarepaket
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DM@NLO implementiert, das bereits O(αs) Korrekturen für viele (Ko)Annihilationskanäle im
MSSM neben der Stop-Antistop-Annihilation bereitstellt. Für die öffentliche Freigabe des gesamten
Codes wurde dieser mit einer benutzerfreundlichen Schnittstelle ausgestattet, um eine einfache
Nutzung von anderen Dunkle Materie Programmen aus zu ermöglichen.

Eine weitere Annahme, die üblicherweise in die Berechnung der thermalen Reliktdichte einfließt,
ist, dass das kinetische Gleichgewicht zwischen Dunkler Materie und dem Standardmodell bis lange
nach der chemischen Entkopplung aufrechterhalten wird. Es ist jedoch bekannt, dass dieser Ansatz
bei „forbidden dark matter“ Modellen versagt, da nur der Bereich der Phasenraumverteilungsfunk-
tion mit hohem Impuls signifikant zur Dunkle Materie Annihilation beiträgt. Daher wird in dieser
Dissertation der vollständige elastische Kollisionsterm in die impulsabhängige Boltzmann-Gleichung
sowie in eine Reihe von hydrodynamischen Gleichungen aufgenommen, die gleichzeitig die En-
twicklung der Teilchenzahlendichte und der Temperatur der Dunklen Materie beschreiben. Damit
wird dann ein vereinfachtes Modell mit „verbotenen“ Annihilationen in Myonen oder Tau-Leptonen
untersucht, welche durch ein weiteres skalares Teilchen vermittelt werden. Das phänomenologische
Gesamtergebnis ist, dass die aktualisierte Berechnung der Reliktdichte zu einer signifikanten Ver-
ringerung des experimentell zulässigen Parameterraums im Vergleich zum traditionellen Ansatz
führt.

Während Neff auch eine wichtige Größe für Physik jenseits des Standardmodells ist, wird
der zugehörige theoretische Wert im Standardmodell immer noch diskutiert, denn bisher gab
es keine systematische und vollständige Untersuchung der Korrekturen in der elektromagnetis-
chen Kopplung αem zu den schwachen Streuprozessen, die für den Neutrinoentkopplungsprozess
ausschlaggebend sind. Um sowohl die Vakuumkorrekturen als auch die thermalen Korrekturen
der Quantenelektrodynamik zu berücksichtigen, wird der dominante O(αem) Beitrag zur thermis-
chen Neutrino-Wechselwirkungsrate im Keldysh-Schwinger Formalismus der Nichtgleichgewichts-
Quantenfeldtheorie (QFT) berechnet. Zum besseren Verständis wird in diesem Kontext eine
grundlegende und an praktischen Rechnungen orientierte Einführung in (Nicht)Gleichgewichts-QFT
bereitgestellt. Insbesondere werden die Kadanoff-Baym Gleichungen und die Feynman-Regeln bei
endlichen Temperaturen hergleitet. Auf der Grundlage von Entropieerhaltungsargumenten und einer
Lösung der Boltzmann-Gleichung in der Dämpfungsannäherung mitsamt der Kontinuitätsgleichung
in Friedmann-Lemaître-Robertson-Walker-Raumzeiten wird festgestellt, dass die zuvor genannten
Korrekturen innerhalb der Fehlerspanne des aktuellen Theoriewerts NSM

eff = 3,0440± 0,0002 liegen.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics and Einstein’s theory of general relativity combined
with standard thermodynamics form the foundation of modern (particle) cosmology. The Standard
Model builds upon relativistic Quantum Field Theory (QFT) and is widely consistent with high
precision experiments in describing all known elementary particles and their interactions on
microscopic scales, whereas general relativity is a theory of gravity that seems to describe nature
successfully on cosmological length scales. Interestingly, both theories are based on the principle
of symmetry: general relativity is based on general covariance and the Standard Model on a
SU(3)c × SU(2)L ×U(1)Y gauge symmetry. However, to successfully describe Cosmic Microwave
Background (CMB) data, a significant amount of non-baryonic dark matter (DM) is required
besides dark energy to account for the remaining energy budget. The simplest solution to the
dark matter problem is to add a new elementary particle with a mass ranging from a few GeV to
several TeV and with couplings to the SM at the order of the weak interaction, i.e., to add a Weakly
Interacting Massive Particle (WIMP). Thermal freeze-out from the primordial Standard Model
plasma then miraculously predicts the observed relic abundance. Guided by the so far successful
principle of symmetry, it turned out that R-parity conserving supersymmetric extensions naturally
provide with the lightest neutralino the prototypical WIMP. For a long time, the term “neutralino”
was even used interchangeably with “dark matter”. However, since supersymmetry (SUSY) has
not shown up at the Large Hadron Collider (LHC) so far, the thermal (or WIMP) nature of dark
matter is heavily reconsidered and even further the paradigm that DM is a new elementary particle
is questioned. Coupled with the fact that even the simplest realistic supersymmetric models with
the Minimal Supersymmetric Standard Model (MSSM) as a prime example come with O(100)

free parameters, simplified WIMP models with only a handful of unknowns gained attention to
systematically explore the WIMP scenario. That is, the Standard Model is supplemented with
either a single bosonic or fermionic dark matter candidate that annihilates into SM particles via
some mediator that couples to both, the SM and the “dark sector”. Often times these simplified
models still correspond to a certain realization of supersymmetric extensions of the SM.

To fully benefit from the experimental precision of the DM relic abundance measurement in the
sub-percent regime to reliably distinguish between dark matter models from cosmology and draw
conclusions on the associated parameter regions, it is of great importance to reduce theoretical
uncertainties to the same precision. For this reason, the precision of relic density calculations is
improved in this thesis in two ways: First, in the context of neutralino dark matter, stop-antistop
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annihilation into gluons and light quarks is calculated at next-to-leading order (NLO) in the
strong coupling αs and the process is implemented into the public precision code DM@NLO

(“Dark Matter at Next-to-Leading Order”) which already includes the O(αs) corrections to many
important (co)annihilation processes in the MSSM. Second, in the context of a simplified dark
matter model, the relic density is computed without the usual assumption of kinetic equilibrium
between dark matter and the Standard Model. More precisely, the assumption that dark matter has
a thermal distribution until after freeze-out is lifted requiring the numerically challenging solution
of momentum-dependent Boltzmann equations.

Another important cosmological measurement and probe of Beyond the Standard Model (BSM)
physics is the effective number of relativistic degrees of freedom Neff at the time of photon
decoupling. Its value follows from the evolution of the ratio of the photon to neutrino energy densities
starting from temperatures of around 10 MeV, where the primordial plasma consisted mainly out
of (anti)electrons, photons and neutrinos and was kept in thermal equilibrium through electroweak
interactions. Under the most restrictive assumptions, Neff evaluates to three, corresponding to
the three neutrino flavors in the Standard Model. Nevertheless, to successfully find BSM physics,
Neff must be known precisely in the Standard Model. This requires the inclusion of higher-order
corrections in the electromagnetic coupling αem to the weak processes keeping neutrinos and
electrons in equilibrium. For this reason, the calculation of the dominant O(αem) corrections
to the thermal neutrino interaction rate, and hence Neff , in the closed time path formalism of
finite-temperature QFT is the second major part of this thesis.

The layout of this thesis is as follows: In Ch. 2, the dynamics of Friedmann–Lemaître–Robertson–-
Walker (FLRW) spacetimes is covered with a particular focus on thermodynamic aspects of the early
Universe and kinetic theory. In addition, the standard computation yielding NSM

eff = 3 is presented.
Chapter 3 is devoted to dark matter, briefly summarizing the experimental evidence indicating its
existence as well as theories of (particle) dark matter. Further, the calculation of the relic density of
a single dark matter species produced through freeze-out from the Standard Model bath is explained
in detail. Experimental search strategies are briefly covered as well. Next, Ch. 4 deals with the
calculation of quantum chromodynamics (QCD) corrections to important (co)annihilation processes
in the MSSM and their impact on today’s lightest neutralino abundance. The chapter starts with
a brief introduction to the MSSM, followed by a quite general introduction to the technicalities
of NLO calculations with a particular emphasis on the dipole subtraction method for massive
initial-states to allow for the cancellation of infrared divergences. Then, the NLO calculations to
stop-antistop annihilation into gluons and light quarks are presented including the Sommerfeld
enhancement effect. Finally, the user-interface to the DM@NLO code is presented with a brief
introduction to the calculation of the neutralino direct detection rate. In the subsequent Ch. 5,
the accuracy of the relic density calculation is improved by solving the corresponding Boltzmann
equations on the level of the phase space distribution function instead, but for a simplified dark
matter model and not the MSSM. Chapter 6 introduces then the basics of nonequilibrium QFT in
the closed time path formalism providing the Kadanoff-Baym equations and the Feynman rules at
finite-temperature. As examples, frequently encountered integrals are evaluated which are then
applied to the computation of the equilibrium photon self-energy at one-loop order in the real-time
formalism. Lastly, in Ch. 7, the dominant QED correction to the thermal neutrino interaction rate
are computed and their impact on NSM

eff is estimated. A final summary and an outlook are given in
Ch. 8.

2



Notation and conventions Throughout this thesis the (+,−,−,−) signature of the metric
tensor gµν is used such that a four-vector x is classified as spacelike if x2 < 0 and as timelike if
x2 > 0. The Minkowski metric as a limiting case is denoted by ηµν . The spatial components of a
four-vector pµ = (p0,p) are written in bold font. The “Feynman slash notation” /p = γµp

µ is used
as an abbreviation for the inner product between a four-vector p and the Dirac gamma matrices
γµ. Physical quantities are expressed in natural units, i.e., ~ = c = 1, eventually adding kB = 1.
Dependencies are omitted in the notation unless it enhances readability.
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Chapter 2

Thermodynamics in FLRW
Cosmology

The ΛCDM model is the prevailing cosmological framework that describes the large-scale dynamics
of the Universe and serves by now as the standard model of cosmology. It is based on the
FLRW solutions to the Einstein field equations of general relativity and is named after two of its
components—Λ, representing dark energy, and CDM (Cold Dark Matter)—besides the ordinary
(baryonic) matter. In the following, starting with the FLRW metric, the Boltzmann equations in
an expanding Universe, equilibrium thermodynamics and a brief summary of the thermal history
of the early Universe are presented. Lastly, due to its importance for Ch. 7, a naive estimate for
the effective number of cosmological neutrinos in the Standard Model of particle physics NSM

eff is
presented.

2.1 Friedmann–Lemaître–Robertson–Walker Spacetime

The foundation of modern cosmology [5, 6] is general relativity which links the geometry of space
and time, encoded in the metric tensor gµν , to the density and flux of energy and momentum
throughout the Universe, all described by the stress-energy tensor Tµν , through the Einstein field
equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.1)

where Rµν is the Ricci curvature tensor, R the scalar curvature, Λ the cosmological constant and G
the Newtonian constant of gravitation.

In agreement with observations on length scales > 100 Mpc, the cosmological principle states
that the Universe appears to be homogeneous and isotropic. Therefore, cosmological spacetimes
are to a good approximation described by the maximally-symmetric FLRW metric which, in terms
of the reduced circumference polar coordinates (t, r, θ, φ), takes the form

ds2 = gµν dxµ dxν = dt2 − a2(t)

(
dr2

1− kr2
+ r2 dΩ2

)
, (2.2)

where a(t) denotes the cosmic scale factor and dΩ2 = dθ2 + sin2 θ dφ2 the infinitesimal solid angle.
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In this convention, r is dimensionless such that the scale factor has units of length and the curvature
parameter k can only take on the three distinct values {−1, 0,+1}, corresponding to an open, flat
or closed Universe, respectively.

One important observational consequence of FLRW Universes is that two point-like observers
comoving with the cosmic fluid anywhere in the Universe move away from or towards each other
with a velocity proportional to their instantaneously measured distance L(t). The associated
proportionality factor is given by the Hubble parameter H = ȧ/a, i.e., L̇ = HL, with a dot denoting
the derivative with respect to the cosmic time. Experimentally, today’s expansion rate H0 is known
to be positive H0 > 0 leading to the striking observation that our Universe is constantly expanding.
In reference to light whose frequency is shifted to lower values when propagating over cosmological
distances, the scaling behavior of observables with a(t) is also referred to as redshift.

To understand the expansion of the Universe on a quantitative level and therefore related
phenomena like the aforementioned redshift of photons and how structures move apart, one has
to study the dynamics of the scale factor a(t) which are governed through the Einstein equations
(2.1). The stress-energy tensor that sources a FLRW spacetime must be homogeneous and isotropic
as well, i.e., it describes a perfect fluid and has the components

Tµν = (ρ+ P )uµuν + Pgµν , (2.3)

where uµ is the four-velocity, ρ the total energy density and P the total pressure, both taken in
cosmic rest frame. The resulting equations for a(t) are the Friedmann equations, given by

H2 =
Λ

3
+

ρ

3M2
Pl

− k

a2
, (2.4a)

ä

a
=

Λ

3
− 4πG

3
(ρ+ 3P ) (2.4b)

with the reduced Planck mass MPl = 1/
√

8πG. The cosmological constant in modern cosmology
is usually absorbed into the total energy density through the redefinitions ρ → ρ −M2

PlΛ and
P → P +M2

PlΛ. It is also useful to re-express the Friedman equation (2.4a) through the density
parameter Ω = ρ/ρc as

k

a2H2
= Ω− 1 , (2.5)

where the critical density is defined by ρc = 3M2
PlH

2. It is called the critical density as the sign
of k and therefore the geometry of the Universe is determined by whether ρ is larger than, equal
to, or less than ρc. In the following and throughout this thesis, the Universe is assumed to be flat
k = 0 which is favored by experimental data [7], even though a priori all three possible geometries
could be realized in nature.

Another important concept in cosmology is an equation of state which refers to a connection
between the energy density ρ and the isotropic pressure P . The simplest and most common choice
is a linear relation P = wρ with w = const being independent of time. Stress-energy conservation
∇µTµν = 0 with the covariant derivative ∇µ leads to the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 , (2.6)

which can be integrated over time to find that the energy density in terms of the equation of state

5



parameter w gets diluted like

ρ(a) = ρ(a0)

(
a

a0

)−3(1+w)

. (2.7)

In particular, this leads to the important distinction that non-relativistic fluids, known as dust or
matter (m) and defined through a negligible kinetic energy compared to their rest mass, hence
wm = 0, dilute with the three-dimensional spatial volume ρm ∝ a−3, whereas relativistic fluids,
referred to as radiation (r) and satisfying wr = 1

3 (see, e.g., Eq. (2.16c)), get diluted with the fourth
power of the scale factor ρr ∝ a−4. If the cosmological constant is absorbed into the total energy
density as described above and therefore corresponds to a constant contribution to the energy
budget of the Universe, Eq. (2.7) implies wΛ = −1, i.e., a negative pressure.

Another physical consequence of the presence of the scale factor in the FLRW metric compared
to the Minkowskian spacetime is the resulting modification of the mass-shell relation gµνpµpν = m2

of a particle with four-momentum pµ = (ω,p) and mass m. As a result, the FLRW energy for a
comoving observer in a flat geometry reads ω2 = m2 + a(t)2p2 such that it is sensible to call

pph = a(t)p (2.8)

the physical momentum to recover the (usual) Minkowskian energy-momentum relation ω2 =

m2 + p2
ph. The subscript on pph is dropped in the following.

2.2 Boltzmann Equations in an Expanding Universe

If one turns the arrow of time, the expansion of the Universe becomes a contraction. Thus, at the
earliest times that we can currently describe without a working theory of quantum gravity, i.e., at
times shortly after the Big Bang, the Universe was filled with a hot and dense plasma consisting of
fundamental particles such as quarks, leptons, and gauge bosons.

To study the evolution of different interacting particle species in the Universe, Boltzmann
equations are used [8]. These are semi-classical equations of motion describing the evolution of
phase space distribution functions f1, . . . , fn of n (interacting) particle species in a gas. In abstract
form, they are given by

L̂[fi] = Ĉ[f1, . . . , fn], i = 1, . . . , n , (2.9)

where the Liouville operator L̂ alone describes the propagation in phase space for a collisionless
system. In general relativity, it is of the form

L̂ = pµ
∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ
, (2.10)

where pµ is the conjugate momentum to the spacetime coordinate xµ, and gravitational effects
enter through the Christoffel symbols Γµαβ . For a FLRW Universe, the Liouville operator becomes

L̂ = E∂t −Hp2∂E , (2.11)

where E = |p0| is the energy and p the associated three-momentum. As a consequence of homogeneity
and isotropy, the functions fi only depend on time t and the absolute momentum |p|. The collision
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operator Ĉ on the other hand takes into account changes in the occupation number through
interactions between the gas constituents. For one particular reaction R = 1 + · · ·+ i+ · · ·+m←→
a+ b+ . . . involving the particle species i, whose evolution we want to follow, the corresponding
collision operator (or collision term) ĈR, defined through

ĈR[f1, . . . , fn] =
1

2gi

∫ m∏
j=1
j 6=i

dΠj dΠa dΠb . . . (2π)4δ(4)

(
m∑
k=1

pk − pa − pb − . . .
)

×
[
|M|2a+b+···→1+···+i+···+m fa fb · · ·

m∏
l=1

(1± fl)

− |M|21+···+i+···+m→a+b+...

m∏
l=1

fl(1± fa)(1± fb) . . .
]
, (2.12)

describes the change of fi at the momentum mode |pi|, where i carries gi internal degrees of
freedom and dΠ = d3p /[(2π)32E] is the Lorentz invariant integration measure. Energy and
momentum conservation are enforced through the four-dimensional Dirac distribution with +(−)
accounting for Bose enhancement (Pauli blocking) of the final states. In this convention, the squared
S-matrix elements—|M|2a+b+···→1+···+i+···+m in the gain term, and |M|21+···+i+···+m→a+b+... in the
loss term—are summed (not averaged) over both initial and final internal degrees of freedom and
include the appropriate symmetry factors for identical particles in the initial or final state. For
example, if there are n identical particles in either the initial or final state, the matrix element
squared includes the symmetry factor 1/n!. The total collision operator Ĉ =

∑
R ĈR is obtained by

summing over all possible reactions R involving the species i, having one reaction per occurrence of
i and treating particles and antiparticles as distinct from each other. To illustrate this counting
procedure, the process ii→ j with another species j in the final state is considered. This reaction
is included twice in the summation since i can take the first and the second spot. In contrast, the
process jj → i is only contained once since i appears only once.

2.3 Equilibrium Thermodynamics

From the Boltzmann equation in an expanding Universe one can deduce that as long as a species’
interaction rate Γ, which is in essence the averaged collision term on the right-hand side, is larger
than the Hubble rate H, this species is kept in local (in time) thermal equilibrium (LTE). This
is in particular the case for a majority of the expansion history, where gauge interactions caused
the SM plasma to remain in (or near) thermal equilibrium which avoids solving the complicated
Boltzmann equations. Observable thermodynamic quantities such as the number density n, energy
density ρ and the pressure P for a particle species with g internal degrees of freedom and mass m
can be straightforwardly obtained from the associated phase space distribution function

n(t) =
g

(2π)3

∫
d3p f(p, t), (2.13a)

ρ(t) =
g

(2π)3

∫
d3p Ef(p, t), (2.13b)

P (t) =
g

(2π)3

∫
d3p

p2

3E
f(p, t), (2.13c)
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in which E =
√

p2 +m2 is the energy. Note that it is customary in the cosmological literature,
to distinguish a particle from its antiparticle meaning that their contributions to thermodynamic
quantities are included separately. For example, (anti)electrons, neutrinos and photons have the
same number of degrees of freedom ge = gν = gγ = 2.

For a species in kinetic equilibrium characterized through the temperature T , its phase space
distribution function corresponds to the well-known Bose-Einstein or Fermi-Dirac distribution:

fB(E, T, µ) =
1

e(E−µ)/T − 1
, (2.14a)

fD(E, T, µ) =
1

e(E−µ)/T + 1
. (2.14b)

If the species is additionally in chemical equilibrium, its chemical potential µ can be related to the
chemical potential of other species with which it exchanges energy. For example, if the species
under consideration (denoted again by i) interacts with the other particle species j, k and l via
the process i+ j ←→ k + l with equal production and destruction rates, then µi + µj = µk + µl.
This has the important consequence that at sufficiently large temperatures where processes like
i+ i←→ 4i are possible, chemical equilibrium implies a vanishing chemical potential, µi = 0.

For such kinetic equilibrium situations, the integrals in Eqs. (2.13a) to (2.13c) can be solved
analytically in the relativistic (T � m,µ) and non-relativistic (m� T ) limit. For the relativistic
case, the application of the Riemann zeta function ζ(s) is helpful since for Re(s) > 1 it has the
integral representation

ζ(s) =
1

Γ(s)

∫ ∞
0

dx
xs−1

ex − 1
, (for bosons), (2.15a)

=
1

(1− 21−s)Γ(s)

∫ ∞
0

dx
xs−1

ex + 1
, (for fermions), (2.15b)

where Γ(s) denotes the gamma function. The resulting analytical expressions are exact for a
massless species with vanishing chemical potential, i.e., for m = µ = 0, and read

nr =


g ζ(3)
π2 T 3 for bosons

3
4
gζ(3)
π2 T 3 for fermions

(2.16a)

ρr =


g π2

30 T
4 for bosons

7
8
g π2

30 T
4 for fermions

(2.16b)

Pr =
1

3
ρr, (2.16c)

after inserting the special value ζ(4) = π4

90 . Importantly, quantum statistics manifests itself through
the additional factor 7/8 in the energy density for fermions compared to the bosonic case while the
factor 3/4 appears for the number density. The ρ ∝ T 4 behavior of the energy density encountered
here is reminiscent of the Stefan-Boltzmann law for the total energy radiated from a black body. In
the non-relativistic limit, bosons and fermions effectively obey a Maxwell-Boltzmann distribution

fMB(E, T, µ) = exp(−(E − µ)/T ) , (2.17)

8



so that the distinction between particles of different spins disappears. After substituting fMB into
Eq. (2.13), one obtains

nnr =
gTm2e

µ
T

(2π)2
K2(m/T ) , (2.18a)

ρnr = mnnr , (2.18b)

Pnr = T nnr � ρnr , (2.18c)

where the function Kν(z) denotes a modified Bessel function of the second kind of positive integer
degree ν. If the Maxwell-Boltzmann distribution is expanded around small momenta |p| � m,
using E = m+ |p|

2

2m +O(|p|4), one obtains a more insightful approximate expression for the number
density given by

nnr ≈ g
(
mT

2π

) 3
2

e−
m−µ
T . (2.19)

Here, the exponential ∼ exp(−m/T ) behavior is known as Boltzmann suppression and has important
implications for the abundance of non-relativistic particle species in the early Universe. Another
very fiducial quantity during the expansion of the Universe is the the entropy density s defined via

s =
S

V
=
ρ+ P

T
(2.20)

since the entropy S per comoving volume V remains conserved in LTE.

2.4 Brief Thermal History of the Universe

The following is a brief summary of our current understanding of the thermal history of the Universe.
This should turn out to be useful to locate when other events, e.g., the production of dark matter,
take place during the cosmological history. Note however that inflation and baryogenesis are
hypothesized events whose nature must still be clarified experimentally whereas the electroweak
and QCD phase transition are expected to have happened based on the Standard Model but are
lacking clear experimental evidence so far.

• Inflation: Cosmic inflation is a hypothesized period after the Big Bang including a phase
of rapid exponential expansion to cure the flatness, the horizon and the magnetic monopole
problems [9,10]. In addition, inflation successfully predicts the primordial density fluctuations
that are considered the seeds of structure formation. Inflation could be driven by a scalar field—
the inflaton—which contains the majority of the energy density until the end of inflationary
epoch where the period of reheating starts. During this phase the energy stored in the inflaton
field is converted to Standard Model particles which then thermalize due to their interactions,
thus, establishing a reheating temperature TR. Our current understanding predicts reheating
temperatures ranging from the GUT scale at 1016 GeV down to & 5 MeV [11].

• Baryogenesis: Baryogenesis is a hypothesized process responsible for creating the baryon
asymmetry in the Universe [12]. If baryons and antibaryons were equally abundant in
the primordial plasma, the Universe would entirely be filled by radiation due to efficient
annihilations at earlier times. However, the observable Universe is overwhelmingly composed
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of matter, with very little antimatter. An alternative scenario to baryogenesis is baryogenesis
through leptogenesis [13] in which an asymmetry in leptons was generated first, which then
was transferred to the observed baryon asymmetry through sphaleron processes.

• Electroweak Phase Transition: This phase transition happens in the Standard Model at
a temperature of around 160 GeV [14] and is responsible for the spontaneous breaking of the
SU(2)L × U(1)Y gauge symmetry down to U(1)em which gives masses to most elementary
particles.

• QCD Phase Transition: The strong phase transition marks the moment when previously
free quarks and gluons confine into colorless bound states like protons, neutrons or pions and
is expected to take place at a temperature of approximately ∼ 150 MeV within an “analytic
crossover” transition according to lattice simulations [15].

• Neutrino Decoupling: At temperatures T ∼ 10 MeV the primodial plasma was constituted
out of electrons, photons and three-generations of left-handed neutrinos. Since neutrinos
only interact with the Standard Model via the weak force, they decouple first from the QED
plasma at temperatures of around 1 MeV. Once decoupled, their distribution function remains
fixed with the neutrino temperature Tν evolving independently of the photon temperature T .
One proposal to directly detect this Cosmic Neutrino Background (CNB) is the PTOLEMY
experiment [16].

• Electron-Positron Annihilation: When the temperature dropped below the electron mass
me ' 511 keV, annihilation of photons into oppositely charged electrons became kinematically
suppressed. As a result, the energy residing in the electron population was transferred to
the photon sector through electron-positron annihilations, effectively increasing the photon
energy density ργ by raising the photon temperature above the neutrino temperature. The
precise ratio of the energy density contained in the neutrino sector ρν compared to ργ in
the limit T/me → 0 is contained in the effective number of neutrino species in the Standard
Model NSM

eff defined as
ρν
ργ

∣∣∣∣
T/me→0

≡ 7

8

( 4

11

)4/3

NSM
eff . (2.21)

More precisely, the limit T/me → 0 is understood to apply only to T � mi, where mi is the
largest neutrino mass. The origin of the prefactors in Eq. (2.21) becomes clear in the next
section where the value of NSM

eff is estimated from entropy conservation. More generally, Neff

is defined as the energy density residing in free-streaming, ultra-relativistic particle species
relative to the photon energy density in the post-neutrino decoupling early Universe and
therefore also allows to capture BSM physics [17].

• Big Bang Nucleosynthesis: The formation of the nuclei of light elements such as 2H,
4He, 3Li and their isotopes out of protons and neutrons roughly started three minutes after
inflation at T ∼ 0.8 MeV and is called Big Bang Nucleosynthesis (BBN). Heavier elements
on the other hand are known to have only been formed later in the processes of stellar and
supernova nucleosynthesis.

• Recombination: When the temperature dropped below the ionization energy of hydrogen,
i.e., below 13.6 eV, long after BBN, the Universe became transparent for photons. This is
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because most electrons were bound within hydrogen atoms such that photons and electrons
did no longer interact rapidly enough through Thomson scattering. These are the relic photons
that are observed today in the Cosmic Microwave Background and allow to investigate the
state of the Universe roughly 380 000 years after the end of inflation. It turns out the the CMB
has an almost perfect black body spectrum with a temperature today of T = 2.7260(13) K

and is isotropic to roughly one part in 105 [18]. These temperature fluctuations are assumed
to be due to the previously mentioned primordial density inhomogenities after inflation and
have been measured in a series of experiments by the COBE [19], WMAP [20] and Planck [7]
satellites.

• Reionization: The period of reionization marks the epoch when the first stars and galaxies
formed. The emitted ultraviolet light partially re-ionized the surrounding neutral hydrogen
gas. This process effectively ended the cosmic “dark ages” but was not efficient enough to
re-establish thermal equilibrium such that only a fraction of the CMB photons scatter off
the ionized atoms and electrons. In particular, the observation of the redshifted 21 cm line of
atomic hydrogen is a crucial probe of this epoch [21].

2.5 Standard NSM
eff = 3 from Entropy Conservation

The naive estimation of Neff in the Standard Model available in many textbooks [6, 22] relies
implicitly on the following four assumptions:

• Instantaneous decoupling approximation: The neutrino decoupling process happens
instantaneously at the decoupling temperature Td and is not spread out over a larger time
interval.

• Ultra-relativistic approximation: The electron gas is treated as massless even though
the electron mass is non-negligible at temperatures of 1 MeV where the neutrino decoupling
process is expected to take place. This is also referred to as the “neutrino-never-coupled
(NNC) approximation” since treating the e± bath as ultra-relativistic is equivalent to the
assumption that neutrinos decoupled in the infinite past Td/me →∞.

• Ideal gas approximation: All relevant particles species obey either an exact Bose-Einstein
or an exact Fermi-Dirac distribution such that together with the NNC approximation the
neutrino, photon and electron energy densities and pressures are all given by the corresponding
relativistic expressions in Eq. (2.16).

• No energy exchange approximation: The three species of left-handed neutrinos do not
exchange energy, i.e., neutrino oscillations are neglected.

In addition, it is assumed that at temperatures relevant for the decoupling process, the photons
are held in a state of thermodynamic equilibrium together with the electrons/positrons which are
collectively referred to as the “QED plasma”. The entropy conservation argument then posits that
the comoving entropy densities in two decoupled sectors are separately conserved, i.e., for the entropy
density sνα of a decoupled neutrino species να and of the QED plasma s = se + sγ +

∑
β 6=α sνβ

plus any neutrino species νβ that still may be in equilibrium with it one can write

s(a1)a3
1 = s(a2)a3

2 , (2.22a)
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sνα(a1)a3
1 = sνα(a2)a3

2 (2.22b)

for two different times characterized through the corresponding scale factors a1 and a2. After να
decouples instantaneously from the QED plasma at the time given by a1 = a+

d , the decoupled
neutrino species and the QED plasma still share the same temperature Tνα(a1) = T (a1) = Td. In
the ideal-gas approximation and the ultra-relativistic approximation (Td/me →∞) the two entropy
densities are then given by

s(a1) =
2π2

45

2× 7

8
ge + gγ +

7

8

∑
β

gν

T 3
d (a1) , (2.23a)

sνα(a1) =
7

8

2π2

45
gνT

3
d (a1) . (2.23b)

In the standard estimate, all three neutrino flavors are assumed to decouple effectively at the
same time, i.e., Tν(a1) = Tνα(a1) = Td, an assumption that may to some extent be justified by
the observed large mixing in the neutrino sector. Therefore, the scale factor a1 = a+

d is chosen to
correspond to the time immediately after the decoupling of all neutrino flavors. In contrast, a2 is
chosen at a time significantly after the era of electron-positron annihilation such that T (a2)� me

and only photons contribute to the QED entropy density while the entropy in the neutrino sector
includes all flavors, i.e.,

s(a2) =
2π2

45
gγT (a2)3 , (2.24a)

sν(a2) =
∑
α

sνα(a2) = 3× 7

8

2π2

45
gνT

3
d (a2) . (2.24b)

Comparing Eq. (2.23b) with Eq. (2.24b) via Eq. (2.22b) immediately leads to the scaling behavior
Tν(a2) = (a1/a2)Tν(a1). Equating furthermore Eq. (2.23a) and Eq. (2.24a) leads to the neutrino
temperature

Tν(a2) =

(
4

11

)1/3

T (a2) . (2.25)

Using this ratio Tν(a2)/T (a2) in the energy density (2.16b) yields NSM
eff ' 3. Including the effects

of a finite electron mass in the NSM
eff estimate requires the numerical evaluation of the entropy

of the QED plasma which is only possible by making an assumption on the neutrino decoupling
temperature. The precise calculation of the thermal neutrino interaction rate from finite-temperature
field theory and therefore the decoupling temperature is the subject of Ch. 7.
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Chapter 3

Dark Matter: Evidence, Candidates,
Production Mechanism and Searches

There is compelling evidence from astrophysical observations that there is a yet unknown matter
component called dark matter without any so far detectable interactions with light but manifests
itself through its gravitational effects on baryonic matter. Nevertheless, the nature and intrinsic
properties of DM remain unknown. Therefore, this chapter very briefly reviews evidence for
dark matter and possible but highly speculative theories of (particle) dark matter in Secs. 3.1
and 3.2. The production of dark matter from the Standard Model bath through thermal freeze-out
is discussed in depth in Sec. 3.3 due to its relevance for this thesis along with some theoretical
uncertainties entering in the predictions of the abundance of such a thermal dark matter candidate.
Lastly, experimental search strategies for WIMPS are discussed in Sec. 3.4. Comprehensive reviews
on observational evidence for dark matter, detection strategies and theories are, e.g., available in
Refs. [23–27], whereas the history of dark matter is discussed in Ref. [28].

3.1 Evidence from Galactic to Cosmological Scales

It is remarkable that within the last century, experimental evidence for dark matter has accumulated
on all possible length scales, ranging from the smallest identified galaxies to the whole observable
Universe.

One of the first hints towards the existence of an additional non-baryonic matter component was
given through the estimation of the amount of luminous matter in the Milky Way using well-known
mass to luminosity ratios [29]. The inferred mass turned out to be too little to be compatible with
the relatively large velocity of stars near the galactic plane. These were measured through their
Doppler shift and found to exceed the escape velocity of the gravitational pull of the luminous
mass, thus, pointing to an additional mass component in the Milky Way that does not emit a
sufficient amount of light or is obscured by dust. The evidence for dark matter on galactic scales
strengthened further through the measurement of the rotation curve of the Andromeda galaxy
which is the nearest major spiral galaxy to the Milky Way [30]. Based on Newtonian gravity and
under the assumption of circular orbits, the rotational velocity vrot should obey a radius and mass
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Figure 3.1: Rotation curves of seven spiral galaxies of different Hubble type, e.g., “Sa” represents
an early-type spiral galaxy and “Sbc” a late-type barred spiral galaxy. Figure taken from Ref. [31].

dependence according to

vrot(r) =

√
GM(r)

r
(3.1)

with M(r) denoting the mass enclosed in the galaxy up to the radius r. As a result, vrot should
decrease at the far exterior of the optical disk given the natural assumption that M(r) rises slower
than r in the outer region. However, spectral spectroscopy analyses showed that the observed
rotational velocities remain larger than what is expected based on the measured amount of visible
matter even for large distances from the galactic center. Since then, many more rotation curves
have been studied, further confirming the problem of missing mass [31], some of which are displayed
in Fig. 3.1.

On the scale of galaxy clusters, applications of the virial theorem, which relates the mean kinetic
energy and the averaged potential, to the Coma Cluster, a large galaxy cluster consisting of over
one thousand identified galaxies about 300 million light years away from Earth, yielded again the
insight that the luminous mass is well below the mass obtained from the measured velocities of
galaxies on the edge of the cluster [32, 33]. Besides the virial theorem, another “direct empirical
proof of the existence of dark matter” on cluster scales is the Bullet cluster, a cluster formed
after the direct collision of two large clusters of galaxies [34]. The baryonic matter component
remained in the center of the collision according to X-ray observations whereas most of the total
mass seems to be located outside of the center based on gravitational lensing, clearly showing a
spatial separation between baryonic and dark matter. This also indicates that dark matter is in
very good approximation collisionless compared to the hydrogen gas.

On cosmological scales and overall the most convincing observation sustaining not only particle
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dark matter but also the hot big bang theory is the CMB, the last radiation emitted during the
epoch of recombination when the temperature of the primordial plasma was small enough to form
hydrogen out of electrons and protons. The temperature anisotropies in the CMB spectrum are
expected to be due to small density fluctuations at the end of the inflationary epoch which allowed
dark matter to accumulate within these overdense regions. The attraction of baryonic matter
towards the gravitational well was counteracted by the electromagnetic pressure. The resulting
oscillations are what is nowadays observed as temperature fluctuations in the CMB and allow
the most precise measurements to date of the relic density of cold dark matter and the baryonic
component. The fit of the ΛCDM model to the angular CMB power spectrum from Planck data [7]
results in the densities:

ΩΛh
2 = 0.3107± 0.0082 , (3.2a)

Ωbh
2 = 0.02237± 0.00015 , (3.2b)

ΩCDMh
2 = 0.120± 0.0012 (3.2c)

for dark energy, baryonic matter and dark matter, respectively. The indicated uncertainty corre-
sponds to the 68 % confidence interval, and h ∼ 0.67 is the reduced Hubble constant and stands
for the present Hubble expansion rate H0 in units of 100 km s−1 Mpc−1. Note that the measured
DM relic density relies on the the six-parameter cosmological concordance model that besides the
three-parameters in Eq. (3.2) includes the assumption that the initial perturbations are adiabatic
and Gaussian with the power law spectrum

P(k) = As

(
k

k0

)ns−1

(3.3)

described by the spectral index ns and the amplitude As of the primordial density fluctuations
whose values are determined to be ns = 0.9649(42) and ln

(
1010As

)
= 3.044(14). The last parameter

is the optical depth τ that is related to damping of small scale fluctuations of the CMB due to
Thomson scattering. It is important to realize this dependence of the DM relic density measurement
to the underlying cosmological model as, e.g., the inclusion of five additional physical parameters
in the model like non-zero neutrino masses can even enlarge the allowed range for the dark matter
relic density by a factor of two [35].1 Relaxing the assumption of a constant comoving DM density
through the possibility that at any time dark matter can be transformed into a non-interacting form
of radiation like gravitational waves may decrease ΩCDM further by up to 10 % [36]. In contrast,
adding data from galaxy surveys like the Sloan Digital Sky Survey (SDSS) [37] or BOSS [38] on
the imprint of baryonic acoustic oscillations (BAOs) onto the local matter distribution merely
changes the central value of ΩCDM insignificantly. In addition, large N -body simulations with
the density fluctuations from the CMB as initial conditions such as The Millennium Simulation
Project [39] or The Bolshoi Simulation [40] show that cold dark matter is necessary to be consistent
with hierarchical structure formation seen in such galaxy and redshift surveys. This means that
small structures form first and build gradually up to larger ones. A predominately hot dark matter
component would instead lead to the formation of larger structures first.

1This analysis was performed using WMAP and SDSS data.
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3.2 Theories of Dark Matter

There are different approaches to the dark matter problem. One possibility originating in the desire
to explain the anomalous rotation curves is to modify Newtonian gravity, a = GM/r2, such that
at small accelerations a � a∗ ≈ H0, a test particle moves according to a2/a∗ = GM/r2. This
approach is called Modified Newtonian Dynamics (MOND) [41] and is able to explain the flat rotation
curves but has the obvious problem of being non-relativistic and violating momentum conservation.
However, MOND successfully predicts the empirical Tully-Fisher relation of astrophysics which
relates the mass of a spiral galaxy to its asymptotic rotation velocity [42]. The best known
modification of general relativity that promotes MOND to a fully relativistic theory is TeVeS [43]
standing for Tensor-Vector-Scalar gravitational field theory. However, such theories predict different
propagation speeds for gravitational and electromagnetic waves which are highly constrained
through the simultaneous observation of the gravitational waves from the neutron star merger
GW170817 and its electromagnetic counterpart [44]. In addition, alternative gravity theories are
not capable so far to correctly predict the temperature and polarization spectrum of the CMB and
the large-scale structure all at the same time [45]. This experimental incompatibility of modified
theories of gravity points towards the particle nature of dark matter to explain all observations.
Therefore, the discussion of dark matter candidates in the following focuses on particle dark matter.

3.2.1 Dark Matter in the Standard Model

The SM neutrinos are at first glance a good DM candidate due to their properties of being stable,
electrically neutral, interacting only weakly and being, according to neutrino oscillations [46,47],
endowed with a non-vanishing mass. However, they 1) are too light to be consistent with structure
formation and 2) being fermions they violate the Tremaine-Gunn bound [48] which is a lower bound
on the DM mass based on the Pauli exclusion principle. Alternatively, one can also search for
baryonic dark matter. One option are Massive Astrophysical Compact Halo Objects (MACHOs) [49]
that emit very little or no light. Examples are brown dwarfs, neutron stars or black holes. However,
these types of objects are clearly disfavored since in our current understanding star formation
happened after BBN rendering MACHOs incompatible with CMB data. If on the other hand
such astrophysical objects consisting of baryonic matter have been formed before BBN, the CMB
constraints do not apply, as their energy density gets then subtracted from the baryonic budget.
This is the case for primordial black holes (PBH) whose formation requires large primordial density
fluctuations at small scales [50]. Therefore, PBHs belong in principle into the next section due to
the dependence of their formation on the non-SM inflationary scenario. Another possibility falling
also into the category of baryonic dark matter is that DM is a “sexaquark” (or “hexaquark”), a
hypothetical spin-0 bound state S made up of two up quarks, two down quarks and two strange
quarks S ∼ uuddss [51, 52]. Such a bound state is interesting because it is expected to have
an unusually large binding energy indicating its stability. However, this state is so far lacking
experimental evidence and its binding energy still needs be computed from lattice QCD. Besides,
there is the question whether its coupling to other baryons like neutrons and protons is actually
small enough to not cause an overabundance of S. Since the Standard Model seems to fail to
provide a good dark matter candidate, some beyond the SM candidates for DM are discussed next.
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3.2.2 Beyond the Standard Model Candidates

For a long time the most appealing particle dark matter candidate have been WIMPs, as they are
consistent with structure formation due to their non-relativistic velocity and naturally lead via
chemical freeze-out from the primordial Standard Model plasma to the observed relic density. This
development to the most promising candidate was in particular driven by theories like supersymmetry
and universal extra dimensions (UED) which were originally thought of and investigated as solutions
to the hierarchy and other fine-tuning problems but then naturally gave rise to a suitable dark
matter candidate at the electroweak scale in form of the lightest neutralino for supersymmetric
theories [53] and the lightest Kaluza-Klein state for UED [54]. The simplest extension of the
Standard Model that incorporates supersymmetry as a global symmetry is the R-parity conserving
Minimal Supersymmetric Standard Model (MSSM) [55] which will be discussed in more depth in
Ch. 4. If supersymmetry is promoted to a local symmetry instead, a theory of gravity—called
supergravity [56]—naturally appears on top containing the gravitino, the partner particle of
the graviton, as another dark matter candidate. Despite its theoretical elegance and potential
solutions to outstanding problems in particle physics, supersymmetry has not yet been observed
experimentally. Collider experiments, such as those conducted at the LHC, have placed stringent
constraints on the masses of superpartners, pushing them to higher energy scales [57]. The absence
of direct evidence for SUSY has led to various extensions of the MSSM, such as the Next-to-Minimal
Supersymmetric Standard Model (NMSSM), which adds additional one singlet chiral superfield
to the MSSM, namely the singlino in the neutralino sector. Note that the singlino is not only
added to have another dark matter candidate but also to generate the µ term dynamically, thus
curing the µ-problem of the MSSM as another naturalness issue [58]. On the complete opposite
site of supersymmetric extensions in terms of free parameters is the idea of “minimal dark matter”
where the DM is the lightest neutral component of an electroweak n-plet that is added to the SM
and the only free parameter of the model is the DM mass which is entirely fixed through the relic
density [59].

In opposition to WIMPs, dark matter candidates that have never been in equilibrium with the
SM are called feebly interacting massive particles (FIMPs). Their relic density can be explained via
the so-called freeze-in mechanism [60] where the DM is assumed to have a negligible abundance after
reheating and is subsequently produced through annihilation or decay processes of SM particles. A
natural realization of the freeze-in mechanism occurs, e.g., if a kinetically mixed dark photon [61]
couples to a Dirac fermion that serves as dark matter [62]. Another simple FIMP model is a singlet
scalar as dark matter that only interacts with the SM via the Higgs field [63].

Two other candidates that naturally emerge from theories that were initially proposed to solve
other open questions of the Standard Model are axions and sterile neutrinos. Axions appear as
the pseudo-Nambu-Goldstone bosons of the spontaneously broken Peccei–Quinn symmetry [64] to
solve the strong CP -problem but can also constitute dark matter via the misalignment mechanism
if they are sufficiently light and long-lived [65]. The need to solve the CP -problem imposes a
certain relationship between the axion mass and its coupling to photons. If this requirement is lifted
and both are independent parameters, one talks about axion-like particles (ALPs) [66]. Sterile
neutrinos on the other hand are used to explain the observed non-zero neutrino masses but can at
the same time make up the dark matter via the Dodelson-Widrow mechanism [67], the Shi–Fuller
mechanism [68] or via radiative neutrino mass generation [69,70].
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Another angle that could provide insights into the nature of dark matter is the Higgs sector
as there is no definitive guiding principle for its construction, although the Higgs sector has been
validated as the source of electroweak symmetry breaking. Therefore, BSM theories commonly
propose an expanded scalar sector with the MSSM as a prime example. Another possibility is, for
example, the Inert Doublet Model [71,72] that introduces a second SU(2)L Higgs doublet and an
unbroken Z2 symmetry to stabilize the new fields.

However, given the null results of dark matter searches so far and the plethora of dark matter
candidates, the research focus of WIMP DM has shifted more towards simplified dark matter
models which remain agnostic about their ultraviolet (UV) completion but allow to systematically
study different dark matter types, i.e., scalar, fermionic or vector dark matter and different kinds of
mediators responsible for the interaction with the Standard Model, see, e.g., Refs. [73, 74] for a test
of simplified WIMP models against existing and future experimental limits. One simplified model
where the DM candidate annihilates only into SM leptons via a scalar mediator is studied in Ch. 5.

Lastly, even in the “nightmare scenario” that dark matter has only gravitational interactions,
the observed relic density can be explained through graviton mediated annihilations of Standard
Model particles into dark matter, given that the DM mass is between a few TeV and 1016 GeV and
assuming a negligible DM abundance after reheating [75].

3.3 The Relic Abundance of a Single Thermal Dark Matter

Species

The standard starting point for the calculation of the DM relic density through production from
the primordial plasma of SM particles is the semi-classical Boltzmann equation (2.2) which for a
single DM species χ in a FLRW background reads

E

(
∂fχ
∂t
−H|p| ∂fχ

∂|p|

)
= Ĉ[fχ] (3.4)

with the energy E =
√

p2 +m2
χ of the dark matter particle. Equation (3.4) describes the evolution

of the DM phase space distribution function fχ(p, t) in time t. The collision operator Ĉ[fχ] has
already been defined in general in Eq. (2.12) and takes into account the loss and gain of DM
particles at the momentum mode |p| through interactions with the Standard Model plasma.

The momentum derivative responsible for modeling the cosmological redshift can be absorbed
into the phase space density by rewriting the Boltzmann equation in terms of a dimensionless
comoving momentum q ∼ ap which correspond to the physical momentum defined in Eq. (2.8).
This turns the partial differential equation into an infinite set of coupled ordinary differential
equations

dfχ(q, t)

dt
= Ĉ[fχ] , (3.5)

where one has to make the identification fχ(p, t) = fχ(q, t). Thus, one gets one equation for every
comoving momentum mode. Since the equilibrium distribution functions in Eq. (2.14) depend
implicitly on time through the temperature, it is instructive to express the evolution of fχ(q, t) not
in terms of time but through the photon temperature T or alternatively through the dimensionless
quantity x = m0/T , where m0 is in general some reference scale which is usually identified with
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the DM mass mχ. This change of variable from t to T is achieved by using the scale factor as a
time variable in the intermediate step dfχ

da = 1
Ha Ĉ[fχ] and replacing the derivative with respect to

a(t) afterwards by assuming entropy conservation d
dx

(
sa3
)

= 0 giving

E
dfχ
dx

= − ds

dx

1

3sH
Ĉ[fχ] . (3.6)

During radiation domination, i.e., for T & 100 eV, the entropy density s = heff(T ) 2π2

45 T
3 and the

energy density ρ = geff(T )π
2

30T
4 can be safely expressed in terms of the SM effective number of

relativistic degrees of freedom, heff(T ) and geff(T ), for which one can use, e.g., the tabulated values
from the lattice QCD calculation [76]. Applying the Friedmann equation (2.4a) for a flat Universe
H2 = ρ/(3M2

Pl) gives the final equation

E
dfχ(q, x)

dx
=

√
90

π2

g̃(T )

g
1/2
eff (T )

xMPl

m2
0

Ĉ[fχ] , (3.7)

where the function g̃(T ) containing the temperature derivative of the entropy degrees of freedom
reads

g̃(T ) = 1 +
1

3

d lnheff(T )

d lnT
. (3.8)

Lastly, it is necessary to pick a convention for the proportionality factor relating the comoving
momentum q to the momentum p. Since it is only possible to consider the ratio of the scale factor
relative to its value at some other reference temperature T ′, a suitable definition of the comoving
momentum is

q = [heff(T ′)]
−1/3 p

T ′
a(T )

a(T ′)
= [heff(T )]

−1/3 p

T
. (3.9)

3.3.1 The Collision Terms

To simplify the evaluation of the collision term, one generally assumes CP invariance as well as
that two-body processes a b↔ 1 2 dominate dark matter production [77]. In this particular case of
a two-particle reaction R, the collision term (2.12) reduces to

ĈR[fa] =
1

2ga

∫
dΠb dΠ1 dΠ2 |Mab→12|2(2π)4δ(4)(pa + pb − p1 − p2)P(fa, fb, f1, f2) (3.10)

with particle a carrying ga internal degrees of freedom. It should be highlighted again that in this
convention |Mab→12|2 = |M12→ab|2 always represents the squared matrix element summed (not
averaged) over both initial and final internal degrees of freedom like spin or color and includes
a symmetry factor 1/2 for identical particles in either the initial or final state. The phase space
densities are contained in the population factor

P(fa, fb, f1, f2) = f1f2(1± fa)(1± fb)− fafb(1± f1)(1± f2) , (3.11)

with +(−) accounting for Bose enhancement (Pauli blocking) of the final states. According to the
number of appearances of the unknown DM distribution function fχ in the loss and gain terms,
the collision term can be split further into a number changing contribution, Ĉann, from DM-DM
annihilation processes into SM final states, a number conserving part, Ĉel, from elastic scattering
processes of DM with SM particles responsible for maintaining kinetic equilibrium and a collision
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term Ĉself describing self-scattering processes. In the next step, the relevant individual 2 → 2

contributions to Ĉ are worked out in more detail.
For non-relativistic DM, the Bose enhancement and Pauli blocking factors can be safely neglected,

thus implying that in Ĉann, SM particles are, due to energy conservation, in very good approximation
described by a Boltzmann distribution and that consequently the statistical factors accompanying
the SM densities can be dropped as well. These simplifications allow to express the annihilation
collision term as

Ĉann[fχ] =
gχE

2π2

∫ ∞
0

d|p̃| |p̃|2〈vMølσann〉θ
[
fMB(E)fMB(Ẽ)− fχ(E)fχ(Ẽ)

]
(3.12)

with Ẽ =
√

p̃2 +m2
χ and the azimuthally averaged annihilation cross section

〈vMølσann〉θ =
1

2

∫ 1

−1

dcos θ vMølσann . (3.13)

Here, the Møller velocity is vMøl =
√
s(s− 4m2

χ)/(2EẼ), with θ denoting the angle between the
incoming momenta pa and pb. In contrast to the annihilation term, the elastic collision term

Ĉel[fχ] =
1

2gχ

∫
dΠb dΠ1 dΠ2 |Mχj→χj |2(2π)4δ(4)(pa + pb − p1 − p2)

×
[
fχ(p1)f

(j)
± (p2)(1∓ f (j)

± (pb))− fχ(pa)f
(j)
± (pb)(1∓ f (j)

± (p2)
]

(3.14)

contains the unknown DM distribution function fχ along with the equilibrium density f (j)
± of a SM

particle j in both the loss and gain terms, significantly increasing the evaluation complexity of Ĉel

since there remain in general four integrals after imposing four-momentum conservation and using
the rotational symmetry around the axis defined by the incoming momentum.

For this reason, the DM code DRAKE implements by default the scattering term through the
Fokker-Planck type operator [78]

ĈFP[fχ] =
E

2
γ(T )

[
TE∂2

|p| +

(
|p|+ 2T

E

|p| + T
|p|
E

)
∂|p| + 3

]
fχ (3.15)

in contrast to the full expression for Ĉel. This approximation is valid under the assumption of
non-relativistic DM and if the momentum transfer is small compared to the DM mass. The elastic
scattering matrix element enters through the momentum exchange rate

γ(T ) =
1

48π3gχm3
χT

∑
j

∫ ∞
mj

dω f±(ω)[1∓ f±(ω)]
(
|k|4〈|Mχj→χj |2〉t

)
(3.16)

and is an integral over the energy ω =
√

k2 +m2
j of the bath particle j. The averaged matrix

element entering in Eq. (3.16) is given by

〈|Mχj→χj |2〉t =
1

8|k|4
∫ 0

−4k2cm

dt (−t)|Mχj→χj |2, (3.17)
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where the lower integration limit is defined through the center-of-mass (c.m) momentum

k2
cm =

(
s− (mχ −mj)

2
)

(s− (mχ +mj)
2)/4s (3.18)

evaluated at s = m2
χ + 2ωmχ +m2

j . These are in principle the equations one has to solve but there
are further assumptions that significantly simplify the evaluation. These are explained in the next
sections.

3.3.2 The Standard Number Density Treatment

The standard procedure [79–81] of calculating the freeze-out abundance of a single relic particle is
to reformulate the Boltzmann equation (3.4) as an equation for the dark matter number density
nχ. This achieved by integrating Eq. (3.4) over gχ d3p /(2π)3 such that only number-changing
annihilation processes survive

ṅχ + 3Hnχ = gχ

∫
d3p

(2π)3
Ĉann[fχ] . (3.19)

In order to evaluate the right hand side, the usual assumption is that the dark matter phase space
density obeys a Maxwell-Boltzmann distribution function (2.17) with a temperature equal to the
photon temperature, i.e., one makes the ansatz

fχ(E) =
nχ
n̄nr
χ

fMB(E, T, µ = 0) , (3.20)

where the bar on nχ sets µ = 0 in Eq. (2.18a). This ansatz is motivated by the fact that scattering
processes between DM and SM particles happen at a rate much faster than DM annihilation
processes since the relativistic SM number densities are not Boltzmann suppressed like nχ. Under
these assumptions, five out of the six integrals in Eq. (3.19) can be performed analytically, meaning
that the evolution of the DM number density is described through the single Boltzmann equation

ṅχ + 3Hnχ = 〈σannv〉T
(

(n̄nr
χ )2 − n2

χ

)
, (3.21)

which is effectively an evolution equation for the chemical potential µχ = T ln
(
nχ/n̄

nr
χ

)
. The

thermally averaged DM annihilation cross section into SM particles 〈σannv〉T can be simply stated
in terms of a single integral over the collision energy

〈σannv〉T =
1

8m4
χTK

2
2 (mχ/T )

∫ ∞
4m2

χ

ds σχχ→SM(s)
√
s(s− 4m2

χ)K1(
√
s/T ) . (3.22)

Today’s DM relic density is then determined from the DM number density nχ(T∞) long after
freeze-out through

Ωχh
2 = κ

nχ(T∞)mχ

ρc/h2

heff(T0)

heff(T∞)

(
T0

T∞

)3

, (3.23)

with κ = 1(2) if χ is self-conjugate (non-self-conjugate), today’s photon temperature T0 and the
photon temperature T∞ long after freeze-out. More precisely, T∞ > T0 just denotes the end of the
numerical integration routine.
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3.3.3 The Fluid Dynamics Approach

The main assumption that enters in the standard number density treatment described above is
that kinetic equilibrium is maintained until the end of chemical freeze-out, i.e., until DM number
changing processes are no longer active. If this assumption is not met or one wants to test whether
elastic scattering processes between the dark sector and the SM are efficient enough to keep both
sectors in kinetic equilibrium, it is in principle necessary to solve the full Boltzmann equation (3.4)
on the level of the phase space distribution function. However, as first pointed out in Ref. [82] an
alternative to the computationally expensive momentum-dependent Boltzmann equation is to take
a hydrodynamic approach and consider next to the zeroth momentum, which is nothing but the
number density nχ, additionally the second moment of Eq. (3.4) defined as

Tχ =
〈 |p|2

3E

〉
=
gχ
nχ

∫
d3p

(2π3)

|p|2
3E

fχ(E). (3.24)

This quantity can be thought of as a definition for the DM “temperature” Tχ. However, in order to
close the Boltzmann hierarchy, this approach requires further assumptions on the DM phase space
distribution function. The simplest approach it to assume that DM still has a Maxwellian shape
fχ ∼ e−E/Tχ but with the photon temperature replaced with Tχ which also has the advantage that
Eq. (3.24) becomes an identity. This leads to two coupled differential equations, one for nχ and one
for Tχ. These are

1

Yχ

dYχ
dx

=
sYχ

xH̃

[
(Y eq
χ )2

Y 2
χ

〈σannv〉T − 〈σannv〉Tχ

]
, (3.25a)

1

y

dy

dx
=
〈Ĉel〉2
xH̃

+
sYχ

xH̃

[
〈σannv〉Tχ − 〈σannv〉2,Tχ

]
+
sYχ

xH̃

(Y eq
χ )2

Y 2
χ

[
yeq

y
〈σannv〉2,T − 〈σannv〉T

]
+
g̃

x

〈p4/E3〉Tχ
3Tχ

, (3.25b)

where the number density is expressed through the yield Yχ = nχ/s and the temperature through
the dimensionless version y = Tχmχs

−2/3 of the second momentum moment with yeq = mχTs
−2/3

and H̃ = H/g̃. The temperature subscript on the (thermal) averages indicates whether the SM
or DM distribution is used to perform the average while a ‘2’ as subscript refers to the additional
appearance of |p|2/3E in the averaging process. A more detailed discussion of the cBE approach as
well as the precise definition of 〈σannv〉2 and 〈|p|4/E3〉Tχ is available in Refs. [83, 84]. Note that
the elastic collision term does not drop out in the second moment in contrast to the zeroth moment
but enters through the average

〈Ĉel〉2 =
gχ
nχTχ

∫
d3p

(2π)3

|p|2
3E

Ĉel (3.26)

which simplifies to 〈Ĉel〉2 → γ(T )(yeq/y − 1) for the Fokker-Planck approximation in Eq. (3.15), if
the additional relativistic 〈p4/E3〉Tχ correction in ĈFP is neglected.
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3.3.4 Uncertainties in the Estimation of the Freeze-Out Abundance

The calculation of the freeze-out abundance as presented in the previous sections and in particular
the number density equation (3.21) come with different kinds of theoretical uncertainties or “missing
pieces” that one should be aware of. These are briefly collected in the following:

• Uncertainties of the SM effective number of degrees of freedom geff and heff enter the
estimation of the relic density through the Hubble rate. These uncertainties are relatively large
in the region of the electroweak and the QCD crossover transition as these have to treated
non-perturbatively using lattice methods. Building up on the previous calculations [76,85–88]
of the SM equation of state (EoS), the authors of Ref. [89] compared different EoS estimates,
finding that the EoS error induces an uncertainty of the dark matter abundance of almost
10 % for DM masses in the 1 to 1000 GeV region.

• Additionally, the Hubble rate in the pre-BBN era is in principle unknown since there
could, e.g., be additional relativistic states that increase the expansion rate but are currently
undetectable. To quantify the sensitivity of the DM abundance to a modified expansion rate,
a temperature-dependent dark energy density of the form

ρD(T ) = ρD(T0)

(
T

T0

)nD
(3.27)

was added as a new contribution to the Hubble rate in Ref. [90]. Depending on whether this
energy density is supposed to mimic matter, radiation or a quintessence field, nD takes one of
the three values {3, 4, 6}. For two different exemplary SUSY models, it was found that even a
small change in the expansion rate that otherwise leaves BBN in tact can increase the DM
abundance by a factor of up to 106. Therefore, it is suggested to only use the measured relic
density as an upper bound as it is already done in multi-component dark matter models. One
possible way to probe the Hubble rate in the pre-BBN era and to remove this “uncertainty” is
through gravitational waves from cosmic strings [91].

• Multi-body final states with more than two particles are usually neglected as these are
in principle of higher-order and propagator suppressed. However, final states with a real
and a virtual massive particle that subsequently decays like WW ∗ → Wff̄ or tt̄∗ → tWb

can become important at threshold. In the context of the MSSM, Ref. [92] found that the
inclusion of such three-body final states can decrease the neutralino relic density by up to
10 %. Moreover, the addition of a third final-state particle can lift the helicity suppression of
the anihilation of two Majorana dark matter particles into two SM fermions and therefore
increase the annihilation rate by orders of magnitude [93].

• Into the same category fall higher-order corrections to the averaged annihilation cross
section that also include a third massless gauge boson in the final state within the real
emission contribution. The effect on the neutralino relic density of such corrections in the
strong coupling will be discussed in more detail in Ch. 4 and lies generally also in the 10 %

region. Bound-state formation can alter the relic density significantly as well [94, 95].

• Moreover, already the usage of the number density Boltzmann equation (3.21) at NLO is
problematic for two reasons. First, the additional Bose distribution function entering in the
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collision term for the real emission contribution is simply ignored since energy conservation
for 2 → 3 processes no longer strictly enforces Maxwellian distribution functions. The
same holds true for the Bose enhancement and Fermi blocking factors. Secondly, additional
finite-temperature effects from the interaction of internal and external particles with
the surrounding plasma are not accounted for as the collision term is derived from S-matrix
elements. The second issue can be addressed by starting systematically from the framework
of non-equilibrium QFT which will be introduced in Ch. 6 and such finite-temperature
corrections will be computed explictly for neutrino scattering in the subsequent Ch. 7.
However, Refs. [96–98] found that such finite-temperature corrections are for freeze-out
additionally suppressed by several powers of T/mχ compared to the vacuum corrections. To
interpret this statement correctly, recall that freeze-out usually happens at temperatures
T ∼ mχ/25.

• The early kinetic decoupling (eKD) effect [83,99] describes the failure of the assumption
of kinetic equilibrium leading to the number density Boltzmann equation (3.21) and can lead
to an increase of the final DM relic density by more than an order of magnitude. The eKD
effect for a forbidden DM model will be discussed in detail in Ch. 5.

3.4 Experimental Dark Matter Searches

Numerous experiments are carried out today to specifically search for (WIMP) dark matter. These
searches can be generally classified into the three detection strategies: indirect and direct detection
as well as production in accelerators. These will be briefly outlined in the following.

3.4.1 Indirect Detection

The detection of signatures from dark matter annihilation or decay into SM particles from distant
locations is the central idea behind indirect searches. This means that earth- and satellite-based
experiments look for fluxes of stable SM particles like photons, neutrinos, e±, (anti)protons and
(anti)deuterons that are either directly from the primary annihilation channel or result from the
processes of decay, showering and hadronization of all intermediate unstable particles which is,
e.g., the case for a quark-antiquark pair or weak gauge bosons in the final state. Even though a
monochromatic γ-ray spectrum from the primary process DM DM→ γ γ, i.e., a γ-ray line, would
be a “smoking gun” signal for dark matter, annihilations into photons are typically subdominant.
Therefore, indirect searches most of the time focus on secondary particles with continuous energy
spectra. Typical target regions of indirect detection experiments are those with a local dark matter
overdensity as a result of gravitational accumulation or those with low astrophysical backgrounds
compared to the expected signal. Example targets are the galactic center (GC), dwarf spheroidal
galaxies (dSph), that are expected to be particularly rich in dark matter, celestial bodies like our
sun or the center of the earth, or even the entire Universe by measuring a cosmological flux of γ-rays
or neutrinos. An alternative to looking for signals from present-day dark matter annihilation or
decay is to look at the imprint onto the CMB and BBN that dark matter annihilations would have.

Due to the non-observation of a conclusive positive dark matter signal, results of indirect
searches are usually presented as limits on the thermally averaged annihilation cross section (or
decay rate) into a particular SM final state, however, usually under the important assumptions of
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Figure 3.2: Summary of the latest most stringent limits on WIMP annihilations into µ+µ− (green),
bb̄ (red) or W+W− (blue), from different searches. Some limits are rescaled with respect to
the original publications to match a NFW profile. Also plotted is the thermal cross section
〈σv〉 ≈ 2.2× 10−26 cm3/s that reproduces roughly the correct relic abundance. Figure taken from
Ref. [27].

an s-wave dominated and therefore constant annihilation cross section and that DM annihilates
100 % of the time into the respective channel. Figure 3.2 summarizes the current most stringent
bounds on weak-scale DM annihilations into µ+µ−, bb̄ and W+W− from different observatories
and search strategies. In more detail, the limits come form the ground-based γ-ray telescopes
H.E.S.S. [100], VERITAS [101] and MAGIC [102] that are collectively referred to as imaging
atmospheric Cherenkov telescopes (IACTs) in the plot and that work with mirror telescopes to
directly detect the Cherenkov light that is produced when an energetic cosmic ray enters the
atmosphere. The future CTA experiment, for example, also belongs into this category and aims
to improve existing limits by an order of magnitude [103]. These limits are supplemented by
observations with the satellite-based gamma-ray telescope Fermi-LAT [104] and the HAWC [105]
experiment which in contrast to the IACTs works with water tanks and photomultiplier tubes to
detect the Cherenkov radiation. The combined limit in Fig. 3.2 was published in Ref. [106]. For
completeness, one should mention that the IACTs perform of course line searches from dark matter
annihilation as well, see, e.g., Refs. [107,108]. Limits from charged cosmic rays are also obtained
with the AMS-02 [109] experiment which is mounted to the International Space Station (ISS). Here,
in particular antiprotons and antideuterons are excellent probes of dark matter as the observable
Universe consists of only very little antimatter compared to matter. Lastly, the current best
constrains from the neutrino observatories IceCube [110] at the south pole, Super-Kamiokande [111]
in the Kamioka mine in Japan and ANTARES [112] in the Mediterranean Sea are shown as well.
These limits are comparably by one to two orders of magnitude weaker due to the elusive nature of
the neutrino. However, neutrinos have therefore the advantage that the origin of the signal can
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15 27. Dark Matter

Backgrounds, including neutrinos: Early direct detection experiments employing low-
background Ge spectrometers featured background levels around 2 events/(kg d keV), while the
latest generation of liquid Xe experiments reduced this noise by almost five orders of magnitude, to
4◊10≠5 events/(kg d keV). In liquid xenon detectors, the measured ER spectra at low energies are
for the first time dominated by solar pp neutrino interactions, second-order weak decays, as well as
214Pb —-decays from radon mixed with the xenon. Other backgrounds are due to the radioactivity
of detector components, followed by cosmic muons and their secondaries such as fast neutrons. The
cosmic and environmental radiation are suppressed by going deep underground and surrounding the
experiments with appropriate shielding structures (mainly large water Cherenkov detectors for the
current and next-generation detectors). Activation of materials via cosmic-ray interactions produce
long-lived radio-nuclides (e.g., 39Ar, 60Co, 68Ge, 32Si, etc), while long-lived, human-made isotopes
(85Kr, 137Cs, etc) can mix with detector materials or generate surface backgrounds. For details, we
refer to Section 36.6 of this Review.

Figure 27.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.

The final backgrounds are due to the irreducible neutrino flux from the Sun, the atmosphere and
the di�use supernovae background [150]. Solar pp-neutrinos start dominating the electronic recoil
background due to elastic neutrino-electron scatters, at a level of ≥ (10 ≠ 25) events/(t y) below
energies of ≥100 keV, while coherent elastic neutrino-nucleus scatters (CE‹NS) from 8B solar neu-
trinos will induce up to ≥ 103 events/(t y) for high-A targets, at nuclear recoil energies below ≥few
keV. Nuclear recoils from atmospheric neutrinos and the di�use supernovae neutrino background
will yield event rates in the range (1 ≠ 5) events/(100 t y), depending on the detector material. In
general, 8B and atmospheric neutrinos will impact light (Æ 6 GeV) and heavy (100 GeV and above)
DM searches for cross sections on nucleons below ≥ 10≠45 cm2 and ≥ 10≠49 cm2, respectively. The
precise cross-sections where neutrinos constitute a dominant background strongly depend on the
systematic uncertainties on the neutrino flux normalisation for each source [151]. For very low
energy thresholds to nuclear recoils, e.g. 10-30 eV in Ge and Si detectors, CE‹NS due to the 7Be
neutrino flux become relevant for exposures of ≥50 kg y [152]. For DM searches with electron re-

31st May, 2024

Figure 3.3: Current upper limits on the spin-independent DM-nucleon cross section as a function of
the dark matter mass from different direct detection experiments. Figure taken from Ref. [116].

be easily reconstructed while charged cosmic rays are deflected in intergalactic magnetic fields.
Planned successor experiments are KM3NeT [113] for ANTARES, Hyper-Kamiokande [114] for
Super-Kamiokande and PINGU [115] for IceCube.

3.4.2 Direct Detection

The basic idea of direct detection is to search for electron or nuclear recoil events in terrestrial
detectors from the (in)elastic scattering of dark matter with atoms in a at best background free
target material, of course under the assumption of a non-negligible local dark matter density which
is usually taken to be ρ0 = 0.3 GeV/cm3 [118]. Typical target materials are on the one hand nobel
gases like xenon or argon and on the other hand semiconductors like germanium or silicon. In most
direct detection experiments, information about the recoil and the energy deposited in the detector
is obtained via two of the following three remnants of the recoil which are scintillation light, phonons
(heat) or electrons from the ionization of the detector material. As these different probes of dark
matter scattering inside the detector are sensitive in different energy regions and to distinguish best
between background and an actual signal, two signal channels are usually employed while using all
three has been technically challenging so far. An exception is, e.g., the PICO experiment which
makes use of a bubble chamber filled with halocarbons.

Due to the lack of a discovery so far, direct detection experiments usually present their results as
limits on the spin-independent (SI) and spin-dependent (SD) dark matter nucleon scattering cross
section. As an example, the latest results on the SI cross section from the xenon based experiments
PandaX-4T [119], XENON1T [120], XENONnT [121], LUX-ZEPLIN (LZ) [122] and the argon
based experiments DarkSide-50 [123] and DEAP-3600 [124] are displayed in Fig. 3.3. Additionally
shown are the limits from the detectors SuperCDMS [125], CDMSlite [126], DAMIC [127] and
CRESST [128] that use semiconductors as targets. Also displayed is the “neutrino floor” which
is the parameter region where direct detection experiments become sensitive to coherent elastic
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Figure 3.4: As in Fig. 3.3, but for the spin-dependent cross section on neutrons (top) and on protons
(bottom). Also shown are the indirect detection limits from IceCube [117] as black dashed lines
along with the DM annihilation channels that produce the neutrinos in the Sun. Figures taken
from Ref. [27].
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neutrino-nucleus scattering (CEνNS). This means that neutrinos with an astrophysical origin
like those from the fusion processes inside the sun become an irreducible background in direct
dark matter searches. This is also the sensitivity that future direct detection experiments like
DARWIN [129] want to achieve. One possibility to circumvent this so-called “neutrino fog” is to try
to gather additionally information on the direction of the dark matter flux. One proposal for such
a directional dark matter detector is the CYGNUS-1000 [130] experiment.

The current best limits on the spin-dependent direct detection cross section for scattering
on protons and neutrons are shown in Fig. 3.4. These come from the experiments LZ [122],
Xenon1T [131], CRESST [132, 133], EDELWEISS [134], CRESST-III [128], CDEX10 [135, 136],
CDMS [137], SuperCDMS-Lite [138], NAIAD [139], COSINE-100 [140] and PICO-60 [141]. Interest-
ingly, the most stringent limit on the SD cross section still comes from indirect detection, namely
from the non-observation of neutrinos produced within dark matter annihilation processes in the
sun with the IceCube detector [117].

In addition, one can search for an annual modulation of the recoil signal caused by the change of
the earth’s relative velocity with respect to the galactic dark matter halo due to its orbit around the
sun. The DAMA/LIBRA [142] collaboration claims to have observed such an annual modulation.
However, the dark matter interpretation of the observed signal is not compatible with other dark
matter search experiments like COSINE-100 as the region in the σSI versus WIMP mass plane that
can accommodate such a signal has already been excluded [143].

3.4.3 Accelerator Searches

The production of dark matter at collider and fixed-target experiments represents the third possible
method to search for DM and examine its properties. Compared to direct and indirect detection,
accelerator searches have the main advantage of being free from astrophysical uncertainties like the
(local) DM number density but are on the downside most of the time severely model-dependent. One
important exception is the model-independent limit from LEP on long-lived scalars and fermions
carrying an electric charge |Q/e| = 1 whose masses are constrained to be heavier than 100 GeV [144].
This limit applies indirectly do dark matter through, e.g., the coannihilation partner of the DM
particle. One possibility to still keep collider analyses as model independent as possible is to work
on the level of effective field theories or simplified models that include the “mediator” as additional
degree of freedom of the theory [145].

There are now generally multiple search strategies in accelerator settings but the most common
ones feature missing energy, resonances in the invariant mass spectrum, displaced vertices or involve
the Higgs sector. All of these signatures are, e.g., an integral part of the dark matter searches
conducted with the general-purpose detectors ATLAS [146] and CMS [147] at the LHC.

• Mono-X searches in colliders look for large missing transverse energy �ET (MET) along
with a SM particle X from either the initial or final state that recoils against the undetected
system, where X could be a photon, W - or Z-boson, a SM-Higgs h or a jet. The idea is that
DM particles just escape the detector due to their small interaction strength and therefore
carry away some transverse momentum pT but since the initial particles collide collinearly
this missing energy must be precisely contained in the sum of the momenta of the detected
final states like X. However, SM neutrinos lead to the same signature of missing pT and
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therefore any excess in�ET has to be carefully disentangled from the SM background.

• Resonant searches look for a peak above the expected SM background in the invariant
mass spectrum of two visible SM final states. Di-jets and dileptons are here particularly
sensitive search channels.

• Higgs sector searches look for dark matter that is produced in the decay of a Higgs boson
and therefore enhances the Higgs to invisible decay width. ATLAS and CMS reported then
the important model-independent limit

Br(h→ inv) ≤

0.145, ATLAS [148]

0.18, CMS [149]
. (3.28)

While hadron colliders like Tevatron and the LHC are good at providing limits on weak-scale
DM, important limits on light dark matter (LDM) with masses ranging from a few hundred MeV to
10 GeV come from the e+e− machines BaBar and Belle II as well as experiments like E137 [150] or
NA62 [151] that can run in a beam-dump mode. Such limits on LDM are discussed in more detail in
Ch. 5 in the context of a forbidden DM model. Future electron-positron colliders like FCC-ee [152],
ILC [153], CEPC [154] would allow to further scrutinize dark matter indirectly through, e.g., more
precise measurements of the Higgs potential or the Z-decay width, while a future hadron collider
like FCC-hh [155] or a 10 TeV muon collider [156] could directly produce dark matter pairs.
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Chapter 4

SUSY-QCD Corrections to
Neutralino Dark Matter in the MSSM

The sub-percent accuracy of the dark matter relic density measurement by Planck in Eq. (3.2c),
clearly calls for the evaluation of the dark matter annihilation cross sections beyond the tree-level
approximation to match the experimental and theoretical uncertainty. The impact of higher-order
corrections to DM annihilation in the context of the relic density, both strong and electroweak, has
already been discussed within many well-motivated and intensely studied extensions of the SM such
as the MSSM [157–171], the NMSSM [172,173], or the Inert Doublet Model [174,175]. In addition, it
has been shown that the relic density can potentially receive large corrections from non-perturbative
effects like the Sommerfeld enhancement coming from the exchange of light mediators between
the annihilating particles [176–178] or the formation of bound-states [94,95,179–181]. Besides the
increased precision, a further advantage of full loop calculations is that they allow for a systematical
evaluation of the theoretical uncertainties from missing higher-order corrections through variations
of the renormalization scheme as well as the renormalization scale [170,182].

The need for an increased theoretical precision extends to the calculation of indirect detection
signals from present-day DM annihilation processes [168, 183–186] as well as to DM-nucleon
interactions in the context of direct DM detection. Calculations of higher-order corrections to the
corresponding scattering cross sections have been computed in many UV-complete models like the
MSSM [187–193], the Inert Doublet Model [194, 195], simple Higgs-portal models [196–199], the
Next-to-Minimal Two Higgs Doublet Model [200], a vector DM model [201], the Singlet-Extended
Two Higgs Doublet Model [202], but also in simplified fermionic DM models [203–205], or frameworks
described through effective operators [206,207].

In contrast, public tools for the (automated) calculation of the DM relic density such as
DarkSUSY [208,209], SuperIso Relic [210–212], MicrOMEGAs [213–216] or MadDM [217,218]
only take into account tree-level cross sections which, however, are in some cases improved through
effective couplings to capture at least some higher-order effects. Therefore, the main objective
of this chapter is to present the necessary theoretical background and techniques for calculating
higher-order corrections to DM annihilation, all in the context of the high-energy code DM@NLO,
a package designed for the precision calculation of dark matter (co)annihilation cross-sections and
elastic dark matter-nucleon scattering amplitudes in the MSSM at next-to-leading order in the
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strong coupling αs. After a brief review of the MSSM and established technical details related to
NLO calculations in Secs. 4.1 and 4.2, a generalization of the Catani-Seymour dipole subtraction
method for massive initial-particles is worked out in Sec. 4.3 which has been one bottleneck in the
automation of NLO corrections so far besides the automated inclusion of a stable renormalization
scheme. As an example, the calculation of the O(αs) corrections to the processes

t̃1t̃
∗
1 −→ gg , (4.1a)

t̃1t̃
∗
1 −→ qq̄ , (4.1b)

including the Sommerfeld enhancement effect are presented in Sec. 4.4 as the most recent addition
to DM@NLO, where q ∈ {u, d, c, s} denote effectively massless quark flavors at the energy scale of
neutralino annihilation. These two processes are treated simultaneously since they are separate at
tree level but have to be merged into one at NLO accuracy in order to obtain an infrared safe cross
section. The user interface to DM@NLO is presented in Sec. 4.5 while Sec. 4.6 provides a brief
summary.

4.1 Supersymmetry, the MSSM and Neutralino Dark Matter

At this point, it is instructive to briefly introduce the main idea behind supersymmetry [219,220]
along with the particle content of the MSSM. For more detailed and comprehensive discussions, in
particular a list of other motivations for SUSY besides dark matter like the hierarchy problem [221],
i.e., the stabilization of the Higgs mass against radiative corrections, or the natural unification
of the strong and the electroweak force at an energy scale ΛGUT ∼ 1016 GeV in the MSSM, the
standard textbooks [222,223] and review articles [55,224,225] should be consulted.

4.1.1 The Supersymmetry Algebra

With the success of relativistic (gauge) quantum field theories to describe elementary particles,
the idea of supersymmetry grew out of the pursuit to combine in a non-trivial way the external
spacetime symmetries given by the Poincaré group with internal symmetries like, e.g., the global
SU(3) flavor symmetry. Mathematically, the combination proceeds through the introduction of a
“Lie superalgebra” which, in the simplest case, is based on two anticommuting generators Qα and
Q̄α̇ that obey the anticommutation relations

{Qα, Qβ} =
{
Q̄α, Q̄β

}
= 0 , (4.2a){

Qα, Q̄α̇
}

= 2(σµ)αα̇Pµ (4.2b)

involving the generator Pµ of spacetime translations and the Pauli four-vector σµ. This is in
contrast to the ordinary commuting generators of a Lie algebra. As already suggested through the
van der Waerden notation, the two supersymmetry generators transform as two-component Weyl
spinors under the Lorentz group and obey the commutation rules

[Mµν , Qα] = (σµν) β
α Qβ , (4.3a)
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[
Mµν , Q̄α̇

]
= (σ̄µν)α̇

β̇
Qβ̇ , (4.3b)

with the generators Mµν of the Lorentz group. Due to the fermionic nature of the SUSY generators,
one must, at least schematically, have

Q |fermion〉 = |boson〉 , (4.4a)

Q |boson〉 = |fermion〉 , (4.4b)

to preserve the right anticommutation relations as required by the spin-statistics theorem. This
means that, under SUSY, fermions transform into bosons and vice versa. Particles that emerge
from each other through SUSY operators are called “superpartners” and are therefore considered to
be part of the same “supermultiplet”. The remaining commutation relations

[Qα, Pµ] =
[
Q̄α̇, Pµ

]
= 0 , (4.5)

have the important consequence the all particles within the same supermultiplet must possess
the same mass, meaning that, if SUSY should be realized in nature, it must be broken, since for
instance a scalar superpartner of the electron would have already been experimentally verified if it
existed.

4.1.2 Particle Content of the MSSM

The R-parity conserving MSSM is the minimal supersymmtric extension of the Standard Model,
incorporating one set, N = 1, of SUSY generators as well as an additional discrete Z2 symmetry
called R-parity that was originally introduced to avoid lepton or baryon number violating processes
that are subject to stringent experimental constraints but are allowed by the principles of super-
symmetry, gauge invariance, and renormalizability. The corresponding conserved multiplicative
quantum number is defined as

PR = (−1)
3(B−L)+2s

, (4.6)

where B is the baryon number, L the lepton number and s the spin. R-parity has the significant
phenomenological consequence that each Standard Model particle has R-parity +1, while each
supersymmetric particle (sparticle) has R-parity −1. This prevents sparticles from decaying solely
into Standard Model particles, thus allowing for a stable dark matter candidate.

In the MSSM, each helicity state of a fermion receives a scalar superpartner, which differs from
its Standard Model counterpart only in spin, meaning that the SM quarks q have as superparners
the spin-0 and color charged squarks q̃ and that the superpartners of the charged SM leptons l are
the spin-0 sleptons l̃ without any color charge. Correspondingly, SM neutrinos ν have the sneutrinos
ν̃ as superpartners. Similarly, all the SM gauge bosons have a Majorana fermion as superpartner,
the gauginos: the bino B̃, winos W̃±, W̃ 0, and gluinos g̃.

Unlike the Standard Model, the MSSM includes two Higgs doublets, Hu and Hd, instead of
one, leading to five physical Higgs bosons: two neutral CP -even h0 and H0, one neutral CP -odd
A0, and two charged H± Higgs bosons. This Two-Higgs-Doublet structure is necessary to avoid
quantum-level inconsistencies due to gauge anomalies in the electroweak sector. The doublet Hu,
with hypercharge Y = +1/2, gives mass to the up-type quarks, while the other one Hd, with
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Y = −1/2, gives mass to down-type quarks and charged leptons. The fermionic superpartners of the
Higgs bosons are called Higgsinos. The four neutralinos χ̃0

i , i = 1, . . . , 4, are finally the admixtures
of the neutral gauginos B̃, W̃ 0, H̃0

u and H̃0
d , connected through the mixing matrix Z, and the

charginos χ̃±1,2 are their charged analogue.
As already mentioned, the commutation relation (4.5) implies that particles within the same

supermultiplet must have identical masses. However, since no superpartners have been observed
experimentally, it suggests that SUSY must be broken. There is no consensus on the specific
mechanism of SUSY breaking, but the general idea is that it occurs in a hidden sector and is
transmitted to the visible sector via a messenger, which could be gravity or a gauge force. Practically,
the simplest way to break SUSY is by adding extra terms to the effective MSSM Lagrangian that
explicitly break SUSY. These terms must be “soft” in the sense that they should still allow the
cancellation of fermionic and bosonic loop corrections to the Higgs mass.

According to the Supersymmetry Parameter Analysis (SPA) convention [226], the agreed form
of the soft SUSY breaking Lagrangian is:

−Lsoft =
1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.

)
+ Q̃∗iL

(
m2
Q̃

)
ij
Q̃jL + L̃∗iL

(
m2
L̃

)
ij
L̃jL

+ ũ∗iR
(
m2
ũ

)
ij
ũjR + d̃∗iR

(
m2
d̃

)
ij
d̃jR + ẽ∗iR

(
m2
ẽ

)
ij
ẽjR

+m2
Hd
|Hd|2 +m2

Hu |Hu|2 − (BµHd ·Hu + h.c.)

+
[
(Tu)ij Hu · Q̃iLũ∗jR + (Td)ij Hd · Q̃iLd̃∗jR + (Te)ij Hd · L̃iLẽ∗jR + h.c.

]
, (4.7)

where the T matrices are defined as the product of Yukawa couplings Y and the soft SUSY breaking
trilinear couplings A, i.e., Tij = AijYij without any summation. In Eq. (4.7), only generational
indices are explicitly shown, while all others are implicitly summed over. Unlike unbroken SUSY,
where only the supersymmetric higgsino mass term µ is an additional parameter, the soft SUSY
breaking introduces a total of 105 new free parameters in addition to the 19 free parameters
already present in the Standard Model Lagrangian such that it is almost impossible to explore
the MSSM parameter space in full generality. For this reason, more constrained versions of the
MSSM parameter space based on strong experimental evidence are used. The most general one is
the phenomenological MSSM (pMSSM) with 19 free parameters, the so-called pMSSM-19, which
is based on the assumptions [227] of (1) no additional flavor changing neutral currents, (2) no
new sources of CP -violation and (3) identical soft-SUSY breaking scalar mass terms for the first
two generations known as first and second generation universality. These assumptions leave the
following 19 free parameters:

• The ratio of the two vevs of the two Higgs doublets: tan(β)

• The bino, wino and gluino mass parameters: M1, M2, M3

• The trilinear couplings of the third generation: At, Ab, Aτ

• The higgsino mass parameter: µ

• The pole mass of the pseudoscalar Higgs boson: mA0

• The soft slepton masses: Ml̃L
, Mτ̃L , Ml̃R

, Mτ̃R

• The soft squark masses: Mq̃L , MũR , Md̃R
, Mq̃3L , Mt̃R

, Mb̃R
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4.1.3 Standard Computation of the Neutralino Relic Density

The standard procedure [81] of calculating the abundance of neutralino dark matter in the MSSM
is based on the assumptions that all sparticles (i) eventually decay to the lightest neutralino (ii) are
in kinetic equilibrium with the SM thermal bath due to sufficiently large elastic scattering rates,
(iii) share the same chemical potential and (iv) are highly non-relativistic so that in-medium as
well as finite-temperature effects are negligible. The latter means in particular that even for the
annihilation of two SUSY particles into n SM particles, all bath particles are assumed to obey a
Maxwell-Boltzmann distribution. Under these assumptions, the evolution of the neutralino number
density is also described through the single Boltzmann equation (3.21) but where the thermally
averaged annihilation cross section is now composed out of all all possible 2→ n (co)annihilation
channels of sparticles into a set X of n SM particles,

〈σannv〉 =
∑
a,b

〈σab→Xv〉
n̄nr
a

n̄nr
χ

n̄nr
b

n̄nr
χ

. (4.8)

For two different initial particles, the thermal average (3.22) can also be cast into a single integral over
the energy

√
s =

√
m2
a + p2

cm +
√
m2
b + p2

cm with pcm being the relative center of mass momentum,

〈σab→Xv〉 =
1

2T m2
am

2
b K2(ma/T )K2(mb/T )

∫
ds
√
s p2

cmσab→X(pcm)K1(
√
s/T ) . (4.9)

Here, it is important to recall Eq. (2.19) showing that non-relativistic equilibrium number densities
are exponentially suppressed

nnr
a

nnr
χ

∼ exp

(
−ma −mχ

T

)
(4.10)

with the direct consequence that besides pure neutralino annihilation only those processes contribute
significantly to 〈σannv〉 with a small mass difference between the neutralino and the co-annihilation
partner.

4.2 Dark Matter Annihilation Beyond Tree Level

At NLO, the tree-level DM (co)annihilation cross-section σTree is extended by the contribution

∆σNLO =

∫
m

dσV +

∫
m+1

dσR , (4.11)

which contains virtual (dσV) and real (dσR) corrections, contributing at the same order in the
coupling constant, which, in the context of DM@NLO, are one-loop corrections in SUSY-QCD at
order αs, including the emission of a real gluon. The integration domain of the integrals refers to
the number of final-state particles.

4.2.1 Regularization

The virtual corrections are plagued by ultraviolet divergences whose removal requires a (numerically
well behaved) renormalization scheme, coming along with a suitable regularization prescription.
Besides schemes like Pauli-Villars regularization [228], lattice regularization [229] or the obvious
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solution of introducing a cutoff in the UV [230], the most favored regularization methods for
non-Abelian gauge theories are dimensional schemes [231] due to their advantage of preserving not
only Lorentz invariance but also gauge invariance as well as unitarity. Here, the underlying idea
is to use the dimension as regularization parameter by analytically continuing loop integrals to a
complex number of dimensions D = 4− 2ε through the replacement∫

d4q

(2π)4
→ µ2ε

∫
dDq

(2π)D
(4.12)

of the integration measure. The renormalization scale µ with mass dimension [µ] = 1 is introduced
to ensure that the mass dimension of the integrals remains unchanged. As a consequence of
Eq. (4.12) divergences manifest themselves as poles in ε in the complex plane. In more detail, at
NLO, UV, soft and collinear divergences take the form of simple 1/ε poles, whereas soft-collinear
divergences appear as double poles.

In D dimensions, the Dirac γ-matrices are kept four-dimensional by definition Tr (γµγν) = 4ηµν

but Lorentz indices take values from zero to D− 1 such that the components of a momentum vector
become

qµ = (q0, q1, . . . , qD−1) . (4.13)

However, mapping a vector boson with D− 2 degrees of freedom under supersymmetry transfor-
mations (4.4) to a Majorana spinor with two degrees of freedom is obviously not consistent [232]. For
this reason, there exist by now two main dimensional schemes for the calculation of matrix elements
at one-loop order, which are dimensional regularization and dimensional reduction, where the latter
was designed to avoid the aforementioned mismatch between fermionic and bosonic degrees of
freedom in supersymmetric theories. Both have in common that the number of dimensions of all
momenta and spacetime coordinates is analytically continued to D 6= 4 dimensions as in Eq. (4.12)
but differ in the precise definition of the dimensionality of “internal” and “external” vector bosons.
Internal gauge bosons are defined as those that appear in one-particle irreducible (1PI) diagrams
of the virtual corrections or that become soft or collinear in a phase space integrals related to
the real corrections. External gauge bosons are then defined as all other gauge bosons. In order
to formulate the different treatments of internal and external gauge fields without mathematical
inconsistencies [233], three different spaces are introduced: the original four-dimensional space (4S),
the quasi-four-dimensional space (Q4S), the quasi-D-dimensional space (QDS) as a subspace of
Q4S and the remainder QεS through Q4S = QDS ⊕ QεS [234, 235]. Following the definitions in
Ref. [236], each of the two main schemes has two subvariants. For dimensional regularization these
are:

• Conventional dimensional regularization (CDR): Internal and external gauge bosons
are treated as D-dimensional.

• ’t Hooft-Veltman scheme (HV): External gauge bosons liven in 4S whereas internal ones
are D-dimensional.

The two variants of dimensional reduction on the other hand are:

• Original dimensional reduction (DRED or DR): Internal and external gauge bosons
are elements of Q4S.
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• Four-dimensional helicity scheme (FDH): External gauge bosons are strictly four-
dimensional whereas internal ones are quasi-four-dimensional.

For explicit calculations, it is convenient to capture the scheme-dependent terms through the
number of helicity states of internal gauge bosons as hRS

g = 2(1 − ε + rε). The parameter r is
defined as

r =

0, CDR, HV

1, DRED, FDH
(4.14)

and allows to distinguish between the different schemes. Practically, the r-dependence enters
through traces of the metric tensors which evaluate either to four or D. As DM@NLO was initially
designed with only supersymmetric theories in mind, it employs the SUSY-preserving dimensional
reduction schemes. In dimensional schemes, however, the treatment of γ5 is quite peculiar. The
problem is that the two γ5-relations

Tr
(
γµγνγργσγ5

)
= 4iεµνρσ , (4.15a){

γ5, γµ
}

= 0 (4.15b)

valid in four-dimensional spacetimes are incompatible with each other in D 6= 4 dimensions [237].
The following two approaches have been developed to circumvent this issue:

• The t’Hooft-Veltman-Breitenlohner-Maison (HVBM) scheme [238] defines γ5 as an
element of 4S and, as a result, retains the trace (4.15a).

• In the naive scheme (NS), the anti-commutation relation (4.15b) of γ5 with all other
γ-matrices is kept causing, however, a vanishing trace of γ5 with any number of γ-matrices.

The HVBM scheme has for supersymmetric theories like the MSSM the disadvantage that SUSY is
already broken at the one-loop level [235]. Therefore, the naive scheme is the preferred scheme in
the context of regularization via dimensional reduction.

4.2.2 Scalar n-Point Functions and Passarino-Veltman Reduction

A central method for the calculation of one-loop integrals within dimensional schemes is the
Passarino-Veltman reduction [239,240]. The starting point is that a general one-loop integral

TNµ1,...,µM (p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)2ε

iπ2

∫
dDq

qµ1 . . . qµM
D0D1 . . .DN−1

(4.16)

with N ≤ 4 propagators

D0 = q2 −m2
0 + iε (4.17a)

D1 = (q + p1)2 −m2
1 + iε (4.17b)

. . . (4.17c)

DN−1 = (q + pN−1)2 −m2
N−1 + iε (4.17d)

in the denominator and M loop momenta qµ1 , . . . , qµM in the numerator can be systematically
reduced to four scalar (M = 0) integrals which are commonly relabelled via T 1 → A0, T 2 → B0,
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T 3 → C0 and T 4 → D0. Their argument sets are defined as

A0(m2
0) =

∫
q

1

D0
, (4.18a)

B0(p2
1,m

2
0,m

2
1) =

∫
q

1

D0D1
, (4.18b)

C0(p2
1, (p1 − p2)2, p2

2,m
2
0,m

2
1,m

2
2) =

∫
q

1

D0D1D2
, (4.18c)

D0(p2
1, (p2 − p1)2, (p3 − p2)2, p2

3, p
2
2, (p3 − p1)2,m2

0,m
2
1,m

2
2,m

2
3) =

∫
q

1

D0D1D2D3
(4.18d)

with the shorthand notation ∫
q

=
(2πµ)2ε

iπ2

∫
dDq . (4.19)

As an example, the evaluation of the simplest scalar integral with only one propagator proceeds
through a Wick rotation and reads

A0(m2) = m2

(
∆− ln

(
m2

µ2

)
+ 1 +O(ε)

)
, (4.20)

where the UV pole is contained in the abbreviation ∆ = 1
ε − γE + ln 4π with the Euler–Mascheroni

constant γE ≈ 0.577 21. The computation of a tensor integral is then performed by considering
all symmetric and covariant tensor structures of rank M that can be built out of the momenta
p1, . . . , pN−1 and metric tensors, i.e., one performs the decomposition

Bµ = pµ1B1 (4.21a)

Bµν = ηµνB00 + pµ1p
ν
1B11 (4.21b)

Cµ = pµ1C1 + pµ2C2 (4.21c)

Cµν = ηµνC00 +

2∑
i,j=1

pµi p
ν
jCij (4.21d)

Cµνρ =

2∑
i=1

(ηµνpρi + gµρpνi + gνρpµi )C00i +

2∑
i,j,k=1

pµi p
ν
j p
ρ
lCijk (4.21e)

. . .

The coefficients B1, B00, B11 and so on are called Passarino-Veltman coefficient functions and are
computed by solving a linear system of equations obtained from the contraction of the decomposition
(4.21) with their external momenta and metric tensors.

Even though analytical expressions for the four scalar integrals in Eq. (4.18) are, e.g., available
in Refs. [241–243], from a practical point of view, these integrals as well as the corresponding
coefficient functions in Eq. (4.21) can conveniently be computed numerically for many argument
sets with purpose-built loop libraries like LoopTools [244], OneLOop [245], Collier [246],
QCDLoop [247] or the loop library contained in DM@NLO [248] which can also handle for some
argument sets the case of a vanishing Gram determinant, see Ref. [191], which is, e.g., relevant for
the computation of dark matter signals in direct and indirect detection experiments.
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4.2.3 DR and On-Shell Renormalization

The final removal of the UV divergences requires the renormalization of masses, couplings and
fields. Two different approaches within loop calculations are [230]:

• Bare perturbation theory where the calculation is performed in terms of unrenormalized
parameters and only in the end the UV divergent terms are absorbed into the corresponding
physical parameters.

• In contrast, renormalized perturbation theory starts directly with the physical parameters,
however, at the cost of introducing a set of counterterms that contain the UV divergent parts
and come with separate Feynman rules.

The latter is the more common approach and is also adopted within DM@NLO. As an example,
the scalar φ4-theory with the renormalizable Lagrangian density L = L0 − V is considered, where

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (4.22)

is the free field Lagrangian and V = λ
4!φ

4 the potential containing the self-interaction term. One
option is then to introduce a set of multiplicative renormalization constants, multiply them with
the renormalized quantities to yield the divergence and expand them up to the desired order. In
the one-loop case, i.e., at O(λ), one has

φ0 =
√
Zφφ '

(
1 +

1

2
δZφ

)
φ , (4.23a)

λ0 = Zλλ ' λ+ δλ , (4.23b)

m2
0 = Zmm

2 ' m2 + δm2 . (4.23c)

As a result, the Lagrangian is extended through a part containing the counterterms,

Lcount =
1

2
∂µφ∂

µφ− (δm2 +m2δZφ)
φ2

2
− (δλ+ 2δZφ)

φ4

4!
. (4.24)

Next comes the selection of a renormalization scheme determining the finite parts of the renormal-
ization constants. To illustrate to popular choices, the renormalized self-energy

Π(p2) = Π0 − (p2 −m2)δZφ + δm2 (4.25)

with Π0 = λ
32π2A0(m2) is needed. Again, there are two common schemes:

• Within themodified minimal subtraction (MS) renormalization scheme the divergence
is regularized in the CDR or HV variant of dimensional regularization and only the UV
divergence ∆ is subtracted, i.e., the 1/ε pole including the finite ln(4π) and γE parts. As Π0 is
independent of the external momentum, this choice amounts to δZφ = 0 and δm2 = −m2λ

32π2 ∆.
The analogue of the MS scheme in dimensional reduction is called the DR scheme.

• In the on-shell (OS) renormalization scheme, the finite parts are chosen such that the
renormalized mass appearing in Green’s functions can be identified with the observed mass
mP . This scheme is therefore particularly suited for particles whose mass can be directly
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measured like the electron or the top quark. Since the full φ-propagator must be of the form
1/(p2−m2 + Π(p2)), the requirement m = mP is equivalent to the renormalization conditions,

Re Π(p2)
∣∣
p2=m2

P

= 0 , (4.26)

∂

∂p2
Π(p2)

∣∣∣∣
p2=m2

P

= 0 . (4.27)

In more detail, the first condition defines the renormalized mass to be the observed mass
which is defined as the pole of the full propagator and the second one ensures a unit residue
of the full propagator. As before, this yields δZφ = 0, but δm2 = −Π0.

4.2.4 Renormalization of the MSSM

When it comes to the renormalization of the MSSM, the squark masses have to be renormalized
carefully since the stop and sbottom sectors have to be treated simultaneously due to the fact that
the up- and down-type squarks share the common soft breaking parameter Mq̃ as a result of the
SU(2)L gauge symmetry. The squark mass matrix can be diagonalized,

U q̃

(
m2
LL m2

LR

m2
RL m2

RR

)
(U q̃)† =

(
m2
q̃1

0

0 m2
q̃2

)
(4.28)

with the two physical masses m2
q̃1

and m2
q̃2

being the eigenvalues of the non-diagonal mass matrix
with the entries

m2
LL = M2

Q̃
+ (I3L

q − eqs2
W ) cos 2βm2

Z +m2
q , (4.29a)

m2
RR = M2

Ũ,D̃
+ eqs

2
W cos 2βm2

Z +m2
q , (4.29b)

m2
LR = m2

RL = mq(Aq − µ(tanβ)−2I3Lq ) . (4.29c)

Here, I3L
q denotes the third component of the weak isopsin and eq the electric charge carried

by the quark q. Out of the eleven parameters given by the soft-breaking terms MQ̃, MŨ , MD̃,
At, Ab, the physical masses mt̃1

, mt̃2
, mb̃1

, mb̃2
and the mixing angles θt̃ and θb̃ only five are

completely independent. As the renormalization scheme in DM@NLO should be applicable to all
(co)annihilation channels with squarks in a leading role, the soft SUSY-breaking masses MQ̃, MŨ ,
MD̃ are replaced as input parameters by the physical on-shell masses mb̃1

, mb̃2
and mt̃1

. The three
aforementioned soft parameters are then fixed through the requirement that Eq. (4.28) holds even
at the one-loop order which, by inverting the corresponding eigenvalue equations, results in two
possible solutions,

m2
LL =

m2
q̃1

+m2
q̃2

2
± 1

2

√
(mq̃1 −mq̃2)2 − 4m4

LR , (4.30a)

m2
RR =

m2
q̃1

+m2
q̃2

2
∓ 1

2

√
(mq̃1 −mq̃2)2 − 4m4

LR , (4.30b)

for the diagonal entries of the mass matrix. Consequently, there are two possible values for MQ̃,
MŨ , and MD̃. However, not both of them may yield a numerically stable renormalization scheme,
the reason being that the diagonalization may not correctly reproduce the mass of the lighter stop
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used as an input value, and, more importantly, the counterterm belonging to the heavier stop mass
δmt̃2

∼ (U t̃21U
t̃
12)−1 may become singular for vanishing off-diagonal elements of the squark mixing

matrix. The same problem might occur in the counterterm related to the squark mixing angle
δθq̃ ∼ (U q̃11U

q̃
22 + U q̃12U

q̃
21)−1. To avoid these issues, a scheme is defined as numerically stable if the

following three conditions are fulfilled:

• |mout
t̃1
−min

t̃1
|/min

t̃1
< 10−5 ,

• |ReU q̃11U
q̃
21| > 10−4 for q ∈ {t, b},

• |Re (U t̃11U
t̃
22 + U t̃12U

t̃
21)| > 10−4 .

Otherwise a scheme is declared as invalid (unstable). Given that both solutions are compatible, by
default the solution is chosen where the dependent stop mass mt̃2

is closer to the corresponding
physical value.

In a series of analyses [164–166,169,171], the following three renormalization schemes, adapted
to the situation of DM (co)annihilation, have been included in DM@NLO:

0: mb, mt, mf̃ , θf̃ , Af are all DR parameters.

1: mb, Ab and At are DR input parameters whereas mt, mt̃1
mb̃1

and mb̃2
are OS masses. θt̃,

θb̃ and mt̃2
are then dependent quantities.

2: mt, mb, Ab and At are DR input parameters and mt̃1
, mb̃1

and mb̃2
are OS masses. θt̃, θb̃

and mt̃2
are then dependent quantities.

The hybrid on-shell/DR scheme 1, which resembles the RS2 scheme presented in Ref. [249], is the
recommended choice since it was found to be robust over large regions of the parameter space for
(co)annihilations involving stops [164,165], whereas the other two schemes are well suited for the
estimation of theoretical uncertainties from scheme variations. The integration of an automated
selection of the best renormalization scheme as, e.g., discussed in Ref. [250] would be a useful future
addition.

4.2.5 Three-Particle Phase Space

While the virtual corrections come from loop diagrams, the real corrections arise from the radiation
of another massless gauge boson which in the case of DM@NLO is a gluon. As the evaluation of
the associated three-particle phase space with the final-state momenta k1, k2 and k3 given by

∫
dφ3 =

∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
(2π)δ(k2

1 −m2
1)Θ(k0

1)(2π)δ(k2
2 −m2

2)Θ(k0
2)

× (2π)δ(k2
3 −m2

3)Θ(k0
3)δ(4)(k1 + k2 + k3 − pa − pb) (4.31)

is a non-trivial task, the parametrization adopted in DM@NLO from Ref. [251] is provided here.
The final integration variables are the angles η, θ, φ and the two energies k0

1, k0
3 which can be

re-expressed through the dimensionless quantities

xi =
2k0
i√
s
, i = 1, 2, 3 , µi =

mi√
s
, i = 1, 2, 3, a, b . (4.32)
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Then, energy conservation takes the from x1+x2+x3 = 2 and integrating out the Dirac distributions
yields the final phase space ∫

dφ3 =
s

32

1

(2π)5

∫
dx1 dη dx3 dcos θ dφ (4.33)

with the integration limits

η ∈ (0, 2π), φ ∈ (0, 2π), θ ∈ (0, π), (4.34a)

xmin
3 = 2µ3, xmax

3 = 1− µ2
+ + µ2

3, (4.34b)

(x1)max
min =

1

2τ

[
σ(τ + µ+µ−)±

√
x2

3 − 4µ2
3

√(
τ − µ2

+

) (
τ − µ2

−
)]

(4.34c)

that contain the abbreviations

σ = 2− x3 , τ = 1− x3 + µ2
3 , µ± = µ1 ± µ2 . (4.35)

The energies are defined in the the c.m. frame of the initial momenta pa and pb that are chosen to
be aligned with the z-axis, i.e.,

pµa =

√
s

2

(
1 + µ2

a − µ2
b , 0, 0,

√
(1− µ2

a − µ2
b)

2 − 4µ2
aµ

2
b

)
, (4.36a)

pµb =

√
s

2

(
1− µ2

a + µ2
b , 0, 0,−

√
(1− µ2

a − µ2
b)

2 − 4µ2
aµ

2
b

)
, (4.36b)

where s is the squared c.m. energy. The final-state momenta must then take the form

k1 =

√
s

2

√
x2

1 − 4µ2
1

 cos(η) cos(θ) sin(ξ) + sin(θ) cos(ξ)

sin(η) sin(ξ)

cos(θ) cos(ξ)− cos(η) sin(θ) sin(ξ)

 , (4.37a)

k3 =

√
s

2

√
x2

3 − 4µ2
3

 sin(θ)

0

cos(θ)

 . (4.37b)

The remaining three-momentum k2 follows from momentum conservation k2 = −k1 − k3 and the
auxiliary angle ξ between k1 and k3 is fixed to the value

cos ξ =
(2− x1 − x3)2 + 4µ2

1 + 4µ2
3 − 4µ2

2 − x2
1 − x2

3

2
√
x2

1 − µ2
1

√
x2

3 − µ2
3

. (4.38)

The main technical complication in the evaluation of the real emission contribution comes from
infrared singularities originating, without loss of generality, in propagators of the from

1

(k1 + k3)2 −m2
1

=
1

2k0
3(k0

1 − |k1| cos ξ)
, (4.39)

where k3 is used to denote the momentum of the radiated (massless) gluon since this expression
diverges if the energy k0

3 approaches zero, known as a soft divergence. If the other particle labeled
by k1 is massless as well, a collinear singularity can appear in addition for cos ξ → 1.
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4.2.6 Intermediate On-Shell Resonance Subtraction

Besides the infrared divergences in the real emission contribution there can occur another subtlety,
namely that an internal propagator can go on-shell. In DM@NLO, this is the case for the process
χ̃0
nt̃i → bW+, where the internal top propagator can become on-shell if the collisional energy

√
s

exceeds the top mass mt. To cure the singularity, the “Prospino scheme” defined in Refs. [252, 253]
is adopted. It entails substituting the top propagator with the Breit-Wigner form, according to

1

p2 −m2
t

→ 1

p2 −m2
t + imtΓt

, (4.40)

in the resonant part Mr of the total real emission amplitude Mtot = Mr +Mnr belonging to
the bW+ final state, whereas the non-resonant pieceMnr remains unchanged. Since the process
χ̃0
nt̃i → tg corresponding to an on-shell top is already accounted for in the calculation of the

neutralino relic density, the contribution from the leading order on-shell production of a top
with the subsequent decay into a bottom quark and a W -boson is removed locally through the
replacement ∣∣Mr

∣∣2 → ∣∣Mr

∣∣2 − m2
tΓ

2
t

(p2 −m2
t )

2 +m2
tΓ

2
t

∣∣Mr

∣∣2
p2t=m

2
t

(4.41)

with the physical top width Γt. This procedure has the advantage that it is not necessary to modify
the interference Re(M∗rMnr) containing only one on-shell propagator and thus finite principal-value
integrals. However, to stabilize the numerical integration, a small artificial top width Γt = 10−3 ·mt

is used in DM@NLO in the interference part instead of the physical width.

4.2.7 Non-Perturbative Effects

Having discussed perturbative corrections, there are also important non-perturbative effects relevant
for dark matter annihilation. One is the Sommerfeld [254] or Sakharov enhancement [255] which is
an elementary quantum mechanical effect that increases (decreases) annihilation cross sections for
small relative velocities in the presence of an attractive (repulsive) long-range potential affecting
the incoming particles. From a field theory point of view, this effect is described by ladder diagrams
involving the exchange of light mediators with some coupling λ to the initial particles. More
quantitatively, the Sommerfeld factor

S
[R]
0 =

∣∣φ[R](0)
∣∣2 (4.42)

is obtained as a solution φ(r) evaluated at the origin r = 0 of the stationary Schrödinger equation
for the potential describing the interaction of the annihilating particles transforming under the
representation R of the corresponding force carriers. For an s-wave dominated annihilation
process, the Sommerfeld factor simply multiplies the perturbative tree-level cross section giving the
Sommerfeld corrected cross section

σSom =
∑
R

S
[R]
0 σTree

R , (4.43)

where the sum runs over all irreducible representations contained in the decomposition of the initial
particle pair. In a collider context, the exchange takes place between the final-state particles as
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these kinds of higher-order effects are important close to production threshold and are reffered to as
Coulomb corrections instead. In this convention for the Sommerfeld factor, the free wave-function is
normalised to one |φ[R]

0 (0)|2 = 1 to ensure that σSom → σTree is fulfilled if the interaction governing
the enhancement effect is turned off (λ→ 0). When combining the Sommerfeld effect with the full
O
(
λ2
)
correction, one has to be careful to not overcount the single mediator exchange contained

in both calculations. In DM@NLO both are matched by removing the O
(
λ2
)
contribution from

the Sommerfeld factor. A detailed example with gluons playing the role of the aforementioned
light mediators is given in Sec. 4.4.3 in the context of the higher-order corrections to stop-antistop
annihilation. When the Sommerfeld enhancement is relevant, also the formation of bound states
is important [94]. For a phenomenological study taking into account both of these effects in the
context of simplified t-channel dark matter models [256] that are essentially the stop-neutralino
sector of the MSSM, see, e.g., Ref. [257].

4.3 The Dipole Formalism for Massive Initial-State Particles

It remains the precise treatment of the real emission processes as their numerical evaluation is
problematic in phase space regions where the squared matrix element becomes soft or collinear. Only
the sum of the real and virtual corrections is infrared finite in a unitary QFT such as the Standard
Model or the MSSM according to the Kinoshita-Lee-Nauenberg (KLN) theorem [258]. The two
main general approaches which allow the analytic cancellation of infrared singularities between both
contributions are subtraction methods [259–261] and phase space slicing (PSS) methods [262–265].
A general treatment of massive initial particles, e.g., in supersymmetric QCD, as required for dark
matter (co)annihilation processes is available for the slicing approach, but not for the subtraction
methods. In Ref. [266], photon radiation off heavy fermions in QED was considered, but a small
photon mass was used as a regulator. Consequently, the results cannot be simply transferred to
non-Abelian theories, where divergences are commonly regularized via a dimensional scheme. In
Refs. [267, 268] a fully massive dipole formalism for initial-final dipoles in conventional dimensional
regularization was considered, however, leaving out, e.g., the emission off a massless final-state quark
with a massive spectator and in a different convention of parameters compared to the one used in
the original work [260], complicating the computation of necessary integration limits. Ref. [269]
focuses primarily on the case of the initial-initial dipole configuration corresponding to the emission
of a gluon into the final state off a massive initial quark and pays particular attention to the
necessary modifications of the standard treatment of parton distribution functions in the final
dipole formulae required by the inclusion of mass effects. The phase space slicing method has been
successfully applied to dark matter calculations in the past [164,165,169], but this approach has
the practical disadvantages that the squared real emission matrix element has to be subdivided
into finite, soft, collinear and soft-collinear contributions and that the final result depends on the
chosen cutoffs. In addition, the slicing method is found to be less accurate and efficient compared
to the dipole approach [270].

For these reasons, it is the objective of this section to extend the Catani-Seymour dipole
subtraction method to massive initial states for initial-final as well as initial-initial dipoles in a
unified notation similar to the one used in Ref. [261] and provide all formulae for squark and gluino
(co)annihilation as required by dark matter calculations as in [271]. All formulae are provided for
different dimensional schemes, as conventional dimensional regularization breaks supersymmetry
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already at the one-loop level. By a simple change of the color factor, the results can also be applied
to heavy scalar and fermionic dark matter in general. The provided formulae also allow for one
massive and one massless particle in the initial state. The results do not apply to splitting processes
where the mass of the parent particle is unequal to the mass of one of its decay products such as
the splitting g → qq̄ into massive quarks.

4.3.1 Review of the Dipole Subtraction Method

Due to the large number of terms that enter during the standard Feynman-diagrammatic calculation
of (SUSY)-QCD matrix elements, it is often impossible to perform the integration over the m+ 1

particle phase space in Eq. (4.11) analytically in D dimensions except for the very simplest processes.
In order to make a numerical evaluation of the real emission matrix elements over the whole phase
space possible, i.e., without relying on cuts and approximations as in the phase space slicing
approach, Catani and Seymour developed the dipole subtraction method [260]. The basic idea
is to construct an auxiliary cross section dσA which converges pointwise to dσR in the singular
region in D dimensions, so that dσR− dσA is finite over the whole region of phase space and can be
integrated in four dimensions. At the same time it must be possible to integrate dσA analytically
in D dimensions over the one-particle phase space of the radiated massless particle giving rise
to the divergence. This allows to add back the subtraction term and to cancel those divergences
appearing in the virtual contribution which are present in the form of simple or double poles in ε.
The computation of the NLO correction can then be summarized as

∆σNLO =

∫
m+1

[
dσR

ε=0 − dσA
ε=0

]
+

∫
m

[
dσV +

∫
1

dσA
]
ε=0

. (4.44)

The counterterm dσA is constructed from the knowledge that QCD amplitudes factorize in the soft
and collinear limit in the process-dependent Born level cross section dσB convolved with a universal
splitting kernel dVdipole, which reflects the singular behavior. From another point of view, the
factorization can be thought of as a two-step process. In the first step, m final state particles are
produced through the Born level cross section dσB. In the second step, the final (m+ 1)-particle
configuration is reached through the decay of one of the m particles - the emitter - into two particles.
This last step is described by the splitting function dVdipole. The information about color and
spin correlations is accounted for by referencing an additional particle - the spectator. The final
expression for dσA is obtained by summing over all possible emitter-spectator pairs∫

m+1

dσA =
∑

dipoles

∫
m

dσB ⊗
∫

1

dVdipole =
∑

dipoles

∫
m

[
dσB ⊗ I

]
, (4.45)

where the universal factor I corresponds to the integral of the dipole splitting function over the
one particle phase space, and thus cancels the infrared divergences in the virtual part. The fact
that the underlying structure of this factorization is formed by these pairs led to the name “dipole
formalism”. However, as this factorization holds only in the strict soft and collinear limit and it is
desirable that dσA approximates dσR also in a small region around the singularity to render the
subtraction procedure numerically stable, one has to introduce the so-called dipole momenta to
ensure that the factorization does not violate momentum conservation. These obey momentum
conservation in the whole m+ 1-particle phase space and are defined through a smooth map from
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the m+ 3 real emission momenta to the m+ 2 dipole momenta. Their precise definition depends
on the kinematical situation and therefore their concrete expressions will be given in the sections
dedicated to the different emitter-spectator pairs.

In order to allow for a general construction of the auxiliary cross section, the aforementioned
color and spin correlations are implemented into the factorization formula by realizing the splitting
functions Vdipole as operators that act on matrix elements which are defined as abstract objects in
color and spin space. For this purpose, the conventions and the notation established in Refs. [260,261]
is used which is introduced again for completeness in the following. That is, colored particles in
the initial state are labeled by a, b, . . . and those in the final state by i, j, k, . . . . Since non-colored
particles are irrelevant for the subtraction procedure, they are suppressed in the notation. Scattering
amplitudes are considered as objects in an abstract vector space spanned by the spins sa, si and
colors ca, ci of all colored particles involved in the process

|{i, a}〉m =
1∏

b

√
nc(b)

M{ci,si;ca,sa}m ({pi; pa}) (|{ci; ca}〉 ⊗ |{si; sa}〉) , (4.46)

where
∏
b

√
nc(b) fixes the normalization by averaging over the nc(b) color degrees of freedom for

each initial particle b. The kets |{ci; ca}〉 and |{si; sa}〉 constitute formally an orthogonal basis of
the color and spin space, respectively. The color charge operators Ti or Ta reflect the emission of a
gluon (or another massless colored particle) from a particle i or a. Their action on color space is
defined as

〈{i, a}|m Tj ·Tk |{i, a}〉m =
1∏

b nc(b)

[
Mc1,...,cj ,...,ck,...,cm;{a}

m ({pi; pa})
]∗

× T ecjdjT eckdkMd1,...,dj ,...,dk,...,dm;{a}
m ({pi; pa}) (4.47)

and analogously if j or k are initial-state particles. For a final-state particle j, the color charge
matrix T ecd is defined as

T ecjdj =


−ifcjdje
T ecjdj

−T edjcj

if j is in the

adjoint

fundamental

anti-fundamental

representation of su(3)c, (4.48)

with T a = λa

2 being half of the Gell-Mann matrices λa and fabc the structure constants of su(3)c.
The color charge operator Ta of an initial particle a obeys the same action defined in Eq. (4.47).
However, by crossing symmetry the color charge matrix in this case is defined as

T ecada =


−ifcadae
−T edaca
T ecada

if a is in the

adjoint

fundamental

anti-fundamental

representation of su(3)c. (4.49)

Since each ket |{i, a}〉m must be a color singlet, color conservation can be written as∑
j

Tj +
∑
b

Tb

 |{i, a}〉m =
∑
I

TI |{i, a}〉m = 0 , (4.50)
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where the index I runs over both initial and final state particles. Furthermore, the commutation
relation

[Ti,Tj ] = 0 if i 6= j, T2
i = Ci =

CA, i adjointCF , i (anti)-fundamental
(4.51)

with the quadratic Casimir operators Ci follows directly from the definition of the color charge
operators.

With these definitions and conventions at hand, the dipole splitting functions which approximate
the real emission matrix element in the soft and collinear limit can be constructed. In the soft limit,
where the momentum of a gluon i tends to zero, the real emission matrix element can be written in
terms of an eikonal current of the gluon

Jµ =
∑
a

pµa
pa · pi

Ta +
∑
j

pµj
pj · pi

Tj =
∑
I

pµI
pI · pi

TI (4.52)

and behaves as

〈. . . , i, . . . , j, . . . ; a, . . .|. . . , i, . . . , j, . . . ; a, . . .〉m+1,a... m+1,a...

pi→0

−−−−→
− 4πµ2εαs 〈. . . , j, . . . ; a, . . .|m,a... J†µJµ |. . . , j, . . . ; a, . . .〉m,a... . (4.53)

Again, the renormalization scale µ comes from the transition from four to D spacetime dimensions.
By using partial fractioning

pI · pK
(pI · pi)(pK · pi)

=
pI · pK

(pI · pi)(pI + pK) · pi
+

pI · pK
(pK · pi)(pI + pK) · pi

(4.54)

and color conservation, the squared eikonal current can be recast into a sum over emitter (I) and
spectator (K) pairs

J†µJµ =
∑
I,K

pI · pK
(pI · pi)(pK · pi)

TI ·TK

∑
I,K
I 6=K

1

pI · pi

(
2pI · pK

(pI + pK) · pi
− m2

I

pI · pi

)
TI ·TK . (4.55)

For two final-state particles i and j that are produced through a splitting ĩj → i+ j of a parent

k⊥

p

n

pi

pj

Figure 4.1: Sudakov vector parametrization.

particle ĩj, there is also a collinear divergence if i and j are massless or a quasi-collinear divergence
if i and j are massive but their mass is small compared to the energy scale of the calculation so that

46



the true collinear divergence is screened by the non-zero mass. In order to make the divergence
visible, their momenta pi and pj can be expressed through the Sudakov parametrization

pµi = zpµ + kµ⊥ −
k2
⊥ + z2m2

ij −m2
i

z

nµ

2p · n, (4.56a)

pµj = (1− z)pµ − kµ⊥ −
k2
⊥ + (1− z)2m2

ij −m2
j

1− z
nµ

2p · n, (4.56b)

where the timelike momentum p with p = m2
ij gives the collinear direction and an auxiliary light-like

four-vector n is needed to specify the transverse component k⊥ which is perpendicular to n and p
(k⊥ · n = k⊥ · p = 0), cf. Fig. 4.1. The variable z corresponds to the momentum fraction involved
in the splitting. With the help of this parametrization, the squared real emission matrix element
reduces in the (quasi)-collinear limit to

〈. . . , i, j, . . . ; a, . . .|. . . , i, j, . . . ; a, . . .〉m+1,a... m+1,a...

pi‖pj
−−−−→

4πµ2εαs
pi · pj

〈
. . . , ĩj, . . . ; a, . . .

∣∣∣
m,a...

P̂ĩj,i(z, k⊥; ε)
∣∣∣. . . , ĩj, . . . ; a, . . .〉

m,a...
(4.57)

with the (generalized) Altarelli-Parisi [272] splitting function P̂ĩj,i(z, k⊥; ε). As the process q → q+g

is required for massless as well as massive quarks, the quasi-collinear limit is included which
corresponds to the collinear one in the zero-mass limit. Only the pure collinear limit on the hand is
considered for the splittings g → q + q̄ and g → gg. The associated splitting functions are given
by [261,272,273]:

〈s| P̂qg(z, k⊥; ε) |s′〉 = δss′CF

[
2(1− z)

z
+

1

2
hRS
g z − m2

q

pg · pq

]
, (4.58a)

〈µ| P̂gq(z, k⊥; ε) |ν〉 = TF

[
−ηµν + 4z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
, (4.58b)

〈µ| P̂gg(z, k⊥; ε) |ν〉 = 2CA

[
−ηµν

(
z

1− z +
1− z
z

)
− hRS

g z(1− z)k
µ
⊥k

ν
⊥

k2
⊥

]
. (4.58c)

Recall that the number of internal helicity states of the gluon hRS
g allows to distinguish between

different dimensional schemes. For the construction of the dipole splitting function Vdipole, both,
the soft and the collinear limit, need to be taken into account. However, it is not simply possible
to naively add both limits as this will lead to an “over-counting” of the soft divergence, as the
Altarelli-Parisi splitting functions also diverge in the soft limit. Therefore, it is necessary to construct
the dipole splitting functions such that both limits are fulfilled separately, i.e., the overlapping
region is only taken into account once.

The final dipole factorization formula that defines the auxiliary squared matrix element related
to dσA is

∣∣MA
m+1

∣∣2 =
∑
i,j

∑
k 6=i,j

Dij,k +
∑
i,j

∑
a

Daij +
∑
a,i

∑
j 6=i
Daij +

∑
a,i

∑
b 6=a
Dai,b, (4.59)

where one has to distinguish between four different dipoles for the four different initial/final-state
combinations of emitter and spectator. The precise definition of the dipoles Daij , Daij and Dai,b
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Figure 4.2: Diagrammatic interpretation of the dipole Daij and the associated splitting function Va
ij .

related to the splitting kernels Vdipole as well as the process dependent kernels themselves will be
given in the following sections. A definition for the dipole Dij,k where emitter and spectator are
both from the final state is not provided as this case is already fully covered for the massive and
the massless case in Refs. [260,261].

4.3.2 Final-State Emitter and Initial-State Spectator

The dipole contribution Daij in Eq. (4.59) is defined as

Daij =
1

−2pi · pj
1

xij,a

〈
. . . , ĩj, . . . ; ã, . . .

∣∣∣
m,a

Ta ·Tij

T2
ij

Va
ij

∣∣∣. . . , ĩj, . . . ; ã, . . .〉
m,a

, (4.60)

where the function Va
ij describes the splitting process ĩj → i + j and the variable xij,a will be

defined in the section on the kinematical quantities used for the formulation of the splitting kernels.
The tree matrix element with m final-state particles is obtained from the original one with (m+ 1)

particles by replacing i and j with the emitter ĩj of momentum p̃ij and by exchanging the initial
particle a with ã of momentum p̃a. In the following, only the specific case mij = mj is considered
where the mass of the emitter ĩj is identical to the one of j as the more general case mij 6= mj case
is not needed for the example processes.

Since a treatment of massless initial particles is already available in the literature [260, 261],
the initial particle a will be treated as massive throughout, whereas the final-state particle with
momentum pj can have an arbitrary mass. The mass of i is allows zero, i.e., in summary,

p2
a = m2

a > 0, p2
j = m2

j , p2
i = 0. (4.61)

Kinematics

For the construction of the dipole Daij , the kinematic quantities introduced in Ref. [266] for photon
emission off massive fermions are adopted. However, as a small photon mass is used in Ref. [266] as
infrared regulator, the crucial part lies in the generalization of the phase space parametrization
from four to D dimensions.

The two main quantities are the total outgoing momentum of the dipole phase space P = pi+pj

and the total transferred momentum

Q = P − pa = pb −
∑
k

pk = p̃ij − p̃a , (4.62)
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Q

pa

P

Q

p̃a

p̃ij

Figure 4.3: Kinematics for a final-state emitter and an initial-state spectator in the original momenta
(left) and the dipole momenta (right).

where k runs over the momenta of all other (m − 1) final-state particles besides pi and pj , cf.
Figs. 4.2 and 4.3. At this point, one should highlight the difference between P and p̃ij . That is, P
is the true momentum of the parent particle ĩj in the real emission matrix element whereas p̃ij is
the dipole momentum which is inserted into the tree matrix element as momentum of ĩj within the
auxiliary matrix element. For the explicit definition of the dipole splitting functions and the dipole
momenta some auxiliary variables are used. These are first of all the momentum fractions

zj =
pa · pj
P · pa

= 1− zi , xij,a =
P · pa − pi · pj

P · pa
, (4.63)

which take by definition only values between zero and one and behave in the soft (pµi → 0) and
collinear limit (pi · pj → 0) as zi → 0, zj → 1 and xij,a → 1. The different quantities are related
through

P 2 =
−Q̄2

xij,a
+Q2 −m2

a , P · pa =
−Q̄2

2xij,a
(4.64)

with the abbreviation Q̄2 = Q2 −m2
a −m2

j . It is worth noting that since the product P · pa is
always positive and xij,a can only take values between zero and one, Q̄2 is always negative such
that

√
Q̄4 = −Q̄2 with Q̄4 =

(
Q̄2
)2. In addition, there will appear the auxiliary variables

λaj = λ
(
Q2,m2

j ,m
2
a

)
= Q̄4 − 4m2

am
2
j , (4.65a)

R(x) =

√(
Q̄2 + 2m2

ax
)2 − 4m2

aQ
2x2√

λaj
(4.65b)

with the Källén function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx as well as the reduced masses
ηn and the relative velocity v between p̃ij and p̃a,

ηn =
m2
n

−Q̄2
(n = a, j), v =

√
λaj

−Q̄2
. (4.66)

It is straightforward to check that P 2 → m2
j and R(xij,a)→ 1 in the soft and collinear limit. The

dipole momenta of emitter and spectator

p̃µij =
xij,a

R(xij,a)
pµa +

(
1

R(xij,a)

Q̄2 + 2m2
axij,a

2Q2
−
Q2 +m2

a −m2
j

2Q2
+ 1

)
Qµ (4.67a)

p̃µa = p̃µij −Qµ (4.67b)
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are constructed from the requirement to fulfill the on-shell conditions p̃2
a = m2

a, p̃2
ij = m2

ij and
momentum conservation p̃a + pb = p̃ij + pk.

Phase Space Factorization

The factorization of the (m+ 1)-particle phase space dφm+1 (pi, pj , pk; pa + pb) into the m-particle
phase space dφm (P (x), pk; pa + pb) and the dipole phase space

[
dpi
(
Q2, x, zi

)]
is derived in

App. A.1.1 and corresponds to a convolution over the parameter x∫
dφm+1 (pi, pj , pk; pa + pb) θ(xij,a − x0) =

∫ 1

x0

dx

∫
dφm (P (x), pk; pa + pb)

∫ [
dpi
(
Q2, x, zi

)]
,

(4.68)
where x plays the role of xij,a. In Eq. (4.68) an additional auxiliary parameter x0 with 0 ≤ x0 < 1

is introduced as a lower limit on x which is provided by the constraint that the argument of the
square root in Eq. (4.65b) remains positive for all possible values of Q2. This translates into the
condition

−Q̄2

2ma

(
ma −

√
Q2
) < x0 < 1, (4.69)

if 0 <
√
Q2 < ma −mj . If the latter condition is not met, any value for x0 between zero and one

can be used. Since the singular behavior occurs for x→ 1, applying the splitting function Va
ij only

for x0 ≤ x ≤ 1 still cancels the divergences. In addition, the independence of ∆σNLO on the choice
of x0 serves as a non-trivial check for the correct implementation of the subtraction procedure. The
integration of the dipole splitting function over the one-particle phase space

∫ [
dpi
(
Q2, x, zi

)]
=

1

(4π)
2−ε

(
P 2
)−ε

Γ(1− ε)
−Q̄2

x2

(
R(x)

√
λaj

−Q̄2

)2ε−1 ∫ z+

z−

dzi [(zi − z−) (z+ − zi)]−ε

(4.70)
with the integration limits

z± =
1− x

2

−Q̄2 ±
√
λajR(x)

xm2
j − Q̄2(1− x)

(4.71)

yields the singular behavior parameterized by D = 4− 2ε dimensions. In the massless case mj = 0

the integration limits related to zi simplify to z± = 1
2 (1±R(x)).

The Dipole Splitting Functions

The functions Va
ij in Eq. (4.60) are provided for the four (SUSY)-QCD splitting processes:

• q → g(pi) + q(pj) : mi = 0 and mij = mj = mq

• q̃ → g(pi) + q̃(pj) : mi = 0 and mij = mj = mq̃

• g → g(pi) + g(pj) : mij = mi = mj = 0

• g → q(pi) + q̄(pj) : mi = mj = mij = mq = 0 .

The processes where the particles are exchanged through their corresponding antiparticles are
formally identical to those given here and are therefore not listed separately. The dipole splitting
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functions read explicitly

〈s|Va
gq|s′〉 = 8παsµ

2εCF

(
2

2− xij,a − zj
− 2 +

1

2
hRS
g zi −

m2
j

pi · pj

)
δss′ = 〈Va

gq〉δss′ , (4.72a)

〈s|Va
gq̃|s′〉 = 8παsµ

2εCF

(
2

2− xij,a − zj
− 2−

m2
j

pi · pj

)
δss′ = 〈Va

gq̃〉δss′ , (4.72b)

〈µ|Va
gg|ν〉 = 16παsµ

2εCA

[
−ηµν

(
1

1 + zi − xij,a
+

1

2− zi − xij,a
− 2

)
+

hRS
g

2pi · pj
Cµν
]
, (4.72c)

〈µ|Va
qq|ν〉 = 8παsµ

2εTF

(
−ηµν − 2

pi · pj
Cµν
)
. (4.72d)

In contrast to the work done in Refs. [261, 267], the dipole splitting functions for processes
involving quarks and gluons in Eqs. (4.72a) and (4.72c) also include the number of helicity states
of the gluon hRSg in order to distinguish directly between the different variants of dimensional
regularization schemes. The dipole splitting function for the squarks in Eq. (4.72b) was derived by
using the Eikonal approximation for a process involving the emission of a gluon off a squark. The
function in Eq. (4.72a) for the splitting q → g + q is valid for a massive as well as a massless quark
and the one in Eq. (4.72b) for the splitting q̃ → gq̃ can also be applied to the process g̃ → gg̃ since
Eq. (4.72b) only contains the soft limit. The spin correlation tensor

Cµν =
(
z

(m)
i pµi − z

(m)
j pµj

)(
z

(m)
i pνi − z(m)

j pνj

)
(4.73)

depending on the new variables

z
(m)
i = zi − z− = zi −

1

2
(1−R(x)) , z

(m)
j = zj − z− = zj −

1

2
(1−R(x)) (4.74)

is constructed such that it reduces to kµ⊥k
ν
⊥ in the collinear limit as dictated by Eq. (4.58) and is at

the same time orthogonal to the direction of the emitter

p̃µijCµν = p̃νijCµν = 0. (4.75)

The orthogonality allows to simplify the integration of the non-diagonal dipole functions in helicity
space over the one-particle phase space in Eq. (4.70) which is complicated due to the additional
azimuthal correlations. However, the integral over the spin correlation tensor takes by Lorentz
invariance (it can only depend on p̃ij and p̃a) the form

∫ [
dpi
(
Q2, P 2, zi

)]
Cµν = −A1η

µν +A2

p̃µij p̃
ν
a + p̃νij p̃

µ
a

p̃ij · p̃a
−A3

m2
ap̃
µ
ij p̃

ν
ij

(p̃ij · p̃a)
2 +A4

p̃µa p̃
ν
a

m2
a

. (4.76)

At this point, note that the metric tensor multiplying A1 is quasi-D-dimensional as momenta are
kept in D dimensions in all dimensional schemes. Due to the transversality condition on Cµν in
Eq. (4.75) the term A4 is zero and one finds additionally A1 = A2 such that the right hand side
reduces to

−A1

(
ηµν −

p̃µij p̃
ν
a + p̃νij p̃

µ
a

p̃ij · p̃a

)
−A3

m2
ap̃
µ
ij p̃

ν
ij

(p̃ij · p̃a)
2 . (4.77)
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Therefore, A1 can be disentangled by performing the azimuthal average over the transverse
polarizations of the emitter

A1 =

∫ [
dpi
(
Q2, P 2, zi

)] 1

D − 2
dµν (p̃ij , p̃a) Cµν (4.78)

with the help of the polarization tensor

dµν (p̃ij , p̃a) = −ηµν +
p̃µij p̃

ν
a + p̃νij p̃

µ
a

p̃ij · p̃a
−m2

a

p̃µij p̃
ν
ij

(p̃ij · p̃a)2
(4.79)

which fulfills in D dimensions dµνdµν = D − 2. The coefficient A3 drops out in this computation
since dµν (p̃ij , p̃a) p̃µij p̃

ν
ij = 0. Furthermore, A3 is irrelevant because of the Slavnov-Taylor identity

p̃µijMµ = 0 which holds for any matrix element Mµ in a Becchi-Rouet-Stora-Tyutin (BRST)-
invariant theory where the polarization vector εµ(λ, p̃ij) has been amputated if all other polarization
vectors inMµ are transverse. This means in particular that the spin-averaged splitting functions
〈Va

ij〉 emerging from Eq. (4.78) are diagonal in helicity space, i.e., proportional to −ηµν . Concretely,
they are

〈Va
gg〉 = 16παsµ

2εCA

[
1

1 + zi − xij,a
+

1

2− zi − xij,a
− 2 +

hRS
g

2(1− ε) (z+ − zi) (zi − z−)

]
,

(4.80a)

〈Va
qq〉 = 8παsµ

2εTF

(
1− 2

1− ε (z+ − zi)(zi − z−)

)
, (4.80b)

where z± correspond to the integration limits in Eq. (4.71).

The Integrated Dipole Functions

The integral of the spin-averaged dipole function 〈Va
ij〉 over the dipole phase space is defined as

αs
2π

1

Γ(1− ε)

(
4πµ2

−Q̄2

)ε
Iaij (x; ε) =

∫ [
dpi
(
Q2, x, zi

)] 1

2pi · pj
1

x
〈Va

ij〉 , (4.81)

where Iaij depends on the auxiliary variable x (and Q2). As the cases mj 6= 0 and mj = 0 for
the process q → gq have to be treated separately due to the presence of an additional collinear
divergence in the massless case, the associated integrated dipole is marked with a hat Î for mj = 0

to distinguish it from the massive case. The integration generally proceeds through the integral
representation of the Gauss hypergeometric function

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− zt)a (4.82)

after applying the substitution t = (zi − z−)/(z+ − z−) to bring the dipole phase space (4.70) into
the form ∫ z+

z−

dzi [(zi − z−) (z+ − zi)]−ε = (z+ − z−)1−2ε

∫ 1

0

dt [(1− t)t]−ε . (4.83)
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In particular, the function

I1(z; ε) =z

∫ 1

0

dt
((1− t)t)−ε

1− zt = zβ(1− ε, 1− ε) 2F1(1, 1− ε; 2− 2ε; z)

=− ln(1− z) + ε

(
2 Li2(z) +

1

2
ln2(1− z)

)
+O

(
ε2
)

(4.84)

with A(x) = (z+ − z−)/(1 − x + z−) and Ã(x) = (z+ − z−)/(2 − x − z−) as arguments appears
several times. Its series expansion in ε is sketched in App. A.2 while the explicit expressions for the
integrated counterparts Iaij (x; ε) are collected in App. A.3.1.

Importantly, the functions Iaij feature an 1/(1− x)ε behavior such that the infrared divergence
appears at the endpoint x→ 1. The numerical integration over x becomes then feasible through
the application of the [...]+-distribution

g(x) = [g(x)]
+
[a,b] + δ(x− b)

∫ b

a

dy g(y) (4.85)

which serves as an artificially inserted zero to render the endpoint contribution finite. In detail,
this means that the integrated counterparts are decomposed into an infrared finite piece

[
Jaij (x)

]
+

containing all the “plus”-distributions and the endpoint part which is further decomposed a finite
Ja;NS
ij and singular Ja;S

ij piece containing the 1/ε and 1/ε2 poles:

Iagq (x; ε) = CF

{[
Jagq (x)

]
+

+ δ(1− x)
(
Ja;S
gq (ε) + Ja;NS

gq

)}
+O(ε) , (4.86a)

Iagq̃ (x; ε) = CF

{[
Jagq̃ (x)

]
+

+ δ(1− x)
(
Ja;S
gq̃ (ε) + Ja;NS

gq̃

)}
+O(ε) , (4.86b)

Iagg (x; ε) = 2CA

{[
Jagg (x)

]
+

+ δ(1− x)
(
Ja;S
gg (ε) + Ja;NS

gg

)}
+O(ε) , (4.86c)

Iaqq̄ (x; ε) = TF

{[
Jaqq̄ (x)

]
+

+ δ(1− x)
(
Ja;S
qq̄ (ε) + Ja;NS

qq̄

)}
+O(ε). (4.86d)

For the two cases involving either a soft or a collinear divergence this decomposition proceeds
practically through the identity∫ 1

x0

dx
1

(1− x)1+ε
f(x) =

(
−1

ε
+ ln (1− x0)

)
f (1) +

∫ 1

x0

dx
1

1− x (f(x)− f (1)) +O(ε) . (4.87)

For gluon emission off massive (s)quarks the final results are

[
Jagq (x)

]
+

=
2

x2

[
1

1− x

]+

[x0,1]

(
(x− 1)2

4(x(ηj − 1) + 1)2
− 1 +

1

vR(x)
ln(1 +A(x))

)
, (4.88a)

[
Jagq̃ (x)

]
+

=
2

x2

[
1

1− x

]+

[x0,1]

(
1

vR(x)
ln(1 +A(x))− 1

)
, (4.88b)

Ja;S
gq (ε) = Ja;S

gq̃ (ε) =
1

ε

(
1− 1

v
ln(A+ 1)

)
, (4.88c)

Ja;NS
gq = Ja;NS

gq̃ =
2

v

(
1

2
(v − ln(A+ 1)) ln

(
ηj

(1− x0)2

)
+ v +

1

4
ln2(1 +A) + Li2 (−A)

)
. (4.88d)

Recall that A is evaluated at x = 1 in Eqs. (4.88c) and (4.88d). For the case of the splitting process
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g → qq̄ the continuum and endpoint contributions are

[
Jaqq (x)

]
+

=

[
1

1− x

]+

[x0,1]

1

x2

(
1− 1

3
R(x)2

)
, (4.89a)

Ja;S
qq (ε) = − 2

3ε
, (4.89b)

Ja;NS
qq = −10

9
+

2

3
ln (1− x0) . (4.89c)

Obtaining the explicit form of the infrared poles for massless quarks in the splittings q → gq and
g → gg is more involved due to the fact that besides the factor 1/ (1− x)

1+ε, the function I1(−A; ε)

also diverges for x → 1 corresponding to the soft-collinear divergence. As the expansion in ε of
I1(−A; ε) is not analytic for x = 1, the hypergeometric function itself has to be placed in this case
inside the [...]+-distribution. This is achieved by introducing the argument of the hypergeometric
function as the new integration variable yA(x) = 1/A(x) = (1− x)A (x) with

A (x) =
2((1− ηa)x− 2)

ρ(2x− 3− ρ)
(4.90)

and ρ =
√

1 + 4ηa(x− 1)x. In this new variable yA only the integral

I1 (y0; ε) =

∫ y0

0

dy
1

y1+ε
I1

(
−1

y
, ε

)
= − 1

2ε2
+
π2

12
− Li2

(
− 1

y0

)
+O(ε) (4.91)

has to be computed analytically which is outlined in App. A.2. As the numerical integration
of the [...]+-distribution is still performed in terms of x, the derivative y′A(x) = ∂yA(x)/∂x =

((3− 4x)ηa − 1) /ρ3 has to be included inside the “plus”-distribution. The final results read then

[
Ĵagq (x)

]
+

=
2

x2

(
−3

4

[
1

1− x

]+

[x0,1]

+ [y′A(x)A(x) ln (1 +A(x))]
+
[x0,1]

A(x)

y′A(x)R(x)

)
, (4.92a)

Ĵa;S
gq (ε) =

1

ε2
+

1

ε

(
ln (1 + ηa) +

3

2

)
, (4.92b)

Ĵa;NS
gq =

1

2
ln2 (1 + ηa)− 3

2
ln (1− x0) + 2 Li2 (−A(x0)) +

7− r
2
− π2

6
, (4.92c)

[
Jagg (x)

]
+

=
1

x2

(
[y′A(x)A(x) ln (1 +A(x))]

+
[x0,1]

2A(x)

y′A(x)R(x)
+

[
1

1− x

]+

[x0,1]

(
R(x)2

6
− 2

))
,

(4.92d)

Ja;S
gg (ε) =

1

ε2
+

1

ε

(
ln (1 + ηa) +

11

6

)
, (4.92e)

Ja;NS
gg =

1

2
ln2 (1 + ηa)− 11

6
ln (1− x0) + 2 Li2 (−A(x0)) +

67

18
− π2

6
− r

6
. (4.92f)

4.3.3 Initial-State Emitter and Final-State Spectator

The dipole Daij in Eq. (4.59) is defined as

Daij = − 1

2pa · pi
1

xij,a

〈
. . . , j̃, . . . ; ãi, . . .

∣∣∣
m,ãi

Tj ·Tai

T2
ai

Vai
j

∣∣∣. . . , j̃, . . . ; ãi, . . .〉
m,ãi

, (4.93)
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where Vai
j describes the splitting process a→ i+ ãi. The tree-level matrix element is obtained from

the original matrix element with (m+ 1)-particles in the final state by replacing the momentum pa

of the particle a in the tree-level matrix element by the dipole momentum p̃ai, the momentum pj

of j by p̃j and discarding the final-state particle i. Similar to the previous section, only the case
where the masses of a and ãi are identical is treated.

Kinematics and Phase Space Factorization

The case of an initial-state emitter and final-state spectator is kinematically identical to the case
of a final-state emitter and an initial-state spectator after switching the roles played by ĩj and a.
Particle j takes over the role of the spectator and the associated dipole momenta are relabelled
accordingly as p̃ij → p̃j and p̃a → p̃ai. Therefore, the kinematics from Sec. 4.3.2 can be adopted
completely.

The Dipole Splitting Functions

The function Vai
j in Eq. (4.93) for the SUSY-QCD splitting process

• q̃(pa)→ g(pi) + q̃ : mi = 0 and ma = mq̃

in presence of a massive emitter ãi reads

〈Vq̃g
j 〉 = 8παsCFµ

2ε

(
2

2− xij,a − zj
− 2− m2

axij,a
pa · pi

)
. (4.94)

The same function holds for the gluino splitting process g̃ → gg̃ as well as for q → gq involving a
massive quark as Eq. (4.94) only accounts for the soft limit. For the gluino, only the color factor
CF has to be replaced by CA.

The Integrated Dipole Functions

Similar to before, the integral of the spin-averaged dipole function 〈Vai
j 〉 over the dipole phase

space is defined as

αs
2π

1

Γ(1− ε)

(
4πµ2

−Q̄2

)ε
Ia,ãij (x; ε) =

∫ [
dpi
(
Q2, x, zi

)] 1

2pa · pi
1

x
〈Vai

j 〉 (4.95)

and the intermediate results for the integrated dipoles are collected in App. A.3.2. As in the
previous section, the integral over the dipole phase space can be performed again by using the
Gauss hypergeometric function, however, besides I1(z; ε) also the function

I2(z; ε) = z

∫ 1

0

dt
((1− t)t)−ε

(1− zt)2
= zβ(1− ε, 1− ε) 2F1(2, 1− ε; 2− 2ε; z)

=
z

1− z + ε
2− z
z − 1

ln(1− z) +O
(
ε2
)

(4.96)

is needed accompanied by the additional argument B(x) = (z+ − z−)/z− next to A(x). The
extraction of the divergences proceeds then again through a decomposition of the form

I q̃q̃j (x; ε) = CF

{[
J q̃q̃j (x)

]
+

+ δ (1− x)
(
J q̃q̃;Sj (ε) + J q̃q̃;NS

j

)}
+O(ε) (4.97)
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involving the “plus”-distribution. For the massive case, using Eq. (4.87), the decomposition is
straightforward and results in

[
J q̃q̃j (x)

]
+

=

[
1

1− x

]+

[x0,1]

× 2

vR(x)x2

(
x ln(1 +B(x))− ln(1 +A(x))− 4ηax

2 (ηj − 1)x+ 1

1− v2R(x)2
vR(x)

)
, (4.98a)

J q̃q̃;Sj (ε) =
1

ε

(
1− 1

v
ln

(
1 +B

1 +A

))
, (4.98b)

J q̃q̃;NS
j =

1

v

((
v + ln

(
1 +A

1 +B

))
ln

(
ηj

(1− x0)2

)
+ ln(1 +B)

+
1

2

[
ln2(1 +B)− ln2(1 +A)

]
+ 2 Li2 (−B)− 2 Li2 (−A)

)
. (4.98c)

Performing this decomposition on the other hand in the massless case mj = 0 is again more
involved due to the presence of a soft-collinear divergence but it is possible to proceed as before
by introducing the variable yB(x) = 1/B(x) = (1− x)B (x) as the new integration variable with
B (x) = 2ηax/(ρ

2 + ρ) and by then employing the integral

I2(y0; ε) =

∫ y0

0

dy
1

y1+ε
I2

(
−1

y
; ε

)
=

1

2ε
+ ln

(
1 +

1

y0

)
+O(ε) . (4.99)

For its derivation see App. A.2. Due to the change of variables from x to yB the derivative
y′B(x) = ∂yB(x)/∂x = ηa(1− 2x)/ρ3 has to be placed inside the [. . . ]+-distribution. The different
contributions to Eq. (4.97) in the massless case are then

[
Ĵ q̃q̃j (x)

]
+

=
2

R(x)x

(
[y′B(x)B(x) ln (1 +B(x))]

+
[x0,1]

B(x)

y′B(x)

− [y′A(x)A(x) ln (1 +A(x))]
+
[x0,1]

A(x)

xy′A(x)
−
[
y′B(x)

B2(x)

1 +B(x)

]+

[x0,1]

B(x)

2y′B(x)
(1 +R(x))

)
,

(4.100)

Ĵ q̃q̃;Sj (ε) =
1

ε

(
1− ln

(
1 + ηa
ηa

))
, (4.101)

Ĵ q̃q̃;NS
j =

1

2
ln2 (ηa) + ln (ηa)− 1

2
ln2 (1 + ηa)− 2 Li2 (−A(x0)) + 2 Li2 (−B(x0)) + 2 ln (1 +B(x0)) .

(4.102)

4.3.4 Initial-State Emitter and Initial-State Spectator

The dipole for emitter and spectator both from the initial state is defined as

Dai,b =
1

−2pa · pi
1

xi,ab

〈
1̃, ..., m̃+ 1; ãi, b

∣∣∣
m,ab

Tb ·Tai

T2
ai

Vai,b
∣∣∣1̃, ..., m̃+ 1; ãi, b

〉
m,ab

, (4.103)

where the m-particle matrix element is obtained by discarding the particle i in the (m+ 1)-particle
matrix element and rescaling the momenta pk of all other final state particles to their dipole
analogues p̃k as well as pa to p̃ai while the momentum of the spectator pb remains unchanged. The
operator Vai,b in Eq. (4.103) describes the splitting a→ ãi+ i.
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Kinematics and Phase Space Factorization

a

b

k1

Vai,b

i

kn

.

.

.

pa

ãi

pi

pb

pk1

pkn

Figure 4.4: Diagrammatic interpretation of the dipole Dai,b and the associated splitting function
Vai,b.

For the parametrization of the divergences, the auxiliary variables

xi,ab =
pa · pb − pi · pa − pi · pb

pa · pb
, y =

pa · pi
pa · pb

(4.104)

are used which behave in the soft limit pµi → 0 as xi,ab → 1 and y → 0. The sum of all outgoing
momenta pk except for the soft gluon is denoted by

P = pa + pb − pi =
∑
k

pk , (4.105)

cf. Figs. 4.4 and 4.5. Furthermore, it is convenient to define the abbreviations

λab = λ
(
s,m2

a,m
2
b

)
= s2 − 4m2

am
2
b , (4.106a)

s = s−m2
a −m2

b . (4.106b)

The construction of the dipole momenta is different from the previous two cases. Instead of
modifying only the momenta of emitter and spectator, the momentum of the spectator pb remains
unchanged whereas all other momenta are modified. The new momenta

p̃µai =

√
λ (P 2,m2

a,m
2
b)

λab
pµa +

P 2 −m2
a −m2

b

2m2
b

− pa · pb
m2
b

√
λ (P 2,m2

a,m
2
b)

λab

 pµb , (4.107a)

P̃µ = p̃µai + pµb (4.107b)

pa

pi

pb

P

p̃ai

pb

P̃

Figure 4.5: Kinematics for an initial-state emitter and an initial-state spectator in the original
momenta (left) and the dipole momenta (right).
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are then built from the requirement to retain the mass-shell relations p̃2
ai = m2

ai and P̃ 2 = P 2. The
outgoing momenta pk except for pi are modified by a Lorentz transformation p̃µk = Λµνp

ν
k with

Λµν = ηµν −

(
P + P̃

)µ (
P + P̃

)
ν

P 2 + P · P̃
+

2P̃µPν
P 2

. (4.108)

If follows from direct calculation that Λµν indeed leaves the Minkowski metric invariant Λ µ
ρ Λρν =

ηµν such that it can be verified easily that the new momenta p̃k obey the on-shell condition p̃2
k = m2

k.
The definition of these momenta coincides with [266]. In order to ensure that λ

(
P 2,m2

a,m
2
b

)
remains

positive, so that the dipole momenta take only real values, the kinematical lower bound

xi,ab > x0 ≥ x̂ =
2mamb

s
(4.109)

on xi,ab has to be enforced. For values of xi,ab below x0 the splitting functions Vai,b are set to zero.
The dependence on the lower bound x0 must cancel out and can therefore be chosen arbitrarily
which offers the possibility to check whether the implementation of the subtraction procedure is
correct. The factorization of the single-particle phase space [dpi (s, x, y)] from the (m+ 1)-particle
phase space dφm+1 (pi, P ; pa + pb) is derived in App. A.1.2. It corresponds to a convolution over x
which plays the role of xi,ab∫

dφm+1 (pi, P ; pa + pb) θ(xi,ab − x0) =

∫ 1

x0

dx

∫
dφm (p̃k(x); p̃ai(x) + pb)

∫
[dpi (s, x, y)] .

(4.110)
In D = 4− 2ε dimensions the dipole phase space becomes∫

[dpi (s, x, y)] =
s2−2ε

(4π)2−εΓ(1− ε)
s−ε

√
λab

1−2ε

∫ y+

y−

dy [(y − y−)(y+ − y)]
−ε (4.111)

where the integration boundaries read

y± =
1− x

2s

(
s+ 2m2

a ±
√
λab

)
. (4.112)

From Eq. (4.107b) it can be deduced that the squared c.m. energy

s̃ = P 2 = s̄x+m2
a +m2

b (4.113)

of the reduced phase space dφm (p̃k(x); p̃ai(x) + pb) is already determined through x and the original
c.m. energy

√
s.

The Dipole Splitting Function

The dipole function Vai,b in Eq. (4.103) for the SUSY-QCD process

• q̃(pa)→ g(pi) + q̃ : mi = 0 and mai = ma = mq̃

reads
〈Vq̃g,b〉 = 8παsµ

2εCF

(
2

1− xi,ab
− 2− xi,abm

2
a

pa · pi

)
. (4.114)

The dipole splitting functions for the processes involving a gluino g̃ → gg̃ and a massive quark
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q → gq are for the pure soft limit identical to Eq. (4.114) where only the color factor CF has to be
replaced by CA for the gluino. For this reason, only the squark splitting function is treated in the
following without losing generality. The same splitting function holds if the squark is replaced by
an antisquark.

The Integrated Dipole Functions

In complete analogy to previous cases, the integrated dipole for the case of emitter and spectator
both from the initial state is defined as

αs
2π

1

Γ(1− ε)

(
4πµ2

s̄

)ε
Ia,ãi,b(x; ε) =

∫
[dpi (s, x, y)]

1

2pa · pi
1

xi,ab
〈Vai,b〉 (4.115)

and the integration can be performed again with the help of the already known integrals I1(z; ε) and
I2(z; ε) after rewriting the denominator in the dipole as 2pa · pi = ys and applying the substitution
t = (y − y−)/(y+ − y−) in the dipole phase space (4.110):∫ y+

y−

dy [(y − y−) (y+ − y)]
−ε

= (y+ − y−)1−2ε

∫ 1

0

dt [(1− t)t]−ε . (4.116)

The integrated counterpart of the splitting function (4.114) then reads

I q̃q̃,b(x; ε) =
CF√
λab

2

(1− x)1+2ε

(s
s̄

)ε(2m2
as

d1
I2(−C; ε)− s̄I1(−C; ε)

)
, (4.117)

where the new auxiliary variables C and d1 are defined as

C =
y+ − y−
y−

=
2
√
λab
d1

, d1 = s̄+ 2m2
a −

√
λab . (4.118)

Since only massive initial states are considered here, it is safe to use the series expansions of I1 and
I2. As before, the soft divergence is disentangled with the help of the [. . . ]+-prescription according
to

I q̃q̃,b(x; ε) = CF

{[
J q̃q̃,b(x)

]
+

+ δ(1− x)
[
J q̃q̃,b;S(ε) + J q̃q̃,b;NS]}+O(ε) , (4.119)

where the continuum part containing the “plus”-distribution and the endpoint parts are given by

[
J q̃q̃,b(x)

]
+

= 2

[
1

1− x

]+

[x0,1]

(d2 ln(1 + C)− 1) , (4.120a)

J q̃q̃,b;S(ε) =
1

ε
(1− d2 ln(1 + C)) , (4.120b)

J q̃q̃,b;NS =
1

C
ln(1 + C) (C + 2) +

d2

2

(
4 Li2(−C) + ln2(1 + C)

)
+ (1− d2 ln(1 + C)) ln

(
s

s̄(1− x0)2

)
(4.120c)

with d2 = s̄/
√
λab.
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4.3.5 Examples and Comparison with the Phase Space Slicing Method

To exemplify the usage of the generalized dipole method, it is applied to the processes χ̃0
1t̃1 → tg

and t̃1t̃1 → tt which are already part of DM@NLO. The correct implementation is then verified by
comparing the resulting full O(αs) corrections numerically with the ones obtained with the phase
space slicing method that was originally used for these two processes. In more detail, for the first
process with a top quark and a gluon in the final state the two-cutoff phase space slicing method
was used. Within this approach the three particle phase space is split into a hard and a soft part
by imposing a soft cutoff δs on the energy of the radiated gluon. The hard phase space region is
split further into a hard and collinear as well as a hard and non-collinear part through a collinear
cutoff δc:

σR = σhard
coll (δs, δc) + σhard

non-coll(δs, δc) + σsoft(δs). (4.121)

If there occurs no collinear divergence, as in the second process under consideration with two
top quarks in the final state, the soft cutoff is already sufficient. In this way the real emission
cross section σR is split into a finite part σhard

non-coll(δs, δc), which is safe for numerical evaluation in
four dimensions, whereas the two other parts have to be integrated analytically in D dimensions
to isolate the infrared poles. For the numerical comparison the “Scenario I” in the pMSSM-19
from Ref. [169] is used along with the hybrid on-shell/DR renormalization scheme 1 introduced in
Sec. 4.2.4. The corresponding soft-breaking parameters are reproduced for convenience in Tab. 4.1
with all input parameters defined at the SUSY-scale Q2

SUSY = mTree
t̃1

mTree
t̃2

, which is also taken to be
the renormalization scale µR = QSUSY. The associated physical mass spectrum is computed with
the public spectrum generator SPheno 3.3.3 [274,275]. The most relevant masses for the two given
processes such as the mass of the lightest neutralino, the lightest stop and the gluino are shown in
Tab. 4.1 as well. For all considered processes the integration of the three particle phase space and of

M1 M2 M3 Ml̃L
Mτ̃L Ml̃R

Mτ̃R Mq̃L Mq̃3L MũR

1278.5 2093.5 1267.2 3134.1 1503.9 2102.5 1780.4 3796.6 2535.1 3995.0

Mt̃R
Md̃R

Mb̃R
At Ab Aτ µ mA0 tanβ QSUSY

1258.7 3133.2 3303.8 2755.3 2320.9 -1440.3 -3952.6 3624.8 15.5 1784.6

mχ̃0
1

mχ̃0
2

mχ̃±1
mt̃1

mb̃1
mg̃ mh0 mH0

1279.7 2153.6 2153.5 1301.9 2554.2 1495.5 125.8 3625.6

Table 4.1: Reference scenario within the pMSSM-19 and the corresponding physical mass spectrum
for the numerical comparison. All dimensionful quantities are given in GeV.

the “plus”-distribution within the dipole subtraction method is performed by employing the VEGAS

adaptive Monte Carlo integration algorithm [276] from the CUBA-1.1 library [277], whereas the
two particle phase space is integrated with the non-adaptive Gauss-Kronrod-Patterson integration
routine from FormCalc [278]. Both algorithms also provide an estimate on the numerical error.
These are combined to the total numerical error of the NLO correction

εNLO =
√
ε2
plus + ε2

V + ε2
R, (4.122)
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computed as the geometric mean of the respective numerical errors of the “plus”-distribution (εplus),
the virtual (εV) and the real (εR) contribution. For the PSS approach, εplus is set to zero.

The Process χ̃0
1t̃1 → tg

The O(αs) SUSY-QCD corrections to neutralino-stop coannihilation into a gluon and a top quark
have been discussed in Ref. [165] including a detailed account on the application of the phase space
slicing method with two cutoffs.

At NLO, the process χ̃0
1t̃1 → tg receives contributions from the two real emission processes

t̃1(pa) + χ̃0
1(pb) −→ t(p1) + g(p2) + g(p3) (4.123)

and
t̃1(pa) + χ̃0

1(pb) −→ t(p1) + q(p2) + q̄(p3). (4.124)

The splitting of a gluon into a massless quark-antiquark pair has to be included, since the first
four quark flavors Nf = 4 are treated as effectively massless in DM@NLO. For a process involving
only three colored particles, the different color projections fully factorize in terms of the associated
quadratic Casimirs. Therefore, it is not necessary to calculate any color-correlated tree amplitudes
thanks to the relation

2T2 ·T3 |1, 2, 3〉 =
(
T2

1 −T2
2 −T2

3

)
|1, 2, 3〉 , (4.125)

which holds analogously for T1 ·T3 and T1 ·T2. The dipole factorization formula in Eq. (4.59)
yields a total of ten dipoles to compensate all infrared divergences in the three-particle phase space
for the process with two final-state gluons,

D31,2 =
1

2p1 · p3

CA
2CF
〈Vg3t1,2〉|M2 (pa, p̃31, p̃2) |2 , (4.126a)

D21,3 =
1

2p1 · p2

CA
2CF
〈Vg2t1,3〉|M2 (pa, p̃21, p̃3) |2 , (4.126b)

D23,1 =
1

2p2 · p3

1

2
〈µ|Vg2g3,1|ν〉Tµν (pa, p̃1, p̃23) , (4.126c)

Da23 =
1

2p2 · p3

1

x23,a

1

2
〈µ|Va

g2g3 |ν〉Tµν (p̃a, p1, p̃23) , (4.126d)

Da31 =
1

2p1 · p3

1

x31,a

(
1− CA

2CF

)
〈Va

g3t1〉|M2 (p̃a, p̃31, p2) |2 , (4.126e)

Da21 =
1

2p1 · p2

1

x21,a

(
1− CA

2CF

)
〈Va

g2t1〉|M2 (p̃a, p̃21, p3) |2 , (4.126f)

Da3
2 =

1

2pa · p3

1

x32,a

CA
2CF
〈Vt̃1,ag3

2 〉|M2 (p̃a3, p1, p̃2) |2 , (4.126g)

Da2
3 =

1

2pa · p2

1

x23,a

CA
2CF
〈Vt̃1,ag2

3 〉|M2 (p̃a2, p1, p̃3) |2 , (4.126h)

Da3
1 =

1

2pa · p3

1

x31,a

(
1− CA

2CF

)
〈Vt̃1,ag3

1 〉|M2 (p̃a3, p̃1, p2) |2 , (4.126i)

Da2
1 =

1

2pa · p2

1

x21,a

(
1− CA

2CF

)
〈Vt̃1,ag2

1 〉|M2 (p̃a2, p̃1, p3) |2 (4.126j)
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with the squared tree-level matrix element |M2

(
pt̃1 , pt, pg

)
|2. The tensor Tµν corresponds to the

squared leading-order amplitude where the polarization vector εµ (λ, p̃ij) of the emitter gluon has
been amputated. Since both gluons can become soft in the splittings t̃1 → t̃1g and t → tg, one
dipole is introduced for each individual gluon in the final state. To cancel the collinear divergences
from the production of the Nf massless quark-antiquark pairs, the two dipoles

D23,1 =
1

2p2 · p3

1

2
〈µ|Vq2q3,1|ν〉Tµν (pa, p̃23, p̃1) , (4.127a)

Da23 =
1

2p2 · p3

1

x23,a

1

2
〈µ|Va

q2q3
|ν〉Tµν (p̃a, p1, p̃23) (4.127b)

are needed as well. Then, the auxiliary cross section that cancels the infrared divergences of the
virtual one-loop corrections is constructed from the three insertion operators

〈1, 2, 3| I2(ε, µ2, {pi,mi}) |1, 2, 3〉 =
αs
4π

(4π)ε

Γ(1− ε) |M2|2

×
[
CA

(
µ2

s12

)ε(
2V(S) (s12,mt, 0; ε) + V(NS)

g (s12, 0,mt;κ) + V(NS)
t (s12,mt, 0)− 2π2

3

)
+ΓFDH

g (ε) + γg ln

(
µ2

s12

)
+ γg +Kg +

CA
CF

(
Γt (µ,mt; ε) + γt ln

(
µ2

s12

)
+ γt +Kt

)]
, (4.128)

〈1, 2, 3| I2,t̃1

(
x; ε, µ2; {pi,mi}, pa

)
|1, 2, 3〉 =

αs
4π

(4π)ε

Γ(1− ε) |M2|2

×
((

µ2

−¯̃t

)ε
Vg(x, t̃, 0; ε) +

(
2− CA

CF

)(
µ2

−¯̃u

)ε
Vt(x, ũ,mt; ε)

)
, (4.129)

〈1, 2, 3| I2,q̃q̃

(
x; ε, µ2; {pi,mi}, pa

)
|1, 2, 3〉 =

αs
4π

(4π)ε

Γ(1− ε) |M2|2

×
(
CA
CF

(
µ2

−¯̃t

)ε
V q̃,q̃(x, t̃, 0; ε) +

(
2− CA

CF

)(
µ2

−¯̃u

)ε
V q̃,q̃(x, ũ,mt; ε)

)
(4.130)

with s12 = s −m2
t where the first one in Eq. (4.128) corresponds to emitter and spectator both

from the final state, the second one in Eq. (4.129) to final-state emitters with the spectator from
the initial state and the last one in Eq. (4.130) to an initial-state emitter with final-state spectators.
The dipole invariants t̃ = (p̃t̃1 − p̃g)2 and ũ = (p̃t̃1 − p̃t)2 correspond to the Mandelstam variables
t = (pt̃1 − pg)2 and u = (pt − pt̃1)2 in the squared Born amplitude and they play the role of Q2.
With that, the “barred variables” ¯̃t and ¯̃u are given by

¯̃t = t̃−m2
t̃1
, ¯̃u = ũ−m2

t̃1
−m2

t . (4.131)

The insertion operator in Eq. (4.128) for emitter and spectator both from the final state as well as
the related flavor functions given by

V(S) (s12,mt, 0; ε) =
1

2ε2
+

1

2ε
ln

(
m2
t

s12

)
− 1

4
ln2

(
m2
t

s12

)
− π2

12
− 1

2
ln
(s12

s

)[
ln

(
m2
t

s12

)
+ ln

(
m2
t

s

)]
(4.132)
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V(NS)
g (s12, 0,mt;κ) =

γg
CA

(
ln
(s12

s

)
− 2 ln

(√
s−mt√
s

)
− 2mt√

s+mt

)
+
π2

6

− Li2

(s12

s

)
+

(
κ− 2

3

)
m2
t

s12

((
2Nf

TF
CA
− 1

)
ln

(
2mt√
s+mt

))
(4.133)

V(NS)
t (s12,mt, 0) =

3

2
ln
(s12

s

)
+
π2

6
− Li2

(s12

s

)
− 2 ln

(s12

s

)
− m2

t

s12
ln

(
m2
t

s

)
(4.134)

are provided in Ref. [261] where the function Γj reads for massive quarks

Γt (µ,mt; ε) = CF

(
1

ε
+

1

2
ln

(
m2
t

µ2

)
− 2

)
, (4.135)

while the definitions of the flavor functions in Eqs. (4.129) and (4.130) are available in Ref. [271].
The value of the variable κ in Eq. (4.133) can be chosen arbitrarily as its dependence must cancel
out between the virtual and real part. Within the numerical comparison it is set to κ = 0. Note that
due to Bose symmetry the dipoles which are related through the interchange of an emitted gluon
result in the same integrated dipole. Therefore, it is sufficient to incorporate one of the integrated
counterparts and weight it with a factor of two which gets canceled by the Bose symmetry factor
S3 = 1

2 of the associated real emission cross section. This counting of symmetry factors is already
incorporated into the definition of the flavor functions Vj .1 In order to perform the convolution in
Eq. (4.68), the well-known parametrization of the two-particle phase

∫
dφ (P (x), pk; pa + pb) =

1

(4π)2

1√
λ (s,m2

a,m
2
b)

∫ Q2
+(x)

Q2
−(x)

dQ2

∫ 2π

0

dϕk (4.136)

is inserted, where ϕk denotes the azimuthal angle of pk in the center-of-mass system of pa + pb.
Since the integrand is rotationally invariant, the integration over ϕk yields a factor of 2π. It remains
the determination of the integration limits of Q2 as a function of x. This is achieved by expressing
Q2 in the c.m. frame of pb and pk

Q2 = m2
b +m2

k − 2EbEk + 2|pb||pk| cosϑ

= m2
b +m2

k −
(
s+m2

b −m2
a

) (
s+m2

k − P 2
)

2s
+ cosϑ

√
λ (s,m2

a,m
2
b)
√
λ (s,m2

k, P
2)

2s
, (4.137)

where ϑ corresponds to the angle between pb and pk. The x dependence enters by expressing P 2

through x and Q2 as given in Eq. (4.64) which results in an equation that can be solved for Q2.
The integration limits

Q2
±(x) =

1

2

α(x)± β(x)

xs+ (1− x)(m2
b − xm2

a)
(4.138)

with the abbreviations

α(x) = x2
(
m4
a + 2m2

a(m2
b +m2

k)− (m2
b − s)2

)
+ 2m2

b(m
2
a +m2

j )

− x
(
m4
a +m2

a(4m2
b +m2

j +m2
k − s)− (m2

b − s)(m2
b −m2

j −m2
k)
)
, (4.139)

1The counting of symmetry factors for the general case of going from m+ 1 to m particles for a gluon and quark
as emitter is discussed extensively in Ref. [260].
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β(x) = x
√
λ (m2

a,m
2
b , s)

√
(m2

a −m2
b)

2
(1− x)2 + (1− x)

(
2m2

a

(
m2
j +m2

k(2x− 1)− sx
)

−2m2
b

(
m2
j +m2

k − sx
))

+ λ(xs,m2
k,m

2
j ) (4.140)

are then obtained by setting cosϑ to its extreme values −1 and 1. Within the integration over Q2

two different kinematical configurations have to be distinguished. The variable t̃ in Eqs. (4.129)
and (4.130) equals Q2 for the cases mj = 0, mk = mt, whereas ũ equals Q2 for mj = mt, mk = 0.
After having fixed the values of x and Q2 (ũ and t̃) in the phase space integration, the squared c.m.
energy s̃ of the new initial state with momenta p̃a and pb can be determined as

s̃ = (p̃a + pb)
2 = m2

a +m2
b +

1

R(x)

[
x(s−m2

a −m2
b)

+
Q̄2 + 2m2

ax

2Q2

(
m2
b −m2

k +Q2
)]
−
Q2 +m2

a −m2
j

2Q2

(
m2
b −m2

k +Q2
)
. (4.141)

The remaining “dipole Mandelstam variable” ũ for Q2 = t̃ and vice versa can then be deduced from
s̃+ ũ+ t̃ = m2

a +m2
b +m2

j +m2
k. As the squared tree-level matrix element is a function of the usual

Mandelstam variables s, t and u, these only need to be substituted through the dipole invariants
s̃, t̃ and ũ, respectively, in order to formulate the tree-level matrix element in terms of the dipole
momenta.

The independence of the final result on the lower integration limit x0 is shown in Fig. 4.6. For the

0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 4.6: The NLO correction times velocity v∆σNLO subdivided into the virtual part plus the
auxiliary cross section σV + σA and the real part minus the auxiliary cross section σR − σA for
the process χ̃0

1t̃1 → tg for different values of the lower integration limit x0 (left) as well as the
dependence of the NLO correction obtained with the slicing method on the soft δs as well as the
collinear cutoff δc (right). Both plots are created for the c.m. momentum pcm = 100 GeV.

numerical comparison the value x0 = 0.9 was chosen as it fulfills the condition in Eq. (4.69) for all
probed c.m. momenta. For the determination of appropriate values for the soft and collinear cutoff,
the behavior of the NLO correction is examined in dependence of both, which is shown in Fig. 4.6.
In the end, the cutoffs are chosen to be p0

2, p
0
3 ≥ δs = 3.0 · 10−4

√
s and 2p2 · p3 ≥ δc = 3.0 · 10−6s

such that they are located in the broad plateau region in the lower right half of the plot.
In Tab. 4.2 and Fig. 4.7 the total cross section obtained with the two different methods is given

for two different c.m. momenta pcm, that are typical for dark matter annihilation. Even though
all chosen cutoffs for a momentum of 100 GeV lie in the plateau region shown in the right plot of
Fig. 4.6, the central values of the correction for the smallest and largest cutoff differ by 13 %, while
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the dependence on the artificially introduced lower integration limit x0 of the dipole method is
completely compensated between the virtual and real part. Furthermore, the total numerical error
of the result obtained with the phase space slicing method for the NLO correction increases with
decreasing cutoff values which is expected as the real cross section increases like ln(δs/s) in the
soft region and like ln(δc/s) in the collinear one. In addition, the numerical integration error of the
dipole method is at least one order of magnitude lower than the one of the slicing method so that
the error of the dipole result is smaller than the linewidth in the plot. Both of these findings, the
cutoff dependence as well as the integration error, show the superiority of the dipole subtraction
method with respect to precision.

pcm [GeV] vσTree Method δs/
√
s δc/s v∆σNLO

100 4.604596

10−2 10−3 0.915± 0.036
PSS 10−4 10−6 0.974± 0.152

10−6 10−7 1.033± 0.241

Dipole 0.891± 0.002

1200 2.501535

10−2 10−3 0.408± 0.021
PSS 10−4 10−6 0.429± 0.083

10−6 10−7 0.458± 0.135

Dipole 0.385± 0.001

Table 4.2: Results on the correction v∆σNLO of the process χ̃0
1t̃1 → tg for two different c.m.

momenta pcm. All cross sections times velocity are given in 10−10 GeV−2.

The Process t̃1t̃1 → tt

As another example, the process

t̃1(pa, s) + t̃1(pb, t) −→ t(p1, i) + t(p2, j) + g(p3, a) (4.142)

is considered where the parentheses contain the particle momenta pa, pb, p1, p2, p3 and the
corresponding color indices s, t, i, j, a. This process is chosen as it allows to demonstrate and
compare the dipole formalism for situations with two massive and color charged particles in the
initial state. The NLO corrections for this process, originally performed with the slicing method,
are discussed in Ref. [169]. The auxiliary squared matrix element receives contributions from in
total twelve dipoles and reads

∣∣MA
3

∣∣2 = D13,2 +D23,1 +Da13 +Db13 +Da23 +Db23 +Da3
1 +Db31 +Da3

2 +Db32 +Da3,b +Db3,a, (4.143)

where the subtraction functions are consistently set to zero for values of x below x0 =
2m2

t

s̄ in
conjunction with Eq. (4.109).

For a process involving four colored particles it is no longer possible to factorize the color charge
algebra. However, it follows from color conservation, that four of the six color charge operators
TiTj with i 6= j can be expressed through the quadratic Casimir invariants and T1T2, T1T3
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Figure 4.7: Neutralino-stop coannihilation cross section σv with a top and a gluon in the final
state for the example scenario defined in Tab. 4.1. The leading order result is computed with
MicrOMEAGs 2.4.1 (MO) and DM@NLO (Tree). The NLO results are calculated with the
phase space slicing method (PSS) and the dipole method (Dipole). The lower panel shows the ratio
of the NLO corrections obtained with the two different approaches. The uncertainty band in the
upper panel corresponds to the total numerical error εNLO defined in Eq. (4.122). The gray shaded
area shows the thermal velocity distribution of the neutralino at the freeze-out temperature in
arbitrary units.

giving [260]:

T3T4 |1, 2, 3, 4〉 =

[
1

2
(C1 + C2 − C3 − C4) + T1T2

]
|1, 2, 3, 4〉 , (4.144a)

T2T4 |1, 2, 3, 4〉 =

[
1

2
(C1 + C3 − C2 − C4) + T1T3

]
|1, 2, 3, 4〉 , (4.144b)

T2T3 |1, 2, 3, 4〉 =

[
1

2
(C4 − C1 − C2 − C3)−T1T2 −T1T3

]
|1, 2, 3, 4〉 , (4.144c)

T1T4 |1, 2, 3, 4〉 = − (C1 + T1T2 + T1T3) |1, 2, 3, 4〉 . (4.144d)

The four color charge operators are associated with the particles in our process as follows:

T1 = Tq̃s , T2 = Tq̃t , T3 = Tti , T4 = Ttj . (4.145)

For the remaining two operators the color correlations have to be evaluated explicitly:

〈1, 2, 3, 4|T1T2 |1, 2, 3, 4〉 =
[
Mij;lt

2

]∗
T cslT

c
ktMij;sk

2 , (4.146a)

〈1, 2, 3, 4|T1T3 |1, 2, 3, 4〉 =
[
Mij;kt

2

]∗
(−T cskT cil)Mlj;st

2 (4.146b)

with the tree level matrix elementMij;st
2 . As the application of the dipole formulas has already been
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exemplified in the previous section for all emitter-spectator pairs besides the configuration where
both are from the initial state, only the two particle phase space integration in the convolution in
Eq. (4.110) needs still to be covered. In order to provide a general expression for the parametrization
of the phase space, the masses related to the momenta p1 and p2 are labelled as m1 and m2 and
the masses ma and mb of the initial particles are distiguished even though they are identical in this
case. Since the variable x enters the phase space integration only through the reduced squared c.m.
energy s̃ given in Eq. (4.113) the well-known parametrization

∫
dφ (p̃k(x); p̃ai(x) + pb) =

1

(4π)2
√
λs̃

∫ q2+(s̃)

q2−(s̃)

dq2

∫ 2π

0

dϕ′ (4.147)

with the integration limits

q2
± (s̃) = m2

a +m2
1 −

(
s̃+m2

a −m2
b

) (
s̃+m2

1 −m2
2

)
2s̃

±
√
λs̃

2s̃

√
λ (s̃,m2

1,m
2
2) (4.148)

can be employed, where q2 = (p̃a3−p̃1)2 plays the role of a Mandelstam variable and the abbreviation
λs̃ is given by λs̃ = λ(s̃,m2

a,m
2
b). The remaining dipole Mandelstam variable that enters the squared

Born amplitude is determined through m2
a +m2

b +m2
1 +m2

2− s̃− q2. For the numerical comparison
in Fig. 4.8, the cutoff for the slicing method is chosen as p0

3 ≥ δs = 10−5
√
s. In Tab. 4.3, results for

the O(αs) corrections for different cutoff values δs and c.m. momenta are shown in comparison
with the corresponding results obtained with the dipole approach. Similar to the previous example,
the integration error of the slicing method increases with decreasing cutoff values while the errors
of dipole method are at least one order of magnitude lower than the ones for small cutoff values
indicating again that the dipole method is ahead of the slicing approach.
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Figure 4.8: Same as Fig. 4.7 but for the annihilation process t̃1t̃1 → tt.
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pcm [GeV] vσTree Method δs/
√
s v∆σNLO

100 5.030288

10−2 −1.392± 0.018
PSS 10−4 −1.407± 0.032

10−6 −1.399± 0.053

Dipole −1.410± 0.007

1200 2.853008

10−2 0.821± 0.016
PSS 10−4 0.810± 0.036

10−6 0.787± 0.062

Dipole 0.802± 0.007

Table 4.3: Results on the correction v∆σNLO of the process t̃1t̃1 → tt for two different pcm. All
cross sections times velocity are given in 10−9 GeV−2.

4.4 Stop Annihilation into Gluons and Light Quarks

The small annihilation cross section of a neutralino with a mass in the O(100 GeV) region that can
be probed at the LHC [57,279] is difficult to reconcile with the measured relic DM abundance [280].
One interesting possibility to address this conundrum is to choose the lighter stop to be almost
mass degenerate with the lightest neutralino such that according to Eq. (4.10) stop coannihilation
processes in the early Universe allow to reproduce the right amount of dark matter [281–285]. Other
possibilities to enhance the effective annihilation cross section are, e.g., gluino coannihilation [286]
or direct-channel resonances at 2mχ̃0

1
[287].

A stop as next-to-lightest supersymmetric particle (NLSP) is not an unnatural assumption
since the tree-level mass of the lightest Higgs boson in the MSSM is bounded from above by
mZ0 | cos 2β| which requires large quantum corrections to be consistent with the observation of
a SM-like 125 GeV Higgs boson [288, 289]. The dominant contribution to the Higgs mass comes
from the stop sector where a large trilinear coupling At is needed in order for these corrections to
be large enough, indicating a large mass splitting in the stop sector [290]. The mass splitting is
enhanced further through the fact that the off-diagonal entries in the sfermion mixing matrix are
proportional to the associated masses of the SM partners, indicating a rather light t̃1. While the
Sommerfeld enhancement effect of stop-antistop annihilation is already taken into account in some
analyses [284,285] of the MSSM parameters space, the calculation of the full NLO corrections in αs
is long overdue, and subject of the following sections.

4.4.1 The Leading-Order Cross Section and the DM Scenario

To prepare for the subsequent discussion of the higher-order corrections and to clarify the notation,
it is instructive to start with the analytic computation of the tree-level cross sections of the processes
in Eq. (4.1) and discuss the importance of stop annihilation in the context of the neutralino relic
density.

Leading order cross section

The Feynman diagrams for the leading order processes are displayed in Fig. 4.9 along with the
naming convention for momenta and other relevant indices. Using Feynman gauge (ξ = 1) for
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(a) Graphs for the annihilation into two gluons given by the amplitude MTree
gg .
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(b) Graph for the annihilation into a massless
quark-antiquark pair given by the amplitude
MTree
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(c) Graph for the annihilation into a ghost-
antighost pair given by the amplitude STree

1 . The
amplitude for STree

2 is obtained by reversing the
ghost flow.

Figure 4.9: Tree-level Feynman diagrams associated with the annihilation of a stop-antistop pair
into gluons and quarks. Four-momenta (pa, pb, k1, k2), sfermion indices (i, j), colors (s,t,a,b,r,u)
and Lorentz indices (µ, ν) are explicitly labeled in the respective first diagrams.

internal lines and following the MSSM Feynman rules [291], the corresponding amplitudes with
amputated polarization vectors ε∗µ(λ1, k1) and ε∗ν(λ2, k2) for the annihilation into two gluons are

Mµν
s = fabcT

c
st

g2
s

s
(pb − pa)ρ (ηρν (k1 + 2k2)

µ − ηρµ (2k1 + k2)
ν

+ ηµν (k1 − k2)
ρ
) , (4.149a)

Mµν
t = (T bT a)st

ig2
s

t−m2
i

(2pa − k1)
µ

(2pb − k2)
ν
, (4.149b)

Mµν
u = (T aT b)st

ig2
s

u−m2
i

(2pb − k1)
µ

(2pa − k2)
ν
, (4.149c)

Mµν
v = i

{
T a, T b

}
st
g2
sη
µν (4.149d)

with gs =
√

4παs. These are labeled according to which of the Mandelstam variables

s = (pa + pb)
2

= (k1 + k2)
2
, (4.150a)

t = (k1 − pa)
2

= (k2 − pb)2
, (4.150b)

u = (k2 − pa)
2

= (k1 − pb)2 (4.150c)

appears in the propagator apart from the last topology which is commonly referred to as v-channel.
The total transition amplitude is then given byMTree

gg =Ms +Mt +Mu +Mv. The amplitude
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for the annihilation into a massless quark-antiquark pair on the other hand reads

MTree
qq = T astT

a
ru

ig2
s

s
(pa − pb)σ ū(s)(k1)γσv(s)(k2) . (4.151)

An important aspect of the investigated processes is that both initial- and final-state particles
are charged under SU(3)c. In order to be able to distinguish between attractive and repulsive color
potentials in the context of non-perturbative corrections to the annihilation cross section in the
non-relativistic regime like the Sommerfeld enhancement or bound-state formation, it is necessary to
decompose the tensor product representations under which the two incoming and outgoing particles
transform into their respective irreducible representations. The (s)quark-anti(s)quark system can
be decomposed into a color octet and a color singlet

3⊗ 3 = 8⊕ 1 , (4.152)

whereas the decomposition of the two-gluon system involves higher multiplet representations and
reads

8⊗ 8 = 1⊕ 8S ⊕ 8A ⊕ 10⊕ 10⊕ 27. (4.153)

For the decomposition of the tree-level scattering amplitudes

MTree
gg =

∑
R

c[R]
gg MTree

gg,[R] , (4.154a)

MTree
qq̄ =

∑
R

c
[R]
qq̄ MTree

qq̄,[R] (4.154b)

into equivalent irreducible representations R that appear simultaneously in the initial as well as
final state, the orthogonal and normalized multiplet basis elements c[R] spanning the invariant
subspaces R from Ref. [292] can be used. For the gluonic system these are

c[1]
gg =

1√
Nc(N2

c − 1)
δstδab , (4.155a)

c[8S]
gg =

√
2Nc

CF (N2
c − 4)

dabcT
c
st , (4.155b)

c[8A]
gg = i

√
1

N2
cCF

fabcT
c
st , (4.155c)

while for the quark-antiquark final state one has

c
[1]
qq̄ =

1

Nc
δstδur , (4.156a)

c
[8]
qq̄ =

1√
N2
c − 1

(
δsuδtr −

1

Nc
δstδur

)
(4.156b)

with CF = (N2
c−1)/2Nc and Nc = 3. Practically, the decomposition into the orthogonal basis elements

proceeds through the relations

T aijT
a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
, (4.157a)
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T aT b =
1

2

[
1

Nc
δab1+ (dabc + ifabc)T

c

]
(4.157b)

for the fundamental SU(Nc) generators [293].
Another important aspect in a non-Abelian theory is the treatment of internal and external

polarization states. In order to include only the physical external gluon states in the transition
probability, two different computational approaches are compared with each other. This serves
also as an internal consistency check of the calculation. The first one is to explicitly sum only the
transverse polarizations λT with the help of the completeness relation

∑
T

εµ(λT , k)∗εν(λT , k) = −ηµν +
kµnν + kνnµ

n · k − n2 kµkν

(n · k)2
(4.158)

which holds as an algebraic relation independently of the gauge fixing condition used for the gluon
propagators and where n is an arbitrary direction in momentum space that fulfills n · k 6= 0 and
ε(λT , k) · n = 0. For some lightlike n with n2 = 0 this is also referred to as the light-cone gauge.
As there appear only two external gluons in the tree-level process, it is instructive to choose n
as the momentum of the respective other gluon. The second possibility is to use only −ηµν as
polarization sum but subtract the longitudinal polarizations through ghosts. To show how the two
ghost amplitudes

STree
1 = STree

2 = −fabcT cst
g2
s

2s
(u− t) (4.159)

corresponding to the graph in Fig. 4.9c cancel precisely the longitudinal polarizations, one can use
the invariance of general n-point functions in SUSY-QCD under BRST-transformations [294,295]
to derive the two Slavnov-Taylor identities

kµ1MTree
gg,µν = −k2,νSTree

1 , (4.160a)

kν2MTree
gg,µν = −k1,µSTree

2 (4.160b)

involving the two ghost amplitudes. In more detail, Eq. (4.160a) follows from the application of the
BRST-transformations

δB q̃i = icaT
a
ij q̃j (4.161a)

δBg
µ
a =

1

gs
∂µca + fabcg

µ
b cc (4.161b)

δBca = − 1

gs
∂µg

µ
a (4.161c)

to the correlation function 〈Ω|T {q̃ q̃∗ ca gνb } |Ω〉 = 0 with |Ω〉 denoting the ground state. Equa-
tion (4.160b) is obtained in the same way but by using 〈Ω|T {q̃ q̃∗ gµa cb} |Ω〉 = 0 as the starting
expression. Consequently, Eq. (4.160) allows to replace the longitudinal polarizations corresponding
to all the terms proportional to k1 and k2 in Eq. (4.158) with ghost amplitudes. This gives for the
squared matrix element summed over final-state polarizations the final expression

MTree
gg,µν(MTree∗

gg )µν − |STree
1 |2 − |STree

2 |2. (4.162)
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The fermion spin sum for the quark-antiquark final state is performed in the usual way. After
averaging (summing) over initial(final)-state colors and performing the remaining phase-space
integration, the color-decomposed tree-level cross sections describing the annihilation into two
gluons read

(σv)Tree
gg,[1] =

16πα2
s

27sβ
[β(1 + ρ) + ρ(ρ− 2) atanh(β)] , (4.163a)

(σv)Tree
gg,[8S ] =

5

2
(σv)Tree

gg,[1] , (4.163b)

(σv)Tree
gg,[8A] =

8πα2
s

9sβ
[β(1 + 8ρ)− 3ρ(ρ+ 2) atanh(β)] (4.163c)

with ρ = 4m2
i/s and β =

√
1− ρ where v = 2β corresponds to the relative velocity of the incoming

squark-antisquark pair in the c.m. system. Only one color channel contributes to the annihilation
into a massless quark-antiquark pair giving the cross section

(σv)Tree
qq̄,[8] =

16πα2
sβ

2

27s
. (4.164)

As both processes have to be combined at NLO, it makes sense to define already at tree-level

(σv)Tree = (σv)Tree
gg +Nf (σv)Tree

qq̄ , (4.165)

where, again, Nf = 4 corresponds to the number of effectively massless quark flavors.

Illustrative Example Scenario

To illustrate the importance of stop annihilation into gluons for the neutralino abundance and
to showcase the capabilities of DM@NLO, we work in the constrained minimal supersymmetric
extension of the Standard Model (cMSSM) which contains the simplifying assumption that the
soft supersymmetry-breaking parameters unify at the gauge coupling unification scale of about
1016 GeV. This setup is entirely characterized through the universal scalar mass parameter m0, the
universal gaugino mass parameter m1/2, the ratio of the vacuum expectation values of the neutral
components of the two Higgs doublets tanβ, the universal trilinear coupling A0, and the sign of
the Higgs mixing parameter µ. Inspired by the search for non-excluded regions in the cMSSM
parameter space [296], the reference scenario displayed in Tab. 4.4 is used in the following and
MicrOMEGAs 5.3.41 with the standard CalcHEP implementation of the MSSM is used for
the computation of the relic density and the contributions of different (co)annihilation channels.2

As visible from Tab. 4.5 showing the most important (co)annihilation channels contributing to
〈σannv〉, the largest contribution comes with 36 % from stop-antistop annihilation into gluons
followed by neutralino-stop coannihilation and stop pair-annihilation into top quarks which have
been previously analyzed in Refs. [169] and [165], respectively. In total, DM@NLO provides the
full one-loop SUSY-QCD corrections to 87 % of the effective annihilation cross section. Given
that Z11 ∼ 1, this scenario features a bino-like neutralino which is not surprising as large wino
and higgsino components would lead to other gauginos being the NLSP. The gluino and slepton

2Note that numerical differences in the physical mass spectrum occur with respect to Ref. [296] since SPheno
4.0.5 is used as spectrum generator here, whereas Ref. [296] makes use of a private code. This is also the reason why
A0 = 4m0 is chosen in the example scenario in Tab. 4.4 versus A0 = 3m0 in Ref. [296].
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Figure 4.10: Contribution of the two most relevant processes to the neutralino relic density that
can be corrected with DM@NLO in the m1/2-m0 plane around the chosen reference scenario which
is highlighted with a red star. The region where the neutralino is not the LSP is marked in gray.
The orange band indicates the parameter region that is consistent with the Planck measurement
(3.2c) at the 2σ level based on the tree-level cross sections provided by CalcHEP.

73



m0 m1/2 tanβ A0 mχ̃0
1

mt̃1
Z11

3000 1400 20 12000 606.3 648.3 ∼ 1

Table 4.4: Example scenario in the cMSSM with a positive Higgs supersymmetric mixing parameter
µ where stop (co)annihliation is the dominant dark matter mechanism. All dimensionful quantities
are in GeV.

Channel Contribution

t̃1 t̃
∗
1 → g g 36 %

χ̃0
1 t̃1 → t g 29 %

χ̃0
1 t̃1 →W+ b 8 %

t̃1 t̃1 → t t 6 %

t̃1 t̃
∗
1 → γ g 4 %

χ̃0
1 t̃1 → Z0 t 4 %

χ̃0
1 t̃1 → h0 t 4 %

DM@NLO total 87 %

Table 4.5: Dominant annihilation channels contributing to 〈σannv〉 for the cMSSM scenario in
Tab. 4.4. Further contributions below 2% are omitted.

sectors are much heavier (> 2 TeV) than the stop sector such that they do not influence the dark
matter phenomenology. In Fig. 4.10, the relative contributions to the relic density of the two most
important channels are displayed in the m1/2-m0 plane in different shades of purple. As m1/2 tunes
the neutralino masses while m0 mainly determines the stop mass, it becomes clear that for larger
mass splittings between the lightest neutralino and the stop, neutralino-stop coannihilation becomes
the dominant channel whereas for smaller mass splittings annihilation of stops into gluons are the
dominant contribution. In addition, the region where the neutralino accounts for the whole dark
matter content in the Universe and lies within the 2σ range of the experimental value is marked in
orange. This region follows an almost straight line parallel to the boundary where the neutralino is
no longer the LSP.

With the knowledge that stop annihilation into gluons is important for large regions around the
reference scenario, the analytically calculated leading order cross sections for the two processes in
Eq. (4.1) can be compared numerically to the ones generated with MicrOMEGAs which are all
shown in Fig. 4.11. As a reminder that the values of the cross section impacts the relic density
only in a limited energy range, the Boltzmann distribution which is involved in the computation of
the thermally averaged cross section is shown at the freeze-out temperature in gray in arbitrary
units. One observes that the DM@NLO result is about 30 % smaller for both processes. This
is mainly due to the choice of the renormalization scale which enters at tree-level only through
the strong coupling. For the DM@NLO result, µR is set to the SUSY-scale which takes for the
particular scenario in Tab. 4.4 the value QSUSY = 1368.2 GeV. In contrast, MicrOMEGAs 5.3.41
uses by default the scale Q = 2mχ̃0

1
/33 which is smaller than QSUSY for the investigated scenario

and therefore corresponds to a larger strong coupling. The choice µR = QSUSY is motivated by the
3This scale choice is different from MicrOMEGAs 2.4.1, where Q = 2mχ̃0

1
is used.
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Figure 4.11: Leading order cross sections times velocity introduced in Sec. 4.4.1 as provided by
DM@NLO as well the corresponding results from CalcHEP indicated with the superscript MO.
All cross sections are displayed in dependence of the c.m. momentum pcm for the reference scenario
in Tab. 4.4.

fact that the besides the masses of the virtual particles in the loop, the process contains only two
important scales: the mass of the lightest stop and the collisional energy s. Since most annihilations
take place between s = 4m2

t̃1
and the peak of the velocity dis tribution at s ∼ (1.3 TeV)2, QSUSY is

a suitable choice for the renormalization scale to avoid large logarithms.
Through comparison of the different color contributions to the combined leading order cross

section depicted in Fig. 4.11 with the partial wave expansion

σv = s0 + v2s1 +O(v4) (4.166)

of a general velocity-weighted annihilation cross section σv, it becomes apparent that the singlet
and symmetric octet contributions to the cross section with two external gluons are dominated
by the s-wave component s0 since they remain almost constant in v, whereas the antisymmetric
octet part and the octet contribution to the quark-antiquark process take an inferior role and are
suppressed at threshold corresponding to the s-wave and p-wave component s1.

4.4.2 Computational Details of the Full NLO Corrections

Next, the technicalities of the full O(αs) corrections as well as the Sommerfeld enhancement are
discussed. These have been calculated and verified with the publicly available tools FeynArts

3 [297], FeynCalc 9 [298], Tracer [299] and FormCalc 9 [300].

Virtual corrections and renormalization

The virtual amplitudes consist of propagator (self-energy), vertex and box corrections. Naively one
might assume that the box corrections for the process with two final-state gluons are independent
and UV finite on their own. However, they turn out to be UV divergent and fall under the
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Figure 4.12: Example one-loop contributions to the gluon self-energy.

Figure 4.13: Contributions to the squark self-energy at one-loop.

renormalization of the four-squark-gluon vertex. Example Feynman diagrams for the different
subgroups making up the virtual corrections are shown in Figs. (4.12) to (4.20). The whole set
of diagrams is available in Ref. [171]. The longitudinal gluon polarizations are again subtracted
by using ghosts. The resulting interference term of the tree-level matrix element with the virtual
amplitudes for the process with two gluons in the final state summed over the final-state polarizations
can then be written as

2 Re
[
(MTree∗

gg )µνMNLO
gg,µν − STree∗

1 SNLO
1 − STree∗

2 SNLO
2

]
, (4.167)

where some of the ghost corrections making up the ghost amplitudes SNLO
i (i = 1, 2) are shown in

Figs. 4.17 and 4.18. The virtual corrections are regularized by working in D = 4− 2ε dimensions
within the SUSY preserving FDH scheme so that UV and IR divergences appear as poles of the
form 1/ε and 1/ε2. The standard Passarino-Veltman reduction is used to express the one-loop
amplitudes in terms of the scalar integrals A0, B0, C0, D0. The γ5-matrix which enters through the
squark-quark-gluino coupling is treated in the naive scheme. The Levi-Civita symbols that occur
then through traces of γ5 with four or more γ-matrices during the evaluation of diagrams with top
quarks as virtual particles are directly set to zero since they vanish anyway when being contracted
with the external momenta. The UV divergences that appear in the virtual corrections are removed
through the renormalization of fields, masses and the strong coupling. Within this calculation, the
hybrid on-shell/DR renormalization scheme 1 according to the definition in Sec. 4.2.4 is employed.
Since the renormalization of the gluon and the squark sector as well as the treatment of the
bottom mass and the strong coupling have already been discussed in detail in the context of other
processes [164–166], only aspects are covered in the following which are added newly to DM@NLO

within this calculation such as the renormalization of ghosts and massless quarks.

Ghost Wave-function Renormalization

As ghost and antighost share the same self-energy they can be renormalized multiplicatively with
the same wave function renormalization constant Zc. The renormalized fields are then defined as

c0a =
√
Zcc

R
a , (4.168a)

c0a =
√
Zcc

R
a . (4.168b)
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Figure 4.14: Example one-loop contributions to the triple-gluon vertex.

Figure 4.15: One-loop contributions to the squark-gluon vertex.

As Zc is only needed up to O(αs), one can apply the perturbative expansion Zc = 1 + δZc. Since
the gluon is renormalized in the on-shell scheme, the same scheme is chosen for the ghost. That is,
the ghost renormalization constant is obtained by requiring that the ghost propagator has a unit
residue also at the one-loop level. This is enforced through

δZc = −Re Π̇c

(
p2
)∣∣∣
p2=0

, (4.169)

where Π̇c

(
p2
)

= ∂
∂p2 Πc(p

2) denotes the derivative of the ghost self-energy with respect to the
external momentum p2 and is given by

Π̇c(p
2) = −αsNc

8π

(
B0(p2, 0, 0)− 1

)
. (4.170)

The only diagram contributing to Πc(p
2) is depicted in Fig. 4.21. Due to the on-shell scheme the

renormalization constant δZc contains not only UV but also IR divergent parts which both read
explicitly

δZUV
c =

αsNc
8πεUV

, (4.171a)

δZIR
c = − αsNc

8πεIR
. (4.171b)

Renormalization of the Massless Quarks

For the renormalization of massless quarks, the quark wave-function renormalization constants
Z
L/R
q are introduced for each quark chirality state separately such that

qL/R =

√
Z
L/R
q qL/R = (1 + 1

2δZ
L/R
q )qL/R. (4.172)

The renormalization constants are also determined in the on-shell scheme resulting in the condition

δZL/Rq = −Re ΠL/R
q (0) , (4.173)
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(a) Bubble contributions.

(b) Example triangle contributions.

(c) Example box contributions.

Figure 4.16: Example one-loop corrections to the four-gluon-squark vertex.

Figure 4.17: One-loop contributions to the ghost-gluon vertex.

where the scalar function Π
L/R
q (p2) follows from the decomposition of the quark self-energy Σq(p)

into its chiral parts through the projectors PL/R = 1
2 (1∓ γ5):

Σq(p) = /p
[
PLΠL

q (p2) + PRΠR
q (p2)

]
+ ΠS,L

q (p2)PL + ΠS,R
q (p2)PR . (4.174)

The two contributing Feynman diagrams are shown in Fig. 4.22. The resulting renormalization
constants contain the UV and IR divergent parts

δZUV
q = − αsCF

2πεUV
, (4.175a)

δZIR
q =

αsCF
4πεIR

, (4.175b)

where the superscripts indicating the left/right-handed chirality states are dropped here for simplicity.

Real corrections

The infrared divergences in the virtual corrections are compensated by including the two real
emission processes

t̃1t̃
∗
1 −→ gµa (k1) + gνb (k2) + gρc (k3) , (4.176a)

t̃1t̃
∗
1 −→ qr (k1) + qu (k2) + gµa (k3) (4.176b)

with q denoting an effectively massless quark and where the initial squarks carry the same color
and momentum labels as in Fig. 4.9. Some corresponding example Feynman diagrams are shown in
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Figure 4.18: Triangle and box corrections to the ghost process SNLO
1 which do not have a tree level

analogue. The diagrams for SNLO
2 can be obtained by reversing the ghost flow

Figure 4.19: One-loop contributions to the quark-gluon vertex.

Figs. 4.23a and 4.23b where the momenta of the gluons in the first process have to be read from
top to bottom starting with k1. As in the tree-level calculation, −ηµν is used here for the gluon
polarization sum such that the longitudinal polarizations are subtracted using ghosts as asymptotic
states. The result is cross checked against the result obtained with the full polarization sum (4.158).
In order to arrive at the subtraction procedure involving ghosts, one can proceed as sketched in
Sec. 4.4.1 by deriving the following two sets of Slavnov-Taylor identities from BRST-invariance.
The first set relates the amputated three-gluon amplitudeMµνρ

3 to the six ghost amplitudes Sµi ,
i = 1, . . . , 6 according to

k1,µMµνρ
3 = −kν2Sρ1 − kρ3Sν3 , (4.177a)

k2,νMµνρ
3 = −kµ1Sρ2 − kρ3Sµ6 , (4.177b)

k3,ρMµνρ
3 = −kµ1Sν4 − kν2Sµ5 , (4.177c)

where, e.g., Eq. (4.177a) follows from the application of the BRST-transformations (4.161) to the
correlation function 〈Ω|T {q̃ q̃∗ ca gνb gρc} |Ω〉 = 0. The amputated ghost amplitudes are defined
through the Feynman diagrams in Figs. (4.23c) to (4.23e) with the same color and momentum
labels as in Eq. (4.176a). The second set equates the ghost amplitudes among themselves according
to

k2,νSν4 = k3,ρSρ2 , (4.178a)

k1,µSµ5 = k3,ρSρ1 , (4.178b)

k1,µSµ6 = k2,νSν3 (4.178c)

instead. Replacing all terms proportional to the momenta k1, . . . , k3 in the polarization sum (4.158)
through the identities (4.177) for each of the three gluons and exploiting additionally the identities
in Eq. (4.178) as well as that

(Si − Si+1)∗ · (Si − Si+1) = 0 (4.179)

holds for i = 1, 3, 5 according to an explicit calculation with the help of Feynman rules, results
in the following squared matrix element summed over the physical, i.e., transverse, final-state
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Figure 4.20: Box and triangle diagrams associated with stop-antistop annihilation into light quarks.

Figure 4.21: One-loop contribution to the ghost self-energy.

polarizations

−Mµνρ
3 M∗3,µνρ +

6∑
i=1

Sµi S∗i,µ . (4.180)

To make the integration over the three-particle phase space numerically feasible and to combine
the real and virtual corrections to get an infrared safe cross section, the Catani-Seymour dipole
subtraction method for massive initial states developed in Sec. 4.3 is used. According to the dipole
factorization formula (4.59), the auxiliary squared matrix element related to dσA for the process
with three gluons in the final state consists of the 27 dipoles

|MA
t̃1 t̃∗1→ggg

|2 = D12,3 +D13,2 +D23,1 +Da1,b +Da2,b +Da3,b +Db1,a +Db2,a +Db3,a

+Da2
1 +Da3

1 +Da1
2 +Da3

2 +Da2
3 +Da1

3 +Db21 +Db31 +Db12 +Db32 +Db23

+Db13 +Da12 +Da23 +Da13 +Db12 +Db13 +Db23 , (4.181)

where the subscripts of the momenta in Eq. (4.176a) and Eq. (4.176b) are used to label the particles.
For the process containing light quarks the 15 dipoles

|MA
t̃1 t̃∗1→q̄qg

|2 = Da3,b +Db3,a +Da3
1 +Da3

2 +Db31 +Db32

+D12,3 +D13,2 +D23,1 +Da12 +Db12 +Da31 +Da32 +Db31 +Db32 (4.182)

are needed. The explicit construction of the insertion operator which cancels the infrared divergences
on the virtual side proceeds similarly to the examples provided in Sec. 4.3.

4.4.3 The Sommerfeld Enhancement

Besides the fixed-order NLO corrections, the stop-antistop annihilation cross section also receives
important contributions from the exchange of n potential gluons, i.e., virtual gluons with momenta
q ∼ O(pcm), between the incoming stop-antistop pair giving a correction factor proportional to
(αs/v)n. This is the well-known Sommerfeld enhancement introduced in Sec. 4.2.7 of higher-order
terms that can spoil the perturbativity of the cross section in the non-relativistic regime where
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Figure 4.22: One-loop contributions to the quark self-energy.

(a) Example graphs with three gluons in the final state that are associated with the amplitude M3.

(b) Graphs with light quarks in the final state.

(c) Ghosts graphs associated with the amplitude S1. S2 is obtained by reversing the ghost flow.

(d) Ghosts graphs associated associated with the amplitude S3. S4 is obtained by reversing the ghost flow.

(e) Ghosts graphs associated with the amplitude S5. S6 is obtained by reversing the ghost flow.

Figure 4.23: Example real emission diagrams for stop annihilation into gluons and light quarks.

the relative velocity is of the order of or below the strong coupling, and therefore these terms need
to be resummed to all orders in perturbation theory. The fact that the tree-level cross section is
dominated by s-wave annihilations as discussed in Sec. 4.4.1 and visible in Fig. 4.11, allows to
compute the Sommerfeld enhanced cross section

(σv)Som = S0,[8]

(
(σv)Tree

gg,[8S] + (σv)Tree
gg,[8A] +Nf (σv)Tree

qq̄,[8]

)
+ S0,[1] (σv)Tree

gg,[1] (4.183)

by multiplying the leading order contribution with the Sommerfeld factor which is defined through

S0,[R] =
ImG[R](r = 0,

√
s+ iΓt̃1)

ImG0(r = 0,
√
s+ iΓt̃1)

, (4.184)

and can be computed within the standard framework of non-relativstic QCD (NRQCD) described in
Refs. [301,302]. The Green’s function G[R](r = 0,

√
s+ iΓt̃1) is defined as solution of the Schrödinger
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equation [
H [R] −

(√
s+ iΓt̃1

)]
G[R]

(
r;
√
s+ iΓt̃1

)
= δ(3)(r) (4.185)

evaluated at the origin. The Hamiltonian is the one of quasi-stoponium and reads

H [R] = 2m2
t̃1
− 1

mt̃1

∇2 + V [R](r) . (4.186)

The QCD Coulomb potential receives important contributions from gluon and fermion loops and
reads at NLO in momentum space

Ṽ [R](q) = −C [R] 4παs(µC)

q2

{
1 +

αs(µC)

4π

[
β0 ln

(
µ2
C

q2

)
+ a1

]}
(4.187)

with the color factors C [1] = CF and C [8] = C [8S ] = C [8A] = − 1
2Nc

given by the Casimirs of the
corresponding representation and the remaining constants

a1 =
31

9
CA −

20

9
TFnf , (4.188a)

β0 =
11

3
CA −

4

3
Tfnf (4.188b)

with nf = 5 for the Sommerfeld enhancement in contrast to Nf = 4 in the fixed-order calculation
as the typical energy scale of the gluon in the Sommerfeld enhancement, O(100 GeV), is not large
enough to take top quarks into account, or contributions from even heavier particles like squarks or
gluinos. The analytic solution for the Green’s function at the origin at NLO accuracy is

G[R](r = 0;
√
s+ iΓt̃1) =

C [R]αs(µC)m2
t̃1

4π

[
gLO +

αs(µC)

4π
gNLO

]
, (4.189)

where the LO and NLO contributions are given by the expressions

gLO = − 1

2κ
+ L− ψ(0), (4.190a)

gNLO = β0

[
L2 − 2L(ψ(0) − κψ(1)) + κψ(2) + (ψ(0))2 − 3ψ(1) − 2κψ(0)ψ(1)

+ 4 4F3(1, 1, 1, 1; 2, 2, 1− κ; 1)
]

+ a1

[
L− ψ(0) + κψ(1)

]
. (4.190b)

In Eq. (4.190), the function ψ(n) = ψ(n)(1− κ) is the n-th derivative of ψ(z) = γE + d/dz ln Γ(z)

with the argument (1− κ). The remaining abbreviations are given by

κ =
iC [R]αs(µC)

2vs
, L = ln

iµC
2mt̃1

vs
(4.191)

and depend on the non-relativistic velocity of the incoming particles

vs =

√√
s+ iΓt̃1 − 2mt̃1

mt̃1

. (4.192)
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For the computation of the Sommerfeld factor, also the free Green’s function G0(0,
√
s+ iΓt̃1) =

im2
t̃1
vs/(4π) is needed. The remaining aspect to address is the choice for the Coulomb scale µC

at which the strong coupling in the QCD potential (4.187) is evaluated. Following Ref. [303], a
suitable choice is

µC = max
{

2mt̃1
vs, µB

}
. (4.193)

The first value 2mt̃1
vs is motivated by the typical momentum transfer mediated by the potential

gluons whereas the Bohr scale µB corresponds to twice the inverse Bohr radius rB and is obtained
by iteratively solving the equation

µB ≡ 2/rB = CFmt̃1
αs(µB). (4.194)

For the scenario in Tab. 4.4, the Bohr scale takes the value µB = 199 GeV and the associated value
for the strong coupling in the MS-scheme with six active quark flavors is αs(µB) = 0.1061.

As a single gluon exchange is already included in the NLO calculation (see Fig. 4.15 and
Fig. 4.16), the fixed-order and the Sommerfeld enhanced cross section have to be matched in
order to avoid double counting. This is achieved by taking only the terms starting at O

(
α2
s

)
in

Eq. (4.184) into account defining the full cross section (σv)Full. As described in the context of the
NLO corrections to squark-pair annihilation into quarks [169], it is also possible to subtract the
velocity-enhanced part from the fixed-order calculation in order to obtain the “pure” NLO cross
section which can be written as

(σv)NLO
v = (σv)NLO +

αs(µR)π

vrel

(∑
R

C [R](σv)Tree
gg,[R] +NfC

[8](σv)Tree
qq̄

)
(4.195)

with the relativistic relative velocity vrel = v/(2− ρ) .

4.4.4 Impact on the Cross Section and the Relic Density

Having calculated the virtual and real corrections as well as the Sommerfeld enhancement, the
impact of these corrections on the annihilation cross section and on the neutralino relic density
can be discussed in conjunction with the other important coannihilation channels from Tab. 4.5.
However, the discussion is kept rather generic as the precise magnitude of the corrections depends
on the specific realization of the MSSM.

Impact on the Annihilation Cross Section

For each channel shown in Tab. 4.5 that can be corrected with DM@NLO besides stop-antistop
annihilation into gluons, the tree-level (black dashed line) as well as the one-loop cross section
(blue solid line) are show in Fig. 4.24 as a function of the c.m. momentum pcm. If the Sommerfeld
enhancement is available, the corresponding cross section (green solid line) as well as the full
cross-section (red solid line) are shown as well. For reference, the cross-section produced with the
default MicrOMEGAs setup (orange solid line) is shown additionally. As before, the gray shaded
area depicts (in arbitrary units) the thermal velocity distribution, in order to demonstrate for what
pcm the cross-section contributes to the total annihilation cross-section 〈σannv〉 the most. In the
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Figure 4.24: Tree-level (black dashed line), one-loop (blue solid line), full (red solid line) if present
and MicrOMEGAs (orange solid line) cross sections for the dominant (co)annihilation channels
shown in Tab. 4.5 that can be corrected with DM@NLO including the corresponding uncertainties
from variations of the renormalisation scale µR by a factor of two around the central scale as shaded
bands. The upper part of each plot shows the absolute value of σv together with the thermal
velocity distribution (in arbitrary units), whereas the lower part shows the corresponding relative
shift (second item in the legend).
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lower part, the corresponding relative shifts of the different cross-section values (second item in the
legend) are shown. Note again that the difference between the MicrOMEGAs prediction and the
DM@NLO tree-level result is mainly due to the different choice of the renormalization scale. The
uncertainties from variations of the renormalization scale µR by a factor of two around the central
scale are displayed as shaded bands.

It becomes apparent that for stop-(anti)stop annihilation in the region of small relative velocities
the Coulomb corrections from the exchange of multiple gluons between the incoming stops dominate
the fully corrected annihilation cross section. For the gluonic final state, the singlet feels an attractive
force whereas the squark and antisquark transforming under an eight dimensional representation
are repelled from each other. In this case, the Sommerfeld corrections still lead to a total increase
of the annihilation probability even though the LO cross section is dominated by the repulsive
symmetric octet contribution. This is due the color suppression factor 1/(2Nc) in the Sommerfeld
factor for the eight dimensional representations. For vanishing relative velocities, the enhanced
cross section even diverges and approaches the well-known Coulomb singularity which could be
cured by properly taking the formation of bound states into account. However, as the Boltzmann
distribution almost vanishes for momenta around pcm = 0, such effects are heavily suppressed.
In contrast, the repulsive force dominates for stop pair-annihilation such that the corresponding
corrected cross section decreases significantly compared to the tree-level value for small relative
velocities whereas for larger pcm the fixed-order NLO corrections cause a positive shift. In general,
the NLO corrections drastically reduce in all cases the uncertainty from scale variations.

Impact on the relic density

It remains the investigation of the strong corrections on the final neutralino abundance. As before,
for this purpose, a scan in the m1/2-m0 plane around the reference scenario of Tab. 4.4 is performed
with the results shown in Fig. 4.25. There, the orange band (ΩMO

χ ) indicates the region consistent
with the observed value ΩCDMh

2 from Eq. (3.2c) purely based on MicrOMEGAs, the blue band
(ΩTree

χ ) corresponds to the prediction where the DM@NLO tree-level cross sections replace the
CalcHEP result, and the yellow band (ΩFull

χ ) is based on the full cross sections. In more detail,
this means that the integration of the number density Boltzmann equation is still performed by
MicrOMEGAs but that the cross sections are replaced by the ones implemented in DM@NLO if
available and computed by CalcHEP otherwise. Again, the width of the three bands reflects the
experimental 2σ uncertainty under the assumption that the lightest neutralino solely accounts for
all of the measured DM relic density.

One can observe a clear separation between all three bands everywhere across the shownm1/2-m0

plane. The difference between the two tree-level results is again mainly due to the different scale
choices. The black contour lines quantify the relative difference between the DM@NLO tree-level
and the full calculation of the neutralino relic density. The increase amounts to roughly 16 % to
18 % in the regions consistent with the observed relic density, therefore exceeding the experimental
uncertainty. This shift in ΩCDM is mainly due to the corrections to the gluonic final state. As a
consequence, the cosmologically favored parameter region is shifted towards larger stop masses for
a fixed neutralino mass to compensate the increased effective annihilation cross section. It should
again be stressed that DM@NLO allows to correct a large portion of the different contributions to
the relic density which is larger than 80 % in the relevant region.
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Figure 4.25: Bands compatible with the Planck measurement in Eq. (3.2c) in the m1/2-m0 plane
(left) and the plane spanned by the associated physical masses of the lightest neutralino and the
lightest stop (right) surrounding the example scenario from Tab. 4.4 shown in form of a red star.
The three bands correspond to the MicrOMEGAs calculation (orange), our tree-level (blue) and
our full corrections (yellow). The black solid lines indicate the relative change (ΩTree

χ −ΩFull
χ )/ΩTree

χ

in the relic density compared to our tree-level result.
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4.5 The Precision Code DM@NLO

It remains the presentation of the user interface of the DM precision code DM@NLO based on
Ref. [248]. As showcased in the previous sections, the code allows to numerically calculate the total
DM (co)annihilation cross-sections at next-to-leading order in the strong coupling constant for most
(co)annihilation channels within the MSSM including the Sommerfeld effect from the exchange of
gluons or photons between the incoming particles. Even though not emphasized previously, besides
providing also the O(αs) corrections to neutralino-nucleon scattering, the code also includes several
resummed corrections, such as the SUSY-QCD ∆mb resummation. As the relevance of DM@NLO

for direct detection has not yet been covered in this thesis before, the installation and running of
the program is only presented after a brief review of the calculation of the spin-independent as well
as spin-dependent elastic neutralino-nucleon scattering cross sections, since this is necessary to
correctly interpret the DM@NLO output.

4.5.1 The Neutralino Direct Detection Rate

Results of direct dark matter detection experiments are usually presented as exclusion limits on
the spin-dependent (SD) and spin-independent (SI) DM-nucleon scattering cross-sections, σSD

N and
σSI
N , as a function of the DM mass (see Sec. 3.4.2). However, as the typical energies in a direct

detection experiment are much smaller than the heavy particle masses of the microscopic theory
mediating the interaction between DM and the constituents of a nucleon, it is customary to perform
the calculation in the language of an effective field theory [304–307], i.e., by integrating out those
heavy mediators. The spin-independent cross section

σSI
N =

µ2
N

π
|gSI
N |2 (4.196)

is then expressed through the SI effective DM coupling to nucleons gSI
N with µN = mNmχ/(mN+mχ)

being the reduced mass of the DM-nucleon system. The effective coupling is computed as

gSI
N =

∑
q

〈N | q̄q |N〉αSI
q , (4.197)

where the sum runs over all six quark flavors q and αSI
q is the Wilson coefficient describing the

SI interaction between quarks and the DM particle. The nuclear matrix element 〈N | q̄q |N〉 can
be qualitatively understood as the probability of finding the quark q inside the nucleon N and is
commonly expressed through the scalar nuclear form factors fNTq as

〈N |mq q̄q |N〉 = fNTqmN (4.198)

with the quark mass mq and the nucleon mass mN . The scalar coefficients fNTq are determined from
experiment and lattice QCD and are another source of theoretical uncertainties. To highlight the
latter point, in Tab. 4.6 the associated values that are hardcoded in DM@NLO and the two other
DM packages DarkSUSY and MicrOMEGAs are shown. The heavy quark form factors fNTq are
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Scalar coefficient DM@NLO DarkSUSY MicrOMEGAs

fpTu 0.0208 0.023 0.0153
fnTu 0.0189 0.019 0.0110
fpTd 0.0411 0.034 0.0191
fnTd 0.0451 0.041 0.0273

fpTs = fnTs 0.043 0.14 0.0447
fpTc = fpTb = fpTt 0.0663 0.0595 0.0682
fnTc = fnTb = fnTt 0.0661 0.0592 0.0679

Table 4.6: Scalar nuclear form factors fNTq used in DM@NLO based on Ref. [309], DarkSUSY
6.4 based on Ref. [310] and MicrOMEGAs 5.3 [215].

obtained from those related to light quarks via the relation [308]

fNTc = fNTb = fNTt =
1

27

(
1−

∑
q=u,d,s

fNTq

)
. (4.199)

The SD scattering cross section for DM on a single nucleon on the other hand is given by

σSD
N =

3µ2
N

π

∣∣gSD
N

∣∣2 , (4.200)

where the effective SD coupling gSD
N between DM and nucleons reads

gSD
N =

∑
q=u,d,s

(∆q)N α
SD
q (4.201)

with the SD Wilson coefficient αSD
q describing the DM-quark interaction. In contrast to the SI case,

the sum runs only over the light quarks u, d and s, as these carry the largest fraction of the nucleon
spin which in turn is quantified through the axial-vector form factors (∆q)N . The corresponding
numerical values in DM@NLO are identified with those in MicrOMEGAs 5.3, given by

(∆u)p = (∆d)n = 0.842 ,

(∆d)p = (∆u)n = − 0.427 ,

(∆s)p = (∆s)n = − 0.085 .

(4.202)

To provide a numerical example for the application of DM@NLO to direct detection, the
neutralino-nucleon cross-sections for different values of m1/2 around the example scenario from
Tab. 4.4 is shown in Fig. 4.26, while a detailed discussion of direct detection in NLO SUSY-QCD is
available in Ref. [191]. The upper panels show the SI proton (left) and neutron (right) cross sections,
whereas the corresponding SD quantities are presented in the two lower panels. All quantities have
been calculated with the DM@NLO code at tree level (black solid line), including the full O(αs)

corrections to the dominant effective operators (blue solid line), MicrOMEGAs (orange solid
line) and the corresponding analytic tree-level calculation.4 Also shown are all three values of the

4More precisely, the orange solid line corresponds to the MicrOMEGAs function nucleonAmplitudes, which
includes additionally the box corrections calculated in Ref. [188], while the green dotted line corresponds to the

88



604 605 606 607 608 609

mχ̃0
1

[GeV]

1394 1396 1398 1400 1402 1404 1406

m1/2 [GeV]

10−49

10−48

10−47

σ
S

I
p

[c
m

2
]

σSI,Tree
p

σSI,NLO
p

σSI,MO
p

σSI,MO,Tree
p

ΩTree
χ

ΩFull
χ

ΩMO
χ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
χ
h

2

604 605 606 607 608 609

mχ̃0
1

[GeV]

1394 1396 1398 1400 1402 1404 1406

m1/2 [GeV]

10−49

10−48

10−47

σ
S

I
n

[c
m

2
]

σSI,Tree
n

σSI,NLO
n

σSI,MO
n

σSI,MO,Tree
n

ΩTree
χ

ΩFull
χ

ΩMO
χ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
χ
h

2

604 605 606 607 608 609

mχ̃0
1

[GeV]

1394 1396 1398 1400 1402 1404 1406

m1/2 [GeV]

1.26

1.28

1.30

1.32

1.34

1.36

1.38

σ
S

D
p

[1
0−

46
cm

2
]

σSD,Tree
p

σSD,NLO
p

σSD,MO
p

σSD,MO,Tree
p

ΩTree
χ

ΩFull
χ

ΩMO
χ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
χ
h

2

604 605 606 607 608 609

mχ̃0
1

[GeV]

1394 1396 1398 1400 1402 1404 1406

m1/2 [GeV]

1.26

1.28

1.30

1.32

1.34

1.36

1.38

σ
S

D
p

[1
0−

46
cm

2
]

σSD,Tree
p

σSD,NLO
p

σSD,MO
p

σSD,MO,Tree
p

ΩTree
χ

ΩFull
χ

ΩMO
χ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
χ
h

2

Figure 4.26: Spin-independent (top) and spin-dependent (bottom) neutralino-nucleon cross sections
for protons (left) and neutrons (right) in the example scenario in Tab. 4.4 for different values of the
universal gaugino mass parameter as well as the corresponding neutralino relic density obtained
with MicrOMEGAs (MO), our tree-level calculation (Tree) and with our full calculation (Full).
The upper and lower limits imposed by Eq. (3.2c) are indicated through the gray band.
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resulting relic density (ΩMO
χ , ΩTree

χ , ΩFull
χ ) with the same color coding as in Fig. 4.25, as well as

the Planck compatible value through a gray band. Note that the three curves increase as expected
with the neutralino mass.

4.5.2 Installing and Running DM@NLO

The source code of the DM@NLO package is written in Fortran 77 and the corresponding
C++ interface is designed similarly to the precision code Resummino [311,312] for resummation
predictions for gaugino and slepton pair production at hadron colliders. It is publicly available
for download at the web page https://dmnlo.hepforge.org and is licensed under the European
Union Public Licence v1.1.

The code can be compiled with the GNU compiler collection (GCC) and CMake version 3.0 or
higher. As external dependencies, the libraries SLHALib-2.2 [313] and LoopTools-2.16 [244] are
required for reading particle spectra following the Supersymmetry Les Houches Accord 2 (SLHA 2)
convention [314,315] and for evaluating one-loop integrals, respectively. The code ships directly with
slightly modified versions of both libraries, as well as the CUBA-1.1 [277] library for performing
multidimensional phase space integrals through the VEGAS Monte Carlo algorithm [276].

Installation

After the successful download, the code can easily be unpacked and installed by running the
following commands in a Unix shell:

1 tar xvf DMNLO-X.Y.Z.tar

2 cd DMNLO-X.Y.Z

3 mkdir build

4 cd build

5 cmake .. [options]

6 make

7 make install

The last command is optional and places the DM@NLO binary dmnlo as well as the static
library libdmnlo.a in the top-level source directory, which is the setup we assume in the following.
Otherwise, the executable can be found in build/bin and the library in build/src. To install the
code, e.g., system wide, the installation directory can be set with the cmake option

-DCMAKE_INSTALL_PREFIX=

Compilers different from the default C, C++ and Fortran compilers identified by CMake can
be set with

-DCMAKE_<LANG>_COMPILER=

The path to an alternative LoopTools installation can be specified with -DLOOPTOOLS=PATH after
setting -DBUILD_LOOPTOOLS (default: ON) to OFF if libraries and headers are installed in the same
folder, or through LOOPTOOLS_INCLUDE_DIR and LOOPTOOLS_LIB_DIR if not.

After successful compilation, the local installation can be tested by running the commands

output of the function MSSMDDtest(loop=0,...) with the additional QCD corrections turned off QCDcorrections=0.
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Process Folder References Sommerfeld

χ̃0
mχ̃

0
n, χ̃

±
i χ̃
±
j , χ̃

0
nχ̃
±
i → qq̄, qq̄′ ChiChi2QQ [158,162,163,166] 7

χ̃0
nq̃i → q′φ, q′V̄ , q′g with q, q′ ∈ {t, b} NeuQ2qx [164,165,271] 7

t̃1t̃
∗
1 → V V, V φ, φφ, `¯̀ QQ2xx [167] 3

q̃iq̃
′
j → qq′ with q, q′ ∈ {t, b} stst2QQ [169] 3

τ̃1τ̃
∗
1 → tt̄ staustau2QQ [170] 3

t̃it̃
∗
j → gg, qq̄ with q ∈ {u, d, c, s} stsT2xx [171] 3

χ̃0
1N → χ̃0

1N DD [191] –

Table 4.7: List of (co)annihilation and elastic DM-nucleon scattering processes included in
DM@NLO, given together with the location of the corresponding source code in run_dmnlo,
the references to the original publication and whether the Sommerfeld enhancement is included.
Here, φ = {h0, H0, A0, H±}, V = {Z0,W±, γ}, V̄ = V \ {γ}, and ` (¯̀) can be any (anti)lepton.
The indices can take the values {m,n} = {1, 2, 3, 4}, {i, j} = {1, 2}.

1 ./dmnlo --help

2 ./dmnlo input/DMNLO.in

in a shell. The source files of the C++ interface to DM@NLO are located in src, whereas the
processes themselves implemented in Fortran 77 are collected in the folder run_dmnlo. The
name of each subfolder for every process supported by DM@NLO is summarized in Tab. 4.7,
together with the key references documenting the corresponding calculational details. The directory
external contains external dependencies like LoopTools or SLHALib. The folder input/demo
provides for every process available in DM@NLO, sorted according the arXiv number of the
corresponding publication, the associated example scenarios as SLHA 2 files as well as Python

3 plotting routines that partially use PySLHA [316] to read the particle spectra and allow to
reproduce the most important cross section plots.

Running DM@NLO from the command line

As indicated above, DM@NLO can be executed in a shell through the command

./dmnlo <dmnlo-input-file>

where the mandatory argument <dmnlo-input-file> provides the path to a configuration file in
plain text format specifying the process and corresponding input parameters. Details on all the
available options in such an input configuration file are extensively documented in App. C.1. One
example input file delivered with the code is input/DMNLO.in. Alternatively, the parameter values
defined in the input file can also be passed through the command line interface (CLI), which then
supersedes the value included in the text file. In the following, all possible command line options
are described. A concise summary is also provided in App. C.2. The command line options follow
the same naming convention as the variables in the configuration file, so that the transfer from the
command line to the input file is straightforward. The general options that are valid for both the
relic density as well as the direct detection module are going to be introduced first.

The path to the SLHA file containing the numerical values of masses, mixing angles and decay
widths has to be defined with --slha. The value of the renormalization scale in GeV is fixed
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through the --muR option whereas the renormalization scheme must be set to one of the three
schemes defined in Sec. 4.2.4 with the option --renscheme. Again, the mixed DR-OS scheme no. 1
is the recommended one.

The --choosesol option defines the solution in the heavy quark sector, with 0 being the
recommended option, where the solution is chosen such that the dependent stop mass mt̃2

is closest
to the corresponding on-shell value from the SLHA file (see the discussion in Sec. 4.2.4). The
arguments 1 and 2 then correspond to the two solutions in Eq. (4.30a) and (4.30b), respectively. If
DM@NLO is used from the command line and the renormalization scheme fails, the code simply
stops after issuing a warning.

Also included is a legacy option which can only be turned on through the CLI by passing the
flag --legacy. This mode defines the weak mixing angle θW and the W -mass as in the default
MSSM model file in MicrOMEGAs 2.4.1, i.e., sin θW = 0.481 and mW = cos θWmZ with mZ

being the on-shell Z-mass. This option is included since this definition was adopted in DM@NLO

before the public release and allows to reproduce results from earlier publications. Starting with
v1.0.0, however, the electroweak mixing angle is defined through the on-shell Z- and W -mass from
the SLHA 2 file as

sin2 θW = 1− m2
W

m2
Z

. (4.203)

Note that the legacy option should only be used for the reproduction of previously published results.
Lastly, the perturbative order of the calculation needs to be specified. This is only possible

through the CLI. The argument --lo leads to LO-accurate predictions and --nlo to NLO accuracy.
For the calculation of (co)annihilation cross sections there are two more accuracy options. The flag
--sommerfeld returns the Sommerfeld enhancement alone, whereas --full returns the NLO result
matched to the Sommerfeld enhancement. Otherwise the highest order available is assumed. If no
Sommerfeld enhancement is available, the --full option returns just the NLO cross section.

The initial and final particles of the (co)annihilation process are fixed according to the PDG num-
bering scheme [317]. The two options --particleA and --particleB fix the initial state, whereas
the two produced SM particles must be referred to by setting --particle1 and --particle2. The
collisional energy

√
s has to be defined with --pcm, which is the center-of-mass momentum pcm of

the incoming particles. The option --result controls whether the output contains the total cross
section σ or the cross section times velocity σv, both in units of GeV−2, where the relative velocity
is defined as v = 2λ1/2(s,m2

a,m
2
b)/s with λ being the Källén function.

The direct detection module is enabled through the --DD option, which supersedes the specified
(co)annihilation settings. The output contains then the SI and SD scattering cross sections of the
lightest neutralino on protons and neutrons in cm2, respectively. The scalar nuclear form factors
from Tab. 4.6 can be found (and modified) in DD/DD_Init.F. The --formfactor option followed
by an integer number (0 for DM@NLO, 1 for DarkSUSY and 2 for MicrOMEGAs) allows the
user to select a set of values from Tab. 4.6.

The DM@NLO library

To facilitate the usage of DM@NLO from within other codes like MicrOMEGAs, the static
library libdmnlo.a provides the two functions
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1 double cs_dmnlo(order,na,nb,n1,n2,PcmIn,muR,&slha,rs,sol,&corrFlags)

2 void dd_dmnlo(order,muR,&slha,rs,sol,ff,&cs)

where the former returns the total (co)annihilation cross section and the latter writes the SI and SD
DM-nucleon cross sections into the array cs. The renormalization scale is set with muR, the SLHA
2 input file with slha, the renormalization scheme through the flag rs and the associated solution
for the three soft-breaking parameters with rs. The parameter sol corresponds to the choosesol
option and ff in the argument set of the direct detection function to the formfactor option.

The integer order specifies the perturbative order of the calculation. Possible values are 0 for
the LO result, 1 for the NLO result. For the computation of the (co)annihilation cross section, two
additional options are available for the order parameter, namely 2 for the full result (including
NLO calculation and Sommerfeld enhancement) and 3 for the Sommerfeld enhanced cross section
alone (without including the NLO calculation).

The parameters na and nb are needed to fix the incoming particles through their respective
PDG numbers, while n1 and n2 are meant to specify the two particles in the final state. The
center-of-mass momentum is set through PcmIn. Finally, the integer array corrFlags allows to
turn certain processes on and off, which may be useful if the corresponding contribution to the relic
density is known to be negligible.

The static library libdmnlo.a also provides the two functions

1 int canImprove_dmnlo(na,nb,n1,n2)

2 int consistent_RS_dmnlo(rs,&slha,muR)

The former allows to check whether a given process can be corrected with DM@NLO, while the
latter verifies whether the particle spectrum contained in slha yields a stable renormalization
scheme. Alternative to the manual decision what annihilation channels to include, the file

minimal_example.cpp

located in external/micromegas_5.3.41/MSSM exemplifies the use of these functions with Mi-

crOMEGAs in a way that only those channels contributing more than 2 % to the relic density are
corrected. Before compiling the minimal example file through

make main=minimal_example.cpp

the file micromegas_5.3.41/include/modelMakefile has to be replaced with the associated
modified version shipped with DM@NLO. This can be achieved by running

tar xvfk micromegas_5.3.41.tgz

in the external/ directory where the tar option -k (or --keep-old-files) ensures that the
modified version of modelMakefile containing the paths to the required libraries according to the
default installation of DM@NLO is retained. For different paths or an alternative MicrOMEGAs

version, modelMakefile has to be adjusted accordingly by the user. After successful compilation,
the MicrOMEGAs interface can be tested by running

./minimal_example Scenario.spc

in a shell from the MSSM folder. For more details on the usage of the corrFlags argument, we refer
to the explanation given in minimal_example.cpp.
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4.6 Summary

In this chapter, higher-order corrections in the strong coupling constant to the neutralino relic
density in the context of the DM@NLO program have been investigated. The latter is a numerical
package designed for the precision calculation of dark matter (co)annihilation processes and direct
detection in the MSSM. To better understand dark matter annihilation beyond leading order, many
technical aspects entering a dark matter annihilation cross section at next-to-leading order have
been introduced like a suitable regularization and renormalization prescription. In particular, an
extension of the dipole subtraction method to massive initial states has been presented which
now allows the cancellation of infrared divergent pieces between virtual and real corrections also
beyond collider settings in a cosmological context. To illustrate the calculation of higher-order
corrections, the NLO SUSY-QCD corrections to stop-antistop annihilation into gluons and light
quarks have been presented in detail, finding that the two processes which are separate at leading
order have to be combined at NLO in order to guarantee a well-defined and infrared safe cross
section. From a physical point of view, these calculations were motivated by the fact that the
increasing collider limits on the lightest neutralino mass are difficult to reconcile with the measured
dark matter abundance as pure neutralino annihilation for mχ̃0

1
& 100 GeV often times leads to

an overabundance. One possibility to circumvent this issue is colored coannihilation with the
lightest stop as the NLSP. Then, the impact on the relic density has been investigated in a typical
supersymmetric dark matter scenario using DM@NLO with the result that the inclusion of higher-
order corrections to the relic density exceeds the experimental uncertainty of the dark matter content
in the Universe. Apart from the benefit of having more precise predictions, it was shown that he
inclusion of NLO corrections reduces the dependence of the cross section on the renormalization
scale in the perturbative regime significantly. Thus, another major advantage of using NLO cross
sections and beyond is the possibility to estimate theory errors. Lastly, it should be mentioned that
the general structure of the code is well suited for the extension to non-supersymmetric models.
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Chapter 5

Early Kinetic Decoupling of
Forbidden Dark Matter

As already discussed, a theoretically appealing explanation of dark matter is that all of the
corresponding energy density is made up of a single new elementary particle species with sufficiently
strong interactions with the Standard Model to have established full thermal equilibrium at some
point in the early Universe. Again, in this picture, today’s DM relic abundance is set once the
DM annihilation cross section falls below the Hubble expansion rate so that the dark sector drops
out of chemical equilibrium and the DM number density becomes an effective comoving constant,
a process referred to as freeze-out. Within the usual approach to determine the relic density,
the classical Boltzmann equation describing the evolution of the DM phase space distribution
function in a FLRW Universe is solved. To simplify the calculation, the majority of numerical DM
codes, e.g., Refs. [209, 210,214,218], assume that kinetic equilibrium holds until long after chemical
decoupling which then allows to trace only the integral over the DM phase space distribution
function, i.e., the number density [80,81]. However, kinetic decoupling might occur much earlier
than chemical decoupling even in simple models given that the DM annihilation cross section
exhibits a strong velocity dependence caused by, e.g., resonances, thresholds or the Sommerfeld
enhancement effect [83, 84, 318, 319]. As a consequence, the final value of the relic abundance
can be altered by more than an order of magnitude compared to the traditional number density
approach [83,84]. In order to adequately model the effect of early kinetic decoupling, extensions
of this “standard” number density Boltzmann equation (nBE) approach have been developed. As
discussed in Ch. 3, possibilities are for example (1) to solve a set of coupled Boltzmann equations
(cBE) assuming that deviations from equilibrium are entirely described by the chemical potential
and the temperature or (2) to obtain a numerical solution for the full Boltzmann equation (fBE)
at the level of the phase space distribution function. Compared to the nBE treatment, the fluid
approximation consists of two coupled Boltzmann equations, one for the number density and one
for the velocity dispersion (“the DM temperature”) by keeping the assumption of a thermal DM
distribution, but at a temperature different from the photon temperature. It should be noted
that the same kind of hydrodynamical formalism is also used to estimate the mass of the smallest
dark matter subhalos [82] and to model the dynamics of domain walls within cosmological phase
transitions [320]. Both of these two methods are available in the publicly available and Wolfram
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Language based numerical precision code DRAKE [84]. However, the default implementation
of the elastic collision term for both approaches relies on a Fokker-Planck (FP) type operator
derived under the assumption of a small-momentum transfer between DM and SM particles in
the thermal bath compared to the average DM momentum which is not necessarily the case if the
DM particle and the scattering partner are close in mass. This, however, is a defining feature of
forbidden or sub-threshold DM, which is a class of models where DM dominantly annihilates into
heavier states [77,321,322]. These annihilations are made possible through the sufficiently large
temperatures in the early Universe.

Going beyond the current state of research described above, based on Ref. [99], a C-based
Boltzmann equation solver with full elastic collision terms for both approaches is presented in this
chapter and, as an example, the forbidden DM model [323] is analyzed in which a singlet Dirac
DM particle couples to SM leptons via a new scalar mediator. Again, the important part is that
the analysis is carried out at the level of the phase space density without relying on simplifying
approximations of the elastic collision term or on the Fokker-Planck version of the cBE approach
alone as in Ref. [324]. For this purpose, all angular integrals of the full elastic collision term are
performed analytically. This calculation and the associated methodology respond to the increasing
interest in full solutions of the momentum-dependent Boltzmann equation not only in the context
of the DM relic density [78,84,325–329], but also in many other areas, e.g., the precise computation
of the effective number of neutrino species in the early Universe [330], leptogenesis [331], cosmic
inflation [332] and gravitational waves from first order phase transitions [333]. As an alternative to
the Boltzmann framework, Langevin simulations have been proposed to deal with nonequilibrium
momentum distributions of non-relativistic DM in a FLRW background [334].

This chapter is composed as follows: the particle content of the forbidden DM model is introduced
in Sec. 5.1. The parametrization of the collision term is shown in Sec. 5.2 followed by the outline
of the numerical solution strategy for the momentum-dependent Boltzmann equation in Sec. 5.3.
The detailed comparison of the relic density obtained with the different approaches including
a discussion of the evolution of the phase space distribution function and the effect from DM
self-scattering processes is performed in Sec. 5.4, followed by the presentation of the impact of
current and projected limits besides the relic density from CMB observations, beam-dump and
collider experiments on the parameter space. Conclusions are given in Sec. 5.5.

5.1 The Leptophilic Forbidden Dark Matter Model

The forbidden DM model under consideration consists of a Dirac fermion χ as DM with gχ = 2

degrees of freedom, which couples only to SM leptons through a real scalar φ as mediator. After
electroweak symmetry breaking, the effective Lagrangian reads

L = LSM +
1

2
φ(�−m2

φ)φ+ χ̄(i/∂ −mχ)χ− gSijφl̄ilj − igPijφl̄iγ5lj − gSχφχ̄χ− igPχ φχ̄γ5χ, (5.1)

with the flavor indices i, j = e, µ, τ . In the absence of lepton flavor violation, the associated DM
annihilation cross section into leptons reads

(σvlab)χχ̄→ll̄ =
4π
√

1− 4m2
l /s

s− 2m2
χ

αPχ s+ αSχ
(
s− 4m2

χ

)
(s−m2

φ)2 + Γ2
φm

2
φ

(
αPll s+ αSll

(
s− 4m2

l

))
, (5.2)
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with the laboratory velocity vlab =
[
s(s− 4m2

χ)
]1/2

/(s− 2m2
χ), αS,Pi(i) = (gS,Pi(i) )2/(4π) and the decay

width of the mediator

Γφ =
1

2

∑
i=χ,l

√
m2
φ − 4m2

i

[
αSi(i)

(
1− 4m2

i

m2
φ

)
+ αPi(i)

]
, (5.3)

where the sum runs over all kinematically accessible decay channels. The phenomenology of this
model in the sub-threshold regime and its relic density within the standard kinetic equilibrium
approach for a small mass difference δ = (ml −mχ)/mχ have already been explored extensively in
Ref. [323]. Given that Eq. (5.1) seems to contradict invariance under the electroweak gauge group,
it is necessary to find an ultraviolet-complete alternative. This is, e.g., possible by extending the
two-Higgs-doublet model by an SU(2)L scalar singlet which then couples to the new fermion acting
as DM [335]. With a focus on the early kinetic decoupling effect, the study of the effective theory
has been repeated in Ref. [324] where the relic density was computed with the cBE treatment based
on the small momentum transfer approximation resulting in a reduction of the viable parameter
space. However, as already pointed out by Refs. [84,324], the FP approximation breaks down if the
particles scattering off of each other are very close in mass, as it is the case in forbidden scenarios.
For this reason, the main objective of this calculation is to include the full elastic collision term
not only in the set of coupled Boltzmann equations but also to go beyond the cBE treatment and
investigate the relic density as a solution of the full Boltzmann equation at the level of the phase
space density (fBE).

5.2 Parametrization of the Elastic Collision Term

The inclusion of the full elastic collision term (3.14) requires a suitable parametrization of the
associated momentum integrals. A general, yet numerically very expensive, parametrization of the
collision term for generic two-particle interactions without any assumptions on the matrix element
based on Ref. [336] is derived in App. B.1.1 and has been the method of choice in the literature so
far to evaluate the full collision term in the context of predicting the DM relic abundance, see e.g.,
Refs. [327–329].

In contrast to this common method, the particular case is considered here where the matrix
element depends only on one Mandelstam variable whose spatial component is labeled as k2 and
that can be brought into the form

|Mab→12|2 = c0 +
c1

∆1 − k2
+

c2
(∆2 − k2)2

, (5.4)

with the k-independent coefficients ci and the two other free parameters ∆1, ∆2 since this the
form of the elastic scattering matrix relevant for the investigated model. From the Lagrangian in
Eq. (5.1) one obtains ∆1 = ∆2 = (Ea − E1)2 −m2

φ and the coefficients

c0 = 64π2(αSχ + αPχ )(αSll + αPll ), (5.5a)

c1 = 128π2
{(
αSll + αPll

)(
αSχ(m2

φ − 2m2
χ) + αPχm

2
φ

)
− 2αSll(α

S
χ + αPχ )m2

l

}
, (5.5b)

c2 = 64π2
(
αSχ(m2

φ − 4m2
χ) + αPχm

2
φ

)(
αSll(m

2
φ − 4m2

l ) + αPllm
2
φ

)
. (5.5c)
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The advantage is that one can work out a more suited parametrization which allows to perform
seven out of the nine momentum integrals analytically. As shown in App. B.2, the collision operator
reads in the end

Ĉel[fa] =
1

128π3|pa|ga

∫ ∞
m1

dE1

∫ ∞
max(mb,E1−Ea+m2)

dEb Π(Ea, Eb, E1)P(fa, fb, f1, f2), (5.6)

where the integration kernel defined through

Π(Ea, Eb, E1) = Θ(k+ − k−)

∫ k+

k−

d|k| |Mab→12|2 (5.7)

requires one more integration over |k| which, however, can be performed analytically for the matrix
element in Eq. (5.4) with the help of the two integrals

I1(∆, a, b) =

∫ b

a

dx
1

∆− x2
=


1

2
√

∆

[
ln
(√

∆−a√
∆−b

)
+ ln

(
b+
√

∆
a+
√

∆

)]
,∆ > 0

1
b − 1

a ,∆ = 0

1√
−∆

[
atan

(
a/
√
−∆

)
− atan

(
b/
√
−∆

)]
,∆ < 0

, (5.8a)

I2(∆, a, b) =

∫ b

a

dx
1

(∆− x2)2
=

1

2∆

(
a

a2 −∆
− b

b2 −∆
+ I1(∆, a, b)

)
, (5.8b)

thus, requiring the same, or even less, computational effort as the annihilation term in Eq. (3.12).
It should be stressed that the application of this technique is not limited to elastic scatterings
but can also be applied to, e.g., the annihilation operator if quantum statistical effects need to be
included. Meanwhile, the parametrization presented here has been adopted in Ref. [337] to study
the freeze-in of cannibal dark matter.

5.3 Discretization Technique and Solution Strategy

To solve Eq. (3.7) for the phase space distribution numerically, the comoving momenta are restricted
to lie in the range 10−2 ≤ q ≤ 102 and discretized into N = 200 points q1, . . . , qN since this
range together with the number of momentum slices was found to allow to accurately solve
the full Boltzmann equation for a wide range of DM masses. Inspired by CLASS [338] and
FortEPiaNO [339], the comoving momentum space is discretized according to the Gauss–Laguerre
(GL) quadrature formula, a method designed for integrals of the type

∫ ∞
0

xαe−bxf(x) dx ≈
N−1∑
i=0

w
(α,b)
i f(xi) . (5.9)

This quadrature rule is also valid for the two-dimensional energy or momentum integrals appearing in
the collision term since the integrand is, through the phase space distribution functions, exponentially
suppressed in both integration variables. A suitable, yet arbitrary, choice is to generate the weights
w

(α,b)
i for the parameters α = 0 and b = 1/2 which is, e.g., possible with the GNU Scientific

Library [340]. As the distribution functions encountered here are not exactly proportional to e−bx,
the factor ebx is defined into f(x).

If, on the other hand, the scattering term is approximated by the Fokker-Planck type operator
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in Eq. (3.15), a logarithmic spacing is chosen instead of the GL prescription, as sixth order
central difference formulas are used for the numerical evaluation of the first and second momentum
derivatives to achieve a high accuracy, i.e., fχ is taken as a function of log q with a uniform
spacing ∆ln q = ln(qi+1/qi). For the in total six points outside the solution domain, the conditions
f−2 = f−1 = f0 = f1 as well as fN = fN+1 = fN+2 = fN+3 with fl = fχ(ql, t) are used. In addition,
the momentum derivatives are computed in log-space, ln fχ(p, t), to obtain also a high accuracy
for large momenta where the distribution function can differ by several orders of magnitude for
neighboring points.

Even though the elastic collision term manifestly conserves the number of particles in the
continuum limit, the discretized version can lead to a spurious change of the comoving number
density in the initial high-temperature regime. Therefore the same prescription as in Ref. [84] is
adopted and kinetic equilibrium is assumed if the ratio γ(T )/H(T ) is larger than 105. This means
that the nBE is solved instead.

The set of N Boltzmann equations obtained after discretizing Eq. (3.7) are stiff differential
equations which require special integration routines to overcome the stiffness difficulty. For this
purpose, the CVODE solver based on the backward differentiation formula of the SUNDIALS

library [341,342] is used.

5.4 Numerical Analysis

Throughout the whole numerical analysis, similar to the original work [323], the DM couplings
are identified with the values αSχ = 0 and αPχ = 0.1 defined at the energy scale corresponding
to mφ. This choice is motivated by two facts: First, expanding the squared c.m. energy in the
laboratory velocity s = 4m2

χ(1 + v2
lab/4) +O

(
v4

lab

)
shows that only the coupling αPχ contributes (at

tree-level) an s-wave component, suggesting that the scalar coupling is of minor importance for
dark matter annihilation and can therefore be set to zero. Second, this choice ensures that both
couplings remain perturbative αSχ, αPχ < 1 below 1 TeV for the investigated mediator mass range
0.1 GeV ≤ mφ ≤ 100 GeV as dictated by the one-loop renormalization group equation [343]

µ
dα

S/P
χ

dµ
=

5

2π
αS/Pχ (αS/Pχ + αP/Sχ ). (5.10)

Coannihilations of the mediator φ are also not included in this calculation as the investigation is
restricted to the mass region r̃ = mφ/ml ≥ 1.25. Therefore, the cubic and quartic self-interaction
terms involving the φ field are taken to be zero. Scatterings off the mediator are also neglected,
as the same exponential suppression of the averaged coannihilation cross section due to this mass
splitting appears in the associated momentum transfer rate γφ(x) ∼ e−xr̃. However, as this line
of reasoning only holds assuming (i) the mediator is in equilibrium with the SM and (ii) there
are no large hierarchies present between the DM and lepton couplings as well as the mediator
self-couplings which could compensate the suppression at early times, it would be interesting to drop
these assumptions and include the mediator in the network of momentum-dependent Boltzmann
equations.
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Figure 5.1: Ratio of the relic densities obtained with the cBE (blue) as well as the fBE (red) treatment
and the number density approach as a function of the mass ratio r = ml/mχ for annihilations into
muons (upper row) and tau leptons (lower row). In the left column, the pseudoscalar coupling is
turned off whereas it is identical to the scalar coupling on the right. In all cases, the lepton coupling
is chosen such that the result from the nBE method matches the experimentally observed relic
abundance which imposes, to a very good approximation, an exponential relation between coupling
and r (figure insets). The lines corresponding to the full elastic collision term are non-transparent,
whereas the associated results obtained with the Fokker-Planck approximation are displayed with a
lighter opacity.

5.4.1 The Relic Density Beyond Kinetic Equilibrium

As a start, it is useful to compare the DM relic density obtained from solving the Boltzmann
equations (cBE and fBE) using the FP approximation on one hand and the full collision term on
the other. In order to make a direct comparison with Ref. [324] possible, the results for the four
benchmarks considered in Ref. [324] are displayed in Fig. 5.1. The relic density obtained with
the cBE and fBE approaches for the two different implementations of the elastic collision term
relative to the number density result are shown in Fig. 5.1 as a function of the inverse DM mass.
For every mχ, the lepton coupling αSll is fixed by the requirement that the nBE result matches
the experimentally observed relic density. Curves in bold colors correspond to the use of the full
collision term, whereas curves with a lighter hue correspond to the use of the FP approximation.
The upper panels deal with annihilation into muons, while the lower ones display the results for tau
leptons in the final state. Furthermore, the left panel shows the results for αPll = 0, while the right
panels are for αSll = αPll . One finds in this model that the early kinetic decoupling effect increases the
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Figure 5.2: Same as Fig. 5.1, but for a mφ that roughly corresponds to twice the muon (tau) mass
in the upper (lower) panel.

relic density significantly and that the small-momentum approximation in general implies a smaller
contribution from the elastic scattering collision term, which then leads to an overestimation of the
relic density. Put differently, the full collision term keeps the DM distribution closer to equilibrium
and, as a consequence, moves the associated relic density towards the number density result. This
can be clearly seen in Fig. 5.1 by comparing darker and lighter hues of same-color curves. It is
worth mentioning that the FP approximation tracks the full collision solution for a significant range
of values of r in most of the cases. However, the two solutions significantly depart from each other
for larger r values with the full collision solution in the fBE case approaching the nBE solution.
For r = 1, DM still does not maintain kinetic equilibrium for this particular benchmark since for
decreasing r, 2mχ moves towards the mediator mass and therefore the distribution function starts
to be affected by the resonance.

In order to not only restrict the discussion to mediator masses far away from the di-muon or
di-tau resonance, the same quantities are displayed in Fig. 5.2 but with a mediator corresponding
to approximately twice the muon (upper panels) or tau mass (lower panels). As a result, the DM
distribution function is in this case not only driven out of equilibrium through the forbidden nature
of the model, but also significantly through the resonance. This enhancement can be clearly seen in
the increased deviation from the nBE approach compared to the previous case where the mediator
mass is much larger than the corresponding lepton mass. For example, the relic density from the
fBE for the benchmark with a non-zero pseudoscalar coupling is more than 50 times that predicted
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Figure 5.3: Upper panels: Snapshots of the normalized dark matter phase space distributions fNχ
taken at different values of x plotted against the comoving momentum q for the case of annihilation
into tau leptons with a mediator mass close to the di-tau resonance. The distributions from the
cBE and fBE are both obtained with the full collision term. Lower panels: The difference of the
phase space distribution function between the fBE and the corresponding equilibrium distribution
evaluated at the DM temperature Tχ as defined in Eq. (3.24).

using the nBE and & 2.5 times than the cBE result. It should be noted that the ratio of the
relic densities in Figs. 5.1 and 5.2 is larger for the cases when αSll = αPll than it is when αPll = 0.
By examining Eq. (5.2), one can see that this is due to the fact that the s-wave component of
the annihilation cross-section is suppressed for αPll = 0 through the small mass difference between
leptons and DM which is not the case for αSll = αPll . On a qualitative level, this effect can also be
understood through the difference between the phase space distribution functions obtained with
the fBE and the corresponding equilibrium distribution functions f fBE

Eq ∼ e−E/Tχ which is shown in
the lowermost panels of Fig. 5.3 for five values of x for both choices of αPττ and r = 1.15. Here, the
DM “temperature” Tχ is computed from fχ itself as defined in Eq. (3.24). It becomes clear that
the strong velocity dependence of the annihilation cross section leads to dips in the distribution
function which cause the departure from equilibrium and are more pronounced for the αSll = αPll
case than for αPll = 0 and in particular near freeze-out at x ∼ 20. The deeper the dip the more
inefficient the DM annihilation becomes due to the smaller occupation number at the relevant
momenta. This correlation then leads to a higher DM relic density as can be seen in Figs. 5.1
and 5.2. From the upper panels of Fig. 5.3 showing the evolution of the distribution function for
five different values of x it becomes clear that the distributions obtained from the cBE and the
fBE evolve in general to lower momenta compared to the equilibrium distribution evaluated at
the photon temperature as the high momentum DM particles get depleted in order to overcome
the annihilation threshold. It is also noticeable that the solution of the fBE departs away from
f fBE

Eq at x ∼ 20. While this deviation remains strong for the αPττ = αSττ case shown in the right
panel, the deviation almost vanishes at later times for the αPττ = 0 case in the left panel. This
difference can be understood by comparing the momentum transfer rate γ(T ) with the Hubble rate
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Figure 5.4: Evolution of the self-scattering rate Γself , the yield parameter Yχ, the momentum
exchange rate γ(T ) and the DM temperature Tχ in x as obtained with the nBE, cBE and fBE
approaches for annihilations into tau leptons with mφ ≈ 2mτ . Note that the yield parameter Yχ
only accounts for the number of DM particles and not antiparticles and that Γself is obtained for
the fBE case from the actual phase space distribution as defined in Eq. (5.11).

H(T ). Both are displayed in Fig. 5.4 as a function of x with the left panel corresponding to the
case αPττ = 0 while the right panel shows the case αPττ = αSττ . It is clear that for αPττ = 0, γ(T ) is
still comparable to H(T ) around x ∼ 24 which means that elastic scattering is still effective enough
to keep the phase space distributions from deviating too far away from equilibrium as visible in
the left panel of Fig. 5.3. However, for αPττ = αSττ , γ(T ) is already much smaller than H(T ) at
x ∼ 24 which suggests that elastic scatterings are not strong enough leading to a larger deviation
away from equilibrium. Figure 5.4 also shows the evolution of the DM yield in the nBE, cBE and
fBE approaches. Notice how for cBE and fBE, DM freeze-out happens earlier than for the nBE
case leading to a higher relic density. The effect of the phase space distribution shifting to lower
momenta can also be seen in the lower panel of Fig. 5.4 where DM temperature Tχ is plotted. A
clear drop away from the photon temperature is visible just before x ∼ 20, where DM starts cooling
faster than the SM bath. Note that the splitting between the cBE and fBE predictions can be
attributed to the phase space distributions shown in Fig. 5.3.

Lastly, the question remains whether for this DM model with the particular choice αSχ = 0 and
αPχ = 0.1 for the DM couplings, the cBE or fBE approach gives a more correct description of the
freeze-out process. Since the cBE framework becomes exact under the assumption of maximally
efficient DM self-interactions, the associated rate given by

Γself = 2nχ〈σselfv〉 = 2nχ

∫
d3pa

∫
d3pb σselfvMølfχ(Ea)fχ(Eb)∫

d3pa
∫

d3pb fχ(Ea)fχ(Eb)

=
g2
χ

(2π)4nχ

∫ ∞
mχ

dEa fχ(Ea)

∫ ∞
mχ

dEb fχ(Eb)

∫ s+

s−

ds
√
s(s− 4m2

χ)σself(s), (5.11)

is shown in Fig. 5.4 for the same tau benchmarks used for the illustration of the evolution of the
distribution functions. The integration limits in Eq. (5.11) are s± = (Ea + Eb)

2 − (pa ∓ pb)2 and
the self-scattering cross section σself = σχχ̄→χχ̄ + σχχ→χχ is for the case αSχ = 0 necessary for this
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analysis

σχχ→χχ =
(αPχ )2π

2s
(3s− 12m2

χ + 5m2
φ)

{
1

s− 4m2
χ +m2

φ

+
2m2

φ

(s− 4m2
χ)(s− 4m2

χ + 2m2
φ)

ln

(
m2
φ

s− 4m2
χ +m2

φ

)}
, (5.12)

for DM-DM scattering and by

σχχ̄→χχ̄ =
(αPχ )2π

s
|Dφ(s)|2

{
m2
φ

s− 4m2
χ

[
2|Dφ(s)|−2 + s(m2

φ − s)
]

ln

(
m2
φ

s− 4m2
χ +m2

φ

)

+
m2
φ

s− 4m2
χ +m2

φ

[
s
(
Γ2
φ + 4m2

χ − 2m2
φ

)
+ 2

(
Γ2
φ +m2

φ

) (
m2
φ − 2m2

χ

)]
+ s2

}
, (5.13)

for dark matter and anti-dark matter scattering with the propagator |Dφ(s)|2 = 1/((s−m2
φ)2 +

m2
φΓ2

φ). The factor two in front of the number density in Eq. (5.11) accounts for particles and
antiparticles. For the nBE and cBE approaches, the average in the self-interaction rate reduces to
the single integral over the collision energy defined in Eq. (3.22). It is clear from Fig. 5.4 that even
long after freeze-out, the self-scattering rate remains more than five orders of magnitude above the
Hubble rate meaning that the cBE treatment gives in this case a more correct depiction of the DM
thermodynamics. In fact, the self-interactions are so strong, that the addition of the self-scattering
collision term Ĉself to the right-hand side of the momentum-dependent Boltzmann equation makes
a numerical solution of the fBE impossible while using the same number of momentum bins, not
compromising on accuracy and ensuring that the implementation of Ĉself conserves the number of
particles. Even though the self-interactions are so strong, they are not in conflict with astrophysical
bounds [344].

5.4.2 Updated Exclusion Limits

In this section, the exclusion limits on forbidden DM annihilations into SM leptons based on
the improved calculation of the relic density are updated. To compare the results with those of
Ref. [323], the numerical analysis is performed in the plane spanned by the mediator mass and the
scalar lepton coupling. The results for annihilations into µ+µ− are shown in Fig. 5.5 while those
for annihilations into τ+τ− are presented in Fig. 5.6. For both channels, the pseudoscalar coupling
is set to zero, αPll = 0, on the left panel and equal to the scalar coupling, αPll = αSll, on the right. As
the analysis in the previous section shows that the small-momentum approximation still holds for
significant ranges of DM masses in the forbidden regime, the calculation of the relic density in the
following analysis is still based on the FP approximation with the advantage of a major reduction
in run time. Even though the cBE treatement is assumed to give a more correct result, the results
from the fBE approach in Figs. 5.5 and 5.6 are still shown for completeness to gauge the effect from
DM self-scatterings on the exclusion limits.

For every given pair of parameters (mφ, αSll), the DM mass in Figs. 5.5 and 5.6 is fixed through
the requirement that the relic density corresponds to the experimentally observed value from
Eq. (3.2c). This calculation can be carried out efficiently using, e.g., a logarithmically spaced
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bisection search. The thick gray, green and black curves corresponding to the nBE, cBE and fBE
calculations, respectively, indicate the boundary δ = 0 between the forbidden and non-forbidden
regions. In the region above those curves the DM mass is smaller than the corresponding lepton
mass and larger below. The boundary from the cBE and fBE approaches is almost identical and
both approaches leave less parameter space with δ > 0 compared to the nBE. The allowed white
region is further constrained by terrestrial and space-based experiments as discussed next.

For both channels, the most important experimental constraint comes from DM annihilations
into electromagnetically charged particles during the recombination epoch. The sensitivity of CMB
anisotropies to such energy injection processes into the intergalactic medium (IGM) allows Planck to
place the upper limit feff〈σv〉/mχ ≤ 3.5× 10−28 cm3/s/GeV on the annihilation parameter where
the efficiency factor feff describes the fraction of energy that is released in the annihilation and then
transferred to the IGM [7]. It should be noted that this limit is only valid for an s-wave dominated
and therefore almost constant annihilation cross section, i.e., 〈σv〉 ' σvlab ' const [7]. For the
numerical evaluation of the efficiency factor, the tabulated feff curves for DM masses below 5 GeV

provided in Ref. [345] are applied. As a consequence of these robust energy injection constraints,
the non-forbidden region where δ ≤ 0 and direct annihilations into leptons become possible is
immediately ruled out. As already mentioned, the corresponding areas in Figs. 5.5 and 5.6 and
are marked in gray for the nBE approach and in green for the cBE treatment. As the fBE result
overlaps almost everywhere with the cBE one, only the boundary δfBE = 0 is marked in black.
In the forbidden region defined through δ > 0, loop induced annihilations into photons can be
sufficiently large to distort CMB anisotropies at a measurable level, even though being too small to
have to be included in the relic density calculation. For the associated annihilation cross section
one obtains the expression

(σvlab)χχ̄→γγ =
∑

l=e,µ,τ

4α2
emm

2
l

π(s− 2m2
χ)

αPχ s+ αSχ
(
s− 4m2

χ

)
(s−m2

φ)2 +m2
φΓ2

φ

×
{
αSll
∣∣1 + (1− τ−2

l ) asin2 (τl)
∣∣2 + αPll

∣∣asin2 (τl)
∣∣2} , (5.14)

with τl =
√
s/2ml and the fine-structure constant αem. The forbidden region ruled out in this

way based on the nBE calculation is shown in orange and in blue for the fBE treatment. Only
the boundary of the cBE limit is marked in violet, as it is almost everywhere identical to the
fBE result. Importantly and in contrast to this analysis, these energy injection limits have been
determined in Refs. [323, 324] based on DM masses obtained with the nBE approach which is
not sufficient as recalculating them based on the cBE and fBE approaches shows that the limits
from annihilations into photons are actually more stringent and exclude a larger region of the
parameter space. Included in red are also fBE projections from the CMB-S4 experiment [346],
which is expected to improve the limit on DM annihilation by a factor of two (dotted) to three
(dashed).

For the muon channel of Fig. 5.5, existing constraints from the electron beam-dump experiment
E137 [150,347] on the light dark scalar are displayed in gray. In addition, projected limits from the
experiments BDX [347,348], M3 [349] and NA64-µ [350,351] are shown. Here, included is, for the
first time, the highest sensitivity limit from NA64-µ with 1013 muons on target (MOT) which is the
goal the M3-experiment plans on achieving in phase two after starting out with comparably less
1010 MOT in phase one. The exclusion limits from beam-dump experiments for the benchmark with
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Figure 5.5: Exclusion limits on forbidden DM annihilations into muons in the plane spanned by the
mediator mass and the scalar lepton coupling for a vanishing pseudoscalar coupling αPµµ = 0 in the
upper panel and for αPµµ = αSµµ in the lower one. For both cases, the region around the resonance
mφ ≈ 2mµ is shown enlarged on the right. The gray, green and black lines indicate the boundary
where mχ has to equal the muon mass in order to satisfy the relic density constraint based on the
nBE, cBE and fBE calculations, respectively. The region below is then excluded by CMB limits on
direct annihilations into muons. At every point in the plane above this boundary the DM mass
is fixed through the requirement that the DM relic density lies within the observed range where
the theory value is obtained using all three computational approaches. Every approach yields a
different DM mass for the same parameter point, giving three different regions excluded by CMB
constraints on annihilations into photons which are shown in orange, violet and blue for the nBE,
cBE and fBE approach, respectively. Displayed are also existing and projected limits from CMB-S4
and the beam-dump experiments E137, BDX, M3 and NA64-µ. The white space corresponds to
the viable region. For more details, see the main text.
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Figure 5.6: Exclusion limits on forbidden DM annihilations into tau leptons with the same structure
as well as the same color coding regarding the CMB constraints on χχ̄→ τ τ̄ and χχ̄→ γγ as in
Fig. 5.5. In addition, existing and projected limits from LEP, BaBar, Belle-II, CMB-S4 and future
e+e−-colliders with Giga-Z and Tera-Z options are shown. For more details, see the main text.
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a non-vanishing pseudoscalar coupling are recasted from the associated limit with αPµµ = 0 through
the replacement αSµµ → αSµµ/2 for every mφ. This is motivated by the fact that according to the
improved Weizsacker-Williams approximation [352] the dominant contribution of the radiative
production cross section Nµ→ Nµφ of the scalar in presence of a nucleon N in the target material
is proportional to αSµµ.

For the tau channel of Fig. 5.6, one existing constraint comes from the LEP measurement of
the partial Z decay width into tau leptons ΓZ→τ+τ− = 84.08(22) MeV [317] since it is sensitive
to the process Z → τ+τ−φ followed by a subsequent invisible decay of the new scalar into DM.
To obtain a limit at the 2σ confidence level from this measurement, the new contribution to the
Z decay width is required to be less than two times the uncertainty of the measured Z → τ+τ−

width, i.e., the upper limit ΓZ→τ+τ−φBR(φ → χχ̄) < 0.44 MeV is applied. For the purpose of
constraining annihilations into tau leptons, here and in the following the simplifying assumption
is made that mχ ≈ mτ within the computation of the branching ratio BR(φ → χχ̄). Decays of
Z bosons can also be probed with a better sensitivity at future electron-positron colliders like
FCC-ee [152] or CEPC [154] since these come with Giga-Z (Tera-Z) options which means adjusting
the beam energy to the Z-pole and producing 109 (1012) Z’s. Assuming similar efficiencies and
acceptances of the future experiments for tau leptons as for electrons and muons, these colliders can
probe the exotic Z decay branching ratio BR(Z → τ−τ+

�E) down to approximately 10−8 (10−9.5)
for a Giga-Z factory (Tera-Z factory) [353]. Another relevant experimental constraint comes from
mono-photon searches at BaBar [354], i.e., searches for a highly energetic monochromatic photon
in association with missing energy. There are also projected limits for the same kind of search
at BaBar’s successor experiment Belle II [355] for integrated luminosities of 20 fb−1 and 50 ab−1.
Present and future constraints are recasted both from mono-photon bounds on axion-like particles
(ALPs) [356]. To do so, the production cross section of an ALP a in association with a photon is
considered. It is given by

σe+e−→aγ =
αemg

2
aγγ

24s7/2
(s−m2

a)3(s+ 2m2
e)(s− 4m2

e)
− 1

2 , (5.15)

as described by the Lagrangian density

L = −gaγγ
4

aFµν F̃
µν , (5.16)

where gaγγ is the ALP-photon coupling, ma the ALP mass and F̃µν = εµναβFαβ the dual field
strength tensor. The same production cross section in the forbidden DM model, i.e., for the mediator
φ instead of an ALP, is

σe+e−→φγ =
∑
l

2α3
emm

2
l

3πs7/2

s+ 2m2
e

s−m2
φ

(s− 4m2
e)
− 1

2

(
αSll|FSl (s)|2 + αPll |FPl (s)|2

)
, (5.17)

where the scalar and pseudoscalar form factors due to the lepton loop are defined through

FSl (q2) = (q2 −m2
φ)
[
2 +

(
q2 + 4m2

l −m2
φ

)
C0

]
+ 2q2

[
Λ
(
q2,ml,ml

)
− Λ

(
m2
φ,ml,ml

)]
, (5.18a)

FPl (q2) = (q2 −m2
φ)2C0 (5.18b)
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with the Passarino-Veltman function C0(0,m2
φ, q

2;ml,ml,ml) and the branch cut function

Λ(p2;m,m) =

√
1− 4m2

p2
ln

(√
p2 (p2 − 4m2) + 2m2 − p2

2m2

)
. (5.19)

The limit is then recasted by solving the equation σe+e−→aγ = σe+e−→φγBR(φ→ χχ̄) for every mφ

at the collision energy
√
s = 10.58 GeV corresponding to the Υ(4S) resonance. Future Z-factories

are able to perform the same mono-photon searches and can therefore put constraints on the
branching ratio BR(Z → �Eγ) [353] which in this model corresponds to an upper limit on the
product BR(Z → φγ)BR(φ→ χχ̄). The associated decay width is given by

ΓZ→φγ =
∑
l

3αemGF (gVZ,l)
2m2

l√
2π3mZ(m2

Z −m2
φ)

(
αSll|FSl (m2

Z)|2 + αPll |FPl (m2
Z)|2

)
(5.20)

with the Fermi constant GF and the vector part gVZ,l = − 1
4 + sin2 θW of the Z-lepton coupling.

The implications of this updated calculation on the available parameter space can be seen by
comparing the new results to the equilibrium results in Ref. [323]. A very interesting outcome is
that forbidden annihilations into muons for the case of a vanishing pseudoscalar coupling can now
be entirely probed with the future CMB-S4 experiment alone.1 Furthermore, there is a significant
reduction in the experimentally viable parameter space of the model. However, for the τ+τ− final
state more regions remain open compared to the muonic final state. Many future experiments
will be able to probe the remaining parts of the parameter space, such as NA64-µ and M3 for the
di-muon and the Giga-Z and Tera-Z experiments for the di-tau final state. The inclusion of the
latter sensitivity limits shows that almost the entire model parameter space can be probed in the
near future. One should note in passing that the discussed limits are more stringent for the αPll = 0

case than they are for the αPll = αSll case.

5.5 Conclusion

In this chapter, the early kinetic decoupling effect for forbidden DM annihilations into SM leptons
has been studied by means of the momentum-dependent Boltzmann equation. The resulting DM
relic density has been compared carefully with predictions obtained using the fluid approximation
and the traditional number density approach for both, the full elastic collision term as well as
the corresponding small-momentum transfer approximation, resulting in general in a significant
increase of the DM relic abundance by more than an order of magnitude. From a technical side,
particular emphasis was put on the analytical integration of all angular integrals appearing in the
full elastic scattering collision term. Along this line, improvements in the numerical strategy have
also been highlighted. With that, new experimental exclusion limits for the investigated model
have been derived from the requirement that the fermionic dark matter candidate makes up all of
the observed relic density, however, by using the Fokker-Planck approximation instead of the full
operator, since we found both to be in very good agreement in the relevant regions of the model

1Note that Fig. 5.5 differs from the corresponding plot in Fig. 6 (left) of Ref. [324] due to a potential error in
their calculation of the mediator’s width as a similar result is recovered by keeping ΓΦ constant for the whole scan
with a value corresponding to one far away from the resonance. In addition, the calculation of the limits on DM
annihilation into photons provided in Figs. 6 and 7 of Ref. [324], as already alluded to in the main text, seem to be
still based on the masses obtained with the number density treatment.
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parameter space. The resulting limits are especially strong for the muon channel compared to the
tau channel. These results highlight again the necessity to take the early kinetic decoupling effect
seriously and display the need to develop fast, reliable and general methods for the evaluation of
full collision integrals in order to make the investigation of this effect in more complicated models
with a richer particle content like the MSSM feasible.
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Chapter 6

(Non)equilibrium Quantum Field
Theory

Since Boltzmann equations are constructed from vacuum S-matrix elements relying on the assump-
tion of free asymptotic states and formulated in terms of phase space densities for classical particles,
they are by construction not well suited to provide a full quantum description of nonequilibrium
systems consisting of interacting fields, in particular since there exists no well-defined notion of
asymptotic sates in such systems. Instead, they can be described by means of real-time formalisms
where the phase space densities are replaced by n-point correlation functions as the dynamical
degrees of freedom. In the following, the derivation of this technique is briefly sketched with a
particular emphasis on the Closed Time Path formalism for non-equilibrium [357,358] as well as
equilibrium [359,360] situations.

The study of quantum field theories in equilibrium and non-equilibrium situations cumulated
up to now into the following three well-defined formalisms:

• Imaginary-time (Matsubara) formalism [361]

• Real-time (Keldysh-Schwinger) formalism [362,363]

• Thermo-field dynamics (Umezawa) formalism [364]

Historically, Matsubara was the first to construct a thermal field theory by exploiting the similarity
of the statistical Boltzmann weight e−βĤ with the time-evolution operator e−itĤ by relating the
inverse temperature β = 1/T to time through a purely imaginary time variable t = −iβ in the
evolution operator. Here, Ĥ is a, for illustrative purposes, time-independent Hamiltonian. However,
through the intrinsic assumption of a Boltzmann distribution, the imaginary-time formalism only
applies to equilibrium situations and is best suited for the calculation of static quantities. To
circumvent this shortcoming and to construct a method that is additionally suited to treat the
dynamics of a system, Schwinger and Keldysh allowed the time variable to lie on a general contour
in the complex plane and therefore also includes real time values. For this reason the associated
approach is called real-time formalism and has the advantage of being applicable to non-equilibrium
system as well, however, at the prize of doubling the number of degrees of freedom. Independently,
Umezawa et. al developed a different strategy within the framework of real-time formalism based on
C∗ algebras called thermo-field dynamics (TFD) which can essentially be thought of as an operator
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formalism and allows to answer questions on the structure of the thermal vacuum which are not
accessible within the Keldysh-Schwinger approach. Also within TFD, one encounters the doubling
of the degrees of freedom characteristic for real-time formalisms.

In the following, the focus will be on the Keldysh-Schwinger formalism which has already been
extensively employed in the context of baryogenesis [365–377], inflation [378, 379], gravitational
waves [380] and is also becoming more popular in the context of dark matter [97, 98, 381–387].
The fundamentals of the closed time path formalism are presented by using a real scalar field as
an example and the Kadanoff-Baym equations are derived. After that the scalar and fermionic
equilibrium propagators are derived and the Feynman rules at finite temperature are stated. Gauge
fields and in particular their resummed propagators are briefly discussed in Sec. 6.3. In Sec. 6.4,
often occurring integrals within closed time path calculations are evaluated and the results are then
used in the subsequent Sec. 6.5 to calculate the one-loop photon self-energy in finite-temperature
QED.

6.1 Scalar Fields

To develop the formalism, we first consider again a real scalar field φ with the Lagrangian density from
Eq. (4.22). Compared to the calculation of S-matrix elements, the assumption of asymptotically-free
states in the infinite past and future breaks down in medium. Here, the system can only be specified
through a density matrix %̂(ti) at an initial time ti such that one is left with the computation of
expectation values of operators O at later times t by averaging over all possible states accessible to
the system via the trace

〈Ô〉%(t) = Tr[%̂(t)Ô] . (6.1)

It turns out that such ensemble averages can be computed by employing a generating functional
where the time arguments of the field operators are not only restricted to lie on the real axis, but to
consider time ordering along a general contour C in the complex time plane. The contour C we are

t
ti tf

C1

C2

Figure 6.1: Finite-time Closed Time Path.

working with is shown in Fig. 6.1 and starts at the initial time t+i = ti + iε with an infinitesimal
displacement parameter ε and runs parallel to the real t axis up to the time tf + iε where it performs
a semicircle around tf until it reaches tf − iε, runs backwards to t−i = ti − iε. The upper branch
is called C1 and the lower one C2. Instead of using the labels 1 and 2 for the two branches, an
alternative is to use the symbols ±, as originally suggested by Schwinger [362] and Keldysh [363].
However, within practical calculations it is more convenient to use numbers. For path ordering
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purposes it is also common to define the unit step function

ΘC(x0, y0) =



Θ(x0 − y0) if x0, y0 ∈ C1

Θ(y0 − x0) if x0, y0 ∈ C2

1 if x0 ∈ C2, y
0 ∈ C1

0 if x0 ∈ C1, y
0 ∈ C2

(6.2)

on the closed time path. The definition of the theta function on C leads in a natural way to the
definition of the δ-function on the contour,

δC(x0, y0) =
dΘC(x0, y0)

dx0
=


δ(x0 − y0) if x0, y0 ∈ C1

−δ(x0 − y0) if x0, y0 ∈ C2

0 otherwise

. (6.3)

For commuting functions J(x) defined on the path C functional differentiation extends to

δJ(x)

δJ(y)
= δ

(4)
C (x, y) (6.4)

with the contour-ordered δ-function for four-vectors δ(4)
C (x, y) = δC(x0, y0)δ(3)(x− y).

6.1.1 The Generating Functional

In the end, one is interested in the computation of correlation functions of the form

i∆(x1, . . . , xN ) = 〈TC{φ̂(x1) . . . φ̂(xN )}〉% , (6.5)

as these are directly connected to measurable physical quantities like the energy density or pressure
of a system. Note that in contrast to vacuum field theory the time-ordering is here taken along the
complex time path C. Therefore, it is instructive to define the generating functional

ZC [J ] = Tr

[
%̂(ti)TC exp

(
i

∫
C

d4xJ(x)φ̂(x)

)]
(6.6)

such that contour-ordered n-point functions can be simply obtained from functional differentiation
with respect to the sources J(x):

i∆(x1, . . . , xN ) = (−i)N 1

ZC [J ]

δNZC [J ]

δJ(x1) . . . δJ(xN )

∣∣∣∣
J=0

. (6.7)

Since it is desirable to not only restrict the time arguments of the correlation functions to the
time interval [ti, tf ], it is common to take the limit tf → ∞ such that scalar field insertions can
be obtained through functional differentiation for arbitrary times larger than ti, leading to the
infinite-time closed time path shown in Fig. 6.2. Since the density matrix is defined at the initial
time, it is sensible to perform the trace in Eq. (6.6) by integrating over all possible initial-time field
configurations φ(t+i ,x) and insert another complete set of eigenstates of the field operator φ̂(x) at
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· · ·

· · ·ti

C1

C2

Figure 6.2: Infinite time Closed Time Path.

time t−i to re-express the generating functional in the form

ZC [J ] =

∫
[dφ1][dφ2]

〈
φ1; t+i

∣∣%̂(ti)
∣∣φ2; t−i

〉 〈
φ2; t−i

∣∣TC exp

(
i

∫
C

d4xJ(x)φ̂(x)

)∣∣φ1; t+i
〉
. (6.8)

To be precise, the measure [dφ] it is defined via [dφ] =
∏

x∈R3 dφ(x) and a ket |φ〉 trough |φ〉 =

⊗x∈R3 |φ(x)〉. It is important to understand that Eq. (6.8) provides the motivation for choosing
the closed time path C since this form of the generating functional allows to evaluate the matrix
elements involving the density matrix without having to worry about time evolution. This is
because the action of ρ̂(ti) (in the limit ε→ 0) on the field configurations

∣∣φ1; t+i
〉
and

∣∣φ2; t−i
〉
is

known by definition while the transition amplitude can be reformulated conveniently for ε → 0

through the path integral

ZC [J ] =

∫
[dφ1][dφ2]

〈
φ1; t+i

∣∣%̂(ti)
∣∣φ2; t−i

〉
×
∫ φ(x,t−i )=φ2(x)

φ(x,t+i )=φ1(x)

Dφ exp

(
i

∫
C

d4x(L(x) + J(x)φ(x))

)
. (6.9)

In other words, choosing the time path just from ti to tf along the real axis without the backward
component would highly complicate the evaluation of the density matrix. It is also important to
understand that the transition amplitude can only be rewritten using the path integral because the
time path begins at the time t+i where φ1(x) is defined and ends at t−i where φ2(x) is defined. It
also becomes clear that one has to introduce the infinitesimally displaced initial times t±i since the
boundary conditions of the path integral would be ill-defined otherwise.

The most general density matrix can be parameterized as

〈
φ1; t+i

∣∣%̂(ti)
∣∣φ2; t−i

〉
= N eifC [φ] (6.10)

with the the normalization constant N and where the functional fC [φ] can be written as the power
expansion in the fields

fC [φ] = α0 +

∞∑
n=1

1

n!

∫
C

n∏
i=1

d4xi αn(x1, . . . , xn)φ(x1) . . . φ(xn) (6.11)

obeying the boundary conditions φ(t+i ,x) = φ1(x) and φ(t−i ,x) = φ2(x). The coefficients α1(x1),
α2(x1, x2), . . . must further vanish identically for time arguments other than ti since the density
matrix is specified at the initial time ti. With this generic parametrization of the density matrix
the generating functional in Eq. (6.9) can be reduced to the single path integral

ZC [J ] = N

∫
Dφ ei(SC [φ]+

∫
C

d4xJ(x)φ(x)+fC [φ]) (6.12)
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without any boundary conditions on the field value φ(t±i ,x). For many physically relevant scenarios,
however, Gaussian or thermal initial conditions are sufficient. E.g., the reheating process in the
early Universe at the end of the inflationary phase is described by an initially Gaussian density
matrix to high accuracy. Both types can be absorbed in an elegant way into the existing terms
for the action or the source term in the exponential of Eq. (6.12). Thermal initial conditions
are ensured through a redefinition of the path which will be covered in Sec. 6.1.5 whereas for
Gaussian initial conditions, α0 is an irrelevant normalization constant, α1 can be absorbed into
the source term through J(x)→ J(x) + α1(x) and the quadratic piece α2(x, y) into the mass term,
δ

(4)
C (x1 − x2)m2 → δ

(4)
C (x1 − x2)m2 − α2(x1, x2). In either case, in the absence of interactions,

V = 0, the path integral in Eq. (6.12) is Gaussian and can be evaluated analytically, as in vacuum
theory (see, e.g., [388]), giving the form

ZFC [J ] = N exp

(
− i

2

∫
C

d4x d4y J(x)∆0(x− y)J(y)

)
, (6.13)

for the free generating functional, where N is a normalization factor dropping out within the
calculation of physical quantities and i∆0(x− y) the free propagator which must satisfy

(�x +m2)∆0(x− y) = −δ(4)
C (x, y) (6.14)

analogous to vacuum theory. In this convention, propagators are simply “i” times the Green’s
function ∆(x, y) which is also why propagator and Green’s function may be used interchangeably.
By replacing the fields in the potential through a functional derivative, it is easy to see that a
perturbative expansion of the generating functional in Eq. (6.12) can be obtained from

ZC [J ] = exp

(
−i
∫
C

d4xV
[

δ

iδJ(x)

])
Z0[J ] . (6.15)

6.1.2 CTP Ordered Two-Point Functions

Given that the free propagator appears in the generating functional, two-point correlators are
dissected in the following. The contour-ordered two-point function on the Keldysh-Schwinger
contour for a scalar field i∆(x, y) can be decomposed in terms of the linear independent greater
and lesser Wightman functions

i∆>(x, y) = 〈φ̂(x)φ̂(y)〉% , (6.16a)

i∆<(x, y) = 〈φ̂(y)φ̂(x)〉% . (6.16b)

The superscripts ≷ are motivated through the fact that in the first case x0 is assumed to appear
“earlier” than y0 on the time contour and vice versa. The Wightman functions decompose the
propagator in the following way

i∆(x, y) = 〈TC{φ̂(x)φ̂(y)}〉% = ΘC(x0, y0)i∆>(x, y) + ΘC(y0, x0)i∆<(x, y) . (6.17)

Further, it is common to define the so-called statistical and spectral two-point functions ∆+(x, y)
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and ∆−(x, y), respectively, defined trough

i∆+(x, y) =
1

2
〈{φ̂(x), φ̂(y)}〉% =

i

2

[
∆>(x, y) + ∆<(x, y)

]
, (6.18a)

∆−(x, y) = 〈[φ̂(x), φ̂(y)]〉% = i∆>(x, y)− i∆<(x, y) , (6.18b)

respectively, where in this convention the latter, i.e., ∆−, is nothing but the spectral density
℘ = ∆−, encoding all the information on the spectrum of single and multi-particle states in the
theory.

As already visible from the definition of the contour-ordered Heaviside function in Eq. (6.2), the
propagator i∆(x, y) on the closed time path splits into four components depending on the position
of the complex time arguments x0 and y0 on C. Therefore, one can also denote the branch on
which the two time arguments lie by superscripts a, b corresponding to the position of the first and
second time argument on C, respectively, such that i∆ab(x, y) takes as arguments ordinary, i.e.,
real, times. In the CTP formalism, this translates to the following four scalar Green’s functions:

i∆11(x, y) = 〈T{φ̂(x)φ̂(y)}〉% if x0, y0 ∈ C1 (6.19a)

i∆12(x, y) = i∆<(x, y) if x0 ∈ C1, y
0 ∈ C2 (6.19b)

i∆21(x, y) = i∆>(x, y) if x0 ∈ C2, y
0 ∈ C1 (6.19c)

i∆22(x, y) = 〈T̄{φ̂(x)φ̂(y)}〉% if x0, y0 ∈ C2 (6.19d)

where T̄ denotes the anti-time ordering operator.1 This structure of the propagators suggests that
instead of keeping track of the position of the time-arguments on C, fields and sources can be
split into two pieces instead, depending on whether they live on C1 or C2, thus, giving rise to the
definition of the doublets

φ =

φ1

φ2

 , (6.20a)

J =

(
J1 J2

)
, (6.20b)

where, to be precise, φ1, J1 ∈ C1 and φ2, J2 ∈ C2. Defining the metric in this two dimensional space
to be (1,−1), rearranges the generating functional from Eq. (6.15) in the form

ZC [J ] = N exp

(
−i
∫

d4x

(
V
[

δ

iδJ1(x)

]
− V

[
δ

iδJ2(x)

]))
× exp

(
− i

2

∫
d4xd4y Ja(x)∆ab

0 (x− y)Jb(y)

)
. (6.21)

It should be stressed that the time integration in this case is over the C1 branch, ti ≤ x0 ≤ ∞, as
usual. Thus, the backward branch C2 of the closed time path is effectively removed by doubling
the number of degrees of freedom. In particular, this means that time arguments from now on lie
only on the C1 branch, thus replacing ΘC with Θ.

1As common in the (non)equilibrium QFT literature, the superscripts < and > are also used here to denote the
12- and 21-components even though this overlaps with the notation for the Wightman functions.
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As another consequence of introducing the doublets, the four propagators in Eq. (6.19) can be
written as

i∆ab(x, y) =
1

ZC [J ]

δ2ZC [J ]

iδJa(x)iδJb(y)

∣∣∣∣
J=0

(6.22)

highlighting that the Green’s function in the space of twice the number of degrees of freedom can
be written as a 2× 2 matrix

∆ =

∆11 ∆12

∆21 ∆22

 . (6.23)

From the definitions in Eq. (6.19) one can recognize that not all four matrix components of the
Green’s function are independent but satisfy the constraint relation

∆11(x, y) + ∆22(x, y) = ∆12(x, y) + ∆21(x, y) (6.24)

as a consequence of the identity Θ(x) + Θ(−x) = 1. In statistical systems one is often not as
interested in the causal Green’s functions as in the physical Green’s functions which are defined as

∆R(x, y) = θ(x0 − y0)∆−(x, y) , (6.25a)

∆A(x, y) = −θ(y0 − x0)∆−(x, y) , (6.25b)

∆C(x, y) = 2 ∆+(x, y) . (6.25c)

These are the retarded, the advanced and the correlated propagators of the Keldysh representa-
tion and, interestingly, can be re-expressed through the definitions of the components of the causal
Green’s functions from Eq. (6.19) as

∆R = ∆11 −∆12 = ∆21 −∆22 , (6.26a)

∆A = ∆11 −∆21 = ∆12 −∆22 , (6.26b)

∆C = ∆11 + ∆22 = ∆12 + ∆21 , (6.26c)

where the spacetime arguments have been suppressed for brevity. The equations in (6.26) are
inverted by

∆11 =
1

2
(∆A + ∆R + ∆C) , (6.27a)

∆22 =
1

2
(∆C −∆A −∆R) , (6.27b)

∆12 =
1

2
(∆A + ∆C −∆R) , (6.27c)

∆21 =
1

2
(∆C −∆A + ∆R) . (6.27d)

One can also extract the Hermitian and anti-Hermitian part of the retarded propagator via

∆H =
1

2
(∆R + ∆A) =

1

2
(∆11 −∆22) , (6.28a)

∆A =
i

2
(∆R −∆A) =

∆−

2
, (6.28b)
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where the latter is closely related to the spectral density of states. The definition of the previously
introduced bosonic CTP two-point functions and relations among those extend analogously to
gauge fields.

6.1.3 The Dyson-Schwinger and Kadanoff-Baym Equations

While the n-point correlation functions discussed so far are free from bubbles, they still contain
disconnected graphs. These are diagrams in which at least one external leg is not linked to all
other external legs through some connected path. To exclude such disconnected diagrams one can,
similar to vacuum theory, define the generating functional of the connected correlation functions

WC [J ] = −i lnZC [J ] (6.29)

such that connected Green’s functions i∆c can be generated through functional differentiation of
WC [J ]:

i∆c(x1, . . . , xn) = 〈TC{φ̂(x1) . . . φ̂(xN )}〉c% = i
δNWC [J ]

iδJ(x1) . . . iδJ(xN )

∣∣∣∣
J=0

. (6.30)

Another important class of diagrams are 1PI graphs which remain connected if at most one internal
line is cut. However, 1PI diagrams cannot be simply obtained from the generating functional by
performing a normalization as before. The corresponding generating functional is defined through
the classical field φcl which is the expectation value of the scalar field operator in the presence of a
source:

φcl(x) = 〈φ̂(x)〉c% =
δWC [J ]

δJ(x)
. (6.31)

Note that φcl(x) implicitly depends on the source term and can therefore be used to replace
occurrences of J(x) through to the classical field. This is achieved via the Legendre transform

ΓC [φcl] = WC [J ]−
∫
C

d4xJ(x)φcl(x) , (6.32)

thus, defining the quantum effective action ΓC [φcl]. By recalling that J and φcl are treated as
independent variables, one finds the stationary condition

δΓC [φcl]

δφcl(x)
= −J(x) . (6.33)

The crucial advantage of the effective action is that it acts as the generating functional for 1PI
correlation functions when the functional differentiation is performed with respect to the classical
field,

iΓn(x1, . . . , xN ) = 〈TC{φ̂(x1) . . . φ̂(xN )}〉1PI
% = i

δNΓC [φcl]

δφcl(x1) . . . δφcl(xN )

∣∣∣∣
J=0

. (6.34)

It follows the very important relation

δ2ΓC [φcl]

δJ(y)δφcl(x)
= −δJ(x)

δJ(y)
= −δ(4)

C (x, y)

=

∫
C

d4z
δφcl(z)

δJ(y)

δ2ΓC [φcl]

δφcl(z)δφcl(x)
= −

∫
C

d4z∆c(y, z)Γ2(z, x) . (6.35)

118



Here, the functional derivatives of W [J ] give nothing but the exact propagator i∆c(x, y). The 1PI
two-point function Γ2 properly defines the self-energy Π(x, y) (and Σ(x, y) for fermionic fields) to
all orders as the remainder

−Π(x, y) = Γ2(x, y)− Γ0
2(x, y) , (6.36)

where Γ0
2(x, y) is the free contribution which, according to Eq. (6.35), is the inverse of the free

propagator i∆c
0(x, y) and must therefore obey

Γ0
2(x, y) = −(�y +m2)δ

(4)
C (x, y) . (6.37)

The decomposition of Γ2(x, y) into the free part and the self-energy yields the familiar form of the
Dyson-Schwinger equation in position space

(�x +m2)∆c(x, y) +

∫
C

d4zΠ(x, z)∆c(z, y) = −δ(4)
C (x, y) (6.38)

which is essentially an evolution equation for the connected contour-ordered propagator. Similar to
the two-point function in Eq. (6.17), one can decompose the self-energy along the contour via

Π(x, y) = ΘC(x, y)Π>(x, y) + ΘC(y, x)Π<(x, y) , (6.39)

and introduce the same notation Πab(x, y) as in Eq. (6.19) with the two superscripts a and b

indicating the position on the time path of the first and second argument, respectively. It is also
possible to define the retarded and advanced self-energies via

ΠR(x, y) = Θ(x0 − y0)(Π>(x, y)−Π<(x, y))

= Π11(x, y)−Π12(x, y) = Π21(x, y)−Π22(x, y) , (6.40a)

ΠA(x, y) = Θ(y0 − x0)(Π<(x, y)−Π>(x, y))

= Π11(x, y)−Π21(x, y) = Π12(x, y)−Π22(x, y) . (6.40b)

Alternatively, in index notation, the Dyson-Schwinger equation (6.38) becomes

(�x +m2)∆ab
c (x, y)−

∑
c

(−1)c
∫
C1

d4zΠac(x, z)∆cb
c (z, y) = (−1)aδabδ(4)(x− y) . (6.41)

These are four equations corresponding to the four CTP propagators (6.19) but as they are not
linearly independent, Eq. (6.41) can be reformulated in terms of two separate sets: one set for the
retarded and advanced propagators, and another set for the Wightman functions. Specifically, one
finds

(−�x −m2)∆R/A(x, y) = (∆R/A �ΠR/A)(x, y) + δ(4)(x− y) , (6.42a)

(−�x −m2)∆≷
c (x, y) = (Π≷ �∆A

c )(x, y) + (ΠR �∆≷
c )(x, y) , (6.42b)

where the product (f � g)(x, y) =
∫
C1

d4z f(x, z)g(z, y) stands for the integration over the inter-
mediate variable. Within the usual abuse of the notation and to arrive at a compact notation, the
superscripts of the off-diagonal components have been replaced with ≷. The retarded and advanced
functions can be again replaced with the spectral and Hermitian ones through Eq. (6.28) yielding
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the Kadanoff-Baym equations of nonequilibrium quantum field theory [389,390]

(−�x −m2)∆≷
c −Π≷ �∆Hc −ΠH �∆≷

c =
1

2
(Π> �∆<

c −Π< �∆>
c ) . (6.43)

Because of their non-linear and non-local structure the Kadanoff-Baym equations are very difficult
to solve but there are solutions in simplified setups, e.g., [366,376,391] in the context of baryogenesis
through leptogenesis.

6.1.4 Wigner Representation and Gradient Expansion

In non-equilibrium situations, the Green’s function ∆(x, y) does not only depend on the relative
coordinate r = x − y as in equilibrium but also on the average coordinate (x+ y)/2. Therefore,
a simple Fourier transform with respect to r is not sufficient to express the Green’s function in
momentum space as common in traditional S-matrix calculations. A more suited transformation is
the Wigner transform, defined through

∆(p, z) =

∫
d4r eipr∆

(
z +

r

2
, z − r

2

)
(6.44)

with the mean coordinate z. As one can explictly check later in the equilibrium case, the phase
space distribution function fφ of the scalar field φ can be related in Wigner space to the Wightman
functions via

fφ(p, z) =

∫ ∞
0

dp0

π
p0i∆<(p, z) . (6.45)

This means that in order to obtain a kinetic equation for the phase space distribution function that
generalizes the Boltzmann equation (2.9) to a full quantum mechanical description, the Kadanoff-
Baym equations (6.43) are needed in Wigner space. To actually perform the transformation, one
can make use of the general relation∫

d4r eipr
∫

d4z f(x, z)g(z, y) = e−i�{f(p, z)}{g(p, z)} , (6.46)

where the diamond operator is defined via

�{f(p, z)}{g(p, z)} =
1

2
(∂zf · ∂pg − ∂zf · ∂ag) (6.47)

and the exponentiation of � has to be interpreted as a series expansion. Since the equation of
motions (6.43) have the form of Eq. (6.46), they can simply be written in Wigner space as

(p2 − 1

4
∂2
z + ip · ∂z −m2)∆≷

c − e−i�{Π≷}{∆Hc } − e−i�{ΠH}{∆≷
c } = C (6.48)

with the collision term
C =

1

2
e−i�({Π>}{∆<

c } − {Π<}{∆>
c }) . (6.49)

These equations becomes much simpler in the gradient expansion which assumes that the average
coordinate is small compared to the momentum p such that the series can be truncated to a certain
order in the derivatives with respect to z. Formally, this assumption reads ∂z � p. Assuming
furthermore homogeneity and isotropy such that all spatial derivatives vanish yields from the real
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t→∞
· · ·

· · ·ti

C1

C2

ti − iβ
C3

Figure 6.3: Finite temperature Closed Time Path.

t→∞
· · ·

· · ·

· · ·

· · ·

−∞ ← ti C1

C2

Figure 6.4: Keldysh-Schwinger closed time path.

part of Eq. (6.48) the kinetic equation

p0∂t(i∆
≷) = −1

2
(iΠ>i∆< − iΠ<i∆>) +O

(
∂tΠ

≷;H∆H;≷
)
. (6.50)

6.1.5 Thermal Equilibrium

In thermal equilibrium, i.e., when a temperature T = 1/β can be defined for all times, the density
matrix coincides with the one in the canonical ensemble %̂(eq) = 1

Z e
−βĤ where Z = Tr e−βĤ is the

corresponding partition function. The general treatment of quantum fields in equilibrium is based
on the observation that %̂(eq) acts as an evolution operator in the imaginary time direction and can
therefore be related to the time-evolution operator via

%̂(eq) = Û(t−i − iβ, t−i ) . (6.51)

Thus, for equilibrium systems, the initial density matrix can be eliminated from the generating
functional in Eq. (6.9) by adding a third and imaginary branch C3 to the complex contour C which
runs from t−i to t−i − iβ parallel to the imaginary time axis resulting in the finite-temperature closed
time path Cβ shown in Fig. 6.3. The corresponding generating functional of Cβ is then

ZCβ [J ] =

∫
Dφ exp

(
i

∫
Cβ

d4x(L(x) + J(x)φ(x))

)
(6.52)

with the periodic boundary conditions φ(x, ti) = φ(x, ti − iβ). It has been suggested [360] that in
the limit ti → −∞ the free generating functional ZFCβ [J ] factorizes as ZFCβ = ZFC1∪C2

ZFC3
. Then

correlation functions with real time arguments can be generated from ZFC1∪C2
alone since ZFC3

contributes only to imaginary time arguments and therefore plays just the role of a multiplicative
constant. However, this factorization or rather this limit comes at the prize of introducing some
ambiguities, in particular when dealing with self-energy insertions [360,392]. The associated path is
shown in Fig. 6.4 and sometimes referred to as the Keldysh-Schwinger contour. It is remarkable
that the path in Fig. 6.2 initially introduced for general non-equilibrium situations is in the limit
ti →∞ valid for equilibrium situations as well, as long as time arguments are restricted to be real.

Equation (6.51) futher implies that for any Heisenberg operator Ô(t) one has

e−βĤÔ(t)eβĤ = Ô(t+ iβ) . (6.53)
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From the cyclic property of the trace, useful relations between two-point functions can be
constructed. E.g., consider the two Heisenberg operators Ô1(t) and Ô2(t) whose ensemble average
in equilibrium is given by

〈Ô1(t)Ô2(t′)〉β =
1

Z Tr
[
e−βĤÔ1(t)Ô2(t′)

]
, (6.54)

where the subscript % on the average has been replaced by β to indicate the equilibrium initial
conditions. Inserting the identity operator 1 = eβĤe−βĤ between Ô1(t) and Ô2(t′) and applying
the time evolution in the imaginary direction as dictated by Eq. (6.53) yields after using the cyclicity
of the trace operator

〈Ô1(t)Ô2(t′)〉β = 〈Ô2(t′)Ô1(t+ iβ)〉β . (6.55)

The identity in Eq. (6.55) is known as the Kubo-Martin-Schwinger (KMS) relation and can be
regarded as the expression of detailed balance. For scalar field operators the KMS relation takes
the form

∆>(x, y) = ∆<((x, t+ iβ), y) . (6.56)

As systems in thermal equilibrium are spacetime translation invariant such that equilibrium two-
point correlators are only functions of the difference of their spacetime arguments x − y, i.e.,
∆(x, y) = ∆(r), the Wigner transform (6.44) reduces to the normal Fourier transform

∆≷(p) =

∫
d4r∆≷(z)eipr (6.57)

with respect to r where, within the usual abuse of notation, the functions in momentum and
position space are only distinguished through the naming convention for their arguments, even
though they are different. As known from zero temperature field theory, calculations in momentum
space simplify considerably. This extends to the KMS relation which becomes in momentum space
even more powerful and reads

∆>(p) = eβp
0

∆<(p) (6.58)

Taking the Fourier transform of Eq. (6.14) with respect to the spatial coordinates r = x− y allows
to rewrite the equation as (

∂2

∂x2
0

+ E2

)
∆0(x0 − y0, E) = −δC(x0, y0) (6.59)

with E =
√

p2 +m2. The corresponding solution subject to the periodicity condition in Eq. (6.55)
can be determined to be2

i∆0(x0 − y0, E) =
fB(E)

2E

[
ΘC(x0, y0)

(
eβE−iE(x0−y0) + eiE(x0−y0)

)
+ΘC(y0, x0)

(
eβE+iE(x0−y0) + e−iE(x0−y0)

)]
. (6.60)

Note that the expression for the propagator in Eq. (6.60) (i) reduces in the zero-temperature limit
2The Green’s function ∆0(x0 − y0, E) can be found by starting from the one-dimensional harmonic oscillator

(∂2
t + ω2

0)G(t) = δ(t) with the Green’s function G(t) = Θ(t)
sin(tω0)
ω0

and applying additionally the periodicity
condition G(t) = G(t− iβ) in the four distinct cases show in Eq. (6.2).
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β →∞ to the conventional vacuum one on C1, (ii) is an even function in r0 and (iii) satisfies the
KMS relation (6.56). Evaluating the Heaviside functions in the four distinct regions and taking the
Fourier transform of the remaining temporal component yields the final form of the free thermal
propagators for scalars:

i∆11
0 (p) =

i

p2 −m2 + iε
+ 2πδ(p2 −m2)fB(|p0|) = (i∆22

0 )∗(p) , (6.61a)

i∆12
0 (p) = 2πδ(p2 −m2)

[
fB(|p0|) + Θ(−p0)

]
, (6.61b)

i∆21
0 (p) = 2πδ(p2 −m2)

[
fB(|p0|) + Θ(p0)

]
, (6.61c)

where fB(E) is the Bose-Einstein distribution defined in Eq. (2.14a) for a vanishing chemical
potential. With the propagator (6.61b) at hand, it is straightforward to check that the definition
of φ’s phase space density in Eq. (6.45) holds. For completeness, it is useful to write down the
corresponding retarded and advanced propagators

i∆
R/A
0 (p) =

i

p2 −m2 ± isgn(p0)ε
, (6.62)

as well as the correlated propagator

i∆C
0 (p) = 2π

[
1 + 2fB(|p0|)

]
δ(p2 −m2) =

[
1 + 2fB(p0)

]
∆−0 (p) , (6.63)

where the relation to the spectral propagator ∆−0 is another way of stating the KMS relation.

6.1.6 Feynman Rules at Finite Temperature

The finite-temperature Feynman rules follow from Eq. (6.21). They are as in vacuum with the
only difference that there are two types of vertices, ‘1’ and ‘2’, accounting for the forward and
the backward branch of the contour. Type-1 vertices remain unchanged compared to the zero-
temperature field theory whereas type-2 vertices obtain an extra relative minus sign. A type-1
vertex and a type-2 vertex are then connected through i∆12

0 (p) with the propagator momentum p

flowing from ‘1’ to ‘2’. Two type-1 vertices are connected through i∆11
0 (p) and so on. This means

that the nature of a field can only change through the off-diagonal propagators and a vertex can
connect only to type-1 or solely to type-2 fields. In addition, one has to sum over all internal types
of vertices. As in vacuum, energy-momentum conservation is imposed at each vertex through a
δ-function and all undetermined loop momenta k are integrated over via

∫
d4k /(2π)4.

6.2 Dirac Fermions

The extension of the Keldysh-Schwinger formalism to Dirac fermions with the free Lagrangian density
L0 = ψ̄(i/∂ −m)ψ is straightforward. Analogously to Eq. (6.17), the fermionic contour-ordered
propagator

iSαβ(x, y) = 〈TC{ψ̂α(x) ˆ̄ψβ(y)}〉% = ΘC(x0, y0)iS>αβ(x, y) + ΘC(y0, x0)iS<αβ(x, y) . (6.64)
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can be decomposed into the two Wightman functions S> and S<. These are defined trough

iS>αβ(x, y) = 〈ψ̂α(x) ˆ̄ψβ(y)〉% , (6.65a)

iS<αβ(x, y) = −〈 ˆ̄ψ(y)βψ̂α(x)〉% . (6.65b)

The labels α and β denote spinor indices which are suppressed in the following. Also note the
minus sign in Eq. (6.65b) due to the anti-commuting nature of fermions. Similar to the scalar case,
the phase space distribution function fψ of ψ is obtained by tracing the lesser Wightman function,

fψ(p, z) =

∫ ∞
0

dp0

4π
Tr
[
−iS<(p, z)γ0

]
, (6.66)

and the fermionic Kadanoff-Baym equations become

(i/∂x −m)S≷
c − Σ≷ � SHc − ΣH � S≷

c =
1

2
(Σ> � S<c − Σ< � S>c ) , (6.67)

where the fermionic analogue to the scalar self-energy Π is denoted by Σ. As before, these can be
transformed to Wigner space giving

(/p+
i

2
/∂z −m)S≷

c − e−i�{Σ≷}{SHc } − e−i�{ΣH}{S≷
c } =

1

2
e−i�({Σ>}{S<c } − {Σ<}{S>c }) . (6.68)

In the gradient expansion, Eq. (6.68) shortens to

γ0∂t(−iS≷) = iΣ>iS< − iΣ<iS> +O
(
∂tΣ

≷;HSH;≷
)
. (6.69)

Turning the discussion to the equilibrium situation, the fermionic KMS relation reads in position
space S>(x, y) = −S<((x, t+ iβ), y). Again, in momentum space it becomes more powerful:

S>(p) = −eβp0S<(p) . (6.70)

Without going into the details of the path integral formulation for anti-commuting fields, just note
that the free equilibrium propagators for Dirac fermions can be derived similarly to the bosonic
ones with the result:

iS11
0 (p) =

i(/p+m)

p2 −m2 + iε
− 2π(/p+m)δ(p2 −m2)fD(|p0|) = γ0(iS22

0 )†γ0 , (6.71a)

iS12
0 (p) = −2π(/p+m)δ(p2 −m2)

[
fD(|p0|)−Θ(−p0)

]
, (6.71b)

iS21
0 (p) = −2π(/p+m)δ(p2 −m2)

[
fD(|p0|)−Θ(p0)

]
, (6.71c)

where fD(E) is the Fermi-Dirac distribution function defined in Eq. (2.14b) for µ = 0.

6.3 Gauge Fields at Finite Temperature

While the quantization of Dirac fields at finite temperature is a rather straightforward generalization
of the scalar field, the quantization of gauge fields is technically more challenging, since, for instance,
Faddeev–Popov ghosts are required even in Abelian gauge theories to cancel the unphysical degrees
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of freedom in covariant gauges. Otherwise one finds, e.g., in QED twice the free-energy due to twice
the number of polarization states. However, as the ghost fields contribute only a multiplicative
factor to the generating functional, this is only true for calculations of the partition function while
the evaluation of Green’s functions in linear gauges at T 6= 0 just requires a minor modification of
the Feynman rules compared to vacuum. That is, the free gauge field propagator like the photon
propagator in QED becomes a 2 × 2-matrix with an additional thermal component and can be
written in terms of the scalar propagators as

iDab
µν(p) = dµν(p)i∆ab

0 (p)|m=0 , (6.72)

where the polarization tensor dµν(p) contains the Lorentz structure and takes for covariant Rξ
gauges the form

dµν(p) = −ηµν + (1− ξ)p
µpν

p2
. (6.73)

The propagators for massive gauge bosons in the real-time formalism on the other hand have, e.g.,
been worked out in Ref. [393]. The dressed (or exact or resummed) gauge propagator D̄ab

µν can be
obtained from the self-energy function Πµν

ab which, in turn, can be calculated perturbatively, through
the Dyson-Schwinger equation (6.42a) whose equilibrium version in momentum space becomes

D̄R/A
µν = DR/A

µν +DR/A
µα Παβ

R/AD̄
R/A
βν (6.74)

with a suppressed dependence of the momentum p flowing through the propagator. By gauge
invariance the full propagator can be decomposed into a longitudinal and a transverse part using
the corresponding projectors [392,394]

P 00
T = P 0i

T = P i0T = 0, P ijT = −δij +
pipj

|p|2 , (6.75a)

PµνL = ηµν − pµpν

p2
− PµνT , (6.75b)

which yields
−D̄ab

µν = −dµνD̄ab = D̄ab
L P

L
µν + D̄ab

T P
T
µν + ξ∆ab

0

pµpν
p2

. (6.76)

This decomposition has the advantage that Eq. (6.74) splits into two separate pieces due to the
orthogonality of the projectors, one for the longitudinal component and one for the transverse one,
without any remaining Lorentz indices, allowing to solve for the full propagator analytically with
the solution

D̄
R/A
L/T =

1

(∆R/A)−1 + Π
R/A
L/T

. (6.77)

For practical calculations it is often useful to work with the 11-component of the exact propagator
instead of the advanced or retarded one.3 To work out the explicit form, one can use Eq. (6.27a)
and the fact that, in equilibrium, the correlated propagator is related to the retarded and advanced
propagators via the fluctuation-dissipation theorem [395,396]

D̄C
µν(p) = [1 + 2fB(|p0|)]sgn(p0)

[
D̄R
µν(p)− D̄A

µν(p)
]
. (6.78)

3The 22-component can be simply be obtained from the 11-part through complex conjugation.
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The resummed propagator can then be written in the compact form:

D̄11
L/T =

ΩL,T
Ω2
L,T + Γ2

L,T

− i[1 + 2fB(|p0|)]sgn(p0)
ΓL,T

Ω2
L,T + Γ2

L,T

, (6.79a)

with the abbreviations

ΩL,T = p2 + Re Π
L/T
R , (6.80a)

ΓL,T = Im ΠL,T
R . (6.80b)

It is understood Eq. (6.79a) should be replaced by the causality-respecting ε-prescription if the
imaginary part of the retarded self-energy vanishes for kinematic reasons, i.e., by the propagator in
Eq. (6.61a).

6.4 Thermal Integrals

In thermal field theory calculations within the real-time formalism one often encounters integrals of
the forms

Kµ(P ) = 2g2

∫
d4k

(2π)3
kµ
δ(k2 −m2)fD(|k0|)
(P + k)2 −m2 + iε

, (6.81a)

Kµν(P ) = 2g2

∫
d4k

(2π)3
kµkν

δ(k2 −m2)fD(|k0|)
(P + k)2 −m2 + iε

(6.81b)

with a generic coupling g �
√

4π depending on the external momentum P and (implicitly) on the
mass scale m. The purpose of this section is therefore to evaluate these “thermal integrals” as far
as possible such that only one integral over the energy ω = |k0| =

√
k2 +m2 remains. For this

computation, P is chosen as reference direction and the corresponding unit vector is denoted by P̂.
The integration variable can then be parameterized via

k = |k|(cosϑP̂ + cosϕ sinϑê1 + sinϕ sinϑê2), (6.82)

where, together, P̂ and the two unit vectors ê1 and ê2 form a complete orthogonal basis.
The contributions from ê1 and ê2 to the spatial components of Kµ vanish after the azimuthal

ϕ-integration, resulting in

K =
P

|P|3
g2

(4π)2

∫ ∞
m

dω
[
P 2`1(ω, P ) + 2ωP0`2(ω, P )− 8|k||P|

]
fD(ω), (6.83)

where the two functions

`1(ω, P ) = ln

∣∣∣∣ (P 2 + 2|k||P|)2 − 4P 2
0 ω

2

(P 2 − 2|k||P|)2 − 4P 2
0 ω

2

∣∣∣∣ , (6.84a)

`2(ω, P ) = ln

∣∣∣∣P 4 − 4(P0ω + |P||k|)2

P 4 − 4(P0ω − |P||k|)2

∣∣∣∣ (6.84b)
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arise from the integration over cosϑ. Correspondingly,

K0 =
g2

8π2|P|

∫ ∞
m

dω ω `2(ω, P )fD(ω) (6.85)

is the remaining, temporal component of Kµ.
For Kµν , after application of the completeness relation δij = P̂ iP̂ j +

∑
k=1,2 ê

i
kê
j
k, the spatial

components become
Kij = P̂ iP̂ jG1 + (δij − P̂ iP̂ j)(I2 − I1/2), (6.86)

with the two auxiliary functions

I1 =
g2

2(2π)2|P|3
∫ ∞
m

dω
[
(P 4 + 4P 2

0 ω
2)`1(ω, P ) + 4P 2P0 ω `2(ω, P )− 8|P||k|P 2

]
fD(ω), (6.87a)

I2 =
g2

(4π)2|P|

∫ ∞
m

dω |k|2`1(ω, P )fD(ω). (6.87b)

The remaining components with at least one index being zero are

K00(P ) =
g2

8π2|P|

∫ ∞
m

dω ω2 `1(ω, P )fD(ω), (6.88a)

K0i =
g2P̂ i

(4π)2|P|2
∫ ∞
m

dω ω
[
2P0ω`1(ω, P ) + P 2`2(ω, P )

]
fD(ω). (6.88b)

The remaining single integral over ω has to be evaluated numerically.

The HTL Approximation The hard thermal loop (HTL) approximation [397] is a very successful
scheme to analytically approximate integrals like Kµ and Kµν . It is based on the assumption that
the quantities in such integrals can be separated into hard O(πT ) and soft scales O(gT ). This
is achieved by taking the external momentum P to be soft and therefore negligible compared to
the loop momentum k whose hard contribution is supposed to dominate the integral. In addition,
m� T is assumed such that the mass m is taken to be zero. These assumptions then reduce the
two auxiliary logarithmic functions to

`1(ω, P )
HTL≈ −2

|P|
|k| , `2(ω, P )

HTL≈ 2 ln

∣∣∣∣P0 + |P|
P0 − |P|

∣∣∣∣ , (6.89)

where the symbol
HTL≈ is used to denote the HTL limit. In all cases, this leaves an integral over ω

that can be performed analytically through∫ ∞
0

dω ω fD(ω) =
π2T 2

12
. (6.90)

6.5 The Photon Self-Energy in the Real-Time Formalism

A crucial ingredient in the NLO improved calculation of Neff in the Standard Model in Ch. 7 is
the photon self-energy. Therefore, an exact derivation at the one-loop level within the Keldysh-
Schwinger formalism is presented in this section, making use of the previously calculated integrals
and assuming electrons in thermal equilibrium with vanishing chemical potentials. In addition,
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from there, the resummed photon propagator can be extracted. While exact expressions for this
self-energy have been long known in the simplified scenarios wherein me = 0 [398] or in the HTL
approximation (see, e.g., [360, 396]), these assumptions are removed here instead and a photon
self-energy valid for all values of the electron mass me and photon momenta P is derived. Note
that, while Ref. [399] also studied the photon self-energy beyond the HTL approximation (and
accounting for non-zero electron chemical potentials), no explicit formulae were provided.

P

e

e

Aµ Aν

Figure 6.5: One-loop electron contribution to the photon self-energy.

At the one-loop level, the photon self-energy in the real-time formalism, displayed in Fig. 6.5
and only accounting for the electron contribution, reads

−iΠµν
ab (P ) = (−1)a+be2

∫
d4k

(2π)4
Tr
[
iSabe (k)γµiSbae (k − P )γν

]
. (6.91)

Nonetheless, it is straightforward to extend the calculation to other electrically charged particles
in the loop. By gauge invariance, the self-energy can always be split into a longitudinal and a
transverse part,

Πµν
ab = ΠL

abP
µν
L + ΠT

abP
µν
T , (6.92)

through the projectors defined in Eq. (6.75). Writing the self-energy in this form makes also
manifest that Πµν

ab fulfills the Ward-Takahashi identity PµΠµν
ab = 0. The longitudinal projector

can alternatively be expressed through the heat bath four-velocity Uµ = δµ0 (in its rest frame)
as PµνL = ŨµŨν/Ũ2 with Ũµ = P 2Uµ − (U · P )Pµ, so that the transverse projector becomes
PµνT = ηµν − PµP ν

P 2 − PµνL .
In the following, only the derivation of Πµν

11 and Πµν
12 is highlighted, since the remaining two

self-energy components can be related to the first two via the bosonic KMS relation Πµν
21 (P ) =

eP0/TΠµν
12 (P ) derived in Eq. (6.57) and Πµν

22 (P ) = −(Πµν
11 (P ))∗ which follows from inspection of

Eq. (6.91) under complex conjugation.
Starting with the diagonal components, Πµν

11 splits into the vacuum self-energy

Πµν
2 = ie2

∫
k

i

k2 −m2
e + iε

i

(k + P )2 −m2
e + iε

Tr
[
(/k +me)γ

µ(/k + /P +me)γ
ν
]

(6.93)

and the finite-temperature part Πµν
11,T 6=0. The renormalized vacuum part Πµν

2 (P ) = (αem/π)(P 2ηµν−
P νPµ)Π2(P 2) can be, e.g., computed using the Passarino-Veltmann reduction procedureand, in
the MS-scheme, reads

Π2(P 2) =
2

3
ln

(
µ

me

)
+

5

9
+
τ

3
+

1

3

(
1 +

τ

2

)√
1− τ ln

(√
1− τ − 1√
1− τ + 1

)
(6.94a)

−→ 1

3
ln

(
µ2

−P 2

)
+

5

9
for me → 0, (6.94b)
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with τ = 4m2
e/P

2 and in agreement with Ref. [400].
The finite-temperature part can be written in terms of the integrals Kµ and Kµν computed in

Sec. 6.4 such that the corresponding real part reads

Re Πµν
11,T 6=0 = Tr

[
( /K +me)γ

µ( /K + /P +me)γ
ν
]

= 4(−ηµνK · P + 2Kµν +KµP ν +KνPµ). (6.95)

After collecting all the terms according to the projectors defined in Eq. (6.75), one obtains for the
longitudinal part

Re ΠL
11,T 6=0 =

αemP
2

π|P|3
∫ ∞
me

dω
[
8|k||P| − `1(ω, P )(P 2 + 4ω2)− 4`2(ω, P )P0ω

]
fD(ω) (6.96a)

HTL≈ −3m2
γ

(
1− P 2

0

|P|2
)[

1− P0

2|P| ln
∣∣∣∣P0 + |P|
P0 − |P|

∣∣∣∣] −→ −3m2
γ for P0 = 0 . (6.96b)

It is remarkable that this result shows that even in the static limit P0 → 0, the longitudinal
excitations of the photon field, which are also sometimes referred to as “plasmons”, obtain an
electric mass mγ = eT/3 just through interactions with the thermal electron bath whereas the
corresponding expression for the transverse part

Re ΠT
11,T 6=0 =

αem

π|P|3
∫ ∞
me

dω

[
2`2(ω, P )P0P

2ω − 4|k||P|(P 2
0 + |P|2)

+ `1(ω, P )

(
|P|2P 2 + 2P 2

0 ω
2 − 2|k|2|P|2 +

1

2
P 4

)]
fD(ω) (6.97a)

HTL≈ −3

2
m2
γ

P 2
0

|P|2
[
1−

(
1− |P|

2

P 2
0

)
P0

2|P| ln
∣∣∣∣P0 + |P|
P0 − |P|

∣∣∣∣] −→ 0, for P0 = 0 , (6.97b)

shows no such behavior. The (purely imaginary) off-diagonal component Πµν
12 , on the other hand,

reads

Πµν
12 = i(ie)2

∫
d4k

(2π)4
16π2δ

(
k2 −m2

e

)
(fD(|k0|)−Θ(k0))δ

(
(k + P )2 −m2

e

)
× (fD(|k0 + P 0|)−Θ(−k0 − P 0))Aµν , (6.98)

where the minus sign from the fermionic loop and the one from the fact that a type-1 and a type-2
vertex occur cancel out, and Aµν = −ηµνk · P + 2kµkν + kνPµ + kµP ν .

For the evaluation of the integrals, the decomposition of k shown in Eq. (6.82) is used again.
The additional δ-function here (compared to the diagonal case) fixes then the polar angle θ to the
value

cos θ∗± =
P 2 ± 2ωP0

2|k||P| . (6.99)

With that, the tensor Aµν separates into a transverse and a longitudinal part according to

Aµν± =
P 2

2
(PµνT + PµνL )− |k|2 sin2 θ∗±P

µν
T −

P 2

2|P|2 (P0 ± 2ω)2PµνL . (6.100)
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The final result then reads

Πµν
12 = −i2αem

|P|

∫ ∞
me

dω
∑
±

Θ(1− | cos θ∗±|)(fD(ω)−Θ(k0))(fD(|k0 + P 0|)−Θ(−k0 − P 0))Aµν± ,

(6.101)
where the sum runs over positive and negative energies k0 = ±ω. In the HTL limit, Eq. (6.101)
becomes

ΠL
12

HTL≈ −iπe
2P 2T 3

3|P|3 Θ(|P| − |P 0|), (6.102a)

ΠT
12

HTL≈ i
πe2P 2T 3

6|P|3 Θ(|P| − |P 0|), (6.102b)

where the integral
∫∞

0
dk k2fD(k) [1− fD(k)] = π2T 3/6 has been used. Note that the off-diagonal

contributions (6.102) vanish for timelike external momenta, P 2 > 0.
For the calculation of the dressed photon propagator, it is convenient to compute the retarded

and advanced photon self-energy which can be written as

Π
T/L
R/A = Π

T/L
11 −Π

T/L
12/21 = Re Π

T/L
11 ∓ 1

2

(
Π
T/L
12 −Π

T/L
21

)
= Re Π

T/L
11 ∓ 1

2

(
1− eP0/T

)
Π
T/L
12 ,

(6.103)

using Im Π11 = 1
2i (Π12 + Π21) in the second equality and the KMS relation (6.58) in the last one.

In particular, Eq. (6.103) implies that Im Π
T/L
R = −Im Π

T/L
A .

Given that Π
L/T
R,A

HTL≈ Re Π
L/T
11 ± P 0

2T Π
L/T
12 in the HTL limit, these results for the advanced and

the retarded transverse photon self-energies in the HTL limit agree with Refs. [360, 396] apart from
an opposite minus sign in the imaginary part due to the slightly different definition of the physical
self-energies in Eq. (6.40).

It is noted in passing that the self-energy (6.101) leads to the unphysical process of photon
decay γ → e+e− at high enough temperatures, where mγ exceeds 2me [399]. In practice, this could
be resolved by employing the dressed electron propagator. For the calculation of Neff in Ch. 7,
however, the relevant dynamics happen at temperatures much below that threshold, such that the
resummation of the electron propagator for this reason is not necessary.

In Fig. 6.6, the finite-temperature contribution to the real and the imaginary parts of the
retarded transverse and longitudinal propagators are displayed for T = 2me and various choices
of |P|/T . The exact finite-temperature contribution to the real and the imaginary parts of the
retarded transverse and longitudinal one-loop photon self-energy is compared in Fig. 6.6 numerically
for T = 2me and various choices of |P|/T to (i) the equivalent self-energy in the limit me → 0, and
(ii) the equivalent self-energy in the HTL limit. Similarly, in Fig. 6.7, the impact of the temperature
on the photon self-energy is examined. It can be observed that the effect of the finite electron
mass me, while small for large temperatures T/me ∼ 5, remains sizeable for temperatures around
T/me ∼ 2 where neutrino decoupling occurs.

Another quantity of interest derived from the photon self-energy is the dispersion relation
P0 = w(|P|), i.e., solutions of the equation P 2 + Re Π

T/L
R (P ) = 0, which have to be obtained

numerically and are shown for the T = 2me benchmark in Fig. 6.8.
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Figure 6.6: Comparison between the finite-temperature part of the retarded photon self-energy at
the one-loop level with and without the HTL approximation at T = 2me and for various choices of
|P|/T .
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Figure 6.7: Comparison between the finite-temperature part of the retarded photon self-energy
at the one-loop level with and without the HTL approximation for different temperatures T ∈
{me, 2me, 5me} at a fixed |P|/T = 0.5.
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Figure 6.8: One-loop dispersion laws for transverse (blue lines) and longitudinal (orange lines)
photons at T = 2me with (continuous lines) and without (dashed lines) the HTL approximation.
The black dotted line shows the dispersion relation at zero temperature, i.e., P0 = |P|.
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Chapter 7

The Thermal Neutrino Interaction
rate at NLO and Its Impact on NSM

eff

While the previous sections dealt with precision calculations beyond the SM, the discussion shifts
now towards a precision calculation in the SM based on Ref. [401], namely of the effective number of
neutrinos Neff whose primary role is to fix the universal expansion rate at T . 1 MeV up to the end
of the radiation-domination epoch, in particular since its observable consequences are many—from
setting the primordial light element abundances, to influencing the correlation statistics of the CMB
anisotropies and the large-scale matter distribution, pinning down its value both theoretically and
observationally has enjoyed an unwavering interest for over four decades [17,402]. This is reinforced
by the fact that many BSM scenarios predict Neff -like effects (e.g., light sterile neutrinos [403, 404],
axions [405,406], gravitational waves [407], hidden sectors [408,409], etc.).

From a theoretical perspective, as shown in Sec. 2.5, the expected value of Neff in the context
of the SM of particle physics is under the most restrictive assumptions 3, for the three neutrino
flavors. The value receives percent-level corrections due to residual energy transfer between the
QED plasma and the neutrino sector during neutrino decoupling [336,410–414] as well as deviations
of the QED plasma itself from an ideal gas [415–420]. Historical estimates of these corrections
have ranged from 0.011 to 0.052 [411, 421–424]. Detailed modeling [339,425–427] over the last five
years, however, have significantly narrowed the range. The current state-of-the-art prediction is
NSM

eff = 3.0440 ± 0.0002 from a fully momentum-dependent transport calculation that includes
(i) neutrino oscillations, (ii) finite-temperature corrections to the QED equation of state to O

(
e3
)
,

and (iii) a first estimate of finite-temperature corrections due to thermal mass shifts in the weak
interaction rates. The effects of the different contributions are summarized in Tab. 7.1. In particular,
the uncertainty of NSM

eff is primarily attributed to discretization errors and uncertainties in the
measured neutrino mixing angles. Impressively, this result aligns perfectly with the independent
calculation of Ref. [426] which models the same physics to five significant digits in the central value
and with a similar error margin. Thus, the accurate calculation of NSM

eff seems to have reached
convergence, albeit in a limited sense.

There are, however, reasons to be cautious since as of yet missing is a systematic study of possible
higher-order corrections to the weak rates that may be at least equally important. This means that
the computations [426,427] are, at least conceptually, incomplete. The two works [428,429] have
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Standard-model corrections to NSM
eff Leading-digit contribution

me/Td correction +0.04

O(e2) FTQED correction to the QED EoS +0.01

Non-instantaneous decoupling+spectral distortion −0.006

O(e3) FTQED correction to the QED EoS −0.001

Flavor oscillations +0.0005

Thermal mass corrections to the weak rates . 10−4

Sources of uncertainty

Numerical solution by FortEPiaNO ±0.0001

Input solar neutrino mixing angle θ12 ±0.0001

Table 7.1: Leading-digit contributions from various SM corrections, in order of importance, thus far
accounted that make up the final NSM

eff − 3 = 0.0440± 0.0002 [426,427].

taken a first step towards filling this gap by considering the next-to-leading order corrections in
finite-temperature QED to the neutrino interaction rate. Ref. [428] took the rate corrections for
e+e− → ναν̄α from [430], computed originally in the context of energy loss in a stellar plasma within
the real-time formalism, but neglects (i) corrections to elastic scattering reactions like ναe→ ναe,
(ii) Pauli blocking effects, as well as (iii) corrections due to the diagram in Fig. 7.2d (the “closed
fermion loop”), claiming in the end a quite substantial correction to NSM

eff at the ∼ 0.001 level.
The neglect of the diagram containing the closed fermion loop is particularly worrisome, since
it contains a t-channel enhancement, and should therefore, at least naïvely, dominate the rate
correction. In contrast, Ref. [429] considered all diagrams in the imaginary-time formalism of
thermal field theory along with hadronic corrections to the diagram in Fig. 7.2d but assumed a
negligible electron mass by setting me = 0, even though this is not necessitated by the formalism.
The final result is stated as corrections to the thermal neutrino interaction rate. While Ref. [429]
confirms the expected t-channel enhancement and does not report the corresponding change in
NSM

eff , the corrections to the rate are found to be of order 0.2 to 0.3 % such that it is clear that
corrections of this magnitude cannot effect a shift in Neff as sizable as that claimed in Ref. [428].
As Ref. [429] employs the imaginary-time formalism, that only applies to equilibrium systems, the
generalization of the computation to nonequilibrium neutrino phase space distributions is rather
difficult.

The purpose of this chapter is therefore to clarify whether or not QED corrections to the
neutrino interaction rate can alter the Standard Model NSM

eff at the ∼ 0.001 level. Although this
correction is small compared to the expected sensitivity of the upcoming CMB-S4 program to
Neff , σ(Neff) ' 0.02 − 0.03 [346], having a precise theoretical prediction for NSM

eff with per-mille
level accuracy is still important to justify ignoring the theoretical uncertainty in cosmological
parameter inference. In contrast to Ref. [429] this calculation is performed in the closed time path
formalism reviewd in Ch. 6 which automatically takes care of both vacuum and finite-temperature
corrections like the imaginary-time formalism but has the advantage that it can easily be extended
to nonequilibrium situations [357, 431], while in equilibrium situations the two formalisms are
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exactly equivalent [392]. This aspect is important to pave the way for incorporating NLO effects
into neutrino decoupling codes such as FortEPianNO [339]. For the purpose of estimating the
neutrino interaction rate, however, the same equilibrium conditions as in Ref. [429] are assumed. In
addition, a finite electron mass me is retained as the me = 0 approximation made in Ref. [429] is
not well justified in the vicinity of neutrino decoupling happening at temperatures T ∼ 1 MeV. It
should also be immensely stressed that in contrast to vacuum field theory, NLO calculations in the
closed time path formalism are still in their early stages, since there is, e.g., so far no KLN-like
theorem guaranteeing an infrared finite result or numerical libraries for “thermal” integrals of the
type calculated in Sec. 6.4 resembling the by now well-known Passarino-Veltmann integrals from
Sec. 4.2.2. However, first approaches towards full NLO calculations in the real-time formalism
have been undertaken in the context of stellar physics [430], leptogenesis [368, 374] and dark
matter [97,98,381].

This chapter is organized as follows. In Sec. 7.1 the ingredients going into the current NSM
eff

state-of-the-art prediction are sketched. Section 7.2 shows how the thermal neutrino interaction
rate can be defined in the real-time formalism while Sec. 7.3 contains the derivation of the neutrino-
electron interaction according to an effective Fermi theory. Section 7.4 deals with the calculation of
the leading order rate while Sec. 7.5 outlines the computation of QED corrections to the neutrino
damping rate due to the t-channel enhanced diagram. The shift in NSM

eff due to these corrections is
presented in Sec. 7.6, and Sec. 7.7 contains the conclusions.

7.1 State of the Art NSM
eff Calculation

The precision calculation of NSM
eff requires to track the evolution of the neutrino and photon energy

densities, ρν and ργ , simultaneously across the time frame of neutrino decoupling, i.e., across photon
temperatures T ∼ O(10) → O(0.01) MeV. This is generally accomplished by solving two sets of
evolution equations: (i) a continuity equation that tracks the total energy density of the Universe,
and (ii) a generalized Boltzmann equation—commonly known as the quantum kinetic equations
(QKEs)—which describe the nonequilibrium behavior in the neutrino sector during the decoupling
process.

Continuity Equation At the time of neutrino decoupling, the total energy density and the
total pressure in the continuity equation (2.6) are given by ρ = ρQED + ρν and P = PQED + Pν ,
where ρQED = ργ + ρe subsumes the photon and the electron/positron energy densities, and
similarly for PQED. The QED sector can be safely assumed to be in a state of thermodynamic
equilibrium in the time frame of interest meaning that the standard thermodynamic relation ρQED =

−PQED + T (∂/∂T )PQED applies. Then, the finite-temperature corrections to the QED equation
of state summarized in Tab. 7.1 can be simply implemented as corrections to the QED partition
function ZQED and hence PQED = (T/V ) lnZQED that alter ρQED + PQED = T (∂/∂T )PQED from
its ideal-gas value. Corrections to ZQED are known to O

(
e3
)
for arbitrary me and chemical

potential µ [432] and to O
(
e5
)
for vanishing electron mass and chemical potential [433, 434]. In

Refs. [416,419,420] their effects on NSM
eff have been estimated up to O

(
e4
)
.

Quantum Kinetic Equations To account for neutrino oscillations, state of the art neutrino
decoupling calculations are formulated on the level of the one-particle reduced density matrix of
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the neutrino ensemble, % = %(p, t). In terms of this matrix, the quantum kinetic equations take
schematically the form [435]

∂t%− pH∂p% = −i[H, %] + I[%] , (7.1)

where the effective Hamiltonian H = H(p, t) = Hvac + V incorporates vacuum flavor oscillations
through Hvac and in-medium corrections from forward scattering trough V. Depending on context,
these modifications to the in-medium quasiparticle dispersion relations are known as thermal masses,
matter potentials or refractive indices. At the current level of precision [427],

I[%] =
1

2

(
(1− %)�<(p, t)− %�>(p, t)

)
+ h.c. (7.2)

is nothing but the semi-classical collision term from Eq. (2.12) encapsulating the non-unitary
gains �< and losses �> of % from weak 2→ 2 tree-level scattering processes wherein at least one
neutrino appears in either the initial or final state. More precisely, I[%] contains the processes
involving (i) two neutrinos and two electrons any way distributed in the initial and final states,
and (ii) neutrino-neutrino scattering. The leading-order �≷ for these processes are well known,
see, e.g., Ref. [411], and take the form of the two-dimensional momentum integral (B.12) already
encountered within dark matter annihilation in Ch. 5. Within the Standard Model, the quantities
%, H, and �≷ can be seen as 3× 3 hermitian matrices in flavor space, with the diagonal entries of
% corresponding to the phase space distribution functions fα(p, t) ≡ {%(p, t)}αα with α = e, µ, τ

denoting the neutrino flavor. Strictly speaking, this identification is only valid in the basis in which
H is diagonal, i.e., in the mass basis, rather than the interaction basis. However, this distinction
is unimportant for estimating the neutrino decoupling temperature, and therefore, in accordance
with common practice, {%(p, t)}ee is referred to as the electron neutrino phase space distribution
function in the following and so on. Under the assumption of a CP -symmetric Universe, which is
well justified if the lepton sector mirrors the baryon asymmetry in the observable Universe [436], it
is sufficient to consider only one set of QKEs for neutrinos since the corresponding antineutrinos
evolve identically.

The current benchmark NSM
eff = 3.0440 ± 0.0002 was then obtained with the purpose-built

neutrino decoupling code FortEPianNO [339, 427], which solves numerically the continuity
equation (2.6) and the three-flavor QKEs (7.1) in their entirety.

7.2 The Thermal Neutrino Interaction Rate in the Real-Time

Formalism

In the framework of the real-time formalism and without neutrino oscillations, i.e., Γ
≷
α = �≷

αα, the
kinetic equation (7.1) is obtained from the gradient expanded Kadanoff-Baym equation (6.69). This
means that the production Γ<α and destruction rates Γ>α at the momentum p can be extracted from
the α-flavored neutrino self-energies Σ

≷
α via

Γ≷
α (p) = ∓ 1

2p0
Tr
[
−iΣ≷

α /p
]∣∣∣
p0=|p|

. (7.3)
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For completeness, the neutrino distribution function fα(p) belonging to να follows then the general-
ized Boltzmann equation

dfα(p)

dt
= [1− fα(p)]Γ<α (p)− fα(p)Γ>α (p) . (7.4)

The usual diffusion term in a FLRW background on the right-hand side of Eq. (7.1) involving the
Hubble rate is recovered in Eq. (7.4) by recalling that p corresponds to the physical momentum from
Eq. (2.8). The total thermal neutrino interaction rate is then given by the sum Γα = Γ>α (p) + Γ<α (p).
In thermal equilibrium, detailed balance is established by the KMS relation (6.70) such that the
mode-dependent interactino rate can also be written as

Γα(p) =
1

2p0
Tr
[
−i(Σ<α − Σ>α )/p

]∣∣
p0=Ep

=
1

2p0fD(p0)
Tr
[
−iΣ<α /p

]∣∣
p0=Ep

. (7.5)

The first equality follows also from the fact that Γα can be related to the discontinuity of the retarded
neutrino self-energy evaluated at the quasiparticle pole, −disc iΣR

α = 2 ImΣR
α = i(Σ<

α − Σ>
α ), in

accordance with the optical theorem at finite temperature. While the KMS relation makes explicit
use of the fact that the Σ

≷
α are computed in thermal equilibrium, Eq. (7.3) coupled with Eq. (7.4)

extends to to nonequilibrium situations in a straightforward manner [431]. More specifically, this
involves substituting the equilibrium distribution in Eq. (6.63) between the statistical and spectral
propagators with a dynamical function, and adjusting all other propagators correspondingly. For
further discussion, see, e.g., Refs. [373, 437]. Where there is no confusion, the flavor index α is
dropped in the following.

7.3 The Effective Lagrangian in Fermi Theory

To compute the QED corrections to the weak processes ναe↔ ναe and ναν̄α ↔ e+e− at tempera-
tures of O(MeV), it is adequate to work in the Fermi limit where the weak bosons decouple. To
arrive at the effective Lagrangian, one can write down the corresponding amplitudes according to
the Feynman rules of the weak interaction which can, e.g., be found in Ref. [438]. After neglect-
ing the propagator momentum and replacing the SU(2)L coupling g through the Fermi constant
GF =

√
2

8
g2

m2
W

with the W -mass mW = mZ cos θW , one obtains

MZ = i

(
GF

4√
2

)[
ψ̄αγ

µPLψα
] [
ψ̄eγµ(PLg̃L + PRgR)ψe

]
, (7.6a)

MW = i

(
GF

4√
2

)
δαe

[
ψ̄αγ

µPLψe
] [
ψ̄eγµPLψα

]
(7.6b)

with the first one being the charged current contribution coming from the exchange of a W -boson;
the second one being the neutral current part from a Z as intermediate state; the couplings
g̃L = − 1

2 + sin2 θW and gR = sin2 θW . These two amplitudes can be combined in the sum
M4F =MZ +MW by using the Fierz identity [439]

[
ψ̄1γ

µPLψ2

] [
ψ̄3γµPLψ4

]
=
[
ψ̄1γ

µPLψ4

] [
ψ̄3γµPLψ2

]
(7.7)
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involving the four arbitrary spinors ψi such that one can immediately read off the effective four-
fermion Lagrangian and write it as

L4F =
4GF√

2

[
ψ̄αγµPLψα

]
[gαLJ

µ
L + gRJ

µ
R] . (7.8)

This combination yields the flavor-dependent left-handed coupling gαL = g̃L + δαe and JµL/R =

ψ̄eγ
µPL/Rψe are the left- and right-handed electron current operators. The interaction of neutrinos

with quarks is also well described by a Lagrangian of the form (7.8), with the couplings gαL
and gR updated for the quarks of interest. However, for the purpose of calculating the thermal
neutrino interaction rate one can safely omit the contributions from free quarks as at the O(1 MeV)

temperatures of interest these contributions are Boltzmann-suppressed. Hadronic effect are in
principle relevant and could be included through appropriate Wilson coefficients, see, e.g., Ref. [440].
As QED is a vector-like theory, it is convenient to additionally introduce the vector-axial couplings

gαV,A =
1

2
(gαL ± gR) (7.9)

as an alternative notation.

7.4 The Leading Order Rate

The leading order contribution to the thermal neutrino interaction rate in Fermi theory is given by
the two-loop neutrino self-energy shown in Fig. 7.1 which will be evaluated in the following and
allows to estimate the leading order neutrino decoupling temperature.

να
a b

να

p q

e

e

l

να

Figure 7.1: Leading order neutrino-self energy in Fermi theory. Labeled are the momenta (p, q and
l), real-time labels (a and b) and particles (e and να)

According to the effective neutrino-electron interaction Lagrangian (7.8), the graph in Fig. 7.1
evaluates to

Tr
[
iΣba(LO)/p

]
= (−1)a+b

(
4GF√

2

)2 ∫
d4l

(2π)4

d4q

(2π)4
Tr
[
/pγ

ρPLiS
ba
να(l)γσPL

]
× Tr

[
iSbae (p+ q − l)γσ(PLg

α
L + PRgR)iSabe (q)γρ(PLg

α
L + PRgR)

]
, (7.10)

where the traces are over the Clifford algebra and the definitions of the thermal propagators
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can be found in Sec. 6.1.5. As the interaction rate (7.5) is given by Σ<
α , the external contour

indices are set to a = 2 and b = 1. The generalized Boltzmann equation (7.4) suggests that the
self-energy in Eq. (7.10) can be brought into the form of the semi-classical Boltzmann collision
integral in Eq. (2.12). To do so, the four-momenta p, l, q in Fig. 7.1 are first identified with the
momenta p1, p2, p3, p4 of the external neutrinos and electrons of the underlying 2→ 2 process via
the reassignments

p1 = p, p2 = −l, p3 = q + p− l, p4 = −q. (7.11)

Then, writing out the propagators iS12/21
e and iS

12/21
ν explicitly, the self-energy (7.10) can be

brought into the form

Tr
[
iΣ<(LO)/p

]
= −

∫
d4p2

(2π)3

d4p3

(2π)3

d4p4

(2π)3
δ(p2

2) δ(p2
3 −m2

e) δ(p
2
4 −m2

e)

× (2π)4δ(4)(p1 + p2 − p3 − p4)F(p0
2, p

0
3, p

0
4) TLO(p1, p2, p3, p4) . (7.12)

The equilibrium phase space distributions of the three integrated external particles are contained in
the population factor

F(p0
2, p

0
3, p

0
4) =

[
fD(|p0

2|)−Θ(p0
2)
] [
fD(|p0

3|)−Θ(−p0
3)
] [
fD(|p0

4|)−Θ(−p0
4)
]

(7.13)

and the remaining piece coming from the traces over the γ-matrices given by

TLO(p1, p2, p3, p4) = 27G2
F

[
(gαL)2 (p1 · p4)

2
+ g2

R (p2 · p4)
2

+ gαLgRm
2
e (p1 · p2)

]
(7.14)

is nothing but the squared matrix element |M4F |2 from Eq. (7.6) summed over all spin configurations.
Therefore, the real-time formalism reproduces at O

(
α0

em

)
exactly the standard semi-classical

Boltzmann collision term. Their equivalence has also been demonstrated in Ref. [420] in the full
electroweak theory.

7.5 The Rate at NLO

At next-to-leading order in the electromagnetic coupling, the four diagrams in Fig. 7.2 contribute
to the thermal neutrino interaction rate. The dominant QED correction to Γα is expected to come
from the diagram in Fig. 7.2d in the regime where the photon propagator is on-shell due to the
resulting t-channel enhancement. This expectation has been confirmed in Ref. [429].

7.5.1 Evaluation of the Closed Fermion Loop

As only the last diagram is computed, the corresponding self-energy is simply denoted with Σba(NLO).
For notational convenience, Σba(NLO) is further split into the sum Σba(NLO) =

∑
c,d=1,2 Σba,cd over the

internal real-time indices c and d. The partial self-energies Σba,cd are then given by

Tr
[
iΣba,cd/p

]
= (−1)a+b+c+d(ie)2

(
i4GF√

2

)2
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Figure 7.2: The three-loop neutrino self-energies containing the O
(
e2
)
QED corrections to the

thermal neutrino interaction rate. For the last diagram with the closed fermion loops, explicitly
labeled are the external (a and b) and summed (c and d) real-time contour indices and the momenta
(k, l, p and q) whereas particles (e and να) are labeled in all diagrams.

×
∫

d4l

(2π)4

d4q

(2π)4

d4k

(2π)4
Tr
[
iSade (q)γρ(PLg

α
L + PRgR)iSdae (q + p− l)γµ

]
iDcd

µν(p− l)

× Tr
[
/pγ

ρPLiS
ba
α (l)γσPL

]
Tr
[
iScbe (k)γνiSbce (k + p− l)γσ(PLg

α
L + PRgR)

]
. (7.15)

Again, only Σ12
(NLO) is needed for the equilibrium interaction rate (7.5). Then, the contributions

Tr
[
iΣ12,21/p

]
and Tr

[
iΣ12,12/p

]
, which correspond to setting both the photon and neutrino lines

on-shell, vanish by momentum conservation (see also footnote 1). Of the remaining “11” and “22”
contributions, the transformation behavior of the thermal propagators under hermitian conjugation
dictates that Tr

[
iΣ12,11/p

]
= Tr

[
iΣ12,22/p

]∗. It then follows that the NLO interaction rate from
the diagram in Fig. 7.2d can be determined entirely through the real part of the diagonal “11”
contribution, i.e.,

Tr
[
iΣ12

(NLO)/p
]

= 2Re Tr
[
iΣ12,11

/p
]
. (7.16)

Using the same momentum reassignments as in Eq. (7.11), one finds that Eq. (7.16) can be brought
in the same form as the leading order self-energy (7.12) with TLO replaced by the quantity TNLO

which plays the role of the QED corrections to the LO squared matrix element and contains the
remaining loop integral over k. It can be stated in terms of the thermal one-loop photon self-energy
Πµν
ab calculated in Sec. 6.5 as

TNLO = −16G2
F g

α
V Re

{
Tr
[
(/p3

+me)γ
µ (me − /p4

)γρ (gαLPL + gRPR)
]
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×Tr
[
/p1
γρPL/p2

γσPL

]
D11
µν(P )Πνσ

11 (P )
}
, (7.17)

where the photon momentum gets the additional label P = p1 + p2.
Since TNLO has the interpretation of a squared matrix element, one can split it into a vacuum

and a thermal part according to their temperature dependence,

TNLO = Tvac + Tth. (7.18)

The vacuum virtual correction Tvac can be recovered from a cut through one closed electron loop
and the internal neutrino line and has no intrinsic temperature dependence in the sense that it
makes no explicit reference to the temperature or to any phase space distribution. It is simply the
correction to the weak matrix elements arising from the interference of the closed fermion loop
diagram shown in Fig. 7.3 with the LO graph in standard T = 0 quantum field theory, and can be
expressed in terms of the vacuum photon self-energy as

Tvac = −210G2
F αem [(gαV )2/(4π)]

[
m2
e(p1 · p2) + 2(p1 · p4)2

]
Re Π2(P 2) , (7.19)

where the form factor Π2 is defined in Eq. (6.94). The simplicity of the expression follows from
the fact that the integration domain is symmetric under the exchange p3 ↔ p4. This symmetry,
along with momentum conservation, also ensures the absence of all antisymmetric terms containing
Levi-Civita symbols. The vacuum QED corrections to the neutrino-electron scattering cross section
were also previously computed in Ref. [441].
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γ
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e
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p2 e

e

γ

p3

p4

(d)Figure 7.3: The “closed fermion loop”
vacuum correction.

The thermal correction Tth, on the other hand, can
be thought of as a temperature-dependent correction to
the squared matrix element as it depends explicitly on
equilibrium phase space distribution, fD or fB, of the
internal particles. These originate in the thermal “11” part
of the tree-level propagators containing a Dirac δ-function
along with the corresponding distribution function and,
where this part is applied, effectively puts an internal line
of the closed fermion loop diagram in Fig. 7.3 on-shell.
Purely from counting, there are altogether seven possible

ways to put one, two, or all three internal lines of the diagram in Fig. 7.3 on-shell. However, not all
combinations contribute to TNLO: The terms proportional to the Bose distribution fB correspond
to putting the photon line on-shell, which are forbidden for kinematic reasons [399,442]. Similarly,
putting both internal electrons on-shell leads to a purely imaginary contribution that is irrelevant
to the real part of the self-energy required for the neutrino interaction rate. The only surviving two
combinations correspond to putting either internal electron line on-shell, and are proportional to
fD(|k0|) and fD(|k0 + P 0|) respectively.

Importantly, the t-channel contribution from elastic ναe scattering in TNLO, i.e., if p0
2 < 0, is

logarithmically divergent for soft photon momenta. This divergence comes from the fact that the
finite-temperature photon self-energy scales not as P 2 like in vacuum, but as T 2 in the HTL limit
which do not compensate anymore for the 1/P 2 behavior of the photon propagator. In addition,
soft photons are Bose-enhanced. To remedy the problem, the tree-level photon propagator Dcd

µν in
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Eq. (7.17) is replaced with the fully-resummed photon propagator D̄ab
µν .1 Furthermore, because both

D̄ab
µν and Πνσ

11 split into a longitudinal (“L”) and a transverse (“T ”) part, the same decomposition
applies also to Tth, i.e., Tth = T Lth + T Tth , where T L,Tth can be brought into the form

T L/Tth = −28G2
F (gαV )2Re D̄

L/T
R (P )Re Π

L/T
R,T 6=0(P )

[
2(p1 · p4)P 1,4

L/T

+(p1 · p2)(aL/T (p1 · p2) + P 2,2
L,T + P 4,4

L/T )
]
. (7.20)

Here, D̄R denotes the retarded resummed photon propagator; ΠR,T 6=0 is the retarded thermal
photon self-energy comprising the fD(|k0|) and fD(|k0 +P 0|) terms described above; the shorthand
notation P i,jL/T = PµνL/T pi,µpj,ν ; and aL,T = (3∓ 1)/4 further differentiates between the longitudinal
and the transverse contribution.

Note that the imaginary part of the photon propagator, Im D̄L,T
11 , does not appear in Eq. (7.20)

because it is formally of higher-order in αem and we only compute the O(αem) corrections. The
resummed photon propagator is only used in the IR divergent t-channel contribution; where
the divergence is absent, i.e., in the s-channel D̄R → DR is set, where DR is the un-resummed
counterpart of D̄R. In addition, note that the vacuum contribution (6.94) to the photon self-energy
is numerically irrelevant for the resummed photon propagator, since it vanishes in the soft photon
exchange limit P 2 → 0, and is therefore discarded in the resummed phton propagator. The final
expressions for Re Π

L/T
11,T 6=0 and Re D̄

L/T
11 are given in equations (6.96b), (6.97b) and (6.79a), which

can be easily mapped to Re Π
L/T
R,T 6=0 and Re D̄R via Re D̄

L/T
R = Re D̄

L/T
11 and Re Π

L/T
R = Re Π

L/T
11 .

7.5.2 Numerical Results for the NLO Rate and Td(α)

The evaluation of the self-energy (7.12) for both the LO rate as well as the corresponding correction
and hence the neutrino interaction rate (7.5) is performed by parametrizing the momentum integrals
following App. B.1.1. Given that the the leading order matrix element (7.14) as well as the NLO
contributions (7.19) and (7.20) are a quadratic polynomial in the angle z = cosα between p1

and p2, the integration over z can be performed analytically following the strategy outlined
in App. B.1.1. In all cases, the remaining three integrals are calculated numerically by using
the Cuhre algorithm for multi-dimensional integration from the CUBA-4.2.2 [277] library. To
guarantee the reproduciblity of these results it makes sense to report the input parameter values.
These are set to the experimentally-determined values reported by the Particle Data Group [317]:

• Fermi’s constant: GF = 1.166 378 8(6) MeV−2,

• Electron mass: me = 0.510 998 950 00(15) MeV,

• Electromagnetic fine-structure constant: α−1
em(0) = 137.035 999 180(10), and

• Weinberg angle: sin2 θW (0)MS = 0.238 63(5).

The renormalization scale µR appearing in the photon self-energy of the vacuum contribution is
identified with the electron mass, µR = me. In addition, the results are cross checked using the

1Resumming the photon propagator opens up an additional cut through the photon and the internal neutrino
lines, corresponding to the so-called plasmon process γ → νν̄, even if the imaginary part of the photon self-energy is
neglected. This can be seen in Eq. (6.79a), which exhibits an on-shell δ-function in the limit of vanishing width (6.80b).
However, the plasmon process contributes at O

(
α2

em

)
[399], which can be understood as a phase space suppression

from mγ ∼ αemT and is therefore not included.
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alternative phase space parametrization presented in App. B.1.2 which is found to converge about
100 times faster than the one from App. B.1.1 for the tree-level result but hardly converges for the
NLO rate.

Figure 7.4 shows the closed fermion loop corrections to the damping rates Γe(p) and Γµ,τ (p)

at the mean momentum p = 3.15T . Relative to their respective LO rates, the corrections at
temperatures T ∼ 1 → 3 MeV fall in the range −0.2 → +0.1% and −0.0005 → +0.0002%,
respectively, for νe and νµ,τ . It should also be noted that:

1. At T ∼ 2 MeV, the vacuum and the thermal contributions to the correction are roughly equal
in magnitude (green versus blue lines in Fig. 7.4), in contrast to the findings of Ref. [428],
where finite-temperature corrections were determined to be subdominant. However, a direct
comparison is not possible because Ref. [428] investigated the type of corrections contained in
the diagrams shown in Figs. (7.2a) to (7.2c) —as opposed to the closed fermion loop correction
examined here.

2. Ref. [428] also found no significant flavor dependence in the rate corrections since their Γe and
Γµ,τ corrections differ by less than 1% in the temperature regime around neutrino decoupling.
Figure 7.4 on the other hand shows in agreement with Ref. [429] a strong flavor-dependence by
more than two orders of magnitude. This behavior can be traced back to the fact that electron
neutrinos experience charged current interactions while νµ,τ interact only via Z-exchange with
the e± thermal bath. This difference renders the corresponding vector couplings, geV ∼ 0.49

and gµ,τV ∼ −0.012, very roughly two orders of magnitude apart from one another.

3. Figure 7.4 shows the NLO contributions to the interaction rates in two different approximations:
(i) retaining the full dependence on the electron mass (solid lines in Fig. 7.4), and (ii) in
the limit me → 0 (dashed lines). The massless calculation aims to quantify the effect of the
me = 0 approximation employed in Ref. [429], along with the HTL approximation of the
photon propagator.

One observes that the error from neglecting the electron mass is relatively minor for T & 3me,
but becomes sizable at low temperatures. In particular, in the limit T → 0 the ratio ΓNLO

α /ΓLO
α

vanishes for me > 0, but diverges for me = 0 because of the Boltzmann suppression of the LO
rates. Precision computations of NSM

eff track the evolution of neutrinos down to temperatures
much below me [426,427]. Thus, although it is commonly understood that (electron) neutrino
decoupling occurs at relativistic temperatures T ∼ (2→ 3)×me, a finite me in the NLO rate
computations may yet have some impact on Neff (see Sec. 7.6.2).

Figure 7.5 focuses on the t-channel contribution to the interaction rate, where the enhancement
near the photon mass-shell occurs to compare four versions of the resummed photon propagator:
(i) the complete one-loop result including a finite me everywhere, (ii) the complete one-loop result
in the limit me → 0, (iii) using the HTL photon propagator (which does not depend on the electron
mass), but with me everywhere else,2 and (iv) using the HTL photon propagator and setting me = 0

everywhere. As expected, (ii) and (iv) match to a very good approximation. Indeed, since the
scattering rates are dominated by the kinematic region around the t-channel singularity where

2Even though it is physically inconsistent to keep me in the electron propagators and not in the photon one, (iii)
is nonetheless helpful as it isolates the dependence of the rate corrections to the 1PI-resummed versus the HTL
propagator.

143



−0.5

0.0

0.5

1.0

∆
Γ

N
L

O
α

/Γ
L

O
α

[%
]

TNLO
d(e) = 1.32110 MeV

α = e, p = 3.15T , µR = me > 0

total

vacuum

thermal

me 6= 0

me = 0

0.5 1.0 1.5 2.0 2.5 3.0

T [MeV]

10−3

101

10
2
2
×

R
at

e
[M

eV
]

T LO
d(e) = 1.32058 MeV

ΓLO
α

H

−0.001

0.000

0.001

0.002

∆
Γ

N
L

O
α

/Γ
L

O
α

[%
]

TNLO
d(µ,τ) = 2.22172211 MeV

α = µ, τ , p = 3.15T , µR = me > 0

total

vacuum

thermal

me 6= 0

me = 0

0.5 1.0 1.5 2.0 2.5 3.0

T [MeV]

10−3

101

10
2
2
×

R
at

e
[M

eV
]

T LO
d(µ,τ) = 2.22172209 MeV

ΓLO
α

H

Figure 7.4: Top: NLO contributions to the νe interaction rate from the closed fermion loop with a
finite electron mass (solid) or me = 0 (dashed) at different temperatures for the mean neutrino
momentum p = 3.15T . For comparison we normalize all curves to the LO rate (without QED
corrections), which we always evaluate with me 6= 0 to ensure a common normalization. The
total rate correction (red) is further split into the vacuum (blue) and the thermal contribution
(green). At T � me, the green curve flattens out as the thermal correction contains no scale besides
the temperature in this region, while the vacuum correction retains a mild dependence on the
renormalization scale µR. The lower panel shows again for better comparability the LO neutrino
interaction rate compared to the Hubble rate, and Td indicates the decoupling temperature, defined
via Γα(Td(e)) = H(Td(e)). Bottom: Same as top, but for νµ,τ .
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photons are soft, the 1PI-resummed propagator is well-approximated by the HTL one when, in
addition, me = 0 is set. On the other hand, visible differences can be discerned between (i) and
(iii) at T . 1 MeV, which can be explained by the fact that the HTL approximation only holds for
T � me. In the lower panel of Fig. 7.5, the impact of me is highlighted by displaying the ratio of
(i) to (iv).

7.5.3 NLO Decoupling Temperatures

While the upper panels of the two plots in Fig. 7.4 show the correction to electron neutrino and
muon/tau neutrino interaction rates, the lower panels demonstrate the corresponding leading order
rates juxtaposed with the Hubble expansion rate. Within the time frame of interest, the latter is
given by H2(T ) = (ρQED + ρν)/(3M2

Pl).
Solving the equation ΓLO

α (Td(α)) = H(Td(α)) for the flavor-dependent decoupling temperatures
Td(α), yields the LO decoupling temperatures

TLO
d(e) ' 1.320 58 MeV , (7.21a)

TLO
d(µ,τ) ' 2.221 722 09 MeV . (7.21b)

The first number differs from the estimate TLO
d(e) ' 1.3453 MeV from Ref. [420], which might be

traced back to a different choise of the input parameter value for the Weinberg angle. Incorporating
the QED corrections to the damping rates, the decoupling temperatures shift to

TNLO
d(e) ' 1.321 10 MeV, (7.22a)

TNLO
d(µ,τ) ' 2.221 722 11 MeV (7.22b)

corresponding to an increase of ∼ 0.04 % for νe and of ∼ 8× 10−7 % for νµ,τ . Around the
muon neutrino decoupling temperature, the vacuum and thermal contributions to the NLO rates
approximately cancel, explaining the smallness of the correction to TNLO

d(µ,τ).
Given that Ref. [429] computed the NLO weak rates assuming me = 0, it is also of interest

to study how such an assumption modifies the decoupling temperature shifts. Using the me = 0

rate corrections from Fig. 7.4 (but with the me 6= 0 LO rates), the corresponding NLO decoupling
temperatures turn out to be

TNLO,me=0
d(e) ' 1.321 18 MeV, (7.23a)

TNLO,me=0
d(µ,τ) ' 2.221 722 23 MeV, (7.23b)

i.e., a 0.05 % and 6× 10−6 % shift for νe and νµ,τ , respectively, relative to their corresponding LO
decoupling temperature (7.21).

7.6 NLO Effects on NSM
eff

Having computed the correction from the diagram in Fig. 7.2d to the interaction rate Γα, it is
now possible to estimate its effect on NSM

eff . With the equilibrium rates at hand, two avenues are
available:
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Method δNeff/N
LO
eff δNme=0

eff /NLO
eff

Entropy conservation (common decoupling) −1.1× 10−5 −1.2× 10−5

Entropy conservation (flavour-dependent decoupling) −5.4× 10−6 −6.1× 10−6

Boltzmann damping approximation (mean momentum) −7.8× 10−6 −1.6× 10−5

Boltzmann damping approximation (full momentum) −7.9× 10−6 −2.6× 10−5

Table 7.2: Estimates of the relative correction to NSM
eff due to NLO weak rate corrections, with and

without the electron mass, using different methods.

• Based on the computed correction to the neutrino decoupling temperature Td, defined via
Γα(Td) = H(Td), one can, under the assumption of instantaneous neutrino decoupling,
estimate the change to NSM

eff , δNeff ≡ NNLO
eff −NLO

eff , through entropy conservation arguments.

• One may also compute δNeff by solving directly the continuity equation (2.6) and the
(Boltzmann) evolution equation (7.4) for the neutrino densities, however, in the damping
approximation which entails that all neutrino species are assumed to be in thermal equilibrium
with the QED bath besides that a single momentum mode.

Both approaches are considered in the following. The corresponding estimates for δNeff are
summarized in Tab. 7.2.

7.6.1 Entropy Conservation

The entropy conservation argument has already been presented in Sec. 2.5 to obtain the standard
NSM

eff = 3 estimate. However, here it makes sense to drop the ultra-relativistic assumption to
account for a finite me and also allow for flavor-dependent decoupling temperatures. To do so, it is
convenient to parameterize the entropy density of the QED+νβ plasma as

s(a) =
2π2

45
heff(a)T (a)3 (7.24)

via the effective entropy degree of freedom parameter heff which in the ideal gas approximation at
the time of neutrino decoupling is given by

heff(a) = gγ +
45

2π4

ge
T 4(a)

∫ ∞
0

dp p2

(
Ee +

p2

3Ee

)
fD(Ee, T (a), µ = 0) +

7

8

∑
β 6=α

gνβ (7.25)

with Ee =
√
p2 +m2

e. For the purpose of estimating δNeff due to NLO contributions to the
weak rates, it suffices to use the ideal-gas heff . Note however that the QED entropy density at
Td ∼ O(1 MeV) is subject in principle to a sizable finite-temperature correction to the QED equation
of state, which needs to be included in precision calculations of NSM

eff [420].
Then, following the same considerations as in Sec. 2.5 with the full heff from Eq. (7.25) however,

the neutrino-to-photon temperature ratio at the later time a2 becomes

Tνα(a2)

T (a2)
=

[
heff(a2)

heff(a+
d )

]1/3

. (7.26)
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This temperature ratio is used in the following to provide two estimates of δNeff due to the NLO
contributions.

Common Decoupling Temperature Within the first estimate, as in Sec. 2.5, all neutrino
flavors are assumed to decouple effectively at the same time, i.e., again, a1 = a+

d corresponds to the
time immediately after νe decoupling and a2 to a time significantly after e± annihilation such that
heff(a2) = gγ = 2, while for the former one has

heff(a+
d ) = gγ +

45

π4T 4
d(e)

∫ ∞
0

dp p2

(
Ee +

p2

3Ee

)
fD(Ee, Td(e)). (7.27)

Then, using the temperature ratio (7.26) and the ideal-gas relations ργ ∝ gγT
4 and ρνα ∝

(7/8)gναT
4
να from Eq. (2.16b), one finds

ρν
ργ

∣∣∣∣
T/me→0

=
∑
α

ρνα(a2)

ργ(a2)
= 3× 7

8

[
2

heff(a+
d )

]4/3

(7.28)

which is equivalent to

Neff = 3×
[

11

4

2

heff(a+
d )

]4/3

. (7.29)

The LO and NLO electron neutrino decoupling temperatures in Eqs. (7.21) and (7.22) respectively,
yield a fractional shift of δNeff/N

LO
eff ' −1.1× 10−5 due to the rate corrections. If the me = 0 NLO

decoupling temperatures from Eq. (7.23) are used instead, the resulting shift in Neff would have
been δNme=0

eff /NLO
eff ' −1.2× 10−5. Therefore, while setting me = 0 causes an approximate 10%

change in the estimate of δNeff , its overall effect on NSM
eff seems to be minor, at least within the

framework of entropy conservation. These findings are summarized in Tab. 7.2.

Flavor-Dependent Decoupling In the absence of neutrino oscillations, electron neutrinos
decouple later than νµ,τ , i.e., at different temperatures Td(e) and Td(µ,τ) > Td(e). Consequently,
the estimation of NSM

eff requires considering entropy conservation across four epochs: the time
immediately after νµ,τ decoupling a1 = a+

d(µ,τ); immediately before νe decoupling at a2 = a−d(e);
immediately after νe decoupling a3 = a+

d(e); and significantly after e± annihilation a4. The associated
effective number of entropy degrees of freedom are

heff(a+
d(µ,τ)) = gγ +

45

π4T 4
d(µ,τ)

∫ ∞
0

dp p2

(
Ee +

p2

3Ee

)
fD(Ee, Td(µ,τ)) +

7

8
gνe , (7.30a)

heff(a−d(e)) = gγ +
45

π4T 4
d(e)

∫ ∞
0

dp p2

(
Ee +

p2

3Ee

)
fD(Ee, Td(e)) +

7

8
gνe , (7.30b)

heff(a+
d(e)) = gγ +

45

π4T 4
d(e)

∫ ∞
0

dp p2

(
Ee +

p2

3Ee

)
fD(Ee, Td(e)), (7.30c)

and heff(a4) = 2. An estimate of the νe-to-photon energy density ratio at the time corresponding
to a4 follows straightforwardly from the temperature ratio in Eq. (7.26) and the ideal-gas relations
in Eq. (2.16):

ρνe(a4)

ργ(a4)
=

7

8

[
heff(a4)

heff(a+
d(e))

]4/3

=
7

8

[
2

heff(a+
d(e))

]4/3

. (7.31)
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For the ratio ρνµ,τ (a4)/ργ(a4), note that the decoupling of νe at ad(e) introduces a discontinuity in
the degrees of freedom heff , thereby leading to a more complicated energy density ratio at a4,

ρνµ,τ (a4)

ργ(a4)
=

7

8

[
2

heff(a+
d(e))

heff(a−d(e))

heff(a+
d(µ,τ))

]4/3

. (7.32)

Then, combining Eqs. (7.31) and (7.32) to form ρν =
∑
α ρνα , yields

Neff =

(
11

4

2

heff(a+
d(e))

)4/3
1 + 2×

(
heff(a−d(e))

heff(a+
d(µ,τ))

)4/3
 (7.33)

for the flavor-dependent decoupling estimate.
Evaluating Eq. (7.33) at the LO and NLO decoupling temperatures from Eqs. (7.21) and (7.22)

gives a fractional change in Neff of δNeff/N
LO
eff ' −5.4× 10−6 for the me 6= 0 corrections, or

δNme=0
eff /NLO

eff ' −6.1× 10−6 for the me = 0 corrections. In comparison with the common-
decoupling estimates shown in Tab. 7.2, it is evident that the flavor-dependent decoupling estimates
of δNeff/N

LO
eff are typically about half as large, for both the me = 0 and me 6= 0 scenarios. This

discrepancy is anticipated, as the QED corrections to the νµ,τ interaction rates are minimal in con-
trast to the corrections to the νe rates. Nonetheless, both estimates are very rough approximations:
the actual shift in δNeff is likely to lie somewhere in-between.

7.6.2 Solving the Neutrino Boltzmann Equations and the Continuity
Equation

Ideally, the QED corrections should be incorporated into a neutrino decoupling code such as
FortEPianNO to estimate their impact on NSM

eff . As a first pass, however, one can resort to
the damping approximation, which allows to make use of the equilibrium rates by making the
simplifying assumption that all particle species—except for neutrinos at one particular momentum
mode p represented by fα(p)—are in thermal equilibrium with the QED plasma with temperature
T . Then, defining the deviation from equilibrium as δfα = fα(p)−fD(p) the generalized Boltzmann
equation (7.4) can be expanded to linear order in δfα resulting in

dfα(p)

dt
' −Γα(p, T ) [fα(p)− fD(p)] . (7.34)

To actually solve the approximate Boltzmann equation (7.34) along with the continuity equa-
tion (2.6), one can follow Ref. [419] and introduce the comoving quantities x = me a, y = a p, and
z = T a since this allows to rewrite the continuity equation as a differential equation for z which is
nothing but the photon-to-neutrino temperature ratio:

dz

dx
=

x
z J(x/z)− 1

2z3
dρ̄ν
dx +G1(x/z)

x2

z2 J(x/z) + Y (x/z) + 2π2

15 +G2(x/z)
. (7.35)
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In case of instantaneous neutrino decoupling, the asymptotic value of z results to the value (11/4)1/3.
Here, the functions

J(τ) =
1

π2

∫ ∞
0

dω ω2 exp
(√
ω2 + τ2

)
[exp

(√
ω2 + τ2

)
+ 1]2

, (7.36a)

Y (τ) =
1

π2

∫ ∞
0

dω ω4 exp
(√
ω2 + τ2

)
[exp

(√
ω2 + τ2

)
+ 1]2

, (7.36b)

describe the ideal-gas behavior of the QED plasma, while the other two functions G1,2(τ) account
for finite-temperature QED corrections. To O

(
e2
)
these are given by

G1(τ) = 2παem

[
1

τ

(
K(τ)

3
+ 2K2(τ)− J(τ)

6
−K(τ)J(τ)

)

+

(
K ′(τ)

6
−K(τ)K ′(τ) +

J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

)]
, (7.37a)

G2(τ) = −8παem

(
K(τ)

6
+
J(τ)

6
− 1

2
K2(τ) +K(τ)J(τ)

)
+ 2παem

(
K ′(τ)

6
−K(τ)K ′(τ) +

J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

)
, (7.37b)

while the corresponding expressions at O
(
e3
)
can be found in Ref. [420]. The ′ in Eq. (7.37) denotes

the first derivative with respect to τ and the auxiliary function K(τ) is defined as

K(τ) =
1

π2

∫ ∞
0

du
u2

√
u2 + τ2

1

exp
(√
u2 + τ2

)
+ 1

. (7.38)

Equation (7.35) also requires as input the total time derivative of the comoving neutrino energy
density ρ̄ν ≡ ρνa4, which according to Eq. (2.13b) can be constructed from neutrino occupation
numbers via

dρ̄ν
dx

=
1

π2

∫
dy y3

∑
α

dfα(x, y)

dx
. (7.39)

The derivative dfα(x,y)
dx in Eq. (7.39) corresponds to the approximate Boltzmann equation (7.34)

which in terms of the new variables reads

dfα(x, y)

dx
' −Γα(x, y)

xH(x)
[fα(x, y)− fD((y/z)T )] . (7.40)

Equation (7.40) can now be solved together with the continuity equation (7.35) for a range of
momenta y covering the majority of the neutrino population. A typical range is y ∈ [0.01, 30]

and this procedure is referred to in the following as the “full-momentum” approach. Alternatively,
Eq. (7.40) can be simplified further by adopting the ansatz that all neutrino species still maintain
an equilibrium shape but with a different number of total neutrinos. This corresponds to

fα(y) = fα(〈y〉) fD(yT )

fD(〈y〉T )
, (7.41)

and Γα(y) = Γα(〈y〉). A reasonable choice for 〈y〉 is the mean momentum mode y0 = 3.15 z(T0)

where T0 is the photon temperature at initialization which is still equal to the neutrino temperature
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at that time. In this approximation, Eq. (7.39) can be rewritten as

dρ̄ν
dx

= − 7π2

120xH(x)

[∑
α

Γα(〈y〉)
(
fα(x, 〈y〉)
fD(〈y〉T )

− z3(x)

)]
. (7.42)

This alternative is referred to as the “mean-momentum” approach.
Irrespective of whether the full-momentum or the mean-momentum approach is used, the final

value for NSM
eff can be estimated from the solutions to ρν and z in the limit x→∞ by using the

definition of NSM
eff in Eq. (2.21). In terms of the rescaled variables one has

NSM
eff =

8

7

(
11

4

)4/3
30

2π2

[
z(T0)

z(x)

]4

ρ̄ν(x)

∣∣∣∣∣
x→∞

. (7.43)

Table 7.2 shows the estimates of δNeff/N
LO
eff due to QED corrections to the neutrino interaction

rates using both the full-momentum and the mean-momentum approaches, with and without the
electron mass in the correction.

As is evident form Tab. 7.2, the full-momentum and the mean-momentum calculations for a
finite electron mass me 6= 0, δNeff/N

LO
eff ' (−7.8→ −7.9)× 10−6, both align fairly well with their

counterpart obtained in Sec. 7.6.1 from entropy conservation arguments: in fact they fall between
the common-decoupling and flavor-dependent decoupling estimates. However, the calculations
assuming a vanishing electron mass me = 0 show a 50 % difference between the full-momentum
(δNme=0

eff /NLO
eff ' −2.6× 10−5) and the mean-momentum (δNme=0

eff /NLO
eff ' −1.6× 10−5) methods,

and are in addition ∼ 30 % up to four times larger than those derived from entropy methods. This
result is in line with expectations. As previously shown in Figs. 7.4 and 7.5, the rate corrections under
the me = 0 assumption diverge as T → 0 compared to the LO rate, whereas the me 6= 0 counterpart
approaches zero. Given that neutrino decoupling in the early Universe is gradual and reaches
into the e±-annihilation era at T ∼ me, any calculation of δNeff that considers non-instantaneous
decoupling will be somewhat sensitive to the assumptions made for me in the T . 3me range.
Indeed, the low temperature impact of me on δNeff/N

LO
eff is not captured by entropy conservation

arguments, which rely on a single point estimate, i.e., the decoupling temperatures at T > me, where
the me 6= 0 and me = 0 rate corrections differ by less than 10 %. Conversely, the full-momentum
approach, covering the widest temperature range, exhibits the strongest dependence on the electron
mass assumption for δNeff/N

LO
eff . Consequently, while the impact of rate corrections on NSM

eff is
minor, one can deduce that ignoring me in these calculations is an inadequate approximation in
high-precision evaluations of NSM

eff .

7.7 Conclusions

In this chapter, the QED corrections to the neutrino-electron interaction rates near neutrino
decoupling have been calculated and their impact on the effective number of neutrinos in the
Standard Model, NSM

eff , has been assessed. The focus was on the diagram from Fig. 7.2d, due to its
expected t-channel enhancement, leading to its dominance over the other three diagrams. Similar
corrections have been examined in Refs. [428,429]. The former analysis [428] suggested a shift in
NSM

eff from the benchmark value of 3.044 [426,427] to 3.043. Contrary to these findings, the ab initio
calculation presented here shows that the QED corrections to the neutrino interaction rate are
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minimal. Within the temperature range T ∼ 1→ 3 MeV, the corrections to the electron neutrino
interaction rate range from −0.2→ +0.1% relative to the LO rate. For muon and tau neutrinos,
the effect is even smaller, ranging from −0.0005→ +0.0002%. These results are consistent with
the findings from Ref. [429], despite differing formalisms (imaginary time versus real-time) and
assumptions (zeroth versus finite me). The significant contrast in the relative corrections for νe
and νµ,τ , spanning over two orders of magnitude, confirms the strong flavor dependence noted
in Ref. [429] but not in Ref. [428]. Employing the QED-corrected neutrino interaction rates, the
resulting change in NSM

eff has been estimated using various approximations and methods: via entropy
conservation arguments which assume instantaneous decoupling, and by solving the Boltzmann
equation along with the continuity equation in the damping approximation. Depending on the
method/approximation, the relative change in NSM

eff lies within δNeff/N
LO
eff ' (−0.5→ −1.1)×10−5.

Thus, relative to the current SM benchmark of NSM
eff = 3.0440 ± 0.0002 [426, 427], the QED

corrections to the neutrino interaction rates could shift the value negatively in the fifth decimal
place, thereby remaining completely within the reported uncertainties. While this confirms the sign
of δNeff calculated in Ref. [428], even the most optimistic estimate is roughly 30 times smaller than
their claimed correction.

Notably, assuming me = 0 in rate corrections can have an O(1) impact on δNeff/N
LO
eff , despite

that the rate corrections at T ∼ 1→ 3 MeV differ by less than 10 %. This arises because corrections
assuming me = 0 deviate from their me 6= 0 counterparts at T . 3me, as they diverge in the T → 0

limit while the me 6= 0 corrections vanish. Since neutrino decoupling in the early Universe is not
instantaneous, these T . 3me effects will influence NSM

eff , despite the common understanding that
neutrino decoupling occurs at T ∼ 1 MeV. Therefore, even though the QED corrections to the weak
rates effect NSM

eff negligibly, disregarding the electron mass for high-precision NSM
eff calculations is

not a good approximation.
To conclude, these findings strongly indicate that the SM benchmark value NSM

eff = 3.0440±
0.0002 [426,427] remains correct within the stated uncertainties. Ideally, a comprehensive numerical
solution of the QKEs using a dedicated neutrino decoupling code like FortEPiaNO [339] incorpo-
rating all NLO contributions shown in Fig. 7.2 in the collision integral would be desirable. However,
unless there is a new effect that has not yet been taken into account so far, it’s unlikely that a more
detailed examination of NLO effects on the neutrino interaction rate will lead to a departure from
the existing SM benchmark NSM

eff that is large enough to be relevant for cosmological observations
in the near future.
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Figure 7.5: Top: The t-channel contribution (l0 > 0) to the NLO electron neutrino interaction
rate at the mean momentum p = 3.15T in different approximations, namely, using 1PI-resummed
(green) and HTL (magenta) photon propagators, in each case with me 6= 0 (solid lines) or me = 0
(dashed lines) in both electron loops of the self-energy diagram of Fig. 7.2d. As in Fig. 7.4, all
curves are normalized to the LO rate, which we always evaluate with me 6= 0. The lower panel
shows the ratio of the 1PI result for me 6= 0 to the HTL result for me = 0 as a function of the
temperature. Bottom: Same as top, but for α 6= e.
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Chapter 8

Conclusion and Outlook

While the Standard Model of particle physics combined with general relativity seems to be widely
consistent with observations, it remains mandatory to precisely calculate observables in those
theories to match the (future) experimental resolution. This extends to theories that go beyond
the Standard Model to explain, e.g., dark matter, to reliably draw conclusions on the viability of
such models. In this spirit, this thesis investigated higher-order SUSY-QCD corrections to dark
matter (co)annihilation cross sections in the context of neutralino dark matter in the MSSM and
the precision code DM@NLO. The corresponding calculations do not only allow to constrain the
MSSM parameter space more reliably, but can also serve as guidelines for other models. In more
detail, the methods of (dimensional) regularization and renormalization have been presented to
treat the UV divergences appearing in the virtual corrections, providing a selection of (stable)
renormalization schemes for the MSSM region relevant for stop coannihilation. Also, an extension
of the dipole subtraction method to massive initial-states has been performed and verified through
comparison with the space phase space slicing method. As an example, the O(αs) corrections to stop-
antistop annihilation into gluons and light quarks have been calculated including the Sommerfeld
enhancement effect. Generally, throughout the DM@NLO history, the strong corrections are found
to shift the neutralino relic density in the stop coannihilation region by at most ∼ 50 %. In terms of
another angle, the effect on the dark matter relic abundance was examined within a simplified dark
matter model featuring forbidden DM annihilations into SM leptons if the assumption of kinetic
equilibrium between dark matter and the Standard Model in the standard freeze-out scenario is
lifted. The resulting changes in the final DM abundance were much more severe than due to the
higher-order corrections, finding shifts by more than an order of magnitude, that in turn severely
change current exclusion limits on the investigated model.

While the previous refinements of the dark matter freeze-out calculation were all done using
vacuum QFT matrix elements due to the non-relativistic nature of the the problem, a precise
description of neutrino decoupling requires the inclusion of finite-temperature effects which ne-
cessitated a relatively large review of the closed time path formalism of nonequilibrium quantum
field theory, as particle physics was for a long time dominated by collider experiments and thermal
effects were if only relevant in the context of the quark-gluon plasma. This then allowed to calculate
the dominant next-to-leading order QED corrections to the weak rates determining NSM

eff with the
result that the current benchmark for Neff in the Standard Model remains unchanged within the
reported uncertainties.
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There are now several possibilities to extend the work presented in this thesis: In the context
of DM@NLO there is the obvious path of including radiative corrections to not yet implemented
processes like gluino coannihilation. Another direction would be the addition of other models
beyond the MSSM like the Inert Doublet Model or the NMSSM. An orthogonal direction is the
inclusion of other so far missing non-perturbative effects like bound-state formation which is, e.g.,
relevant for stop-anstistop annihilation, or the inclusion of more argument sets for one-loop integrals
with a vanishing Gram determinant in DM@NLO’s loop library since these are relevant for the
computation of direct and indirect detection signals in general. In the context of a precision
calculation of Neff in the Standard Model, the closed fermion loop still needs to be supplemented
by hadronic contributions. Also the evaluation of the remaining three identified diagrams yielding
the O

(
e2
)
corrections needs to be completed followed by the subsequent implementation of the

NLO contributions into the neutrino decoupling code FortEPianNO, however, only after the
generalization of the thermal rates to nonequilibrium phase space distribution functions for the
different neutrino flavors. In addition, similar to dark matter bound-state formation, one may
include non-perturbative physics that could be taking place in the QED plasma like the formation
of positronium out of non-relativistic electron–positron pairs.
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Appendix A

Collection of Calculations and Results
for the Dipole Method

In this part of the appendix, calculations and results related to the extension of the dipole method
to massive initial states are collected.

A.1 Derivation of the Phase Space Factorization

A.1.1 Final-State Emitter and Initial-State Spectator

The phase space element for m+ 1 particles in the final state in D = 4− 2ε dimensions is given
by [443]

dφm+1(pi, pj , pk; pa + pb) = (2π)δ(D)(pa + pb − pi − pj −
∑
k

pk)
dDpi

(2π)D−1
δ+(p2

i −m2
i )

× dDpj
(2π)D−1

δ+(p2
j −m2

j )
∏
k

dDpk
(2π)D−1

δ+(p2
k −m2

k), (A.1)

where the modified Dirac delta distribution contains the Heaviside step function θ(x) and is defined
as δ+(p2 −m2) = δ(p2 −m2)θ(p0). The momentum of the spectator is pa, while the emitter ĩj
splits into two particles with the momenta pi and pj . The momenta of the remaining final state
particles other than i or j are labelled as pk. The (m+ 1)-particle phase space is factorized exactly
into a m-particle phase space and a two-particle phase space through a convolution of the form

dφm+1(pi, pj , pk; pa + pb) =
dm2

P

2π
dφm(P, pk; pa + pb)dφ2(pi, pj ;P ), (A.2)

where m2
P = P 2 acts as the squared invariant mass related to the momentum P = pi + pj . As

the dipole splitting functions are expressed as functions of x and zi, it makes sense to replace the
integration over m2

P with an integration over x by using the relation in Eq. (4.64) and turn the
integration over the two-particle phase space

dφ2(pi, pj ;P ) = (2π)Dδ(D)(P − pi − pj)
dDpi

(2π)D−1
δ+(p2

i −m2
i )

dDpj
(2π)D−1

δ+(p2
j −m2

j ) (A.3)
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into an integration over zi. As a first step towards the parametrization through zi, two Dirac delta
functions are integrated out which gives

dφ2(pi, pj ;P ) =
dD−1pi

(2π)D−22Ei
δ+((P − pi)2 −m2

j ). (A.4)

It is convenient to work in the c.m. frame of pi and pj from now on, i.e., in the rest frame of P ,
which sets the time and spatial components of pi and pj to the well-known expressions [443]:

Ei =
P 2 +m2

i −m2
j

2
√
P 2

, Ej =
P 2 +m2

j −m2
i

2
√
P 2

, |pi| = |pj | =

√
λ(P 2,m2

i ,m
2
j )

2
√
P 2

. (A.5)

The components of momentum pa become

Ea =
pa · P√
P 2

=
−Q̄2

2x
√
P 2

, |pa| =
√

(pa · P )2

P 2
−m2

a =
1

2
√
P 2

√
λajR(x)

x
, (A.6)

where Eq. (4.64) was used to replace the product pa · P . The expressions in Eq. (A.5) can be used
to write the remaining Dirac δ-function in Eq. (A.4) as a function of the absolute value of the
momentum pi

δ+(P 2 − 2P · pi +m2
i −m2

j ) =
Ei

2
√
P 2|pi|

δ+

(
|pi| −

1

2
√
P 2

√
λ(P 2,m2

i ,m
2
j )

)
. (A.7)

Inserting polar coordinates in D − 1 dimensions

dD−1pi = d|pi| |pi|D−2
dΩD−2 dcos θ sinD−4 θ (A.8)

allows to integrate out the remaining delta function and the phase space measure becomes

dφ2(pi, pj ;P ) =
dΩD−2

(2π)D−2
dcos θ sinD−4 θ

1

2

(
4P 2

) 2−D
2 λ

D−3
2 (P 2,m2

i ,m
2
j ) , (A.9)

where the angle θ is defined as the angle between pa and pi, so that cos θ is given by

cos θ =
EiEa − pi · pa
|pi||pa|

. (A.10)

The integration over cos θ can now be turned easily into an integration over the desired variable zi
as Ei, Ea, |pi| and |pa| do not depend on zi. In order to express sin θ through zi, the integration
limits

z± =
EiEa ± |pi||pa|

P · pa
, (A.11)

which are given in Eq. (4.71) in terms of x and Q2 for mi = 0, can be used to write

sin2 θ = (1− cos θ)(1 + cos θ) =

(
P · pa
|pi||pa|

)2

(zi − z−)(z+ − zi). (A.12)
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Due to O(3) invariance of the matrix element squared around the axis given by pa, the integration
over the solid angle ΩD−2 can already be performed using

∫
dΩD−2 =

2π
D−2

2

Γ(D−2
2 )

. (A.13)

After defining the jacobian from the transition from m2
P to x into the dipole phase space[

dpi
(
Q2, x, zi

)]
, one arrives at Eq. (4.70).

A.1.2 Initial-State Emitter and Initial-State Spectator

As in the previous section, the form of the measure [dpi (s, x, y)] is derived by considering a
convolution of the form

dφm+1(pi, pk; pa + pb) =
dm2

P

2π

∏
k

dDpk
(2π)D−1

δ+(p2
k −m2

k)

× (2π)Dδ(D)(pa + pb − pi −
∑
k

pk)dφ2(pi, P ; pa + pb) , (A.14)

where mP acts as the invariant mass of the momentum P = pa + pb − pi. By using the facts
that the dipole momenta obey the mass-shell relations p̃k = m2

k and momentum conservation
pa + pb − pi −

∑
k pk = p̃ai + pb −

∑
k p̃k by construction and that a Lorentz transformation

p̃µk = Λµνp
ν
k leaves the measure dDpk invariant, the remaining momentum integrations in Eq. (A.14)

can be expressed through a m-particle phase space with initial momentum p̃ai + pb and final
momenta p̃k:

dφm+1(pi, pk; pa + pb) =
dm2

P

2π
dφm(p̃k; p̃ai + pb)dφ2(pi, P ; pa + pb). (A.15)

Following the same line of thought as in App. A.1.1 and working in the c.m. frame of pa and pb,
the integration over the two-particle phase space for mi = 0

dφ2(P, pi; pa + pb) =
dDpi

(2π)D−1
δ+(p2

i )
dDP

(2π)D−1
δ+(P 2 −m2

P )(2π)Dδ(D)(pa + pb − P − pi) (A.16)

can be turned into an integration over y

dφ2(P, pi; pa + pb) =
dΩD−2

2(2π)D−2
d|pi||pi|D−3

dcos θ sinD−4 θ δ+(s− 2|pi|
√
s− P 2)

=
dΩD−2

2(2π)D−2
(2
√
s)2−D(s− P 2)D−3 dcos θ sinD−4 θ

=
s̄1−2ε

2(4π)2−2ε

(4s)−ε
√
λab

1−2ε dΩD−2 dy [(y+ − y)(y − y−)]
−ε
. (A.17)

The angle θ is defined as the angle between pi and pa and therefore determined through

pa · pi = |pi|Ea − |pa||pi| cos θ. (A.18)
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A simple substitution from m2
P to x via Eq. (4.113) yields the dipole phase space [dpi (s, x, y)] given

in Eq. (4.110).

A.2 Computation of the Relevant Integrals

The expansion in ε of the integrals I1(z; ε) and I2(z; ε) up to O(ε) is obtained by inserting the
ansatz

u(z) = r(z) + εs(z) +O
(
ε2
)

(A.19)

into the hypergeometric equation [444]

z(1− z)u′′(z) + (c− (a+ b+ 1)z)u′(z)− abu(z) = 0 , (A.20)

whose general solution for the initial condition u(0) = 1 is the hypergeometric function u =

2F1(a, b; c; z). Solving the resulting system of equations order by order while enforcing the boundary
conditions r(0) = 1 and s(0) = 0 yields the functions r(z) and s(z). Note that the Euler beta
function β(a, b) = 1

b 2F1(a, 1− b, a+ 1; 1) is just a special case of the hypergeometric function.
For the computation of the integrals I1 (y0; ε) and I2 (y0; ε), the integral∫ ∞

0

dt tα−1
2F1(a, b; c;−t) =

Γ(α)Γ(c)Γ(a− α)Γ(b− α)

Γ(a)Γ(b)Γ(c− α)
(A.21)

is used. It can be computed by inserting the integral representation of the hypergeometric function
followed by factorizing the double integral into two beta functions

∫ ∞
0

dt

∫ 1

0

dt′ tα−1t′b−1(1− t′)c−b−1(1 + tt′)−a

=

∫ 1

0

dx (1− x)α−1xa−α−1

∫ 1

0

dt′ (1− t′)c−b−1t′b−α−1

= β(α, a− α)β(c− b, b− α) (A.22)

through the substitution x = 1/(1 + tt′). The remaining step for the computation of I1 (y0; ε) is to
separate the integral into a part giving the divergences for y → 0 and a finite part

I1(y0; ε) = β(1− ε, 1− ε)
(

1

y1+ε
0

∫ 1

0

dt tε 2F1

(
1, 1− ε; 2− 2ε;− t

y0

)
−
∫ ∞

0

dt tε 2F1 (1, 1− ε; 2− 2ε;−t)
)
. (A.23)

The last part contains the divergent piece and is evaluated with the help of Eq. (A.21)∫ ∞
0

dt tε 2F1(1, 1− ε; 2− 2ε;−t) =
1

2ε2
− 1

ε
+O(ε) , (A.24)
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whereas the first integral is finite and can be evaluated for ε = 0∫ 1

0

dt tε 2F1

(
1, 1− ε; 2− 2ε;− t

y0

)
= −y0 Li2

(
− 1

y0

)
+O(ε). (A.25)

The calculation of I2 (y0; ε) proceeds in an analogous way.

A.3 The Integrated Dipoles

A.3.1 Final-State Emitter and Initial-State Spectator

The integrated counterparts Iaij according to Eq. (4.81) read:

Iagq (x; ε) =
2CF

vR(x)x2

1

(1− x)1+2ε

× (ηjx+ (1− x))
2ε

(−Q̄2

P 2

)ε [(√
λajR(x)

Q̄2
+

1

4
hRS
g z−(z+ − z−)

)
β(1− ε, 1− ε)

+
1

4
hRS
g (z+ − z−)2β(1− ε, 2− ε)− I1(−A(x); ε)

]
, (A.26)

Îagq (x; ε) =
2CF
x2−ε

1

(1− x)1+ε

[(
1

8
hRS
g (1−R(x))− 1

)
β(1− ε, 1− ε)

+
1

4
hRS
g R(x)β(1− ε, 2− ε)− 1

R(x)
I1(−A(x); ε)

]
, (A.27)

Iagq̃ (x; ε) =
2CF

vR(x)x2

1

(1− x)1+2ε
(ηjx+ (1− x))

2ε

×
(−Q̄2

P 2

)ε [(√
λajR(x)

Q̄2

)
β(1− ε, 1− ε)− I1(−A(x); ε)

]
, (A.28)

Iagg (x; ε) = − 2CA
R(x)x2−ε

1

(1− x)1+ε

[
I1 (−A(x); ε)− I1(Ã(x); ε)

− hRS
g

2(1− ε)R(x)3β (2− ε, 2− ε) + 2R(x)β (1− ε, 1− ε)
]
, (A.29)

Iaqq̄ (x; ε) =
TF
x2−ε

1

(1− x)1+ε

(
β(1− ε, 1− ε)− 2

1− εR(x)2β(2− ε, 2− ε)
)
. (A.30)

Note that in the massless case mj = 0 the variables A and Ã are related through A(x) =

Ã(x)/(1− Ã(x)) which allows to simplify the difference of the I1 functions in Eq. (A.29)

I1 (−A(x); ε)− I1(Ã(x); ε) = 2I1 (−A(x); ε) (A.31)

by employing the identity I1 (z; ε) = −I1 (z/(z − 1); ε) which follows directly from the Pfaff
transformation

2F1 (a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
. (A.32)
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A.3.2 Initial-State Emitter and Final-State Spectator

The integrated counterparts Ia,ãij according to Eq. (4.95) read:

I q̃q̃j (x; ε) =
2CF

vR(x)x2

1

(1− x)1+2ε
(ηjx+ (1− x))

2ε

(−Q̄2

P 2

)ε
×
(
I1(−A(x); ε)− xI1(−B(x); ε) + 2ηax

2 (ηj − 1)x+ 1

1− vR(x)
I2(−B(x); ε)

)
, (A.33)

Î q̃q̃
j

(x; ε) =
2CF

R(x)x2−ε
1

(1− x)
1+ε

(
I1 (−A(x); ε)− xI1 (−B(x); ε) +

x

2
(R(x) + 1)I2 (−B(x); ε)

)
.

(A.34)
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Appendix B

Parametrization of 2 → 2 Collision
Terms

In this part of the appendix, three parametrizations of the collision term for 2→ 2 processes given
by

Ĉ[fa] =
1

16(2π)5ga

∫
d3pb d3p1 d3p2 δ

(4)(pa + pb − p1 − p2)
|Mab→12|2
EbE1E2

P(fa, fb, f1, f2) (B.1)

are presented, two for the case where the corresponding matrix element |Mab→12|2 possesses an
arbitrary angular dependence such that there remain in total four integrals without any further
assumptions on the matrix element and one for the specific case where the matrix element depends
only on a single Mandelstam variable so that three integrals remain and one more integral can
be done analytically for a wide range of tree-level scattering matrix elements. In either case, the
population factor P containing the phase space densities is expected to depend solely on the energies

Ea =
√

p2
a +m2

a E1 =
√

p2
1 +m2

1 (B.2a)

Eb =
√

p2
b +m2

b E2 =
√

p2
2 +m2

2 (B.2b)

defined in the cosmic rest frame which is justified through the isotropy of the FLRW spacetime.

B.1 For a Generic Matrix Element

In the following, two parametrizations for a 2 → 2 matrix element with an arbitrary angular
dependence are presented with the first one being better suited for the solution of momentum-
dependent Boltzmann equations since in this context at least one phase space density is only
available in discretized form.
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B.1.1 Parametrization in the Cosmic Rest Frame

Using the integral replacement∫
d3p2

2E2
=

∫
d3p2 dE2 δ(E

2
2 − p2

2 −m2
2)θ(E2) , (B.3)

choosing pa along the z-direction through the spherical coordinates

pa = |pa|(0, 0, 1) , (B.4a)

pb = |pb|(0, sinα, cosα) , (B.4b)

p1 = |p1|(sinβ sin θ, cosβ sin θ, cos θ) (B.4c)

yields after removal of the four-momentum conserving δ-function through p2-integration the re-
maining integration measures

d3pb = p2
b d|pb|dcosα dβ , (B.5a)

d3p1 = p2
1 d|p1|dcos θ dϕ . (B.5b)

The δ-function in Eq. (B.3) fixes the angle β to

cosβ = − (|p1||pb| sinα sin θ)
−1

(
t̄

2
+ EaEb − E1Eb + cosα|pb| (cos θ|p1| − |pa|)

)
(B.6)

with the abbreviation t̄ = t+m2
b −m2

2, where

s = (pa + pb)
2 = m2

a +m2
b + 2EaEb − 2|pa||pb| cosα , (B.7a)

t = (pa − p1)2 = m2
a +m2

1 − 2EaE1 + 2|pa||p1| cos θ (B.7b)

are the two independent Mandelstam variables. The integration domain of z ≡ cosα is bounded
trough the requirement | cosβ| ≤ 1 which translates into the condition

az2 + bz + c ≥ 0 , (B.8)

where the corresponding polynomial coefficients read

a = −4p2
b |pa − p1|2 , (B.9a)

b = −8|pb|
(
EbE1 − EaEb −

t̄

2

)
(|pa| − |p1| cos θ) , (B.9b)

c = 4p2
bp

2
1 sin2 θ − 4

(
EbE1 − EaEb −

t̄

2

)2

. (B.9c)

The inequality (B.8) then imposes the integration limits

z± =
−b±

√
∆

2a
(B.10)
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on z with the abbreviation

∆ = b2 − 4ac = 64p2
bp

2
1 sin2 θ

[
p2
b |pa − p1|2 −

(
EbE1 − EaEb −

t̄

2

)2
]
. (B.11)

The existence of the limits z± imposes the additional condition ∆ > 0 on the integration domain
which is enforced through a Heaviside step function in the final generic parametrization for the
2→ 2 collision term given by [327,336]

Ĉ [fa] =
1

4(2π)4ga

∫ ∞
mb

dEb |pb|
∫ ∞
m1

dE1 |p1|F (Ea, Eb, E1)P(fa, fb, f1, f2) , (B.12)

where the two angular integrals are contained in the auxiliary function

F (Ea, Eb, E1) =

∫ 1

−1

dcos θ

∫ z+

z−

dz
|Mab→12|2√

a(z − z−)(z − z+)
Θ(b2 − 4ac) . (B.13)

If the matrix element |Mab→12|2 is a quadratic polynomial in z, the z-integration can be performed
analytically using the integrals∫ z+

z−

1√
(z − z−)(z+ − z)

= π , (B.14a)∫ z+

z−

z√
(z − z−)(z+ − z)

= −πb
2a

, (B.14b)∫ z+

z−

z2√
(z − z−)(z+ − z)

= π
3b2 − 4ca

8a2
(B.14c)

which can all be traced back to the Euler β-function.
Before concluding this section, it’s important to draw attention to certain caveats associated

with the numerical evaluation of the collision term in Eq. (B.12). Even if double precision numbers
are used, it is recommended to use the simplified expression for ∆ provided in Eq. (B.11), as a plain
usage of b2 − 4ac may lead to a wrong sign of ∆ at the boundaries cos θ = ±1 through round-off
errors. The usage of quadruple-precision floating-point numbers would be a suitable alternative.

B.1.2 Parametrization with a Lorentz Boost

Another possible reduction of the phase space integrals to a numerically accessible form proceeds
through application of a Lorentz boost Λ that transforms a four-momentum q into the rest frame
of the timelike four-momentum p: [Λp]i = 0, i = 1, 2, 3. The transformed four-vector is denoted by
q̂ = Λq with the components

q̂0 = γ(q0 + βe · q) , (B.15a)

q̂ = q− (e · q) e + γ(βq0 + e · q) e , (B.15b)

where

β = −|p|
p0

, γ =
1√

1− β2
, e =

p

|p| . (B.16)
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The parametrization then proceeds by writing a Lorentz invariant subpart of the phase space
integration in the rest frame of pa + pb, i.e., p̂a + p̂b = 0:

Ĉ[fa] =
1

2(2π)5ga

∫
d3pb
2Eb

{∫
d3p̂1

2Ê1

d3p̂2

2Ê2

δ(3)(p̂1 + p̂2)

×δ(Êa + Êb − Ê1 − Ê2)|Mab→12|2P(fa, fb, f1, f2)
}
V̂=ΛV

. (B.17)

For this, the energies in the phase space densities have to be rewritten in the covariant form through
u = (1,0) as Ea = u · pa = û · p̂ and so on. The first Dirac delta function is used to integrate out
p̂2 while the second eliminates the integration over |p̂1| via∫

d|p̂1| p̂2
1√

p̂2
1 +m2

1

√
p̂2

1 +m2
2

δ(
√

p̂2
1 +m2

1+
√

p̂2
1 +m2

2−Ê) = Θ(Ê−m1−m2)
λ

1
2 (Ê2,m2

1,m
2
2)

2Ê2
(B.18)

with Ê = Êa + Êb and the Källén function λ. For the remaining integrals over pb and dΩp̂1
, the

explicit coordinate system

pa = |pa|(0, 0, 1) , (B.19a)

pb = |pb|(sin θ, 0, cos θ) (B.19b)

is chosen and the angular element dΩp̂1
is expressed through the spherical coordinates θ̂ and ϕ̂

such that p̂1 becomes

p̂1 = |p̂1|


e3 sin θ̂ cos ϕ̂+ e1 cos θ̂

sin θ̂ sin ϕ̂

e3 cos θ̂ − e1 sin θ̂ cos ϕ̂

 . (B.20)

Recall that the absolute value of p̂1 is fixed through |p̂1| = λ
1
2 (Ê2,m2

1,m
2
2)/(2Ê) and that the unit

vector e in Eq. (B.20) has the value (pa + pb)/|pa + pb|. The final collision term thus becomes [445]

Ĉ[fa] =
1

16(2π)4ga

∫ ∞
mb

dEb |pb|
∫ 1

−1

dcos θ

×
{∫ 1

−1

dcos θ̂

∫ 2π

0

dϕ̂
λ

1
2 (Ê2,m2

1,m
2
2)

2Ê2
|Mab→12|2P(fa, fb, f1, f2)

}
. (B.21)

If the integrand is a second order polynomial in cos ϕ̂ of the form f(ϕ̂) = a+ b cos ϕ̂+ c cos2 ϕ̂, the
ϕ-integration can be performed analytically:∫ 2π

0

dϕ̂ f(ϕ̂) = π

[
f
(π

4

)
+ f

(
3π

4

)]
. (B.22)

B.2 For a t-Channel Matrix Element

For the parametrization of the collision term for a matrix element |Mab→12|2 which depends only
on one Mandelstam variable, the strategy outlined in Refs. [330, 331] is adopted. Without loss
of generality, this Mandelstam variable is chosen to be t = (p1 − pa)

2 = (pb − p2)2 with the
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corresponding three-momentum

k = p1 − pa = pb − p2, (B.23)

which is used as reference direction to define the explicit coordinate system:

k = |k|(0, 0, 1), (B.24a)

pa = |pa|(0, sin η, cos η), (B.24b)

pb = |pb|(cosϕ sinϑ, sinϕ sinϑ, cosϑ). (B.24c)

The four-momentum p2 is integrated out using four-momentum conservation

∫
d3p2

2E2
δ(4)(pa + pb − p1 − p2) = Θ(Ea + Eb − E1 −m2)

× 1

2|k||pb|
δ

(
cosϑ− |pb|

2 + k2 +m2
2 − (Ea + Eb − E1)2

2|pb|k

)
, (B.25)

where the remaining δ-function sets p2 on-shell. The absolute value of p2 is then fixed by energy
conservation. The spatial components of p1 are turned into the integration variable k, giving∫

d3p1

2E1
=

∫
d3k dE1 δ(E

2
1 − |k + pa|2 −m2

1)Θ(E1 −m1) (B.26)

=

∫
d3k dE1

1

2|k||pa|
δ

(
cos η − E2

1 − k2 − |pa|2 −m2
1

2|pa||k|

)
Θ(E1 −m1). (B.27)

Averaging over the direction of the incoming particle with momentum pa via
∫

dcos η /2 and
performing the trivial angular integrals results in

Ĉ[fa] =
1

128π3|pa|ga

∫
dE1 dEb d|k|dcosϑ dcos η δ (cos η − . . . ) δ (cosϑ− . . . )

× |Mab→12|2P(fa, fb, f1, f2)Θ(E1 −m1)Θ(Ea + Eb − E1 −m2) . (B.28)

The two delta functions can be used to constrain the integration domain of |k| such that one obtains
the integration limits

k− ≡ max(||pa| − |p1||, ||pb| − |p2||) ≤ |k| ≤ min(|pa|+ |p1|, |pb|+ |p2|) ≡ k+ , (B.29)

so that the final form of the collision term reads

Ĉ[fa] =
1

128π3|pa|ga

∫ ∞
m1

dE1

∫ ∞
max(mb,E1−Ea+m2)

dEb Π(Ea, Eb, E1)P(fa, fb, f1, f2) (B.30)

with the collision kernel

Π(Ea, Eb, E1) = Θ(k+ − k−)

∫ k+

k−

d|k| |Mab→12|2. (B.31)
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Appendix C

Options for the DM@NLO User
Interface

C.1 The DM@NLO Configuration File

In this part of the appendix, the options available in a DM@NLO configuration file are described.
Such an input file consists out of a series of keywords that can be set to user defined values. These
keywords are given by:

• slha = <string>: path to the SLHA input file defining the SUSY scenario to investigate
(mass spectrum, mixing matrices, decay widths, etc.).

• muR = <double>: renormalisation scale µR in GeV.

• renscheme = <int>: renormalisation scheme according to the numbering scheme introduced
in Sec. 4.2.4. The mixed DR-OS scheme no. 1 is the recommended option.

• choosesol = <int>: solutions for MQ̃, MŨ , MD̃ as explained in Sec. 4.2.4.

• particleA = <int> and particleB = <int>: PDG numbers of the first and second particle
in the initial state.

• particle1 = <int> and particle2 = <int>: PDG numbers of the first and second particle
in the final state.

• pcm = <double>: centre-of-mass momentum in GeV.

• result = <string>: defines whether the output should contain the total cross σ correspond-
ing to the value s or the total cross section times relative velocity σv defined through the
value sv.

• formfactor = <int>: sets the scalar nuclear form factors fNTq to one of the sets of values in
Tab. 4.6.
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C.2 Available Options in the Command Line Interface

The DM@NLO program can be run with several command line options by typing in a shell

./dmnlo <input-file> [options]

The keyword <input-file> provides the path to a configuration file specifying the details of the
computation to be achieved according to the standard defined in App. C.1. The following options
are allowed:

• --help, prints a help message to the screen, indicating how to execute the code.

• --slha, followed by a string sets the path to the SLHA 2 parameter file containing the
numerical values of masses, mixing angles, decay widths, etc.

• --muR, followed by a double-precision number sets the value of the renormalisation scale in
GeV.

• --renscheme, followed by an integer number sets the renormalisation scheme according to
the numbering scheme introduced in Sec. 4.2.4.

• --choosesol, followed by an integer number defines which solution to use for MQ̃, MŨ , MD̃

as explained in Sec. 4.2.4.

• --legacy, defines the weak mixing angle θW and the W -mass as in the default MSSM model
file in MicrOMEGAs 2.4.1.

• --lo, returns the result at LO accuracy.

• --nlo, returns the result at NLO accuracy.

• --sommerfeld, returns the Sommerfeld enhanced cross section.

• --full, returns the NLO result matched to the Sommerfeld enhancement if the latter is
available. Otherwise the output is identical to --nlo.

• --particleA and --particleB, followed by integer numbers defines the nature of the two
initial-state particles through their PDG numbers.

• --particle1 and --particle2, followed by integer numbers defines the nature of the two
final-state particles through their PDG numbers.

• --pcm, followed by a double-precision number sets the centre-of-mass momentum pcm in GeV.

• --result, followed by a string corresponding to s for the total cross σ or sv for the total
cross section times the relative velocity σv.

• --DD, enables the direct detection module. This option supersedes (co)annihilation settings.

• --formfactor, followed by an integer number ranging from zero to two sets the scalar nuclear
form factors fNTq to one of the value sets shown in Tab. 4.6 with zero for DM@NLO and two
for MicrOMEGAs.
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