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1 Indroduction

1 Indroduction
When particles subject to the strong interaction collide at high energies in particle
accelerators, individual quarks and gluons are typically not seen in the final state.
As they carry a color charge, they cannot exist in isolation due to confinement.
Instead, they form clustered gluons and quark-antiquark pairs, which eventually
convert into narrow collimated streams of hadrons known as jets. These jets arise
close to the momentum direction of the final state particles, with highly constrained
momenta transverse to the respective direction.
By studying the energy and angular distributions of the experimentally visible jets,
conclusions about the involved forces and particle configurations during the collision
can be drawn. Moreover, this analysis serves as a crucial component in evaluating
and developing Quantum Chromodynamics (QCD), the fundamental theory describ-
ing the strong interaction.
For instance, by the late 1970s, the detection of three-jet events in bremsstrahlung
phenomena, notably e+e− → qq̄g → 3 jets, at the PETRA electron-positron collider
provided definitive evidence for the existence of the gluon. [1]

This thesis focuses on proton-proton collisions at the Large Hadron Collider (LHC).
After introducing the fundamental concepts of Quantum Chromodynamics and high-
energy physics, the cross section for the pp-scattering process is computed.
In a first step, the invariant amplitudes are determined analytically for processes in-
volving either only quarks/antiquarks or only gluons. The calculation is carried out
at leading order (LO), making the particles in the final state correspond to the jets
observed in the experiment. In order to transition to the differential cross section for
the calculated amplitudes, the basic kinematics of the collision are worked through,
leading to the introduction of rapidities and transverse momenta. The resulting
differential cross section is integrated using a Monte Carlo method and compared
with an ATLAS detector measurement at the LHC at a center-of-mass energy of
7 TeV.

The parton model is fundamental to the entire work. In this context, the parton
distribution functions fi(x,Q) (PDFs) are presented, which depend on the momen-
tum fraction x that a parton carries inside a proton at an energy scale Q. Finally,
the analysis focuses on identifying the x-regions, where the binned cross section has
its largest proportion, and similarly investigates this sensitivity with respect to the
given Q-scale, while evaluating the correlation between x and Q2.

Natural units are used throughout the thesis, so that Planck constant and the speed
of light are set to ~ = c = 1. SI units are used for comparison with the experimental
data.
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2 Theoretical Background

2 Theoretical Background
Quantum Chromodynamics is the fundamental theory of the strong interaction,
which describes the binding of quarks inside the hadrons. The exchange particles
of the strong interaction are the gluons, responsible for changing the colors of the
quarks. This color change is described by a non-Abelian SU(3) gauge theory, re-
sulting in eight gluons corresponding to the eight SU(3) color transformations. The
strong interaction is, when considering hadronic scales, approximately ∼ 102 times
stronger than the electromagnetic interaction and operates over a short range of
about ∼ 1 fm [2].
The strength of the strong coupling constant weakens as the momentum transfer
increases, what justifies a perturbative QCD approach for high energies.

2.1 Structure of the Proton
The proton is not an elementary particle; it can be decomposed into smaller elec-
trically charged components called quarks. The nucleons’ quantum numbers are
defined by three quarks known as valence quarks. Protons consist of two up quarks
(u) and one down quark (d)

p = |uud〉, (2.1)
making it charged with q = +1e.
In addition, nucleons also contain sea quarks, which are virtual pairs of quark and
antiquark, produced and annihilated in the field of strong interaction. These sea
quarks include not only up and down quarks but also involve strange (s) quarks,
and to a lesser extent, heavier quarks like charm (c), bottom (b) or top (t) quarks
and their corresponding antiparticles. Their quantum numbers sum to zero, thus
not changing the protons overall quantum numbers. Due to the electric charge of
these sea quarks, it’s possible to detect them in deep inelastic scattering. Gluons
are essential for understanding the proton’s internal structure, as they mediate the
strong interaction between the quarks and contribute nearly half of the proton’s
momentum.
A key challenge when investigating these strong interactions is that experiments at
the LHC are executed with hadron beams instead of the actual quarks and gluons.
Consequently, a theoretical model is required to describe which particles inside the
protons are colliding.
When analyzing a proton in a rapidly moving system, where the transverse momen-
tum and the rest masses of its components are considered negligible, the structure
of the proton is primarily described through the longitudinal momentum of these
quasi-free constituents, which are called partons[3].
The partons carry the momentum fractions

pµ
parton = x · pµ

L, (2.2)

when pµ
L = |p| (1, 0, 0, 1) describes the momentum of a proton moving along the

z-axis.
The probability that a momentum fraction x of the hadron is carried by a parton

3



2 Theoretical Background

i is named the parton distribution function fi(x). By definition, summing over all
fractions results in the total momentum [4, p. 191]:∑

i

∫
xfi(x) dx = 1. (2.3)

Since the proton consists of two up quark and one down quarks (2.1), it must hold
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Figure 1: Parton distribution function f(x,Q) at different transmitted energies Q.
The set of nuclear parton distribution functions used is CT18NNLO [5].

that ∫ 1

0
(fu − fū) dx = 2,

∫ 1

0
(fd − fd̄) dx = 1, (2.4)

while for all other quarks within the proton these integrals should disappear.
The PDFs will be dependent on the choice of scale in the later calculation. To avoid

4



2 Theoretical Background

infrared divergences, which arise when the energy scale approaches zero, the factor-
ization scale µf is introduced.
Figure 1 shows the PDFs for different partons depending on the transmitted energy
µf = Q from the PDF set CT18NNLO [5]. The symbols uv and ud represent the
valence quarks within the proton, which are determined by subtracting the antipar-
ticle’s distribution function from that of the corresponding particle.
The gluon distribution is scaled by a factor of 0.1 in the figures. It is particularly
dominant for small x. Around x ≈ 10−1, the valence quarks carry the majority of the
nucleons momentum. The sea quarks are primarily produced through gluon split-
ting, resulting in a rise of their distribution for small x while they are significantly
diminished at larger x due to their larger masses.

2.2 Gauge Theory
All elementary particle interactions can be described with gauge theories, which will
be motivated in the following section (based on [6] and [7]). In classical mechan-
ics, the Lagrangian states the difference between kinetic and potential energy of a
particle

L = T − V, (2.5)
which is a function of the coordinates qi and the corresponding time derivates q̇i.
In field theories, which treat time and space symmetrically, the transition from a
discrete system to a continuous system is achieved by introducing a Lagrangian
density

L(qi, q̇i) → L
(
φ,

∂φ

∂xµ

)
, (2.6)

that is a function of the fields φ and their space and time derivates ∂φ
∂xµ

. The motion
of a particle follows from the Euler-Lagrange equation, derived by varying the action

S =
∫

d4xL . (2.7)

Free particles are described as complex fields ψ by the Lagrangian

L0 = ψ̄(x)(iγµ∂µ −m)ψ(x) (2.8)

from Dirac theory, which is invariant under global phase transformation

ψ → eiθψ. (2.9)

However, this symmetry cannot be just extended to invariance under local phase
transformation where θ = θ(x). In general, these processes are described as a
multiplication of ψ by a unitary matrix

ψ → Uψ, U †U = 1. (2.10)

The associated group, which includes all such matrices for the case U = eiθ, is the
U(1) with corresponding U(1) gauge invariance. The demand for local phase invari-
ance will lead to the introduction of massless vector fields and interactions between
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2 Theoretical Background

these vector fields and particles with charge.
Requesting a local U(1) gauge invariance yields the Lagrangian of Quantum Electro-
dynamics (QED). The extension of this strategy results in Quantum Chromodynam-
ics. The six different quark flavors in the Standard Model carry one of three different
colors which are red, blue, green. The quark fields therefore will be described with
3-component vectors

ψα,c,f (x), ψ̄α,c,f (x). (2.11)
In addition to the spinor index α, the quark fields have two further indices to indicate
their color (c = 1, ..., nc) and flavor (f = 1, ..., nf ).
The QCD Lagrangian will also contain gluon fields Aµ

a(x) exchanging the strong
interaction. The adjoint indices a refer to the number of generators (from 1 to 8)
of the underlying system. Since a local non-Abelian SU(N)-symmetry yields to an
interaction where the exchange particles also carry charges, a local
SU(3)-gauge invariance

ψ(x) → U(x)ψ(x) with U(x) = eiα(x)aTa (2.12)

on the free Lagrangian is requested. This is achieved by introducing a covariant
derivative

∂µ → Dµ = ∂µ − igsA
a
µT

a, T a = λa

2 , (2.13)

where gs =
√

4παs denotes the strong coupling constant and λa the Gell-Mann
matrices, which span the Lie Algebra of SU(3).
The commutators of the generator matrices form the structure constants of the
group SU(3)

[T a, T b] = ifabcT c. (2.14)
If the normalization

Tr(T aT b) = TRδab, TR = 1
2 (2.15)

is selected, the structure constants are totally antisymmetric. The color matrices
obey the following relations (taken from [8]):

TATA = CF 1, CF = N2 − 1
2N (2.16)

fabcfabd = CAδcd and fabcf cdef efa = −1
2Nf

bdf , CA = N (2.17)

T a
ijT

a
kl = 1

2(δilδjk − 1
N
δijδkl). (2.18)

For SU(3), these values are CF = 4
3 and CA = 3.

With defining the gluon field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsfabcA

b
µA

c
ν , (2.19)

the kinematics of the gluons are described. Finally, by adding the Yang-Mills term,
the Lagrangian of QCD is expressed as

LQCD = ψ̄fc(iγµDµ −mf )ψfc − 1
4F

a
µνF

aµν , (2.20)
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2 Theoretical Background

where summation over c and f is implied.
The Dirac matrices γµ are important for the following calculations, with useful
relations provided in appendix A.1.

2.3 Feynman Rules
Each Lagrangian results in a set of Feynman Rules, which are outlined here without
being explicitly derived.
As seen in the previous section, the Lagrangian is formed by a free Lagrangian
for the participating field and associated interaction terms. The free Lagrangian
corresponds to the propagators, whereas the interaction terms correlate with the
vertex factors. Expanding the Lagrangian 2.20 by plugging in eq. 2.19 illustrates
the gluon self-interaction, as higher order terms of the gluon fields appear. This
explains the presence of the three-gluon (∼ A3) and four-gluon (∼ A4) vertices
discussed in this section.
The external lines describe the participating particles, where the direction of the
arrow indicates whether particles (left to right) or antiparticles (right to left) are
involved. Each particle is provided with a factor depending on its spin s

s = 1
2 ⇒


incoming particle : u
incoming antiparticle : v̄
outgoing particle : ū
outgoing antiparticle : v

p

u(p)

p

v̄(p)

p

ū(p)

p

v(p)

Here, u and v are spinors with four components, which can be derived from solving
the Dirac Equation. They satisfy the completeness relation∑

s

us,α(p) ūs,β(p) = (/p+m)αβ∑
s

vs,α(p) v̄s,β(p) = (/p−m)αβ,
(2.21)

where the Feynman slash notation was introduced. The 4x4 matrix /p is defined as

/p ≡ pµγ
µ

for a four-vector pµ.

For spin-1 particles follows

s = 1 ⇒

incoming particle : ε
outgoing particle : ε∗,
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2 Theoretical Background

p

ε(p)

p

ε∗(p)

where ε represents the particle’s spin and consists of four components.
While massive spin-1 particles exhibit three polarization states, massless gauge
bosons as the gluon have only two states of polarization. The polarization must
be perpendicular to the direction of movement of the gluons, so that pµεµ = 0.
Therefore, they satisfy the completeness relation

∑
λ

εµ∗
λ (p)εν

λ(p) = −gµν + pµp̃ν + pµp̃ν

p · p̃
, (2.22)

summed over the possible polarization states.
For the upcoming calculations, only gluon propagators have to be considered. The
gluons carry not only a momentum, but also a color charge:

g
a,µ b,ν = −iδab

gµν

q2 . (2.23)

Furthermore, the QCD rules important for this thesis can be introduced:

qi

qj

ga
µ = igsγµT

a
ij (2.24)

q

p

k
gc

ρ

ga
µ

gb
ν

= gsf
abc[gµν(p− k)ρ + gνρ(k − q)µ + gρµ(q − p)ν ] (2.25)

gb
ρ

gd
ν

ga
σ

gc
µ

= −ig2
s [f caef bde(gµρgσν − gµνgσρ)

+ f cdefabe(gµσgρν − gµρgσν)
+ f cbefdae(gµνgσρ − gµσgρν)].

(2.26)
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2 Theoretical Background

2.4 Strong Coupling Constant
A coupling constant α characterizes the strength of interaction between two parti-
cles.
The calculation of amplitudes corresponding to higher order Feynman diagrams
containing loops can lead to ultraviolet divergences 1, which necessitate the process
of renormalization. That results in a so-called running coupling constant αs(µ2

r),
which is large at low energy and smaller at high energy. It is a function of a (un-
physical) renormalization scale µr. For µr close to the momentum transfer Q scale,
αs(µ2

r ' Q2) represents the effective strength of the strong interaction in that process
[9].

Figure 2: The theoretical prediction of the running coupling constant as a function
of the renormalization scale Q compared to the experimental data. Source: [10, p.
164]

It obeys the following renormalization group equation [10, p. 149]

µ2
r

dαs

dµ2
r

= βQCD(αs) = −(b0α
2
s + b1α

3
s + O(α4

s)), (2.27)

with the perturbative expansion of the QCD β-function.
Taking only the lowest order into account leads to

αs(µ2
r) = 1

b0 ln( µ2
r

Λ2 )
= 12π

(33 − 2nf ) · ln( µ2
r

Λ2 )
, (2.28)

1closed loops in the propagator lead to a divergence of the integral as the momentum running
inside the loop approaches infinity.
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2 Theoretical Background

where nf is the number of light quarks (mq � µr) and Λ ≈ 200 MeV is the QCD
scale parameter, where the coupling constant diverges. The value of Λ indicates the
energy scale where perturbation theory remains applicable (µr � Λ) [3, p. 108].
Due to the minus sign in eq. 2.27, it follows that β < 0 for nf < 17 , which leads to
asymptotic freedom. This describes that the coupling in the limes Q2 → ∞ becomes
arbitrarily weak, which is a strong contrast to QED. At lower energies and greater
distances, the coupling constant grows so rapidly that it becomes impossible to
separate individual quarks from hadrons, illustrating the concept of confinement. In
this region, the perturbative approach to solutions of the strong interaction at low
energies must be discarded, whereas the asymptotic freedom gives the possibility to
expand the αs.
The PDFs discussed in section 2.1 are sensitive to the value of αs(µ2

r). Usually
the scale is set to the mass of the Z-boson. The contributing measurements are
presented in figure 2 and yield an average of [10, p. 160]

αs(M2
Z) = 0.1179 ± 0.0009. (2.29)

2.5 Jet Definition
In QCD, interactions involving quarks and gluons result in outgoing quarks and
gluons as well. Due to confinement (see chapter 2.4) these particles do not form
asymptotic states and thus remain undetectable, since the strength of their inter-
actions grows with increasing distance. Rather, they form a beam of hadrons (e.g.

Figure 3: A Z0-Boson decays two quarks that are visible in the detector as two
back-to-back jets. Source: [11]

pions, kaons,...), what is called a jet. By measuring the jets, the kinematics of the
elementary QCD processes can be reconstructed. According to the conservation of
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2 Theoretical Background

energy and momentum, the momentum of the hadrons lies within a cone around the
original quark or gluon momentum as can be seen in the two-jet event in figure 3.
A jet describes a concentration of transverse energy, with the cone defined by a
radius R, which is given by [12, p. 247]:

R =
√

(∆η)2 + (∆φ)2. (2.30)

Here η = − ln(θ/2) is the pseudorapidity with the angle θ of the beam direction and
φ states the azimuthal angle. As already discussed, in leading order calculations,
the parton in the final state corresponds to the jet. This means that influences of
the cone size only appear in next-to-leading order (NLO) predictions, whereby the
cross section increases as the cone becomes wider.
The beam generated by a hard parton is clustered with jet algorithms. The later
experimental data are based on a sequential one, the anti-kT algorithm [13]. The
anti-kT jet algorithm identifies and reconstructs jets by using the transverse momen-
tum of the particles to calculate distances between pairs of particles as well as to
the jet. It connects pairs with minimum distances iteratively until all particles are
grouped into jets. In the end, the final jet corresponds to the reconstructed hard
partons from which the shower was formed.

2.6 Monte Carlo Methods
The error of numerical quadrature methods in d dimensions with n function evalu-
ations, such as the trapezoidal rule (∼ n−2/d) or Simpson’s rule (∼ n−4/d), depends
on the dimension. In contrast, Monte Carlo integration does not exhibit this de-
pendency, as its error scales with 1/

√
n regardless of the dimension. The following

description is based on [14] and [15].

2.6.1 Monte Carlo Integration

Consider a d-dimensional integral of a function f(x)

I =
∫

dx f(x) (2.31)

integrated over the unit hypercube [0, 1]d. This integral can be approximated by
defining the Monte Carlo estimate

fn = 1
n

n∑
i=1

f(xi), (2.32)

where {xi}n
i=1 are independent samples drawn from a uniform distribution over

[0, 1]d. The law of large numbers ensures that fn converges to the real value I of the
integral. According to the Central Limit Theorem, the sample mean of a random
variable is approximately normal N(µ, σ2/n) distributed, which allows estimating
the error as follows:

σ2 =
∫

(f(x) − I)2 dx ≈ 1
n

n∑
i=1

(f(xi) − fn)2 = 1
n

n∑
i=1

f(xi)2 − f 2
n. (2.33)
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This analysis demonstrates that the error scales with 1/
√
n, regardless of the di-

mension. To minimize the statistical fluctuations inherent in random sampling, the
next sections introduce variance reducing techniques.

2.6.2 Importance Sampling

It is possible to reduce the variance by selecting a distribution p(x)2 for the random
variables such that the density of the sampling points closely matches the form of
the integrand. This method is called importance sampling, whereas the integral is
rewritten as

I =
∫ f(x)
p(x) p(x) dx (2.34)

and approximated by
fn = 1

n

n∑
i=1

f(xi)
p(xi)

, (2.35)

with variance given by eq. 2.33 for f(xi) → f(xi)/p(xi).
This clarifies the essence of importance sampling: If p is chosen in a shape similar to
that of f , the ratio f

p
becomes approximately constant and the variance is reduced.

2.6.3 Stratified Sampling

With stratified sampling the domain of integration is divided into k subspaces Mj

(j = 1, ..., k), whereby different sample sizes nj for the different parts are used. The
resulting Monte Carlo approximation is:

fn =
k∑

j=1

vol(Mj)
nj

nj∑
i=1

f(xij). (2.36)

The total error

usts =

√√√√√ k∑
j=1

vol(Mj)2

nj

σ2
Mj

(f), (2.37)

arises from the individual errors in estimating the contribution of each region Mj to
the overall integral. Here, σ2

Mj
(f) represents the variance of the function f within

region Mj, calculated as:

σ2
Mj

(f) = 1
vol(Mj)

∫
Mj

f(x)2 dx−
(

1
vol(Mj)

∫
Mj

f(x) dx
)2

. (2.38)

The optimal performance is reached, when

nj ∼ vol(Mj)σMj
(f) (2.39)

applies to the number of evaluations.
2p(x) fulfills the properties of a probability density function, ensuring that p(x) is normalized

to 1 and p(x) ≤ 0.
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2.6.4 Vegas Algorithm

The adaptive Monte Carlo algorithm VEGAS [16] utilizes the two variance reduction
methods described above. The algorithm starts by dividing the hypercube into
smaller pieces of an identical size and samples in each of them. The integration grid
is then optimized for the next iteration using the previous results for approximating
the best probability density function

pVegas(~x) = |f(~x)|∫ 1
0 dd~x|f(~x)|

. (2.40)

The grid is decomposed by factorizing p in d dimensions into pi in each dimension

p(~x) =
d∏

i=1
pi(xi). (2.41)

Once the optimal grid has been found after some iterations with few sampling points,
the integral is now calculated with the fixed grid and higher precision.
In each iteration j, an estimate fjn and variance σ2

jn according to eq. 2.35 is evalu-
ated. The results of each iteration are summarized into a cumulative estimate

fn =
(

m∑
j=1

nj

σ2
jn

)−1( m∑
j=1

njfjn

σ2
jn

)
, (2.42)

where each estimator is weighted by the number of sampling points nj and corre-
sponding variance.
The reliability of the whole evaluation is classified by the χ2- function

χ2 '
∑

j

(fjn − fn)2

σ2
jn

. (2.43)

The returned value should not exceed the number of iterations for a trustworthy
procedure.
A more recent version of the VEGAS algorithm [17] uses adaptive stratified sam-
pling, where the integrand samples are redistributed across the hypercubes after
each iteration according to eq. 2.39.
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3 Two-Jet Amplitudes

3 Two-Jet Amplitudes
If an incoming parton from one proton collides with a parton from another proton,
the result is the production of two partons possessing a high transverse momentum,
which are observed as jets. This section will focus on calculating the transition
amplitudes at the partonic level for specific jet production processes by utilizing the
rules outlined in chapter 2.3.
This thesis considers only tree-level diagrams. It should be noted that real and vir-
tual gluon corrections to the discussed processes will introduce higher-order terms
to the perturbative series.3
For the first channels including quarks, a strict order for setting up the amplitude
is necessary to have matching matrix multiplications.
Starting with a fermion line, it will be traced backward through the diagram, record-
ing all line factors, propagators, and vertex factors sequentially from left to right.
What will be achieved is a combination consisting of an adjoint spinor, a 4×4 matrix
and a spinor, yielding in a scalar upon completion of the calculation ([6, Chapter
7.5]).

3.1 Quark-Antiquark Scattering
The first process that is considered is the scattering of a quark with an antiquark
of the same flavor (qiq̄i → qiq̄i). Since two different processes (see fig. 4a, 4b)
are obtained, there will be an interference term when calculating the total matrix
element

|M |2 = |Ms +Mt|2 = |Ms|2 + |Mt|2 + 2Re(MsM
†
t ). (3.1)

pA

pB

(pA + pB)

g

k1

k2

q

q̄

q

q̄

(a) s-channel

pA k1

(pA − k1) g

pB k2

q q

q̄ q̄

(b) t-channel

Figure 4: Feynman diagrams for the scattering process qq → qq in leading order
with definition of the parton momenta.

The s-channel seen in fig. 4a is the first to be analyzed. By convention, incoming
particles will always have a momentum p, while outgoing particles will have a mo-

3In tree diagrams the conservation of momentum at each vertex is mandatory, while this cannot
be hold for diagrams containing loops.
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3 Two-Jet Amplitudes

mentum k. By applying the Feynman rules for the gluon propagator 2.23 and the
quark-gluon vertex 2.24, the amplitude is written as

Ms =
[
v̄(pB) · igsγ

µT a
kl · u(pA)

] (
−iδ

ab

q2 g
µν

) [
ū(k1) · igsγ

νT b
nm · v(k2)

]
= i

g2
s

s
· T a

klT
a
nm︸ ︷︷ ︸

Mcol

·
[
v̄(pB)γµu(pA)ū(k1)γµv(k2)

]
︸ ︷︷ ︸

Mp

,
(3.2)

where q2 = (pA + pB)2 = s is a Mandelstam variable (see appendix A.2).
Using the relations of the gamma matrices, the corresponding adjoint results in

M †
s = g2

s

s
· T b

mnT
b
lk︸ ︷︷ ︸

M†
col

·
[
u(pA)†(−iγµ†)γ0v(pB)

]
· igµν ·

[
v(k2)†(−iγν†)γ0u(k1)

]
|v̄ = v†γ0

= −ig
2
s

s
·M †

col ·
[
ū(pA)γ0γµ†γ0v(pB)

]
· gµν ·

[
v̄(k2)γ0γν†γ0u(k1)

]
(3.3)

= −ig
2

s
·M †

col ·
[
ū(pA)γνv(pB)v̄(k2)γνu(k1)

]
︸ ︷︷ ︸

M†
p

|γµ† = γ0γµγ0.

Here, Mcol represents the contribution from the color charge and Mp denotes the
contribution from the momentum.
For an unpolarized cross section, the amplitude should be independent of spin and
color of the incoming quarks, because no information about the spins is detected.
Therefore, the matrix elements are averaged over all possible spin directions sA, sB

and colors N from the incoming quarks and summed over the spins of the particles
in the final state:

|M |2 = 1
(2sA + 1)(2sB + 1)

1
N2

∑
s

MM † = 1
36
∑

s

|M |2. (3.4)

Using the completeness relation 2.21 along with the Feynman slash notation, the
momentum component can be expressed in the form

|Ms,p|2 =
[
v̄a(pB)γµ

abub(pA)ūc(k1)γµ,cdvd(k2)
]

·
[
ūe(pA)γν

efvf (pB)v̄g(k2)γν,ghuh(k1)
]

=
[
(/pB

−m)faγ
µ
ab(/pA

+m)beγ
ν
ef

]
·
[
(/k1 +m)hcγµ,cd(/k2 −m)dgγν,gh

]
,

(3.5)

with indices added to improve the clarity of the subsequent calculation.
For the sake of clarity, this has again been divided into two parts, where the first one
will be examined exemplarily by factorizing, finding traces and using the identities
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3 Two-Jet Amplitudes

from A.8:

|Ms,p1|2 = (pα
Bγα −m)faγ

µ
ab · (pβ

Aγβ +m)beγ
ν
ef

=
[
(pα

Bγα)faγ
µ
ab −mδfaγ

µ
ab

]
·
[
(pβ

Aγβ)beγ
ν
ef +mδbeγ

ν
ef

]
= pα

Bp
β
A Tr(γαγ

µγβγ
ν) +(((((((((

pα
BmTr(γαγ

µγν) −(((((((((
pβ

AmTr(γµγβγ
ν) −m2 Tr(γµγν)

= 4pα
Bp

β
A(gµ

αg
ν
β − gαβg

µν + gν
αg

µ
β) − 4m2gµν

= 4pµ
Bp

ν
A − 4(pB · pA)gµν + pν

Bp
µ
A − 4m2gµν

= 4
[
pµ

Ap
ν
B + pν

Ap
µ
B − (pA · pB +m2)gµν

]
.

(3.6)
Analogously follows for |Ms,p2|2:

|Ms,p2|2 = 4
[
k1µk2ν + k1νk2µ − (k1 · k2 +m2)gµν

]
. (3.7)

From this point on, the quark masses are disregarded since subsequent collision en-
ergies of order TeV are considered, making the proton’s rest mass negligible.
Taking the results from eq. 3.6 and 3.7, the whole kinematic contribution is calcu-
lated as

|Ms,p|2 = 4
[
pµ

Ap
ν
B + pν

Ap
µ
B − (pA · pB)gµν

]
· 4
[
k1µk2ν + k1νk2µ − (k1 · k2)gµν

]
= 16

[
2(pA · k1)(pB · k2) + 2(pA · k2)(pB · k1)

+ 4(pA · pB)(k1 · k2) − 4(pA · pB)(k1 · k2)
]

= 8(u2 + t2).

(3.8)

For the color part, the relation 2.15 for the generators of a SU(N) algebra is needed,
as given in the theoretical introduction:

|Ms,col|2 = T a
klT

b
lk T

a
nmT

b
mn

= Tr(T aT b)2 = (1
2δab)2 = 1

4δaa

= 1
4(N2 − 1),

(3.9)

where δaa = (N2 − 1) with Einstein notation was used. All in all, the invariant
matrix element averaged over color and spin can be written in the form

|Ms|
2 = g4

s

4N2 · N
2 − 1
4 · 8u

2 + t2

s2 , (3.10)

which leads to
1
g4

s

|Ms|
2 = 4

9
u2 + t2

s2 (3.11)

for N = 3 colors.

The second diagram that has to be determined is the t-channel shown in figure
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3 Two-Jet Amplitudes

4b. With the same approach as above, the invariant amplitude and the associated
conjugate can be stated as

Mt =
[
v̄(pB) · igsγ

µT a
km · v(k2)

] (
−iδ

ab

t
gµν

) [
ū(k1) · igsγ

νT b
nl · u(pA)

]
(3.12)

M †
t = −ig

2
s

t
T b

lnT
b
mk

[
v̄(k2)γνv(pB)ū(pA)γνu(k1)

]
. (3.13)

Furthermore the color factor in |Mt|2 remains unchanged, whereas the momentum
contribution is calculated using the completeness relation and the trace identities.
The outcome shares a similar structure with equation 3.6 and equation 3.7 when
neglecting the mass terms:

|Mt,p|2 =
[
v̄(pB)γµv(k2)ū(k1)γµu(pA)

]
·
[
v̄(k2)γνv(pB)ū(pA)γνu(k1)

]
= 4

[
kµ

2p
ν
Bk

ν
2 + pµ

B − (k2 · pB)gµν
]

· 4
[
k1µpAν + k1νpAµ − (k1 · pA)gµν

]
= 32

[
(pB · k1)(k2 · pA) + (pB · pA)(k2 · k1)

]
= 8(u2 + s2).

(3.14)

This is also the expected outcome when the s-channel is transformed into the t-
channel by exchanging the momenta pB ↔ −k1. Therefore, the squared amplitude
results with averaging and the color term in

1
g4

s

|Mt|
2 = 4

9
u2 + s2

t2
. (3.15)

The final step in obtaining the total invariant amplitude is to calculate the interfer-
ence between the two channels.
In the s-channel, there is an overall minus sign for the amplitude, which was ne-
glected for the squared matrix element. Nevertheless, this minus sign must be taken
into account for the interference term, resulting in a negative sign in front of the
real part in formula 3.1. This negative sign arises from the antisymmetrization of
fermion wave functions (refer to [18, p. 120] for additional details).
The interference follows as

MsM
†
t = g4

s

st
· T a

klT
a
nm

[
v̄(pB)γµu(pA)ū(k1)γµv(k2)

]
· T b

mkT
b
ln

[
v̄(k2)γνv(pB)ū(pA)γνu(k1)

]
= g4

s

st
· T a

klT
a
nmT

b
mkT

b
ln︸ ︷︷ ︸

(MsM†
t )col

· [/pBγ
µ
/pAγν ] · [/k1γµ/k2γ

ν ]︸ ︷︷ ︸
(MsM†

t )p

.

(3.16)

With equation 2.18 the determination of the color part yields:

(MsM
†
t )col = T a

klT
a
nmT

b
mkT

b
ln

= 1
4
(
δkmδln − 1

N
δklδnm

)(
δmnδkl − 1

N
δmkδln

)
= 1

4
(
δnn − 2

N
δllδmm + 1

N2 δmm

)
|δmm = 3

= −2
3 |N = 3.

(3.17)
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3 Two-Jet Amplitudes

After adding indices in eq. 3.16, a trace can be identified for the momentum part.
This trace can be further analyzed using the trace theorem provided in app. A.8:

(MsM
†
t )p = /pB,fa

γµ
ab /pA,bg

γν,gh /k1,hcγµ,cd /k2,de γ
ν
ef

= pα
Bp

β
Ak

σ
1k

ρ
2 Tr(γαγ

µγβγνγσγµγργ
ν)

= −2pα
Bp

β
Ak

σ
1k

ρ
2 Tr(γαγσγνγβγργ

ν) |γµγβγνγσγµ = −2γσγνγβ

= −8pα
Bp

β
Ak

σ
1k

ρ
2 gβρ Tr(γαγσ) |γνγβγργ

ν = 4gβρ

= −32pα
Bp

β
Ak

σ
1k

ρ
2 gβρgασ

= −32(pB · k1)(pA · k2)
= −8u2.

(3.18)

Merging the two partial results according to eq. 3.1 leads to an overall amplitude

1
g4

s

|Mqiq̄i→qiq̄i
|2 = 4

9
(u2 + t2

s2 + u2 + s2

t2

)
− 8

27
u2

st
(3.19)

for the quark-antiquark scattering process.

After determining the matrix element of the qiqi → qiqi process, all other 2 → 2 col-
lision processes containing quarks and antiquarks (flavor indices i, j) can be derived
from it.
The processes in question are:

• qiqj → qiqj

• qiqi → qjqj

• qiqi → qiqi

• qiqj → qiqj

• qiqi → qiqi

• qiqj → qiqj.

Starting with qiqj → qiqj, only the t-channel 4b is possible,
while for qiqi → qjqj only the s-channel 4a survives. Since the quarks now differ from
each other (i 6= j), continuous fermion lines are no longer possible in the respective
vanishing Feynman diagrams. As a consequence, the results from 3.15 and 3.11 are
transferred.
For the quark-quark scattering processes, new Feynman diagrams must be obtained,
in accordance with figure 5. Since the color component remains the same as dis-
cussed in chapter 3.1, it is sufficient to only analyze the momentum factors. For the
amplitude of the t-channel follows

|Mt,p|2 = [ū(k2)γµu(pB)ū(k1)γµu(pA)] · [ū(pB)γνu(k2)ū(pA)γνu(k1)] . (3.20)

Correspondingly, the lower fermion line in the diagram has to be reversed, i.e.
ū(k2) → v̄(pB) and u(pB) → v(k2). Since the completeness relations for the spinors
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3 Two-Jet Amplitudes

pA k1

(pA − k1) g

pB k2

q q

q q

(a) t-channel

q

q q

q

pA

k2
(pA − k2) g

pB

k1

(b) u-channel

Figure 5: Feynman diagrams for the qq → qq scattering process.

u(p), v(p) do not differ from each other when neglecting masses and the calculation
is invariant under changing k2 and pB, the result remains

1
g4

s

|Mt,qq|
2 = 4

9
u2 + s2

t2
. (3.21)

The u-channel can be inferred from the t-channel by crossing. This requires swapping
the momenta k1 ↔ k2, which results in the Mandelstam variable t being replaced
by u:

1
g4

s

|Mu,qq|
2 = 4

9
t2 + s2

u2 . (3.22)

For the interference term, the momenta must be switched (k2 ↔ −pB) for the
transition from s-channel to u-channel. This leads again just to an interchange of
the Mandelstam variables, this time s and u. All in all the invariant amplitude for
quark-quark scattering results in

1
g4

s

|Mqiqi→qiqi
|2 = 4

9
(t2 + s2

u2 + u2 + s2

t2

)
− 8

27
s2

ut
. (3.23)

Accordingly, only the contribution of the t-channel remains for the qiqj → qiqj pro-
cess. The same results as above are also obtained for the two antiquark processes
(qiqi → qiqi, qiqj → qiqj), since only the directions of the fermion lines are reversed.
Concluding, all amplitudes can be derived from the calculations of the quark-
antiquark scattering with a quark of a single flavor (qiqi → qiqi) just by exchanging
the momenta. It was important for the argumentation to neglect the masses of the
quarks.
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3 Two-Jet Amplitudes

3.2 Gluon-Gluon Scattering
In this section, the matrix element for gluon-gluon interaction with gluons in the
final state (gg → gg) will be derived. In particular, there are four different processes,
see fig. 6, that have to be considered.

pA

pB

(pA + pB)

gc
α

k1

k2

ga
µ

gb
ν

gd
ρ

ge
σ

(a) s-channel

g

g g

g

pA

k2
(pA − k2) g

pB

k1

(b) u-channel

g

g

g

g

k1
k2

pA

pB

(c) 4-gluon vertex

pA k1

(pA − k1) g

pB k2

g g

g g

(d) t-channel

Figure 6: The four different Feynman diagrams for the gg → gg-scattering.

Beginning with diagram 6a, the s-channel amplitude is determined by applying the
Feynman rules for the three-gluon vertex 2.25 as

|Mgg/s|2 =εµ(pA)εν(pB)ε∗
ρ(k1)ε∗

σ(k2) · ε∗
χ(pA)ε∗

φ(pB)εγ(k1)εξ(k2)
· [gµν(pA − pB)α + gνα(pB + q2

s)µ + gαµ(−q2
s − pA)ν ]

· [gβσ(q2
s + k2)ρ + gσρ(−k2 + k1)β + gρβ(−k1 − q2

s)σ]
· [gχφ(pA − pB)ω + gφω(pB + q2

s)χ + gωχ(−q2
s − pA)φ]

· [gηξ(q2
s + k2)γ + gξγ(−k2 + k1)η + gγη(−k1 − q2)ξ]

· g
4
s

s2 g
αβgωη · fabcfabhf cedfhed︸ ︷︷ ︸

|Mgg,col|2

= |Mgg/s,p|2 · |Mgg,col|2,

(3.24)
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where q2
s = (pA + pB)2 denotes the momentum transfer. If a momentum comes out

of the vertex, the sign must be inverted.
For ease of reading, the calculation is divided into two parts. The contribution of the
color carried by the gluons is obtained by making use of the relation of the structure
constants in eq. 2.17:

|Mgg,col|2 = fabcfabhf cedfhed = Nδch ·Nδch = N2(N2 − 1). (3.25)

This factor is the same for s-, t- and u-channel, but will vary for the interference
terms.
The massless gluon is transversely polarized and has two directions of polarization.
In the completeness relation 2.22 the vector p̃ is free to choose, but cannot be
perpendicular to the momentum p, so that p · p̃ 6= 0.
A reasonable choice if p = pA is to let p̃ = pB and to set p̃ = pA when p = pB, since
this ensures p · p̃ = 1

2s, which is non-zero. This reasoning also holds for k1 and k2.
The calculation for the momentum part is done with the FeynCalc package [19] in
Mathematica [20] and leads to

|Mgg/s,p|2 = −g4
s

4(s4 + s2(−3t2 + 2tu− 3u2) + (t2 − u2)2)
s2 . (3.26)

Taking into account that s, t and u are not independent of each other, since
s+ t+ u = 0 for masseless particles, the momentum amplitude simplifies to

|Mgg/s,p|2 = g4
s

4(s+ 2t)2

s2 . (3.27)

The computation for the t-channel follows a similar process, although the momenta
need to be modified when utilizing the three-gluon vertex rule:

Mgg/t = −ig
2
s

t
·Mgg,col · εµ(pA)ε∗

ρ(k1)εν(pB)ε∗
σ(k2) · gλγ

· [gµρ(pA + k1)λ + gρλ(−k1 + qt)µ + gλµ(−qt − pA)ρ]
· [gνσ(pB + k2)γ + gσγ(−k2 − qt)ν + gγν(qt − pB)σ].

(3.28)

It ensues with FeynCalc:

|Mgg/t,p|2 = g4
s

4(4s6 + 4s5t+ 17s4t2 + 36s3t3 + 24s2t4 + 8st5 + 4t6)
s4t2

. (3.29)

The amplitude of the u-channel can be determined by applying the same rules. For
the u-channel the result is

|Mgg/u,p|2 = g4
s

4(s6 + 2s5t+ 33s4t2 + 60s3t3 + 44s2t4 + 16st5 + 4t6)
s4(s+ t)2 . (3.30)

When calculating the amplitude of the four-gluon vertex, color and momentum are
inseparable

Mgg/4 = −ig2
sεµ(pA)ε∗

ρ(k1)εν(pB)ε∗
σ(k2)·

[f becfadc(gνµgρσ − gνρgµσ) + f bdcf eac(gνσgµρ − gνµgρσ)
+ f bacfdec(gνρgµσ − gνσgµρ)].

(3.31)
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Multiplication with the corresponding adjoint and insertion of the polarization sums
2.22 results in

|Mgg/4|2 = 6N2(N2 − 1)(3s4 + 8s3t+ 16s2t2 + 16st3 + 8t4)
s4 . (3.32)

In addition to the amplitudes of the four diagrams in figure 6, there will be six
interference terms. Since the calculation can be separated into a momentum and
color factor, the computation for the s-, t-, and u-channel is done first:

MsM
†
u = g4

s ·Mcol,int · −2(s4 − 5s3t− 22s2t2 − 18st3 − 4t4)
s3(s+ t) (3.33)

MtM
†
u = g4

s ·Mcol,int · 2(2s6 − 9s5t+ 19s4t2 + 48s3t3 + 4s2t4 − 24st5 − 8t6)
s4t(s+ t) (3.34)

MsM
†
t = g4

s ·Mcol,int · −2(2s4 + s3t− 8s2t2 − 2st3 + 4t4)
s3t

. (3.35)

Evaluating the color factors Mcol,int

(MsM
†
u)gg,col = fabcf ced · fakefkbd

= fabc(−f cde)(−f eka)fkbd

= −1
2Nf

bdkfkbd = −1
2N

2(N2 − 1)
(3.36)

(MtM
†
u)gg,col = fadcf cbe · (−f eka)fkbd

= 1
2Nf

dbkfkbd = −1
2N

2(N2 − 1),
(3.37)

(MsM
†
t )gg,col = fabcf ced · fdkaf bek

= −1
2Nf

bekf bek = −1
2N

2(N2 − 1)
(3.38)

reveals that they do not differ from each other.
The calculation for the interference terms including the four-gluon vertex shows,
that the interference with the s-channel vanishes:

M4M
†
s = 0 (3.39)

M4M
†
t = g4

s

−6N2(N2 − 1)t(6s4 + 11s3t+ 9s2t2 + 8st3 + 4t4)
s4t

(3.40)

M4M
†
u = g4

s

6N2(N2 − 1)t(s3 − 9s2t− 8st2 − 4t3)
s4 . (3.41)

Adding up all partial results, averaging over all spins and colors in the initial state
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and summing over the spins in the final state, the result is

1
g4

s

|Mgg→gg|2 = 1
4

1
(N2 − 1)2

(
|Mgg,col|2 ·

(
|Mgg/s,p|2 + |Mgg/t,p|2 + |Mgg/u,p|2

)
+ |Mgg/4|2 + 2 ·

(
M4M

†
u +M4M

†
t +MsM

†
u +MtM

†
u +MsM

†
t

))

= 32 ·N2

4 · 2 · (N2 − 1)
(s2 + st+ t2)3

s2t2(s2 + t2) (3.42)

= 9
2

(
3 − t · u

s2 − s · u
t2

− s · t
u2

)
,

for N = 3 colors.
Table 1 lists all channels calculated so far as well as those involving gluon-quark
interactions (calculations not included in the thesis), where i, j represent different
quark flavor indices.

Process ∑|M |2/g4
s

qiq̄i → qiq̄i
4
9

(
s2+u2

t2 + u2+t2

s2

)
− 8

27
u2

st

qiq̄j → qiq̄j
4
9

s2+u2

t2

qiq̄i → qj q̄j
4
9

t2+u2

s2

qiqi → qiqi
4
9

(
t2+s2

u2 + u2+s2

t2

)
− 8

27
s2

ut

qiqj → qiqj
4
9

s2+u2

t2

q̄iq̄i → q̄iq̄i
4
9

(
t2+s2

u2 + u2+s2

t2

)
− 8

27
s2

ut

q̄iq̄j → q̄iq̄j
4
9

s2+u2

t2

gg → gg 9
2
(

3 − tu
s2 − su

t2 − st
u2

)
gg → qiq̄i

1
6

t2+u2

tu − 3
8

t2+u2

s2

qiq̄i → gg 32
27

t2+u2

tu − 8
3

t2+u2

s2

gqi → gqi −4
9

s2+u2

su + u2+s2

t2

gq̄i → gq̄i −4
9

s2+u2

su + u2+s2

t2

Table 1: Scattering processes and corresponding matrix elements for jet production
compared with [12, p. 249].
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4 Kinematics
After calculating the matrix elements, the next step is to take a look at the kine-
matics of a proton-proton collision for determining the cross section.
The differential cross section is defined as the number of detected particles dN per
incoming particle density flow jin and solid angle element dΩ:

dσ
dΩ = dN

jindΩ . (4.1)

It is necessary to consider two distinct reference systems for the collision. One is
the hadron center of mass system (HCMS) in which the protons collide. The
momenta are counter-directed, so

~P1 + ~P2 = 0, (4.2)

where Pi denotes the momentum of the respective proton. The invariant mass is
given by

√
s, which becomes clear when using eq. 4.2:

s = (P1 + P2)2 = (Ep1 + Ep2)2 − ( ~P2 + ~P2)︸ ︷︷ ︸
=0

= (Ep1 + Ep2)2

↪→ EHCMS = Ep1 + Ep2 =
√
s.

(4.3)

The protons collide with the same energy, meaning that the energy is separated sym-
metrically Ep1 = Ep2 =

√
s

2 . Choosing the coordinate system such that the particles
enter along the z-axis causes the momentum components in x− and y−direction to
disappear. Considering the relativistic energy-momentum relation in the massless
limit, the momentum component in z-direction corresponds to the energy of the
proton P1,z =

√
s

2 = −P2,z.

The momenta of the partons are defined by a fragment of the proton’s momentum

~p1 = x1 ~P1 & ~p2 = x2 ~P2 (4.4)

with the Bjorken scaling variable xi. Since the hadrons (protons) and the partons
(quarks and gluons) are considered massless, the relations from eq. 4.4 can be
transferred to the energies, meaning

(p1 + p2)ν =
(
x1Ep1 + x2Ep2 , x1 ~P1 + x2 ~P2︸ ︷︷ ︸

~P1=− ~P2

)

=
(
(x1 + x2)Ep1 , (x1 − x2) ~P1

) (4.5)

in the HCMS.

The process of jet production in LO is described as a 2 → 2 parton scattering.
The hadronic cross section is given by [12, p. 238]

dσ =
∑

i,j,k,l

∫
dx1 dx2 fi(x1, µf )fj(x2, µf ) dσ̂ij→kl, (4.6)
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where the cross section dσ̂ in the partonic subsystem was introduced (compare figure
7). It can be written as [4]

dσ̂ij→kl = 1
F

|Mij→kl|
2dPSn, (4.7)

where F is the flux factor, M are the already calculated matrix elements and dPSn

is the Lorentz-invariant phase space volume. The cross section is influenced by the
strong coupling constant αs, causing it to depend on the renormalization scale µr.
In eq. 4.6 the summation over identical initial (i = j) and final (k = l) states is
excluded.

Figure 7: Schematic illustration of the collision of two hadrons.

In general, the phase space volume for a n = 2 particle final state is given as

dPS(2 → 2) = d4k1

(2π)3
d4k2

(2π)3 δ(k
2
1 −m2

1)δ(k2
2 −m2

2)(2π)4δ(4)(p1 + p2 − k1 − k2). (4.8)

Furthermore, the evaluation of the k0-component reduces the 4-dimensional integra-
tion to a 3-dimensional integration

d4k

(2π)3 δ(k
2 −m2) = d3~k

(2π)3
1

2
√
~k2 +m2

(
δ(k0 −

√
~k2 +m2)dk0 + δ(k0 +

√
~k2 +m2)dk0

)

= d3~k

(2π)32Eθ(E), (4.9)

where the energy of the particle is set to a fixed value of E =
√
~k2 +m2.

Moreover, eq. 4.8 is simplified by using the delta function to eliminate the integration
over x1, x2, k

x
2 and ky

2 . Splitting it into four parts leads to

δ(4)(p1 + p2 − k1 − k2) = δ(−kx
1 − kx

2 )δ(−ky
1 − ky

2)
· δ(x1P1,z + x2P2,z − kz

1 − kz
2)

· δ(x1Ep1 + x2Ep2 − E1 − E2).
(4.10)

Note, that the particle fall along the z-axis and the momentum fragments along the
other axes are omitted. The first two δ-functions will just set
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kx
2 = −kx

1 and ky
2 = −ky

1 .
Continuing with the δ-function in the second line, a relation between x1 and x2 can
be established:

δ

(√
s

2 (x1 − x2) − kz
1 − kz

2

)
= δ

(√
s

2 (x1 − x2 − 2(kz
1 + kz

2)√
s

)
)

⇒ x1 = x2 + 2(kz
1 + kz

2)√
s

.

(4.11)

This allows the last δ-function to be rewritten and set values for x1/2:

δ

(√
s

2 (x1 + x2) − E1 − E2

)
= 1√

s
δ

(
x2 + 1√

s
(kz

1 + kz
2 − E1 − E2)

)

⇒ x2 = E1 + E2√
s

− kz
1 + kz

2√
s

and x1 = E1 + E2√
s

+ kz
1 + kz

2√
s

.

(4.12)

The goal is to express the momentum fractions by quantities, that are observed in
the real accelerator experiment. Therefore, the rapidity

y1/2 = 1
2 ln

E1/2 + kz
1/2

E1/2 − kz
1/2

 (4.13)

for the final state particles and the transverse momentum

kT =
√

(kx
1 )2 + (ky

1)2 =
√

(kx
2 )2 + (ky

2)2 (4.14)

are defined. In the m → 0 limit, the rapidity aligns with the pseudorapidity stated
in chapter 2.5, which depends on the angle from the beam direction.
For x1/2 follows (see appendix A.3.1)

x1 = kT√
s

(ey1 + ey2) and x2 = kT√
s

(e−y1 + e−y2). (4.15)

In order to convert the integral further into the appropriate observables, a coordinate
transformation to polar coordinates with azimuth φ (angle of kT in the (x, y)-plane)
is carried out:

dy1/2 =
dkz

1/2

E1/2
, dkx

1 dky
1 = kT dkT dφ. (4.16)

The detailed derivation is provided in appendix A.3.2.
Merging the results by applying the integration over the delta function and transi-
tioning to the new variables leads to∫

dx1dx2d3k1d3k1
1

E1E2
δ(4)(p1 + p2 − k1 − k2)

= 2
s

1
E1E2

dkx
1 dky

1dkz
1 dkz

2

= 2
s

dy1dy2kT dkT dφ.

(4.17)
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The actual calculation of the matrix elements took place in the parton center of
mass system (PCMS), where the particles have the momenta

pA =


√

ŝ
2
0
0√

ŝ
2

 , pB =


√

ŝ
2
0
0

−
√

ŝ
2

 (4.18)

and the symbol ‘ˆ’ expresses the consideration in the PCMS. This system undergoes
a boost relative to the HCMS along the z-axis with the velocity β = (x1−x2)

(x1+x2) according
to eq. 4.5.
The matrix elements in section 3 are expressed by the Mandelstam variables s, t, u.
Since the calculation was performed at the partonic level, these variables must be
substituted with ŝ, t̂, û.
The Lorentz-invariant scalar product sets up a relationship between the invariant
masses

√
s,

√
ŝ of the respective center of mass systems, which is then expressed in

terms of the rapidities. With pA · pB = p1 · p2 follows

ŝ = x1x2s
(4.15)= k2

T (2 + ey1−y2 + e−(y1−y2)) = 4k2
T cosh2

(
y1 − y2

2

)
. (4.19)

The matrix elements still depend on the Mandelstam variables. With the scattering

^

^

Figure 8: Scattering process in the partonic center of mass system and definition
of the scattering angle θ∗. As in chapter 3, pA and pB correspond to the incoming
partons.

angle θ∗ in the PCMS (see fig. 8) the other variables can be expressed as

t̂ = −2pA · k̂1 = − ŝ

2
(
1 − cos(θ∗)

)
(4.20)

û = −2pA · k̂2 = − ŝ

2
(
1 + cos(θ∗)

)
. (4.21)

It is possible to link the scattering angle with the rapidities, thereby expressing all
variables in terms of measurable observables (refer to appendix A.3.3):

cos(θ∗) = tanh
(y1 − y2

2
)
. (4.22)
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With the flux factor

F = 4
√

(pA · pB)2 −m2
Am

2
B = 2ŝ |mi = 0, (4.23)

the cross section will be independent of the number of particles contained in the
beam. All in all it ensues with eq. 4.17 for the three differential cross section

d3σ

dkT dy1dy2
= kT

8πŝ2

∑
i,j,k,l

x1fi(x1, µf )x2fj(x2, µf )|M(ŝ, t̂, û)|
2
ij→kl, (4.24)

while the integrations over dφ has led to a factor 2π.

The last step before calculating the actual cross section is to take a look at the
physically allowed regions of y1, y2 and kT , leading to the corresponding integration
limits.
The fractions of momenta cannot exceed 100% of the proton’s total momentum,
implying that x1,2 ≤ 1, which establishes the constraints for y2:

x1 = kT√
s

(ey1 + ey2) ≤ 1

⇔ y2 ≤ ln
(√

s

kT

− ey1

)
︸ ︷︷ ︸

y2,max(kT ,y1)

,

x2 = kT√
s

(e−y1 + e−y2) ≤ 1

⇔ y2 ≥ − ln
(√

s

kT

− e−y1

)
︸ ︷︷ ︸

y2,min(kT ,y1)

.

(4.25)

The integration limits of y1 are bounded by the allowed region of y2 (visualization
in appendix A.3.4). From this follows the condition that

y2,min(kT , y1) = y2,max(kT , y1)

↪→ − arcosh
(√

s

2kT

)
≤ y1 ≤ arcosh

(√
s

2kT

)
.

(4.26)

For kT , the lower limit is 0 ≤ kT . The argument of arcosh( ), which must be greater
than 1, provides a condition for the upper limit of kT :

kT ≤
√
s

2 . (4.27)

Hence, the total cross section is determined by

σ =
∑

i,j,k,l

∫ kT,max

0
dkT

∫ y1,max(kT )

y1,min(kT )

dy1

∫ y2,max(kT ,y1)

y2,min(kT ,y1)

dy2

· kT

8πŝ2x1fi(x1, µf )x2fj(x2, µf )|M(ŝ, t̂, û)|
2
ij→kl.

(4.28)
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5 Numerical Evaluation
In this chapter, the derived results will be validated through comparison with exper-
imental data. Initially, the integration of eq. 4.24 was performed using the scipy.in-
tegrate Python library [21], but was subsequently switched to the vegas package [22],
which employs an adaptive Monte Carlo vegas algorithm.
The set of parton distribution functions used is CT18NNLO [5]. From this set αs is
also provided. Due to the high mass of the top-quarks ((171.77 ± 0.37) GeV [23]),
their production will be neglected.

As a first step, the implemented numerics are checked against an external code
(based on [24]), whereas the matrix elements have already been compared with [12,
p. 249] and require no further checking. The process selected for the comparison is
qq̄ → QQ̄, where Q describes a fixed quark of a different flavor. In the limit where
mass is negligible, the specific flavor of the final state quark Q does not matter.
The rapidity integration over y2 was carried out within the limits specified in eq.
4.25, resulting in a confirmation for dσ2

dy1dkT
. Furthermore, agreements were also

achieved for the y1-integration with respect to the limits provided in eq. 4.26.
In addition to the estimated ratio between the code implemented in this work and
the external code, a two-sample z-test is carried out

Z = X̄ − Ȳ√
σ2

X + σ2
Y

, (5.1)

where X̄ and X̄ are the mean values of two different samples with respective stan-
dard error σX̄,Ȳ . The returned value is in units of standard deviations. A more
detailed explanation of the comparison with the respective plots can be found in
appendix A.4.

In the experiment, there is usually no access to an observable with a specific value,
but rather to phase space bins of cross sections integrated over ranges and averaged
over them. The computation of the fiducial cross section is therefore carried out
over bins, but remains classified as a differential cross section by convention.
Before the comparison, it should be verified that changing the integration order of y1
and y2 does not affect the result, although they are related to different x-fractions.
The integrated phase space and therefore the integration limits will remain un-
changed, while the roles of x1 and x2 in the PDFs are swapped.
The proton-proton collision concludes only symmetric states, meaning the symmetry
at the partonic level translates to the symmetry in rapidities of the two final states.
This for example would be different for proton-lead collisions. To illustrate the
breaking of symmetry for non-symmetric hadronic states, another PDF set (namely
nCTEQ15 [25]) is used only for the second PDF (see fj in eq. 4.6).
Figure 9 points out that by changing the integration order of y1 and y2, different val-
ues are calculated for the single differential cross section when using different parton
distribution functions. This consequence does not occur with identical PDFs.
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Figure 9: The integration of the single differential cross section is performed with
same and different PDFs for the initial state particles, to emphasize that the order
of integration over the rapidities is not trivial for non-symmetric states.

5.1 Share of Processes
To obtain an overview of the share of processes in jet production, figure 10 presents
the single differential cross section integrated over the whole rapidity range. The
processes are separated into color categories according to the particles in the initial
state. It can be seen, that for kT < 500 GeV the gluon-gluon scattering dominates,
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Figure 10: Share of the single differential cross section of the various processes with
different parton combinations depending on the transverse momentum.

while processes containing only (anti)quarks have almost no fraction. For larger
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transverse momenta the proportion changes, leading to a dominance of processes in-
volving (anti)quarks. It is evident that gluon-quark interactions play an important
role across all regions. This observation aligns with the PDFs presented in fig. 1, as
there is a higher likelihood of encountering a low-momentum gluon, resulting more
frequently in gluon-gluon interactions and to a lesser extent in gluon-quark fusion.
In the blue area, the qiqi → qiqi and qiqj → qiqj processes are the most influen-
tial. The permanent presence of valence quarks within the proton causes increased
annihilation involving quarks rather than antiquarks.

5.2 ATLAS Measurement
The measured inclusive jet cross section data in a proton-proton collision is pro-
vided by the ATLAS Collaboration [26]. This measurement was conducted with
the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of√
s = 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb−1.

The double differential cross sections are shown as functions of jet transverse mo-
mentum and jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV
and rapidities of |y| ≤ 3. The measured jets identified by the anti-kt algorithm [13]
possess radii of R1 = 0.4 and R2 = 0.6, respectively. The renormalization scale and
the factorization scale are set dynamically, depending on the phase space through
the leading jet transverse momentum µr = µf = kmax

T .
For comparison with the data, the cross section determined in this thesis is integrated
over the whole y2-range and then provided in bins of y1 and kT . In the subsequent
plots, the |y|-values of the data are associated with the positive y1-values.

5.2.1 Evaluation of Integration Methods

The integration carried out with SciPy was cross-checked with a Monte Carlo inte-
gration, where the code for calculation and iteration over the individual processes
remained unchanged. The results could be reproduced for some channels and not
for others, with no pattern emerging with regard to the particles involved. The
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Figure 11: Cross section for
qiq̄i → qiq̄i and qiq̄i → qj q̄j channels
with comparison of different numeri-
cal integration methods.
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Figure 12: Comparison of different
numerical integration methods with
an external code for the g s → g s
channel.
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Figure 11 illustrates that the disagreement for the qiq̄i → qiq̄i process is well over
the reported numerical errors. To verify which results are correct, a comparison is
made with another code (based on [24]) for the g s → g s channel. In figure 12 the
vegas result was confirmed, thus, the calculation with SciPy was discontinued. It
was not attempted to precisely identify the source of this problem, so the calculation
will henceforth be carried out using the vegas algorithm.

5.2.2 Uncertainties

There are three different types of uncertainties that have to be considered when
performing the numerical calculation of the integral. An evaluation of the errors is
shown in Figure 13 for the data, which is subsequently compared with the experi-
mental data. The differential cross section is integrated in y1-bins of width 0.5 for
kT ∈ (100, 116) GeV, where y1,mid denotes the middle of the respective bin.
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Figure 13: Theoretical prediction for jet production in leading order at
√
s = 7 TeV

for kT ∈ (100, 116) GeV. The three different sources of error are shown, with the
scale error clearly dominating. The lower plot presents the relative uncertainties
urel.

PDF uncertainty:
The used PDF set is together with the best estimate (central value) provided with
58 Hessian sets PFDs from which the uncertainty of an observable is determined.
For observing the cross section, the uncertainty is given as

∆σpdf = 1
2

√∑
k

(
σ(f+

k ) − σ(f−
k )
)2
. (5.2)

The experimentally determined PDFs are fitted to the theoretical data by minimizing
the χ2 function. In its simplest form, it has the following structure for a single data
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set
χ2

i (aj) = [Di − Ti(aj)]2
σ′2

i

. (5.3)

Here, Di are the experimental values, while Ti denote the theoretical predictions.
The denominator σ′2

i = σ2
i + u2

i sums the statistical error σi and the uncorrelated
systematic error ui in quadrature. The χ2 function is then minimized with respect
to the fitting parameters aj to find the best PDF, the central value.
The uncertainties can be quantified using the Hessian method, in which the χ2-
function is approximated near its minimum in a quadratic form:

χ2 = χ2
0 +

∑
i,j

Hij(ai − a0
i )(aj − a0

j) |Hij = 1
2
( ∂2χ2

∂yi∂yj

)
, (5.4)

where yi = (ai − a0
i ) denotes the shifts from the actual minimum.

Finally, an upwards (f+
k ) and a downwards (f−

k ) error variation of the parameters is
obtained, with which the central error is calculated according to equation 5.2. [25]
The relative PDF error is around 3% and is therefore in leading order significantly
smaller than the error caused by the scale variation.

Scale uncertainty:
As discussed in section 2.4, the strong coupling constant αs is a function of the cho-
sen renormalization scale. Ideally, physical observables should not depend on the
choice of scale, but this is not the case in LO. The dependence on the choice only
disappears in case of an all-order calculation. However, the terms that explicitly
depend on the renormalization scale will also have prefactors involving the coupling
constant, implying that the impact of the choice of scale is reduced as more terms
are added to the perturbative series.
Based on equation 2.28 the cross section is expected to decrease as the scale in-
creases. The scale uncertainty is quantified by calculating the cross section on a
scale of µ = 0.5kmax

T and µ = 2kmax
T meaning

∆σscale =
[
σ
(
2kmax

T

)
, σ
(1

2k
max
T

)]
, (5.5)

which includes most of the possible variation.
The scale error is not symmetrical, but still exceeds the other errors in both direc-
tions. The relative error for µ = 2kmax

T is about urel,2kT
∼ 20% and for µ = 1

2k
max
T

slightly greater with urel,0.5kT
∼ 30%.

Integration error:
The error resulting from the numerical integration is of a much lower order of mag-
nitude compared to the scale and PDF uncertainty. By computing the cross section
using the vegas algorithm, the uncertainty can be reduced as much as desired by
increasing the number of integral evaluations.
The total uncertainty is calculated by

∆σ =
√

∆σ2
pdf + ∆σ2

scale + ∆σ2
int. (5.6)
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5.2.3 Comparison to Data

At first, the theoretical calculation in LO is compared to the ATLAS data at a fixed
kT range with y1-bins varied from 0 ≤ y1 ≤ 3 with a width of ywidth = 0.5.
Figure 14a shows the comparison for kT in a range from 100 GeV to 116 GeV. For
the smaller radius of R1 = 0.4 the results align with the calculations within the
error bars for all y1,mid-values. Consequently, the Z-value lies between ZR1 = ±1σ.
It is evident that the agreement is worse for the smaller rapidity bin ranges, while
in ranges 1.5 ≤ y1 ≤ 2 and 2 ≤ y1 ≤ 2.5 the best agreement is reached.
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Figure 14: Theoretical prediction for the cross section in bins of kT and y1 in proton-
proton collision in leading order compared the experimental data at

√
s = 7 TeV.

The kT range is kept constant.

When considering the radius R2 = 0.6, the agreement decreases (ZR2 = ±2σ). For
experimental points in 0 ≤ y1 ≤ 0.5 and 0.5 ≤ y1 ≤ 1, the error bars do not over-
lap. The consideration of two different radii leads to the assumption that in the
(unphysical) limit R → 0 the agreement increases.
The plots also provide the Z-value without taking the error of the theoretical pre-
diction σt into account. As the scale variation error is no longer included in the
comparison, only an agreement of order 2σ (R1) and 4σ (R2) is achieved.
Figure 14b displays the data for kT ∈ (290, 318) GeV. The discrepancy is larger
when compared to the data for lower transverse momenta, placing the Z-Value for
R1 within ZR1 = ±1.5σ and for R2 within ZR2 = ±2.5σ .
It is apparent that the majority of the cross section is produced in the region where
kT is low and y1 approaches zero. At higher kT -values, the collisions involve particles
carrying a greater fraction of the proton’s momentum (see section 5.3). Observing
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the PDFs in fig. 1, it becomes clear that the likelihood of finding such high-x par-
ticles is reduced. Moreover, eq. 4.24 indicates that the differential cross section is
inversely proportional to kT when applying eqs. 4.15 and 4.19.

In addition, the cross section was calculated for fixed y1-ranges with varying trans-
verse momentum. Due to the restriction in eq. 4.26, the maximum y1-value for a
given interval decreases with increasing kT . The comparison with the experimental
data for three distinct y1-bins is presented in fig. 15a. The Z-value indicates that
the deviation is larger within the 0 ≤ y1 ≤ 0.5 range, which corresponds to the
region where the share of the total cross section is greatest compared to the larger
y1-areas. As visualized in fig. 15b, which shows the ratio between prediction and
data, the experimental results lie within the uncertainty bands for the two intervals
with higher y1-values. For the 0 ≤ y1 ≤ 0.5 range, there is only an agreement for
small values of kT < 172 GeV.
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Figure 15: Theoretical prediction for the cross section in pp-collision in leading order
for different kT -bins in a varying y1-range (left). The right-hand plot depicts the
uncertainties and ratios; bands represent the scaled prediction errors, while the bars
show the experimental data errors.

When the uncertainties are taken into account, the overall agreement can be consid-
ered positive, as all calculated results are of a similar magnitude to those obtained
by the ATLAS detector. It is important to emphasize that this is merely a leading
order calculation, where the hard partons correspond to the upcoming jets. Pro-
cesses such as gluon emission in the final state and thus 3-jet events, for example, are
not included. This limitation also implies that the jet radius R is not incorporated
into the theoretical model.
Furthermore, the experimental data is presented in bins of absolute values of y,
while the model provided in this thesis integrates over the whole y2 phase space and
takes only the positive y1-values into account.
The approximation that the quarks are assumed to be massless should have no no-
ticeable influence on the calculation for the transverse momenta (kT > 100 GeV)
considered here.
For more in-depth investigations, a calculation in higher orders is recommended.
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5.3 Sensitive Kinematic Region
The x-region, which is most sensitive to the cross section, will be the subject of the
further analysis. Therefore, the double differential cross section at

√
s = 7 TeV is

calculated in 99 bins between 0 ≤ x1 ≤ 1 and compared to the naive expectation in
leading order, where the relationship is given by eq. 4.15. This is shown in figure 16
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Figure 16: Sensitive x1-region for 0 ≤
y1 ≤ 0.5 at kT ∈ (100, 1200) GeV com-
pared to the expectation in LO.
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Figure 18: Sensitive x1-region for 2 ≤
y1 ≤ 2.5 at kT ∈ (100, 116) GeV com-
pared to the expectation in LO.

for a range of kT ∈ (100, 1200) GeV in the lowest positive rapidity bin of y1, where
the green bars indicate the range of x1 that contributes ∼ 90% to the cross section.
Starting from the edge of the distribution, a 5% contribution to the cross section was
omitted from both sides to obtain the green area. Due to the non-infinitesimal bin
width, the 90%-value cannot always be fully reached. The Monte Carlo integration
was performed in such a way that any evaluation was discarded if the current x-
sample was not within the specified x-range. In the region of the peak, 30,000
evaluations per iteration of the Monte Carlo integration were performed, while for
the other regions the number of evaluation was based on the relative uncertainty
urel remaining below 1%.
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Figure 17: Sensitive x1-region for 0 ≤ y1 ≤ 0.5 at different kT -ranges compared to
the expectation in LO.
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It is observed that the calculation agrees well with the expectation in LO for
kT = 100 GeV and y1 = y2 = 0. The determined bin that is most sensitive to
the cross section is x1,max = [0.027, 0.031].
In a narrower kT range, the regions with larger kT are associated with higher x1-
values (fig. 17b, x1,max = [0.118, 0.123]), in contrast to regions with smaller momen-
tum (fig. 17a, xmax = [0.085, 0.089]). As stated in section 5.2.3, the contribution to
the total cross section is much greater in areas of lower kT . Figure 17a also provides
the LO expectation for the upper limit of the bin (y1 = 0.5). The discrepancy is
worse in this case, which could be due to the fact that rapidity distributions typically
have a peak at y = 0 (see [27], fig. 11).
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Figure 19: Sensitive x1-region for channels, which contain (no) gluon interaction, in
pp-collision for kT ∈ (100, 1200) GeV and 0 ≤ y1 ≤ 0.5.

For higher rapidity data as in figure 18 the agreement is only valid for choosing the
upper edge of the y1 bin, while this was not the case for the smaller rapidity range.
In LO, the momenta of the outgoing particles are back to back, so that y2 = −y1 is
chosen, what agrees with the calculation. However, if a lower rapidity value from the
bin interval is chosen, this agreement no longer holds, as illustrated by the orange
line in figure 18. When larger rapidities are considered, the peak shifts to higher x.
The share of the cross section of processes contributing gluons is approximately 10-
times larger than for channels without gluons (see fig. 19), while the peak position
remains roughly unchanged.

As a further step, the sensitive region for the factorization scale µf (which will
be associated with the momentum transfer Q2 here) can be determined, which is set
to kT in the computation. The analysis shows that the lowest momentum within
a bin is leading, thereby causing the effective cross section’s proportion to decrease
as Q increases (fig. 20a). This holds true for any chosen momentum or rapidity
interval, as demonstrated in fig. 20b, where the distribution for 2.5 ≤ y1 ≤ 3 at
kT ∈ (290, 318) GeV is presented.

37



5 Numerical Evaluation

0

10

20

30

40

50
d

2

dy
1d

k T
[p

B/
Ge

V]
p + p with kT (100, 116) GeV and 0 y1 0.5

0.89%-sensitive area

100 102 104 106 108 110 112 114 116
Q [Gev]

0.9975
1.0000
1.0025

u r
el

(a) 0 ≤ y1 ≤ 0.5 at kT ∈ (100, 116) GeV.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

d
2

dy
1d

k T
[p

B/
Ge

V]

p + p with kT (290, 318) GeV and 2.5 y1 3
0.90%-sensitive area

290 295 300 305 310 315
Q [Gev]

0.9975
1.0000
1.0025

u r
el

(b) 2.5 ≤ y1 ≤ 3 at kT ∈ (290, 318) GeV.

Figure 20: Sensitive Q-region for selected y1- and kT -bins with relative uncertainty
urel.

Finally, figure 21 illustrates the kinematic reach of the jet production for the exper-
imental points of figure 17 in the (x,Q2)-plane. The uncertainties are given by the
specified sensitive ranges, normalized to 90%. It is clear to see that the measuring
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Figure 21: Calculated kinematic reach of the jet production at leading order at√
s = 7 TeV. The error bars indicate the region, which is 90% sensitive to the

double differential cross section. To indicate the width of the green area in the
previous plots, this plot also provides the absolute uncertainty of x1,max separately.

of high rapidity, what corresponds to small detecting angles, results from particles
scattering with a high share of the proton’s momentum. On a double logarithmic
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scale, the relationship between x1 and Q2 appears to be approximately linear. This
means that within a bin, the highest momentum transfer Q2 is associated with the
highest x1 value.
When examining the absolute uncertainties uabs,x1 of x1,max (width of the green area,
i.e. the sharpness of the peaks) resulting from the sensitive regions, there is no clear
correlation between x1 and kT respective y1. Nevertheless, it is apparent that the
majority of the cross section is produced by x1, which are greater than x1,max.
The naive expectation in LO is shown within the gray boxes, with the lower limit of
each rapidity bin selected as the left bound and the upper limit as the right bound,
under the condition that y2 = −y1. Almost all x1-peak positions are within these
boxes, only for the 0 ≤ y1 ≤ 0.5 range there are slight deviations for small Q2.
It should be emphasized that the inclusion of the 90% sensitive region (regarding
the cross section) instead of the most sensitive point covers a significantly larger
area.
For higher orders, the assumption that the jets must necessarily be back-to-back
becomes invalid. Further analysis could provide insight into whether the computa-
tional order substantially influences the results.
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6 Conclusion
This work started with the analytical determination of the three differential cross
section in LO for selected processes in proton-proton collision, namely qq → qq,
qq̄ → qq̄, q̄q̄ → q̄q̄ and gg → gg. The results were integrated by an adaptive Monte
Carlo algorithm with the vegas [22] package in Python.
First, the contribution of the various channels to the single differential cross section
dσ

dkT
in a range of kT ∈ (0, 2000) GeV was analyzed. It was determined that the

gg → gg process dominates for transverse momenta kT < 500 GeV, while quark
and antiquark interactions play a major role for kT > 500 GeV. Gluon-antiquark
interactions have a share of at least one fifth of the cross section, regardless of kT .

The calculated double differential cross section, which was integrated over the whole
y2-range and in bins of kT and y1, was compared with an ATLAS detector measure-
ment at the LHC in proton-proton collisions at

√
s = 7 TeV, which provided data

for jet radii of R1 = 0.4 and R2 = 0.6.
In a fixed range of kT ∈ (100, 116) GeV with varying y1-bins of width 0.5 the calcu-
lation aligned well with the ATLAS R1-data within error bars for all y1 values, with
an agreement of the order 1σ. For R2 the correlation diminishes and is of the order
2σ.
Considering a range with larger momenta kT ∈ (290, 318) GeV, it was observed that
the proportion of the total cross section decreases markedly. In this range, worse
agreements were achieved, which are nevertheless satisfactory for the LO calculation.
A limitation of the theoretical model is the exclusion of the jet radius in the LO
calculation results. Including data with smaller radii could enhance the comparison.
In addition, the |y|-dependence of the results could be investigated further, since in
this thesis the cross section was only integrated over the positive y1 ranges.

The examination of the x-region, which is most sensitive to the cross section, showed
that the results match with the explicit LO expectation. It was found that areas
with larger transverse momentum kT as well as areas with larger y1 are associated
with larger x-values.
The investigation of the sensitivity of the factorization scale, set to the leading trans-
verse momentum of a bin, revealed that the lowest kT value contributes the most
to the cross section. The kinematic reach of the jet production could be illustrated
in the (x, Q2)-plane, whereby the inclusion of the 90% cross section sensitivity of x
and Q provided significantly greater coverage in the plane. A next-to-leading order
calculation would not only be interesting to reduce the scale dependency in the first
part, but would also be useful for a more comprehensive examination of the sensitive
region to see whether differences to the LO approximation occur.
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A Appendix

A.1 Dirac Matrices
The 4x4 matrix /k is defined as

/k ≡ kµγ
µ

for a four-vector kµ.
The Dirac matrices are defined as unitary and traceless 4 × 4 matrices

γ0 ≡
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.1)

where σi are the Pauli matrices. The relations are taken from [6]
General relations:

{γµ, γν} = 2gµν (A.2)
(γµ)† = γ0γµγ0 (A.3)

Product rules:

γµγ
µ = 4 (A.4)

γµγ
νγµ = −2γν (A.5)

γµγ
νγργµ = 4gνρ (A.6)

γµγ
νγσγργµ = −2γργσγν (A.7)

Trace theorems:

Tr(γµγν) = 4gµν

Tr(γµγνγλγσ) = 4(gµνgλσ − gµλgνσ + gµσgνλ)
(A.8)

The product of an odd number of gamma matrices always equals zero.

A.2 Mandelstam Variables
The Lorentz-invariant Mandelstam variables are defined as

s = (pA + pB)2 = (k1 + k2)2

t = (pA − k1)2 = (pB − k2)2

u = (pA − k2)2 = (pB − k1)2.

(A.9)

They are not independent from each other

s+ t+ u = m2
A +m2

B +m2
1 +m2

2. (A.10)

Considering massless particles, they fulfill

(pA · pB) = (k1 · k2) = 1
2s (A.11)

(pA · k1) = (pB · k2) = −1
2t (A.12)

(pA · k2) = (pB · k1) = −1
2u. (A.13)
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A.3 Kinematics
A.3.1 Momentum Fractions

Starting with eq. 4.13 one can obtain

e±y1 =
√
E1 ± kz

1
E1 ∓ kz

1
=

√√√√(E1 ± kz
1)(E1 ± kz

1)
(E1 ∓ kz

1)(E1 ± kz
1) =

√√√√(E1 ± kz
1)2

E2
1 − kz

1
2 = (E1 ± kz

1)
kT

. (A.14)

Analogously follows:
e±y2 = (E2 ± kz

2)
kT

. (A.15)

So in total the momentum fractions (eq. 4.12) can be expressed through the rapidi-
ties:

x1 = kT√
s

(ey1 + ey2) & x2 = kT√
s

(e−y1 + e−y2). (A.16)

A.3.2 Coordinate Transformation

The goal is to express the rapidity via the energy and the momentum in z-direction.
Therefore, the total differential can be calculated:

dy = ∂y

∂k
dk + ∂y

∂E
dE

⇒ dy
dk = ∂y

∂k
+ ∂y

∂E

∂E

∂k
,

(A.17)

where
∂y

∂k
= 1

2
E1 − kz

1
E1 + kz

1
· (E1 − kz

1) + (E1 + kz
1)

(E1 − kz
1)2

= E1

E2
1 − kz

1
2

(A.18)

and
∂y

∂E

∂E

∂k
= 1

2
E1 − kz

1
E1 + kz

1
· (E1 − kz

1) − (E1 + kz
1)

(E1 − kz
1)2 · kz

E1

= − kz
1

2

E1(Ez
1

2 − kz
1

2)
.

(A.19)

Merging the results gives
dy1

dkz
1

= 1
E1
, (A.20)

while the same applies for y2 and E2.
Finally, polar coordinates are used, whereby the momentum is parameterized as
follows [12, p. 246]

kµ =


ET cosh y
kT sinφ
kT cosφ
ET sinh y

 , (A.21)
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with the azimuthal angle φ.
This leads to the Jacobian determinant |∂(kx

1 ,ky
1 )

∂(kT ,φ) | = kT so in total:

dkx
1 dky

1 = kT dkT dφ. (A.22)

A.3.3 Rapidity

To express the scattering angle θ∗ by the rapidities of the outgoing partons, the
differences in the hadronic and partonic CMS should be considered. The actual
observed rapidities of the jets in the hadronic frame contain a boost, meaning

y1,2 = yPCMS ± ŷ, (A.23)

where yPCMS = 1
2(y1 + y2) is the laboratory rapidity and ŷ = 1

2(y1 − y2) are the final
rapidities in the two-parton system.

Furthermore, θ∗ can be written as

cos(θ∗) = k̂z

|k̂|
(A.24)

using

eŷ ± e−ŷ =


2Ê√

(Ê−k̂z)(Ê+k̂z)
for +

2k̂z√
(Ê−k̂z)(Ê+k̂z)

for −
(A.25)

what follows from eq. A.14, we can express the angle as

cos(θ∗) = k̂z

Ê
=
k̂z ·

(
2√

(Ê−k̂z)(Ê+k̂z)

)
Ê ·

(
2√

(Ê−k̂z)(Ê+k̂z)

) = eŷ − e−ŷ

eŷ + e−ŷ
= tanh

(
y1 − y2

2

)
. (A.26)

A.3.4 Integration Limits

Figure 22 represents the intersection of y2,min and y2,max, from which the limits of y1
are derived. The solid line shows values for y1 in the range

y1 ∈
[

− arcosh
(√

s

2kT

)
, arcosh

(√
s

2kT

)]
(A.27)
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Figure 22: Visualization of the integration region for the single differential cross
section dσ/dkT . The solid lines represent the limits calculated in eqs. 4.26 and 4.25.

A.4 Validation of the Numerics
As this part is only a validation of the code without a physical background, the
renormalization and factorization scale are arbitrarily set to µf = µr = Q = 50 GeV.
The center-of-mass energy of the system is set to

√
s = 13 TeV, whereas the trans-

verse momentum is in a range kT ∈ (0, 500) GeV. Moreover, the ratio is defined as
ratio = codethesis

codeexternal
.

10 2

100

102

104

106

108

d
2

dy
1d

k T
[p

B/
Ge

V]

qq QQ at s = 13 TeV for Q = 50 GeV with y1 = 2
y2 = [ ln ( s

kT
e y1); ln ( s

kT
ey1)]

external code

0.95
1.00
1.05

ra
tio

0 100 200 300 400
kT [GeV]

0.1

0.0

0.1

Z-
va

lu
e

Figure 23: Double differential cross
section dσ2

dy1dkT
for a fixed value of y1 =

2 in kT ∈ (0, 500) GeV.
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Figure 24: Single differential cross
section dσ

dkT
.

The integration uncertainties are displayed in the ratio plots. Therefore, a curve with
all values equal to one, along with error bars representing the relative uncertainties
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of the external code, is shown. The ratio is provided with error bands indicating the
scale variation error, meaning the relative uncertainties of the integration performed
in this thesis are multiplied by the ratio.
The figures 23 and 24 show a satisfactory agreement between the codes. The differ-
ential cross section is integrated in a binned region for a width kT,width = 50 GeV in
fig. 25. There is a deviation in the region of small momenta, but for the subsequent
calculation only calculation for momenta greater than kT = 100 GeV are relevant.
The cross section is also integrated in a range kT ∈ (100, 116) GeV with y1 binned
from 0 ≤ y1 ≤ 3 in steps of width 0.5 (fig. 26).

10 2

10 1

100

101

d dk
T

[p
B/

Ge
V]

qq QQ′ at s = 13 TeV for Q = 50 GeV
bin width kT : 50 GeV
external code

0.9

1.0

1.1

1.2

ra
tio

100 200 300 400 500
kT, mid [GeV]

5

0

5

Z-
va

lu
e

Figure 25: Cross section with kT in-
tegrated in phase space bins with a
width of 50 GeV. For small momenta,
the integration with scipy.integrate is
not stable.
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Figure 26: Cross section with kT inte-
grated in a range kT ∈ (100, 116) GeV
with y1 binned from 0 ≤ y1 ≤ 3 in
steps of width 0.5.
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