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Kurzfassung
In dieser Arbeit werden verschiedene Methoden zur präzisen Berechnung von Prozessen
am Large Hadron Collider erläutert, implementiert und durchgeführt.

Im Kontext der Quantenchromodynamik können Berechnungen fester Ordnung mit
Partonschauern mithilfe der POWHEG-Methode kombiniert werden. Dadurch lässt sich
die Produktion reeller und virtueller Photonen berechnen, die beide als Signale für das
Quark-Gluon-Plasma dienen können. Da virtuelle Photonen, gemessen als Dileptonen,
nicht einfach von semileptonischen Zerfällen schwerer Hadronen unterschieden werden
können, müssen auch diese simulieren werden. Meine Berechnung eines neuen Prozesses
für POWHEG BOX V2, um Monte-Carlo-Events von einem Photon mit zwei Jets in
nächstführenden Ordnung Quantenchromodynamik zu erzeugen, wird in dieser Arbeit
beschrieben und mit Daten des ATLAS Experiments für isolierte Photonen mit zwei
gemessenen Jets verglichen. Die Verwendung dieser mit sowohl Pythia- als auch Herwig-
Partonschauer führen dazu, dass die Vorhersagen konsistent zu Ergebnissen der nächst-
nächst-führenden Ordnung sind.

Für die Untersuchungen elektroschwacher supersymmetrischer Teilchen am Large
Hadron Collider bietet sich die Resummation niederenergetischer Gluonen an, da
potenziell große Logarithmen berücksichtigt werden. Ich berechne die Erzeugung
eines Squarks und eines Elektroweakino in nächstführender Ordnung Quantenchro-
modynamik kombiniert mit nächstführenden Logarithmen. Für Squarkmassen im
Teraelektronenvoltbereich kommt es zu einer Vergrößerung des Wirkungsquerschnitts
um einige Prozentpunkte und zu einer Verringerung der theoretischen Unsicherheiten.
Dieser Prozess wird mit Elektroweakinopaar und Squarkpaar Produktion kombiniert,
um eine stärkeres experimentelles Signal für Supersymmetrie zu erhalten. Darüber
hinaus können die Massenausschlussgrenzen im minimalen supersymmetrischen
Standardmodell durch die Kombination der unkorrelierten Signale aus ATLAS- und
CMS-Analysen deutlich verbessert werden.



Abstract
In this thesis, various methods for the precise calculation of processes at the Large
Hadron Collider are explained, implemented, and carried out.

In the context of quantum chromodynamics, fixed-order calculations can be matched
with parton showers using the POWHEG method. This allows for the calculation of real
and virtual photon production, both of which can serve as signals for the quark-gluon
plasma. Since virtual photons, measured as dileptons, cannot easily be distinguished
from semileptonic decays of heavy hadrons, these must also be simulated. My calcu-
lation of a new process for POWHEG BOX V2, to generate Monte Carlo events for a
photon with two jets in next-to-leading order quantum chromodynamics, is described in
this thesis and compared with data from the ATLAS experiment for isolated photons
with two resolved jets. The use of both Pythia and Herwig parton showers results in
predictions that are consistent with next-to-next-to-leading order results.

For the investigation of electroweak supersymmetric particles at the Large Hadron
Collider, the resummation of soft gluons is useful, as potentially large logarithms are
taken into account. I calculate the production of a squark and an electroweakino in next-
to-leading order quantum chromodynamics matched to next-to-leading logarithms. For
squark masses in the tera-electronvolt range, there is an increase in the cross section
by a few percentage points and a reduction in theoretical uncertainties. This process
is combined with electroweakino pair and squark pair production to obtain a stronger
experimental signal for supersymmetry. Furthermore, the mass exclusion limits in the
minimal supersymmetric standard model can be significantly improved by combining
the uncorrelated signals from ATLAS and CMS analyses.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Quantum chromodynamics (QCD), the fundamental theory describing the strong inter-
actions between quarks and gluons, has achieved remarkable successes over the course
of several decades. Despite its non-perturbative nature at low energy scales, QCD’s per-
turbative description of high-energy particle collisions has been highly accurate. This
precision has been made possible through factorization theorems, which separate non-
perturbative and perturbative components of an observable. The continuous develop-
ment of particle colliders, such as the Large Hadron Collider (LHC) and Relativistic
Heavy Ion Collider (RHIC), has facilitated increasingly precise measurements of QCD
processes. These improvements have necessitated higher-order corrections to QCD pro-
cesses, extending beyond leading-order (LO) and next-to-leading-order (NLO), as the
precision and statistics of the experiments improve. The most accurate comparison
between theory and experiments is achieved by Monte Carlo (MC) simulations, which
combine fixed-order calculations with higher-order soft and collinear emissions.

One of the most significant advancements in heavy-ion collisions is the study of the
quark-gluon plasma (QGP), a state of QCD matter formed at high energy densities,
such as in the early Universe. High-energy photons produced in all stages of heavy-ion
collisions are important probes for determining QCD properties such as the temperature
of the QGP. A useful probe for understanding the formation of the QGP are di-electrons,
which arise from virtual photon decays. Unlike prompt photons, virtual photons can
have a measurable invariant mass, which serves as an effective means of differentiating
between collision stages and is unaffected by the blueshift due to the expansion of the
medium. As electromagnetic probes, prompt photons also offer a relatively clean way
to assess nuclear parton distribution functions (nPDFs), particularly at low Bjorken-x,
where the gluon density increases significantly, and gluon saturation effects may come
into play. However, distinguishing prompt photons arising from the hard process and
photons originating from other sources becomes increasingly challenging at lower trans-
verse momentum. This is because non-perturbative processes, such as fragmentation
and hadron decays, generate more photons, making the use of isolation cones necessary.
Instead of relying on fragmentation functions (FFs) to model the fragmentation of par-
tons into photons, we use the Positive Weight Hardest Emission Generator (POWHEG)
method to match the fixed-order calculation to a parton shower (PS).

Despite its successes, the Standard Model (SM) is incomplete, failing to account for
phenomena like dark matter or the matter-antimatter asymmetry. Extensions like the
Minimal Supersymmetric Standard Model (MSSM) aim to address these shortcomings

1



2

by introducing new particles and symmetries, such as supersymmetry (SUSY). SUSY is
a compelling framework for new physics, with the LHC serving as the primary experi-
mental avenue for searching for supersymmetric particles. These searches have focused
on both strong production of squarks and gluinos and weak production of sleptons, neu-
tralinos, and charginos. Although no direct evidence for SUSY has yet been observed,
experimental limits continue to push the mass bounds of these particles higher. As
the masses approach the production threshold, large logarithmic terms emerge due to
the emission of multiple soft gluons, and these terms must be resummed to enhance
the accuracy of theoretical predictions. The production of squarks in association with
electroweak gauginos is of particular interest, as it provides a production mechanism at
LHC energies that is mostly unaffected by the stringent gluino limits, and completes the
set of processes found in Resummino. Additionally, combining different simplified SUSY
model production channels with various experimental analyses is essential to achieve the
most comprehensive exclusion bounds and extend them further.

The structure of this thesis is as follows. First, in chapter 2 we introduce the theo-
retical framework of the SM of particle physics. The necessary computational methods
are discussed in chapter 3 and lay the foundation for the following studies of photon
production in nucleon collisions in chapter 4. In chapter 5, threshold resummation is
presented in the context of the MSSM, with the aim of improving theoretical predictions
of the ongoing search for SUSY particles at the LHC. We conclude this thesis with an
outlook on future research directions in chapter 6.



CHAPTER 2. THEORY

Chapter 2

Theory

Before diving into particle physics and the SM, it’s important to first clarify what a
particle is. In high-energy physics, a particle is a fundamental or composite object that
exhibits wave-particle duality and can be described by quantum field theory (QFT).
Particles are generally categorized based on their properties like mass, charge, spin,
and interactions. Fundamental particles are not known to be made of any smaller con-
stituents. Examples include quarks, leptons (like electrons and neutrinos), and gauge
bosons (like photons, W and Z bosons, and gluons). These particles are the basic build-
ing blocks of matter and force carriers, respectively. Composite particles are made of
two or more fundamental particles bound together. Examples include protons, neutrons
and mesons which are made of quarks.

A more mathematical definition of a particle is that it transforms under the irre-
ducible unitarity representation of the Poincaré group, which is the symmetry group of
Minkowski spacetime that combines translations, rotations, and boosts while preserv-
ing spacetime intervals. It is defined by its generators, the energy-momentum operator
Pµ, which generates translations, and the angular momentum operator Mµν , which
generates Lorentz transformations

[Pµ, Pν ] = 0 , (2.0.1)
[Mµν , Pν ] = i(gνρPµ − gµρPν) , (2.0.2)

[Mµν ,Mρσ] = −i(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ) . (2.0.3)

Particles possess properties like mass and spin, and under Poincaré transformations, only
their momenta and spin projections change. The representations in which these states
transform are crucial for describing particle behaviour. Unitary representations ensure
the preservation of probabilities in quantum mechanics, a requirement for computing
Poincaré-invariant quantities, such as matrix elements. However, not all representations
of the Poincaré group are unitary. Only specific infinite-dimensional ones are relevant
for physical theories. These unitary irreducible representations are labelled by mass and
spin and form the foundation for describing particles. Embedding these representations
into space-time objects like scalar, vector, spinor and tensor fields, one can construct
Lagrangians that describe the interactions of particles. [10]

The usual components of the Lagrangian include fields representing particles or medi-
ators of forces, their derivatives and constants which parametrize masses and couplings.
As in classical mechanics the action S =

∫
d4xL is extremized to obtain the equations

3
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of motion, the fields are quantized by promoting them to operators and the Lagrangian
is used to derive the Feynman rules for the interactions between the fields. The full
Lagrangian is separated into free and interaction parts, L = L0 + Lint. For the free
part, the probability of a particle transitioning between two points is represented by
the Green’s function DF (x − y), which, in momentum space, is given by its Fourier
transform DF (p). For a scalar field φ(x) this is the Klein-Gordan equation [11, 12]

L0 = 1
2∂µφ∂

µφ− 1
2m

2φ2 =⇒
(
∂µ∂

µ +m2)φ = 0 =⇒ Dφ(p) = i
p2 −m2 + iε ,

(2.0.4)

and for spinors ψ(x) the Dirac equation [13]

L0 = ψ̄ (iγµ∂µ −m)ψ =⇒ (iγµ∂µ −m)ψ = 0 =⇒ Dψ(p) = i
γµpµ −m+ iε ,

(2.0.5)

where the Feynman prescription iε is used to ensure the poles of the propagator do not
violate causality.

2.1 Standard Model
The SM of particle physics is given by the quantum field theory based on the gauge
group SU(3)C×SU(2)L×U(1)Y . The full Lagrangian density is given by

LSM = Lgauge + Lfermion + LHiggs + LYukawa , (2.1.1)

Lgauge = −1
4G

a
µνG

a,µν − 1
4W

a
µνW

µν,a − 1
4BµνB

µν , (2.1.2)

Lfermion =
∑

generations,
Ψ∈(QL,UR,DR,LL,ER)

Ψ̄i /DΨ , (2.1.3)

where /D is the Feynman slash notation for the covariant derivative Dµ contracted with
a gamma matrix γµ (cf. Sec. A.3.2). QL, UR, DR, LL and ER represent left-handed
doublet and right-handed singlet quarks and leptons, respectively. The strong SU(3)C ,
weak SU(2)L and hypercharge U(1)Y gauge fields are denoted by Gaµν , W a

µν and Bµν ,
respectively. Tab. 2.1 shows the different multiplets in the SM with their gauge group.

In the following sections, we will describe the different components of the SM La-
grangian.

2.1.1 Quantum electrodynamics
The quantum electrodynamics (QED) Lagrangian describes the interaction between
electrically charged particles and the photon. As a fundamental part of the SM, it
is written as

LQED = −1
4FµνF

µν + ψ̄(iγµDµ −m)ψ . (2.1.4)

The first term represents the dynamics of the electromagnetic field, with Fµν = ∂µAν −
∂νAµ being the electromagnetic field strength tensor. The second term consists of
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Multiplet Name S = 0 S = 1
2 S = 1 SM group

fermion quarks QL - (uL, dL) - (3, 2, 1
6 )

(3 generations) UR - u†
R - (3̄, 1, − 2

3 )

DR - d†
R - (3̄, 1, 1

3 )

leptons LL - (ν, eL) - (1, 2, − 1
2 )

(3 generations) ER - e†
R - (1, 1, 1)

higgs Φ (φ+, φ0) - - (1, 2, + 1
2 )

gauge gluon Gµν - - g (8, 1, 0)

W boson Wµν - - (W±, W 0) (1, 3, 0)

B boson Bµν - - B0 (1, 1, 0)

Table 2.1: Multiplets in the SM, where S denotes the spin. The transformation proper-
ties under the SM gauge group SU(3)C×SU(2)L×U(1)Y are presented in the last column.

f

f

γ γ

Figure 2.1: Feynman diagram of the photon propagator with a fermion loop.

the Dirac spinor field ψ representing the electron (or any charged fermion) and its
adjoint ψ̄ and the mass term m. The covariant derivative Dµ = ∂µ + ieAµ ensures
that the Lagrangian is invariant under local U(1) gauge transformations and includes
the electromagnetic interaction through the electromagnetic four-potential Aµ, and the
gamma matrices γµ. Expanding Dµ results in the interaction term between a photon
and an electron Linter = eψ̄γµAµψ. Here e is still the bare electromagnetic coupling
constant. In Sec. 3.1.3, we will see that an ultraviolet (UV) pole is absorbed into a
redefinition of the coupling constant, giving the finite coupling eR. As a consequence, it
becomes dependent on a renormalization scale µR with α = α(µR) = e2

R/(4π) and the
renormalization group equation (RGE)

deR
d logµR

= β(α) = 4π
eR

dα
d logµ2

R

= e3
R

12π2 + O(e5
R) , (2.1.5)

linked to the one loop correction to the photon propagator as in Fig. 2.1. This gives us
the well known one loop running of the electromagnetic coupling constant

α(µ2) = α(µ2
0)

1 − α(µ2
0)

3π log
(
µ2

µ2
0

) = α(µ2
0)

1 + βEM
0
4π α(µ2

0) log
(
µ2

µ2
0

) , (2.1.6)

where βEM
0 = − 4

3
∑
f Q

2
f = − 4

3 for a single fermion generation and a reference scale
µ0. In Fig. 2.2, the measurement of the running electromagnetic coupling constant α



2.1. STANDARD MODEL 6

Figure 2.2: Measurement of the running of the electromagnetic coupling [14].

is depicted, illustrating only a minor dependence on the scale µ = Q within the range
accessible to colliders. State-of-the-art SM calculations of the coupling include hadronic
and weak effects [15].

2.1.2 Electroweak Sector
The electroweak (EW) sector of the Standard Model is responsible for the unification
of the electromagnetic and weak nuclear forces. The EW Lagrangian is given by

LEW = −1
4W

a
µνW

µν,a − 1
4BµνB

µν , (2.1.7)

where W a
µν and Bµν are the field strength tensors for the weak isospin and weak hyper-

charge gauge fields, respectively. The electroweak unification is a fundamental aspect
of the Standard Model of particle physics, which merges the electromagnetic force and
the weak nuclear force into a single theoretical framework. At high energy levels, such
as those produced in particle accelerators, the electromagnetic and weak forces become
indistinguishable, and the electroweak theory describes this unified interaction. This
is expressed through the mixing of the hypercharge gauge boson |B0〉 and the neutral
component of the weak isospin gauge boson |W 0〉, resulting in the physical photon |γ〉
and the Z boson |Z0〉 states. The relationships between these states are given by

|γ〉 = + cos θW |B0〉 + sin θW |W 0〉 , (2.1.8)
|Z0〉 = − sin θW |B0〉 + cos θW |W 0〉 , (2.1.9)

where θW is the Weinberg angle. This angle is crucial in the electroweak theory, as it
is the only free parameter that determines the mixing of the gauge bosons, and it is
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related to the masses of the W and Z bosons through the relation cos θW = MW

MZ
=

(0.876 76 ± 0.000 02) [15]. The uncertainty is dominated by the uncertainty in the mass
of the W boson, which is more difficult to determine experimentally and topic of current
research [16, 17]. Similarly, the electric charge e is related to the Weinberg angle through
the relation e = g sin θW , where g is the weak isospin coupling constant.

2.1.3 Higgs sector and Yukawa interactions
While the QED Lagrangian (2.1.4) includes a mass term, the fermion sector of the SM
in Eq. (2.1.3) does not. The Higgs sector of the SM is responsible for the generation
of masses for the electroweak gauge bosons and fermions. It is described by the Higgs
Lagrangian

LHiggs = (DµΦ)† (DµΦ) − V (Φ) , (2.1.10)
where Φ = (φ+, φ0) is the Higgs field doublet and V (Φ) is the Higgs potential, given by

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (2.1.11)

The interaction between the Higgs field and the fermions is given by the Yukawa La-
grangian

LYukawa = −
∑
i,j

(
ydij q̄iLΦdjR + yuij q̄iLΦ̃ujR + yeij

¯̀
iLΦejR + H.c.

)
, (2.1.12)

where ydij , yuij , and yeij are the Yukawa coupling matrices for down-type quarks, up-type
quarks, and charged leptons, respectively, and Φ̃ = iσ2Φ∗.

2.1.4 Quantum chromodynamics
QCD differs from QED due to the non-Abelian nature of its gauge group SU(3) and the
presence of gluons, which carry colour charge, making it a Yang-Mills theory [18]. The
Lagrangian density for QCD is defined as [19]

LQCD =

− 1
4G

a
µνG

a,µν +
∑
f

ψ̄f (iγµDµ −mf )ψf + 1
2ζ (∂µAµ)2 + ∂µc̄a(∂µc+ gSf

abcAµc cb) ,

(2.1.13)
where A, ψ, and c represent the gluon, quark, and Faddeev-Popov ghost fields re-
spectively. The covariant derivative is given by Dµ = ∂µ − igSAaµT a and Gaµν =
∂µA

a
µ−∂µA

a
µ+gSf

abcAbµA
c
ν is the field strength tensor, fabc are the structure constants

of the SU(3) group, and T a are the generators of the SU(3) group in the fundamental
representation. The ζ term is a gauge-fixing parameter, which eliminates redundant
degrees of freedom. Incorporating the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
[20] through ghosts ensures that the quantized theory remains gauge invariant. Fig. 2.3
shows the self-energy of the gluon, where the non-Abelian nature shows in the self
coupling of the gluon. The added combinatorial complication of additional Feynman
diagrams involving ghosts, especially for processes involving many gluons, can however
be avoided by directly requiring external gluons to be only have their physical degrees
of freedom through a modified polarization sum, which we will be using through this
thesis.
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= + + +

Figure 2.3: Feynman diagrams of the self-energy of the gluon.

After introducing the QCD Lagrangian, we delve into one of the most profound
properties of QCD: asymptotic freedom. This property, discovered in 1973 [21, 22], was
rewarded with the Nobel Prize in Physics in 2004. Asymptotic freedom is a phenomenon
where the strength of the strong interaction between quarks and gluons decreases as they
come closer together or, equivalently, at higher energy scales.

The key to understanding asymptotic freedom lies in the behaviour of the running
coupling constant αS(µ) = g2

S(µ)/(4π) as a function of the energy scale µ. The change
of αS with µ is governed by the RGE

µ
dαS(µ)

dµ = dαS(µ)
d log(µ) = β(αS) , (2.1.14)

where β(αS) is the QCD beta function. At one-loop level, the beta function for QCD is
[23]

µ2 ∂

∂µ2
αS
4π = β(αS) = −

(αS
4π

)2 ∑
n=0

(αS
4π

)n
βn ≈ − β0

16π2α
2
S , (2.1.15)

with

β0 = 11 − 2
3nf , (2.1.16)

β1 = 102 − 38
3 nf , (2.1.17)

β2 = 2857
2 − 5033

18 nf − 325
54 n

2
f , (2.1.18)

. . .

where nf is the number of active quark flavours and where the usual constants CA =
NC = 3, CF = 4/3 and TR = TF = 1/2 have already been substituted. By now, the
beta terms are known up to five loops [24, 25]. The negative sign of the beta function
coefficient β0 is crucial. For nf ≤ 16 (the physical case has nf = 6 for up, down, strange,
charm, bottom, and top quarks), β0 is positive, making the beta function negative. This
implies that αS decreases as µ increases. More explicitly, integrating the RGE, we get
the strong coupling

αS(µ2) ≈ 4π
β0 log

(
µ2/Λ2

QCD

) µ→∞→ 0 , (2.1.19)

where ΛQCD is the QCD scale parameter, typically around a few hundred MeV. The
essence of asymptotic freedom can be seen in the limit of very high energies, where quarks
and gluons interact less, allowing perturbative techniques to be applied effectively. In
Fig. 2.4 some experimental measurements of αS are shown, confirming the asymptotic
freedom of QCD across several scales, processes and experiments.
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)
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Figure 2.4: αS(M2
Z) measurements taken from the Particle Data Group (PDG) [26].

2.2 Collider physics
First we will go through the basic concepts of collider physics roughly following the
stages of a collision. We will introduce the basic terminology, the kinematics of the
processes we are interested in and the concept of factorization.

2.2.1 Factorization theorem
The factorization theorem is a fundamental concept in QCD that facilitates the sepa-
ration of short-distance (hard, perturbative) and long-distance (soft, non-perturbative)
effects in high-energy processes involving hadrons. This separation simplifies the com-
plex interactions in QCD by breaking them down into more manageable parts, making
it possible to apply perturbative techniques to certain aspects of the computation while
relying on empirical data for others.

The proof of the factorization theorem is only well-established for processes such as
the deep inelastic scattering (DIS) and Drell-Yan (DY) process. These proofs demon-
strate that the cross section of these processes can be factorized into a convolution of
parton distribution functions (PDFs) and a hard scattering cross section, which is cal-
culable using perturbative quantum-chromodynamics (pQCD) [27]. This separation is
crucial as it allows the complex, non-perturbative dynamics inside the hadron to be
encapsulated in the PDFs. Factorization is central to most calculations in pQCD and
can be understood intuitively. Assume a virtual photon probes the hadron with a scale
Q2 = −q2 = (k − k′)2 � ΛQCD, with k the incoming electron’s four momentum and
k′ outgoing. The interaction between the virtual photon γ∗ and the parton inside the
hadron is characterized by a timescale τhard ∼ 1/Q. Conversely, the dynamics inside
the hadron, described by the PDF, are characterized by a timescale τsoft ∼ 1/ΛQCD,
where partons are confined and hadronise to form baryons or mesons [28]. Thus, the
significant difference in timescales τsoft � τhard allows us to treat the two events as
occurring independently, with the larger timescale QCD dynamics inside the hadron are
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not influencing the interaction.
This intuitive picture of the DIS process can be extended to hadron-hadron collisions.

Because of the asymptotic freedom of QCD and the high energy scale of the process,
the partons inside the hadrons can be treated as approximately free particles moving
collinear to the hadron. As the QCD coupling decreases at higher energy scales, a
parton has approximate momenta xP , where x ∈ (0, 1) and P is the hadron momentum.
Consequently, when two hadrons collide, at first order the partons behave as if scattering
off each other. The total cross section is then the convolution of the partonic cross section
with the PDFs that describe the parton distribution inside the hadrons. The hadronic
cross section is defined as

σh(PA, PB)cd =
∑
a,b

∫ 1

0

∫ 1

0
dxa dxb fa/A(xa, µF )fb/B(xb, µF )σab→cd(xaPA, xbPB) ,

(2.2.1)
where µF connects the long and short range physics up to subleading terms of the hard
scale O(mA,B/Q) ≈ O(ΛQCD/Q), i.e. decreasing with collision energy [10, 29].

In the following section, we will focus on PDFs.

2.2.2 Parton distribution functions
PDFs are fundamental tools in high-energy physics, particularly in QCD, which describe
the probability of finding a specific parton (e.g. quark or gluon) carrying a certain frac-
tion of the proton’s momentum at a given resolution scale Q2. However, this interpre-
tation as a probability density strictly holds only at LO in the QCD-improved parton
model, as PDFs can become negative at higher-orders. These functions are essential for
making predictions in high-energy hadron collisions, such as those occurring in particle
colliders like the LHC. Throughout this thesis we will use fp/H(x, µ2) to denote the PDF
of parton p with momentum fraction x at scale µ2 inside a hadron H. As of now, the
PDFs can not be obtained reliably from a priori calculations, but they can be evolved
from one scale to another once they are obtained at a single scale [30]. The universality
of PDFs arises from the fact that the parton distribution functions are independent of
the specific hard scattering process as already shown in Eq. (2.2.1). This means that
once the PDFs are determined by experiments, such as DIS, the same PDFs should apply
to a wide variety of other high-energy processes, including proton-proton (pp) collisions,
like the DY processes, and more.

We want to derive them now in a more slightly rigorous way. In NLO QCD cal-
culations, we encounter soft, collinear, and soft-collinear divergences. According to
the Kinoshita-Lee-Nauenberg (KLN) theorem [31], soft and collinear divergences are
cancelled when summing over all initial and final degenerate (experimentally indistin-
guishable) states. The rationale is that we cannot distinguish between a single particle
and a narrow jet of collinear particles, nor can we detect soft gluons with energy below
the detector’s resolution. This requires adding the contributions from soft and collinear
real emissions to the corresponding virtual corrections. Looking at an incoming parton
with momentum p as in Fig. 2.5, we can write in the collinear limit for the real emission
from a quark [32, 33]

dσR (p) = αS
2π

∫ dk2
T

k2
T

dzP̄qq(z) dσB (zp) (2.2.2)
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MH(zp)
pzp

p(1 − z)

g

MH(p)

g

p

Figure 2.5: The diagram on the left illustrates a schematic Feynman diagram for real
collinear emission, while the diagram on the right shows a virtual correction involving a
collinear emitted virtual gluon. In both cases, after the real emission or virtual correc-
tion, the quark participates in a hard scattering process, represented by MH . Within
the hard scattering, the virtual gluon interacts with another coloured particle.

and for the virtual contribution

dσV (p) = −αS
2π

∫ dk2
T

k2
T

dzP̄qq(z) dσB (p) . (2.2.3)

The variables appearing are the transverse momentum kT of the gluon with respect to
the emitter, the fraction z of the emitter’s momentum carried by the gluon, and the
Altarelli-Parisi (AP) splitting function P̄ij with i, j ∈ {q, g}.

In Eq. (2.2.2) and Eq. (2.2.3) soft divergences appear in the splitting functions as
z → 1 and collinear divergences for kT → 0. Adding the real and virtual contributions,
the soft divergences cancel, but collinear divergences remain. It can be compressed using
the plus prescription (cf. Sec. A.4.3)

dσR (p) + dσV (p) = αS
2π

∫ dk2
T

k2
T

dz[P̄qq]+(z) dσB (zp) = αS
2π

∫ dk2
T

k2
T

dzPqq(z) dσB (zp) ,

(2.2.4)
with the AP splitting functions Pij at LO [34]

Pqq(z) = CF

(
1 + z2

[1 − z]+
+ 3

2δ(1 − z)
)
, (2.2.5)

Pqg(z) = CF
1 + (1 − z)2

z
, (2.2.6)

Pgq(z) = TR
(
z2 + (1 − z)2) , (2.2.7)

Pgg(z) = 2CA
(

z

[1 − z]+
+ 1 − z

z
+ z(1 − z)

)
+ δ(1 − z)β0 . (2.2.8)

For NLO splitting functions see [35, 36] and next-to-next-to-leading-order (NNLO) see
[37, 38].

In order to separate long and short distance effects the factorization scale µF is
introduced as

dσR (p) + dσV (p) = αS
2π

∫ µ2
F

µ2
0

dk2
T

k2
T

∫ 1

0
dzPqq(z) dσB (zp)

+ αS
2π

∫ k2
T,max

µ2
F

dk2
T

k2
T

∫ 1

0
dzPqq(z) dσB (zp) ,

(2.2.9)
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where the first term contains the collinear divergence µ0 → 0 and the process dependent
kT,max is explicit. Then we can define a parton-in-parton distribution function loosely
describing the probability density of finding a quark of momentum zp in a quark of
momentum p as

φqq(z, µ2
F ) = δ(1 − z) + αS

2π

∫ µ2
F

µ2
0

dk2
T

k2
T

Pqq(z) (2.2.10)

for a given resolution scale µF . The same probability applies after picking a quark q
from a hadron H

fq/H(x, µ2
F ) =

∫
dxdzφqq(z, µ2

F )fq/H(y, µ2
F )δ(x− yz)

=
∫ 1

x

dz
z
φqq(z, µ2

F )fq/H(x
z
, µ2
F ) .

(2.2.11)

While this redefinition technically absorbs the collinear divergence, the actual divergence
cancels against the hard process. Hence, it is recommended to use the same order
and scheme in the PDF and the hard process to avoid contributions from mismatched
cancellations. This is the origin of the universal and process independent collinear
counterterms needed in NLO calculations involving hadron initial-states. The hadronic
cross section now reads

dσ(h)(P ) =
∑
q

∫ 1

0
dxfq/H(x, µ2

F )dσq(xP, µ2
F ) , (2.2.12)

where partonic cross section σ(h)
q (xP ) only includes short distance effects. Higher-order

PDF computations will not introduce a cutoff on the integration over kT but rather use
more convenient dimensional regularization, which will be discussed later in Sec. 3.1.2.
Another simplification in the above procedure lies in the assumption of on-shell (OS)
partons, however they can be off-shell up to µ2

F [39].
The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations are a set of

integro-differential equations that describe the scale dependence and evolution of PDFs
with respect to Q2 [34, 36, 40, 41]. They are obtained from taking the derivative on
Eq. (2.2.11)

µ2
F

d
dµ2

F

fi(x, µ2
F ) =

∑
j

αS
2π

∫ 1

x

dz
z
Pij(z)fj

(
z, µ2

F

)
, (2.2.13)

where i and j run over all partons up to flavour nf , i.e. q, q̄, g. Similarly, these evolution
equations can be obtained from requiring the invariance of cross section σ on the fac-
torization scale µF in Eq. (2.2.12) (cf. Sec. 5.2). As a consequence of the factorization
theorem this even generalizes to higher-orders [27]

Pij =
∞∑
n=1

(αS
2π

)n
P

(n)
ij , (2.2.14)

d
d logµ2

F

fi(x, µ2
F ) =

∑
j

[Pij ⊗ fj ] (x, µ2
F ) . (2.2.15)

The measurements of PDFs are obtained from a global fit to experimental data,
which cover a wide range of kinematic variables, such as the Bjorken x and the squared
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Figure 2.6: Kinematic coverage datasets in x and Q2 labelled by different processes that
are used in the NNPDF4.0 [42] global PDF fits [43]. The y-axis is offset to enhance the
visual comparison of the distributions.

momentum transfer µ2
F = Q2. They cover a wide range of processes such as DIS, DY

processes, and hadron collider data as show in Fig. 2.6.
In Fig. 2.7 the evolution of up, down, gluon, and charm quark PDFs as a function

of x and Q2 is shown. At low scales we see a peak in up and down quarks at x ≈ 1/3
with the up peak height being approximately double the down peak height. This is
due to the valence quark content of the proton and typical proton composition of two
up quarks and one down quark. While gluons and sea quarks (here strange) are less
prominent at low scales, they become more important at higher scales. The rise in low
values of x also smears out the peak in the valence quarks. All PDFs converge to zero
at x → 1. At very small x, the gluon density is expected to become very large until it
reaches saturation, at which point the assumptions underlying factorization may break
down. This will be discussed more in Sec. 2.3.

The uncertainties of the PDF have a significant impact on precision predictions, es-
pecially towards the tails of the distribution in x, where the PDFs are less constrained
by the data. The resulting uncertainties are typically defined as described in the refer-
ence [46]. These uncertainties can be computed by performing calculations for a set of
PDFs that represent the uncertainty in the fit, and then recombining the results using
the built-in methods of LHAPDF [45]. There are two common types of PDF uncertainties,
those derived from Hessian eigenvectors and those based on MC replicas.

For uncertainties based on eigenvectors, experimental uncertainties are parametrized
by orthogonal Hessian eigenvector sets of PDFs. The uncertainty in the cross section,
∆σPDF±, is calculated using

∆σPDF± =

√√√√ n∑
i=1

[max(±σ+i ∓ σ0,±σ−i ∓ σ0, 0)]2 , (2.2.16)

where σ0 is the central value and σ±i are related to directional eigenvectors to allow for
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Figure 2.7: MSHT20nlo_as118 [44] PDFs through LHAPDF 6 [45] of the up quark, down
quark, strange quark and gluon as a function of x and Q2. Note that the gluon for the
gluon a division by 20 is applied to enhance the visual comparison.

asymmetric uncertainties. This method is typically employed in parametrized fits, such
as those found in PDF sets like CT18 [47], MSHT20 [44], and others.

For uncertainties based on replicas, MC PDF sets come with multiple replicas, which
are combined to give a statistical symmetric uncertainty. The uncertainty in the cross
section, ∆σPDF±, is computed as

∆σPDF± =

√√√√ 1
n− 1

n∑
i=1

[σi − 〈σ〉]2 , (2.2.17)

where the central value 〈σ〉 is the mean, defined as 〈σ〉 = 1
n

∑n
i=1 σi ≈ σ0. This method

is commonly used in neural networks, for example in NNPDF4.0 [42].

2.2.3 Hard scattering
In high-energy physics, the study of hard scattering processes is fundamental for un-
derstanding the interactions at the level of quarks and gluons. These processes involve
collisions where the momentum transfer is sufficiently high, typically characterized by
large negative values of the square of the four-momentum transfer, −q2 = Q2. When Q2

is large enough, pQCD becomes applicable, allowing for a systematic expansion in the
strong coupling constant αS , which is small at high energies due to asymptotic freedom
[21, 22, 48] (cf. Sec. 2.1.4). The partonic cross section is calculable within pQCD and is
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typically computed to a certain order in αS , often at NLO or NNLO. These calculations
are essential for making precise predictions that can be compared with experimental
results [49].

The partonic cross section, σab→cX quantifies the probability that two partons a
and b will scatter and produce an outgoing parton c, along with other possible particles
represented by X. To describe these processes, it is essential to introduce the Mandel-
stam variables, which are a set of kinematic variables that simplify the expression of
the scattering amplitude in terms of the four-momenta of the involved particles. The
Mandelstam variables s, t, and u are defined as:

• s = (pa + pb)2 represents the square of the centre-of-mass energy of the incoming
partons a and b.

• t = (pa − pc)2 represents the square of the four-momentum transfer between the
initial parton a and the final parton c.

• u = (pb − pc)2 represents the square of the four-momentum transfer between the
initial parton b and the final parton c.

These variables satisfy the relation s + t + u =
∑
im

2
i , where the sum is over the

squared masses of all particles involved in the scattering process (including m2
X). In

many cases, especially in high-energy collisions where the masses of the particles are
negligible compared to their momenta, this simplifies to s+ t+u = 0 [50]. For processes
involving more than two particles in the final-state, additional Mandelstam variables
can be defined to describe the kinematics of the scattering process. These variables are
usually sij = (pi + pj)2 and tij = (pi − pj)2 for each pair of particles i and j in the
final-state.

The S-matrix, or scattering matrix, is a central object in QFT that encodes the
transition probabilities between different quantum states due to a scattering process.
It relates the initial-state to the final-state and is used to calculate observables such as
cross sections and decay rates. The elements of the S-matrix, often called transition am-
plitudes, are computed using perturbation theory and provide the probability amplitude
for a particular scattering process to occur [51].

Matrix elements (MEs) play a crucial role in calculating the transition probabilities
between different quantum states in scattering processes. In perturbative QCD, these
matrix elements correspond to the Feynman diagrams that describe the interactions of
quarks and gluons. The importance of matrix elements lies in their ability to capture the
dynamics of the interaction, including quantum mechanical interference effects between
different diagrams. The square of the matrix element gives the transition probability,
which is then used to compute the cross section.

The cross section σ can generally be calculated from the invariant matrix element
M through an integration over the phase space of the n particles in the final-state [52]

dσ = 1
F

〈|M|2〉dΦn . (2.2.18)

Here, F = 4
√

(papb)2 − (mamb)2 s�m2
a,m

2
b−−−−−−→ 2s is the flux factor in the centre-of-mass

frame. For a general n-particle final-state, the phase space element is given by

dΦn =
n+2∏
i=3

(
d4 pi
(2π)4 (2π)δ(p2

i −m2
i )θ(p0

i )
)

· (2π)4δ(4)

(
p1 + p2 −

n+2∑
i=3

pi

)
, (2.2.19)
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where we integrate over every final-state particle four momentum and require them to
be on-shell with a positive energy. The final delta function enforces energy-momentum
conservation. This expression involves a 4n integrations, reduced by the 4 + n delta
functions, resulting in 3n − 4 independent Mandelstam variables to describe a 2 →
n process. As the phase space increases in dimension with the number of final-state
particles, the matrix element also has to change its dimensionality for the resulting
cross section to be physical.

In high-energy particle physics experiments, hard scattering events are typically iden-
tified by the production of high-energy jets. These jets are narrow cones of hadrons and
other particles that result from the fragmentation and hadronisation of outgoing quarks
and gluons. The identification and analysis of jets are crucial for understanding the
underlying parton-level interactions that occurred in the collision.

Jets serve as key signatures in particle detectors, allowing to reconstruct the hard
scattering process. By studying the distribution and properties of jets, one can test
predictions of the Standard Model, such as the running of the strong coupling constant,
and search for signs of new physics beyond the Standard Model, such as supersymmetry
or extra dimensions [53].

2.2.4 Heavy resonances decay
The PDG defines resonances as poles of the S-matrix, whether in scattering, production,
or decay matrix elements [15, 54]. Such resonances are characterized by a peak in the
cross section, which is a result of going OS, i.e. the momentum in the denominator of
the propagator cancels against the mass. They can be viewed as a two-step process
A + B → R → C1 + · · · + Cn, where the resonance is produced and then decays into
particles. The lifetime of the resonance R is connected to its width ΓR through the
uncertainty principle, expressed as ∆E∆t ∼ ~. As a result, resonances with a broad
width correspond to a short lifetime, and vice versa. We will sketch the concept of
resonances in the context of the most prominent example the Z0. Considering the
propagator with mass mZ and width ΓZ

−i(gµν − qµqν

m2
Z

)
q2 −m2

Z + imZΓZ
, (2.2.20)

the squared matrix element for the decay like e+e− → Z0 → ff̄ is

|M|2 ∼ 1
(q2 −m2

Z)2 +m2
ZΓ2

Z

. (2.2.21)

The added width in the denominator prohibits the propagators from going to infinity
and the cross section can be expressed as a Breit-Wigner (BW) distribution

σ ∼ 1
(s−m2

Z)2 +m2
ZΓ2

Z

. (2.2.22)

As a result of the decay width being additive

ΓZ =
∑

f∈(u,c,d,s,b,e,µ,τ,νe,νµ,ντ )

ΓZ→ff̄ , (2.2.23)

the number of light neutrino families can be determined to be 3 from the Z0 BW like
distribution as shown in Fig. 2.8. The branching ratio of a process is determined by its
contribution to the total width, expressed as Brf = ΓZ→ff̄/ΓZ .
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Figure 2.8: Determination of the number of neutrino families from the Z0 decay width
[55].

2.2.5 Parton shower

Parton showers are essential in high-energy physics simulations, modelling the evolution
of quarks and gluons into hadrons. This process captures the infrared (IR) and collinear
divergences inherent in QCD. The parton shower’s dynamics are described by the AP
splitting kernels, which govern the probability of a parton splitting into two or more
partons. The AP splitting probability in the soft (kT → 0) and collinear (θ → 0 or π)
approximations can be expressed as

dPFSR
a→bc (z,Q2) = αS(Q2)

2π
dQ2

Q2 Pa→bc(z) dz , (2.2.24)

dPISR
a→bc(z,Q2) = dQ2

Q2
αs(Q2)

2π

∫ dx
x

fa/A( zx , Q)
fi/A (x,Q)Pa→bc(x) , (2.2.25)

where αS is the strong coupling constant, Q2 is the virtuality of the splitting, and
Pa→bc(z) is the splitting function dependent on the momentum fraction z carried by
one of the daughter partons [56]. Where the initial-state radiation (ISR) includes a
reweighting factor to account for the PDFs of the incoming partons in accordance to
the DGLAP Eq. (2.2.13) [57]. For simplicity, we will focus on the final-state radiation
(FSR) in the following.

From an emission probability Pem we can compute the probability Pno that there is
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no emission between times 0 and T as

Pno(0 ≤ t < T ) = lim
n→∞

n−1∏
i=0

Pno(Ti ≤ t < Ti+1)

= lim
n→∞

n−1∏
i=0

(1 − Pem(Ti ≤ t < Ti+1))

= exp
(

− lim
n→∞

n−1∑
i=0

Pem(Ti ≤ t < Ti+1)
)

= exp
(

−
∫ T

0

Pem(t)
dt dt

)
.

(2.2.26)

Inverting this relation we can compute the probability of the first emission at time T as

Pfirst(T ) = 1 − Pno(T ) =⇒ dPfirst(T ) = dPem(T ) exp
(

−
∫ T

0

Pem(t)
dt dt

)
. (2.2.27)

However, in momentum space the time variable t is replaced by t ∼ 1/Q according to the
Heisenberg uncertainty principle. More rigorously, the no emission probability between
scales q2 and Q2, called Sudakov factor ∆(Q2, q2) is given by

∆(Q2, q2 + ∆q2) = ∆(Q2, q2) + ∆(Q2, q2 + ∆q2)∆Pem(q2) , (2.2.28)

where the left-hand side no emission probability down to q2 + ∆q2 is the sum of the
probabilities that no emission happens between earlier q2 + ∆q2 down to later q2 and
that there is an emission at q2. For small ∆q2 this becomes an ordinary differential
equation (ODE)

d∆(Q2, q2)
dq2 = ∆(Q2, q2) αs(q2)

2π
1
q2

∫
dz P (z) , (2.2.29)

solved by

∆(Q2, q2) = exp
(

−
∫ Q2

q2

dq̂2

q̂2

∫
dzαs(q̂2)

2π P (z)
)
. (2.2.30)

Its boundary conditions
∆(Q2, Q2) = 1 (2.2.31)

correspond to the case of no emission since no phase space is available and

∆(Q2, 0) = 0 (2.2.32)

due to the logarithmic divergence at q̂2 = 0, which can be understood as guaranteed radi-
ation after long enough times, a correspondence to colour confinement as αS(ΛQCD) & 1.
Therefore, the parton shower can not continue below ΛQCD. One crucial property of the
parton shower is that it does not alter the normalization of a process, i.e. it is unitary.
This can be seen from looking at a large sample and summing the probabilities of no
radiation, one radiation, two radiations, etc.
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∆(Q2,Λ2
QCD) +

∫ Q2

Λ2
QCD

dq2
1

d∆(Q2, q2
1)

dq2
1

∆(q2
1 ,Λ2

QCD)

+
∫ Q2

Λ2
QCD

dq2
1

∫ q2
1

Λ2
QCD

dq2
2

d∆(Q2, q2
1)

dq2
1

d∆(Q2, q2
2)

dq2
2

∆(q2
2 ,Λ2

QCD) + ... (2.2.33)

=
∞∑
i=0

i−1∏
j=0

∫ q2
j

ΛQCD

dq2
j+1

d∆(q2
j , q

2
j+1)

dq2
j+1

∆(q2
i ,Λ2

QCD) (2.2.34)

=∆(Q2,Λ2
QCD)

∞∑
i=0

i−1∏
j=0

∫ q2
j

ΛQCD

dq2
j+1

dPem(q2
j+1)

dq2
j+1

(2.2.35)

=∆(Q2,Λ2
QCD)

∞∑
i=0

1
i!

(∫ Q2

ΛQCD

dq2 dPem(q2)
dq2

)i
(2.2.36)

=∆(Q2,Λ2
QCD) exp

(∫ Q2

ΛQCD

dq2 dPem(q2)
dq2

)
(2.2.37)

=1 . (2.2.38)

This unitarity also shows that the Sudakov factor approximately resums virtual correc-
tions to cancel real corrections [58–61]. The unitarity can also be understood as PSs
not altering the normalization of a process. For instance, approximating a two-jet cross
section by a 2 → 2 tree-level cross section will yield the same total dijet cross section as
the 2 → 2 plus parton shower result. Each generated radiation effectively multiplies the
cross section by the radiation probability. In a sufficiently large sample, cases with no
radiation, one radiation, or multiple radiations will occur, but the inclusive cross section
remains unchanged, demonstrating the unitarity of the parton shower. However, dif-
ferential cross sections can benefit significantly from parton shower corrections, adding
realistic jet shapes and distributions.

Different evolution variables, such as transverse momentum, angle, or virtuality, can
be used in parton showers. The choice of evolution variable impacts the shower algo-
rithm and the resulting simulated events. Angular ordering ensures that each successive
emission occurs at a smaller angle relative to the previous one. This method maintains
colour coherence and accurately reproduces the angular distribution of emissions, with
the ordering variable given by

Q2 = E2
aθ

2
a→bc . (2.2.39)

On the other hand, transverse-momentum ordering prioritizes emissions based on the
transverse momentum kT relative to the parent parton, effective for resumming large
logarithms and accurately accounting for emissions with large transverse momenta

Q2 = k2
T . (2.2.40)

Each method has advantages: angular ordering naturally incorporates colour coher-
ence, while kT ordering is adept at handling wide-angle emissions and large logarithms.
Fig. 2.9 illustrates the differences between the two approaches in a Lund diagram, show-
ing the regions of phase space where emissions are most likely to occur. As shown in
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(i) Lund diagram regions.

(ii) Angular-ordered shower. (iii) Transverse-momentum-ordered shower.

Figure 2.9: Lund diagrams for parton showers.

Fig. 2.9i it spans the axis between kT and η. The hard process is located at the axis
intersection and the non-perturbative regime begins at the bottom kT ∼ ΛQCD. The
parton shower connects them through the soft and collinear regime in between. Rep-
resented as ordered slices where the emission occur, Fig. 2.9ii shows the angular order
and Fig. 2.9iii the transverse momentum ordering.

Defining a shower as S

S(Q2) = ∆(Q2,Λ2
QCD) +

∫ Q2

Λ2
QCD

dq2 dz∆(Q2, q2)αs(q2)
2πq2 P (z)S(z2q2)S((1 − z)2q2) ,

(2.2.41)
where the first term corresponds to no emission, the second to splitting in two recursive
showers of z and 1 − z fractions of the parent parton. The standard vetoed shower
expression is

S(Q2) =∆(Q2,Λ2
QCD)

+
∫ Q2

Λ2
QCD

dq2 dz∆(Q2, q2)αs(q2)
2πq2 P (z)S(z2q2)S((1 − z)2q2)θ(g(z, q2))

+
∫ Q2

Λ2
QCD

dq2 dz∆(Q2, q2)αs(q2)
2πq2 P (z)S(q2)(1 − θ(g(z, q2))) ,

(2.2.42)
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with a constraint function g(z, q2) applied to the branching process. A branching is
created if g(z, q2) > 0 otherwise it is rejected and the search for a new branching is
started again from q2. The Eq. (2.2.41) is recovered with P (z) → P (z)θ(g(z, q2)) [62,
63]

S(Q2) =∆′(Q2,Λ2
QCD)

+
∫ Q2

Λ2
QCD

dq2 dz∆′(Q2, q2)αs(q2)
2πq2 P (z)S(z2q2)S((1 − z)2q2)θ(g(z, q2)) ,

(2.2.43)

where ∆′ is the Sudakov factor with the veto applied

∆′(Q2, q2) = exp
(

−
∫ Q2

q2

dq̂2

q̂2

∫
dzαs(q̂2)

2π P (z)θ(g(z, q2))
)
. (2.2.44)

The form of a vetoed shower has computational advantages, that will become clear in
Sec. 3.2.5 and Sec. 3.3.3.2.

We have seen that MEs provide fixed-order calculations accurate for hard jets, in-
cluding all terms up to a given order in αS . These are valid for high p2

T but are com-
putationally expensive and limited to a few emissions. In contrast, parton showers can
handle any number of emissions and remain finite, though they are only valid in the
soft/collinear regions. Combining matrix elements with parton showers through NLO
matching (cf. Sec. 3.3.3) or multi-jet merging (cf. Sec. 3.3.2) harnesses the strengths of
both methods, with hard emissions modeled by fixed-order calculations and subsequent
emissions handled by the parton shower.

One detail omitted in above discussion is the handling of colour in parton show-
ers. Going to the large-Nc limit is convenient, since gluons, which for Nc = 3 carry
the irreducible colour-octet representation, can be replaced by a colour-anticolour pair.
This simplifies the colour flow in Feynman diagrams, allowing for unambiguous colour as-
signment to partons. This method eliminates interference terms between different colour
structures, which are higher-order corrections in 1/Nc. The large-Nc limit results in pla-
nar colour flows, making it easier to implement colour-based models in Shower Monte
Carlo (SMC) generators. Their details are postponed to Sec. 3.1.1.2 and Sec. 3.2.5.

2.2.6 Fragmentation
In Sec. 2.2.1 we introduced the concept of factorization leading to the definition of
PDFs. Now we introduce the concept of FFs which are the analogue of PDFs for the
fragmentation of partons into for instance hadrons or photons. They include the long-
distance non-perturbative effects in the final-state of a hard scattering process.

Eq. (2.2.1) can be extended straightforward to include the fragmentation of par-
tons. For a process AB → CX involving hadrons A, B, and C, with X denoting the
undetected remains, a factorized cross section can then be written as

dσAB→CX(pA, pB , pC) =
∑
a,b,c

∫ 1

0
dxa dxb dz fa/A(xa, µFi

)fb/B(xb, µFi
)

dσ̂ab→cX(xaPA, xbPB ,
PC
z
, µR, µFi

, µFf
)DC/c(z, µFf

) .
(2.2.45)
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Here one sums over the intermediate initial and final-state partons and convolves the
PDFs fa/A, picking parton a from hadron A, and FFs Dγ/c, fragmenting parton c to a
photon, with the partonic cross section dσ̂ab→cX . The pieces are connected through the
renormalization scale µR and factorization scale in the initial-state µFi

and final-state
µFf

. The partonic cross section σ̂ is not IR safe for identified partons however the factor-
ization theorems cancel these universal collinear divergences [27]. In the fragmentation
process, the evolution of FFs is described by evolution equations, analogous to those
governing PDFs.

In the following we will focus on the fragmentation of partons into photons, C = γ.
The photon fragmentation functions evolve according to equations similar to the

DGLAP Eq. (2.2.13). Specifically, this involves replacing the gluon-related Casimir op-
erators in the splitting kernels Eqs. (2.2.5) to (2.2.8) with those appropriate for photons
CA → 0 and the quark-related Casimir operator by the electromagnetic charge of the
quark CF → Q2

i . The photon splitting kernels for quarks and gluons at LO are

Pγq(z) = Q2
q

1 + (1 − z)2

z
, (2.2.46)

Pγg(z) = 0 . (2.2.47)

At NLO, the evolution equations become more complex, involving additional terms
from gluon fragmentation. The general form of the evolution equations for photon
fragmentation functions includes convolutions of the splitting functions with the FFs,
integrating over the momentum fraction z

dDγ/i(µ2
F )

d logµ2
F

= α

2πDγ/γ(µ2
F ) ⊗ Pγi + αS(µ2

F )
2π ×

[
Dγ/q(µ2

F ) ⊗ Pqi +Dγ/g(µ2
F ) ⊗ Pgi

]
,

(2.2.48)
where i ∈ {q, g, γ} and Pij are time-like AP splitting functions [64].

Using Dγ/γ(z, µF ) = δ(1 − z) at electromagnetic (EM) LO thus

µ2
F

d
dµ2

F

Dγ/c(z, µF ) = α

2πPγc(z) (2.2.49)

gives

Dγ/q(z, µF ) = α

2πPγq(z) log
(
µ2
F

µ2
s

)
+Dmeassured

γ/q (z, µs) , (2.2.50)

Dγ/g(z, µF ) = const. = 0 , (2.2.51)

where the constant value of Dγ/g is zero, since it must also take that value at z = 1,
where the photon remains a photon.

Solving these equations requires a starting scale µs, from which the FFs evolve. The
choice of this starting scale can affect the results, and it often involves assumptions about
the initial conditions, such as the minimal transverse momentum between partons.

Similar to PDFs the FFs first need to be determined from experimental data such as
prompt photon production in e+e− collisions [65, 66], in hadronic collisions [67] as well
as in vector meson production, where the photon is assumed to fluctuate into hadronic
states [68]

Dhad
γ,i (z, µs) =

∑
V=ρ,ω,φ

4πα
f2
V

DV/i(z, µs) . (2.2.52)
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(iii) Strange quark.
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(iv) Gluon.

Figure 2.10: BFG I [69] FFs through JetPhox [70–72] of the up quark, down quark,
strange quark and gluon as a function of z and Q2.

In Fig. 2.10 the FF of some partons and scales Q are shown. The largest contribution
comes from the up quark while the down and strange quark contributions are roughly
the same. The gluon contribution is the lowest, as expected, since it only plays a
significant role beyond LO. As the scale increases, there is a higher probability that a
parton fragments into a photon as expected from Eq. (2.2.50).

For prompt-photon production, the fragmentation contributions are significant, es-
pecially at low transverse momentum, which typically chosen as the scale Q = pT as
shown in Fig. 2.11. This is a result of purely strong jet production becoming dominant
at low scales, due to increased αS and gluon-gluon initial-states, outpacing the reduction
in the FFs as the scale decreases. In order to partially eliminate the phenomenological
less interesting fragmentation contributions one introduces the concept of isolation.

In the study presented in Ref. [74], three distinct photon isolation schemes are defined
and compared, namely the fixed-cone, the smooth-cone, and the hybrid isolation. These
can all be described by a single equation, which is then used to calculate the hadronic
activity around the photon and to compare against the isolation energy

∆Ri<εR∑
i

piT

(
εR

r

)2n
≤ Emax

T = piso
T , (2.2.53)

where (n = 0, ε = 1) corresponds to the fixed-cone isolation, (n = 1, ε = 1) to the
smooth-cone isolation, and the hybrid isolation requires both (n = 1, ε = 0.1) and
(n = 0, ε = 1) to be satisfied. A graphical representation of the three isolation schemes
is shown in Fig. 2.12. The fixed-cone isolation is the most common isolation scheme
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(i) Without isolation. (ii) With isolation.

Figure 2.11: Prompt photon production prediction at LHC energies of
√
s = 14 TeV.

The contributions are separated into the two leading order processes Compton and
annihilation as well as fragmentation contribution. Figure taken from [73].

Figure 2.12: Graphical depiction of different isolation cones. The x-axis represents the
hadronics activity in the isolation cone and the y-axis the radial distance. When the
energy exceeds the isolation energy, the event is no longer isolated (red shaded area).
Figure taken from [74].

used in experimental analyses, as it is simple to implement and has a clear physical
interpretation. To consistently eliminate the fragmentation contributions, one must ex-
clude collinear parton-photon configurations without disrupting the cancellation of in-
frared singularities from soft gluon emissions [75]. While straightforwardly vetoing the
collinear configurations, as in the fixed cone approach, is not infrared-collinear (IRC)
safe, suppressing them maintains the necessary cancellation. This method is known as
smooth-cone isolation. The proof of infrared safety is similar to that of jet definitions,
where analogous cone algorithms are also sensitive to IRC safety [76]. Typically, the-
oretical tools use the smooth-cone isolation as it has the advantage that it does not
get contributions from the parton-to-photon fragmentation functions [75]. The hybrid
isolation is a compromise between the two, as it is more restrictive than the fixed-cone
isolation, but less restrictive than the smooth-cone isolation [77, 78]. Fig. 2.11 shows
the impact of the isolation cone on the hadronic activity around the photon and how it
reduces the fragmentation contribution especially towards low pT .

2.2.7 Hadronisation
Hadronisation is the intricate process by which quarks and gluons, liberated during
high-energy particle collisions, transform into hadrons. This process is fundamentally
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tied to the principle of confinement in QCD, which posits that quarks cannot exist in
isolation but must combine to form colour-neutral particles, such as mesons and baryons.
The complexity of hadronisation arises from the non-perturbative nature of QCD in
this regime, which prevents a precise first-principles calculation of the transition from
quarks and gluons to hadrons. As such, the detailed mechanism of hadronisation remains
beyond the reach of pQCD, necessitating the use of phenomenological models to describe
the process. Two primary models have been developed to simulate hadronisation: the
Lund string model and the cluster model.

The Lund string model [79, 80], utilized by the event generator PYTHIA [61, 81–83],
conceptualizes the colour field between quarks as a string that stretches and eventually
breaks as the quarks move apart. This breaking of the string results in the formation of
new quark-antiquark pairs, which then hadronise, producing a cascade of hadrons. This
model effectively captures the jet structure observed in high-energy collisions, where
hadrons are distributed along the paths of the original quarks, as well as between the
jets due to the fragmentation of the string.

On the other hand, the cluster model [84], implemented in event generators like
HERWIG [85–89] and Sherpa [90, 91], operates on the principle of preconfinement [92].
In this model, after the parton shower phase, first gluons are split into quark antiquark
pairs, then the quarks coalesce into colour-neutral clusters through colour reconnection.
These clusters subsequently decay into hadrons, a process that involves the creation of
additional quark-antiquark pairs. The cluster model simplifies the hadronisation process
by treating these clusters as intermediate states that decay into final-state hadrons,
offering a different approach to modelling hadronisation compared to the string model.

Both models are essential tools in high-energy physics, enabling the simulation of
hadronisation in particle collision experiments. Since the process cannot be calculated
directly from QCD, these models are calibrated using experimental data such as hadron
correlations, ensuring their predictions align with observed results. The Lund string
model, with its intuitive picture of colour flux tubes breaking into hadrons, and the
cluster model, with its focus on preconfinement and cluster decay, represent the best
available descriptions of a fundamentally complex and non-perturbative process [81,
86]. The improvement of these models continues along with modern techniques such as
machine learning [93–95].

2.3 Heavy-ion collisions

Over a century ago, one of the earliest and most significant experiments in heavy-ion
collisions, the Rutherford experiment, led to the discovery of the atomic model, revealing
a dense nucleus surrounded by orbiting electrons [96]. Since that discovery, the field of
heavy-ion physics has advanced significantly. For instance the development of high-
energy accelerators such as the LHC and the RHIC has opened the door to exploring
the properties of the QGP [97]. To compare theoretical predictions with experimental
results, much like our earlier examination of the proton’s structure, we first focus on
understanding the constituents of heavy-ions.
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2.3.1 Initial-state effects and nuclear parton distribution func-
tions

The initial-state of hadronic collisions plays a crucial role in determining the particle pro-
duction and overall dynamics of nucleus-nucleus (AA) events. A key difference between
AA and pp collisions is the amount of produced entropy, reflected in the significantly
higher number of particles in the final-state of the former. In heavy-ion collisions, the
majority of the entropy is generated during the early stages after the collisions, meaning
that the initial conditions are fundamental before any hydrodynamic evolution of the
QGP occurs [97]. This is especially true for soft particles with low transverse momen-
tum (pT . 1 GeV), where the initial conditions directly impact particle multiplicity and
collision geometry [98]. The production of hard probes, which are sensitive to parton-
parton scattering with large momentum transfer, is also influenced by the nPDFs of the
incoming particles. This is critical because changes in the initial-state can mimic the
signals expected from QGP-induced modifications, complicating the interpretation of
observables such as the nuclear modification factor, RAA.

Since a nucleus is a larger and more complex structure compared to a proton,
analysing collisions requires a way to measure the overlap between the two nuclei, as
not all nucleons may be involved in the collision. The centrality c of an event is defined
as

c =
∫ b′

0
dσ
db db∫∞

0
dσ
db db

, (2.3.1)

with the impact parameter b, which is the distance between the centres of the colliding
ions. But as experiments do not measure the impact parameter b, the centrality is instead
approximated as the percentile of the hadronic cross section in which the produced
energy or multiplicity exceeds a certain threshold [99, 100]. This definition leads to
the counterintuitive result that the most central or head-on collisions are associated
with low centrality values, while ultra-peripheral collision (UPC), where the nuclei do
not “overlap”, correspond to high centrality values. The Glauber model is a theoretical
framework used to describe and calculate the geometric aspects of nuclear collisions [101–
103]. The model assumes that nucleons move independently, and that interactions can
be treated probabilistically. It allows for the estimation of the number of participating
nucleons Npart and the number of binary nucleon-nucleon collisions Ncoll based on the
overlap geometry of the colliding nuclei. An example of this geometric configuration is
illustrated in Fig. 2.13.

In pp collisions, the partonic substructure is well-described using PDFs obtained
through fits to experimental data. However, extending this approach to heavy-ion col-
lisions by considering the nucleus as a mere superposition of free proton and neutron
PDFs does not sufficiently describe the observed data. DIS experiments in the 1980s
revealed that parton momentum distributions within bound nucleons are different from
those in free protons, necessitating the use of nPDFs [105]. Written as an inequality,
the nuclear modification of a parton distribution function can not be expressed as

Afi/A(x, µ) 6= Zfi/p(x, µ) +Nfi/n(x, µ) , (2.3.2)

with N = A − Z, where A is the atomic number of the nucleus, and Z and N are the
number of protons and neutrons, respectively. Thus, in nPDF a dependence on A is
introduced. EPPS16 [106] accounts for nuclear effects by modifying the free proton PDF
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Figure 2.13: The number of participating nucleons Npart (filled circles) and binary
collisions Ncoll is determined by the overlap geometry of the colliding nuclei through the
Glauber model. Figure taken from [104].

is by a factor RAi
fi/p/A(x, µ) = RAi (x, µ)fi/p(x, µ) . (2.3.3)

Alternatively, nCTEQ15 [107] adds a dependence on the atomic number A by introducing

Afi/A(x, µ) = Zfi/p/A(x, µ,A) +Nfi/n/A(x, µ,A) , (2.3.4)

where the isospin symmetry fd/n/A = fu/p/A and fd/p/A = fu/n/A holds and the mo-
mentum faction is x ∈ (0, A) with values above 1 negligible. The bound proton PDF
fi/p/A differs from the free proton PDF fi/p due to nuclear effects encoded by the A
dependence in the fit parameters. The fit results are shown in Fig. 2.14 for different ions,
where no nuclear effects (i.e. proton) would correspond to a flat line. It shows nuclear
effects like shadowing, anti-shadowing, the European Muon Collaboration (EMC) effect,
but not Fermi motion, which is only relevant at high-x. These nuclear phenomena vary
across different momentum fractions. For example, shadowing is a depletion of parton
densities at low-x, that can be attributed to multiple scattering within the extended nu-
clear environment, leading to shielding by outer nuclei. This is a consistent explanation
with the fact that heavier nuclei show stronger shadowing effects than lighter ones. At
intermediate-x (∼ 0.1 to 0.2), anti-shadowing is observed, where the parton densities
are enhanced compared to free protons. This effect is attributed to the interference
of multiple scattering amplitudes, leading to a constructive interference in the nuclear
environment. The EMC effect, observed at mid-x (∼ 0.2 to 0.8), historically sparked
a significant debate, with various models proposing changes in nucleon structure or en-
hanced pion presence as possible explanations [110, 111]. At high-x ∼ 1, a steep rise in
parton densities is linked to Fermi motion, where the intrinsic momentum of nucleons
inside the nucleus adds to the parton momentum distribution [105], but also due to the
fact that the proton PDF needs to go to zero at x = 1. Despite the progress made in
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Figure 2.14: nCTEQ15HQ [108] nPDF for different nuclei, showing the difference to free-
proton PDFs due to nuclear effects. Figure taken from [109].

developing nPDFs, considerable uncertainties remain, especially in the gluon sector at
low-x, where experimental data is scarce.

In the previous discussion of PDFs, we found that the gluon density gets increasingly
dominant at low-x values (see Fig. 2.7). This increase occurs because linear evolution
equations, such as DGLAP and its counterpart Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[112], primarily account for parton splitting processes. However, it becomes evident
that this growth cannot continue indefinitely without eventually encountering physical
limitations. At very low-x, the gluon density becomes so high that the probability of
gluon fusion becomes significant, leading to saturation effects. This regime can then be
described by the non-linear Balitsky-Kovchegov (BK) [113] and Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) [114] equations. The Color Glass Con-
densate (CGC) framework offers a theoretical model for this regime, which influences
the initial conditions for the evolution of the collision system, impacting properties like
the shear viscosity of the QGP [98]. The theoretical saturation scale Qs at which the
splitting processes are in equilibrium takes the form

Q2
s(x) ∼ x−λA

1
3Q2

s,0 , (2.3.5)

where λ ≈ 0.3 and Qs,0 is the saturation scale of a single nucleon. This is displayed
in Fig. 2.15. Experimental studies focusing on saturation phenomena, particularly in
proton-nucleus (pA) collisions, are crucial since these environments provide a cleaner
probe of initial-state effects without significant QGP-induced final-state interactions.
This has motivated the development of detectors like the Forward Calorimeter (Fo-
Cal) [116] for A Large Ion Collider Experiment (ALICE), which aims to enhance sen-
sitivity to low-x phenomena by focusing on measurements at forward rapidities. The
sensitivity of current and future experiments is shown in Fig. 2.16 where the saturation
scales of heavier ions are closer to the experimental regimes.

2.3.2 Quark-gluon plasma
One of the key objectives of the LHC physics program is to understand the high-energy
density and temperature conditions in ultra-relativistic heavy-ion collisions. These col-
lisions lead to the creation of a QGP, a state of matter in which quarks and gluons,



2.3. HEAVY-ION COLLISIONS 29

log(x)

lo
g(
Q
)

DGLAP

BFKL

BK/JIMWLK

saturation

Figure 2.15: QCD evolution of the PDF along Q by DGLAP and along x by BFKL.
The transition over the saturation scale Qs is governed by the BK/JIMWLK equations.
Figure taken from [115].

usually confined within protons and neutrons, become deconfined and interact freely.
This deconfined state, with restored chiral symmetry [117], is believed to have existed in
the early Universe shortly after the Big Bang and is predicted by QCD calculations on
the lattice [118]. The QGP occurs at extremely high temperatures and energy densities,
such as those recreated in high-energy heavy-ion collisions. In this phase, the interaction
strength between quarks and gluons is reduced due to asymptotic freedom, where the
strong force weakens at large momentum transfers [97]. In the high-temperature and
low baryochemical potential µB region of the QCD matter phase diagram in Fig. 2.17,
the QGP is reached in a smooth crossover, while at low temperatures and high bary-
ochemical potentials, it is expected to be reached through a first-order phase transition
with a discontinuity in the thermodynamic variables [119].

Understanding the properties of QGP is crucial for mapping the phase diagram of
QCD matter, which includes regions where different phases of matter exist based on
temperature and baryon density. The QGP formed in heavy-ion collisions provides a
unique opportunity to study this phase transition, mirroring the early universe’s evolu-
tion as it cooled and formed protons, neutrons, and other hadrons. The exploration of
this phase transition at low baryochemical potential has been well-studied in LHC and
RHIC collisions, where the matter produced is nearly baryon-symmetric [123].

Experiments at facilities like the LHC and the RHIC have successfully created QGP
by colliding heavy-ions such as gold and lead at nearly the speed of light. The space-time
evolution of two colliding nuclei is illustrated in Fig. 2.18. Contrary to pp collisions the
majority of the energy gets deposited in the soft processes, leading to the pre-equilibrium
phase, where he matter is not in thermal equilibrium. Once thermalization occurs, the
QGP initially forms in a state resembling a nearly perfect fluid with low viscosity, as
indicated by comparisons of hydrodynamic models with experimental data. Although
QGP is short-lived, decaying within about 1 × 10−22 s, its presence can be inferred
through indirect probes. These include the measurement of thermal photons produced
by the plasma, jet quenching (a reduction in the momentum of jets passing through
the QGP), and suppressed back-to-back correlations of high-momentum particles. Es-
pecially photons are important probes of the QGP as they do not interact much with
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Figure 2.16: Kinematic coverage in x and Q for various existing (such as RHIC,LHC,
LHC beauty (LHCb)) and future experiments (Electron Ion Collider (EIC),FoCal). It
contains both EM and DIS (less transparent) as well as hadronic and UPC measurements
(more transparent). The original figure [116] has been adapted.

the hot medium. The differences between heavy-ion collision results and those from
proton-proton collisions, where QGP is not expected to form, further highlight the dis-
tinct properties of this exotic state [97]. The system then expands and rapidly cools,
eventually transitioning back into ordinary hadronic matter as it undergoes a crossover
phase transition at a critical temperature of approximately 155 MeV [122, 124, 125]. In
the subsequent hadron gas phase, the difference between chemical freeze-out and kinetic
freeze-out is that chemical freeze-out marks the point where inelastic collisions stop,
while kinetic freeze-out represents the final stage when elastic collisions also cease.
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Figure 2.17: A sketch of the QCD phase diagram is presented, showing its dependence on
temperature Tch and baryon chemical potential µB . The diagram includes conjectured
phase boundaries, represented by solid and dashed lines, as well as a possible critical
point, marked by a solid circular point. Additionally, the extracted values of Tch and
µB from a statistical model [120, 121] are also plotted on the diagram. Figure taken
from [122].

τ

π K, p,... π K, p,...

Figure 2.18: QGP evolution in heavy-ion collisions. Figure taken from [104].
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CHAPTER 3. COMPUTATION METHODS

Chapter 3

Computation methods

Now it is time to look into the computation of aforementioned quantities. There are
several methods addressing the arising complications of the actual calculation, and we
can only present a subset here.

3.1 Next-to-leading order calculations
The pure NLO cross section is defined as

∆σNLO =
∫
n+1

dσR +
∫
n

dσV . (3.1.1)

The integration over the n-particle phase space of the real corrections dσR turns out to
be problematic due to IR divergences, meaning very small momenta in denominators.
From the KLN theorem [31, 126] it is known that these soft and/or collinear divergences
cancel against the IR divergences from the virtual corrections dσV. When we compute
the virtual corrections, will encounter integration over unconstrained loop momenta.
They will give rise to UV divergences, meaning very large momenta. UV divergences
will be absorbed into counterterms during renormalization. In the end a measurable
inclusive quantity will have no more divergences.

To calculate the next-to-leading order we must introduce several methods and for-
malisms. We start with introducing the several Feynman rules in Sec. 3.1.1. Then, in
Sec. 3.1.2 we explain the regularization of divergences, followed by a description of the
OS renormalization in Sec. 3.1.3. We start with introducing the Frixione-Kunst-Signer
(FKS) and Catani-Seymour (CS) formalism in Sec. 3.1.4.

3.1.1 Feynman rules
Before we can start calculating cross sections and decay rates, we need to establish the
Feynman rules for the SM. They can be derived from the Lagrangian of the SM and the
rules we will be needing are given in Sec. A.2.1. Further we will need to introduce some
alternative Feynman rules, namely the eikonal approximation, the colour lines and the
helicity amplitudes.

33



3.1. NEXT-TO-LEADING ORDER CALCULATIONS 34

Type incoming q incoming q̄ incoming g outgoing g̃ outgoing q̃

∆ + - + + +

δ - - - + +

Tj Ta Ta −ifabc −ifabc Ta

Table 3.1: Signs and colour operators for eikonal Feynman rule for emitting a soft gluon.
In the case of absorbing a gluon or switching incoming and outgoing, the sign δ changes
to −δ.

MH

µ, a

p − k

j

p

i

k

(i) Generic soft gluon emission.

MH

µ, a

p − k

ν, c

p

ρ, b

k

(ii) Soft gluon radiated from a gluon.

Figure 3.1: Feynman diagrams illustrating eikonal approximation of the emission of a
soft gluon

3.1.1.1 Eikonal approximation

Eikonal Feynman rules are a specialized set of rules in QFT designed to handle high-
energy scattering processes, particularly in situations where the interaction occurs over
long distances or involves small momentum transfers. In such cases, the scattering
amplitudes can be simplified using the eikonal approximation, which assumes that the
trajectory of the particles is nearly straight and the effects of the interactions are accu-
mulated gradually. The generic form of the eikonal Feynman rule for a process involving
two particles scattering off each other is given by

Γµeik = gSTj ∆iv
µ

δiv · k + iε , (3.1.2)

where vµ = pµ
√

2/s. The signs ∆, δ and the colour operators Tj are to be used
according to Tab. 3.1.

Verifying the eikonal Feynman rule for a soft gluon radiated from a quark is straight-
forward for a generic underlying hard scattering process MH

Mq = MH

i(/p− /k +m)
(p− k)2 −m2 + iε (−igSγµT a)εa∗

µ u(p) (3.1.3)

≈ MH

i(/p+m)
−2p · k + iε (−igSγµT a)εa∗

µ u(p) , (3.1.4)

where we have used the soft limit k → 0, p2 = m2. Next we (anti-)commutate the
gamma matrices /pγµ = −γµ/p+ 2pµ and use the Dirac Eq. (2.0.5) (−/p+m)u(p) = 0 to
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obtain

Mq = MH
2pµ

−2p · k + iε (gST a)εa∗
µ u(p) (3.1.5)

= MHΓµeikε
a∗
µ . (3.1.6)

The calculation is even simpler for a gluon radiated from a squark

Mq̃ = MH
i

(p− k)2 −m2 + iε igST a (−2pµ + kµ) εa∗
µ (3.1.7)

≈ MH
+2pµ

−2p · k + iεgST
aεa∗
µ (3.1.8)

= MHΓµeikε
a∗
µ , (3.1.9)

where the sign δ is different to Tab. 3.1 due to the squark being incoming in our cal-
culation. For a soft gluon being emitted by a gluon the procedure is similar. Starting
from the diagram in Fig. 3.1ii we can calculate the eikonal Feynman rule. We write the
general expression for this diagram using the usual Feynman rules

Mg = Mν
H

−igSf bac

(p− k)2 + iε
[gρµ(p+ k)ν + gµν(−k + p− k)ρ + gνρ(−p+ k − p)µ] εbρε∗a

µ

(3.1.10)

= Mν
H

1
−2p · k + iε

(−ifabc)gS (2gνρpµ − gρµpν − gµνpρ) εbρε∗a
µ , (3.1.11)

where in the numerator we have used the soft limit k → 0, p2 = m2 = 0 and the anti-
symmetry of fabc. We can now use a procedure that follows what is presented in [127,
eq. (16.16)], which consists of temporarily replacing ε∗a

µ (k) → kµ. This way, the last
two terms contract a metric tensor with the momentum k, leaving just the momentum

Mg = Mν
H

1
−2p · k + iε

(−ifabc)gS (2gνρpµkµ − kρpν − kνpρ) εbρ (3.1.12)

= Mν
H

1
−2p · k + iε

(−ifabc)gS (2gνρpµkµ + (k − p)ρ(k − p)ν − kρkν − pρpν) εbρ ,

(3.1.13)

where the last three terms vanish due to the soft limit, transverse polarizations of the
external gluons ε(p)µpµ = 0 and the Ward-Takahashi identity [128, 129]. Making now
the inverse substitution kµ → ε∗a

µ (k), we obtain

Mg = Mν
H

1
−2p · k + iε

(−ifabc)gS (2pµ) εbνε∗a
µ . (3.1.14)

We can write this results in the general form of an eikonal vertex as

Mg = MHΓµeik.ε
∗a
µ , (3.1.15)

where
MH = Mν

Hε
b
ν (3.1.16)

and
Γµeik. = 2pµ

−2p · k + iε
gS(−ifabc) = gSTj ∆iv

µ

δiv · k + iε
, (3.1.17)
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again with vµ = pµ
√

2/s, ∆i = +1, δi = −1 and Tj = (−i)fabc. These signs and colour
factors match what presented in Tab. 3.1 for a soft gluon radiated from an incoming
gluon. For the other cases the procedure is analogous [130].

3.1.1.2 Colour lines

In this chapter we will introduce the concept of colour lines, also known as colour-flow
decomposition, following along [131, 132].

The colour-flow decomposition offers several compelling advantages for analysing
and computing QCD amplitudes. It provides an alternative to the fundamental-
representation decomposition, extending naturally to all multi-parton amplitudes. The
approach is particularly well-suited for calculations involving large numbers of external
particles, where it significantly reduces computational complexity. For example, using
colour-flow decomposition, the amplitude for a process involving 12 gluons can be
calculated approximately 60 times faster than with traditional methods. This increased
efficiency stems from the intuitive alignment of the colour-flow decomposition with the
physical flow of colour charge within a scattering process, offering a straightforward
interpretation of QCD dynamics that directly relates to the underlying particle
interactions. Moreover, this method is highly compatible with Monte Carlo simulations,
seamlessly integrating with parton shower algorithms and hadronisation models, which
are essential for generating realistic event samples at collider experiments [132].

The colour-flow decomposition addresses this challenge by expressing the colour
structure of QCD in terms of reducible tensor products of the fundamental representa-
tion and its conjugate. This allows the entire scattering amplitude, including sums over
multiple Feynman diagrams, to be efficiently represented as weighted sums of Kronecker
delta functions, known as colour flows. The decomposition leverages the isomorphism
between the adjoint representation of the gauge group and the tensor product of funda-
mental representations, simplifying the colour representation. This approach connects
naturally with ’t Hooft’s double-line notation [133], where each gluon is represented by
a pair of quark and antiquark lines, providing a visual and computational framework
for evaluating colour factors. In the large Nc limit, planar Feynman diagrams, where
double lines do not cross, become the leading contributions to scattering amplitudes.

Beyond computational efficiency, the colour-flow representation has broader implica-
tions. It aligns closely with models of QCD fragmentation, parton showers, and hadro-
nisation, all of which depend on an accurate representation of colour flow in partonic
processes [134–136]. All in all, the method is instrumental in Monte Carlo event gener-
ators that simulate the full evolution of particle collisions, from hard scattering to the
formation of hadrons.

To derive Feynman rules we start from a SU(N) gauge theory

L = 1
2g2
S

Tr FµνFµν + ψ̄(i /D −m)ψ , (3.1.18)

where

Dµ = ∂µ − igSAµ , (3.1.19)
Fµν = [Dµ, Dν ] , (3.1.20)

as we already saw in Sec. 2.1.4. Next the gluon fieldAµ is decomposed in the fundamental
representation matrices T

(Aµ)ij = Aaµ(T a)ij (3.1.21)
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and with the relation fabc = −i Tr
(
T aT bT c − T aT cT b

)
amplitudes can be decomposed

into traces of fundamental representation of matrices T [137]. The Lagrangian is given
in Ref. [132] as

L = −1
4(Fµν)ij(Fµν)ji + iψ̄iγµ(δij∂µ + i gS√

2
(Aµ)ij)ψj −mψ̄iψ

i , (3.1.22)

with

(Fµν)ij = ∂µ(Aν)ij − ∂ν(Aµ)ij + i gS√
2

(Aµ)ik(Aν)kj − i gS√
2

(Aν)ik(Aµ)kj . (3.1.23)

The resulting Feynman rules are
i1

j2

j3
i3

µ3 = i gS√
2
γµ3δi1j3

δi3j2
∼

i1

j2

j3
i3

(3.1.24)

for the quark-gluon vertex,
j1
i1

µ1

j2
i2

µ2

j3
i3

µ3
p1

p2

p3

= i gS√
2

∑
δi1j2
δi2j3
δi3j1

(
(p1 − p2)µ3gµ1µ2

+ (p2 − p3)µ1gµ2µ3 + (p3 − p1)µ2gµ3µ1
)

∼

j1
i1

j2
i2

j3

i3 +

j2
i2

j1
i1

j3

i3

(3.1.25)

for the three-gluon vertex and
j1
i1

µ1
j4
i4

µ2

j3
i3

µ3
j2
i2

µ4

= ig
2
S

2
∑

(2gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3) δi1j2
δi2j3
δi3j4
δi4j1

∼
∑ i1

j2
i2j3

i3

j4
i4 j1

(3.1.26)
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(i) Quark-gluon vertex

(ii) Three-gluon vertex

Figure 3.2: Colour flows in conventional Feynman rules [138].

for the four-gluon vertex, where arrows represent the flow of colour. For the three-
gluon vertex, the sum covers the two non-cyclic permutations of (1, 2, 3), while in the
four-gluon vertex, it includes the six non-cyclic permutations of (1, 2, 3, 4). When
calculating a partial amplitude, only a single term of the sum is relevant for a particular
colour flow, so that the remaining terms can be neglected. In the colour flow basis the
gluon propagator is proportional to

〈(Aµ)i1j1
(Aν)i2j2

〉 ∝ δi1j2
δi2j1

− 1
N
δi1j1
δi2j2

(3.1.27)

instead of the usual δab as in the conventional Feynman rules, while the quark keeps
its colour δij . Going to the large N limit, the second term vanishes and the gluon
propagator simplifies.

An alternative approach to the colour flow decomposition is given in Fig. 3.2. The
quark-gluon vertex in Fig. 3.2i can be understood from

T aijT
a
kl = 1

2

(
δilδjk − 1

N
δijδkl

)
, (3.1.28)

where one T comes from the vertex and one from the gluon field. Similarly, the three-
gluon vertex in Fig. 3.2ii corresponds to contracting the three gluon fields with the
vertex’ structure constant fabc

fabcT aijT
b
klT

c
mn = (δilδknδnj − δinδmlδkj) . (3.1.29)

Since many automized tools for computing amplitudes are based on the conventional
Feynman rules, we can adapt them to colour-flow decomposition. The idea behind the
following simplified decomposition is to use the fact that in the large N limit, only the
diagram combinations with the most closed loops contribute. This is due to each closed
colour flow loop contributing a factor of N . Unfortunately, the 4 gluon vertex mixes
colour and Lorentz structures which prohibits a simple factorization of the colour and
thus decomposition as outlined below. Looking at the diagrams of qq → qq in Fig. 3.3, we
observe that there are two possible colour flows. At large N , the first diagram connects
q1 with q4 through the gluon (CL1), while the second connects q1 with q3 (CL2). They
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g

q

q

q

q

(i) s channel.

g

q

q

q

q

(ii) u channel.

Figure 3.3: Example of conventional Feynman diagrams for a qq → qq process.

(i) M†
1M1 diagram (ii) M†

1M2 diagram

Figure 3.4: Example of a colour flow diagram for a qq → qq process. The dashed lines
in the middle symbolize the phase space integration with the conjugated diagram on the
right side. Figures adapted from [131].

are depicted in Fig. 3.4. Following the colour flow through the diagram and the adjoint
diagram, we observe that the interference term has one closed loop less

M†
1M1 ∼ N2 , (3.1.30)

M†
2M2 ∼ N2 , (3.1.31)

M†
1M2 ∼ N . (3.1.32)

Since we know that M†M must be the same regardless of using the colour flow or
conventional calculation this will also hold in the large N limit. Therefore, we can write

M†
1M1 = a11M2

11,CL1 + b11M2
11,CL2 + c112 Re(M†

11,CL1M11,CL2) , (3.1.33)

M†
2M2 = a22M2

22,CL1 + b22M2
22,CL2 + c222 Re(M†

22,CL1M22,CL2) , (3.1.34)

2 Re(M†
1M2) = a12M2

12,CL1 + b12M2
12,CL2 + c122 Re(M†

12,CL1M12,CL2) , (3.1.35)

where the amplitude calculated in the colour flow is MCL1 =
∑
aijM2

ij,CL1. The coef-
ficients a, b and c can be seen as components of a basis transformation matrix. Since
we are looking at the large N limit, we can already neglect the interference terms in
the colour flow c → 0. From comparing the conventional diagram with the colour line
diagram we can see that only

a11 = 1 and b22 = 1 (3.1.36)

are non-zero. Then, we have

M2
CL1 = 4

9g
4
S

s2 + u2

t2
, (3.1.37)
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q

g

q

g

q

(i) s channel.

g

g

q

g

q

(ii) t channel.

q

g

q

g

q

(iii) u channel.

Figure 3.5: Example of conventional Feynman diagrams for a qg → qg process.

M2
CL2 = 4

9g
4
S

s2 + t2

u2 , (3.1.38)

in agreement with [134] and does not include the higher N order suppressed term
−8u2/(27st) as in Ref. [49, tab. (7.1)]. In Fig. 3.5 we see an example of a qg → qg
process which now involves a ggg-vertex. The possible colour flows can be read of the
diagrams 1 and 3 since starting from the incoming quark the line has to enter the gluon.
Therefore, the colour flow either goes from q1 to g2 (CL1) or from q1 to g4 (CL2). Then,

M†
1M1 = a11M2

11,CL1 , (3.1.39)

M†
2M2 = a22M2

22,CL1 + b22M2
22,CL2 , (3.1.40)

M†
3M3 = b33M2

33,CL2 , (3.1.41)

2 Re(M†
1M2) = a12M2

12,CL1 , (3.1.42)

2 Re(M†
1M3) = 0 , (3.1.43)

2 Re(M†
2M3) = b23M2

23,CL2 , (3.1.44)

where the triple gluon vertex contains both flows equally M2 ∼ (MCL1 − MCL2)/
√

2
and their interference drops in the large N limit resulting in a22 = b22 = 1/2. Similarly,
M†

1M2 and M†
2M3 become projection-like and give a single colour flow in the large N

limit and a11 = a33 = a12 = b23 = 1. Hence,

M2
CL1 = M†

1M1 + M†
2M2/2 + 2 Re(M†

1M2) = 4
9g

4
S

(
2u

2

t2
− u

s

)
, (3.1.45)

M2
CL2 = M†

3M3 + M†
2M2/2 + 2 Re(M†

2M3) = 4
9g

4
S

(
2s

2

t2
− s

u

)
, (3.1.46)

satisfying the crossing relation u ↔ s corresponding to swapping the external gluon legs
as in Ref. [134]. Comparing against [49, Tab. (7.1)]

M2 = g4
S

(
u2 + s2

t2
− 4

9
s2 + u2

su

)
(3.1.47)

we see that the error is just (u2 + s2)/(9t2) reassuring us that the colour of a particle
can be assigned reasonably well in the large N limit.

We have demonstrated that it is possible to compute the colour lines using the
conventional Feynman rules as long as there is no four-gluon vertex. These colour lines
allow us to probabilistically assign a leading colour to each particle in the large N limit
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for a given phase space point of the hard process by their relative strength. Practically,
a random r ∈ (0, 1)

r < min
M

(∑M
k M2

CLk∑N
i M2

CLi

)
(3.1.48)

decides which colour flow M out of N possibilities is chosen, such that in a large sample
the events follow the correct colour flow distribution.

3.1.1.3 Helicity amplitudes

In automated computations, following the analytic steps of squaring the amplitude and
performing trace operations over gamma matrices become impractical, especially for
processes involving many final-state particles. The number of contributing diagrams
scales factorially with the number of particles, and processes involving multiple gluons
produce particularly large analytic expressions due to the structure of the ggg and
gggg vertices in conventional Feynman rules. In such cases, the expressions become
exceedingly lengthy and only simplify after substantial algebraic manipulation.

A more efficient approach is to directly evaluate the external particle’s wave-functions
for specific phase space points. Fermions and vector particles can be represented by
six-dimensional vectors of complex numbers that encode full momentum, helicity, and
spin information. These wave-functions are then combined according to the vertices
in the Feynman diagram. However, care must be taken with the order in which the
Feynman rule vertices are applied. For example, in the process e+e− → µ+µ−, the
eeγ vertex generates the wave-function for the photon, which is then contracted with
the γµµ vertex to yield the amplitude. The result is a single complex number, Mi,
for each diagram’s amplitude, which can be summed and squared to obtain |M|2 for a
given helicity configuration. In a process like e+e− → γ, Z,H → µ+µ−, the interference
terms of the amplitudes are reduced to summing complex numbers

M = Mγ + MZ + MH . (3.1.49)

This approach is particularly advantageous when many diagrams contribute to the same
process, such as when many external legs or gluons are involved. The squared matrix
element is then summed over all possible helicity configurations to obtain the final cross
section.

At tree level, this can be efficiently accomplished using the HELAS [139] formalism,
which provides a set of Fortran routines for evaluating matrix elements for specific pro-
cesses. Similar methods are employed in popular tools like MadGraph [140], Whizard [141,
142], and FormCalc [143], and have been extended to NLO in HELAC-NLO [144]. One
drawback of this numerical approach is the need for high precision, especially when
significant cancellations occur between terms in the amplitudes.

3.1.2 Regularization
A proper treatment of the divergences requires them to be regularized. The following
methods are motivated by the fact that changing the number of dimensions affects the
divergence of an integral, e.g.∫ Λ

a

1
r2 d3r ∼ O(Λ) ,

∫ Λ

a

1
r2 d2r ∼ O(log Λ) ,

∫ Λ

a

1
r2 d1r ∼ O(1) , (3.1.50)
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for a large cutoff scale Λ. Transitioning to a D = 4−2ε dimensional momentum integral∫
d4l → µ4−D

∫
dDl (3.1.51)

regularizes the divergence through poles in ε with a renormalization scale µ to conserve
mass-dimensions. There are two types of poles IR and UV. UV poles are always simple
poles and arrive from D → 4−, i.e. ε > 0. IR poles can be simple or double poles
corresponding to a soft and collinear divergence as D → 4+, i.e. ε < 0. While in a final
result all poles must cancel within their type, it is common to not treat ε−1

IR and ε−1
UV

poles separately, but just as ε−1. [127, 145]

3.1.2.1 Dimensional regularization schemes

We will look briefly at different Dimensional Reduction (DRED) schemes. They differ
in their treatment of the vector field regularization, i.e. the gluon. Since these schemes
use different spaces, we list them here:

• 4-dimensional Minkowski space (S[4])

• quasi-d-dimensional space (QS[d]) is infinite dimensional and as a consequence it
is a superspace of S[4] ⊂ QS[d].

• quasi-4-dimensional space (QS[ds]) is closely related to S[4] but QS[d] ⊂ QS[ds] =
QS[ds] ⊕ QS[nε] must hold to sustain gauge invariance. Thereby, ds ≡ d + nε =
4 − 2ε+ nε.

The index in brackets [d] refers to the dimension of the space. From here we can look
at the consequences for the metric tensors and gamma matrices

gµν[ds] = gµν[d] + gµν[nε] , gµµ[dim] = dim , gµν[d] g
νρ
[nε] = 0 , (3.1.52)

γµ[ds] = γµ[d] + γµ[nε] , {γµ[dim], γ
ν
[dim]} = 2gµν[dim] , {γµ[d], γ

ν
[nε]} = 0 . (3.1.53)

The ordering of these spaces implies the projections relations to be

gµν[ds]g
νρ
[d] = gµρ[d] , gµν[ds]g

νρ
[4] = gµρ[4] , gµν[d] g

νρ
[4] = gµρ[4] , (3.1.54)

meaning that we take the subspace upon contractions with a different space.
After settling these formalities, we move on to the regularization. Regardless of the

scheme the momentum integration is done in d dimensions. We will call singular gluons
internal, meaning those in collinear/soft emissions or loops, and the remaining gluons
external. Divergences only appear with internal ones, so regularization of external
gluons is optional. Four prominent regularization schemes are:

• Conventional Dimensional Regularization (CDR): Both internal and ex-
ternal gluons are treated d-dimensional. This makes this scheme appealing for
automatized calculations.

• ’t Hooft Veltman (tHV): The internal gluons are d-dimensional, but the exter-
nal ones are 4-dimensional.

• DRED: Both internal and external gluons are quasi-4-dimensional.
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• Four Helicity Dimension (FHD): The internal gluons are quasi-4-dimensional,
but the external ones are 4-dimensional. This scheme is used in MadGraph since it
allows using a helicity formalism through HELAS.

For DRED and FHD ds is usually 4 or equivalently nε = 2ε.
Methods for converting different schemes can be found in Refs. [146–148] and more

details and examples are available in Refs. [149–152]. The application of γ5 in D dimen-
sions must also be reconsidered. We will stick to the naive handling by keeping its an-
ticommutation relation {γ5, γµ} = 0 and dropping the trace relation Tr[γµγνγργσγ5] =
i4εµνρσ [153]. By convention the trace is evaluated to Tr[1] = 4.

3.1.2.2 Passarino-Veltman reduction

To evaluate a divergent loop integral in D− 2ε dimensions the Passarino-Veltman (PV)
reduction is very useful. A general N -loop integral is depicted in Fig. 3.6 written in the
following in an algebraic form

TNµ1,...,µM
(p1, . . . , pM ,m1, . . . ,mM ) = µ4−D

iπD/2rΓ

∫
dDl lµ1 . . . lµM

D1 . . .DN
, (3.1.55)

with the prefactor

rΓ = Γ(1 − ε)2Γ(1 + ε)
Γ(1 − 2ε) = 1 − γEε+ (γ

2
E

2 − π2

12 )ε2 + O(ε3) (3.1.56)

and denominators

D1 = l2 −m2
1 , (3.1.57)

D2 = (l + p1)2 −m2
2 , (3.1.58)

... (3.1.59)

DN = (l +
N∑
i=1

pi)2 −m2
N . (3.1.60)

Alternative definitions factorize 1/Γ(1 + ε) giving differences of order O(ε)

Γ(1 + ε)
Γ(1 − ε)2 Γ(1+ε)

Γ(1−2ε)

= 1 + π2

6 ε2 + O(ε3) (3.1.61)

resulting in shifted finite (ε0) contributions when double poles (ε−2) appear. In accor-
dance with the conventions of LoopTools [143] we introduce the notation

∆ = 1
ε

− γE + log 4π (3.1.62)

and use the definition of the momenta

kn =
n∑
i=1

pi . (3.1.63)
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l

l + k1

l + k2

l + k3

l + kN−1

p1

p2

p3 p4

pN−1

pN

Figure 3.6: Momentum conventions for general N -loop diagrams.

Of special importance are the scalar integrals (M = 0). We will need them with up to
five particles in the loop

T 1 = A0(m2
1) = µ4−D

iπD/2rΓ

∫
dDl 1

D1
=:
∫
l

1
D1

, (3.1.64)

T 2 = B0(p2
1,m

2
1,m

2
2) =

∫
l

1
D1D2

, (3.1.65)

T 3 = C0(p2
1, p

2
2, (p1 + p2

2),m2
1,m

2
2,m

2
3) =

∫
l

1
D1D2D3

, (3.1.66)

T 4 = D0(p2
1, p

2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2,m2

1,m
2
2,m

2
3,m

2
4) =

∫
l

1
D1D2D3D4

.

(3.1.67)

They were first calculated by ’t Hooft and Veltman in Ref. [154]. The tensor reduc-
tion proposed by Passarino and Veltman avoids solving more complicated integrals by
recycling the scalar integrals [155].

The Lorentz covariance of the integrals allows for the decomposition of the tensor
integrals into tensors formed from the external momenta pi and the metric tensor gµν ,
with totally symmetric coefficient functions TNi1...iP . To express the terms involving gµν
more compactly, we introduce a momentum p0 formally. This leads to

TNµ1...µP
(p1, . . . , pN−1,m0, . . . ,mN−1) =

N−1∑
i1,...,iP =0

TNi1...iP ki1µ1 . . . kiPµP
. (3.1.68)

From this expression, the correct gµν terms can be obtained by discarding all terms
containing an odd number of k0’s and replacing products of even numbers of k0’s with
the corresponding tensors constructed from gµν , for instance

k0µ1k0µ2 → gµ1µ2 , (3.1.69)
k0µ1k0µ2k0µ3k0µ4 → gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 (3.1.70)
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and written explicitly

Bµ = kµ1B1 , (3.1.71)
Bµν = gµνB00 + kµ1 k

ν
1B11 , (3.1.72)

Cµ = kµ1C1 + kµ2C2 , (3.1.73)
Cµν = gµνC00 + kµ1 k

ν
1C11 + (kµ1 kν2 + kµ2 k

ν
1 )C12 + kµ2 k

ν
2C22 , (3.1.74)

... .

Since four-dimensional space is spanned by four Lorentz vectors, terms involving gµν
should be excluded for N ≥ 5. In such cases, the decomposition should involve no more
than four Lorentz vectors

TNµ1...µP
(p1, . . . , pN−1,m0, . . . ,mN−1) =

4∑
i1,...,iP =1

TNi1...iP ki1µ1 . . . kiPµP
. (3.1.75)

By applying the Lorentz decomposition of the tensor integrals as in Eq. (3.1.68), the
invariant functions T i1...iPN can be iteratively reduced to the scalar integrals T 0

N [156–
159]. Using

lµkµk = 1
2(kk + l)2 − l2 − k2

k = 1
2 (Dk −D1 − fk) , (3.1.76)

fk = k2
k −m2

k +m2
1 , (3.1.77)

gµν lµlν = l2 = D1 +m2
1 , (3.1.78)

the reduction of tensor integrals to scalar integrals is achieved by contracting the tensor
integrals with a momentum

TNµ1...µP
kµP

k = 1
2

∫
l

(
lµ1 . . . lµP −1

D1 . . .Dk−1Dk+1 . . .DN
+
lµ1 . . . lµP −1

D2 . . .DN
− fk

lµ1 . . . lµP −1

D1 . . .DN

)
(3.1.79)

= 1
2

[
TN−1
µ1...µP −1

(k) − TN−1
µ1...µP −1

(0) − fkT
N
µ1...µP −1

]
(3.1.80)

or a metric

TNµ1...µP
gµP −1µP = 1

2

∫
l

(
lµ1 . . . lµP −1

D2 . . .DN
+m2

1
lµ1 . . . lµP −2

D1 . . .DN

)
(3.1.81)

=
[
TN−1
µ1...µP −2

(0) +m2
1T

N
µ1...µP −2

]
. (3.1.82)

The argument k in the tensor integrals of the last line indicates that the propagator
Dk has been cancelled. It is important to note that Tµ1...µP −1

N−1 (0) contains an external
momentum in its first propagator. Consequently, a shift in the integration momentum
is required in this integral to bring it into the desired form of Eq. (3.1.55).

Exemplary, Bµ = kµ1B1 = pµ1B1 must have that form since pµ1 is the only available
Lorentz-structure and

2p2
1B1 = 2pµ1Bµ =

∫
l

2pµ1 lµ

D1D2
=
∫
l

(l + p1)2 −m2
2

D1D2︸ ︷︷ ︸
A0(m2

1)

−
∫
l

l2 −m2
1

D1D2︸ ︷︷ ︸
A0(m2

2)

−(p2
1 −m2

2 +m2
1)
∫
l

1
D1D2︸ ︷︷ ︸
B0

(3.1.83)
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gives Bµ in terms of scalar integrals. The reduction of the B Tensor is

B1(p2
1,m

2
1,m

2
2) = 1

2p2
1

[
A0(m2

1) −A0(m2
2) − (p2

1 −m2
2 +m2

1)B0
]
, (3.1.84)

B00(p2
1,m

2
1,m

2
2) = 1

2(D − 1)
[
A0(m2

2) + 2m2
1B0 + (p2

1 −m2
2 +m2

1)B1
]
, (3.1.85)

B11(p2
1,m

2
1,m

2
2) = 1

2(D − 1)
1
p2

[
(D − 2)A0(m2

2) − 2m2
1B0 −D(p2

1 −m2
2 +m2

1)B1
]
,

(3.1.86)

where when no parameters are given to a function, the same parameters as on the left-
hand side are used. Their divergence as listed in Tab. 3.2 can be found in Refs. [156,
160] and in the papers referenced therein.

Integral UV divergences (D − 4)×Integral

A0(m2) m2∆ −2m2

B0 ∆ −2

B1 − 1
2 ∆ 1

B00 −( p
2

12 − 1
4 (m2

0 +m2
1))∆ ( p

2

6 − 1
2 (m2

0 +m2
1))

C00
1
4 ∆ − 1

2

Table 3.2: Passarino Veltman Loop integral divergences [156, 160].

For higher-order tensors combining Eq. (3.1.80), Eq. (3.1.82) and Eq. (3.1.68) results
in a set of linear equations for the corresponding coefficient functions. If it can be solved
the tensor integrals are expressed iteratively in terms of scalar integrals TL0 with L ≤ N .
Depending on the momentum the linear equations can not be solved and the reduction
algorithm breaks down. This usually happens at the edge of phase space where some
momenta pi become collinear. If the Gram determinant is zero, but the momenta are
not linear dependent one has to use a different reduction algorithm [161–163]. For
numerical evaluation the PV tensors are not necessarily ideal, since cancellations between
the scalar integrals can lead to numerical instabilities. More advanced reductions to
master integrals can be achieved using integration-by-parts identities, leading to a linear
system that is solved using the Laporta algorithm [164, 165]. This complication and
freedom in the reduction of loops is the reason for the existence of many loop (reduction)
libraries. Just to name a few prominent examples: FF [166], Collier [167], LoopTools,
OneLoop [168], CutTools [169], QCDloop [170], MadLoop [171], Golem [172], Ninja [173]
and Samurai [174]. Now that we have established a practical framework for managing
divergences, we proceed to address the necessary renormalization of our fields in the
following chapter.

3.1.3 Renormalization
In order to absorb the UV-divergences appearing at one-loop level we replace the bare
bosonic fields φ0 with renormalized fields φ

φ0 =
√
Z0φ0 →

√
Zφφ =

√
1 + δZφφ = (1 + 1

2δZφ)φ . (3.1.87)
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Left- and right-handed fermionic fields are treated separately

ψ0 =
√
Z0ψ0 → (1 + 1

2δZ
L
ψPL + 1

2δZ
R
ψ PR)ψ , (3.1.88)

where we introduce the chirality projectors PL,R = 1
2 (1 ∓ γ5) since we are operating in

the mass-eigenstates now. The L,R index notation is used to separate the two cases in
analogy to the ± notation.

Similarly, couplings λ and masses m get corrections

λ0 → Zλλ = λ+ δZλλ , (3.1.89)
m0 → Zmm = m+ δZmm. (3.1.90)

The advantage of using a renormalization constant δZ shifted from the bare coupling
1 instead of the whole multiplicative renormalization constants Z is that we reproduce
our original bare Lagrangian with new counterterms

L0 → L + L× . (3.1.91)

The counterterms will then be chosen to explicitly cancel the UV-divergences encoun-
tered at one-loop level in the bare Lagrangian.

In the OS renormalization scheme the renormalized masses correspond to the physical
masses and the real part of the propagator’s residue is normalized to 1. This differs from
the modified minimal subtraction scheme MS, where one includes extra counterterms
to account for the proper normalization of the residue [10]. Another advantage of the
OS renormalization is that we do not have to compute loops at the legs of our Feynman
diagrams. Furthermore, the cancellation of UV divergences between various vertices and
wave-function renormalization functions is checked explicitly.

Since we only encounter gluons and quarks as intermediate particles at LO in our pro-
cesses, we look at their renormalization first. To determine the running of the coupling
we will also renormalize the gluon propagator.

3.1.3.1 Quarks

The kinetic and mass terms of the bare Lagrangian for quarks reads

L0 = iψ̄L0 /∂ψL0 −m0ψ̄
R
0 ψ

L
0 + (L ↔ R) . (3.1.92)

Here the upper indices refer to whether a quark is left- or right-handed. Replacing the
bare quantities

ψL,R0 →
√
ZL,Rψ ψL,R = (1 + 1

2δZ
L,R
ψ )ψL,R , (3.1.93)

m0 → Zmm = (1 + δZm)m, (3.1.94)

in the bare Lagrangian L0 yields

L = iψ̄L /∂ψL −mψ̄RψL︸ ︷︷ ︸
L0

(3.1.95)

+ i Re[δZLψ ]ψ̄L /∂ψL −m

(
δZm + 1

2(δZR∗
ψ + δZLψ )

)
ψ̄RψL︸ ︷︷ ︸

L×

+(L ↔ R) , (3.1.96)
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without higher-order terms in δZ. The bare Lagrangian L0 gives the typical two-point
Green’s function by replacing the derivatives with the momenta −ip, formally a Fourier
transformation into momentum space, and dropping the fields ψ

−iΣ0 = i(/p−m) , (3.1.97)

where we apply PL + PR = 1, after using ψ̄RψL = ψ̄PLψ and ψ̄Lγ
µψL = ψ̄γµPLψ.

Following the same steps, the new two-point Green’s function for the counterterms is
obtained

−iΣ× = i
(
/pRe[δZLψ ] −m

(
δZm + 1

2(δZR∗
ψ + δZLψ )

))
PL + (L ↔ R) . (3.1.98)

The NLO propagator ΠNLO
ψ then consists of additional self-energies and counterterms

ΠNLO
ψ = ΠLO

ψ + ΠLO
ψ (−iΣ)ΠLO

ψ + ΠLO
ψ (−iΣ×)ΠLO

ψ (3.1.99)

= ΠLO
ψ (1 + (−iΣ̂)ΠLO

ψ ) , (3.1.100)

where Σ are the bare self-energy loop contributions. Combining the counterterms and
self-energies then gives the renormalized self-energy Σ̂. Splitting up the vectorial ΣV
and scalar ΣS part allows us to rewrite

Σ̂ =
(
/p (ΣV − Re[δZLψ ])︸ ︷︷ ︸

Σ̂L
V

+m

(
δZm + 1

2(δZR∗
ψ + δZLψ ) + ΣLS

m

)
︸ ︷︷ ︸

Σ̂L
S

)
PL + (L ↔ R) .

(3.1.101)

To realize OS renormalization the following two conditions must be satisfied [33,
175]. First, the real part of the propagator’s pole must be the physical mass, that is

Re
[

1
ΠNLO
ψ (m2)

]
u(p,m) = 0 3.1.100=⇒ Re[Σ̂(p2 = m2)]u(p,m) = 0 . (3.1.102)

And second, the real part of the propagator’s residue should be normalized to 1, trans-
lating to

lim
p2→m2

Re[−i(/p−m)ΠNLO
ψ ]u(p,m) = u(p,m) 3.1.100=⇒ lim

p2→m2

/p+m

p2 −m2 Re[Σ̂]u(p,m) = 0 .

(3.1.103)

These conditions define how we get the OS renormalization constants δZ from the bare
self-energies Σ

δZm = −1
2 Re

[
ΣLV + ΣRV + ΣLS + ΣRS

m

]
p2=m2

, (3.1.104)

δZL,Rψ = Re
[

ΣL,RV +m2(Σ̇L,RV + Σ̇R,LV + Σ̇L,RS + Σ̇R,LS

m
)
]
p2=m2

, (3.1.105)

where Σ̇ is the derivative in p2. However, we will see in the following sections that no
corrections to the quark mass are necessary, since the only particle we treat as massive
is the top, which we assume to be negligible in the proton initial-state.
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3.1.3.2 Gluon

The renormalization of the gluon is determined in a similar procedure to the previous
squark case. But a difference lies in the vanishing longitudinal propagator due to gauge
invariance

−iΠab
µν(p2) = −iδab

((
gµν − pµpν

p2

)
Πt(p2) + pµpν

p2 Πl(p2)
)
. (3.1.106)

Since the gluon is massless, its renormalization constant is solely determined by the OS
condition

δZg = − Re
[

dΠt(p2)
dp2

]
p2=0

. (3.1.107)

The resulting counterterms and the UV limit are given in [176].

3.1.4 Subtraction methods
After tackling the UV divergences by renormalization, we are left with the IR diver-
gences. One consequence of the IR divergences is that a Monte-Carlo integration over
a 3-particle phase space or larger will not give reliable results. The solution of the
formalism can be written in a short equation

σNLO =
∫
n+1

[
dσR − dσA]

ε=0 +
∫
n

[
dσV + dσC +

∫
1

dσA
]
ε=0

. (3.1.108)

An auxiliary function σA is subtracted from the real corrections and added to the virtu-
als. It will be chosen in such a way that it cancels all the soft and collinear divergences
arising in σR. For initial-state hadrons, the collinear counterterms σC are added to the
virtual corrections in consistency with the terms included in the PDF.

Several subtraction methods exist, each differing in their choice of the auxiliary
function dσA by resorting to different dipoles. We will first look at the FKS subtraction
method [177–179] and then the CS dipole [180, 181] subtraction.

3.1.4.1 The FKS subtraction method

The FKS method was introduced in Ref. [177] and generalized in Ref. [179]. The fun-
damental idea behind is to introduce a partition function that allows to separate soft
and collinear from hard regions similar to phase space slicing [182–186]. The goal is to
reproduce the divergent behaviour of the real corrections, i.e. in the soft and collinear
limits,

S →

{
∞ as Ej → 0 or θij → 0 ,
0 else .

(3.1.109)

One parametrization of this is separating in the divergent FSR and ISR. They diverge
as

SISR
0j = S1j + S2j = 1

E2
j (1 − cos2 θ1j)

and SFSR
ij =

E2
i + E2

j

2E2
i E

2
j (1 − cos θij)

, (3.1.110)



3.1. NEXT-TO-LEADING ORDER CALCULATIONS 50

with particle indices i, j ≥ 3 and θij the angle between the two particles. They can
be obtained from leading order dijet production limits [187]. After normalization, they
read

S̃0j = Sij∑
j(S0j +

∑
i Sij)

and S̃ij = Sij∑
j(S0j +

∑
i Sij)

Ej
Ei + Ej

, (3.1.111)

where the ratio over the energies is introduced to raise the degeneracy between i and
j. If one now probes a divergent 2 → 3 regime, then the non-divergent S̃ vanish by
construction

S̃0j,ij →

{
1 as Ej → 0 or θij → 0 ,
0 else .

(3.1.112)

This allows us to isolate the divergent parts of the real corrections Rij for given particle
i and j as

R =
∑
i,j

S̃ijR =
∑
i,j

Rij . (3.1.113)

In a generalized form extended to D dimensions, the phase space integral of a radiated
parton i can be written as

dD−1pi
(2π)D−12Ei

= dξi dy dΩD−2
s1−ε

(4π)3−2ε ξ
1−2ε
i

(
1 − y2

ij

)−ε
, (3.1.114)

with ξi = 2Ei/
√
s ∈ [0, 1] and yij = cos(θij) ∈ [−1, 1] and dΩD−2 is the (D − 2)-

dimensional solid-angle relative to the momentum of parton j. Next we can pick contri-
butions from there to cancel the divergences per singular regionRij in the real corrections

dD−1pi
(2π)D−12Ei

Rij = dξi dy dΩD−2
s1−ε

(4π)3−2ε ξ
−1−2ε
i

(
1 − y2

ij

)−ε

1 − yij
R̂ij , (3.1.115)

where R̂ij = ξ2
i (1 − yij)Rij is divergence free as can be seen from comparing against

Eq. (3.1.110). Instead of constructing the dσA explicitly one uses dσR − dσA = dσR̂.
We can then extract the IR divergences in ε−1 and ε−2

ξ1−2ε
i = − 1

2εδ(ξi) +
(

1
ξi

)
+

− 2ε
(

log(ξi)
ξi

)
+

+ O(ε2) , (3.1.116)(
1 − y2

ij

)−ε

1 − yij
= (1 + yij)−ε (1 − yij)−1−ε

, (3.1.117)

(1 − yij)−1−ε = −2−ε

ε
δ(1 − yij) +

(
1

1 − yij

)
+

− ε

(
log(1 − yij)

1 − yij

)
+

+ O(ε2) ,

(3.1.118)

where we encounter δ and plus distributions (cf. Sec. A.4.3). The poles are cancelled
against the poles of the virtual corrections and the collinear counterterms. In the FKS
subtraction scheme, the virtual contributions need to be provided using the CDR scheme.
Within the CDR scheme, the renormalized virtual contributions V can be expressed with
the IR poles explicitly shown

V = (4π)ε

Γ(1 − ε)
αs

2π

 1
ε2 aB + 1

ε

∑
i,j

cijBij + Vfin

 . (3.1.119)
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The coefficients a and cij are independent of ε, whereas the Born amplitude B and the
colour-correlated Born amplitude Bij are defined in D dimensions and thus depend on
ε. The finite virtual corrections are then Vfin. The coefficients cij are given in Ref. [177]
for coloured legs i and j by

cij = (1 − δij)
[
− γi
Ci

+ log
(

2pi · pj
µ2
R

)]
(3.1.120)

and a is the sum over the Casimir constants Ci

a = −
∑
i

Ci . (3.1.121)

The constants γi depend on the colour representation of the respective particle

γq = γq̄ = 3
2CF , (3.1.122)

γg = 11
6 CA − 2

3nfTF . (3.1.123)

All together, this results in the lengthy soft-virtual term dσV +
∫

d1dσA in Eq. (2.99) of
Ref. [188] used in the POWHEG BOX [63, 188, 189] implementation. In practice, POWHEG BOX
will construct the IR subtraction terms by itself, using the Born B, colour-correlated
Born Bij and the spin-correlated Born Bµν to cancel the divergences of the real correc-
tions Rij .

3.1.4.2 The Catani-Seymour formalism

The CS dipole formalism provides a convenient way of handling IR divergences. A full
explanation of this method can be found in Ref. [180] for massless particles, in Ref. [190]
specific for the case of photon radiation off massive fermions and in Ref. [191] for mas-
sive final-state particles. For massive initial-state particles, the method is described in
Ref. [192]. The regularization scheme dependence of the dipoles is discussed in Ref. [193]
and in even more generality in the references of Sec. 3.1.2. We first introduce the general
method. For more details on the notation see Sec. A.1.4 or the referenced papers.

The method derives its name from the construction of σA by summing over different
dipoles

dσA =
∑

dipoles

dσB ⊗ dVdipole (3.1.124)

correlated with spins and colours of the leading order σB. The contribution to the
virtuals corrections can then be rewritten∫

1
dσA = dσB ⊗

∑
dipoles

∫
1

dVdipole = dσB ⊗ I , (3.1.125)

where an insertion operator I is introduced. As a consequence of the KLN theorem,
it will cancel the infrared divergences in the virtual corrections. In hadron collisions,
there are additional contributions from the collinear remainders, expressed as P and K
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LO

j

i

k

Dij,k

(i) Final-state emitter, final-
state spectator

LO

a i

j

Dai
j

(ii) Initial-state emitter,
final-state spectator

LO

j

i

a

Da
ij

(iii) Final-state emitter,
initial-state spectator

LO

a i

b

Dai,b

(iv) Initial-state emitter,
initial-state spectator

Figure 3.7: Dipole diagrams for various emitter-spectator cases. Other particles involved
in the matrix element are not shown.

operators

∆σNLO =
∫

3

[
dσR − dσA]

ε=0 +
∫

2

[
dσV +

∫
1

dσA
]
ε=0

+
∫ 1

0
dx
∫

2

[
dσB(xp) ⊗ (P + K)(x)

]
ε=0 .

(3.1.126)

The dipole factorization formula reads

|MDIP
2→3|2 =

∑
i,j

∑
k 6=i,j

Dij,k +
∑
i,j

∑
a

Da
ij +

∑
a,i

∑
j 6=i

Dai
j +

∑
a,i

∑
b6=a

Dai,b ,

where the sums mean that we include all possible dipoles associated with our real cor-
rection Feynman diagrams. The dipoles are defined such that the singular regions of
the real correction 2 → 3 matrix element are cancelled, but can also be used for pro-
cesses with more than 3 final-state particles. Each dipole, D, corresponds to a distinct
emitter-spectator configuration, where both the emitter and spectator are coloured par-
ticles. Fig. 3.7 illustrates the four possible configurations. The general structure of all
these dipoles is

Dai
j (p1, p2, p3; pa, pb) ∝ 1

p2 2〈. . . , j, . . . ; ai, . . .|TspectatorTinterm.

T2
interm.

V |. . . , j, . . . ; ai, . . .〉2 ,

(3.1.127)
where the division by p2 is the origin of the IR divergence. The Casimir operator T2

interm.
is linked to the particle that enters the leading order process and is connected to two
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external particles (red), the emitter ij or ai. The kernel V depends on the momenta and
is closely related to the AP splitting functions (Eqs. (2.2.5) to (2.2.8)) describing the
collinear divergence. In order to match the divergence of the real corrections the colour-
correlation needs to be taken into account through TspectatorTinterm.. The 3-particle
phase space needs to be mapped to a 2-particle phase space such that the limiting
behaviour is correct and momentum conservation holds.

By integrating out the soft emitted particle of the dipoles, the insertion operator I
can be determined. We refer to [180] for more detailed equations where these derivations
are explained in depth. The integrated dipoles are defined through an insertion operator
I [191, Eq. (6.66)]

∫
dσA = m 〈1, . . . ,m| Im+a+b(ε, µ2, {pi,mi}) |1, . . . ,m〉m =

〈
Im+a+b(ε, µ2, {pi,mi})

〉
=
〈
Im(ε, µ2, {pi,mi}) + Ia(ε, µ2, {pi,mi}) + Ib(ε, µ2, {pi,mi})

〉
−
〈
αs

2π
(4π)ε

Γ(1 − ε)

(
1

T2
a

Ta · Tb

[(
µ2

ε2

)ε(T2
a

ε2
+ γa

ε

)
− T2

a

π2

3 + γa +Ka

]
+ (a ↔ b)

)〉
,

(3.1.128)
with the singular terms included in I [191, Eq. (6.16)]

Im(ε, µ2
R; {pi,mi}) = −αS

2π
(4π)ε

Γ(1 − ε)
∑
j

1
T2
j

∑
k 6=j

TjTk

·
[
T2
j

(
µ2

sjk

)ε(
νj(sjk,mj ,mk,mF ; ε, κ) − π2

3

)
+ Γj(µ,mj ,mF ; ε) + γj(1 + log µ2

sjk
) +Kj + O(ε)

]
.

(3.1.129)

The finite constants γj and Kj as well as the dipole kernel functions νj = νSj +νNSj can be
found in the paper [191]. The parameters change with the use of different regularization
schemes [148]. However, there is no difference between CDR and tHV schemes. This
is also intuitively clear since we expect the procedure to kill all remaining ε poles after
renormalization and thereby the additional O(ε) terms from CDR do not contribute to
the finite result.

The collinear counterterms are [180, Eq. (10.23)]

∫
dσC =

∑
a′

∫ 1

0
dxm,a′b 〈1, . . . ,m;xpa, pb| Ka,a′

(x) + Pa,a′
(x, µ2

F ) |1, . . . ,m;xpa, pb〉m,a′b

+
∑
b′

∫ 1

0
dxm,ab′ 〈1, . . . ,m; pa, xpb| Kb,b′

(x) + Pb,b′
(x, µ2

F ) |1, . . . ,m; pa, xpb〉m,ab′ ,

where the operators K and P are finite collinear counterterms depending on the lon-
gitudinal momentum fraction x. The P operator is defined in [191, Eq. (6.53) and
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(6.67)]

Pa,a′
(x;µ2

F ; pj , xpa, pb) =

αS
2π P

aa′
(x)

 1
T2
a′

∑
j

Tj · Ta′ log µ2
F

xsja
+ 1

T2
a′

Tb · Ta′ log µ2
F

xsab

 (3.1.130)

and the K operator is defined in [191, Eq. (6.55) and (6.68)]

Ka,a′
(x; pj , pa, pb) = αS

2π

{
K̄aa′

(x) −Kaa′

F.S.(x) −
∑
j

Tj · Ta′Ka,a′

j (x; sja,mj)

− 1
T2
a′

∑
j

Tj · Ta′

[
P aa

′

reg (x) log (1 − x)sja
(1 − x)sja +m2

j

+ γaδ
aa′
δ(1 − x)

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj

]

− Tb · Ta′

[
1

T2
a′
P aa

′

reg (x) log(1 − x) + δaa
′

(
2
(

log(1 − x)
1 − x

)
+

− π2

3 δ(1 − x)
)]}

.

(3.1.131)

All further the needed expressions for calculating these operators are given in Sec. A.3.3
and Sec. A.3.4.

3.1.5 On-shell resonances
In Sec. 2.2.4 we have seen how resonances can be described by a peak in the cross section
due to the denominator of the propagator going to zero. In the following example we
will consider electoweakino-squark production, where the resonances appear when the
particle’s momentum gets close to its mass p2

res → m2
q̃. Then the process splits into a

leading order process with a subsequent decay. Schematically, this can be illustrated as

p2
res→m2

q̃−−−−−−→ ⊗ . (3.1.132)

This process is only possible if the squark has a higher mass than the gaugino to allow a
decay in its own reference frame. We do not want this contribution in our computation
since it is already a part of the prediction of producing two squarks at leading order.

3.1.5.1 Subtraction and removal

In a first step we regularize the OS divergence by introducing a finite width Γq̃ to the
propagator such that

1
p2

res −m2
q̃

→ 1
p2

res −m2
q̃ + imq̃Γq̃

. (3.1.133)
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This width will act purely as a regulator and does not need to be the physical width.
If two amplitudes are combined and each has a resonant propagator we get a double
resonant propagator (note the conjugation of one propagator)

1
(p2

res −m2
q̃)2 → 1

(p2
res −m2

q̃)2 +m2
q̃Γ2

q̃

. (3.1.134)

Our total ME splits into three pieces

|Mtot|2 = |Mnr|2 + 2 Re[MrM∗
nr] + |Mr|2 . (3.1.135)

The non-resonant diagrams are part of Mnr and the remaining resonant diagrams are
included in Mr.

The simplest method to exclude the large contributions is Diagram Removal (DR),
where double resonance |Mr|2 and the interference 2 Re[MrM∗

nr] are not considered
(DR-I). It is also possible to only exclude the double resonant part and keep the inter-
ference (DR-II) [194]. The price one pays for such a simple method is the apparent loss
of gauge invariance.

Therefore, we will instead apply Diagram Subtraction (DS). DS keeps both the single
(interference) and double resonant pieces and only locally subtracts the contribution
from the leading order process followed by the decay (lhs. Eq. (3.1.132)). The advantage
of this method is that it respects gauge invariance for vanishing width Γq̃. Consequently,
we do not just integrate |Mtot|2 over a 3-particle phase space dΦ3 but instead include
a point wise subtraction

(
|Mtot|2 − |Mr(Φ̃3)|2

m2
q̃Γ2

q̃

(p2
res −m2

q̃)2 +m2
q̃Γ2

q̃︸ ︷︷ ︸
Breit-Wigner

θ(
√
s−mq̃ −mq̃∗)︸ ︷︷ ︸
q̃q̃∗-production

θ(mq̃ −mχ̃)︸ ︷︷ ︸
decay

dΦ̃3

dΦ3

)
dΦ3 .

(3.1.136)
First, we include a BW function corresponding to the decay with given width Γq̃. For the
production of q̃q̃∗ at leading order to be kinematically allowed there must be sufficient
energy

√
s to constitute their masses. The second θ function restrains our subtraction

to the cases where a subsequent decay is allowed.
We must introduce a new 3-particle phase space Φ3 → Φ̃3 similar to the CS formalism

to remove only contributions from |Mr|2 where p̃2
res = (p2 + p3)2 = m2

q̃ is OS. Please
note that the BW function is still evaluated in Φ3 as it evaluates to 1 otherwise. More
details, especially on the explicit form of the Jacobian dΦ̃3

dΦ3
, are given in Ref. [195] on

the specific case of squark pair production.
We split the integration over the 3-particle phase space dΦ3 in a double resonant

part with the diagram subtraction and the rest (non-resonant and single resonant). This
allows the MC integration to converge faster by focusing on the dominating region of
each part.

3.1.5.2 Breit-Wigner cutoff

MadGraph instead uses a BW cutoff ∆%
bwcutoff [140]. Given again a squark resonance with

a physical width Γq̃, two separate processes are computed for the virtuality m∗
q̃ =

√
p2

res
being close to the mass pole, i.e. the OS region

|m∗
q̃ −mq̃| ≤ ∆%

bwcutoffΓq̃ , (3.1.137)
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and the off-shell region
|m∗

q̃ −mq̃| > ∆%
bwcutoffΓq̃ . (3.1.138)

The OS process only includes resonant diagrams, which violates gauge invariance, except
for the case of vanishing width Γq̃. A consequence of the narrow-width approximation
[196–198] is that there is no interference between the decay products of different reso-
nances. Hence, the decay factorizes as expressed in MadGraph’s decay-chain syntax p p
> sq sq*, sq* > chi q* 1 resembling Eq. (3.1.132) with spin correlations and off-shell
effects taken into account exactly. The off-shell process includes all diagrams and is used
to compute the full matrix element, p p > sq chi q* . While the individual processes
are dependent on the BW cutoff, the sum is almost independent of it

dσ ≈ dσon-shell + dσoff-shell . (3.1.139)

3.2 Monte Carlo methods
MC methods are a versatile and widely-used class of computational techniques that rely
on random sampling to solve problems that are too complex to handle with direct an-
alytical methods. The strength of MC techniques lies in their simplicity, flexibility and
parallelizability, making them particularly well-suited for handling multi-dimensional
integrals and stochastic processes, like the inherently statistical nature of quantum me-
chanics, especially in particle physics, but also across a wide range of scientific fields. In
quantum systems, many processes do not have a single deterministic outcome but rather
a distribution of possible outcomes that can only be understood through probabilistic
reasoning. This statistical ensemble approach is intrinsic to how quantum measurements
are modelled and analysed, and MC techniques offer a natural way to explore such distri-
butions. By generating random samples according to specific probability distributions,
MC simulations allow us to estimate quantities that are otherwise challenging to com-
pute. The applications of MC methods span various domains in high-energy physics:

Monte Carlo Integrators Integrating high-dimensional functions over complex do-
mains is a recurring problem in particle physics, especially when calculating cross sec-
tions, decay rates, or other observables. Traditional numerical integration techniques
often become impractical as the dimensionality increases. MC integrators excel here
because they scale efficiently with dimensionality and are straightforward to implement.
Moreover, they are easily parallelizable, allowing for fast computations, and provide
reliable error estimates, making them a favoured choice in simulations.

Since many programs exists we will just list a few prominent examples here. The
VEGAS [199, 200] algorithm is a widely-used method for adaptive importance sampling,
which partitions the integration domain into hypercubes and adjusts their sizes itera-
tively based on the function’s behaviour. The CUBA [201, 202] library offers a collection
of MC integrators, each designed with distinct strategies such as adaptive subdivision
and stratified sampling to enhance the efficiency of numerical integration. Another note-
worthy approach is the FOAM [203] algorithm, which employs a triangulation technique
to divide the integration region into cells, facilitating a more refined exploration of the

1These are not the actual particle names within MadGraph’s MSSM models.
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space. Recently, machine learning techniques have been introduced into this area with
the i-flow [204] framework. It uses normalizing flows, i.e. invertible neural networks
trained to optimize the importance sampling function, thereby improving both accuracy
and computational speed.

Since the transition to event generators is seamless some tools support both. The
SPRING-BASES [205] system builds on the VEGAS algorithm [199], initially performing
integration of a positive function and subsequently generating events with a probability
distribution proportional to the integrand. Similarly, the MINT [206] program is specif-
ically designed for adaptive MC integration and event generation, and is particularly
useful in generating unweighted distributions as applied in POWHEG BOX.

General-Purpose Event Generators In particle physics, simulating events like col-
lisions at the LHC is crucial for both theoretical predictions and experimental analyses.
These event generators incorporate detailed models of particle interactions, including
parton showers, hadronisation, and even detector effects. By generating large ensembles
of events that mimic real experiments, they allow studying processes ranging from fun-
damental interactions to complex backgrounds. Prominent examples include MadGraph,
PYTHIA, HERWIG, and Sherpa.

Monte Carlo Markov Chains While not the main focus of this thesis, Monte Carlo
Markov Chain (MCMC) methods are another important subset of MC techniques. They
are particularly useful in situations where a large parameter space needs to be explored
efficiently, such as in lattice QCD or fitting models to data. The Metropolis algorithm, a
cornerstone of MCMC methods, is recognized as one of the most significant algorithms
developed in the 20th century [207].

3.2.1 Integrators
The fundamental idea behind Monte Carlo integration is the repeated sampling of ran-
dom points to approximate the desired integral, allowing the approximation to converge
to the exact solution as the number of samples increases. The method is closely related
to the Riemann sum for approximating an integral

∫ b
a
g(x), dx can be expressed as∫ b

a

g(x)dx = lim
N→∞

b− a

N

N∑
i=1

g(xi) = (b− a)〈g〉 , (3.2.1)

where xi are evenly spaced points within the interval (a; b), and 〈g〉 represents the
average value of the function g(x) over the interval. In Monte Carlo integration, instead
of using evenly spaced points, random points xr ∈ (a; b) are sampled∫ b

a

g(x), dx = lim
N→∞

b− a

N

N∑
r=1

g(xr) = (b− a)〈g〉. (3.2.2)

The central limit theorem ensures that the average 〈g〉 of the sampled points approaches
a Gaussian distribution with a standard deviation given by [208]

σN (I1) =
√
VN (I1)
N

, (3.2.3)
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where VN (I1) is the variance of the integral estimate

VN (I1) = 1
N

N∑
r=1

(Wr − 〈Wr〉)2 = 1
N

N∑
r=1

(
W 2
r − 2Wr〈Wr〉 + 〈Wr〉2)

= 1
N

N∑
r=1

W 2
r −

(
1
N

N∑
r=1

Wr

)2

= 〈W 2
r 〉 − 〈Wr〉2 ≥ 0 ,

(3.2.4)

with weights Wr = (b − a)g(xr). For all practical purposes it is sufficient to integrate
over the unit hypercube, as the integral can be rescaled to the desired interval∫ b

a

g(x)dx =
∫ 1

0
(b− a)g(a+ (b− a)x)dx . (3.2.5)

One of the significant advantages of Monte Carlo integration is that its convergence
rate is proportional to 1/N1/2, regardless of the dimensionality of the problem. This
feature makes it particularly effective for high-dimensional integrals, where other numer-
ical integration methods, such as the trapezoidal rule 1/N2/d, Simpson’s rule 1/N4/d,
or Gaussian quadrature 1/N (2m−1)/d, suffer from the curse of dimensionality [209].

For a d-dimensional integral over the region (a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , ad ≤
xd ≤ bd), Monte Carlo integration takes the form

Id =
∫ b1

a1

dx1

∫ b2

a2

dx2· · ·
∫ bd

ad

dxd g(x1, x2, . . . , xd) = lim
N→∞

Vol
N

N∑
r=1

g(x1, x2, . . . , xd) ,

(3.2.6)

where the integration volume Vol is given by

Vol =
∫ b1

a1

dx1

∫ b2

a2

dx2· · ·
∫ bd

ad

dxd =
d∏
i=1

(bi − ai) . (3.2.7)

Thus, the integral can be expressed as

Id = Vol〈g〉. (3.2.8)

This method remains effective even as the dimensionality increases, the standard
deviation remains proportional 1/

√
N . This characteristic makes Monte Carlo integra-

tion an essential tool for evaluating high-dimensional integrals in areas such as quantum
mechanics and statistical physics [210].

The text book example for Monte Carlo integration is the calculation of π. To
calculate π, consider the area of a unit circle, which is given by A = πr2 = π for
a circle with radius r = 1. The integral to compute this area can be expressed as
I =

∫ 1
−1
∫ 1

−1 dx dy
(
1 − θ(x2 + y2)

)
O(x, y), where θ(x2 + y2) is a step function that

evaluates to 1 inside the circle and 0 outside (cf. Sec. A.4.2). For a simple Monte Carlo
integration with O = 1, random points (x, y) are generated uniformly within the square
[−1, 1] × [−1, 1] as illustrated in Fig. 3.8i. The fraction of these points that fall inside
the circle (where x2 +y2 ≤ 1) is then multiplied by the area of the square, 4, to estimate
π. The convergence rate of this method is O

(
1√
N

)
, where N is the number of samples.

This is shown in Fig. 3.8ii.
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Figure 3.8: MC integration of a circle.

d 2 5 10 50 100

Vol(Sd)/Vol(Cd) 0.785 0.164 0.0025 1.5 × 10−28 1.9 × 10−70

Table 3.3: Volume of the d dimensional sphere Sd relative to the volume of the d
dimensional hypercube Cd [202].

The convergence property is the primary reason Monte Carlo integration is favoured
for high-dimensional problems. However, challenges arise as the dimensionality increases
significantly. Consider a d-dimensional sphere Sd inscribed within a d-dimensional hy-
percube Cd = [−1, 1]d. As the dimension d grows, the probability of randomly hitting
the sphere diminishes because most of the hypercube’s volume lies outside the sphere.
This phenomenon is illustrated by the ratio

Vol(Sd)
Vol(Cd)

=
(
π
4
) d

2

Γ(1 + d
2 )
, (3.2.9)

where Γ is the gamma function. The ratio is shown for various dimensions d in Tab. 3.3.
For large d, the problem resembles Monte Carlo integration over a distribution with
a very narrow peak. The volume of the sphere can be more efficiently calculated by
switching to spherical coordinates. This approach involves transforming the original
integral, and such transformations in Monte Carlo integration are commonly referred to
as Importance Sampling, which we will discuss next.

3.2.2 Importance sampling
Importance sampling is a variance reduction technique often used in MC integration.
The core idea is to focus computational effort on the regions of the integration domain
that contribute most to the integral. Considering again an integral of the form

I =
∫ b

a

g(x) dx . (3.2.10)

If the function g(x) is small in most of the integration region, many sampled points con-
tribute very little to the integral, leading to inefficiency. Importance sampling addresses
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this by introducing a different function f(x) that resembles g(x) but is easier to sample
from and has a simple invertible integrated function F (x). First, choose a function f(x)
that is similar to g(x), ensuring that it is easy to sample from and that its integral can
be inverted

y = F (x) ⇔ x = F−1(y) , (3.2.11)
dy

dx
= f(x) ⇔ dx = dy

f(x) . (3.2.12)

This allows us to express the integral as

I =
∫ b

a

g(x)dx =
∫ F (b)

F (a)

g(F−1(y))
f(F−1(y))dy =

∫ F (b)

F (a)
g(F−1(y))(F−1)′(y)dy , (3.2.13)

where the final step is the inverse function rule. The advantage here is that f(x) is
chosen to be large where g(x) is large, focusing the sampling on regions that contribute
most to the integral. Ideally, this leads to a significant reduction in the variance (3.2.4)
and thus reduces the Monte Carlo integration error (3.2.3). While the approach ideally
solves the problem of inefficient sampling, it requires the choice of a suitable function
f(x). If f(x) is not well-matched to g(x), the performance may actually degrade, leading
to longer computation times and poor convergence. Essentially, importance sampling
can be viewed as a form of integration by substitution, where the variable transformation
is designed to flatten the integrand and reduce the variability in the results. To make
that more explicit we can substitute F−1 → h

I =
∫ h−1(b)

h−1(a)
g(h(y))h′(y)dy =

∫ b

a

g(x)dx . (3.2.14)

A simple example here is the integration of a BW distribution

I =
∫ M2

max

M2
min

1
(m2 −M2)2 +M2Γ2 dm2 , (3.2.15)

where we can guess the integral of the function to behave as m2 = F−1(ρ) = MΓ tan ρ+
M2, giving

I =
∫ ρmax

ρmin

∣∣∣∣∂m2

∂ρ

∣∣∣∣ 1
(m2 −M2)2 +M2Γ2 dρ (3.2.16)

=
∫ ρmax

ρmin

MΓ sec2 ρ
1

M2Γ2 sec2 ρ
dρ (3.2.17)

= 1
MΓ

∫ ρmax

ρmin

dρ . (3.2.18)

Picking any random point in the ρ space contributes equally to the integral, making
the sampling more efficient than in the original m2 space [208]. In praxis the sampling
function will not be as fitting as the one in this example, but the principle remains the
same.
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3.2.3 Random number generation and sequences
So far we have just assumed that we can generate random numbers. This is not trivial,
since computers are deterministic machines, though hardware driven methods exist to
obtain truly random numbers [213–216]. We can only generate pseudo-random numbers,
which are sequences of numbers that appear random, but are actually generated by a
deterministic algorithm. The algorithm is initialized with a seed, and then generates a
sequence of numbers that are uniformly distributed in the interval [0, 1]. The sequence
is periodic through application of modulo arithmetic with a Mersenne prime number,
and the period is determined by the algorithm and the seed. The Mersenne Twister
is a popular pseudo-random number generator that has a long period of 219937 − 1
and good statistical properties. It is suitable for most general-purpose simulations and
computations.

The Koksma-Hlawka inequality [217] provides a powerful bound for numerical inte-
gration when using low-discrepancy sequences, which are sequences designed to fill the
integration domain more uniformly than random sampling. For a function f defined on
the d-dimensional unit cube [0, 1]d, the inequality is given by∣∣∣∣∣∣ 1

N

N∑
j=1

f(xj) −
∫

[0,1]d

f(x)dx

∣∣∣∣∣∣ ≤ DNV (f) . (3.2.19)

The quantity V (f) is the variation of the function f , capturing the function’s sensitivity
to changes across the domain. Here, DN represents the discrepancy of the sequence
{x1, x2, . . . , xN}, which quantifies how uniformly the points are distributed by compar-
ing the number of points within any axis-aligned box [0, t] to the volume of that box.
Specifically, DN is defined as

DN = sup
t∈[0,1]d

∣∣∣∣∣∣ 1
N

N∑
j=1

χ[0,t](xj) −
d∏
k=1

tk

∣∣∣∣∣∣ , (3.2.20)

where χ[0,t](x) is the characteristic function that indicates whether a point x lies within
the box [0, t] = [0, t1] × [0, t2] × · · · × [0, td]. This inequality highlights the advan-
tage of using low-discrepancy sequences, as they typically achieve convergence rates
of O

(
logd−1 N

N

)
, which is significantly better than the O

(
1√
N

)
rate associated with

standard Monte Carlo methods.
One example of such quasi random number sequences is the Sobol sequence [218],

which is designed to be well-distributed across the space and avoid clustering of points.
Since it avoids clustering, it is particularly beneficial for subdividing algorithms, where
clustering can lead to inaccuracies in the results. The difference between pseudo-random
and quasi-random sequences is displayed in Fig. 3.9. It demonstrates that quasi-random
numbers distribute across the plane more uniformly than pseudo-random numbers.

3.2.4 Event generation
Event generators play a crucial role in particle physics simulations, allowing us to pro-
duce events according to a given probability distribution. Instead of merely integrating
over a probability distribution to obtain cross sections or observables, Monte Carlo tech-
niques enable us to generate a set of events directly. This approach allows us to create
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n = 3000 n = 4000

n = 1000 n = 2000

(i) Mersenne Twister Pseudo-Random Num-
bers

n = 3000 n = 4000

n = 1000 n = 2000

(ii) Sobol Quasi-Random Numbers

Figure 3.9: Comparison of random numbers by taking n pairs of random values and
plotting them in a 2D space, thus showing how they probe the space [202].

realistic event samples that can be reused for different analyses, enhancing the efficiency
and flexibility of our studies.

Monte Carlo event generation begins with the collection of a set of phase space points,
each corresponding to a potential event. Since an event corresponding to a single phase
space point with fixed momenta has a vanishing probability and therefore does not
significantly contribute to the integral, it is the collective sample of events that carries
physical relevance. The core challenge lies in assigning weights to these events according
to the underlying distribution. In general, the weights represent the probability of
each event occurring based on the model being simulated. However, processing events
with very small weights can be wasteful since they contribute minimally to further
calculations. Therefore, ideally we would like to generate events with uniform weights,
simplifying the analysis and making the sample more manageable.

A common approach to unweighting is the hit-or-miss method. This technique relies
on selecting phase space points and accepting them with a probability proportional to
their weight. The procedure can be summarized as follows:

1. During the integration phase, determine and store the maximum value of the
distribution, denoted as fmax. This value is used for normalization and calculating
the total cross section 〈f〉.

2. Randomly sample phase space points x. Each point is accepted with a probability
given by f(x)/fmax, where f(x) is the value of the distribution at that phase space
point. This is illustrated in Fig. 3.10.

3. Accepted events are assigned a uniform weight of 〈f〉, effectively generating an
unweighted sample.

The distribution information is now encoded in the number of events, rather than
varying weights, making the sample easier to analyse and suitable for direct use in
further simulations or studies.
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Figure 3.10: Illustration of the hit-or-miss method for event generation. Phase-space
points are sampled, and events are accepted or rejected based on the value of the dis-
tribution at each point relative to fmax. The figure can be found in Ref. [219].

One potential problem with the hit-or-miss method that has been omitted in the
above description is how negative values of f are handled. Since the probability of an
event cannot be negative, negative weights are not physically meaningful, but can prac-
tically be used as long as there are not too many. The folding procedure is a technique
commonly used in particle physics simulations to address the problem of negative-weight
events, which can arise during the unweighting process when calculating cross sections
that are not positive-definite in certain radiative phase spaces. This issue is mitigated by
averaging over multiple “folds”, which are sets of integration variables typically linked to
the radiated particles (η, y and ξ), allowing local negative contributions to be efficiently
balanced out before performing unweighting. That such a factorization can improve the
negative weight ratio was first noted in Ref. [220], formalized in Ref. [206] and later
implemented in POWHEG BOX. However, the computational cost of this method increases
significantly with the number of folds, as runtime scales approximately with the prod-
uct of the folding factors. While this approach can reduce the occurrence of negative
weights, making it computationally advantageous in scenarios involving overheads like
detector simulation and storage, the net benefit may not always justify the additional
central processing unit (CPU) time, depending on the complexity and requirements of
the simulation [221, 222].

3.2.5 Shower Monte Carlo
In Sec. 2.2.5 the mathematical formalism of parton showers was introduced. Now we
map the parton shower evolution to a Monte Carlo algorithm. From Eq. (2.2.43) we
want to generate a splitting according to

f(x)∆(h(x)) , (3.2.21)

with
∆(h) = exp

(
−
∫

dxf(x)θ(h(x) − h)
)

(3.2.22)

and f and h non-negative functions and ∆(0) = 0 since f diverges. From the derivative
of the Sudakov factor

d∆(h) =
∫

dx dh δ(h− h(x))f(x)∆(h) = dx f(x)∆(h(x)) , (3.2.23)
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we see that distributing dx is uniform in ∆(h). Therefore, one picks a uniform random
number ri ∈ (0, 1) and solves ∆(H) = r1 for H. Next, H can be used to generate the x
variables using

∫
dxδ(H − h(x))f(x) = r2. Since solving these equations numerically is

difficult, using the following veto method is more practical.
Given a simpler upper bounding function F (x) ≥ f(x) the Sudakov factor can be

written as
∆F (h) = exp

(
−
∫

dxF (x)θ(h(x) − h)
)
. (3.2.24)

First a random number r1 is drawn and H is solved from ∆F (H)/∆F (Hmax) = r1, where
∆F (Hmax) is 1 in the beginning. Next, an x is constructed following F (x)θ(h(x) −H).
The splitting is accepted if a new random number r2 < f(x)/F (x) otherwise Hmax = H
and the procedure is repeated. The proof that this procedure generates the correct
distribution is given in Ref. [223]. For a transverse momentum ordered shower h(x) =
pT (x) and f(x) = P (x) are the AP-splittings and terminates when the scale reaches
ΛQCD.

The procedure can be generalized for multiple possible splitting through the
highest-pT bid procedure

fk(xk)
∏
i

∆i(hk(xk)) dxdk , (3.2.25)

where
∆i(h) = exp

(
−
∫

dd xifi(xi)θ(hi(xi) − h)
)

(3.2.26)

as shown in Ref. [188]. Generating xk as before with a probability

fk(xk)∆i(hk(xk)) dxdk (3.2.27)

the k value of largest hk is selected. The probability of the hk(xk) being the largest is
given by the probability that no other emission occurs before∏

i 6=k
∆i(hk(xk)) , (3.2.28)

which reproduces Eq. (3.2.25) multiplied with its own probability in Eq. (3.2.27).

3.2.6 Full event generation
The full generation of a physical event is a multistep process, where several distinct
stages contribute to the simulation of a realistic event. Each of the following steps is
visualized in Fig. 3.11. They mostly correspond to the discussed stages in Sec. 2.2

1. Hard process generation: Pick a phase space following hit-or-miss method.
(Sec. 5.2.2)

2. Heavy resonance decay: Heavy resonances with narrow widths are decayed
before the parton shower. (Sec. 2.2.4)

3. PDF and parton shower: Any charged (QCD/QED) initial or final parton/-
particle can radiate. (Sec. 2.2.2 and Sec. 2.2.5)
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4. Multiple parton interactions: Secondary interactions between partons within
the colliding hadrons, modelled as QCD 2 → 2 interactions, are generated.
(Sec. 2.3)

5. Hadronisation and hadron decays: In the cluster model, clusters are
formed and hadrons are produced. Unstable hadrons are subsequently decayed.
(Sec. 2.2.7)

After generating many full events, the next step can be a detector simulation the re-
sponse, followed by further analysis steps such as applying selection criteria and extract-
ing physical observables. Alternatively, the events can be compared against experimental
data, where detector effects have been removed through unfolding techniques.
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(i) Hard process generation (ii) Heavy resonance decay

(iii) PDF and parton shower (iv) Multiple parton interactions

(v) Hadronisation and hadron decays

Figure 3.11: Different stages of event generation [208].
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3.3 Jets
In order to analyse the generated events and extract physical observables, we need to
identify and reconstruct jets. Interestingly, this is phenomenologically reversing the
parton shower process.

3.3.1 Algorithms
Any robust jet algorithm must meet several essential criteria to ensure its efficency and
reliability. Firstly, it must be fully defined, leaving no ambiguities in its application.
Secondly, the algorithm must be practical and applicable in both experimental and
theoretical contexts, ensuring that it can be universally utilized across various studies.
Most critically, to maintain the accuracy and consistency of cross section calculations
at any perturbative order, the algorithm must be IRC safe. An observable is considered
infrared safe if, for any n-parton configuration, the addition of an infinitely soft parton
does not impact the observable in any way. An observable is collinear safe if, for any
n-parton configuration, replacing any massless parton with an exactly collinear pair of
massless partons has no effect on the observable.

The definition of jets is very important for the study of QCD processes. It not only
allows to compare theoretical predictions with experimental data, but also to study the
properties of the strong force and jet substructure. Further, higher-order corrections
such as the merging of different event samples, as will be discussed in Sec. 3.3.2, require
the definition of jets. We will explain the most prominent algorithms and discuss them
in historical order.

3.3.1.1 Sterman-Weinberg

In 1977, Sterman and Weinberg provided the first algorithmic definition of a jet, aimed at
describing 2-jet-like events [224]. They calculated the cross section σ(e+e− → qq̄) at the
Born level and related it to the unresolved 3-jet cross section σNLO(e+e− → qq, ε, δ).
The unresolved third parton is either soft (with an energy less than εE) or collinear
(inside either of the jet cones of half-angle δ). The fraction f of all events which have
all but a fraction ε of their energy in the opposite cones of size δ is

f = σNLO(e+e− → qq̄, ε, δ)
σBorn(e+e− → qq) (3.3.1)

= σBorn+Virt(e+e− → qq̄) + σReal(e+e− → qq̄g, ε, δ)
σBorn(e+e− → qq) (3.3.2)

= 1 − (g2
E/3π2)(3 log δ + 4 log δ log 2ε+ π2/3 − 7/4) . (3.3.3)

As the renormalized QCD gauge coupling constant g2
E = 24π2/25 log(E/ΛQCD) gets

small with large energies E, the two-jet probability f approaches 1 even for small ε and
δ. Now one can require 70 % of the events to have 80 % of their energy in the two jet
cones of angular radius δ(E, f = 0.7, ε = 0.2).

3.3.1.2 Cone

Cone algorithms are the simplest jet algorithm and have existed since the early 1980’s
[225, 226]. In the η−φ space a cone of radius Rj =

√
(φi − φCj )2 + (ηi − ηCj )2 is defined
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around a center (ηCj , φCj ). Every parton that falls into this cone of Rj ≤ R is clustered
together to form a jet.

To find a stable cone the Snowmass scheme [227] starts with a trial axis (ηC0 , φC0 )
and computes the weighted centre of partons within the cone

ηCj+1 =
∑
i∈Rj

Eiηi∑
i∈Rj

Ei
and φCj+1 =

∑
i∈Rj

Eiφi∑
i∈Rj

Ei
. (3.3.4)

This is repeated until the axis converges to find a single jet. Their straight forward
mapping to an experimental setup and ease of implementation made them popular in
the early days of jet physics. However, the cone algorithms are typically not IRC safe.
The problem of collinear safety is connected to the problem of identifying the correct
jet axis, i.e. the seed (ηC0 , φC0 ). If a jet’s parton were to split into two partons, the cone
algorithm could cluster them into two separate jets violating collinear safety. Further
a soft parton can change the jet axis and clustering significantly, which is not physical
[228].

In order to obtain more than one jet the above stable cone finding has to be repeated.
These schemes are called iterative cone (IC) algorithms and there are two common types:
collinear unsafe IC progressive removal (IC-PR) and infra-red unsafe IC split-merge
(IC-SM) [76]. IC-PR starts with the hardest parton as seed and removes all partons
within the found stable cone. Then the next hardest parton is taken as seed and the
process is repeated until no partons are left. IC-SM instead finds all cones above a
certain threshold Ecut without removing them. Depending on the summed kT of the
overlapping partons, the resulting overlap of cones is treated either by merging them to
one jet or splitting them into two separate jets. In the splitting procedure the ambiguous
partons get included in the jet with the closer axis. A modern IRC safe cone algorithm
Seedless Infrared-Safe Cone (SISCone) is sketched in Sec. A.5.1.

3.3.1.3 JADE

The first 3-jet events were measured in 1979 at Deutsches Elektronen-Synchrotron
(DESY) [229] and further identified as spin 1 gluons [230]. The JADE algorithm is
named after one of the detectors at PETRA [231, 232]. Contrary to the Sterman-
Weinberg jet this algorithm clusters partons together to form jets. To do so, we first
introduce the notion of a protojet, which is a parton or a cluster of partons. The clusters
are constructed as follows:

1. Compute yij = M2
ij/Q

2 = (pi + pj)2/Q2 massless= 2EiEj(1 − cos θi,j)/Q2 for all
protojets i, j where Q is the total energy of an event.

2. Find the two protojets i and j with the smallest yij .

3. • If yij < ycut, combine them into a new protojet ij carrying the summed four
momenta pij = pi + pj and go to step 1,

• else stop and assign all protojets to jets.

The algorithm is infrared and collinear safe, i.e. it is insensitive to a low-energy or a
small-angle splitting of a parton. However, one shortcoming of the JADE algorithm is
that multiple soft emissions of back-to-back partons can be clustered into another jet,
which is not physical [233].
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3.3.1.4 Durham

The Durham algorithm [234] is a very similar to the JADE algorithm, but replaces
the invariant mass Mij by the transverse momentum kT,ij = 2 min(E2

i , E
2
j )(1 − cos θij)

giving an alternative measure of the distance between protojets

yij = 2(1 − cos θij) min(E2
i , E

2
j )/Q2 . (3.3.5)

The added minimization resolves the shortcoming of the JADE algorithm. The Durham
algorithm does not cluster soft emissions together if there is a hard emission with a
smaller distance in θij , as min(E2

i , E
2
j ) will be equally small for every combination [233].

3.3.1.5 kT algorithm

The kT algorithm [235] is a successive recombination algorithm. It proceeds similar to
previous algorithms by computing the distance between all protojets, however without
a direct dependence on the total event energy or scale Q. The algorithm consists of
multiple steps:

1. Compute the distance of prototjet i to the beam

diB = k2
ti (3.3.6)

and between all protojets

dij = dji = min(k2
ti, k

2
tj)
R2
ij

R2 , (3.3.7)

where R2
ij = (ηi − ηj)2 + (φi − φj)2 is a distance in the η − φ plane. The desired

radius R of the jet enters as a parameter of typical size R = 0.3 to 0.7.

2. Find the smallest distance dmin in dij or diB .

3. • If dmin is a dij , then merge the protojets i and j into a new protojet ij with
the following kinematics

kT,ij = kT,i + kT,j , ηij = kT,iηi + kT,jηj
kT,ij

, φij = kT,iφi + kT,jφj
kT,ij

.

(3.3.8)

• If dmin is a diB , then the protojet i is removed and promoted to a jet.

4. Go to step 2 until all protojets are clustered.

3.3.1.6 Cambridge/Aachen

The Cambridge/Aachen algorithm [233, 236] can be formulated identical to the kT
algorithm with simplified distance measures

dij = dji =
R2
ij

R2 and diB = 1 . (3.3.9)
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Figure 3.12: Comparison of the jet cluster definition of four different algorithms on a
parton-level event: kT (upper left), Cambridge/Aachen (upper right), SISCone (lower
left) and anti-kT (lower right) [237].

3.3.1.7 Anti-kT algorithm

The anti-kT [237] algorithm again uses a modified distance measure

dij = dji = min( 1
k2
ti

,
1
k2
tj

)
R2
ij

R2 and diB = 1
k2
ti

. (3.3.10)

Interestingly, the kT , Cambridge/Aachen and anti-kT algorithms can be combined into
a single expression

dij = dji = min(k2p
ti , k

2p
tj )

R2
ij

R2 and diB = k2p
ti , (3.3.11)

where p is a parameter that can be set to −1 for the anti-kt algorithm, 1 for the kT
algorithm and 0 for the Cambridge/Aachen.

In Fig. 3.12 the results jet cluster definition of four different algorithms is compared.
Here, the anti-kT algorithm produces the “roundest” jet clusters, especially around the
high-pT objects (red, green and dark blue). The roundness of a jet shows a strong
similarity to the cone algorithms and is what one would statistically expect from many
single hard partons. Hence, the anti-kT algorithm is often used for the identification
of hard objects in an event. The listed algorithms and many more are implemented in
FastJet [238].
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3.3.2 Merging
In order to get an accurate description of the hadronic activity in events with a final-
state featuring a high jet multiplicity, it is essential to rely on the combination of hard-
scattering matrix elements of different jet multiplicities. Consistency in this combination
is crucial to avoid double counting the QCD emissions generated from the matrix el-
ements (final-states with a fixed number of jets, inclusive of soft emissions) and from
parton showers (explicitly including the soft emissions, describing exclusive final-states
in the number of jets). The general idea behind multi-jet merging is to solve the double
counting issue by dividing the phase space into a hard region, where the matrix element
is used to describe the QCD radiation, and a soft region, where the parton shower is
used. This requires a merging scale Qms to cut of divergences. Each generated n-jet
sample is then reweighted (by Sudakov form factor, αS and PDF ratios) to resemble
how a parton shower would have generated the same event. Below the merging scale the
normal parton shower can proceed as usual. There remain however some issues, such as
the merging scale dependence and the breaking of unitarity of the shower.

In a simplified example of generating a tt̄ event with up to n = 2 jets it would follow
the following steps [239]:

1. Compute the cross section and generate events for each of the parton multiplicities
tt̄, tt̄j and tt̄jj up to the cutoff.

2. Pick one of the 3 multiplicities based on their relative integrated cross sections.

3. Adjust the weight by the probability that a parton shower will not attach an emis-
sion that would already be covered by the other matrix element level multiplicities.

4. Continue the shower such that either of the multiplicities obtain soft emissions,
without an overlap in the hard region.

In the following we will discuss the Catani-Krauss-Kuhn-Webber-Lönnblad (CKKW-L)
algorithm in detail, while outlines of Michelangelo-L.-Mangano (MLM) and Frederix-
Frixione (FxFx) merging can be found in Secs. A.5.2 to A.5.3.

3.3.2.1 CKKW-L

A popular merging algorithm is the CKKW-L algorithm [240–242]. The algorithm starts
from a hard-scattering event and generates a sequence of dipole emissions resembling
the structure emerging from the showered event. If the configuration of any of the dipole
emissions falls into the phase space region that should be described by the matrix ele-
ment, the event is rejected. This ensures that the hardest emissions are always described
by matrix elements and the softer ones by parton showers. Analogously, this results in
re-weighting the event by the associated Sudakov form factor (i.e. the probability that
there is no further emission once we start from the matrix element configuration). Each
dipole emission in the sequence is thus accepted as long as its scale does not exceed
a predefined merging scale QMS, that describes the transition between the regime in
which QCD radiation is described by matrix elements and that in which it is described
by parton showers. In a step by step description, the CKKW-L algorithm proceeds as
follows:

1. Generate events and calculate the cross section up to a cutoffQMS with a maximum
parton multiplicity N .
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2. Randomly select a parton multiplicity n with a probability proportional to its
integrated cross section at fixed strong coupling αS .

3. Construct a full cascade history, i.e. a set of intermediate states (S2, S3, . . . , Sn)
where S2 corresponds to the 2 → 2 process, Sn to the n-parton final-state and ρi
is the scale where Si−1 transitions to Si. This is achieved by selecting branchings
proportional to their probability.

4. Reweight the events with
∏3
i=3 αS(ρi)/αn−2

S .

5. For each state Si ensure that no emission happens between ρi and ρi+1, otherwise
reject the event, as there is an overlap between the hard and soft regime.
This rejection procedure becomes equivalent to reweighting by the Sudakov∏n−1
i=2 ∆Si(ρi, ρi+1) for large samples.

6. Finally,

• If n < N , reject the event if there is an emission between ρn and QMS, else
accept it and continue the shower cascade from QMS.

• If n = N , shower the event from the last branching scale ρn.

3.3.2.2 Differential jet rates

Differential jet rate (DJR), also known as Durham Jet Resolution, distributions play an
important role in validating the choice of parameters relevant for the merging prescrip-
tion, particularly the value of the merging scale QMS to which they are highly sensitive.
A suitable choice ensures a smooth transition between an event topology with n final-
state hard jets and a topology with n + 1 final-state hard jets, without any bumps,
peaks or abrupt transitions in the DJR spectra. Plotted is the cross section of every jet
multiplicity state and their sum against the logarithm of the minimized distance mea-
sure dn,n+1 between two protojets as computed by the jet algorithm. Fig. 3.13 shows
an example of a smooth inverted parabola in the DJR distribution between two 0 and 1
jet samples. A large value of dij indicates that the two protojets are well separated and
thus likely to be reconstructed as two separate jets. Hence, the sample generated with
more jets should have a larger cross section at large dij values. The lower jet multiplicity
samples also give some contributions to the high dij values, due to the attached parton
shower.

3.3.3 Matching
In the preceding sections, we have explored merging techniques used to improve the
accuracy of cross section predictions in General-Purpose Event Generators (GPEGs).
Typically, GPEGs rely on a LO approximation for the hard process, which is subse-
quently enhanced by a parton shower. This approach, however, often results in sig-
nificant discrepancies between the generated cross sections and higher-order theoretical
predictions. One common method to address this discrepancy is the application of a K-
factor, which scales the parton shower results to better match higher-order calculations.
Nevertheless, parton showers inherently employ approximations over a broad range of
scales, where precise higher-order calculations would be more appropriate.

For instance, when the first radiation occurs at a high scale, just below the hard
process scale, it is preferable to generate this radiation using a tree-level amplitude
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Figure 3.13: Example of a smooth transition in the DJR distribution between 0 and
1 jets in Zγγ production with MLM merging at the High Luminosity LHC (HL-LHC)
[243].

with an additional parton, rather than relying on the collinear approximation. In the
preceding section we saw that this issue is mitigated by merging tree-level results with
different numbers of partons in the final-state. An alternative and more comprehensive
solution involves the showering of full NLO results, or beyond. This approach not only
improves the normalization of the total cross section but also enhances the accuracy of
the first radiation distribution.

3.3.3.1 Madgraph5 - MC@NLO

Achieving NLO accuracy cannot be accomplished merely by replacing LO amplitudes
with NLO amplitudes for the hard process in combination with a parton shower, due to
the risk of double-counting real and virtual corrections. A NLO observable O comprises
contributions from both n-particle and n+ 1-particle states

〈O〉 =
∫

dΦn (Bn + Vn)On(Φn) ∼ +

+
∫

dΦn+1 Bn+1On+1(Φn+1) ∼ . (3.3.12)

The divergences between Bn+1 and Vn can be handled with universal FKS subtraction
terms as in MadGraph. Writing the local IR counterterms as D1 and their integrated
form as I1 the NLO observable becomes

〈O〉 =
∫

dΦn (Bn + Vn +Bn ⊗ I1)On(Φn) ∼ + +
∫
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+
∫

dΦn+1 (Bn+1On+1(Φn+1) −Bn ⊗D1On(Φn+1)) ∼ − ,

(3.3.13)

where soft and collinear gluons are coloured in blue. In our graphical notation attaching
an emission to the Bn by the PS overlaps with real radiation

PSn ∼ + . (3.3.14)

Consequently, an event generator must determine whether to generate an n-particle or an
n+1-particle hard event initially. This decision is made by selecting the hard event with a
probability proportional to its respective contribution, ensuring that these contributions
are made finite by appropriate subtraction techniques. Thus double counting between
NLO and PS can be avoided with additional parton shower counterterms P̄n+1 [244,
245]

〈O〉 =
∫

dΦn (Bn + Vn +Bn ⊗ I1)PSn(On,Φn) ∼ + +
∫

+
∫

dΦn+1 (Bn+1 −BnP̄n+1)PSn+1(On+1,Φn+1) ∼ −

+
∫

dΦn+1 (BnP̄n+1 −Bn ⊗D1)PSn(On,Φn+1) ∼ − . (3.3.15)

The last line shows that the dipole D and parton shower counterterms may cancel each
other. The PS has to start at respective emissions

PSn ∼ + + . . . , (3.3.16)

PSn+1 ∼ + . . . . (3.3.17)

The MC@NLO method regulates the low transverse momentum region and provides
a smooth transition between lower and higher scales as can be seen in Fig. 3.14. It shows
a top quark pair simulation by MadGraph, a well-known code that uses MC@NLO. At
large transverse momenta ptt̄T the fixed NLO calculation gives reliable results, while
at low transverse momenta the PS is more accurate. However, the drawbacks of this
method are that it requires a shower implementation with the correct counterterms and
can lead to many events with negative weights, which make a probability interpretation
impossible. This can be rectified by generating events with probabilities proportional to
the absolute values of the two contributions and assigning a negative weight to events
that would have had a negative probability. Since the focus is on large samples of events,
such as when computing distributions, this approach poses no problem because the sum
of both contributions is always positive (except in cases where the NLO calculation
fails). Nonetheless, a large fraction of negative weighted events will reduce statistical
power leading to longer computation times. This has prompted the recent development
of MC@NLO-∆ matching [221], which reduces the number of negative weights through
the construction of ∆ term, similar to the Sudakov form factor, to separate hard from
soft and collinear regions.
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Figure 3.14: Transverse momentum distribution of the top quark pair at the LHC with
acceptance cuts. Shown in Refs. [58, 246].

3.3.3.2 POWHEG method

The Positive Weight Hardest Emission Generator (POWHEG) method [63, 188], as the
name suggests, aims to solve the MC@NLO problem of negative weights. The method
starts with three key observations about the nature of emissions:

1. The hardest emission aligns with the hardest line in the shower.

2. Configurations with non-soft emissions before the hardest emission are collinear
subleading.

3. The ordering along the hardest line has Q2 . p2
T .

They also hold for angular ordered parton showers [63]. The POWHEG method is based
on generating the hardest emission first, using the ratio of the real to the Born matrix
elements as the splitting probability. After this initial splitting, the parton shower is
then applied, but only after the first emission has been generated.

Again, an observable O can be written as

〈O〉 =
∫

dσO =
∫

dΦB (B(ΦB) + V (ΦB))O(ΦB) +
∫

dΦRR(ΦR)O(ΦR) , (3.3.18)

where ΦB = Φn and ΦR = Φn+1 are the Born and real phase spaces respectively. They
can be mapped to each other by the radiation of an extra parton

dΦR = dΦB dΦrad , (3.3.19)

where the real phase spaces matches the Born kinematics in the soft and collinear limits.
This is similar to the phase space 3.1.114 seen in the FKS subtraction.

Instead of generating both n and n+ 1 particle final-states, only the n particle state
is generated. Through a modified Sudakov factor, the first emission is attached to the n
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particle state in such a way that the NLO accuracy is preserved. This means that there
are no negative weights2, as the emission is attached with the right NLO probability,
and the parton shower can take care of following emissions. In the description of the
FKS and CS subtraction methods we have already seen that an n+ 1 phase space can
be mapped to an n phase space and vice versa. Then,

B̄(ΦB) = B(ΦB) + V (ΦB) +
∫

dΦrad Rs(ΦR(ΦB ,Φrad))

+
∫

dΦrad (R(ΦR(ΦB ,Φrad)) −Rs(ΦR(ΦB ,Φrad))) ,
(3.3.20)

where RS describes the singular behaviour of the real cross section in the soft and
collinear limits. Thus, the first integral represents the integrated subtraction terms,
while the second integral takes into account the divergence subtracted real correction
and integrates out the radiation. The POWHEG-Sudakov factor can then be defined in
analogy to Eq. (2.2.44) as

∆R(ΦB , pT ) = exp
[
−
∫

dΦrad
R(ΦR)
B(ΦB)θ(kT (ΦR) − pT )

]
, (3.3.21)

where mappings between the Born and real phase spaces are implicit ΦR =
ΦR(ΦB ,Φrad). The interpretation of ∆R as a Sudakov no emission probability can be
seen from the singular behaviour as R → ∞ where the resulting no emission probability
goes to 0. Instead of a AP splitting functions the NLO accurate ratio of real to Born
cross sections R/B is used. Then the resulting cross section is

dσ = B̄ dΦB
{

∆R(ΦB , pmin
T ) + ∆R(ΦB , kT (ΦR))R(ΦR)

B(ΦB)θ(kT (ΦR) − pmin
T ) dΦrad

}
,

(3.3.22)
with pmin

T ∼ ΛQCD and reproduces Eq. (2.2.43) at small kT . The first term corresponds
to the n particle event generation and the second term to the n + 1 particle event
generation. That this produces the first radiation to NLO accuracy can be seen from
expanding the expression to NLO. That is, B̄ from Eq. (3.3.20) times the expanded
Sudakov factor ∆R(ΦB , pmin

T ) cancels the real contributions3 and reproduces B + V + I
as expected from the events without an attached emission. Alternatively, by analogy to
the unitarity of a parton shower we see that the terms in the curly brackets must sum
up to one, i.e. either one or no emission is attached. The first emission is consequently
already ordered in pT and the parton shower has to generate radiation only from below
the scale kT . An angular ordered parton shower has to employ a veto algorithm to avoid
radiations above kT .

The method generalizes for multiple flavour structures fb and singular regions αr for
a given flavour structure {αr|fb} to

dσ =
∑
fb

B̄fb(ΦB) dΦB

{
∆fb(ΦB , pmin

T )

+
∑

αr∈{αr|fb}

∆fb(ΦB , kT ) R(Φαr

R )
Bfb(ΦB)θ(kT (Φαr

R ) − pT ) dΦrad

}
,

(3.3.23)

2There are still occasional negative weighted events, e.g. from negative PDF values, but significantly
less than in MC@NLO.

3Up to scale pmin
T .
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with the Sudakov factor

∆fb(ΦB , pT ) = exp

−
∑

αr∈{αr|fb}

∫
dΦrad

R(Φαr

R )
Bfb(ΦB)θ(kT (Φαr

R ) − pT )

 , (3.3.24)

where Φαr

R = ΦR(ΦB ,Φrad(αr)) such that flavour structure of αr agrees with fb. Picking
the kinematics, singular region and flavour structure of the first emission is done by the
highest-pT bid procedure as outlined in Sec. 3.2.5.

The outlined method has several analogies to the CKKW-L merging of Sec. 3.3.2.1.
However, one difference we want to highlight here is that the CKKW-L method re-
constructs the matrix elements as parton shower, while the POWHEG method uses
a truncated shower, i.e. it starts after the hardest emission. We leave the practical
implementation of a process in the POWHEG-BOX to the following Sec. 4.2.2.
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CHAPTER 4. PHOTON PRODUCTION WITH POWHEG

Chapter 4

Photon production with
POWHEG

To study the properties of the QGP, various hadronic observables are typically analysed.
However, while hadrons are primarily produced during the freeze-out phase, photons are
emitted throughout all stages of the collision. Unlike hadrons, photons can traverse the
medium without significant interaction due to their large mean free path compared to
the system size. This unique feature allows photons to offer a direct glimpse into the
medium, providing insights into earlier stages and higher temperatures that are inac-
cessible through hadronic measurements. Hence, photons are widely regarded as indis-
pensable probes of heavy-ion collisions. Understanding the connection between photon
production and medium properties requires examining the processes responsible for their
emission. There are many sources of photons in proton-proton and heavy-ion collisions.
Generated throughout all stages of the collision process, they originate either from de-
cays of light- and heavy-flavour hadrons or are produced directly from hard-scattering
processes like the quark-gluon Compton scattering and quark–anti-quark annihilation.
In addition to these sources, the hot medium produced in heavy-ion collisions may emit
thermal radiation, commonly grouped together with the direct production. Unaffected
by the strong interaction, the photons pass through the dense medium without undergo-
ing any final-state interactions. Fig. 4.1 shows how they can be grouped. The majority
of photons observed in such collisions arise from the decay of particles like the π0. Pho-
tons that do not originate from hadron decays are termed direct photons, which can be
further categorized based on their emission sources. [248, 249]

Thermal photons arise when a medium is sufficiently hot and dense, leading to
frequent scatterings between its constituents, resulting in photon emission. In heavy-
ion collisions, for example, these constituents are partons in the QGP and later the
hadrons in the hadron gas after hadronisation. If the QGP is not fully equilibrated, the
emitted photons are termed pre-equilibrium photons; otherwise, they are classified as
thermal photons.

One of the expected signals of a QGP is the radiation of thermal photons, with a
particular transverse momentum spectrum reflecting its temperature [117, 250]. In an
equilibrated medium with a given temperature T , the emission rate N thermal

γ of thermal
photons depends exponentially on the photon energy E. Specifically, the rate follows

79
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Figure 4.1: Disambiguation of photon sources in proton-proton and heavy-ion collisions.
Figure adapted from [247].

the relation

E
dN thermal

γ

d3 p
(E, T ) ∼ T 2e−E/T . (4.0.1)

This behaviour suggests that direct photons provide critical insight into the temperature
of the medium [251–253].

In the hadron gas phase, photons can be emitted through various mechanisms, such
as interactions between mesons (e.g. π± + ρ0 → π± + γ), reactions involving baryons,
radiative decays, or hadronic Bremsstrahlung resulting in an approximately exponential
spectrum at low pT [251, 254–257].

At higher pT , the direct photon spectrum is dominated by prompt photons, which are
characterized by a power-law shape, in contrast to the exponentially distributed thermal
photons that dominate at lower pT (. 3 GeV/c) [257]. Consequently, experimental
measurements of direct photons can be particularly useful in distinguishing thermal
photon production at low pT and prompt photon production at high pT .

Pre-equilibrium photons are emitted by the medium before it reaches thermal equi-
librium following a heavy-ion collision. The medium during this pre-equilibrium phase
can be described by the Glasma framework [258, 259], a state characterized by strong
colour fields after the collision and before full thermalization occurs. The importance of
pre-equilibrium photons lies in their sensitivity to the early stages of medium evolution,
potentially allowing them to probe the conditions even before the QGP fully forms.
In particular, studies like those referenced in [260] show that the contribution of these
pre-equilibrium photons can be comparable to that of the thermal photons produced in
later stages.

We focus on prompt photon production, meaning photons that are prompt-direct,
produced in the hard collisions, computed in perturbative non-thermal QCD, as well as
fragmentation photons originating from quark and gluon fragmentation. Fragmentation
photons, instead, are produced when a high-energy parton undergoes radiation, leading
to a photon that is accompanied by other hadronic activity [261, 262]. The distinction
between these two types is critical and is often maintained through isolation criteria
in experimental setups. Isolation techniques are also implemented to separate prompt
photons from those produced in hadronic decays. This involves restricting the hadronic
activity around a photon candidate, ensuring the hadronic energy in a cone around the
photon is below a certain threshold [70, 74, 263]. These criteria help to minimize the
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contamination from fragmentation photons. This allows for a clearer interpretation of
direct photon production. The effect of the isolation cone on the parton-to-photon frag-
mentation contribution has been thoroughly examined, for example, using JetPhox [72,
73]. Especially, in the low transverse momentum regime, the isolation cone is crucial to
suppress the dominant fragmentation contribution compared to the photons originat-
ing in the hard process. To consistently eliminate the fragmentation contributions, one
must exclude collinear parton-photon configurations without disrupting the cancellation
of infrared singularities from soft gluon emissions [75]. While straightforwardly vetoing
the collinear configurations, as in the fixed cone approach, is not IRC safe, suppressing
them maintains the necessary cancellation. This method is known as smooth-cone iso-
lation. The proof of infrared safety is similar to that of jet definitions, where analogous
cone algorithms are also not IRC safe [76].

Thermal photons produced in QGP can be obtained by subtracting the rate of
prompt photons from the rate of direct photons

dN thermal
γ = dNdirect

γ − dNprompt
γ (4.0.2)

neglecting other contributions. The photons are detected either directly, e.g. in the
electromagnetic calorimeter, or indirectly by conversion via low invariant-mass e+e−

pairs. In the following sections we will explore the direct-hard production of virtual
photons in Sec. 4.1 and real photons in Sec. 4.2 using the POWHEG method.

4.1 Virtual photon production
In contrast to real photons, virtual photons (γ∗ → e+e−) carry a mass (mee), unaltered
by the radial flow, that can act as an approximate clock, allowing for the separation
of different collision stages. The pre-equilibrium effects become evident around mee &
2 GeV, followed by the expected formation of the QGP in the range 1 GeV . mee .
2 GeV, and finally the hadronic phase at later emission stages with mee . 1 GeV [264,
265]. They can therefore provide valuable insight into the entire time evolution and
dynamics of the hot system. However, measurements of the thermal photon signal in
heavy-ion collisions face some considerable challenges, such as a small production cross
section due to the electromagnetic coupling and significant combinatorial and physical
backgrounds from hadron decays.

In pp collisions, the di-electron low and intermediate mass spectrum can be well de-
scribed by a combination of expected hadronic sources, the so-called cocktail [266–270].
The low-mass region (LMR) (mee < 1.1 GeV) is dominated by light-flavoured vector
meson decays, whereas the intermediate-mass region (IMR) (1.1 GeV < mee < 2.7 GeV)
receives contributions mostly from semileptonic decays of charm and bottom hadrons
correlated through flavour conservation. Despite the overwhelming backgrounds, sig-
nificant enhancements of direct real or low-mass virtual photons have been observed in
heavy-ion collisions at the Super Proton Synchrotron (SpS), RHIC and LHC [267, 271–
281]. The enhancements are well described by exponential distributions in pT,γ and are
thus indicative of thermal radiation consistent with average (effective) temperatures in
the range of 200 − 300 MeV [277, 280, 281]. In the intermediate-mass window, an excess
over decay di-electrons has so far been observed only at the SpS [275, 276, 282, 283].
In order to discern the characteristics of the subtle thermal photon signal in this range
at the LHC, that promises increased sensitivity to QGP thermal radiation, it is crucial
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to understand the di-electron yield originating from the hard production of photons as
well as from heavy-flavour particle decays.

In this section, we report on theoretical advances in describing the di-electron mass
spectrum in the intermediate-mass region in setups similar to those used in the ALICE
experimental analyses. First, we calculate the contribution to the direct photon produc-
tion signal originating from the hard scattering. This component is usually extracted
from the data [284], assuming the invariant mass shape from the Kroll-Wada prescrip-
tion [285] with additional constraints from real direct photon measurements, and must be
subtracted from the total direct photon signal for reliable temperature estimates [281,
286], especially in the intermediate transverse momentum region. Here, for the first
time, we obtain a prediction for the di-electron invariant mass spectrum based on a
first-principles calculation using the DY process in association with an extra jet at NLO
QCD accuracy matched to parton showers. Second, we perform a thorough analysis of
the dominant decay backgrounds with a variation of perturbative scales and PDFs, also
taking into account cold nuclear effects through nPDFs. Such uncertainties can have an
appreciable impact on the systematic uncertainty estimates in the measured di-electron
spectrum baseline in pp as well as heavy-ion collisions. Studying this process is also of
broader interest, as it offers a means to test pQCD calculations and MC event genera-
tors at the limits of perturbativity. In heavy-ion collisions it can be used in studies of
energy loss, levels of thermalisation of charm and bottom quarks within the medium,
and mechanisms of heavy-quark hadronisation [287–290]. The distribution of correlated
e+e− pairs stemming from charm-hadron decays provides information about kinematic
correlations between charm and anticharm quarks, shedding light on the production
mechanisms and offering sensitivity to soft heavy-flavour production [291–293] and ther-
malisation, in lead-lead (PbPb) collisions. In recent experimental analysis efforts the
distance of closest approach (DCA) method [284] has been employed to separate prompt
di-electrons (DCAee < 0.5σ) from non-prompt di-electrons (DCAee > 2σ) reducing the
impact of heavy-quark di-electrons on the signal.

An overview of the different contributions to an invariant mass spectrum and the
DCAee impact are shown in Fig. 4.2.

This section is based on our publication [3] and organised as follows. We first discuss
the phase space and improve the importance sampling in POWHEG BOX V2 for the DY
process in Sec. 4.1.1. We first present general theoretical considerations and define our
signal and background in the di-electron observables in the kinematic region of interest
in Sec. 4.1.2. Next, we provide an explanation of our simulation setup, which includes
our workflow and the event selection in Sec. 4.1.3. In Sec. 4.1.4 we present our results
for virtual photon and heavy flavour production combined into a new prediction for the
“hadronic cocktail”.

4.1.1 Sampling in POWHEG

Since we are interested in dilepton pairs of low invariant mass and transverse momentum,
we need to improve the importance sampling in POWHEG BOX V2. The following steps are
for the DY process, but can be adapted to other processes especially the DY process
with an extra jet of interest. For each transformation we track also its derivative,
i.e. the Jacobian determinant, since it practically is a form of importance sampling (see
Sec. 3.2.2).
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Figure 4.2: Di-electron mass spectrum and DCAee separation [294].

4.1.1.1 Linear sampling

In the POWHEG BOX implementation of NLO Z [295] production the phase space is
parametrized as

dΦ2 = dx+dx−(2π)2δ4(k+ + k− − k1 − k2) d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

= 1
S

1
16πdM2dY d cos θl

dφl
2π ,

(4.1.1)

where the suffix l indicates that the angles are to be understood between the leptons.
The new integration variables are the invariant mass M

M2 = (k1 + k2)2 (4.1.2)

and rapidity

Y = 1
2 log (k1 + k2)0 + (k1 + k2)3

(k1 + k2)0 − (k1 + k2)3 . (4.1.3)

The relation between these Born parametrizations is

x+ =
√
M2

S
eY and x− =

√
M2

S
e−Y . (4.1.4)

The implementation of the code uses a linear sampling on M2 if the Z peak is not
included in the user supplied integration limits Mmin and Mmax, that is

M2 = M2
min + x1

(
M2

max −M2
min
)

and dM2

dx1
=
(
M2

max −M2
min
)
. (4.1.5)

By using a random xi ∈ (0, 1) the necessary scaling of the Jacobian determinant from
the substitution is dM2

dx . Similarly, after picking a value for M2

Y = − (1 − 2x2)
2 log M

2

S
and dY

dx2
= log M

2

S
(4.1.6)
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such that the boundary cases correspond to x+ = 1 and x− = 1. And the final third
variable is

cos θ = 3
2

(
(1 − 2x3) − (1 − 2x3)3

3

)
and d cos θ

dx3
= 3

2
(
−2 + 2(1 − 2x3)2) , (4.1.7)

which is optimized to produce more θ values close to 0 or π and less between.
POWHEG BOX uses an adaptive MC integration routine, namely MINT, with 50 bins per

dimension. The quality of the integration and importance sampling can be monitored by
inspecting the .top -plot files generated1. In these plots the x-axis is the x1 value from 0
to 1 and corresponds to an integration variable. The y-axis is the relative contribution to
the cross section projected on given bin. The curve is monotonous since the contribution
at e.g. x = 0.5 is the combination of all bins from 0 to 0.5. The vertical lines in the
plot illustrate POWHEG BOX’s decision for the adaptive bins. Ideally each bin contains the
same contribution to the total cross section such that the curve is a straight line with
slope 1. Divergences are often visible at x = 0 and x = 1, depending on the phase
space parametrization. The other integration variable also indirectly suffer from the
bad convergence in one variable since the sampling and therefore also the projection
becomes unreliable.

In this case the sampling converges badly at low M up to the point where POWHEG BOX
gives unreliable/negative NLO cross sections. This behaviour is shown in Fig. 4.3i with
the full input parameters given in file A.1. In this case, we observe that most bins are
concentrated at low x1, making the vertical binning lines nearly indistinguishable.

4.1.1.2 Logarithmic sampling

We have seen that the linear sampling prefers the low M region. Hence, we want to
emphasize the low M region by a logarithmic sampling

M2 = M2
max

(
M2

min
M2

max

)x1

and dM2

dx1
= M2 log

(
M2

max
M2

min

)
. (4.1.8)

We notice an improvement in the binning in Fig. 4.3ii and a better statistical convergence
in Tab. 4.1.

4.1.1.3 Optimized sampling

POWHEG BOX shows the grids and binning as normalized integrated cross section∫ z
0 dx dσ

dx∫ 1
0 dx dσ

dx

= F (z) . (4.1.9)

To optimize the sampling we choose the inverse of this curve

inverse
∫ z

0 dx dσ
dx∫ 1

0 dx dσ
dx

= F−1(z) , (4.1.10)

1To draw these files we recommend https://github.com/APN-Pucky/pytopdrawer.

https://github.com/APN-Pucky/pytopdrawer
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which exists since the curve is monotonous. This is optimal since using the inverse
function rule gives

1 =
[

d
dy

∫ y
0 dx dσ

dx∫ 1
0 dx dσ

dx

]
y=F−1(z)

(F−1)′(z) , (4.1.11)

where the first bracket corresponds to the importance sampled cross section and the
second to the Jacobian determinant. The equality of its derivative to one means that
every point in y is now of equal weight. Expressed in similarity to the importance
sampling in Eq. (3.2.13)

σ(z) =
∫ z

0
dx dσ

dx (x) =
∫ F (z)

F (0)
dy dσ

dx (F−1(y))(F−1)′(y) (4.1.12)

the slope dσ/ dy with respect to the new variable y is always constant. Practically, this
corresponds to importance sampling the function by itself, however we are only looking
at one projected integration variable.

We can use any fit function that is invertible to determine F . Next computing the
inverse of a monotonous function in Eq. (4.1.10) is significantly easier than solving the
differential equation in Eq. (4.1.11). The new importance sampling is then given by F−1.
If this sampling does not give satisfying results it can be repeated on the importance
sampled cross section.

The fitting is demonstrated in Fig. 4.4 the straight line on the left is due to the last
point (0,0) on a logarithmic scale. It comes as no surprise that the derivative of the
guessed fit function F

F (x) = a+ 1
a
x + 1 , F−1(x) = ax

a− x+ 1 , (F−1)′(x) = a(a+ 1)
(a− x+ 1)2 , (4.1.13)

resembles the divergence of the photon pole regulated by the mass window cuts. We
choose a = M2

min/M
2
max such that we obtain an a of the same order as in the fit. Finally,

the optimized sampling F−1 with some abbreviations is

a = M2
min

M2
max

, d = (M2
max −M2

min) , (4.1.14)

M2 = ax1d

(1 − x1 + a) +M2
min ,

dM2

dx1
= a(a+ 1)d

(1 − x1 + a)2 . (4.1.15)

We observe a major improvement in the binning in Fig. 4.3iii where all bins are same
sized as desired. In the comparison between the different samplings in Tab. 4.1 we see
that the fitted sampling gives the best convergence and the lowest computation time.
Furthermore, the NLO computation with the improved sampling does no longer return
negative cross sections.

Finally, note that the Z production POWHEG BOX codes were not original designed
for low pT studies. Probing close to the photon pole is blocked, and this filter has to
be removed from the code. Furthermore, the parameters alphas_from_pdf 1 and
pdf_cutoff_fact 0.01d0 allowed us to stretch into even lower pT regimes, without
loosing stability.
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Figure 4.3: Importance sampling in POWHEG BOX.

Sampling cross section [pb] cross section stat. [pb] btilde time [pb]

Linear 24 334 890 ±96 432 2.8

Logarithmic 24 208 610 ±13 635 0.5

Fitted 24 207 000 ±10 697 0.4

Table 4.1: LO comparison of the importance samplings.



4.1. VIRTUAL PHOTON PRODUCTION 87

10 5 10 4 10 3 10 2 10 1 100

0.0

0.2

0.4

0.6

0.8

1.0
dim=           1 

a + 1
a
x + 1
a=(6.853+/-0.047)e-05

Figure 4.4: Linear importance sampling on a logarithmic scale with a fit.

4.1.2 Signal and background
The intermediate mass window region in measurements of di-electron spectra is char-
acterized by a lepton pair with a relatively low invariant mass, between roughly 1 GeV
to 3 GeV, and a relatively small transverse momentum, below 10 GeV. In addition to
the thermal photon signal, there are two dominant production modes in this kinematic
regime. One of them is direct photon production, which involves the conversion of pho-
tons into di-electrons. In the following, we will refer to this contribution as the signal.
The second contribution is the production of heavy-flavoured hadrons followed by a
decay into a pair of electrons.2 We will call this contribution the background.

The signal is the direct production of photons with non-zero virtuality that decay
into di-electrons, this is the DY process. The DY process is described at tree level by
the partonic process qq̄ → γ∗ → l+l− and is of the order O(α2) in the perturbative ex-
pansion of the electromagnetic coupling constant. In the absence of any other particles,
the e+e− pair is produced back-to-back and the system carries no transverse momen-
tum and falls out of the kinematic region of our interest. To circumvent this problem,
one must produce a pair of di-electrons in association with one jet at order O(α2αS)
in the simultaneous expansions of the electromagnetic and strong couplings constants.
Fig. 4.5i shows one such LO Feynman diagram. At this order, one obtains contributions
not only from the qq̄ channel, but also from the qg channel and therefore acquires a
sensitivity to the gluon density. Additionally, the NLO QCD corrections, O(α2α2

S), can
also be gluon-gluon initiated. Note that this process also receives contributions from
the topology where the photon is replaced by the Z boson and from the corresponding
γ − Z interference, both of which we include, but their contributions are negligible in
the invariant mass regime far below the mass of the Z-boson. We simulate our signal
with NLO QCD precision, i.e. including real and virtual higher-order corrections up to
O(α2α2

S), using the Zj [296] process from the POWHEG BOX V2 package, which is now also
available in multi scale improved NLO (MiNLO) [297] and NNLO (multi scale improved

2The light-flavoured hadron production with di-electron decay dominates the invariant mass spectrum
below 1 GeV, but is rather suppressed above.
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Figure 4.5: Exemplary LO Feynman diagrams for dilepton production via a virtual
photon/Z boson (signal, left) and heavy quarks (HQs) (background, right). The LO
hard process is coloured in red, while the dileptons are coloured in blue. The diagrams
were generated with [7].

NNLO (MiNNLO)) [298, 299] precisions.
In the limit of zero di-electron virtuality, real direct photon production is restored

at O(ααS), where the photon is produced OS and does not decay into di-electrons.
Similarly to the fragmentation of jets into photons in direct real photon production,
contributions from the fragmentation of jets into di-electrons are possible. In analogy
to our calculation of real direct photons [300] within the POWHEG framework, the Zj
process includes this fragmentation contribution, which is partially generated by parton
shower emissions of the photon. In contrast to real photons, in virtual photon production
there is no explicit divergence that has to be absorbed in fragmentation functions, but
the divergence is regulated by the photon virtuality [65, 301]. Nevertheless, the resulting
logarithms log(mee/pT,ee) arising per order of αS could in principle become large and
spoil the convergence of the perturbation series. We keep track of the ratio mee/pT,ee
and find that it varies mostly from 10−1 to 101, with a peak around 1. This is illustrated
in Fig. 4.6, with the details behind the creation of the plot deferred to Sec. 4.1.3. We
therefore expect our predictions to be stable with respect to such higher-order effects in
the kinematic range of our interest.

We now proceed to the discussion of the background, which can be further divided
into the open production of charm and bottom quarks [264, 302]. Although photon-
induced or DY-like production of HQs is possible, it is usually sufficient to consider only
the QCD production due to the ratio of the coupling strengths α2/α2

S . 0.5 % [303,
304]. This means that heavy-flavour partons are only produced from a subset of the
QCD Feynman diagrams for the production of light-flavours, namely where the heavy
quarks in the final-state are connected by a fermion line and thus belong to the same
flavour generation independently of the partons in the initial-state. One of the Feynman
diagrams is shown in Fig. 4.5ii. The HQs then hadronise predominantly into D- and
B-mesons, which further decay into electrons in a correlated manner. This results in
correlated electron pairs stemming from two different hadrons that originate from the
same hard process. To simulate our background with NLO QCD accuracy (O(α3

S)), we
use the hvq [305] process in POWHEG BOX V2.

Both simulations, of the signal and of the background, are then interfaced with



4.1. VIRTUAL PHOTON PRODUCTION 89

γ
∗/Z fix NLO+PY8

γ
∗/Z fix NLO LHE

10−1 1 10 1 10 2

10−7

10−6

10−5

10−4

10−3

10−2

10−1

mee/pT,ee

re
la

ti
v

e
c
o

n
tr

ib
u

ti
o

n

Figure 4.6: Relative contribution to the cross section of mee/pT,ee constellations in the
signal process for pp.

PYTHIA 8.3.08. In the case of the signal, it only provides higher-order QCD and QED
corrections in the soft-collinear approximation via PSs, while in the case of the back-
ground we rely on it also for the hadronisation and the heavy-flavoured hadron decays.

4.1.3 Simulation setup and event selection
In this section we focus on the production of di-electrons, open charm and bottom
pairs in pp, proton-lead (pPb) and PbPb collisions at the LHC with

√
s = 5.02 TeV

(per nucleon pair). The experimental pp and pPb data of the corresponding ALICE
measurement [306] are available in HEPdata [307]. The ALICE data in PbPb were
recently published [308], but the numerical values were not available in HEPdata at
the time of this work. Unless otherwise stated in this chapter, we use MSHT20nlo [44]
PDFs for the proton and nCTEQ15HQ [108] nPDFs for lead as given by LHAPDF6 with the
corresponding value of αS(MZ).

We generate the Les Houches Event (LHE) samples with POWHEG BOX V2 and shower
them using PYTHIA 8 piloted by the main-PYTHIA83-lhef executable, which is in turn
coupled to Rivet 3.1.7 [309–311] and is based on the Rivet 2 interface originally de-
veloped in Ref. [312] and later updated for Rivet 3 in Ref. [313]. The relevant physical
input parameters are chosen from Ref. [314] with

α = 1/128.89, mc = 1.27 GeV, mb = 4.18 GeV .

While these are the MS values, technically the pole mass should be used in POWHEG BOX.
The difference between the masses is quite significant, but flat and consistent within
the uncertainties, as shown in Fig. 4.7. However, since we will later in Sec. 4.1.4.3
fit our distributions to the data the normalization does not matter. For the produc-
tion of HQs, the renormalization and factorization scales are dynamically chosen as
µr = µf =

√
p2
T +m2

q, where pT 6= pT,ee is the transverse momentum of the heavy
quark and q denotes its flavour. For cc̄ a three-flavour scheme is used, while for bb̄ we
use a four-flavour scheme. The corresponding running of αS is calculated using internal
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Figure 4.7: The pole mass mpole and the MS mass mMS of the charm and bottom quarks.

POWHEG BOX subroutines. For the DY process, we instead set the value of the renor-
malization and factorization scales to µr = µf = max

(
2 GeV,

√
p2
T,γ + p2

γ

)
with its

minimum value frozen at 2 GeV and use a five-flavour scheme. In both cases, we cal-
culate perturbative scale uncertainties using the standard factor-two seven-point µr, µf
scale variation method, excluding relative factors of four. By freezing the scale at 2 GeV
we can approach kinematics down to the lowest considered value of

√
p2
T,γ + p2

γ = 1 GeV,
i.e. down to the point where perturbativity may break down. For very small photon
virtualities, p2

ee ∼ p2
γ → 0, di-electron production can be related to prompt photon

production through a FF [65] or the Kroll-Wada approach [285].
In PYTHIA8 we leave parton showers, hadronisation and multiple parton interactions

(MPI) activated. Hadron decays are only enabled for our background predictions to
avoid decay photons in our signal. Similarly, in heavy flavour production we turn off
the QED shower, but leave it on for the production of virtual photons in order to
generate the fragmentation contribution. To match to POWHEG, we use the standard
procedure in which shower evolution starts unrestricted, but shower emissions are vetoed
using PowhegHooks. In Tab. 4.2 we list the values of the PYTHIA8 parameters selected
for each process.

Our event selection and histogramming of the observables is done by a Rivet analysis
created, which mimics the analysis of Ref. [306]. We select all electrons and positrons
that satisfy the acceptance cuts of 0.2 GeV < pT,e < 10 GeV and |ηe| < 0.8 required
by the central barrel geometry of ALICE. We then use the electron and the positron
to construct the transverse momentum and virtuality of the pair, pT,ee and mee. As in
the ALICE analysis, we consider the transverse momentum and invariant mass ranges
0 GeV < pT,ee < 8 GeV and 0.5 GeV < mee < 1.1 GeV or 1.1 GeV < mee < 2.7 GeV for
the di-electron pair. For the invariant mass spectra, we also consider the range 0 GeV <
mee < 7 GeV, which extends upon the ALICE measurement, which only available in the
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PYTHIA setting Zj hvq

PartonLevel:ISR on on

PartonLevel:FSR on on

PartonLevel:MPI on on

PartonLevel:Remnants on on

PartonShowers:model 1 1

SpaceShower:pTmaxMatch 2 2

TimeShower:pTmaxMatch 2 2

POWHEG:veto 1 1

POWHEG:pTdef 1 1

SpaceShower:QEDshowerByL on off

SpaceShower:QEDshowerByQ on off

TimeShower:QEDshowerByGamma on off

TimeShower:QEDshowerByL on off

TimeShower:QEDshowerByOther on off

TimeShower:QEDshowerByQ on off

HadronLevel:Hadronize on on

HadronLevel:Decay off on

Table 4.2: Parameters used in PYTHIA for the different processes. Values that deviate
from the default are highlighted in bold.

range 0 GeV < mee < 3.5 GeV.
We remove the combinatorial background using the same-sign approximation, as in

Ref. [269], where the raw pair signal S is obtained with the formula

S = (N+−)︸ ︷︷ ︸
opposite-sign

−Racc (N++ +N−−)︸ ︷︷ ︸
same-sign

, (4.1.16)

where we estimate the number of same-sign pairs with an arithmetic mean, which is more
suitable than a geometric mean when considering a contribution to the spectrum due to
a single process, and where we set the relative acceptance correction factor, Racc ≈ 1.
Furthermore, N+− is the number of pairs with opposite sign and N++, N−− are the
numbers of positron-positron and electron-electron pairs in the signal region. Assuming
that the same-sign pairs are uncorrelated, the subtracted term will correspond to the
uncorrelated opposite-sign pairs at the high statistical limit. This gives the raw pair
signal S with unwanted uncorrelated contributions removed.

To isolate the continuum contribution to open heavy flavour production from the
HQ POWHEG BOX+PYTHIA8 sample, we classify electrons according to their origin. In
Fig. 4.8 we show di-electron invariant mass spectra from pp → cc̄(X) and pp → bb̄(X)
production. In both cases, below 1 GeV the spectrum receives contributions from heavy
to light flavoured hadron cascade decays: π0, ρ0, η, ω, η′, φ. Above 1 GeV, only the J/ψ
peak at about 3 GeV is visible, while in between, in the IMR, the continuum dominates.

This inspires our definition of the continuum contribution to the hadronic cocktail as
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Figure 4.8: Di-electron mass spectra for the production of pp → cc̄(X) (left) and
pp → bb̄(X) (right), decomposed into open heavy-flavour continuum and the resonance
production in the LMR and IMR. All the contributions were normalized as in [306].

the POWHEG BOX+PYTHIA 8 subsample with electrons from light hadron and J/ψ decays
filtered away. Practically speaking, we require that all leptons to have a parent particle
that is either a hadron of flavour b or c by inspecting the HepMC [315, 316] event record
in Rivet. It is worth noting that this implies that the hadron decay chains b → c → e
are not filtered out.3

This is meant to align with the definition used in ALICE, where contributions re-
moved by filtering based on origin are instead obtained using the Monte Carlo Event
Generator (MCEG) EXODUS [267]. Our predictions (blue histograms) reproduce very
well the predictions of ALICE extracted from Ref. [306], cc̄(bb̄) ALICE-MC, which were
obtained with POWHEG BOX+PYTHIA 6 and CTEQ6.6 [317] PDFs (red curves). We note that
our predictions were normalized such that the area under the curve of our “open c” and
“open b” predictions match the area under the “cc̄ ALICE-MC” and “bb̄ ALICE-MC”
curves, respectively. This scaling procedure results in factors fcc̄ = 2.5 and fbb̄ = 0.75.

4.1.4 Our predictions
In Refs. [269, 270, 306] the production of di-electron pairs (e+e−) in pp collisions at√
s = (5.02, 7, 13) TeV was measured with the ALICE detector at the LHC. The studies

focused on the invariant mass and transverse momentum distributions of the e+e−

pairs. The data was compared to a hadronic cocktail composed of expected di-electron
distributions of known three dominant hadronic sources: light-flavour (LF) decays, the
J/ψ resonance, and open heavy-flavour (HF) decays. A good agreement between the
data and the hadronic cocktail was observed over the entire mass range (mee < 3.5 GeV).
However, the extracted total cross sections for charm and beauty depend strongly on
details of the theoretical modelling (e.g. PYTHIA 6 vs. POWHEG BOX+PYTHIA 6). The same
measurement was also performed for pPb collisions at √

sNN = 5.02 TeV [306]. Again,
good agreement with the cocktail was found assuming the HF cross sections scale with
the atomic mass number A of the lead nucleus in pPb-collisions with respect to the pp

3The source code of the analysis named after the HEPdata entry number is available at https:
//gitlab.com/APN-Pucky/rivet-ALICE_2020_I1797621.

https://gitlab.com/APN-Pucky/rivet-ALICE_2020_I1797621
https://gitlab.com/APN-Pucky/rivet-ALICE_2020_I1797621
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Figure 4.9: Di-electron pair invariant mass spectrum from virtual photon production in
association with at least one jet at NLO+PS for pp (left) and pPb (right) obtained with
POWHEG+Pythia8 using MSHT20nlo and nCTEQ15HQ PDFs for p and Pb. The uncertainty
band combines scale and PDF uncertainties in quadrature. The second and third ratio
panels respectively show the relative scale and PDF uncertainties independently.

reference. The measured ratio RpPb, corrected for such A-scaling, is consistent with
unity within uncertainties in the IMR, with most of the e+e− pairs originating from
correlated open HF hadron decays. Therefore, the uncertainties on the measured pT,ee
dependence of RpPb are still too large to draw conclusions on the nuclear modification
of HF production in pPb collisions. For PbPb collisions, ALICE has measured the
e+e− spectra at √

sNN = (2.76, 5.02) TeV [284, 308], but the former measurement is
statistically limited. Also, here the cocktail with an additional scaling by Rb,c→e

PbPb due to
final-state medium effects is in reasonable agreement with the data, despite neglecting
the cold nuclear matter effects.

In this section we study two predictions that enter those analyses. First we present
our predictions for the prompt component of the di-electron spectrum due to direct vir-
tual photon production in Sec. 4.1.4.1. This contribution has so far not been considered
in the ALICE measurements. Second we show our predictions for the open charm and
bottom production, including a careful analysis of uncertainties from scale and PDF
variations in Sec. 4.1.4.2. In Sec. 4.1.4.3 we analyse all our predictions together and as-
semble them into a new prediction for the hadronic cocktail with realistic uncertainties.
Finally, Sec. 4.1.4.4 is dedicated to our predictions for PbPb collisions and a discussion
on initial- and final-state matter effects.

4.1.4.1 The signal: direct virtual photon production

Fig. 4.9 shows the invariant mass spectra of the di-electron system, which originate from
virtual photons produced in association with at least one jet in 5.02 TeV pp and pPb
in collisions at NLO+PS in red and at the NLO LHE level in grey. The precision NLO
LHE corresponds to a NLO prediction supplemented by the Sudakov form factor of
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Figure 4.10: Di-electron pair transverse momentum spectrum from virtual photon pro-
duction in association with at least one jet at NLO+PS for pp (left) and pPb (right)
obtained with POWHEG+Pythia8 using MSHT20nlo and nCTEQ15HQ PDFs for p and Pb.
The uncertainty band combines scale and PDF uncertainties in quadrature. The second
and third ratio panels respectively show the relative scale and PDF uncertainties inde-
pendently.

the NLO emission as described in Sec. 3.3.3.2. If one goes below an invariant mass of
mee = 1 GeV, the cross section becomes less reliable due to the photon pole at mee = 0.
It is therefore not surprising that the invariant mass spectrum increases continuously
towards lower masses, see the top panels. The total uncertainties combined in quadrature
are dominated by the variation of scales and are about ±25 % across the whole invariant
mass range, but up to ±50 % in the low tail of the transverse momentum spectra (see
below). In contrast, the PDF uncertainties are roughly ±10 % for pp collisions and only
a few percent more for pPb, see the third and the fourth panels. Note that the PDF
uncertainty band beyond mee > 3 GeV likely overestimates the true PDF uncertainty,
because this kinematic regime is difficult to populate with MC events and is therefore
dominated by statistical uncertainties (shown as error bars). The difference between the
sizes of the cross section of the different initial-states is a relative increase by A = 208
from pp to pPb. For the pT spectrum in Fig. 4.10 we observe that the parton shower
emissions beyond O(αS) soften the low tail and harden the high tail of the pT,ee spectrum
(NLO LHE vs. NLO+Py8). Such a transformation into a more physical distribution is
expected from matching to parton showers.

The virtual photon production is a subleading but not a negligible contribution
to the di-electron pair production in this kinematic regime. It reaches fractions up
to 45 % in the range of 1.2 GeV to 3 GeV of the invariant mass spectrum, where the
depletion at 3 GeV is due to the J/ψ contribution in the measured spectrum. Similarly,
in the transverse momentum spectrum it contributes up to 40 % in the intermediate pT
range of 1 GeV to 4 GeV. Note that our choice of scale, appropriate for this kinematic
regime, enhances the virtual photon production cross section appreciably. With the
inappropriate choice µf = µr = mZ , this contribution would be only at about 5 % with
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Figure 4.11: Invariant di-electron mass spectra in open charm production pp, pPb →
cc̄(X) obtained with POWHEG BOX+PYTHIA 8 and MSHT20nlo and nCTEQ15HQ PDFs for p
and Pb. The second row shows the scale and the third row the PDF uncertainties.

very similarly shaped distributions.

4.1.4.2 The background: open charm and bottom production

Next, we present our predictions for open charm and bottom production, again in pp
and pPb collisions at

√
s = 5.02 TeV. The first rows of Figs. 4.11 and 4.12 respectively

show the absolute predictions for the invariant mass and the transverse momentum
spectra of di-electrons from open charm at NLO+PS in green. In the second rows we
show the perturbative scale variations and generally observe very large uncertainties,
presumably due to large logarithms related to the charm quark mass, which can exceed
a factor of three regardless of the collision system. For di-electrons from open bottom
production the situation is under much better control and the scale uncertainties drop
under +60 %

−40 %, see Figs. 4.13 and 4.14. The third rows in Figs. 4.11 to 4.14 show that the
PDF uncertainty is small relative to the scale band and under ±20 % (±10 %) for the
open charm (bottom) channel for both pp and pPb collisions throughout. Comparing
the pp and pPb PDF uncertainties they increase slightly from pp to pPb in open bottom
but not in the open charm production. This suggests that very low-x gluons in the nPDF
fit (nCTEQ15HQ) have a smaller uncertainty than in the proton PDF fit (MSHT20nlo). A
realistic estimate of the PDF uncertainty in pPb collisions should of course include both
the proton and the nuclear uncertainty dimension, which is however not available in the
nCTEQ15HQ fit.

We also compare our predictions with the calculations of POWHEG BOX+PYTHIA 6
(ALICE-MC), in blue, and data from ALICE [306], in black. The HF production is
subleading in the LMR, but in the region in mee ∈ [1, 2] GeV the open charm produc-
tion almost saturates the data. The two predictions generally agree well. There are
differences both in normalization and shape, but they agree within the scale uncertainty
band of our prediction for both the open charm and open bottom channel, except for the
tails of mee. The remaining differences in the shapes of the invariant mass distributions
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Figure 4.12: Di-electron transverse momentum spectra in open charm production
pp, pPb → cc̄(X) obtained with POWHEG BOX+PYTHIA 8 and MSHT20nlo and nCTEQ15HQ
PDFs for p and Pb. The second row shows the scale and the third row the PDF uncer-
tainties.

can be explained by the different hadronisation model in PYTHIA version 6 vs. version 8
and the use of different, in the case of our predictions, more modern PDF sets.

In the measurements of the di-electron spectra, the total cc̄ and bb̄ production cross
sections are determined from the data. The normalization component of the uncertainty
must thus not necessarily be taken into account. If we were to fix the normalization
of each of the predictions in the scale or PDF variation bands, we would expect the
uncertainty due to normalization to drop out and the uncertainty bands to shrink. The
extent to which this happens will be examined in the next section.

We find that PYTHIA8 hadronises the charm quarks mainly to D± (50 %), D0 (39 %)
and D±

s (7 %) hadrons, while the immediate parent particles of the electrons in open
bottom production are mainly D± (23 %), D0 (23 %), B0 (22 %), B± (20 %), D±

s (7 %)
and B±

s (4 %) hadrons.



4.1. VIRTUAL PHOTON PRODUCTION 97

b

b

b

b
b b b b

b b b b
b b

b b
b

b b
b

b
b b b

b

b

b

b ALICE Run 2

bb̄ NLO+PY8

bb̄ ALICE-MC

10−5

10−4

10−3

10−2

10−1

1

pp → e+e−(X) at
√

s = 5.02 TeV (pT,ee < 8 GeV)

d
σ

/
d

m
ee

[m
b

/
G

eV
]

0

1

2

3

4

5

S
c
a

le
R

a
ti

o

0 1 2 3 4 5 6 7
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

mee [GeV]

P
D

F
R

a
ti

o

b

b

b

b b
b b b b

b b b
b b

b b
b

b b
b

b
b b b

b

b

b

b ALICE Run 2

bb̄ NLO+PY8

bb̄ ALICE-MC

10−3

10−2

10−1

1

10 1

10 2

10 3
pPb → e+e−(X) at

√
s = 5.02 TeV (pT,ee < 8 GeV)

d
σ

/
d

m
ee

[m
b

/
G

eV
]

0

1

2

3

4

5

S
c
a

le
R

a
ti

o

0 1 2 3 4 5 6 7
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

mee [GeV]

P
D

F
R

a
ti

o

Figure 4.13: Invariant di-electron mass spectra in open bottom production pp, pPb →
bb̄(X) obtained with POWHEG BOX+PYTHIA 8 and MSHT20nlo and nCTEQ15HQ PDFs for p
and Pb. The second row shows the scale and the third row the PDF uncertainties.
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Figure 4.14: Di-electron transverse momentum spectra in open bottom production
pp, pPb → bb̄(X) obtained with POWHEG BOX+PYTHIA 8 and MSHT20nlo and nCTEQ15HQ
PDFs for p and Pb. The second row shows the scale and the third row the PDF uncer-
tainties.
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4.1.4.3 Combined analysis of the signal and background

In this section, we consider our new prediction for the virtual photon and the revised
predictions for open HF production together. The first rows on both panels in Fig. 4.15
show our absolute predictions for virtual photon production in purple, bb̄ in yellow and
cc̄ in green, while the third rows show their ratio to the largest channel (cc̄). The nor-
malization of the HF continuum is typically determined via double differential fits in mee

and pT,ee in the intermediate mass regime [306] or via the measured and extrapolated
total cross section [270, 318]. In this section, thus, we also normalize our predictions
to the same cross sections that ALICE does, [306], by multiplying by the two overall
normalizations factors, fcc̄ and fbb̄, for open charm and open bottom production re-
spectively. We determine those factors to be fcc̄ = 2.5 and fbb̄ = 0.75. Similarly, we
normalize the virtual photon contribution by a factor fγ/Z = 0.06. This value will be
explained in what follows. Such a normalization procedure also impacts our predic-
tions for uncertainties. In fact, one needs to normalize each of our predictions in the
seven-point scale or PDF variations individually. This means that the uncertainty due
to normalization cancels out and only that due to change of shape remains. We ob-
served that the different error sets of the PDF do not give a different shape and thus
nearly vanish when normalized such that PDF uncertainties can be neglected. The cc̄
contribution dominates across the whole mee and pT,ee range, with bb̄ coming in second
reaching up to 30 % in the bin at 2 GeV in the invariant mass and up to 100 % in the
high tail of the transverse momentum spectrum. The virtual photon contributes under
10 % across the whole range. The cc̄ production yields an appreciably softer transverse
momentum spectrum, dominating the low pT region, as compared to the bb̄ which starts
to contribute significantly at around 2 GeV and eventually matches the cc̄ channel. The
shapes of the invariant mass spectra for the two heavy flavour production modes, in-
stead, are relatively similar, except below mee = 1.5 GeV, where the bottom spectrum
flattens out whereas the charm does not. Both the invariant mass and the transverse
momentum spectra of the virtual photon contribution are relatively flat, as compared
to those of open charm production. Thanks to our normalization procedure, the uncer-
tainty bands are now significantly reduced, compared to Figs. 4.11 to 4.14. However,
the remaining shape uncertainty, dominated by the scale variation, is still considerable
especially in the cc̄ channel where it goes from about ±10 % at mee = mc to about
150 %
−50 % in the high tail. This shape uncertainty is actually considerably larger than the
statistical and systematic uncertainty as well as the uncertainty on the branching ratios
into electrons for cc̄ production, respectively, which were found to be 11 %, 5 % and 22 %
in a previous study by ALICE.

We now want to combine our predictions for the production of virtual photons and
open HFs into a new prediction for the hadronic cocktail. To this end we start by
isolating the contributions from LF and J/ψ from ALICE cocktail from Ref. [306],
simply by subtracting the cc̄ and bb̄ ALICE-MC predictions bin-by-bin. We then sum
all the contributions together, optionally including virtual photons, with a normalization
for each contribution left as a free parameter, and perform several fits to all publicly
available ALICE data in which we extract the values of fcc̄, fbb̄, fLF+J/ψ and fγ/Z . Our
fit results are summarized in Tab. 4.3. In the first column we report the results of the
original ALICE fit, using the ALICE-MC predictions. The fit determines fcc̄ = 2.5 and
fbb̄ = 0.75 and describes the data well with χ2/ndf = 0.9. We repeat this fit twice, first
with all the data points in the LMR and in the IMR (i.e. one invariant mass spectrum
in its full range and two transverse momentum spectra for each pp and pPb collisions)
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Figure 4.15: Comparison of the cocktail used by ALICE against our new cocktail includ-
ing the DY process with an extra jet. The shaded band is the scale shape uncertainty.
The blue shaded band on the cocktails is the uncertainty given by ALICE collaboration
on their cocktail. The red shaded band combines scale shape and ALICE uncertainties.

we had access to (npts = 89 as compared to npts = 123 in the ALICE fit) and only
our predictions for the background, and then the second time only in the IMR (npts =
53, i.e. one invariant mass spectrum in a reduced range and one transverse momentum
spectrum for each pp and pPb collisions) but now also with our prediction for the virtual
photons. Each time we offer two alternatives, one in which the shape uncertainties
are not considered (“central”, χ2 =

∑
i(xi − mi)2/∆m2

i ) and one in which they are
considered in a fully uncorrelated manner (“shape”, χ2 =

∑
i(xi −mi)2/(∆m2

i + ∆x2
i )).

The uncertainties on the normalization coefficients f , reported in round brackets in
columns 2 to 5 of Tab. 4.3, are the Hesse errors obtained from the χ2 minimization by
iminuit [319, 320]. The uncertainty on σcc̄ and σbb̄ in the first column, also reported
in round brackets, are instead obtained by combining all uncertainties from Table 3 of
Ref. [306] in quadrature. Correspondingly, the uncertainties on σcc̄ and σbb̄ in columns
2 to 5 are obtained by rescaling the uncertainty in column 1 by the ratio of the newly
extracted cross section to that of column 1. In our first fit in columns 2 and 3, we
get a very good data description with χ2/ndf equal to 0.95 and 0.74, respectively. The
normalization coefficient fcc̄ increases which in turn leads to an increase of extracted
values of the cc̄ cross sections from 756 µb → 788 µb and to 888 µb, respectively. The
normalization coefficient fbb̄ is instead slightly decreased. The relative fit uncertainties
on the normalization coefficients are small (∼ 5 %) as compared to the uncertainty on
the total extracted cross section reported by ALICE (∼ 25 %) for the cc̄ channel, but not
for bb̄ (∼ 18 % to 25 % vs. ∼ 14 %). In our second fit in columns 4 and 5, the addition
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of the virtual photon contribution pulls the fit back in the direction of the original fit in
column 1 reducing the factor fcc̄ and increasing fbb̄. The fit prefers a smaller value of
the virtual photon normalization of 23 % and 6 % that is however still compatible with
1.0 within 3σ, in particular in view of the fact that in this kinematic region with very
small values of photon virtuality and transverse momentum, the dependence of the cross
section on the choice of the factorization and renormalization scales is significant. Thus,
the sensitivity to the virtual photon contribution is limited and strongly dependent on
the uncertainties of the background contributions. All our fits prefer a reduced fraction
of the light flavour and J/ψ contributions, more notably in fits that include the virtual
photon contribution. Ultimately, however, the fact whether the shape scale uncertainty
is included in the fit or not plays a more important role. All in all, the light flavour and
J/ψ contribution is compatible with 1.0 within 2 standard deviations and in agreement
with previous studies. Owing to the large branching ratio uncertainty the extracted
charm and bottom cross sections are also compatible within one sigma across all five fits.
In general, the inclusion of shape uncertainties increases these uncertainties for every
fitting parameter, but most significantly, as expected, for fcc̄. The best description of
the data, i.e. the smallest χ2/ndf, is obtained in the fit that takes into account both the
virtual photon and the shape uncertainties.

In Fig. 4.15, we compare our best prediction for the hadronic cocktail (corresponding
to fit 2), denoted by Total and shown in red, with the hadronic cocktail from ALICE
in blue, and with data in black. Our prediction for the hadronic cocktail agrees with
the previous prediction from ALICE and describes the measurement well. Our central
fit describes the data less well than the central fit from ALICE, deviating from the
data by up to 30%, however only one point is more than 1σ away, not considering
the theoretical uncertainties. However, our hadronic cocktail deviates from the one by
ALICE considerably when it comes to uncertainties. Whereas ALICE’s uncertainties
are well below ±5 % in the low tail increasing to about ±10 % in the high tail, our
uncertainties reach up to ±50 % and almost never drop under ±10 %. This striking
difference is due to the perturbative scale shape uncertainties in the cc̄ production,
which were not considered in the ALICE analysis. Including the contribution of the
virtual photons does not significantly change the shape of the total result relative to the
data uncertainties.

Finally, in Fig. 4.16, we show the ratios of our pPb and pp compared to those of
ALICE and the data. Both ratios were obtained by simply dividing the pPb prediction
by the pp prediction after appropriate rebinning. The RpPb predictions agree very
well across the entire range of the mee and pT,ee spectra, except in the first transverse
momentum bin where our prediction is closer to the data. In the intermediate range of
the invariant mass spectrum, our prediction has considerably larger uncertainties as a
result of the open charm production scale shape uncertainties not completely cancelling
in the ratio.
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ALICE cocktail LF+J/ψ+bb̄+cc̄ LF+J/ψ+bb̄+cc̄+γ/Z

dataset pp & pPb pp & pPb pp & pPb (no LMR)

uncertainty central central shape central shape

fcc̄ 2.50 (2.61 ± 0.16) (2.93 ± 0.19) (2.35 ± 0.24) (2.86 ± 0.31)

fbb̄ 0.75 (0.60 ± 0.11) (0.48 ± 0.12) (0.63 ± 0.13) (0.57 ± 0.15)

fLF+J/ψ 1.0 (0.96 ± 0.03) (0.93 ± 0.03) (0.91 ± 0.06) (0.88 ± 0.08)

fγ/Z - - - (0.23 ± 0.17) (0.06 ± 0.20)

χ2/ndf 110.9/123 84.2/89 65.9/89 47.7/49 33.3/49

0.90 0.95 0.74 0.97 0.68
dσcc̄

dy |y=0 [µb] (756 ± 188) (788 ± 196) (888 ± 221) (709 ± 176) (866 ± 215)
dσbb̄

dy |y=0 [µb] (28 ± 5) (22 ± 3) (22 ± 3) (24 ± 3) (21 ± 3)

Table 4.3: Different normalization parameters f , χ2/ndf and HQ cross sections for the
different combinations of processes contributing to di-electron production obtained from
a fit with iminuit [319, 320].
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Figure 4.16: RpPb in invariant mass (left) and transverse momentum (right) for the total
cocktail. For the total curve the uncertainty band are correlated scale uncertainties of
the cc̄, bb̄ and Zj process. The uncertainty band of the ALICE cocktail is computed
solely from the lead uncertainty given by ALICE in the nominator of the ratio.



4.1. VIRTUAL PHOTON PRODUCTION 102

4.1.4.4 Initial- and final-state nuclear effects in PbPb collisions

In this section we focus on PbPb collisions at 5.02 TeV. We start by comparing our
predictions for open heavy flavour production to ALICE-MC predictions and data in
Figs. 4.17 and 4.18 for di-electron invariant mass and transverse momentum spectra.
Whereas in the previous sections we compared measured cross sections to cross sections
predictions, here we compare yields to cross section predictions, because a cross section
measurement is thus far not available. Instead of dividing by Ncoll obtained from the
Glauber model as we did in Ref. [3], we normalize our predictions to the ALICE-MC
predictions in PbPb collisions from Ref. [308].

As before our predictions for open charm agree with ALICE-MC within the uncer-
tainties, but those for open bottom don’t, because the scale uncertainties, now stripped
off the normalization component, are significantly smaller. Note that the shape differ-
ence between the two predictions may be exaggerated because our prediction does not
take into account potential kinematic dependence of the detector acceptance. While the
normalized scale uncertainties are very similar to those in pp and pPb collisions, replac-
ing both proton beams by lead markedly increases the PDF uncertainties, as one would
expect. The resulting nuclear PDF uncertainty of about ±30 % (±20 %) is no longer
the subleading in the open bottom production. Finally, we also note that in the last bin
of the transverse momentum spectrum of PbPb collisions in Fig. 4.14 both predictions
exceed the ALICE data.

The excess of our predictions over the data in the high pT region point to further
nuclear effects. In fact there is another important correction to the processes PbPb →
cc̄(X), bb̄(X), namely in Ref. [321] a suppression of hadronic decays involving transitions
c → e and b → e was measured relative to pp collisions, i.e. Rc/b→e

AA (pT ) < 1 [322]. This
correction depends on the centrality and can give a reduction of up to 50 % in collisions
of centrality 0 % to 10 % and 30 % to 50 % and the effects disappear in collisions of
centrality 60 % to 80 %. The inclusion of this final state effect is multiplicative and
due to the dependence on pT it does not only affect the normalization but also the
shape of the distribution. Similar effects for RpA are possible, but have not yet been
measured with sufficient precision [321]. Fig. 4.19 shows the effect of including this
nuclear modification factor Rb,c→e

AA on bb̄ production in 0 % to 10 % centrality collisions.
The resulting pT spectra no longer exceed the data for large pT , while the relative shape
uncertainty remains almost unchanged. The correction by a factor of 2 to 3 is well above
the largest source of uncertainty so far, which are the PDFs, as we have seen in the PbPb
case in Fig. 4.18. The inclusion of such a factor and its uncertainty is therefore necessary
to obtain a reliable prediction for the bb̄ production in PbPb collisions, especially if the
normalization is to be determined by a fit.
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Figure 4.17: Invariant mass spectrum to open charm production PbPb → cc̄(X), bb̄(X)
using POWHEG BOX and PYTHIA with nCTEQ15HQ as PDFs. The area of the green and
orange curves is normalized to the ALICE-MC prediction. The second row is scale
shape uncertainty and the third row is normal PDF uncertainty.
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Figure 4.18: Transverse momentum spectrum in the intermediate invariant mass region
to open charm production PbPb → cc̄(X), bb̄(X) using POWHEG BOX and PYTHIA with
nCTEQ15HQ as PDFs. The area of the red curve is normalized to the ALICE-MC pre-
diction. The second row is scale shape uncertainty and the third row is normal PDF
uncertainty.
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Figure 4.19: Open bottom production PbPb → bb̄(X) with and without including a
Rb,c→e
AA factor. Both curves use a different normalization to ALICE-MC predictions.

The lead nPDF in use is nCTEQ15HQ.

4.2 Real photon production
If we omit the splitting of the photon into an e+e− pair, the Feynman diagram in
Fig. 4.5i becomes the annihilation process in Fig. 4.20 and the final-state contains a
prompt on-shell photon. Processes involving prompt photons, such as their production
in association with jets, provide a unique opportunity to study the distribution of gluons
in nuclei due to their production mechanism via quark-gluon Compton scattering (gq →
γq) [286, 323]. The gluon density becomes especially large at low values of Bjorken-x ∼
2pγT /

√
s and scale Q ∼ pγT , where at some point saturation may occur [324, 325]. The

knowledge of precise distributions of parton momenta within a nucleon, described in
the framework of collinear factorization by PDFs, is crucial for precise simulations of
high-energy collisions.

Early prompt photon calculations were performed at the next-to-leading-logarithmic
(NLL) accuracy without the inclusion of fragmentation [326] and later at NLO in the
small-cone approximation [327] relying on MCmethods. Following them, a new cal-
culation released under the name of JetPhox [70–72] was published improving on the
aforementioned shortcomings by including the direct and fragmentation contributions
without any approximations. NNLO calculations for direct photon production have
been performed in MCFM [328–331] and NNLOJET [78, 332] but are unfortunately not yet
publicly available.

Complementary to the above calculations, the NLO POWHEG BOX implementation in
Ref. [300] does not rely on fragmentation functions but instead consistently attaches a
PS to the generated events, allowing for more realistic studies of photon-jet correlations
and photon fragmentation. Additionally, merging techniques, such as those used in
the Sherpa framework, have advanced the accuracy of isolated photon simulations by
incorporating multiple parton emissions described by exact matrix elements [90, 91].
Sherpa achieves NLO QCD matched to PS precision for the 2 → 3 production process
of a photon with two jets. Recently, even higher-order corrections to γjj production
at NNLO has been achieved, further enhancing the precision of theoretical predictions
[333].

There have been many experimental studies of isolated prompt photon production
at the Super Proton-antiproton Synchrotron (SppS), Tevatron, RHIC and the LHC as
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Figure 4.20: Feynman diagrams for direct photon production. Figure adapted from
[116].

outlined in Ref. [115]. In Fig. 4.21 we see that also the transverse momentum distribution
of direct photons separate the different phases in a heavy-ion collision. The prompt
photons describe the initial hard scattering at high pT and the thermal photons the
later stages of the collision at low pT . The pre-equilibrium photons contribute most
inbetween. With current models there is however still an excess at low pT . Pioneering
High Energy Nuclear Interaction eXperiment (PHENIX) [336] and ALICE [337] not only
measure low transverse momenta (. 100 GeV) direct photons, but they also study low
invariant mass dilepton pairs originating from virtual photons [267, 269]. Typically, the
yield of di-electrons with mee ≤ 1 GeV has been computed by applying the Kroll-Wada
prescription to real photon production [285]. A Toroidal LHC ApparatuS (ATLAS) [338]
and Compact Muon Solenoid (CMS) [339] extend their search up to the TeV scale. We
will also compare our new predictions with the ATLAS measurement of isolated-photon
plus two-jet production in pp collisions at

√
s = 13 TeV [340].

This section is structured as follows. We first discuss the POWHEG method and
its application to prompt photon production in association with one jet at NLO in
Sec. 4.2.1. Then it is extended to the production of a photon in association with two
jets at NLO in Sec. 4.2.2 based on the publication [5]. Then we present our simulation
setup and discuss the results of our calculations in Sec. 4.2.3.

4.2.1 Prompt photon production with one jet

In Fig. 4.20 exemplary Feynman diagrams for direct photon production with at least one
jet are shown. The prompt photons also come from either Compton and annihilation pro-
cesses and fragmentations photons from bremsstrahlung or gluon/quark fragmentation.
As can be seen from the figure, going beyond leading order the definition of fragmenta-
tion photons becomes ambiguous as the splitting q → qγ can also be attributed to the
real correction. Tab. 4.4 orders prompt photon production by the couplings and shows
which processes are included in the calculation highlighted in grey.



4.2. REAL PHOTON PRODUCTION 106

Figure 4.21: Direct photons in gold-gold (AuAu) in central events at RHIC [280, 334].
The data is compared against different theoretical contributions [335].

Born pp → γj ∼ O(ααS) pp → jj ∼ O(α2
S)

Virtual O(ααS) · O(α) O(ααS) · O(αS) O(α2
S) · O(α) O(α2

S) · O(αS)

Real pp → γγj ∼ O(α2αS) pp → γjj ∼ O(αα2
S) pp → jjj ∼ O(α3

S)

Table 4.4: Processes contributing to prompt photon production in association with one
jet at NLO. Only the greyed out processes are included in the calculation.

4.2.1.1 The POWHEG method as an alternative to fragmentation functions

In Sec. 2.2.6 we have seen that the factorized photon-hadron production cross section
with untagged final-state X reads

dσAB→γX(pA, pB , pγ) =
∑
a,b,c

∫ 1

0
dxa dxb dz fa/A(xa, µFi)fb/B(xb, µFi)

dσ̂ab→cX(xaPA, xbPB ,
Pγ
z
, µR, µFi

, µFf
)Dγ/c(z, µFf

) ,

(4.2.1)

where one sums over the intermediate initial and final-state partons and convolves the
PDFs fa/A, picking parton a from hadron A, and FFs Dγ/c, fragmenting parton c to
a photon, with the partonic cross section dσ̂ab→cX . The pieces are connected through
the renormalization scale µR and factorization scale in the initial-state µFi and final-
state µFf

. The partonic cross section σ̂ is not IR safe for identified partons however the
factorization theorems cancel these universal collinear divergences [27]. Alternatively
one can use a parton shower to model the fragmentation, which is the path we pursue in
this work. Advantages of the parton shower include more flexibility, customized tuning
for QGP effects like jet quenching and energy loss and simulations beyond just the
transition to the final-state photon.

In NLO calculations within the framework of perturbative quantum field theory, the
amplitude for a given process includes contributions from n-particle states, comprising
both the Born contribution and the virtual corrections, as well as n + 1-particle states
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due to real emission processes. The POWHEG method effectively integrates the first
radiation emission into the n-particle state. This integration is achieved by employing
a modified Sudakov form factor, ∆R(pT ), which is defined as follows

∆R(pT ) = exp
[
−
∫

dΦR
R(ΦB ,ΦR)
B(ΦB) θ(kT (ΦB ,ΦR) − pT )

]
, (4.2.2)

of Eq. (3.3.21) where the integration spans the real emission n + 1 phase space ΦR,
and the ratio of the real emission correction to the Born amplitude, R(ΦB ,ΦR)/B(ΦB),
stands in for the emission probability modulated by a Heaviside step function θ pro-
hibiting emissions below the transverse momentum scale pT . To maintain NLO accuracy
with this modified factor, one must ensure that the subsequent PS generates radiation
only below the established scale pT . In the LHE standard [341] this scale of the hard
process is defined as the SCALUP parameter and the PS uses it as starting point to
attach softer emissions [61]. In a pT -ordered parton shower, this is achieved by starting
at a given scale, while in angular-ordered PS, a veto algorithm is employed [63].

In POWHEG, the process of attaching an emission to a leading-order contribution
is managed through a probabilistic method involving the transverse momentum of the
emission, in analogy to SMCs in Sec. 3.2.5. The procedure starts with the determination
of pT via a randomly selected value r ∈ (0, 1), which is used to compute

log ∆U (pT ) = log(r) , (4.2.3)

where ∆U (pT ) represents the lower bound of the Sudakov form factor from Eq. (4.2.2).
The lower bound is obtained by replacing the ratio of Real and Born f ∼ R

B by an
upper bounding function U . The emission at given pT is then subjected to an acceptance
probability Pacc = f

U . Should the emission not meet the acceptance criteria, it is rejected
with a probability of 1 − f

U , and the procedure is repeated for a decreased pT value.
This iterative process continues until either the emission is accepted or the threshold
defined as ΛQCD is reached.

The POWHEG method in junction with a PS can also be used as an alternative
to the FF approach. The NLO real photon production at O(αα2

S) in POWHEG com-
prises two primary contributions: events with an underlying photon and a parton, and
events with underlying two partons. The first category represents the true direct photon
contribution, which includes the qq̄ → γg (annihilation) or gq → γq (Compton scatter-
ing) processes. The second category involves the dijet process, which contributes to the
fragmentation component. NLO events are generated from these two contributions in
the following ways. For the direct photon contribution, POWHEG may attach a gluon,
setting the SCALUP to the transverse momentum of the gluon. Alternatively, it may
split a gluon into a quark-antiquark pair, with the SCALUP set to the pT of one of
the quarks, or attach nothing, setting the SCALUP to a value of perturbative cutoff
at approximately 1 GeV. It is important to note that γ → qq̄ splitting remove photons
from the final-state, thus affecting observables that tag photons only at higher-orders,
particularly if the photon is regenerated through QED showers. For the dijet contribu-
tion, POWHEG may attach a photon, setting the SCALUP to the photon’s pT . QCD
radiation on top of dijet events, which do not initially include photons, contributes at
higher-orders if the photon is regenerated through QED showers. We do not include
such QCD real corrections to the underlying QCD Born events. The inclusion of un-
derlying dijet events is solely for the purpose of subtracting the collinear singularity
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Figure 4.22: Ratio of events with a photon at the LHE level, i.e. before the parton
shower, for different values of the | enhancedrad| parameter c.

and is not intended for a fragmentation function-like convolution. The remainder of the
fragmentation contributions is included by the PS.

4.2.1.2 Enhanced QED radiation

Above treatment has a caveat, as attaching a photon to a parton is suppressed by the
electromagnetic coupling constant α, this will happen at a very small rate. Consequently,
most of the events generated will be dijet-like events, with few events containing photons
in the final-state. Therefore, in Ref. [300] the enhancedrad parameter c was introduced
to increase the ratio of generated events with photons. As the same problem remains for
the process with one extra jet we repeat the same procedure again in analogy to [342]
and similar to PYTHIA’s Enhance -options [343]. The probability of attaching a photon
is increased by modifying Eq. (4.2.3) to

log ∆cU (pT ) = log(r) ⇔ log ∆U (pT ) = log(r)
c

, (4.2.4)

where a constant c, c > 1, is introduced to increase the probability of attaching a photon.
Finally, the event’s weight has to be adjusted for all previous n rejected emissions

wn = 1
c

n∏
i=1

1 − fi

cUi

1 − fi

Ui

. (4.2.5)

This allows us to increase the ratio of photons in typical events from ≈ 5 % at c = 1
to ≈ 30 − 40% at c = 10 up to 90 % at c = 100 in exchange for reduced weights. In
Fig. 4.22 the ratio of photons in the final-state is shown for different values of c which
showed a Fermi-Dirac like behaviour.



4.2. REAL PHOTON PRODUCTION 109

Figure 4.23: Exemplary generated POWHEG BOX NLO event with PYTHIA as PS. Figure
generated with [7].

4.2.1.3 Example event

The Feynman diagram in Fig. 4.23 illustrates a fully generated pp event, incorporating
parton shower effects and hadron decays. In this event, the colliding partons are repre-
sented in green, while the hard process, which is the primary high-energy interaction,
is depicted in red and compressed into a single vertex4 (a 2 → 3 NLO event). A real
photon, generated from the interaction, is coloured in blue. The transition from the red
photon to the blue photon is due to PYTHIA’s momentum rebalancing. Additionally, the
event features numerous π0 meson decays originating from the jets, which subsequently
decay into even more photons, contributing to the complexity of the particle cascade.
These photons are not easy distinguishable within the detector, blending into the overall

4This is the LHE output generated by POWHEG BOX. Since it integrates over the Feynman diagrams
contributing to a specific final-state they can not be discerned. It is also not be possible to display the
interference of diagrams in a single event-like picture.
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photon distribution. Although these photons do not originate from fragmentation pro-
cesses, they are still filtered by isolation criteria typically used to separate signal photons
from background contributions. This visualization highlights the intricate nature of par-
ticle interactions and the resulting shower of particles and decay products following a
high-energy collision. The Feynman diagram representation does not consider momenta
or clustering effects. Interestingly however, just a 2D-graph spring tension minimisation
between the vertices to visualize the event already shows jet like formations. In this
visualization, the ISR is evident since the green proton is not directly linked to the red
hard process. The splits into an up quark entering the hard process and beam remnant
(ud)1.

4.2.1.4 Forward Calorimeter

As an example application of the direct photon code we will look at the FoCal ex-
periment. The FoCal is a cutting-edge detector that will be installed in the ALICE
experiment during the Long Shutdown 3 of the LHC [116]. Designed to explore the
frontier of QCD, FoCal aims to measure the gluon density in protons and nuclei at
very small values of the Bjorken scaling variable x and the squared momentum transfer
Q2. At these small x values, where the gluon density becomes extremely high, interest-
ing nonlinear QCD phenomena, such as gluon saturation, are expected to occur. These
measurements are crucial for understanding the behaviour of strongly interacting matter
under extreme conditions, such as those found in the early universe and inside neutron
stars. FoCal’s ability to study ultraperipheral collisions, long-range correlations, and the
transition to the QGP makes it an essential tool for probing the fundamental aspects of
QCD.

FoCal consists of two main components: first the thinner electromagnetic calorimeter
and then the larger hadronic calorimeter. These detectors will be located approximately
7 meters from the interaction point of ALICE, providing unique capabilities for studying
forward physics, where particles are produced at small angles relative to the beam
direction.

Similarly to Sec. 4.1.1 a customized phase space sampling helps to generate events
with a photon in the forward region. Within POWHEG BOX this is equivalent to optimizing
the bornsuppression routine. Predictions for isolated prompt photons in the FoCal
experiment at

√
s = 14 TeV are shown in Fig. 4.24. The cuts applied on the photon are

3.4 < ηγ < 5.8 with a fixed isolation cone of Riso = 0.4 and Eiso
T = 5 GeV. Generating

such forward events in either requires simulating many events (most of which get dis-
carded by the cuts) or modifying the phase space generation/born suppression in the
POWHEG BOX code. The mixed production channel qg outweighs the qq and gg channel,
but gg rises faster towards small pγT . Further, the LO PYTHIA calculation underestimates
the gg channel compared to NLO POWHEG BOX. The combination of POWHEG BOX+PYTHIA
increases the cross section in the low pγT regime by a few percent, but this effect is over-
shadowed by the numeric uncertainties as shown by the vertical bars. Fig. 4.25 shows
the distribution of xg and Q for the same process and confirms that the forward region
of FoCal’s prompt photons probes low x and Q.

4.2.2 Prompt photon production with two jets at NLO
Next, we present a new calculation of prompt photon production with two jets at NLO
QCD matched to PSs using the POWHEG method [63, 188]. Extending the existing
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(ii) gg → γ + (X)
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(iii) qq → γ + (X)

Figure 4.24: Predictions for isolated prompt photons in the FoCal experiment at
√
s =

14 TeV. The cuts applied on the photon are 3.4 < ηγ < 5.8 with a fixed isolation cone
of Riso = 0.4 and Eiso

T = 5 GeV. The vertical bars represent the numerical uncertainties.

POWHEG BOX [189] direct photon calculation [300] by one jet is a significant advancement
for several reasons. Firstly, incorporating the second jet at NLO improves the accuracy
of the photon plus jet calculations by providing a more precise depiction of the event,
reducing theoretical uncertainties. It also enables the study of jet-jet correlations within
this process, offering new insights into the dynamics between jets in the presence of a
direct photon. Moreover, the simulation allows for a detailed analysis of scenarios where
a photon traverses a jet, including cases where the photon lies within the jet cone,
which is crucial for understanding jet-photon interactions and isolation criteria. Lastly,
this calculation enhances the capability to examine the ratio of Z+jets to γ+jets, thus
improving background estimations in searches for new physics in Z → νν̄ decays [344].

Building upon our previous work on prompt photon production in association with a
single jet at NLO [300] in the POWHEG BOX V2 framework, we now perform the calculation
of the process with an additional jet. The concepts and methods used in the calculation
are similar to the ones used in the single jet case, however, the complexity of the calcu-
lation increases with the number of final-state particles. In the subsequent sections, we
will review the concept of the POWHEG method, detail the calculation of the process
pp → γjj at NLO, and describe the implementation of this calculation in POWHEG BOX V2.
Particular attention will be given to differences with respect to our previous calculation.

4.2.2.1 Phase space

For the definition of the phase space, we adopted the multi-channel phase space con-
struction from the topologically similar trijet [187] process in POWHEG BOX V2. This
in term builds on the phase space of the POWHEG BOX for the production of two jets
dijet [345], which has already been adapted for the use in directphoton [300]. This
method provides independent importance sampling in the 6 divergent FSR and 3 ISR.
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Figure 4.25: Distribution of xg and Q for isolated prompt photons in the FoCal experi-
ment at

√
s = 14 TeV. The cuts applied on the photon are 3.4 < ηγ < 5.8 with a fixed

isolation cone of Riso = 0.4 and Eiso
T = 5 GeV.

They diverge as

SISR
0j = S1j + S2j = 1

E2
j (1 − cos2 θ1j)

and SFSR
ij =

E2
i + E2

j

2E2
i E

2
j (1 − cos θij)

, (4.2.6)

with i, j ≥ 3 and can be normalized

S̃0j = Sij∑
j(S0j +

∑
i Sij)

, S̃ij = Sij∑
j(S0j +

∑
i Sij)

Ej
Ei + Ej

, (4.2.7)

as we already saw in Sec. 3.1.4.1. Starting from a 2 → 2 massless phase space (Φ2→2)
and it is constructed as dΦB =

∑
kj S̃kjdΦ2→3,kj , where dΦ2→3,kj is dΦ2→2 with the

emission kj added through POWHEG BOX’s n + 1 phase space construction routines [63,
188, 189]. If one now probes a divergent 2 → 3 regime then the non-divergent S̃ vanish
by construction

S̃0j,ij →

{
1 as Ej → 0 or θij → 0
0 else

. (4.2.8)

Thus, the phase space sampling is guaranteed to pick the dΦ2→3,kj that works well
despite the soft and/or collinear divergences. The 2 → 2 phase space generation in
directphoton, dijet and trijet corresponds to Eq. (4.1.1) with different importance
sampling options.

4.2.2.2 Calculation and implementation

In Fig. 4.26 exemplary Feynman diagrams for direct photon production with at least two
jets are shown. Since the addition of a jet to the direct photon process is straightforward
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Figure 4.26: Schematic representation of the different contributions to prompt photon
production in association with two jets at NLO+PS. This extended disambiguation is
inspired by [116].

Born pp → γjj ∼ O(αα2
S) pp → jjj ∼ O(α3

S)

Virtual O(αα2
S) · O(α) O(αα2

S) · O(αS) O(α3
S) · O(α) O(α3

S) · O(αS)

Real pp → γγjj ∼ O(α2α2
S) pp → γjjj ∼ O(αα3

S) pp → jjjj ∼ O(α4
S)

Table 4.5: Processes contributing to prompt photon production in association with two
jets at NLO. Only the greyed out processes are included in the calculation.

the prompt photons also come from either Compton and annihilation processes and
fragmentations photons from bremsstrahlung or gluon/quark fragmentation. The main
conceptional differences to the direct photon production with one jet is that already
at leading order there is a gluon-gluon initiated process. As can be seen from the
figure, going beyond leading order the definition of fragmentation photons becomes
again ambiguous as the splitting q → qγ can also be attributed to the real correction.
Tab. 4.5 orders prompt photon production by the couplings and shows which processes
are included in the calculation highlighted in grey. Using the POWHEG method as
an alternative to FFs for process pp → γj at NLO as explained in Sec. 4.2.1.1 can be
straightforwardly extended to the process pp → γjj at NLO.

The numerical implementation of the NLO calculation for the process pp → γjj was
performed using the POWHEG BOX V2 framework. Usually, the required ingredients for a
new process are the Born amplitudes and their colour- and spin-correlated counterparts,
the Born phase space, a decomposition of the amplitudes in the colour flow basis, the
finite part of the virtual corrections, and the real correction amplitudes. For this process
however we will also reuse the modifications, e.g. the Sudakov weight Eq. (4.2.5), to the
core POWHEG BOX functionality introduced in Ref. [300].

The usual leading order, virtual and real corrections were computed with FormCalc
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in a five-flavour scheme. The required leading order components for pp → jjj have
been reused from the trijet process [187]. The UV divergences are handled by the
constrained differential renormalization [346]. Whereas the IR divergences are treated
using the FKS subtraction in POWHEG BOX V2 (cf. Sec. 3.1.4.1), which combines the
colour- and spin-correlated amplitudes to reproduce and treat the divergent behaviour.
The colour-correlated Born amplitudes were obtained from FormCalc by injecting the
colour charge operators into the amplitudes in the Mathematica code

Bij = −N
∑
spins
colors

M{ck}T a
ci,c′

i
T a
cj ,c′

j
[M†

{ck}]ci→c′
i

cj→c′
j

. (4.2.9)

Here the averaging factors are included in N , {ck} are the sets of colour indices of the
external particles and T represents the structure constants fabc for gluons or ±T aαβ for
quarks (cf. Sec. A.1.4.2). The colour-correlation is automatically checked at runtime by
requiring that

∑
i,i6=j Bij = Cfj

B where Cfj
is the Casimir constant of the parton j.

Similarly to the colour-correlations, in the expression for the spin-correlation

Bµνj = N
∑
spins
colors

M{sk}ε
µ∗
sj
ενs′

j
[M†

{sk}]sj→s′
j

(4.2.10)

the identity between spins sj and s′
j has been replaced by the polarization vectors εµsj

.
As FormCalc’s exported Fortran code uses the spinor helicity formalism [347] to compute
the matrix elements, it is possible to query individual polarized and averaged helicity
amplitudes. Thus, one obtains the spin-correlations between the photon and the partons
by taking all but one external particle as unpolarized. The four combination of sj × s′

j

are scaled by the corresponding numeric values of the polarization vectors and then
summed. A trivial cross-check is to verify gµνBµνj = −B for all j, which POWHEG BOX V2
also does at runtime. Furthermore, the required tree diagrams and correlations can be
computed analytically in our newly developed code [9], which glues FORM [348–350] and
SymPy [351] together.

The inclusion of colour flow information is necessary to enable the parton shower to
properly manage colour correlations beyond the hard process and we perform the colour
flow decomposition as outlined in Sec. 3.1.1.2.

In the course of our study, several computational tools and frameworks were em-
ployed to ensure the reliability and accuracy of our results in prompt photon production
calculations. To cross-verify the computational precision of our NLO QCD calculations,
we compared to multiple automatic matrix element generators. The virtual correc-
tions were validated against MadGraph5_aMC@NLO, OpenLoops 2 [352] and Recola 2 [353]
whereas the real corrections were checked with FormCalc and OpenLoops 2. This compre-
hensive cross-check confirms the consistency across different tools. After evaluating the
performance and numerical quality of the FKS subtraction of the various computations,
OpenLoops 2 was selected for the final implementation and numerical computations in
the remainder of this chapter. During the process of comparing different calculations we
also developed an interface between MCFM and Rivet/YODA [309–311], that also allows
for direct comparison against experimental analyses.
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4.2.3 Isolated-prompt photons with 2 jets at 13 TeV
4.2.3.1 Simulation setup

The events from POWHEG BOX V2 in the LHE format are showered both by PYTHIA 8 or
HERWIG 7, and then analysed by Rivet 3. In our recent developments, significant updates
have been made to the POWHEG-RIVET-PYTHIA [3, 5]5 interface to enhance its compatibil-
ity with the latest versions of HepMC 3, Rivet 3 and PYTHIA 8. Originally designed to work
seamlessly with earlier versions [312, 354], the interface required an overhaul to align
with the updates in these widely used simulation tools. Additionally, we have expanded
the flexibility of our interface by exposing several meta parameters, such as toggles for
QCD and QED showers, to the users through the powheg.input file. This advance-
ment allows for an enriched user experience by providing options that were previously
accessible only through customized settings. Mirroring this enhanced configurability,
a new interface for HERWIG 7 has also been developed. This new interface incorporates
similar user-exposed options, thereby standardizing the setup across different parton
showers and making it easier for users to transition between tools without reconfiguring
their parameters extensively. The complexity of keeping PYTHIA 8 and HERWIG 7 in sync
can be seen in the appendix of [5].

We set the renormalization and factorization scale equal to the transverse momentum
of the photon, EγT = pγT , and the PDF in use is MSHT20nlo through LHAPDF 6 whereas
the running of αS is calculated internally by POWHEG BOX. In all the following figures in
Sec. 4.2.3.2 and Sec. 4.2.3.3 the vertical error bars represent the statistical uncertainties,
while the bands represent the scale uncertainties. The scale uncertainties are estimated
by the standard factor-two seven-point variation of the renormalization and factorization
scales by a factor of two around the central value while excluding relative factors of four.
As the computations involves both tree level diagrams of pp → γjjj and pp → jjj this
takes a significant amount of CPU hours. In order to speed up the process, we only
enabled the virtual corrections in the final reweighting step, instead of generating equal
weighted events for all processes. Due to the inclusion of the Sudakov reweighting factor
Eq. (4.2.5), the events are already not equally weighted thus this is not a significant loss.

4.2.3.2 Isolation schemes and parton showers

In Sec. 2.2.6 we discussed the fragmentation of partons into photons and how isolation
schemes are used to separate the prompt photons from the fragmentation photons. In
the following we will demonstrate and discuss the effect of the different isolation schemes
on the prompt photon production in association with two jets. Naturally, the hybrid
isolation must result in cross sections that are lower than the fixed code isolation. This
will only be barely visible in our setup (see below), however, and the hybrid isolation
mostly results in the same prediction as the fixed isolation. Thus, it satisfies its purpose
of addressing theoretical issues while remaining close to the experimentally motivated
fixed-cone isolation. Figs. 4.27 to 4.29 show our predictions for the different isolation
schemes in PY8 (left) and HW7 (right). The parameters entering the analysis are the
jet radius Rj = 0.4 for the anti-kT algorithm [237], the isolation radius RI = 0.4 and
the isolation energy piso

T = 2 GeV. Contrary to experimental analysis, as [340], there is
neither a pT scaling of the isolation energy nor do we include a hadronic background
subtraction and are only interested the hardest photon (γ) and hardest jet (j1). An

5Our interface will be made publicly available in the near future within another publication.
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Figure 4.27: Transverse momentum distribution of the photon for different isolation
schemes with no PS (left), PYTHIA (center) and HERWIG (right) parton showers.

implementation of our event selection in a Rivet analysis is available in the ancillary
files accompanying Ref. [5].6

Fig. 4.27 shows the distribution of the photon’s transverse momentum. The red,
yellow and blue curves correspond to the fixed-cone, smooth-cone, and hybrid isolation
schemes, respectively. Additionally, in green the non-isolated contribution is shown and
scaled by a factor of 1/2, to facilitate the comparison of shapes. The change of shape
as seen in the ratio panel between the non-isolated and fixed-cone isolation suggests
that the isolation suppresses low pT photons more. For the smooth-cone isolation this is
even more pronounced and above parameters result in generally smaller cross sections
than a fixed-cone isolation. There is however no significant difference in shape between
the different isolation schemes, only the smooth isolation is about 20 % lower than the
fixed and hybrid isolation. Both parton showers reduce the cross section in comparison
to their input, the unshowered events. Further the LHE prediction shows no difference
between the different isolation schemes. This can be explained by the fact that there
are only single hard partons in the final-state instead of a broader jet. Then the event
is mostly either isolated if a parton is close to the photon or non-isolated otherwise.
With a parton shower however the parton spreads its energy into a cone-like jet with an
increased probability to populate the photon’s isolation cone continuously. The parton
shower’s reduction in the cross section is then partly due to the fact that fewer photons
are isolated.

Next, in Fig. 4.28 we show how the different isolation schemes affect the separation
between the photon and the hardest jet, j1. Comparing the non-isolated with the
isolated curves one prominent difference in shape is the effective suppression above
π < ∆Rγj1 =

√
(∆η)2 + (∆φ)2. It is likely that even though the photon and the

hardest jet are produced back-to-back, the photon is not isolated as the remaining jets
can still become collinear with the photon. Then in the regime of 0.5 < ∆Rγj1 < π the
isolation reduces the cross section less. When the hardest jet is close to the isolation
cone around the photon ∆Rγj1 < 0.5 the isolation eliminates most of the cross section.
Again, no difference in shape between the different isolation schemes is visible, only the
smooth isolation is about 20 % to 30 % lower than the fixed and hybrid isolation. The

6Alternatively, the source code is available at https://gitlab.com/APN-Pucky/rivet-POWHEG_2023_
DIRECTPHOTON.

https://gitlab.com/APN-Pucky/rivet-POWHEG_2023_DIRECTPHOTON
https://gitlab.com/APN-Pucky/rivet-POWHEG_2023_DIRECTPHOTON
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Figure 4.28: ∆Rγj1 distribution of the photon for different isolation schemes using no
PS (left), PYTHIA (center) and HERWIG (right).
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Figure 4.29: Rapidity distribution of the photon for different isolation schemes with no
PS (left), PYTHIA (center) and HERWIG (right).

production of soft emissions is visible in the increase in the low ∆R region between the
no PS and parton shower figures. A visible difference between the isolation schemes
again exists only with the parton showers enabled.

In Fig. 4.29 the rapidity distribution of the photon is shown. The interesting feature
here is that both PY8 and HW7 show a suppression towards rapidities of yγ ≈ 0 with
the fixed and hybrid cone isolation. This trend is slightly more pronounced in the
smooth-cone isolation. The effect is completely absent without a parton shower hinting
at increased soft emission activity towards low rapidities. Comparing PY8 and HW7 across
the three plots there is next to no difference in shape, which is to an extent expected
since they are given the same POWHEG BOX events as input. A small difference is that HW7
predicts a marginally larger cross section than PY8 regardless of the isolation scheme.
Further HW7’s results come with barely smaller numerical uncertainties therefore smaller
fluctuations than PY8’s.

The x-Q distribution before and after the PS is shown in Fig. 4.30. Both values are
used to evaluate the PDFs and are not expected to be modified significantly by a naive
PS. However, minor differences can appear due to reweighting between different hard
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Figure 4.30: x-Q distribution in a.u. after LHE (left) and PYTHIA (right) with a fixed-
cone isolation.

and parton shower internal PDFs as in Eq. (2.2.25) or the isolation fixed-cone isolation
criteria applied in the analysis. The only directly visible difference is that PYTHIA reduces
the cross section in the dominant centre compared to LHE. This suppression effect will
be discussed more in the following section.

As mentioned in Sec. 3.3.3.2, the first and hardest emission in the underlying event
is attached using the POWHEG method. Since our process is mixed in QCD and QED
the underlying 2 → 3 event can be either a trijet (QCD) or photon plus two jets event
(QED). In Fig. 4.31 the transverse momentum distribution is split between the QCD
and QED underlying events. Comparing the curves without isolation (green) the pure
QCD contribution dominates, but after applying the isolation cuts the QED contribution
becomes more important (yellow, red and blue). Starting from a QCD event attaching
a photon to one of the three jets is likely to be non-isolated. In contrast, photon plus
two jet events rarely experience QCD emissions near the photon, allowing it to remain
isolated. This is consistent with understanding the QCD underlying event as analogous
to the FF contribution. Although using enhancedrad increases the ratio of QED
events, it still exhibits larger numerical uncertainties. However, the scale uncertainties
are smaller compared to the QCD contribution.

In general, we find that the shapes of the predictions do not depend significantly on
the isolation criterion, but that the results for smooth-cone isolation lie below those for
fixed-cone and hybrid isolation. The latter two as well as PYTHIA and HERWIG agree in
general quite well.

4.2.3.3 Comparison with ATLAS data

The following figures show results of the new calculation for an isolated photon plus two-
jet in the context of an analysis performed by ATLAS in pp collisions at 13 TeV [340]. On
top of the cuts defined by the ATLAS detector dimensions, the analysis uses an isolation
cone of RI = 0.4 and isolation energy of Eiso

T = 10 GeV+0.0042pγT +πR2
Iρ
pT

j (η). The jet
density ρpT

j (η) describes the hadronic activity by averaging the transverse momenta of
the jets for given rapidity η obtained from a kT -algorithm. In consequence the photon
can be less isolated if it has a large pT or if there are many jets. After jets are identified
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Figure 4.31: pT distribution of the photon for different isolation schemes using PYTHIA
with QCD (left) and QED (right) underlying events.

through kT algorithm with a jet radius RJ = 0.5, they are sorted by transverse momen-
tum. That is the leading jet (jet1) is the one with the highest transverse momentum, the
subleading jet (jet2) is the one with the second most, etc. The same nomenclature would
apply for photons, but here we are only interested in the hardest photon. The Rivet anal-
ysis ATLAS_2019_I1772071 examines several observables in different regimes, namely
inclusive, direct-enriched and fragmentation-enriched contributions. In addition to the
experimental data, NLO QCD predictions from Sherpa [340], our new calculation of
direct photons in POWHEG BOX with PYTHIA 8 (PY8) and HERWIG 7 (HW7) as well as recent
NLO and NNLO corrections [333] are displayed. The Sherpa calculation merges γ + 1j
and γ+2j NLO with γ+3j and γ+4j LO events and supplements it with a parton shower
[Krauss:2001iv, Cascioli:2011va, Schumann:2007mg, Hoeche:2012yf] similar to
the procedure in Sec. 3.3.2. The NLO and NNLO predictions do not include a frag-
mentation contribution, arguing that it should not exceed 5 % for the inclusive and
direct-enriched regime. Both the NNLO/NLO and the NLO merged calculations use a
smooth-cone photon isolation at the ME level. While we will only look at the figures
with photon observables, further jet distributions are available in Sec. A.5.4.

We first inspect the fragmentation-enhanced regime, which is defined by requiring
both jets to be harder than the isolated prompt photon, pT (j2) > EγT . As can be seen in
Fig. 4.32i, the POWHEG BOX+PYTHIA 8 prediction describes the data well. The HERWIG 7
parton shower predicts a slightly lower rate than PY8, but still agrees reasonably well.
The prediction from Sherpa instead predicts larger rates than the data, but still overlaps
with data thanks to the large uncertainty. The NNLO prediction in the fragmentation-
enriched was not shown in its publication [333] due to the omission of fragmentation

https://rivet.hepforge.org/analyses/ATLAS_2019_I1772071.html
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contributions, but surprisingly, it also predicts the fragmentation contribution well de-
spite remaining large numerical and scale uncertainties. A similar picture persists in
Fig. 4.32iii where Sherpa and the NLO curve are consistently 10 % to 20 % above the
data while NNLO and POWHEG BOX are in agreement with the data and each other. Ob-
taining adequate statistics in the tails of the distributions of Fig. 4.32ii and Fig. 4.32iv
is challenging. This results in quite some fluctuations in both the NLO+PS and the
fixed order NNLO predictions. The prevailing trend also here is that the NNLO and
POWHEG predictions, which overlap within uncertainties, describe the data best. We
note that the shower corrections beyond NLO are quite large for all observables (10 %
to 20 %), see the second ratio panel. The first POWHEG emission correction, already
included at the LHE stage, has an appreciable phase space dependence, most notably
in the photon-jet angular separation spectrum, and tends to correct in the opposite
direction compared to the remaining shower emissions. Nevertheless, the total shower
correction is relatively flat.

In the direct-enhanced regime the photon has a larger transverse momentum than
the jets, pT (j1) < EγT . Thus, this region has enhanced contributions from photons
originating from the hard interaction. In comparison to the fragmentation regime, the
direct-enhanced regime suffers less from low statistics. The NNLO calculation is in good
agreement with the data in all observables, as can be seen in Fig. 4.33. While both PY8
and HW7 are mostly close to each other, the POWHEG+PY8 prediction is often slightly closer
to the NNLO curve. The Sherpa calculation comes with significantly larger uncertainties
than NNLO or NLO+PS calculations. Furthermore, it seems to overestimate the cross
section whenever the cross sections become small. The only very distinct separation
between the predictions is in Fig. 4.33iii at very low angular differences between the
photon and the jet. This is most-likely due to an increased sensitivity to the activity
around the photon due to the isolation criteria in this region. There the data points
also carry a large uncertainty of about 10 %. While NNLO and PY8 agree with them,
HW7 and NLO underestimate them, and Sherpa overestimates them by more than 20 %.
Just as in the fragmentation-enriched region, the shower corrections are relatively large
but mostly flat, except the photon-jet angular separation spectrum where its value is
vanishingly small.

Fig. 4.34 shows the inclusive predictions which encompass both of the previous
regimes, direct and fragmentation-enhanced. From comparing Figs. 4.32 and 4.33 to
Fig. 4.34 it is clear that the direct regime contributes more than fragmentation regime,
while the remaining contributions can stem from moderately hard photons, pT (j2) <
EγT < pT (j1). Across all four observables, the NNLO calculation is in best agreement
with the data. POWHEG matched either to PY8 or to HW7 also described the data well,
but suffers from larger scale and numerical uncertainties than the NNLO calculation.
The NLO prediction overestimates the data consistently by about 5 % to 10 %. This
leads us to the conclusion that fixed order NLO is not sufficient to describe the data
and either NNLO or NLO+PS is required.

Overall the data is described relatively well by all the tools. Both NNLO corrections
and shower corrections in predictions matched using the POWHEG method, regardless
of the shower details, seem to improve the description appreciably. The MC@NLO style
matching with the CS dipole based shower from Sherpa instead is closer to the fixed
order NLO prediction, and has been reported with surprisingly large scale uncertainties.
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Figure 4.32: Differential cross sections with respect to different observables in the
fragmentation-enhanced regime as defined by ATLAS [340].
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Figure 4.33: Differential cross sections with respect to different observables in the direct-
enhanced regime as defined by ATLAS [340].
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Figure 4.34: Differential cross sections with respect to different observables in the inclu-
sive regime as defined by ATLAS [340].
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CHAPTER 5. ELECTROWEAK SUPERPARTNER PRODUCTION WITH
RESUMMINO

Chapter 5

Electroweak superpartner
production with Resummino

In this chapter we study SUSY phenomenology at the LHC using the Resummino [2,
355] program. SUSY is a symmetry between bosons and fermions, which can be studied
in processes similar to previously studied photon production by replacing the final-state
particles with their superpartners. Instead of producing a photon with a quark, we will
produce an electroweakino with a squark, and similar to dilepton production, we will
study slepton production. While we previously used a MCEG with a PS to incorporate
soft effects to simulate the process, we will now use a MC integrator to calculate cross
sections at fixed order combined with analytically resummed soft effects.

This chapter is organized as follows. First we introduce the MSSM in Sec. 5.1 and
in Sec. 5.2 the threshold resummation formalism for soft gluons. Sec. 5.3 presents the
calculation of the production of a squark and an electroweakino at NLO+NLL accuracy.
Cross sections for purely electroweak SUSY production are given in Sec. 5.4. Finally,
in Sec. 5.5 the cross sections are used to compare with experimental data and obtain
exclusion limits.

5.1 The Minimal Supersymmetric Standard Model
In the search for Beyond the Standard Model (BSM) physics, SUSY offers a highly
promising framework [356–358]. By relating bosons and fermions, SUSY stabilizes the
Higgs boson mass against potentially large quantum corrections, enables the unification
of gauge couplings at high energies [359–361], and provides a natural dark matter candi-
date [362, 363], addressing several long-standing shortcomings of the SM simultaneously.

Observations such as the rotation curves of distant stars and gravitational lensing
strongly suggest that the Universe contains more than just visible matter and the neu-
trinos of the SM. A promising explanation for this excess mass is the introduction of a
stable or long-lived weakly interacting massive particle (WIMP) within a BSM theory.
One appealing approach to achieve this is by extending the theory’s symmetry group
with fermionic operators, leading to SUSY QFT, which also extend the Poincaré group
to its maximum limit [356, 364, 365].

To accommodate dark matter considerations, most SUSY models, particularly the
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MSSM [366–369], assume the conservation of a multiplicative quantum number called
R-parity [370]. In the MSSM, every degree of freedom in the SM is paired with a super-
partner differing by half a unit in spin. This leads to phenomenologically viable SUSY
spectra where the lightest supersymmetric particle (LSP) is electrically neutral [363], ex-
hibiting all the characteristics of the most promising dark matter candidate the WIMP.

The scalar partners of the left- and right-handed quarks mix, as do the higgsino,
bino, and wino interaction eigenstates, which after electroweak symmetry breaking form
neutral and charged states known as electroweakinos (neutralinos and charginos). Since
none of these particles have been observed, it is assumed that supersymmetry is bro-
ken [371, 372], causing the superpartners to be heavier than their SM counterparts.

5.1.1 Supersymmetry
Much of the success of the SM can be attributed to symmetries. In particular, external
space-time symmetries and internal gauge symmetries make precise predictions possible.
SUSY integrates another symmetry by relating fermionic and bosonic degrees of freedom.
Only after the development of SUSY it became clear, that it provides potential solutions
to remaining shortcomings of the SM. For a deeper insight into Supersymmetry, we refer
the reader to our sources for this chapter and their references [130, 373–376].

The extension of the SM turns out to be not so simple, since the Coleman-Mandula
theorem [364] restricts the extension of the Poincaré group. Under general assumptions
about the scattering S matrix, a QFT based on the Poincaré group and internal gauge
symmetries with bosonic generators can only be a direct product of the two. That is to
say, the generators of the Poincaré group Mµν , rotations and boosts, and the internal
gauge group must commute. Therefore internal and external symmetries can not be
mixed non trivially.

To maximize the symmetry of the SM beyond trivial extensions the Haag-
Lopuszanski-Sohnius theorem [365] establishes the inclusion of fermionic spinor
generators Q. The transformation to a superpartner, from fermionic to bosonic states
and vice versa, is carried out by the new anticommutating spinor operator Q. The
anticommutation relations can be written in the Weyl representation as

{Qα, Qβ} = 0 , {Q̄α̇, Q̄β̇} = 0 , (5.1.1)
{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ , and {Q̄α̇, Qβ} = 2σ̄α̇βµ Pµ , (5.1.2)

where Pµ generates space-time translations and σµ is the Pauli four-vector. For realistic
theories they transform under the Lorentz group as

[Mµν , Qα] = −(σµν) β
α Qβ and [Mµν , Q̄

α̇] = −(σ̄µν)α̇
β̇
Qβ̇ , (5.1.3)

with σµν = i(σµσ̄ν − σν σ̄µ)/4. From the relation

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 (5.1.4)

we directly see that the masses of superpartners are equal, since they have the same
eigenvalues P 2. This obviously contradicts experimental observation and has the con-
sequence that SUSY must be softly broken, which leads to higher masses.
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Multiplet Name S = 0 S = 1
2 S = 1 SM group

chiral s-/quarks QL (ũL, d̃L) (uL, dL) - (3, 2, 1
6 )

(3 generations) UR ũcR u†
R - (3̄, 1, − 2

3 )

DR d̃cR d†
R - (3̄, 1, 1

3 )

s-/leptons LL (ν̃, ẽL) (ν, eL) - (1, 2, − 1
2 )

(3 generations) ER ẽcR e†
R - (1, 1, 1)

higgs/-inos HU (H+
u , H

0
u) (H̃+

u , H̃
0
u) - (1, 2, + 1

2 )

(1 generation) HD (H0
d , H

−
d

) (H̃0
d , H̃

−
d

) - (1, 2, − 1
2 )

gauge gluon/-ino VG - g̃ g (8, 1, 0)

W boson/Wino VW - (W̃±, W̃ 0) (W±, W 0) (1, 3, 0)

B boson/Bino VB - B̃0 B0 (1, 1, 0)

Table 5.1: Supermultiplets in the MSSM. S denotes the spin. The transformation
properties under the SM gauge group SU(3)C×SU(2)L×U(1)Y are presented in the last
column.

5.1.2 Soft breaking

The MSSM is the simplest direct supersymmetrisation of the SM. It is minimal in the
sense that it uses the fewest new particles to obtain a supersymmetric field theory. In
Tab. 5.1 we list all the supermultiplets of the MSSM. The supersymmetric particles
solely differ in spin by 1

2 (before mass generation) and get marked by a tilde.

The scalar spin 0 particles do not have a helicity, the indices L (left-handed) and R
(right-handed) therefore refer to the fermionic superpartner chirality. The only exception
to the direct definitions of superpartners is in the definition of the Higgsinos. In the
MSSM there are two Higgs supermultiplets HD and HU to cancel chiral anomalies and
generate the masses of the up- and down-type particles. The neutral Standard Model
Higgs is then obtained from the combination of H0

u and H0
d .

The procedure to describe the Lagrangian in superspace is to use a holomorphic
superpotential

WMSSM(Φ) = URyuQLHU −DRydQLHD − ERyeLLHD + µHUHD , (5.1.5)

where the y are 3 × 3 Yukawa matrices of each family and µ is a generalized Higgs mass
term. Following [377] we arrive at the expanded MSSM Lagrangian that still conserves
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SUSY [376]

LSUSY
MSSM =

∑
i

[
Dµφ

†
iD

µφi + i
2
(
ψiσµDµψ̄i −Dµψiσµψ̄i

)]
+
∑
k

[
−1

4V
µν
k V µνk + i

2

(
Ṽkσ

µDµ ¯̃Vk −DµṼ kσµ ¯̃Vk
)]

−1
2
∑
i,j

[
∂2WMSSM(φ)

∂φi∂φj
ψi · ψj + H.c.

]
−
∑
i

∂WMSSM(φ)
∂φi

W ∗
MSSM(φ†)
∂φ†

i

−1
2
∑
k

gk∑
j

[
φ†
jT

kφj
](gk∑

i

[
φ†
iT

kφi
])

− i2
√

2
∑
i

(
gk

¯̃V k · ψ̄iTkφi + H.c.
) .

(5.1.6)
We write ψ or Ṽ for left-handed and ψ̄ and ¯̃V for right-handed spinors. The σµ = (1, σi)
are constructed from the Pauli matrices and Dµ are covariant derivatives. The index k
indicates the MSSM gauge group such that couplings gk and generators Tk are generic.
Indices i and j refer to the members of scalar φ or fermionic ψ supermultiplet members.

The first two lines are the typical kinetic terms for fermions and bosons in two-
component Weyl fermion notation. The second derivative of the superpotential leaves
us with the Yukawa interactions. From the last term in the fourth line we get interactions
between gauginos, scalars and fermions. They appear by requesting supersymmetry to
hold after transitioning from ordinary to gauge-covariant derivatives [373]. The remain-
ing terms include the scalar potential.

For phenomenological studies the breaking mechanism must not be known in detail.
Instead, it will get parametrized into an extra term Lsoft which gets added to the LSUSY.
A general approach to the soft Lagrangian is

Lsoft
MSSM = − 1

2
[
M1B̃ · B̃ +M2W̃ · W̃ +M3g̃ · g̃ + H.c.

]
− Q̃†

LmQ̃
2Q̃L − ũRmŨ

2ũ†
R − d̃RmD̃

2d̃†
R − L̃LmL̃

2L̃†
L − ẽRmẼ

2ẽ†
R

−m2
Hu
H†
uHu −m2

Hd
H†
dHd

−
[
ũ†
RTuQ̃L ·Hu − d̃†

RTdQ̃L ·Hd − ẽ†
RTeL̃L ·Hd + bHu ·Hd + H.c.

]
,

(5.1.7)

where Mk denotes the mass of the fermionic gauginos: the bino, winos and gluino.
Next, there are 3 × 3 matrices m for both squarks and sleptons and mH masses for the
two Higgs doublets. Then, the 3 × 3 matrices T parametrize trilinear soft multiscalar
interactions and the supersymmetry-breaking term of the Higgs potentials is b.

In total, the MSSM contains 124 real parameters, including 19 of the SM, but not
all the parameters are completely independent. Moreover, the MSSM serves as a good
proxy for other BSM theories, that are often included within its framework, making it a
versatile tool for exploring a broad range of new physics. On the basis of experiments,
this arbitrariness in the MSSM can be reduced by additional assumptions on the soft
breaking parameters. Thus, many phenomenological Minimal Supersymmetric Standard
Models (pMSSMs) include fewer parameters. Now that we have established the MSSM
we can discuss some of its intriguing properties.
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In the SM, the loop correction to the Higgs boson’s mass exhibit quadratic diver-
gences proportional to the masses of the particles in the loop. In its SUSY extension
they are naturally cancelled by equivalent contributions from loops of superpartners with
an opposite sign because of their different statistic. This is shown in the diagrammatic
representation of the Higgs mass correction

f

f

H H +
S

H H

(5.1.8)

∆m2
H = − λ2

8π2 Λ2
UV + . . . + λ2

8π2 Λ2
UV + . . . (5.1.9)

= m2
soft

λ

16π2 log
(

ΛUV

msoft

)
λ∼1,ΛUV∼MP−−−−−−−−−→ msoft ∼ TeV . (5.1.10)

By assuming a cutoff ΛUV at the Planck scale MP in combination with natural couplings
λ ∼ 1, the smallest mass related to the soft breaking msoft must be of the order of 1 TeV
to reproduce the lightest observed Higgs mass without fine-tuning.

Similarly, to the new particles appearing in the Higgs loop corrections, they also
appear in the running of the gauge couplings. We already explored the SM cases for
QED and QCD in Sec. 2.1.1 and Sec. 2.1.4. They can be combined in one equation

βSM
0,i =


βSM

0,U(1)

βSM
0,SU(2)

βSM
0,SU(3)

 =


0
22
3

11

− nF


4
3
4
3
4
3

− nH


1

10
1
6

0

 , (5.1.11)

where nF = 3 is the number of matter multiplets and now includes the number of Higgs
doublets nH = 1. In the SUSY case the slopes of the RGE curves are modified

βSUSY
0,i =


βSUSY

0,U(1)

βSUSY
0,SU(2)

βSUSY
0,SU(3)

 =


0

6

9

− nF


2

2

2

− nH


3

10
1
2

0

 , (5.1.12)

with nF = 3 and nH = 2, where the sign on β0,SU(2) has changed [378]. Once the
scale reaches values that are close to the masses of the superpartners, the running of
the couplings changes. By including them, unification of all three gauge couplings at
the Grand Unified Theory (GUT) scale becomes possible for masses of the TeV order as
shown in Fig. 5.1. This is observed through evolving the couplings by solving the RGEs
up to the GUT scale MGUT ≈ 1016GeV.

The open question on dark matter could be resolved through imposing the conserved
R-Parity [380]

Rp = (−1)3(B−L)+2S . (5.1.13)

In the definition of the superpotential Eq. (5.1.5) we have not included any terms that
violate the lepton L or baryon B number. Including such terms is heavily constrained
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Figure 5.1: Running of the gauge couplings in the SM (left) and MSSM (right) [378,
379]. Unification is achieved only in the latter scenario. The SUSY particles are con-
sidered to contribute only at energies above the effective SUSY scale, MSUSY, which is
approximately 1 TeV. This contribution results in a change in the slope of the coupling
constants’ evolution. The thickness of the lines reflects the uncertainty in the values of
these coupling constants.

from e.g. proton decays p → e+ + π0, which have not been observed, but are possible
within BSM. Only squarks and quarks have |B| = 1

3 and the sleptons and leptons carry
|L| = 1. From ∆S = 1

2 between superpartners it follows that Rp = +1 for SM and
Rp = −1 for SUSY particles. Then only an even number of sparticles are allowed at
each vertex, prohibiting the LSP from decaying. All remaining sparticles with a higher
mass must decay into the LSP. Another consequence is that sparticles will only be
produced in pairs at collider experiments.

Next, we will take a closer look at the mixing patterns of supersymmetric particles
of interest for our process at leading order namely squarks and electroweakinos. At
NLO electroweak production we will also encounter gluinos. While we give equations
for the mixing and masses of these particles, in practice the mass spectra are generated
by dedicated tools following the SUSY Les Houches Accord (SLHA) conventions [381].
We are going to use the Feynman rules from [382] in the same format as in Ref. [130]
(cf. Sec. A.2).

5.1.2.1 Squarks

We will investigate the mixing of left- and right-handed squarks. The MSSM Lagrangian

mass term written in the interaction basis q̃ =

q̃L
q̃R

 for squarks reads

Lq̃mass = −
∑
q̃

q̃†M2
q̃ q̃ with M2

q̃ =

M2
q̃,LL M2

q̃,LR

M2∗
q̃,LR M2

q̃,RR

 , (5.1.14)
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where the squark mass matrix is

M2
q̃ =

M2
q̃ +m2

Z cos(2β)(I3 − eq sin2 θW ) +m2
q mq(A∗

q − µ tan(β)−2I3)

mq(Aq − µ∗ tan(β)−2I3) M2
q̃′ +m2

Z cos(2β)eq sin2 θW +m2
q

 .

(5.1.15)
The parameters entering are the quark mass mq, electric charge eq, third weak isospin
I3, Z-boson mass mZ and the Weinberg angle θW . From the MSSM we have the trilinear
Higgs-squark-squark coupling Aq, higgsino mass parameter µ and mixing angle tan β =
v2/v1, defined by the ratio of the Higgs vacuum expectation values v1 and v2. The
mass terms M2

q̃ and M2
q̃′ parametrize the soft SUSY breaking with respect to left- and

right-handed squarks.
Since we want to investigate mass eigenstates, we need to diagonalize this matrix.

For the first two generations of squarks we can neglect the mixing between left- and right-
handed states because the off-diagonal components are proportional to the corresponding
quark mass which is negligible in high-energy computations. The mixing in the third
generation of t̃ will not be dropped. The diagonalization of a mass eigenstate from an
interaction eigenstate is analogous to the prominent case of neutrino masses. A unitary
squark mixing matrix S q̃ should satisfy

S q̃M2
q̃S

q̃†
=

m2
q̃1

0

0 m2
q̃2

 and

q̃1

q̃2

 = S q̃

q̃L
q̃R

 . (5.1.16)

The eigenvalues of M2
q̃ are

m2
q̃1,2

= 1
2

[
M2

q̃,LL + M2
q̃,RR ∓

√
(M2

q̃,LL − M2
q̃,RR)2 + 4|Mq̃,LR|2

]
, (5.1.17)

with the ordering m2
q̃1
< m2

q̃2
. The squark mixing matrix can be expressed as a rotation

by a mixing angle θq̃ S q̃ii S q̃i(i+3)

S q̃(i+3)i S q̃(i+3)(i+3)

 =

 cos θq̃ sin θq̃
− sin θq̃ cos θq̃

 , where tan 2θq̃ =
2M2

q̃LR

M2
q̃,LL − M2

q̃,RR

,

(5.1.18)

and we added an index i for each generation resulting in a 6 × 6 matrix. Then the
coupling of a gluino to a quark I and an antisquark j is given by

R′
Ij = L∗

Ij =
√

2S q̃j(I+3) , (5.1.19)

L′
Ij = R∗

Ij = −
√

2S q̃jI . (5.1.20)

The restriction to minimal squark mixing results in

S q̃∗
j(I+3)S

q̃
jJ = 0 = LL′ , (5.1.21)

S q̃∗
jIS

q̃
j(I+3) = 0 = RR′ , (5.1.22)

since one of the elements of S is an off-diagonal element which are zero.
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Renormalization For studying squark-electroweakino production in Sec. 5.3 we will
only need to add the squark renormalization to the already discussed quark and gluon
renormalization (cf. Sec. 3.1.3). We start from a typical bare Lagrangian for scalars

L0 =
2∑
i=1

(∂µq̃†
0,i∂µq̃0,i −m2

0,iq̃
†
0,iq̃0,i) , (5.1.23)

but include a sum over the mass eigenstates i. Our renormalization constants are

q̃0,i →
√
Zij q̃j = (δij + 1

2δZij)q̃j , (5.1.24)

m2
0,i → Z2

mi
m2
i = (δij + δZ2

mi
)m2

i , (5.1.25)

where the sum over j allows for the inclusion of mixing between eigenstates in loop
corrections. Replacing the bare fields gives the new Lagrangian

L =
2∑
i=1

(∂µq̃†
i ∂µq̃i −miq̃†

i q̃i)︸ ︷︷ ︸
L0

+
2∑
i=1

2∑
j=1

(1
2(δZ∗

ji + δZij)∂µq̃†
i ∂µq̃j − (δijδZ2

mi
+ 1

2(δZjim2
j + δZijm

2
i ))q̃

†
i q̃j)︸ ︷︷ ︸

L×

.

(5.1.26)

Repeating the same steps as for the quarks, we get a two-point function from the La-
grangian for the counterterms

−iΣ×,ij = i
(

1
2(δZij + δZ∗

ji)p2 − 1
2(m2

i δZij +m2
jδZ

∗
ji) −m2

i δZ
2
mi
δij

)
. (5.1.27)

Combining bare self-energy and counterterms

Σ̂ij = Σij + Σ×,ij (5.1.28)

we get the renormalized self-energy. Using the on-shell conditions again, we obtain our
renormalization constants. Requiring the propagator pole to be at the physical mass in
the case of i = j leads to

Re[Σ̂ii(m2
i )] = 0 =⇒ δZ2

mi
= −Re[Σii(m2

i )]
m2
i

(5.1.29)

and the fact that the real part of the residue of the propagator must be one results in

δZii = Re[Σ̇ii(m2
i )] . (5.1.30)

For i 6= j the mass counterterm does not appear, since we want no transition from type
i to j. Thus, we write

Re[Σ̂12(m2
1)] = 0 and Re[Σ̂12(m2

2)] = 0 (5.1.31)

leading to

δZ12 = −2Re[Σ12(m2
2)]

m2
1 −m2

2
and δZ21 = +2Re[Σ21(m2

1)]
m2

1 −m2
2

. (5.1.32)
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5.1.2.2 Electroweakinos

The neutralinos and charginos are mixtures of higgsinos and electroweak gauginos. This
mixing is an effect of electroweak symmetry breaking. We will occasionally refer to them
loosely as gauginos, although we do not mean to include the gluino. The electroweakinos
do not need any renormalization treatment, since the goal of our perturbative calculation
is an improvement by O(αS).

Charginos As only fields with the same quantum numbers mix, the charginos will
consist of charged higgsinos (H̃+

u and H̃−
d ) and winos (W̃+ and W̃−) and carry a charge

of ±1. The relevant Lagrangian in two-component Weyl spinors is

Lnmass = −(ψ−)TMcψ+ + H.c. , (5.1.33)

with

Mc =

 M2
√

2MW sin β
√

2MW cosβ µ

 , ψ+ =

iW̃+

H̃+
u

 and ψ− =

iW̃−

H̃−
d

 .

(5.1.34)

Mass eigenstates follow from diagonalization with two unitary matrices U and Vχ̃+
1

χ̃+
2

 = V

iW̃+

H̃+
u

 and

χ̃−
1

χ̃−
2

 = U

iW̃−

H̃−
d

 . (5.1.35)

The masses are again ordered Mχ̃±
1
< Mχ̃±

2

Mχ̃±
1,2

= 1
2

(
|M2|2 + |µ|2 + 2m2

W ∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|m2

W sin 2β − µM2|2
)
.

(5.1.36)

Neutralinos The neutralino has no electric charge and is a Majorana particle. In
contrast to charginos, the mixing also includes the bino B̃. The Lagrangian in the
interaction basis ψ0 is

Lcmass = −1
2(ψ0)TMnψ0 + H.c. , (5.1.37)

where the mass matrix is

Mn =


M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ

MZsβsW −MZsβcW −µ 0

 , and (ψ0)T =


iB̃

iW̃ 0

H̃0
d

H̃0
u

 ,

(5.1.38)

with abbreviated sW = sin θW and cW = cos θW for the Weinberg angle θW and the
relation between the two Higgs vacuum expectation values β. The unitary matrix N
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transforms the gauge eigenstates to a mass diagonal form via N∗MnN−1 and the mass
eigenstates are 

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4

 = N


iB̃

iW̃ 0

H̃0
d

H̃0
u

 . (5.1.39)

Assuming the usual ordering |Mχ̃0
1
| < |Mχ̃0

2
| < |Mχ̃0

3
| < |Mχ̃0

4
| the lightest neutralino χ̃0

1
could emerge as the LSP and dark matter (DM) candidate.

5.1.2.3 Gluino

In the MSSM there is no other colour octet fermion that could mix with the gluino. The
gluino mass enters as the parameter M3 in the MSSM and as it is electrically neutral it
is a Majorana fermion. In most scenarios the gluino is much heavier than the charginos
and neutralinos. This is a consequence of requesting unification at the GUT scale and
at higher-orders the gluino mass is no longer M3[373].

5.1.3 Collider phenomenology
The Run 3 data taking period of the LHC has started in 2022 at an unprecedented centre-
of-mass energy of

√
S = 13.6 TeV. The two main general-purpose LHC experiments AT-

LAS and CMS are expected to collect an integrated luminosity of about 300 fb−1, which
will complement the 140 fb−1 already collected at 13 TeV during Run 2. This increase
in luminosity and centre-of-mass energy will thus make it possible to further explore
extensions of the SM of particle physics, such as the MSSM. Especially, LHC’s planned
extension to HL-LHC will provide access to very massive new particles [383–385]. In
SUSY, the generally dominant production processes are those involving the strong inter-
action and thus concern the pair production of squarks and gluinos. Thus, experimental
searches at the LHC have mainly focused on signatures arising from the production and
decay of squarks and gluinos. For a long time, the signatures of these QCD-sensitive
superparticles were consequently expected to be the first visible sign of supersymmetry
in LHC data. However, with the associated mass limits being now deeply in the TeV
regime and too massive for pair production at the LHC, searches for typically lighter
electroweakinos and sleptons received more attention and became equally important.
These processes then also have the advantage of providing insights not only on the su-
persymmetric masses, but also on the supersymmetric interactions [376, 386, 387]. The
mass hierarchy, coupling strength, and mixing of electroweak particles are all essential
factors in determining decay patterns and experimental signatures.

Subsequently, accurate theoretical calculations of signal cross sections and key kine-
matic distributions for all supersymmetric processes became imperative, and in partic-
ular for processes in which at least one non-strongly interacting superpartner is present
in the final-state. Already by going from LO to NLO in pQCD, the theoretical uncer-
tainty originating from the arbitrary choice of factorization and renormalization scales
is reduced. However, with the possibility of light SUSY particles being excluded by
direct searches at the LHC, the current mass limits imply that in any SUSY production
process the kinematic configuration approaches the production threshold. This results
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in large threshold logarithms ruining the convergence of the perturbative series, so that
they must be resummed. This resummation procedure has been known for quite some
time at the leading-logarithmic (LL) and NLL accuracy and in some cases beyond and
has been found to generally further reduce the theoretical uncertainty inherent in the
perturbative calculation [388–393].

The production cross section of a pair of electroweakinos at hadron colliders has
been studied in numerous works, in which fixed-order predictions at LO [394, 395] and
NLO [396] have been considered. Further precision was obtained by matching these
fixed-order results with either parton showers [376, 397] (NLO+PS) or the threshold re-
summation of the NLL [398–400] (NLO+NLL). Furthermore, approximate next-to-next-
to-leading-order (aNNLO) predictions have been recently matched with threshold resum-
mation at the next-to-next-to-leading-logarithmic (NNLL) [401] giving aNNLO+NNLL
accuracy. Similarly, slepton pair production total cross sections are known at LO [395,
402], NLO [396], NLO+PS [376, 403], NLO+NLL [404–406] and aNNLO+NNLL [407].

The Resummino program has been developed in this context and takes advantage
of these developments of the last few decades. It consists of a public tool comput-
ing precision predictions including soft-gluon radiation resummation effects for the
production of a pair of sleptons, electroweakinos, and for the associated production
of one electroweakino and either one squark or one gluino. It combines the LO
calculations for slepton-pair, electroweakino-pair, associated gluino-electroweakino and
squark-electroweakino production available from [408–410] with the associated NLO
SUSY-QCD corrections obtained in [1, 398, 404, 411], and with the aNNLO QCD
corrections of [401, 407]. These fixed-order predictions are next matched with the
threshold resummation of soft gluon radiation to all orders and at varied accuracies [1,
399, 401, 405, 407, 411], according to the standard formalism introduced in [388–393]
or the collinear-improved one of [412–415]. In addition, the code can be employed
to achieve NLO+NLL cross section computations in which fixed-order predictions
are matched with soft gluon resummation in the small transverse momentum pT
regime [416, 417] following the formalism of [418–420], or jointly at small pT and close
to threshold [421, 422] following the formalism of [423–425].

So far, its predictions have been used by both the ATLAS and CMS collaborations
in order to extract bounds on sleptons and electroweakinos. In particular, the most
stringent constraints on simplified models inspired by the MSSM enforce viable slepton
and electroweakino masses to be larger than about 700 GeV and 800 GeV to 1200 GeV
respectively, for a not too heavy lightest SUSY particle (see e.g. [426–428]). The ex-
act values of these mass limits depend on the details of the search channels, and the
sensitivity of the bounds can be reduced by compressing the particle spectrum (which
increases the mass of the lightest SUSY state) or by lowering the branching ratio in
the final state of interest (by allowing multiple potential decay modes for a given SUSY
particle). Recent experimental analyses at the LHC [429–433] pushed the lower bounds
on the SUSY masses deep into the TeV regime, the exact limit depending on the scenario
considered. However, in certain model scenarios such as when the SUSY spectrum is
compressed, these limits may not apply, allowing for potential escape routes from the
constraints imposed experimentally.
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Figure 5.2: Emission of multiple soft gluons. The emitting parton can be either a quark
or a gluon.

5.2 Threshold resummation of soft gluons
In Sec. 2.2.5 we have seen how parton showers can be used to simulate the soft and
collinear approximated evolution of partons in the final-state. Instead of simulating
their behaviour we can also resum the soft emissions to all orders in perturbation the-
ory. This is particularly interesting when looking at the total production cross section
of heavy particles, where the phase space is limited, i.e. they are mostly produced close
to threshold [389]. To calculate the total hadronic cross section σAB for the process con-
sidered, we convolve the partonic cross section dσab with factorization-scale dependent
PDFs fi/h(xi, µ2

F ) for a particle i of momentum fraction xi in a hadron h,

σAB =
∫
M2 dσAB

dM2 (τ) =
∑
a,b

∫ 1

0
dxa dxb dz

[
xafa/A(xa, µ2

F )
][
xbfb/B(xb, µ2

F )
]

×
[
zdσab(z,M2, µ2

R, µ
2
F )
]
δ(τ − xaxbz) ,

(5.2.1)

where τ = M2/S is the ratio of the squared invariant mass M2 over the hadronic centre-
of-mass energy S [27]. The partonic fraction z = τ/(xaxb) = M2/s is defined by the
ratio of the squared invariant mass to the partonic centre-of-mass energy s = xaxbS and
equals one at LO.

In a NLO calculation, massless virtual loop particles (e.g. gluon) are integrated over
the full loop momentum. This is in contrast to the particles in real emissions, since
their integration is constrained. Therefore, after the cancellation of soft and collinear
divergences among the real and virtual corrections, large logarithms remain near thresh-
old [31, 126]. They take the form(αS

2π

)n [ logm(1 − z)
1 − z

]
+

or
(αS

2π

)n
logm

(
M2

p2
T

)
, (5.2.2)

relative to the Born cross section with m ≤ 2n − 1. The variable 1 − z = 1 − M2/s
describes the energy fraction of an additional emitted gluon or massless quark and thus
quantifies the distance to the partonic threshold. This is depicted in Fig. 5.2 where zi ≈ 1
and every splitting contributes one αS . For soft emitted particles (z → 1), truncating
the perturbative calculation at a fixed order does not give a reliable prediction, so that
the logarithms must be resummed to all orders in αS [130, 389].

Due to the factorization theorem we can split an IR sensitive quantity into a hard
scattering H and long distance S behaviour, where only the latter two depend on the
factorization scale µF

σ(M2,m2) = H(M2/µ2
F )S(m2/µ2

F ) . (5.2.3)
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Here M is the hard scale and m describing the distance to the threshold, i.e. similar to
the evolution scale in a parton shower. Exploiting the independence of the factorization
scale in σ by taking the derivative

0 !=dσ(M2,m2)
d logµ2

F

= dH
d logµ2

F

S + H dS
d logµ2

F

= µ2
F

dH
dµ2

F

S + µ2
FH dS

dµ2
F

(5.2.4)

=⇒ ΓS(µ2
F ) = µ2

F

dH
Hdµ2

F

= −µ2
F

dS
Sdµ2

F

, (5.2.5)

which is the RGE consisting of the soft anomalous dimension Γs for the soft function S
solved by an exponential ansatz

S(m2/µ2
F ) = S(1) exp

(
−
∫ µ2

F

m2

dk2

k2 Γs(k2)
)
. (5.2.6)

A natural consequence of requiring no dependence on the factorization scale is a reduced
scale uncertainty in the cross section. Plugging this solution and µF = M into the
Eq. (5.2.3) we get

σ(M2,m2) = H(1)S(1) exp
(

−
∫ M2

m2

dk2

k2 Γs(k2)
)
, (5.2.7)

where the scale dependence is contained in the exponent. This is again the Sudakov
form factor as in the parton shower Sec. 2.2.5. In the PS the integration bounds were
m2 = Λ2

QCD and M2 = Q2. Furthermore, the hard matching coefficient will be needed
for matching the resummation to our NLO calculation where one must avoid double
counting in the soft region.

5.2.1 Refactorization
To calculate soft gluon emission up to all orders, kinematic and dynamical factorization
are necessary. One approach to kinematic factorization is by transforming into Mellin
space such that the phase space factorizes∫

dzzN−1dφ2+n(z) ≈ dφ2 × dφn(N) , (5.2.8)

where N is our new Mellin momentum of z. Eq. (5.2.1) can be factorized by transforming
its constituents into Mellin space

F̃ (N) =
∫ 1

0
dy yN−1F (y) =⇒

[
logm (1 − z)

1 − z

]
+

F→∼ logm+1 N + . . . , (5.2.9)

with F = σAB , σab, fa/A, fb/B and y = τ, z, xa, xb, respectively. We can look at the
AP splitting functions (Eqs. (2.2.5) to (2.2.8)) in Mellin space

Pqq(N) = CF

(
3
2 + 1

N(N + 1) − 2
N∑
k=1

1
k

)
≈ CF

(
3
2 − 2 log N̄

)
, (5.2.10)

Pqg(N) = CF

(
2 +N +N2

N(N2 − 1)

)
≈ CF

N
, (5.2.11)
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Pgq(N) = TR

(
2 +N +N2

N(N + 1)(N + 2)

)
≈ TR

N
, (5.2.12)

Pgg(N) = β0 + 2CA

(
1

N(N − 1) + 1
(N + 1)(N + 2) −

N∑
k=1

1
k

)
≈ β0 − 2CA log N̄ ,

(5.2.13)

with N̄ = NeγE where the logarithms arise from

γE = lim
N→∞

(
N∑
k=1

1
k

− logN
)

≈ 0.577216 , (5.2.14)

lim
N→∞

log N̄ = lim
N→∞

(logN + γE) =
N∑
k=1

1
k
. (5.2.15)

For z → 1 the logarithms are associated to the diverging denominators while constants
come from δ(1 − z). From those equations we can also understand why we only resum
soft gluon emissions, i.e. the diagonal splitting terms, that are not suppressed by 1/N .
Denoting in the following all quantities in Mellin space and therefore dropping the tilde
for simplicity, we obtain from Eq. (5.2.1)

M2 dσAB
dM2 (N − 1) =

∑
a,b

fa/A(N,µ2
F ) fb/B(N,µ2

F ) σab(N,M2, µ2
F , µ

2
R) , (5.2.16)

such that the phase space factorizes. In this expression, the large logarithms now depend
on the Mellin variable N , e.g. LL contributions are log2 N and NLL contributions are
logN . Dynamical factorization can then be achieved by relying on eikonal Feynman
rules (cf. Sec. 3.1.1.1).

The partonic cross section can be refactorized and resummed to

σab→ij(N,M2, µ2
F , µ

2
R) =

∑
I

Hab→ij,I(M2, µ2
F , µ

2
R) ∆a(N,M2, µ2

F , µ
2
R)

× ∆b(N,M2, µ2
F , µ

2
R) ∆ab→ij,I(N,M2, µ2

F , µ
2
R) ,

(5.2.17)

in which the hard function is given by

Hab→ij,I(M2, µ2
F , µ

2
R) =

∞∑
n=0

(αS
2π

)n
H(n)
ab→ij,I(M

2, µ2
F , µ

2
R) . (5.2.18)

This quantity is further discussed in Sec. 5.2.2 [27, 391, 392]. The irreducible colour
representation index I is dropped from now on, since electroweak production involves
only a single colour tensor. Similar to Eq. (5.2.7) we have [392]

σRes.
ab→ij(N,M2, µ2

R, µ
2
F ) = Hab→ij(M2, µ2

R, µ
2
F ) exp

[
Gab→ij(N,M2, µ2

R, µ
2
F )
]
, (5.2.19)

with the N -independent hard function Hab→ij and the Sudakov exponent Gab→ij

Gab→ij(N,M2, µ2
R, µ

2
F ) ≈ LG

(1)
ab (N)+G(2)

ab→ij(N,M
2, µ2

F , µ
2
R)+αSG(3)

ab→ij(N,M
2, µ2

F , µ
2
R) ,

(5.2.20)
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with L = logNeγE and γE the Euler-Mascheroni constant. The soft wide-angle function
∆ab→ij and the soft collinear radiation functions ∆a,b exponentiate [388–390, 393],

∆a∆b∆ab→ij = exp
[
LG

(1)
ab (λ) +G

(2)
ab→ij(λ,M

2, µ2
F , µ

2
R) +G

(3)
ab→ij(λ,M

2, µ2
F , µ

2
R)
]
,

(5.2.21)
with λ = αSb0L, L = log N̄ and N̄ = NeγE . The above expressions contain the LL
G

(1)
ab , NLL G

(2)
ab→ij and NNLL G

(3)
ab→ij contributions. Resummino only provides NNLL for

slepton and electroweakino pair production thus the term G
(3)
ab→ij is only required for

initial quarks. We provide its expression together with that of the next two coefficients
of the QCD beta function, that are relevant for the formulas given below. They were
given in Eqs. (2.1.16) to (2.1.18) already and are now normalized according to bn =
βn/(2π)n+1 [434, 435], which gives

b0 = 1
12π (11CA − 2nf ) , (5.2.22)

b1 = 1
24π2 (17C2

A − 5CAnf − 3CFnf ) , (5.2.23)

b2 = 1
64π3

(
2857
54 C3

A − 1415
54 C2

Anf + C2
Fnf − 205

18 CACFnf + 79
54CAn

2
f + 11

9 CFn
2
f

)
,

(5.2.24)

with CA = NC = 3, CF = (N2 − 1)/(2NC) = 4/3 and the number of active quark
flavours nf = 5. They are given by [388–390, 393, 412]

G
(1)
ab (λ) =

∑
c∈{a,b}

g(1)
c (λ) , (5.2.25)

G
(2)
ab→ij(λ,M

2, µ2
F , µ

2
R) =

∑
c∈{a,b}

g(2)
c (λ,M2, µ2

F , µ
2
R) + h

(2)
ab→ij(λ) , (5.2.26)

G
(3)
ab→ij(λ,M

2, µ2
F , µ

2
R) =

∑
c∈{a,b}

g(3)
c (λ,M2, µ2

F , µ
2
R) + h

(3)
ab→ij(λ) , (5.2.27)

with

g(1)
a = A

(1)
a

4πb0λ
[2λ+ (1 − 2λ) log(1 − 2λ)] , (5.2.28)

g(2)
a = A

(1)
a b1

4πb3
0

[
2λ+ log(1 − 2λ) + 1

2 log2(1 − 2λ)
]

− A
(2)
a

8π2b2
0

[2λ+ log(1 − 2λ)]

+ A
(1)
a

4πb0

[
log(1 − 2λ) log

(
M2

µ2
R

)
+ 2λ log

(
µ2
F

µ2
R

)]
, (5.2.29)
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whereas the third quark coefficient is given by

g(3)
q = A

(3)
q

π3b2
0

λ2

1 − 2λ + 2A(1)
q

π
ζ2

λ

1 − 2λ − A
(2)
q b1

(2π)2b3
0

2λ2 + 2λ+ log(1 − 2λ)
1 − 2λ

− A
(2)
q

2π2b0

[
λ

1 − 2λ log
(
M2

µ2
R

)
− λ log

(
µ2
F

µ2
R

)]
+ A

(1)
q b2

1
2πb4

0

2λ2 + 2λ log(1 − 2λ) + 1
2 log2(1 − 2λ)

1 − 2λ

+ A
(1)
q b2

2πb3
0

[
2λ+ log(1 − 2λ) + 2λ2

1 − 2λ

]
+ A

(1)
q b1

2πb2
0

2λ+ log(1 − 2λ)
1 − 2λ log

(
M2

µ2
R

)
+ A

(1)
q

2π

[
λ

1 − 2λ log2
(
M2

µ2
R

)
− λ log2

(
µ2
F

µ2
R

)]
.

(5.2.30)

The resummation coefficients entering those quantities are

A(1)
a = 2Ca , (5.2.31)

A(2)
a = 2Ca

[(
67
18 − π2

6

)
CA − 5

9nf
]
, (5.2.32)

and again only for quarks

A(3)
q = 1

2CF

[
C2
A

(
245
24 − 67

9 ζ2 + 11
6 ζ3 + 11

5 ζ
2
2

)
+ CAnf

(
10
9 ζ2 − 7

3ζ3 − 209
108

)

−
n2
f

27 + CFnf

(
2ζ3 − 55

24

)]
,

(5.2.33)

with Ca = CF for quarks and Ca = CA for gluons. The last term in Eq. (5.2.27) consists
of the process-dependent contributions related to large-angle soft-gluon emissions. It
can be expressed in terms of the soft anomalous dimension Γab→ij associated with the
partonic process ab → ij, from which the DY soft anomalous dimension Γ DY

ab has been
subtracted

h
(2)
ab→ij(λ) = log (1 − 2λ)

2πb0
D

(1)
ab→ij

= log (1 − 2λ)
b0αS

Re(Γab→ij − ΓDY
ab ) = log (1 − 2λ)

b0αS
Re(Γ̄ab→ij) ,

(5.2.34)

with

ΓDY
ab = αS

2π
∑

k={a,b}

Ck

[
1 − log(2) − iπ − log

(
(vk · n)2

|n|2

)]
, (5.2.35)

where n is an axial gauge vector fulfilling |n|2 = −n2 + iε.
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For DY-like processes computed at the aNNLO+NNLL accuracy (namely elec-
troweakino and slepton pair production), the coefficient h(3)

ab→ij must be included too.
It is in this case universal, and it is given by

h
(3)
ab→ij(λ) = − 2CF

2π2b0

λ

1 − 2λ

[
nf

(
14
27 − 2

3ζ2

)
+ CA

(
−101

27 + 11
3 ζ2 + 7

2ζ3

)]
.

(5.2.36)

To calculate the soft anomalous dimension Γ̄ we use

Γab→ij = −
∑
kl

Ckl lim
ε→0

ε ωkl , (5.2.37)

where the sum goes over the eikonal lines, Ckl are colour factors which depend on the
specific diagram. ωkl are integrals on the kinematical quantities of the specific diagram

ωkl = gs

∫
dDq

(2π)D
−i

q2 + iε

[
∆k∆lvk · vl

(δkvk · q + iε)(δkvk · q + iε)

− δl∆l∆kvk · n
δkvk · q + iε

P

(n · q) − δk∆k∆lvl · n
δlvl · q + iε

δk∆kδl∆lP

(n · q) + n2 P

(n · q)2

]
,

(5.2.38)

where P stands for principal value

P

(n · q)β = 1
2

(
1

(n · q + iε)β + (−1)β 1
(−n · q + iε)β

)
(5.2.39)

and the ∆ and δ signs are given in Tab. 3.1.

5.2.2 Hard matching coefficient
The resummation of the logarithmic contributions as performed in Eq. (5.2.21) scales
with the hard function Hab→ij(M2, µ2

F , µ
2
R), as shown in Eq. (5.2.17). Including higher-

order contribution in the hard function hence further improves the accuracy of the
predictions. The N -independent hard function H can be written in terms of the LO
Mellin-transformed cross section σ

(0)
ab→ij and the hard matching coefficient Cab→ij ,

Hab→ij(M2, µ2
F , µ

2
R)=σ

(0)
ab→ijCab→ij(M2, µ2

F , µ
2
R) , (5.2.40)

where the coefficient Cab→ij can be computed perturbatively,

Cab→ij(M2, µ2
F , µ

2
R)=

∑
n=0

(αS
2π

)n
C

(n)
ab (M2, µ2

F , µ
2
R) . (5.2.41)

The hard matching coefficients C(n)
ab are then derived from fixed-order predictions in

Mellin space at a given order in the strong coupling αS . They correspond to the ratio of
the finite N -independent pieces of the NnLO correction terms over the LO cross section

C
(n)
ab (M2, µ2

F , µ
2
R) =

(
2π
αS

)n [σ(n)
ab→ij

σ
(0)
ab→ij

]
N-ind.

. (5.2.42)
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Therefore, in addition to the LO term

H(0)
ab→ij(M

2, µ2
F , µ

2
R) = σ

(0)
ab→ij(M

2) , (5.2.43)

we include the N -independent parts of the NLO cross section in the one-loop hard
matching coefficient

H(1)
ab→ij(M

2, µ2
F , µ

2
R) = σ

(0)
ab→ij(M

2) C(1)
ab→ij(M

2, µ2
F , µ

2
R) (5.2.44)

for a NLO+NLL prediction.
To compute this coefficient, we begin with the full NLO cross section of Eq. (3.1.126).

We first neglect the real emission contributions due to the three-particle phase space
suppression close to threshold [436, 437]. The virtual contributions dσV and the in-
tegrated dipoles

∫
1 dσA in Eq. (3.1.126) correspond to a contribution proportional to

δ(1 − z), that is thus constant in N after a Mellin transform. The collinear remainder
is split into two pieces related to the insertion operators P and K, in which only the
former depends on the factorization scale µF [180, 191, 193]. While logarithmic, but
formally suppressed O(1/N) contributions have been shown to exponentiate and im-
prove the numerical scale dependence in DY like processes [412, 413, 438], we refrain
from including them for our process. After discarding the 1/N terms that vanish in the
large-N limit, only the diagonal terms survive.

With the N -independent parts of the insertion operators, the hard functions read

H(0)
ab→ij(M

2, µ2) = σB(M2)
M2 , (5.2.45)

H(1)
ab→ij(M

2, µ2) = 2π
αS

σB(M2)
M2

(〈
P + K

〉
a

+
〈

P + K
〉
b

)
N-ind.

+ 2π
αS

(σV(M2) +
∫

1 dσA(M2)
M2

)
. (5.2.46)

The hard function H(3)
ab→ij is obtained similarly and the matching C(3)

qq̄ is the same for
all DY processes. As we have ignored any 1/N terms in the above computation of the
hard matching coefficient, we employ the standard collinear unimproved resummation
formalism as opposed to the collinear improved one of Refs. [412–415]. While only the
N -independent terms are necessary in practice, we included the logarithmic terms in the
above expressions to be able to validate analytically the re-expansion of the resummed
cross section at O(α2

S) in Sec. 5.2.3.

5.2.3 Matching and expansion
So far we have computed a fixed order cross section σNLO and a resummed cross section
σRes.. As the latter is a good approximation near threshold and the former far from
it, they should be consistently combined. Therefore, we sum up both contributions
and remove the terms that are accounted for both in the resummed and the fixed-order
predictions, thus avoiding any double counting. A consistent NLO matching is achieved
by re-expanding σRes. at O(α2

S) and subtracting this quantity σExp. from the sum of the
resummed and fixed-order results

σNLO+NLL
ab = σNLO

ab + σRes.
ab − σExp.

ab︸ ︷︷ ︸
σNLL

ab

. (5.2.47)
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The expansion is given in terms of the first- (H(0)) and second-order (H(1)) hard function
coefficients of Sec. 5.2.2

σExp.
ab = σ

(0)
ab→ijCab→ij(M2, µ2

F , µ
2
R) exp

[
Gab→ij(N,M2, µ2

F , µ
2
R)
]

= σ
(0)
ab→ij

[
1 +

(αS
2π

)
C

(1)
ab +

(αS
2π

)2
C

(2)
ab + . . .

]
·
[
1 +

(αS
2π

)
K(1) +

(αS
2π

)2
K(2) + . . .

]
≈ H(0)

ab→ij(M
2, µ2) + αS

2πH(1)
ab→ij(M

2, µ2) + αS
2πH(0)

ab→ij(M
2, µ2)

×
((

A(1)
a +A

(1)
b

)(
log N̄ + log µ2

F

M2

)
− 2D(1)

ab→ij

)
log N̄ .

(5.2.48)

Where the final result is already truncated for NLL accuracy. The value of K(1) results
from the expansions in αS ∼ λ

Lg(1)
a

λ→0→ L
λ

2πb0
A(1)
a = L2αS

2π A
(1)
a , (5.2.49)

g(2)
a

λ→0→ λ

2πb0

(
− log

(
M2

µ2
R

)
+ log

(
µ2
F

µ2
R

))
= L

αS
2π log

(
µ2
F

M2

)
, (5.2.50)

h
(2)
ab→ij(λ) λ→0→ − λ

2πb0
2D(1)

ab→ij = −LαS2π 2D(1)
ab→ij . (5.2.51)

The L = log N̄ terms can be cross checked by comparing them with the P and K
operators in Mellin space[

σExp.
ab M2

σB

]
log N̄

=
[〈

P(N)
〉
a

+
〈

K(N)
〉
a

+
〈

P(N)
〉
b

+
〈

K(N)
〉
b

]
log N̄

. (5.2.52)

For the DY aNNLO+NNLL expansion we refer to [2, App. A.1].
We stress the similarity to the matching procedure in POWHEG as outlined in

Sec. 3.3.3.2. The POWHEG method uses a truncated shower to generate subsequent
emissions. The resummation method uses only the NLL terms of the Sudakov corre-
sponding to additional emissions on top of the NLO cross section.

Having computed the resummed and the perturbatively expanded results in
Mellin space, we must multiply them with the N -moments of the PDFs according to
Eq. (5.2.16). This is achieved by fitting them in x-space to the function used by the
MSTW collaboration [439]

f(x) = A0x
A1(1 − x)A2(1 +A3

√
x+A4x+A5x

3
2 ) +A6x

2 +A7x
5
2 , (5.2.53)

with the analytical result in Mellin space

F (f(x)) = A0Γ(y)B′(A1 +N, y) +A3B
′(A1 +N + 1

2 , y) +A4B
′(A1 +N + 1, y)

+A5B
′(A1 +N + 3

2 , y) +A6B
′(A1 +N + 2, y) +A7B

′(A1 +N + 5
2 , y)
(5.2.54)
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q(pa)

g(pb)

q̃(p1)

χ̃(p2)

(i) s channel

q(pa)

g(pb)

q̃(p1)

χ̃(p2)

(ii) u channel

Figure 5.3: Tree-level Feynman diagrams for the associated production of a squark and
an electroweakino at hadron colliders.

and
B′(x, y) = B′(x,A2 + 1) = B(x, y)/Γ(y) = B(x, y)/Γ(y) . (5.2.55)

Having the cross section in Mellin space the last step is to perform an inverse Mellin
transform,

M2 dσAB
dM2 (τ) = 1

2πi

∫
CN

dNτ−NM2 dσAB(N)
dM2 , (5.2.56)

in order to obtain the hadronic cross section as a function of τ = M2/S. Special
attention must be paid to the singularities in the resummed exponents G(1,2)

ab , which are
situated at λ = 1/2 and are related to the Landau pole of the perturbative coupling
αS . To avoid this pole as well as those in the Mellin moments of the PDFs related
to the small-x (Regge) singularity fa/A(x, µ2

0) ∝ xα(1 − x)β with α < 0, we choose an
integration contour CN according to the principal value procedure proposed in Ref. [440]
and the minimal prescription proposed in Ref. [441]. We define two branches

CN : N = C + ze±iφ with z ∈ [0,∞[ , (5.2.57)

where the constant C is chosen such that the singularities of the N -moments of the PDFs
lie to the left and the Landau pole to the right of the integration contour. Formally the
angle φ can be chosen in the range [π/2, π[, but the integral converges faster if φ > π/2.

5.3 Threshold resummation for squark electroweakino
production

In this section we focus on the production of a squark and an electroweakino at hadron
colliders. The corresponding Born diagrams are shown in Fig. 5.3. The similarity to
prompt photon production arises from the supersymmetric Feynman rules, where an
even number of fields are exchanged by their superpartner at the vertices. This results
in diagrams that resemble those of the QCD Compton process, as shown in Fig. 4.20.

Since this process involves both weak O(αEM) and strong O(αS) interactions at
LO, the resulting cross section is of intermediate size. The simplest process in this
category involves the production of a first- or second-generations squark together with
the lightest neutralino. This process manifests itself through a hard jet originating
from the squark decay and missing transverse energy from the two neutralinos leaving



5.3. THRESHOLD RESUMMATION FOR SQUARK ELECTROWEAKINO
PRODUCTION 145

the detector invisibly, one of them being a decay product of the squark and the other
one being directly produced in the hard process. Such a monojet signal is particularly
well-studied in the context of dark matter production at colliders [442, 443]. In recent
analyses by the CMS collaboration, squark masses below 1.6 TeV were excluded in four
mass-degenerate squark flavour models, assuming production with a light neutralino χ̃0

1.
This limit is reduced to 1.1 TeV for a single kinematically reachable squark [444–446].
Similarly, the ATLAS collaboration gives limits of 1.4 TeV and 1.0 TeV [447, 448].

This section is based on our publication [1] with further details in Ref. [176]. We
present a threshold resummation calculation for the associated production of squarks and
electroweakinos at the NLO+NLL accuracy. We begin with a derivation of LO and NLO
expressions for the associated production of a squark and an electroweakino at hadron
colliders in Sec. 5.3.1. In Sec. 5.3.2 and Sec. 5.3.3, we compute the ingredients required
for threshold resummation. The numerical validation of our NLO calculation and our
new results up to NLO+NLL accuracy are given in Sec. 5.3.4 for various benchmark
scenarios.

5.3.1 Leading and next-to-leading order
To calculate the total hadronic cross section σAB we use Eq. (5.2.1). The needed partonic
cross section

σab(s) =
∫

2
dσab =

∫ 1
2s |M|2 dPS(2) (5.3.1)

is related to the squared and averaged matrix element |M|2 by the usual flux factor
1/(2s) and the integration over the two-particle phase space dPS(2).

The associated production of a squark and an electroweakino with masses mq̃ and
mχ̃ occurs at a hadron collider at LO through the annihilation of a massless quark and
a gluon. Charge conservation restricts the possible partonic processes to

qu,d(pa) g(pb) → q̃u,d(p1) χ̃0
k(p2) , (5.3.2)

qu,d(pa) g(pb) → q̃d,u (p1)χ̃±
k (p2) , (5.3.3)

where k identifies the neutralino (χ̃0
k, k = 1, . . . , 4) or chargino (χ̃±

k , k = 1, 2) mass
eigenstate and pa,b and p1,2 refer to the four-momenta of the initial- and final-state
particles, respectively. The corresponding Born diagrams are shown in Fig. 5.3.

The squared matrix elements associated with the s-channel quark exchange diagram
(left), the u-channel squark exchange diagram (right) and their interference can be
expressed as functions of Mandelstam variables s = (pa + pb)2, t = (pa − p1)2 and
u = (pa − p2)2, i.e. as [395]

|Ms|2 = g2
sCACFB

s
2(m2

χ̃ − t) , (5.3.4)

|Mu|2 = −g2
sCACFB

(u−m2
q̃)2 2(m2

χ − u)(m2
q̃ + u) , (5.3.5)

2 Re[MsM†
u] = 2g

2
sCACFB

s(u−m2
q̃)

(
2(m4

χ̃ −m4
q̃) +m2

q̃(2u− 3s) − 2m2
χ̃(2m2

q̃ + u) − su
)
.

(5.3.6)

They are all proportional to the squared electroweakino-squark-quark coupling

B ≡ RIjkL
′
Ijk + LIjkR

′
Ijk = RIjkR

∗
Ijk + LIjkL

∗
Ijk = |RIjk|2 + |LIjk|2 , (5.3.7)
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where the capitalised index I labels the quark generation, the lower-case index j refers
to the squark eigenstate and the index k is related as above to the electroweakino
eigenstate. The definitions of the various left- and right-handed couplings L(′) and
R(′) are provided in Refs. [369, 411, 449]. Using arbitrary squark mixings and mass
eigenstates opens the possibility to study SUSY flavour violation [409, 450–454]. The
total spin- and colour-averaged squared amplitude then reads

|M|2 = 1
96
(
|Ms|2 + |Mu|2 + 2 Re[MsM†

u]
)
. (5.3.8)

The NLO corrections to this cross section are well-known [376, 386, 387]. They
involve one-loop self-energy, vertex and box corrections interfering with tree-level dia-
grams, as well as squared real gluon and quark emission diagrams, from which inter-
mediate OS squark and gluino resonant contributions have to be subtracted to avoid
spoiling the prediction power of the NLO calculation and double-counting contributions
to squark-pair production and gluino-electroweakino associated production with the cor-
responding subsequent decays [194, 195]. We have calculated the full NLO cross section
using dimensional regularization of UV and IR divergences as well as OS renormaliza-
tion for all squark and gluino masses and wave functions. The strong coupling constant
is renormalized in the five-flavour MS scheme after explicitly decoupling the heavier
coloured particles from its running [455–457], which leaves the running determined only
by the lightest coloured particles as it is usually done in global determinations of PDFs.
The tHV and CDR scheme introduce a mismatch between the (d− 2) gluon and the 2
gluino degrees of freedom. Their regularization then breaks SUSY invariance, which we
explore in chapter 5. This problem does not happen in the DRED or FHD scheme. Luck-
ily, it is possible to include SUSY restoring counterterms for the gaugino-squark-quark
ĝ and gluino-squark-quark ĝS vertices [458]

ĝS = gS

[
1 + αS

3π

]
, ĝ = g

[
1 − αS

8π CF
]
. (5.3.9)

Real and virtual contributions are combined to σNLO with the help of the CS dipole
subtraction method of Sec. 3.1.4.2 to cancel infrared and collinear divergences [180, 191,
193].

5.3.2 Soft anomalous dimension
We compute the soft anomalous dimension Γab→χ̃q̃ for gaugino squark production. Cal-
culating the necessary ωkl integrals in Eq. (5.2.37) is quite cumbersome. Fortunately,
the results for general cases are available [459, Eqs. (7.39)-(7.42)] and we report them
below for our cases of interest

ωab(v2
a = v2

b = 0) = Sab
αS
επ

[
− log

(va · vb
2

)
+ 1

2 log
(

(va · n)2

|n|2
(vb · n)2

|n|2

)
+ iπ − 1

]
,

(5.3.10)

ωab(v2
a = 0; v2

b 6= 0) = Sab
αS
επ

[
−1

2 log
(

(va · vb)2s

2m2
b

)
+ Lb + 1

2 log
(

(va · n)2

|n|2

)
− 1
]
,

(5.3.11)

ωaa(v2
a 6= 0) = Saa

αS
επ

[2La − 2] , (5.3.12)
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Figure 5.4: Eikonal diagrams for soft anomalous dimension in gaugino squark produc-
tion. The blob in the middle represents the hard scattering process.

with
La = 1

2 [La(δava, n) + La(δava,−n)] , (5.3.13)

and

La(δava, δnn) = 1
2

va · n√
(va · n)2 − 2m2

an
2/s[

log
(
δaδn2m2

a/s− va · n−
√

(va · n)2 − 2m2
an

2/s

δaδn2m2
a/s− va · n+

√
(va · n)2 − 2m2

an
2/s

)
+

log
(
δaδnn

2 − va · n−
√

(va · n)2 − 2m2
an

2/s

δaδnn2 − va · n+
√

(va · n)2 − 2m2
an

2/s

)
− δaδn2iπ

]
.

(5.3.14)

The diagrams of interest are shown in Fig. 5.4. They lead to the following result for the
integrals of the kinematical quantities

ωab = Sab
αS
επ

[
− log

(va · vb
2

)
+ 1

2 log
(

(va · n)2

|n|2
(vb · n)2

|n|2

)
+ iπ − 1

]
, (5.3.15)

ωa1 = Sa1
αS
επ

[
−1

2 log
(

(va · v1)2s

2m2
1

)
+ L1 + 1

2 log
(

(va · n)2

|n|2

)
− 1
]
, (5.3.16)

ωb1 = Sb1
αS
επ

[
−1

2 log
(

(vb · v1)2s

2m2
1

)
+ L1 + 1

2 log
(

(vb · n)2

|n|2

)
− 1
]
, (5.3.17)

ω11 = S11
αS
επ

[2L1 − 2] . (5.3.18)
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We just need to change the masses m1 = mq̃, the signs factors Sab = ∆a∆bδaδb, the
colour factors Ckl and the contribution from the initial-state self-energies ΓDY

ab . Since
the kinematics will be the same, we will employ the following relations

va · vb = 2pa · pb
s

= 1 , (5.3.19)

va · v1 = 2pa · p1

s
= m2

1 − t

s
, (5.3.20)

vb · v1 = 2pb · p1

s
= m2

1 − u

s
, (5.3.21)

where t and u are Mandelstam variables. Furthermore, Ref. [391] gives

(va · n)2

|n|2
= (vb · n)2

|n|2
= 1

2 , (5.3.22)

which is valid in the physical Coulomb A0 = 0 gauge.
Finally, there is another relation that we will use. While the quantity L1 is defined

by a rather complicate expression, we can show that in the case where δ1 = +1 and in
the limit where (v1 · n)2 → 2m2

1n
2/s we have L1 −→ 1. In order to show this, we have

to take the limit, since the ratio in the coefficient of La(δava, δnvn) as well as the long
logarithms are divergent.

We can quickly calculate the signs Sab for the four diagrams

Sab = −1 , S11 = −1 ,
Sa1 = +1 , Sb1 = +1 .

(5.3.23)

Note that in order to calculate those signs, one has to consider that the exchanged gluon
is emitted by one particle and absorbed by the other. This changes the sign of the δ for
the particle that absorbs the gluon. The colour factors Ckl are calculated as follows

Cab =
Tr
[
T iT i

′
T j
]
(−i)f i′ij

Tr[T iT i] = −CA
2 , C11 =

Tr
[
T iT jT jT i

]
Tr[T iT i] = CF ,

Ca1 =
Tr
[
T iT jT iT j

]
Tr[T iT i] = CF − CA

2 , Cb1 =
Tr
[
T iT jT i

′
]
(−i)f i′ij

Tr[T iT i] = CA
2 ,

(5.3.24)

where we have used the well-known relation T aT a = CF1. With these ingredients we
can calculate

Γab→ij = ε

[
− CF (ωa1 + ω11) + CA

2 (ωab + ωa1 − ωb1)
]

= αS
2π

[
CF

(
− log

(
(va · n)2

|n|2

)
+ log

(
(va · v1)2s

2m2
q̃

)
+ 2L1 − 2

)

+CA
(

− 1
2 log

(
(va · v1)2s

2m2
q̃

)
+ 1

2 log
(

(vb · v1)2s

2m2
q̃

)

− log
(

(vb · n)2

|n|2

)
+ log

(va · vb
2

)
+ 1 − iπ

)]
, (5.3.25)
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while the contribution from the initial-state self-energies is

ΓDY
ab = αS

2π

[
CF

(
1 − log

(
(va · n)2

|n|2

)
− log(2) − iπ

)
+CA

(
1 − log

(
(vb · n)2

|n|2

)
− log(2) − iπ

)]
.

(5.3.26)

We observe the nice cancellation of the gauge dependent terms

Γ̄ab→ij = αS
2π

{
CF

[
log
(

(va · v1)2s

2m2
q̃

)
+ 2L1 − 3 + log(2) + iπ

]
+

+CA

[
−1

2 log
(

(va · v1)2s

2m2
q̃

)
+ 1

2 log
(

(vb · v1)2s

2m2
q̃

)
+ log

(va · vb
2

)
+ log(2))

]}

= αS
2π

{
CF

[
2 log

(
m2
q̃ − t

√
smq̃

)
− 1 + iπ

]
+ CA log

(
m2
q̃ − u

m2
q̃ − t

)}
,

(5.3.27)

where we have used Eqs. (5.3.19) to (5.3.21) and L1 → 1. This result is related to
the one for tW production [460] and in the massless limit also to the one for the QCD
Compton process [461]. It agrees in particular with [460, eq. (3.8)] after subtraction of
the DY terms.

5.3.3 Hard matching coefficients
We compute the insertion operators P and K for squark-electroweakino production in
Mellin space as required for Eq. (5.2.46). In this case we have an initial-state with a
quark and a gluon. The result of gluino-electroweakino production [411] where we have
two initial quarks can be widely recycled, all thou we have to consider that in this case
the second parton is now a gluon, and the final-state is a squark. In total, we have two
diagonal splitting of either the (anti)quark or the gluon in the initial-state, while the
off-diagonal splitting, like a gluon into a quark-antiquark pair will vanish at large N .
Furthermore, the various pieces have to be multiplied by the appropriate combination
of PDFs. We will also need the following colour factors

〈Tq̃ · Tq̃〉 = T2
q̃ = CF , 〈Tq · Tq〉 = T2

q = CF ,

〈Tg · Tg〉 = T2
g = CA , 〈Tq̃ · Tq〉 = CA

2 − CF ,

〈Tg · Tq〉 = −CA
2 , 〈Tq̃ · Tg〉 = −CA

2 ,

〈Tq · Tg〉 = −CA
2 ,

(5.3.28)

where colour conservation TaTb = TR(Tc
2 − Ta

2 − Tb
2) with a, b, c different coloured

particles in the process q, g, q̃ was used [180, App. A]. We also utilize the kinematic
relations

xsja = m2
q̃ − t , xsjb = m2

q̃ − u , xsab = s . (5.3.29)
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5.3.3.1 Mellin space P operator

We can take Eq. (3.1.130) and apply the above colour factors and kinematical relations.
The first diagonal diagram with the diagonal splitting of a quark in the initial-state
gives (a = q, a′ = q, j = q̃, b = g)

〈P〉q (x;µ2
F ; pj , xpa, pb) = αS

2π P
qq

(
Tq̃ · Tq

T2
q

log µ2
F

xsja
+ Tg · Tq

T2
q

log µ2
F

xsab

)
. (5.3.30)

Identical contribution arises from the diagram with an anti-quark in the initial-state
(a = q̄, a′ = q̄, j = q̃, b = g), which however produces an anti-squark in the final-state
and also shall be multiplied by the anti-quark PDF.

The second diagonal diagrams from the splitting of a gluon in the initial-state gives
(a = g, a′ = g, j = q̃, b = q)

〈P〉g (x;µ2
F ; pj , xpa, pb) = αS

2π P
gg

(
Tq̃ · Tg

T2
g

log µ2
F

xsja
+ Tq · Tg

T2
g

log µ2
F

xsab

)
. (5.3.31)

Also in this case, the same contribution arises from the diagram with an anti-quark as
particle b (a = g, a′ = g, j = q̃, b = q̄), and also in this case this is associated to the
production of an anti-squark in the final-state and shall be multiplied by the anti-quark
PDF.

Finally, we have to remember that we have to sum also all the contributions where
initial-states particles are exchanged (meaning that the particle splitting is the particle
b). This is obtained by simply replacing sja → sjb. In Mellin space, only the diagonal
terms survive and writing explicitly their colour factors, we obtain

〈P〉q (N) = αS
2π

(
log N̄ − 3

4

)(
2CF log µ2

F

m2
q̃ − t

− CA log s

m2
q̃ − t

)
, (5.3.32)

〈P〉g (N) = αS
2π

(
CA log N̄ − β0

2

)
log µ4

F

s(m2
q̃ − t) . (5.3.33)

To those we have to add identical terms with t → u which represents the diagrams with
initial-states particles exchanged.

5.3.3.2 Mellin space K operator

For the K operator we apply the same procedure to Eq. (3.1.131) with constants listed
in Sec. A.3.4. Also in this case we only care about the plus distributions and the
delta functions as other terms do not contribute in the large N limit. We suppress the
arguments for several functions given that they follow from Eq. (3.1.131).

The first diagonal diagram with the diagonal splitting of a quark in the initial-state
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gives (a = q, a′ = q, j = q̃, b = g)

〈K〉q(x;µ2
F ; pj , pa, pb) = αS

2π

{
K̄qq − Tq̃ · TqKq,q

q̃

−Tq̃ · Tq

T2
q

[
P qqreg log (1 − x)sja

(1 − x)sja +m2
j

+ γqδ(1 − x)

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj

]

−Tg · Tq

[
1

T2
q

P qqreg log(1 − x) +
(

2
(

log(1 − x)
1 − x

)
+

− π2

3 δ(1 − x)
)]}

.

(5.3.34)
Identical contribution arises from the diagram with an anti-quark in the initial-state

(a = q̄, a′ = q̄, j = q̃, b = g), which however produces an anti-squark in the final-state
and shall be multiplied by the anti-quark PDF.

The second diagonal diagrams from the splitting of a gluon in the initial-state gives
(a = g, a′ = g, j = q̃, b = q)

〈K〉g(x;µ2
F ; pj , pa, pb) = αS

2π

{
K̄gg − Tq̃ · TgKg,g

q̃

−Tq̃ · Tg

T2
g

[
P ggreg log (1 − x)sja

(1 − x)sja +m2
j

+ γgδ(1 − x)

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj

]

−Tq · Tg

[
1

T2
g

P ggreg log(1 − x) +
(

2
(

log(1 − x)
1 − x

)
+

− π2

3 δ(1 − x)
)]}

.

(5.3.35)
Also in this case, the same contribution arises from the diagram with an anti-quark as
particle b (a = g, a′ = g, j = q̃, b = q̄), and it is associated to the production of an
anti-squark in the final-state and shall be multiplied by the anti-quark PDF.

Finally, we have to remember that we have to sum also all the contributions where
initial-states particles are exchanged (meaning that the particle splitting is the particle
b). This is again obtained by simply replacing sja → sjb.

Since the K operator is a bit more complicated, we will give the Mellin transforms
F [. . . ] of the various operators separately. The Mellin transform of the diagonal K̄aa is

K̄aa(N) = T2
aF

[(
2

1 − x
log 1 − x

x

)
+

]
− F

[
δ(1 − x)

(
γa +Ka − 5

6π
2T2

a

)]
= T2

a

(
log2 N̄ − π2

6

)
−
(
γa +Ka − 5

6π
2T2

a

)
= T2

a log2 N̄ + T2
a

2
3π

2 − γa −Ka .

(5.3.36)



5.3. THRESHOLD RESUMMATION FOR SQUARK ELECTROWEAKINO
PRODUCTION 152

The second term involves Kq,q
g̃ . We start with its function

[
JqgQ(x, µs)

]
+

[
JqgQ(N,µs)

]
+

= F

[(
1 − x

2(1 + µ2
s − x)2

)
+

]
− F

[(
2

1 − x

)
+

]

− F

[(
2

1 − x
log
(
1 + µ2

s − x
))

+

]
+ F

[(
2

1 − x

)
+

log
(
2 + µ2

s − x
)]

= 1
2

(
1

1 + µ2
s

+ log
(

µ2
s

1 + µ2
s

))
+ 2 log N̄+

+
[
2 log N̄ log

(
µ2
s

)
− π2

3 + 2 log
(
µ2
s

)
log
(

µ2
s

1 + µ2
s

)
+ 2Li2

(
1 + µ2

s

µ2
s

)]
− 2 log N̄ log

(
1 + µ2

s

)
=

= 2 log N̄
(

1 + log µ2
s

1 + µ2
s

)
+ 1

2
1

1 + µ2
s

+ 1
2 log µ2

s

1 + µ2
s

+ 2 log
(
µ2
s

)
log
(

µ2
s

1 + µ2
s

)
+ 2Li2

(
1 + µ2

s

µ2
s

)
− π2

3 ,

(5.3.37)

where µs = mq̃/sq̃q. Then we write directly the Mellin transform of the operator Kq,q
q̃

Kq,q
q̃ (N ; sja,mj) = F

[
2
(

log(1 − x)
1 − x

)
+

]
+ F

[
JqgQ

(
x,

mj√
sja

)]
+

− F

[
δ(1 − x) γq̃

CF

]

+ F

[(
2

1 − x

)
+

log (2 − x)sja
(2 − x)sja +m2

j

]
− F

[(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+

]

=
(

log2 N̄ + π2

6

)
+
[
JqgQ

(
N,

mj√
sja

)]
+

− γq̃
CF

+
[
−2 log N̄ log(sja) + 2 log N̄ log

(
sja +m2

j

)]
+
(

1
2

sja
sja +m2

j

+ 1
2 log

m2
j

sja +m2
j

)

= log2 N̄ + 2 log N̄
(

1 + log
m2
j

sja

)
+ 2 Li2

(
sja +m2

j

m2
j

)

+ log
m2
j

sja +m2
j

(
1 + 2 log

m2
j

sja

)
+ sja
sja +m2

j

− γq̃
CF

− π2

6 . (5.3.38)
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So the full Mellin transform of the K operator is

〈K〉q(N) = αS
2π

{
F
[
K̄qq

]
− Tq̃ · TqF

[
Kq,q
q̃

]
− Tq̃ · Tq

T2
q

F

γqδ(1 − x)

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj


− Tg · TqF

[
2
(

log(1 − x)
1 − x

)
+

]
− Tg · TqF

[
δ(1 − x)π

2

3

]}
= αS

2π

{
CF log2 N̄ − γq −Kq + 2

3π
2CF

−
(
CA
2 − CF

)[
log2 N̄ + 2 log N̄

(
1 + log

m2
j

sja

)
+ 2Li2

(
sja +m2

j

m2
j

)

+ log
m2
j

sja +m2
j

(
1 + 2 log

m2
j

sja

)
+ sja
sja +m2

j

− γq̃
CF

− π2

6

]

−
(
CA − 2CF

2CF

)
3
2CF

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj


+ CA

2

(
log2 N̄ + π2

6

)
− CA

2
π2

3

}
(5.3.39)

and finally we can write it as

〈K〉q (N) = αS
2π

{
CF

(
2 log2 N̄ + π2

2 − γq
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− Kq

CF

)
+
(
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(
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(5.3.40)

with

Q = sja
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+ 3mj
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√
sja +m2

j

+ log
m2
j

sja +m2
j

(
1 + 2 log

m2
j

sja

)

− 3
2 log

sja + 2m2
j − 2mj

√
sja +m2

j

sja
+ 2 Li2

(
sja +m2

j

m2
j

)
− γq̃
CF
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(5.3.41)

Note that we will need also the same expression for the diagrams where the initial-state
particles are exchanged. We can obtain it by means of the simple replacement sja → sjb.

For the K operator from the gluon initial particle we need first the Mellin transform
of K̄gg and of Kg,g

q̃ . Both are similar to expressions we have already encountered

F
[
K̄gg

]
= T2

g log2 N̄ − γg −Kg + 2
3π

2T2
g . (5.3.42)



5.3. THRESHOLD RESUMMATION FOR SQUARK ELECTROWEAKINO
PRODUCTION 154

While for the second we obtain an analogous expression as in the previous case of
Kq,q
q̃ .

Kg,g
q̃ (N ; sja,mj) = log2 N̄ + 2 log N̄

(
1 + log
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j
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)
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)
+ sja
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− γq̃
CF

− π2
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(5.3.43)

Transforming the whole operator

〈K〉g(N) = αS
2π

{
F
[
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[
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]
− Tq̃ · Tg

T2
g

F

γgδ(1 − x)

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj


− Tq · TgF

[
2
(

log(1 − x)
1 − x

)
+

]
+ Tq · TgF

[
δ(1 − x)π

2

3

]}
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= αS
2π

{
CA log2 N̄ − γg −Kg + 2

3π
2CA

+ CA
2

[
log2 N̄ + 2 log N̄

(
1 + log

m2
j

sja

)
+ 2 Li2

(
sja +m2

j

m2
j

)

+
(

1 + 2 log
m2
j

sja

)
log

m2
j

sja +m2
j

+ sja
sja +m2

j

− γq̃
CF

− π2

6

]

+ CA
2CA

β0

log
sja − 2mj

√
sja +m2

j + 2m2
j

sja
+ 2mj√

sja +m2
j +mj


+ CA

2

(
log2 N̄ + π2

6

)
− CA

2
π2

3

}
, (5.3.45)

we can finally write it as

〈K〉g (N) = αS
2π

CA
2

[
4 log2 N̄ + 2 log N̄
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(5.3.46)
with
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(5.3.47)

Note that also in this case we will need the same expression for the diagrams where the
initial-state particles are exchanged. Again, we can obtain it by means of the simple
replacement sja → sjb.
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pMSSM-11 scenario A

M1 M2 M3

0.25 0.25 −3.86

M(U,D,Q)1,2 M(U,D,Q)3 µ

4.0 1.7 1.33

M(L,E)1,2 M(L,E)3 tanβ

0.35 0.47 36

MA A0

4.0 2.8

mχ̃0
1

mũ mg̃

0.249 4.07 3.90

pMSSM-11 scenario B

M1 M2 M3

0.51 0.48 3.00

M(U,D,Q)1,2 M(U,D,Q)3 µ

0.9 2.0 −9.4

M(L,E)1,2 M(L,E)3 tanβ

1.85 1.33 33

MA A0

3.0 −3.4

mχ̃0
1

mũ mg̃

0.505 0.96 2.94

Table 5.2: Higgs and soft SUSY breaking parameters in our pMSSM-11 benchmark
models, together with the relevant resulting physical particle masses. All values, except
for tan β, are given in TeV.

5.3.4 Numerical results
For our numerical predictions, we identify the Standard Model parameters with those
determined by the PDG [26]. The running of the strong coupling with five active quark
flavours is chosen in agreement with the selected PDF set as provided by the LHAPDF 6
library. As our default choice of PDFs, we employ the sets of MSHT20 unless stated
otherwise. To be specific, we use at LO the set MSHT20lo_as130 [44] with αS(MZ) =
0.130, and at NLO and NLO+NLL the set MSHT20nlo_as118 [44] with αS(MZ) =
0.118. Again unless stated otherwise, we consider the dominant squark-electroweakino
production channel at the LHC, i.e. the production of a left-handed or a right-handed
up-type squark in association with the lightest neutralino.

5.3.4.1 Total cross sections and their scale uncertainty

In the following, we present results for two specific phenomenological MSSM scenarios
with eleven parameters (pMSSM-11). The input parameters and the relevant resulting
physical masses obtained with SPheno 3 [462] are listed in Tab. 5.2. First, we focus on
a scenario featuring large squark masses of 4 TeV, referred to as scenario A. Second,
scenario B explores squark and gaugino masses expected to be within the reach of Run
3 of the LHC. Both scenarios are based on the global fits of Ref. [463]. Scenario A
is derived from a fit that includes data from the anomalous magnetic moment of the
muon [464], while scenario B does not include it. In addition, we have lowered the
parameters M1 and M2 in scenario B and have increased the parameter M3 to bring
the squark and gluino masses in agreement with the current SUSY limits from the LHC
[445, 447, 448].

In Fig. 5.5, We present predictions for the total cross section related to the process
pp → ũLχ̃

0
1 in scenarios A and B with squark masses of 4 TeV and 1 TeV, respectively,

together with the associated scale uncertainties. The results are shown at LO, NLO
and NLO+NLL for a centre-of-mass energy of

√
S = 13 TeV. Our predictions show a



5.3. THRESHOLD RESUMMATION FOR SQUARK ELECTROWEAKINO
PRODUCTION 156

10 1 100 101

R, F/ 0

0.01

0.02

0.03

0.04

 [a
b]

R = F

100

F/ 0

R = 10.0 0

100

R/ 0

pp uL
0
1 for scenario A 
F = 0.1 0

100

F/ 0

R = 0.1 0

100

R/ 0

F = 10.0 0
LO

LO

NLO
NLO

NLO + NLL
NLO + NLL

NLL Exp.

10 1 100 101

R, F/ 0

2.00

3.00

4.00

5.00

 [f
b]

R = F

100

F/ 0

R = 10.0 0

100

R/ 0

pp uL
0
1 for scenario B 
F = 0.1 0

100

F/ 0

R = 0.1 0

100

R/ 0

F = 10.0 0
LO

LO

NLO
NLO

NLO + NLL
NLO + NLL

NLL Exp.

Figure 5.5: Profiles of the renormalization and factorization scale dependence of the
total cross section corresponding to the process pp → ũLχ̃

0
1 in scenarios A and B.

The plots cover µF,R ∈ (0.1 − 10)µ0 (reversely in panels 2 and 3) with a central scale
µ0 = (mq̃ + mχ̃)/2. The bands correspond to scale uncertainties evaluated with the
seven-point method, and we use

√
S = 13 TeV and MSHT20 PDFs. We present predictions

at LO, NLO and NLO+NLL, as well as for the O(α2
S) expansion of the NLL result. Note

that the axis changes directions between some panels.

significant increase of the total cross section in scenario A when including NLO+NLL
corrections as well as a reduction of the scale uncertainties in both scenarios. The uncer-
tainty bands are again determined by the seven-point method, where the factorization
and renormalization scales are both varied independently by factors of two up and down
around the central scale µ0 = (mq̃ + mχ̃)/2, excluding the cases where µF /µR = 4 or
1/4. For both examined scenarios, we observe that the relative scale uncertainties are
reduced from about ±20 % at LO to ±10 % at NLO, and finally fall below ±5 % at
NLO+NLL. The kink in the NLO cross section at µF = µR = 0.1µ0 between panels
three and four is more prominent in scenario A than in scenario B. It originates from the
subtraction of on-shell squark and gluino resonant contributions from the real emission
component of the cross section. We also include predictions for the expansion of the
NLL predictions at O(α2

S), following Eq. (5.2.48) (solid red curve). As expected for
large scales the logarithmic terms become dominant, and the expansion consequently
approximates well the NLO result. Full control over the scale dependence at NNLO and
beyond can of course only be obtained with an explicit calculation.

5.3.4.2 Parton density uncertainties of the total cross section

So far we have only studied scale uncertainties associated with the total rates for squark-
electroweakino production at the LHC. There is, however, a second important source of
theoretical uncertainties, i.e. those coming from the PDF. The computation of the PDF
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Figure 5.6: Relative PDF uncertainties of the total cross sections for the processes
pp → q̃L,Rχ̃

0
1 at the LHC with a centre-of-mass energy of

√
S = 13 TeV and at

NLO+NLL. The uncertainties are shown as a function of the squark mass mq̃L,R
and for

four different choices of PDFs, namely MSHT20nlo_as118 (blue), CT18NLO [47] (orange),
NNPDF40_nlo_as_01180 [42] (green) and NNPDF40_nlo_pch_as_01180 [42] (red).

uncertainties goes as already described in Sec. 2.2.2.
For our predictions at NLO and NLO+NLL, we calculated the PDF uncertainties

at 90 % confidence level following the convention of Ref. [47]. The resummation of large
logarithms does not significantly alter the size of the relative PDF uncertainties, as the
same set of PDFs is used in both calculations. For scenario B we show in Fig. 5.6
the PDF uncertainties associated with NLO+NLL total cross sections for the different
choices of parton densities mentioned above, i.e. for MSHT20, CT18 and NNPDF40 [42]. We
consider the process pp → ũL,Rχ̃

0
1 in the top row of the figure and present predictions

as a function of the squark mass. While the uncertainty is of about 5 % for 1 TeV up-
squarks, it increases up to 10 % to 15 % for squark masses of 3 TeV. This increase is
related to the large partonic momentum fractions x relevant for such a large mass, where
the PDFs are less constrained in their fitting procedure. The central cross section values
obtained with the MSHT20 and CT18 sets agree consistently at the percent level in the
explored mass range, the MSHT20 errors being slightly smaller as a consequence of this
set being more recent than the CT18 one. On the other hand, the NNPDF40 predictions
are a few percent lower, although they are still in reasonable agreement within their
uncertainty intervals with the predictions achieved with other PDFs.
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In the lower two plots of Fig. 5.6 we show results for the production of a charm squark
in association with the lightest neutralino. We observe that the results obtained with the
central NNPDF40_lo_as_01180 [42] set with αS(MZ) = 0.118 give cross sections that are
larger by a factor of three to four with respect to those obtained with the CT18NLO [47]
set and with the MSHT20nlo_as118 set, both also with αS(MZ) = 0.118. In addition,
the uncertainties associated with the NNPDF40 predictions are of about 30 % to 50 %,
in contrast with predictions obtained with CT18 and MSHT20, that have much smaller
uncertainties. This discrepancy can be traced back to the treatment of the charm quark
in the NNPDF40 fit [465] and is expected to be even more significant in processes with
two charm quarks or antiquarks in the initial-state. The cross sections estimated with
the alternative NNPDF40_nlo_pch_as_01180 [42] PDF fit (red) with αS(MZ) = 0.118, in
which the treatment of the charm quark is kept purely perturbative, are, in contrast, in
good agreement with CT18 and MSHT20 both for the central values and the uncertainties.

5.3.4.3 Squark and gaugino mass dependence of the total cross section

The dependence of the total cross section for associated squark-electroweakino produc-
tion on the masses of the produced particles is important to estimate the sensitivity of
Run 3 at the LHC to this process. A precise quantitative statement of course requires a
detailed signal and background analysis, which follows in Sec. 5.5. Therefore, we show
in Fig. 5.7 the total cross sections and resulting relative scale uncertainties for scenario
B as a function of the SUSY particle masses, both for ũLχ̃0

1 (left) and ũRχ̃0
1 (right) pro-

duction. As expected, the cross sections fall steeply with either mass. Our predictions
indicate that an integrated luminosity of 350 fb−1 at

√
S = 13 TeV from the LHC Run

3 [383] will lead to the production of hundreds of squark-electroweakino events for a
neutralino mass of 0.5 TeV and squark masses ranging up to 2 TeV.

In the lower panels of the plots, we observe an improvement in the precision of the
predictions over the whole mass range. Resummation effects reduce the scale dependence
from ±10 % at NLO to below ±5 % at NLO+NLL. The black curves in the lower insets
of the figures represent the ratio of the NLO+NLL predictions to the NLO ones and
demonstrate the increasing impact of resummation with rising mass values. As in the
previous sections, this demonstrates once more that resummation effects are larger near
the hadronic threshold. While the central cross section values are enlarged by 50 % when
adding NLO corrections to the LO rates, the additional increase from NLL resummation
reaches only about 6 % for the mass ranges observable at the LHC in the near future.

5.4 Precision predictions for electroweak SUSY pro-
cesses in simplified models at 13.6 TeV

We make use of Resummino to compute the total production rates at aNNLO+NNLL
obtained for the LHC Run 3, operating at a centre-of-mass energy of 13.6 TeV. We con-
sider simplified model scenarios in which all superparticles are decoupled, excepted for
those produced in the final-state. Our results highlight how theoretical uncertainties are
reduced relative to the perturbative order of the fixed-order and resummed component
of the matched predictions and how they compare with predictions at a centre-of-mass
energy of 13 TeV. Moreover, we explore next-to-minimal scenarios, and discuss the im-
pact of internal squark masses on the predictions for configurations in which squarks
are not decoupled but only slightly heavier than the lighter electroweakinos.
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Figure 5.7: Total cross sections for the processes pp → ũL,Rχ̃
0
1 and their relative scale

uncertainties (top panels) as well as (NLO+NLL)/NLO K-factors (bottom panels) in
scenario B. In the first row, we vary the squark mass mũL,R

, keeping a fixed distance
between the left- and right-handed squark masses mũL

−mũR
= 100 GeV. In the second

row, we vary the electroweakino mass mχ̃. The other parameters defining scenario B
are not modified. The LHC energy is

√
S = 13 TeV, and we use MSHT20 PDFs.

We employ the PDF4LHC21_40 [466] set of parton distribution functions, and we
provide results together with the associated PDF and scale uncertainties (the latter
being obtained with the seven-point method) added in quadrature. As this section is
based on our publication [2], complementary to the figures shown in this section, the
complete collection of numerical predictions are shown in its appendix tables.

We consider simplified SUSY models inspired by the MSSM, and we explore several
typical scenarios. In the context of slepton pair production, we focus on a configuration
in which all SUSY particles are decoupled by setting their masses to 100 TeV, except a
single slepton species that is taken either left-handed ẽL, right-handed ẽR or maximally
mixed τ̃1 = 1/

√
2
[
τ̃L+ τ̃R

]
. This last scenario is representative of models featuring light

tau sleptons, as originating from many SUSY scenarios [405].

Electroweakino pair production rates are estimated in similar scenarios, in which all
SUSY particles are decoupled except the lightest electroweakinos [399]. We begin our
study with scenarios in which the three lightest electroweakinos are all higgsinos. In the
first setup, all higgsinos are taken mass-degenerate and the lightest states are defined
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by the mixing matrices

N =


0 0 2− 1

2 2− 1
2

0 0 2− 1
2 −2− 1

2

0 0 0 0

0 0 0 0

 , V = U =

0 1

0 0

 , (5.4.1)

and equivalently

χ̃0
1,2 ∼ 1√

2
(
H̃0
u ± H̃0

d

)
, χ̃±

1 ∼ H̃±
u,d . (5.4.2)

Whereas this choice of a real neutralino mixing matrix implies a negative m(χ0
1) eigen-

value, it can always be transformed back to positive a mass eigenvalue through a chiral
rotation [467]. In a second setup, we introduce some mass splitting between the three
electroweakinos, such a splitting being typical of next-to-minimal electroweakino sim-
plified models studied at the LHC, and that turn out to be more realistic in the light of
concrete MSSM scenarios [468]. We define the three lightest electroweakinos by

N =


0 0 2− 1

2 −2− 1
2

0 0 −2− 1
2 −2− 1

2

1 0 0 0

0 0 −1 0

 , V = U =

0 1

1 0

 , (5.4.3)

=⇒ χ̃0
1,2 ∼ − 1√

2
(
∓H̃0

u + H̃0
d

)
, χ̃±

1 ∼ H̃±
u,d . (5.4.4)

Finally, we consider a scenario in which all lightest electroweakinos are mass-degenerate
gauginos, that is mixing matrices

N =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , V = U =

1 0

0 0

 , (5.4.5)

resulting in the following eigenstates

χ̃0
1 ∼ iB̃ , χ̃0

2 ∼ iW̃ 3 , χ̃±
1 ∼ W̃± . (5.4.6)

In this last SUSY configuration, we additionally investigate squark mass effects on gaug-
ino pair production. Here, we consider an eight-fold degeneracy of all first-generation
and second-generation squarks, the spectrum featuring thus many states reachable at
the LHC.

Before going into the detailed results we show a summary of the total cross sections
for the different scenarios considered in Tab. 5.3. As a rule of thumb valid for all in-
vestigated processes, QCD threshold resummation reduces the typical scale dependence
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Final-state particle mass 1 TeV 1.5 TeV 2 TeV

σ13.6 TeV/σ13 TeV ∼1.2 ∼1.3 ∼1.6

PDF4LHC21 unc. 13 % to 20 % 35 % to 40 % >100 %

Scale unc. <0.3 % <0.2 % <0.1 %

Table 5.3: Behaviour of aNNLO+NNLL total cross sections for slepton and elec-
troweakino pair production at the LHC, for a centre-of-mass energy of

√
S = 13.6 TeV.

The results are given as a function of the average mass of the final-state particles, and
we provide the typical increase in cross section related to predictions at

√
S = 13 TeV,

and information about the size of the theoretical PDF and scale uncertainties inherent
to the calculations achieved.

to less than 1 % at aNNLO+NNLL. These contributions to the combined theory error
hence become generally negligible, or at least subleading. For the production of low-mass
SUSY states, PDF and scale uncertainties are of the same order of magnitude, so that
theory systematics are under good control. In our predictions, we have employed the
PDF4LHC21 [466] set of parton densities that originates from a combination of variants
of the CT18, MSHT20 and NNPDF3.1 [469] global PDF fits. Such a set generally leads to
larger PDF uncertainties compared to the individual global sets, particularly at large
Bjorken x & 0.4 [466]. In this region, yet poorly constrained by experimental data, dis-
crepancies between predictions relying on the different global sets can be significant as
the parton density behaviour is mainly driven by the theoretical assumptions made. For
instance, recent studies have shown how the recent NNPDF4.0 set predicts (anti)quark
distributions falling much faster (slower) with respect to the other sets [470]. Moreover,
the sea over valence quark ratio is a determining factor for DY-like processes [471], and
in turn it also has a strong impact on the determination of the gluon density at high
x values and large scale [472]. Predictions for (differential) cross section can therefore
vary substantially with the choice of the PDF set, especially in scenarios featuring heavy
SUSY particles. This issue will however be naturally fixed with time, as more data gets
collected at high scale by the LHC collaborations.

5.4.1 Slepton pair production
In Fig. 5.8 we display aNNLO+NNLL cross section predictions for slepton pair produc-
tion at the LHC as a function of the slepton mass m˜̀. We consider two centre-of-mass
energies fixed to

√
S = 13.6 TeV (orange) and 13 TeV (blue), and we focus in the upper,

central and lower panel of the figure on the respective processes

pp → ẽ+
L ẽ

−
L , ẽ+

Rẽ
−
R , τ̃+

1 τ̃
−
1 . (5.4.7)

In the figures, we restrict the mass range shown to m˜̀ . 1 TeV. This corresponds to
cross section values larger than 0.01 fb, to which the LHC Run 3 is in principle sensitive
as dozens signal events could populate the signal regions of the relevant ATLAS and
CMS analyses.1

1The actual numbers of events populating these signal regions depend on the details of the different
relevant LHC analyses. However, their precise estimation lies beyond the scope of this article that is
solely dedicated to precision predictions for total slepton and electroweakino production rates at the
LHC Run 3.
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Figure 5.8: Total cross sections for slepton pair production at the LHC, operating
at centre-of-mass energies

√
S = 13.6 TeV and 13 TeV (upper insets), shown together

with their ratios to the 13 TeV total rates (lower insets) in which combined scale and
PDF uncertainties are included. We consider the production of a pair of left-handed
sleptons (left), right-handed sleptons (right) and maximally-mixed sleptons (bottom),
and predictions are presented as a function of the slepton mass m˜̀.

Whereas cross sections for
√
S = 13 TeV and 13.6 TeV are both shown in the upper

insets of the three subfigures, the gain in rate at Run 3 is more visible from the ratio plots
presented in their lower insets. This indeed illustrates better how cross section increases
ranging up to 20% can be obtained in the three classes of scenarios considered, especially
for large slepton masses. As expected from the structure of the slepton couplings to the
Z-boson (see e.g. in Ref. [408]), left-handed sleptons are more easily produced in high-
energy hadronic collisions than their right-handed counterparts that only couple through
their hypercharge. Consequently, cross sections corresponding to mixed scenarios lie
between the two extreme non-mixing cases for a given slepton mass m˜̀.

The different ratio plots of the lower insets of the subfigures also show the dependence
of the theoretical systematic uncertainty bands on the slepton mass. The collider energy
upgrade achieved at Run 3 naturally leads to a reduction of the PDF uncertainties as
the gain in centre-of-mass energy yields a smaller relevant Bjorken-x regime in which
parton distribution functions are better fitted. Scale uncertainties contribute to at most
2 % of the combined theoretical uncertainty in the entire mass range probed, regardless
of the centre-of-mass energies considered. In contrast, PDF errors vary from 3 % to
18 % at 13.6 TeV, which must be compared to a variation ranging from 3 % to 20 % at
13 TeV. For a phenomenological study on the reduction of PDF uncertainties in slepton
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Figure 5.9: Total cross sections for mass-degenerate higgsino pair production at the
LHC, operating at centre-of-mass energies

√
S = 13.6 TeV and 13 TeV (top panels),

shown together with their ratios to the 13 TeV total rates (bottom panels) in which
combined scale and PDF uncertainties are included. We consider the production of
associated χ̃0

1χ̃
+
1 (upper left) and χ̃0

1χ̃
−
1 (upper right) pairs, as well as that of a pair

of charginos χ̃+
1 χ̃

−
1 (lower left) and neutralinos χ̃0

2χ̃
0
1 (lower right). Predictions are

presented as a function of the electroweakino mass mχ̃.

pair production see [406].

5.4.2 Higgsino pair production
We now turn to scenarios in which all SUSY particles are decoupled by setting
their masses at 100 TeV, except all higgsino states. We begin with a calculation of
aNNLO+NNLL predictions relevant for higgsino pair production in a scenario in which
all higgsinos, defined as in Eq. (5.4.2), are mass-degenerate, i.e. in which

m(χ̃0
1) = m(χ̃0

2) = m(χ̃±
1 ) ≡ m(χ̃) . (5.4.8)

Our results are shown in Fig. 5.9 for the four processes

pp → χ̃0
1χ̃

+
1 , χ̃0

1χ̃
−
1 , χ̃+

1 χ̃
−
1 , χ̃0

2χ̃
0
1 , (5.4.9)

since in the case of a degenerate spectrum σ(χ̃0
1χ̃

±
1 ) = σ(χ̃0

2χ̃
±
1 ). In the results displayed,

we restrict the mass range considered to mχ̃ . 1.5 TeV, which corresponds to production
rates at the LHC larger than 0.01 fb and therefore potentially reachable at Run 3. The
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Figure 5.10: Total cross sections for χ̃0
2χ̃

+
1 production at the LHC, operating at centre-

of-mass energies
√
S = 13 TeV (left) and 13.6 TeV (right), in a scenario where all SUSY

particles are decoupled with the exception of the non-degenerate produced states.

largest cross sections are obtained for the charged-current process pp → χ̃0
1χ̃

+
1 , such an

effect originates from a PDF enhancement related to the ratio of valence and sea quarks
in the proton and from the structure of the higgsino gauge couplings. This additionally
leads to similar neutral-current higgsino production rates (pp → χ̃+

1 χ̃
−
1 and pp → χ̃0

2χ̃
0
1),

and the cross section of the negative charged-current process pp → χ̃0
1χ̃

−
1 is then smaller.

As in the slepton case explored in Sec. 5.4.1, we find an enhancement of total pro-
duction cross sections at 13.6 TeV relative to those at 13 TeV thanks to the modest gain
in phase space. Rates are indeed found to be 10% to 30% larger at

√
S = 13.6 TeV than

at
√
S = 13 TeV, for low and high electroweakino masses respectively.

Still similarly to the slepton case, theoretical uncertainties get reduced with the
increase in centre-of-mass energy. Scale uncertainties contribute negligibly to the total
theory errors for both centre-of-mass energies, scale variations indeed leading to errors
of about 1 % to 2 % for low higgsino masses and lying in the permille range for mχ̃ &
300 GeV. In contrast, total rates at 13 TeV are plagued with PDF uncertainties varying
from a few percent at low masses to more than 20 % to 40 % for higgsino masses larger
than about 1.2 TeV. The reduction of the average Bjorken-x value inherent to the larger
centre-of-mass energy of 13.6 TeV subsequently leads to smaller PDF errors that are
found reduced by about a few permille at low masses, up to 5 % to 7 % at large masses.
For a phenomenological study on the reduction of PDF uncertainties in higgsino pair
production see [400].

We now move on with a second higgsino scenario in which the three lightest higgsino
states are defined as in Eq. (5.4.4). Moreover, their spectrum is enforced to feature a
significant level of compression, so that all three higgsino states exhibit a mass splitting
of a few percent2. In the following, we impose that

m(χ±
1 ) = m(χ0

2) −m(χ0
1)

2 , (5.4.10)

with all masses being taken positive.
Given these mass relations, we present in Fig. 5.10 aNNLO+NNLL total cross sec-

tions for the process pp → χ̃0
1χ̃

+
1 at the LHC, for centre-of-mass energies of

√
S =

2The masses of the decoupled squarks are set to 4.5 TeV in order to avoid numerical complications.
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13 TeV (left) and 13.6 TeV (right). We consider the mass range in which all higgsinos
are lighter than 300 GeV, as this consists of the relevant mass configurations in terms of
LHC sensitivity to compressed SUSY higgsino scenarios [473–475].

In the figures, associated rates are shown logarithmically through a colour code. In
this scheme, other higgsino production modes yield almost identical figures, that we
therefore omit for brevity. For the considered mass range, theoretical systematics are
found in very good control, the combined uncertainties being of about 5 % for all mass
configurations explored. Whereas scale uncertainties decrease from 2 % to 3 % in the
lightest configurations considered to a few permille for higgsinos of about 200 GeV to
300 GeV, PDF errors increase from 2 % to 3 % in the lightest scenarios to 4 % to 5 % in
the heavier cases. The combined theory errors are thus similar in size for all scenarios
studied.

As for the previous calculations achieved, a cross section increase at 13.6 TeV results
from the phase space enhancement inherent to the increased centre-of-mass energy rel-
ative to the 13 TeV case. Moreover, a rate hierarchy similar to that observed in the
mass-degenerate case is obtained, phase space effects being minimal for compressed sce-
narios with a non-degenerate spectrum compared to mass-degenerate scenarios in which
all higgsinos have exactly the same mass. The process pp → χ̃0

1χ̃
+
1 hence dominates,

followed by the neutral current modes (pp → χ̃0
1χ̃

0
2 and pp → χ̃+

1 χ̃
−
1 ) and finally the

charged-current channel pp → χ̃0
1χ̃

−
1 . We remind that such a hierarchy is dictated by

the structure of the higgsino gauge couplings to the W and Z bosons, and by the PDF
ratio of valence and sea quarks in the proton.

5.4.3 Gaugino pair production
We now turn to the analysis of the gaugino scenarios introduced in Eq. (5.4.6), in
which the lightest electroweakinos consist of bino and wino eigenstates. In our analysis,
we consider that the two wino eigenstates are mass-degenerate, with respective masses
satisfying

m(χ̃0
2) = m(χ̃±

1 ) ≡ m(χ̃) . (5.4.11)

In the following, we then focus on the processes

pp → χ̃0
2χ̃

+
1 , χ̃0

2χ̃
−
1 , χ̃+

1 χ̃
−
1 (5.4.12)

and we present aNNLO+NNLL predictions for the associated total rates in Fig. 5.11.
Other processes are irrelevant as the corresponding cross sections vanish due to the
structure of the bino and wino gauge couplings. As in the previous subsections, we
consider results at centre-of-mass energies of 13 TeV (blue) and 13.6 TeV (orange) in the
upper insets of the figures. This time, however, we display predictions for wino masses
ranging up to 2 TeV, the cross sections being much larger than in the higgsino case by
virtue of the weak triplet nature of the winos. Consequently, we can expect a better
LHC sensitivity to signatures of wino production and decays, due to the machine being
capable to naturally probe a larger mass regime.

In accord with parton density effects, the charged-current process pp → χ̃0
2χ̃

+
1 dom-

inates for a given wino mass, its rate being a factor of 1.5 to 3 larger than that of
the other charged-current process pp → χ̃0

2χ̃
−
1 in the case of lighter and heavier mass

setups respectively. Furthermore, total cross sections for the neutral current process
pp → χ̃+

1 χ̃
−
1 , mediated by virtual photon and Z-boson exchanges, are usually 1.25 –

1.5 smaller than rates corresponding to the charged-current mode pp → χ̃0
2χ̃

+
1 , in which
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Figure 5.11: Total cross sections for wino pair production at the LHC, operating at
centre-of-mass energies

√
S = 13.6 TeV and 13 TeV (upper insets), shown together with

their ratios to the 13 TeV total rates (lower insets) in which combined scale and PDF
uncertainties are included. We consider the charged-current production of a χ̃0

2χ̃
+
1 (left)

and χ̃0
1χ̃

−
1 (right) wino pair, as well as the neutral-current production of a χ̃+

1 χ̃
−
1 pair

(bottom). Predictions are presented as a function of the wino mass mχ̃.

the final-state is produced from virtual W -boson exchanges. On the other hand, the
increase in cross section observed when the hadronic centre-of-mass energy is modified
from 13 TeV to 13.6 TeV can be quite substantial in such mass-degenerate wino scenar-
ios. While for light produced particles the increase is only modest and lies in the 5 % to
10 % range for all three processes, it increases with the wino mass mχ̃ and reaches 35 %
to 40 % for wino masses of about 2 TeV.

In the lower insets of the three subfigures, we display the ratio of the total production
rates at 13 TeV and 13.6 TeV to that at 13 TeV, including the combined theory systematic
error. For the entire mass range considered, scale uncertainties are under good control.
They are about 1 % to 2 % at low masses, and then decrease to a few permille for wino
masses larger than 300 GeV. In contrast, PDF errors are smaller than 10 % for wino
masses smaller than about 1 TeV, but quickly increase for heavier mass configurations.
In this case, typical Bjorken-x values are large and correspond to phase space regimes
in which parton densities are poorly constrained, as already pointed out in Ref. [376].
This issue will nevertheless be automatically cured with time. Time will indeed allow
the LHC collaborations to collect better-quality SM data at large scales, which will
consequently help in reducing the PDF errors. For a corresponding theoretical study
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Figure 5.12: Total cross sections for wino pair production at the LHC, operating at
centre-of-mass energies

√
S = 13 TeV (upper) and 13.6 TeV (lower). We consider the

charged-current production of a χ̃0
2χ̃

+
1 wino pair, and present predictions as a function

of the wino mass mχ̃ and the common first-generation and second-generation squark
mass mq̃.

see [400].
In order to explore the phenomenological consequences of next-to-minimality, we now

consider scenarios in which first-generation and second-generation squarks are mass-
degenerate, but not decoupled. We introduce the squark mass parameter mq̃ defined
by

m(ũL,R) = m(d̃L,R) = m(s̃L,R) = m(c̃L,R) ≡ mq̃ , (5.4.13)

that we then vary between 800 GeV and 4 TeV. For illustrative purposes, we focus on
the charged-current process

pp → χ̃0
2χ̃

+
1 , (5.4.14)

that gives rise to the largest wino production cross sections for a specific mass spectrum.
The discussion and the results below are however applicable to other wino production
modes as well. The latter indeed includes a complete set of numerical predictions for
all wino pair production processes in the presence of not too heavy squarks, once again
together with separate information on the total rate values, and the associated scale and
PDF uncertainties presented separately.

In Fig. 5.12 we present aNNLO+NNLO total cross sections for the process of
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Eq. (5.4.14) as a function of the wino and squark masses mχ̃ and mq̃
3. Results are

presented for collider energies of
√
S = 13 TeV and 13.6 TeV in the top and bottom row

of the figure respectively. In the left subfigures, the rates are represented through a
logarithmic colour code, which shows that they exhibit a non-trivial dependence on the
squark mass. Due to the destructive interference of s-channel gauge boson exchange
diagrams with t/u-channel squark exchange diagrams, the cross section starts by
decreasing when the SUSY spectrum is varied from a configuration in which mχ̃ = mq̃

to one with a larger squark mass value still in the vicinity of the same wino mass mχ̃.
The rate then gets larger and larger with increasing squark masses (the wino mass
being constant), and it finally saturates when squarks decouple.

This feature is further illustrated in the two upper insets of the right subfigures,
that display aNNLO+NNLL production cross sections for χ̃0

2χ̃
+
1 production at the LHC

as a function of the squark mass for several choices of wino masses. For a given wino
mass mχ̃, we observe that the cross section always begins by decreasing before quickly
reaching a minimum, and then increases for larger and larger squark masses. In the
limit of very heavy squarks, the latter decouple and the rates become independent of
the squark properties. They hence solely depend on the wino mass.

In the lower inset of these two right subfigures, we present K-factors defined as
the ratio of the most precise aNNLO+NNLL rates to the LO ones for a given mass
configuration,

K = σaNNLO+NNLL

σLO
. (5.4.15)

This further illustrates the squark decoupling at large mq̃ values, the K-factor becoming
constant. Moreover, the dependence of the K-factors on the squark mass additionally
shows how the minimum of the cross section, for a given wino mass, is shifted by tens
of GeV by virtue of the higher-order corrections.

In all the insets included in the right subfigures, we additionally include combined
theory uncertainties. In general, those uncertainties are under good control, except
in the heaviest scenarios in which the PDF errors get very large, as already above-
mentioned. On the contrary, scale uncertainties always lie in the percent or permille
level for all scenarios considered, the error bars being in fact drastically impacted (and
reduced) by QCD resummation.

5.5 LHC SUSY search
To further profit from the already collected LHC data and from all searches for multiple
jets and missing energy, it is necessary to also add pure weak production channels in
which a pair of electroweakinos is produced. Such weak processes could indeed be
relevant in specific regions of the SUSY parameter space. The mutual impact of squark
pair and associated squark-neutralino production on SUSY exclusions computed from
the signal region (SR) of a specific LHC analysis providing the best expectation has
been recently examined [476]. Furthermore, the new physics search programme at the
LHC includes a variety of searches for jets and missing transverse energy, each leveraging
slightly different handles on the signal. It is therefore crucial to combine SRs of a specific
analysis as well as different analyses, although this must be achieved in a statistically

3Similarly to the non-fully-degenerate higgsino scenario, here the mass of the decoupled gluino is set
between 5 TeV and 100 TeV.
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sound approach without double counting any effect. Experimental collaborations have
recently made efforts to provide information on the statistical models used for limit
setting, including correlations between SRs, either exactly [477] or approximately [478].
However, comprehensive information is only available for a limited number of LHC
analyses. On the other hand, the code TACO [479] tackles the problem of combining
SRs from different channels by approximating the existing correlation between SRs of
possibly different LHC analyses for a specific set of signal events. This information
then provides a way to compute exclusion limits from the best possible and meaningful
combination of a given set of SRs, that is in practice obtained by means of a graph-based
algorithm. While this approach offers a first insight into the gain in sensitivity achieved
by combining SRs from various analyses, it ignores correlated systematic uncertainties
like those originating from parton densities, luminosity measurements or limitations
arising from overlapping signal regions of a particular analysis and control regions from
other analyses.

This section is based on our publication [4] with further details in Ref. [480]. We cal-
culate the best estimation to date of limits on non-minimal SUSY models with squarks
and electroweakinos, complementing earlier work assessing the gain in sensitivity ob-
tained from the combination of various ATLAS and CMS searches for electroweaki-
nos [481] and third-generation squarks [482]. These bounds are obtained not only from
simulations of the full corresponding SUSY signal, but also from the combination of
several searches for SUSY relying on jets and missing transverse energy. To this aim,
we consider a simplified SUSY scenario in which the set of relevant superpartners is
restricted to one neutralino and one squark, as described in Sec. 5.5.1. In this section,
we also discuss the different processes contributing to the signal. Limits are determined
from the toolchain setup introduced in Sec. 5.5.2, that allows for event generation, de-
tector simulation, cross section calculation, LHC recasting and SR combination. The
results displayed in Sec. 5.5.3 then showcase the resulting gain in exclusion power.

5.5.1 Theoretical setup and hard-scattering signal simulation
We consider a simplified model inspired by the MSSM, in which the SM is extended by
one squark flavour q̃ ≡ ũR and one neutralino state χ̃0

1, all other superpartners having
masses of 30 TeV and being thus decoupled. Furthermore, the neutralino mixing matrix
is taken to be diagonal, so that the lightest χ̃0

1 state is effectively bino-like. In this new
physics parametrisation, the mass of the squark mq̃ and that of the neutralino mχ̃0

1
are

free parameters, and their values are imposed to satisfy the condition mq̃ > mχ̃0
1
. This

ensures that the χ̃0
1 state is the LSP, and therefore a good candidate for dark matter

(thanks to R-parity conservation). The associated collider signal therefore includes
three processes: the strong production of a pair of squarks (p p → q̃ q̃∗), the associated
production of a neutralino and a squark (p p → q̃ χ̃0

1 +H.c.), and the weak production of
a pair of neutralinos (p p → χ̃0

1 χ̃
0
1). All superpartners different from the q̃ and χ̃0

1 states
being decoupled, the squark q̃ is unstable and always decays promptly via the process
q̃ → χ̃0

1q. The global signature of the signal, once squark decays are accounted for, is
therefore made of multiple jets and missing transverse energy carried away by the stable
neutralino states.

In this way, signal simulation is achieved by means of MadGraph5_aMC@NLO 3.5.1.
Making use of the UFO [483] implementation of the MSSM [484] obtained with
FeynRules [485, 486], we independently generate hard-scattering events for the three
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considered sub-processes. To this aim, we convolute LO matrix elements featuring
up to two additional jets (from either initial-state or final-state radiation) with the
MSHT20lo_as130 LO set of PDF provided by LHAPDF 6.5.4, i.e. we compute the
following processes

pp → q̃q̃∗ + q̃q̃∗j + q̃q̃∗jj , (5.5.1)
pp → q̃χ̃0

1 + q̃χ̃0
1j + q̃χ̃0

1jj + H.c. , (5.5.2)
pp → χ̃0

1χ̃
0
1 + χ̃0

1χ̃
0
1j + χ̃0

1χ̃
0
1jj . (5.5.3)

To maintain consistency in the analysis, it is imperative to avoid double counting any
contribution across the three production modes. Thus, we manually prohibit intermedi-
ate squarks from being on-shell in any 2 → 3 or 2 → 4 diagram (i.e. with one or two QCD
emissions). The produced events are next re-weighted according to K-factors defined by
the ratio of total rates including state-of-the-art higher-order corrections obtained with
Resummino 3.1.2 and NNLL-fast 2.0 [487] to LO predictions computed with these two
codes.

Neutralino pair production cross sections are calculated with Resummino through
the Python interface HEPi [6]. The code combines, following the standard threshold
resummation formalism [388, 389, 393], matrix elements including aNNLO corrections
in QCD [396, 401] with the resummation of soft-gluon radiation at the NNLL accu-
racy [398–401]. We additionally use Resummino to compute associated neutralino-squark
production rates by matching NLO matrix elements [387] with threshold resummation
at the NLL accuracy [1]. Finally, total cross sections for squark pair production are
calculated with NNLL-fast. The latter combines aNNLO matrix elements [488, 489],
soft-gluon resummation at NNLL in the absolute threshold limit, and the resummation
of Coulomb gluons with an NLO Coulomb potential and bound-state contributions [436,
437, 490–493].4

As an illustration of the impact of the K-factors for the three processes consid-
ered, we focus on a scenario in which the mass of the lightest neutralino is fixed to
mχ̃0

1
= 400 GeV, and we then show in Fig. 5.13 the dependence of the three production

cross sections on the squark mass mq̃. We present, in the upper panel of the figure,
predictions at LO (dashed lines) and after including state-of-the-art higher-order cor-
rections in QCD (solid lines). As expected, the relative uncertainties stemming from
scale variation, that are also shown on the figure, decrease significantly when adding
resummation contributions to the LO cross sections. We remind that a thorough er-
ror handling including PDF uncertainties for resummed cross sections can be found in
Refs. [1, 2] for the weak and associated production channels. In the following analysis,
the experimental errors nevertheless dominate such that the theoretical uncertainties
are only shown to present an overview. In the lower inset of the figure, we additionally
display the ratio between the two. For light squarks, the cross section corresponding
to strong squark pair production (σ ∝ α2

S) is the highest, while the semi-weak/semi-
strong associated neutralino-squark production cross section (σ ∝ αSα) and the weak
neutralino pair production cross section (σ ∝ α2) are suppressed by about one and three
orders of magnitude, respectively. As the squark gets heavier, the strong cross section

4While NNLL-fast assumes a tenfold-degenerate squark spectrum, the dependence of the cross section
on the nature of the squarks factorizes when the gluino is decoupled. Moreover, NNLL-fast is unable
to calculate rates at precision below NLO. We therefore utilize its predecessor NLL-fast [494] and its
predictions at NLO and LO to calculate a global K factor defined by K = (σNLO/σLO)NLL-fast ×
(σaNNLO+NNLL/σNLO)NNLL-fast.
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Figure 5.13: LO (dashed) and higher-order resummed (solid) cross section predictions
in pp collisions at the LHC with a centre-of-mass energy of 13 TeV for the three con-
sidered processes (upper panel) and associated K-factors (lower panel) including scale
uncertainties, for a scenario featuring a fixed neutralino mass of mχ̃0

1
= 400 GeV and a

varying squark mass mq̃.

decreases quickly due to phase space suppression, and is eventually overcome by the
semi-weak process rates. The turnover occurs, in our example with mχ̃0

1
= 400 GeV,

at around mq̃ ≈ 920 GeV. By virtue of the same effect, at even higher squark masses
the purely weak process become increasingly relevant. K-factors are generally large
and exhibit little dependence on the squark mass. Such large K-factors (especially for
small squark masses in the weak p p → χ̃0

1 χ̃
0
1 channel) have been cross-checked with

Prospino [495], and are also outlined in [496].
Taking into account current exclusions that slowly reach the TeV regime, all three

processes could have comparable cross sections in any given realistic scenario. Their
contribution in the modelling of the SUSY signal should therefore be correctly incorpo-
rated, which further motivates the necessity of their unified analysis as demonstrated in
the following sections.

5.5.2 Analysis setup

The computation of the exclusion associated with each point in the model pa-
rameter space carried out according to the toolchain outlined in Fig. 5.14. For
each combination of squark and neutralino masses, we generate 150 k events with
MadGraph5_aMC@NLO 3.5.1 which is then interfaced with PYTHIA 8.306 for parton
showering and hadronisation. Additionally, we employ PYTHIA to merge event samples
featuring a different final-state partonic multiplicity following the CKKW-L algorithm
as outlined in Sec. 3.3.2.1. The merging scale is set to one quarter of the SUSY hard
scale defined by the average mass of the produced heavy particles. For the three
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considered sub-processes, this scale is thus equal to

QMS =


1
4mχ̃0

1
for pp → χ̃0

1χ̃
0
1

1
8 (mq̃ +mχ̃0

1
) for pp → χ̃0

1q̃ + χ̃0
1q̃

∗

1
4mq̃ for pp → q̃q̃

. (5.5.4)

The merging procedure is validated using DJR distributions as already outlined in
Sec. 3.3.2.2. A smooth transition between the different jet multiplicities is desired,
as this indicates that the merging scale QMS has been appropriately chosen. However,
default settings in MadGraph5 often result in bumps indicative of resonances for the
considered signal. These bumps stem from certain diagrams exhibiting the exchange of
intermediate s-channel off-shell squarks that see their off-shell nature modified by QCD
radiation. To address this issue, the bwcutoff parameter introduced in Sec. 3.1.5.2 was
increased from the default 15 to 35 . This adjustment broadens the region around the
squark pole mass where they are treated as on-shell, which also affects the exclusion of
their contributions in processes with neutralinos in the final-state(see Sec. 5.5.1). We
validated the merging prescription for a variety of different mass combinations, that we
illustrate for the case mχ̃0

1
= 200 GeV and mq̃ = 600 GeV in Fig. 5.15. We present,

for neutralino-pair (top row), squark-neutralino (middle row) and squark-pair (bottom
row) production, total DJR spectra (green), together with the individual contributions
emerging from matrix elements featuring no extra jet (blue), one extra jet (orange) and
two extra jets (purple).

After the merging, the event weights are then re-scaled so that total rates encom-
pass higher-order resummed corrections, as outlined in the previous sections of this
chapter. All generated events, along with their associated resummed cross sections, are
processed using MadAnalysis [497–499] to reinterpret the results of four Run 2 ATLAS
and CMS analyses at a centre-of-mass energy of

√
s = 13 TeV. These analyses account

for integrated luminosities of 139 fb−1 and 137 fb−1 of data, respectively.
We simulate the response of the LHC detectors using MadAnalysis5 1.10.2, which

relies either on Delphes 3 [500, 501] or its built-in SFS [502] simulator. Specifically, we
investigate four searches that target jets and missing transverse momentum and that
include SRs focusing not only on a monojet signature but also on a topology allowing
for multiple hard jets. These searches are identified as ATLAS-EXOT-2018-06 [503],
ATLAS-CONF-2019-040 [447], CMS-SUS-19-006 [445], and CMS-EXO-20-004 [504], and
they have demonstrated the highest sensitivity to the considered simplified scenario.
For each LHC analysis considered, we employ a tuned detector parametrization and
the validated analysis implementation within MadAnalysis. Details regarding their
integration into MadAnalysis, along with corresponding validation notes, can be found
on the MadAnalysis dataverse [505–508], on the MadAnalysis PAD [509], as well as in
the works [504, 510–513].

This allows us to assess the selection efficiency for our signal across all SRs of all
analyses examined, and to construct an acceptance matrix where each event corresponds
to a row and each SR to a column. We next utilize the software TACO to convert the
acceptance matrix into a correlation matrix. This conversion enables the determination
of which combination of uncorrelated SRs yields the highest exclusion power. To achieve
this, we employ a generalized version of the PathFinder software, initially implemented
within TACO.5 The gathered information is next passed to the statistical tool SPEY [514],

5This generalized version of the PathFinder software can be found at https://github.com/J-Yellen/

https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
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which applies a variety of likelihood-based methods for hypothesis testing and calculating
the confidence level of exclusion (CL) of a single SR, or of a combination of multiple
SRs. Since the number of events surviving the cuts varies from SR to SR, if the number
of events populating the SR with the highest exclusion power is too low, we regenerate
events with increased statistics.

By iterating this procedure across the relevant mass points in the model parameter
space, we derive the 95 % CL exclusion contour for each individual process as well as
for their combined analysis. The exclusion limits are first calculated for the individual
processes within each analysis, where the most sensitive SR is identified as the one
yielding the highest exclusion value. This approach is then extended to determine the
combined exclusion limits for all three sub-processes together.

PathFinder. A performance improved version https://github.com/APN-Pucky/PathFinder even allows
to check all combinations within reasonable compute times.

https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/J-Yellen/PathFinder
https://github.com/APN-Pucky/PathFinder
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Figure 5.14: Flowchart diagram of the used toolchain.



5.5. LHC SUSY SEARCH 175

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR1)

10 15

10 14

10 13

10 12

10 11

 p
er

 b
in

 [p
b]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR2)

10 15

10 14

10 13

10 12

10 11

 p
er

 b
in

 [p
b]

0 Jet
1 Jet
2 Jets
all Jets

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR1)

10 13

10 12

10 11

10 10

10 9

 p
er

 b
in

 [p
b]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR2)

10 13

10 12

10 11

10 10

10 9

 p
er

 b
in

 [p
b]

0 Jet
1 Jet
2 Jets
all Jets

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR1)

10 13

10 12

10 11

10 10

10 9

 p
er

 b
in

 [p
b]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(DJR2)

10 13

10 12

10 11

10 10

10 9

 p
er

 b
in

 [p
b]

0 Jet
1 Jet
2 Jets
all Jets

Figure 5.15: DJR distributions for the three different processes considered, and a sce-
nario defined by mχ̃0

1
= 200 GeV and mq̃ = 600 GeV. DJR1(2) describes the transition

between 0(1) and 1(2) jets.
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5.5.3 Results
In Fig. 5.16, we focus on the bounds obtained from each of the four considered analyses
individually. Expected (solid lines) and observed (dashed lines) 95 % CL exclusion
limits are presented in the (mq̃,mχ̃0

1
) mass plane, and we compute them based on signal

predictions determined as outlined in Sec. 5.5.2. The exclusion contours are computed
by interpolating between the considered mass points. Their smoothness and regularity
is therefore a result of both the parameter space coverage regarding our simplified model
of the considered analysis and the quality of the interpolation. Each figure showcases
sensitivity contours distinguished by their colour coding. We compare bounds that are
determined from a signal involving only strong production of a pair of squarks, each
decaying into a neutralino and jets (blue). Such a signal definition matches how SUSY
signals are simulated in experimental analyses up to now. Next, we examine the variation
of the bounds when contributions from associated neutralino-squark production (orange)
and neutralino-pair production (red) are included. We recall that these limits are derived
by considering solely the most sensitive among all SRs within each analysis.

The ‘full’ bounds, incorporating all three sub-processes (red contours), largely co-
incide with the bounds derived from the combination of squark-pair and associated
neutralino-squark production only (orange contours). This suggests that neutralino
pair production has a marginal impact on the exclusions computed for a given mass
spectrum. While the strong channel contributes dominantly, associated production has
a non-negligible impact and therefore allows for a strengthening of the limits. This is
particularly evident in the parameter space regions where the squark mass is large, and
where, as already discussed in Sec. 5.5.1 regarding cross sections, squark-pair production
begins to be phase space suppressed. For example, at mχ̃0

1
= 250 GeV, both observed

and expected exclusion limits exhibit gains in squark mass of approximately 10 GeV for
the CMS-EXO-20-004 analysis, and up to about 100 GeV for the other three analyses.
These results reinforce the need for better and more accurate signal modelling in all
existing LHC searches for SUSY, whenever it is computationally achievable.

Moreover, the four analyses demonstrate sensitivity to different regions in the pa-
rameter space, hinting at the potential to enhance overall sensitivity through their com-
bination. Notably, the ATLAS-EXOT-2018-06 and CMS-SUS-19-006 analyses show
increased sensitivity in the vicinity of the diagonal of the mass plane, where the squark-
neutralino spectrum is compressed. In such scenarios, neutralinos emerging from squark
decays carry almost all the squark energy so that the associated jets have low energy.
Consequently, the overall jet multiplicity in the signal events is lower than in split mass
configurations where highly-energetic jets could originate from squark decays. Further-
more, the CMS-SUS-19-006 analysis yields the strongest exclusion limits among all four
analyses considered. Unlike the others, there is no requirement on the presence of a
specific very highly energetic jet. Instead, it imposes constraints on global hadronic
activity that has to surpass a certain threshold. Consequently, this analysis allows for
several jets with smaller transverse momentum to collectively fulfil the hadronic activity
requirements, rather than relying on a single jet embedding the bulk of it. Thus, at
this point, we conclude that analyses that are more inclusive in terms of jet energy and
multiplicity are preferable to probe the considered MSSM-inspired simplified model.

The exclusion limits obtained by combining uncorrelated SRs from the four differ-
ent analyses are depicted in Fig. 5.17. Bounds are computed from the most sensitive
combination of SRs determined by the PathFinder package. We analyse signal sce-
narios involving squark-pair production only (blue), and assess the impact of adding
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contributions from associated neutralino-squark production (orange) and neutralino-
pair production (red). As above, neutralino-pair production has no discernible effect, as
evidenced by the superposition of the red and orange contours. The comparison of the
bounds computed from a signal comprising only squark-pair production, as currently
modelled in experimental LHC analyses, to those derived from the full squark and neu-
tralino signal, underscores once again the significant potential improvement achievable
through better signal modelling including all contributing sub-processes, especially when
the spectrum is not too compressed.

We compare these findings with limits derived from a signal including all three sub-
processes, and utilizing the most sensitive SR of the CMS-SUS-19-006 analysis (dashed
contour). This comparison is motivated by the fact that the CMS-SUS-19-006 analysis
has consistently emerged as the most constraining analysis (see Fig. 5.16). Combining
multiple uncorrelated SRs of different analyses results in an additional gain in sensitivity
compared to using the best SR from individual analyses to derive bounds, the gain being
more pronounced when the spectrum is more split. Bounds on squark masses typically
increase by approximately 100 GeV for both expected and observed limits, reaching up
to 200 GeV in certain regions of the parameter space. Notably, employing a conservative
modelling of the SUSY signal including only squark-pair production together with the
best combination of uncorrelated regions (blue contours) yields increased sensitivity
compared to relying on the best signal modelling possible but without combining any SR.
Thus, while improving signal modelling is important, correlating findings from different
analyses or sub-analyses is equally, and possibly more, essential.

While other analyses are generally less constraining than the CMS-SUS-19-006 anal-
ysis, they still make substantially contributions to the combined results. This is es-
pecially true for the ATLAS-EXOT-2018-06 and ATLAS-CONF-2019-040 analyses, as
ATLAS and CMS searches are naturally considered uncorrelated. Additionally, de-
spite the expected lower impact of the monojet CMS-EXO-20-004 analysis, due to its
smaller relevance (as displayed in Fig. 5.16) and a potential stronger correlation with
the CMS-SUS-19-006 analysis, its effects cannot be neglected. Therefore, we advocate
for combining analyses whenever possible to ensure the best possible coverage of the
parameter space with available data.
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Figure 5.16: Exclusion contours at 95 % CL on the considered simplified model, pre-
sented in the squark and neutralino mass plane. Bounds have been obtained by the
reinterpretation of the results of the ATLAS-EXOT-2018-06 (top left), ATLAS-CONF-
2019-040 (top right), CMS-SUS-19-006 (bottom left) and CMS-EXO-20-004 (bottom
right) analyses. We consider three scenarios for signal modelling: a signal involving
only squark-pair production (blue), both squark-pair and associated neutralino-squark
production (orange), and all three production sub-processes (red). Expected (solid) and
observed (dashed) bounds are derived from the most constraining SR in each specific
analysis.
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Figure 5.17: Expected (left) and observed (right) exclusion contours at 95 % CL on
the considered simplified model, presented in the squark and neutralino mass plane.
Bounds have been derived from the most sensitive combination of uncorrelated SRs of the
ATLAS-EXOT-2018-06, ATLAS-CONF-2019-040, CMS-SUS-19-006 and CMS-EXO-20-
004 analyses. We consider three scenarios for signal modelling: a signal involving only
squark-pair production (blue), both squark-pair and associated neutralino-squark pro-
duction (orange), and all three production sub-processes (red). For comparison, the
exclusion contour determined from the most sensitive SR of the CMS-SUS-19-006 anal-
ysis is also shown (dashed, black).
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CHAPTER 6. CONCLUSION AND OUTLOOK

Chapter 6

Conclusion and outlook

6.1 Conclusion
In conclusion, this thesis explored several interconnected aspects of collider physics, par-
ticularly focusing on resummation methods, parton showers, and MC event simulations,
which play an important role in modern particle physics research.

First we presented a calculation of virtual photon production in pp and pPb colli-
sions, compared to ALICE measurements. We used the POWHEG BOX V2 framework for
calculating the DY-process in association with at least one jet, matched to PYTHIA 8, and
recalculated predictions for dileptons coming from semileptonic decays of heavy quarks.
By fitting their predictions to experimental data, effectively normalizing the scale un-
certainty to a shape uncertainty, the large uncertainties of open charm production were
reduced, but large uncertainties remain in the heavy quark contributions. Including
the virtual photon contribution resulted in a reduction of the normalizations of other
contributions, but did not have a significant impact.

Next, we presented a new NLO QCD calculation for prompt photon production
including up to three jets using the POWHEG method for parton shower match-
ing. By comparing direct photon production with two jets to ATLAS data and
NNLO calculations, we showed that adding parton showers (POWHEG BOX+PYTHIA,
POWHEG BOX+HERWIG) improves prediction accuracy. Our results align well with
experimental data and support the use of parton showers instead of fragmentation
functions.

Switching to supersymmetry and resummation, we present a threshold resummation
calculation at NLO+NLL accuracy for squark and electroweakino production at the
LHC in the MSSM. This process, alongside gluino and electroweakino production, is
gaining more importance as new experimental limits increase the expected masses of
squarks and gluinos. The NLL contributions increase the total NLO cross section by
2 % to 6 %, for squark masses of 1 TeV to 3 TeV, and significantly reduce the dependence
on renormalization and factorization scales from ±10 % to below ±5 %.

Then, we explored several simplified MSSM-inspired models where most superpart-
ners are decoupled, except for a few states whose production at the LHC has been
studied. We provided predictions combining fixed-order aNNLO QCD calculations with
soft gluon resummation at NNLL. We highlighted the impact of increasing the centre-
of-mass energy from 13 TeV to 13.6 TeV, resulting in a 20 % to 40 % rate increase for
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SUSY processes depending on the mass spectrum. Additionally, we examined the effects
of non-degenerate compressed higgsino pair production and squark decoupling on wino
pair production, both of which showed significant impacts on future search interpreta-
tions.

In the final topic we combined MCEGs with resummed calculations. We analysed
four LHC searches targeting jets and missing transverse energy, considering squark pair,
squark-neutralino, and neutralino pair production, each merged with up to two hard
jet at LO. Our results showed that adding squark-neutralino production significantly
boosts exclusion power, especially for split SUSY spectra and neutralino masses below
400 GeV. While neutralino pair production has minimal impact with current data, its
role may grow with future constraints. Combining uncorrelated SRs extends search
reach, increasing mass bounds by 100 GeV to 200 GeV, highlighting the value of com-
bining results from different analyses, as done using the TACO method in this thesis.

6.2 Outlook
Towards the end of my PhD, I am still part of two small projects that I plan to con-
tinue developing in the future. The first project involves sneutralino production and
MadAnalysis recasting utilizing TACO. This project extends the combination of anal-
ysis to sneutralino production, utilizing MadAnalysis for recasting to refine our un-
derstanding and predictions related to sneutralino events in high-energy physics experi-
ments. The second project focuses on improving POWHEG BOX’s performance and efficiency
through the application of machine learning, particularly in challenging processes and
regimes.

A possible approach for future work involves MiNLO prompt photon production in
POWHEG BOX. Since NLO γ+ j and γ+ j+ j production are now available in POWHEG BOX,
the next step is to combine them with MiNLO to better handle scale uncertainties
and extend the predictions. This extension is challenging due to the complex Born
contributions of pure QCD and mixed QED to both processes. However, successfully
combining these elements will provide more accurate and reliable predictions.

In our virtual photon study, we were unable to explore invariant dilepton masses
below 1 GeV. Revisiting the Kroll-Wada approximation and adding a dilepton produc-
tion mode to POWHEG BOX’s directphoton production would be interesting. This new
mode can then be compared to PYTHIA’s method of splitting the on-shell photon into a
dilepton pair, as well as similar analytic calculations. This comparison would refine our
understanding of low-mass dilepton production and improve the accuracy of theoretical
predictions.

Further, the purely electroweak processes in Resummino are currently available at
aNNLO+NNLL and NLO+NLL. However, the associated productions of g̃ + χ̃ and
q̃ + χ̃ have only been computed at NLO+NLL thus far. The natural next step would
be to extend the resummation to aNNLO+NNLL for these associated processes, which
comes with an increased difficulty due to the no longer trivial colour structure. Before
making further improvements in prediction accuracy, it would be motivating if the LHC
collaborations investigate these associated processes in simplified models more.

These projects and ideas represent a continuation of my PhD work, aimed at en-
hancing theoretical predictions and optimizing computational efficiency in high-energy
physics. I look forward to starting my Postdoc position at the University of Milano-
Biccoca with Simone Alioli and continuing my research in the area of MCEGs.
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Chapter A

Appendix

A.1 Notations
In this section we summarize the notations used in this thesis.

A.1.1 Natural units

We use the common high-energy physics (HEP) units with c = ~ = 1, since it simplifies
the notation and the calculations.

A.1.2 Einstein summation convention

The Einstein summation convention is a notation used to simplify mathematical ex-
pressions that involve sums over indices, commonly seen in tensor calculus. In this
convention, whenever an index appears more than once in a single term it is assumed
that you sum over all possible values of that index. For example, without the Einstein
summation convention, you might write:

Ci =
n∑
j=1

AijBj = AijBj (A.1.1)

We will however sometimes explicitly write out the summation symbol to make it
clear that we are summing over an index.

A.1.3 Lorentz indices

We do not separate covariant vectors with lower indices from contravariant vectors with
upper indices, since we are working in a flat space-time. Instead, we implicitly assume
contraction with the right Minkowski metric gµν = ηµν

AµBµ = AµB
µ = AµBµ = AµBµ . (A.1.2)
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A.1.4 Subtraction methods
The following notations define a very convenient way to express the unintegrated and
integrated dipoles. Using them we write the colour-correlated squared amplitude as

2〈. . . , j; k, . . .|TjTk |. . . , j; k, . . .〉2 = M...,bj ,bk,...
LO

∗
T n
bjaj

T n
bkak

M...,aj ,ak,...
LO . (A.1.3)

A.1.4.1 Matrix elements

A basis for colour c and helicity s space is introduced such that an amplitude of m
particles is written as

Mc1,...,cm;s1,...,sm
m (p1, . . . , pm) := (〈c1, . . . , cm| ⊗ 〈s1, . . . , sm|) |1, . . . ,m〉m (A.1.4)

and the squared matrix element is

|Mm|2 = 〈1, . . . ,m|1, . . . ,m〉m m . (A.1.5)

A.1.4.2 Colour structure

We use Ti to represent the emission of a gluon from parton i

〈c1, . . . , cm| Ti |c′
1, . . . , c

′
m〉m = δc1c′

1
. . . Tcic′

i
. . . δcmc′

m
, (A.1.6)

where

T a
cb :=

{
ifcab adjoint representation (i gluon or gluino) ,
±T acb fundamental representation (i quark or squark) .

(A.1.7)

The (−) case is for antiparticles. Since |1, . . . ,m〉m is a colour-singlet state, colour
conservation can be written as

m∑
i

Ti |1, . . . ,m〉m = 0 . (A.1.8)

Lastly, the colour charge algebra commutes unless it is a quadratic Casimir operator

[Ti,Tj ] = 0 T2
i = Ci =

{
CF = 4

3 i fundamental ,
CA = 3 i adjoint .

(A.1.9)

A.1.5 Feynman Rules
We adopt the generalised couplings and conventions from [130]:

• First Greek letters (α, β, …) denote fundamental colour indices.

• Middle Greek letters (κ, λ, µ, ν, …) denote Lorentz indices.

• Lowercase beginning Latin letters (a, b, …) refer adjoint colour indices.

• Uppercase middle Latin letters (I, J , …) are generation indices.

• Lowercase middle Latin letters (i, j, …) label sfermions.

• Lowercase middle Latin letters (k, …) indicate different neutralinos or charginos.
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A.2 Feynman rules
All momenta go into the vertex.

A.2.1 Standard model
We refer to [10, 39, 127] for a detailed introduction to the Feynman rules of the SM.

A.2.1.1 Propagators

Quark propagator:

qI,β q̄J,α =
i(/p+m)
p2 −m2 δβαδIJ = i

/p−m
δβαδIJ (A.2.1)

Gluon propagator:

gµ gν =
{−i
p2 δabgµν Feynman gauge
−i
p2 δab

(
gµν − nµpν +nνpµ

p.n + n2pνpν

(p.n)2

)
axial gauge, n.p 6= 0

(A.2.2)

Ghost propagator:

c̄a cb = i
p2 δba (A.2.3)

A.2.1.2 Vertices

Quark-photon vertex:

qI,β

q̄J,α

γµ

= −igeqγµδαβδIJ (A.2.4)

Quark-gluon vertex:

qI,β

q̄J,α

gµ
a

= −igsγµT aαβδIJ (A.2.5)

Ghost-gluon vertex:

c̄c

cb

gµ
a

p

= gsp
µfabc (A.2.6)
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Three-gluon vertex:

gµ
a

gu
b

gλ
c

p1

p2

p3 = −gsfabc
(
gµν(p1 − p2)λ + gνλ(p2 − p3)µ + gµλ(p3 − p1)ν

)
(A.2.7)

Four-gluon vertex:

gκ
agλ

b

gµ
c gν

d

= −ig2
s(fabcf cde(gκµgλν − gκνgλµ)

+fadef bce(gκλgµν − gκµgνλ)
+facef bde(gκλgνµ − gκνgµλ))

(A.2.8)

A.2.2 Minimal Supersymmetric Standard Model
The displayed rules are a subset taken from the complete set [382].

A.2.2.1 Propagators

Squark propagator:

q̃iβ q̃∗
jα = i

p2 −m2 δαβδij (A.2.9)

Gluino propagator:

g̃b ¯̃ga =
i(/p+m)
p2 −m2 δab = i

/p−m
δab (A.2.10)

A.2.2.2 Vertices

Electroweakino-squark vertex:

q̃jβ

q̄Iα

χ̃k

= i(LIjkPL +RIjkPR)δαβ (A.2.11)

Electroweakino-antisquark vertex:

q̃∗
jβ

qIα

χ̃k

= i(L′
IjkPL +R′

IjkPR)δαβ (A.2.12)
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Gluino-gluon vertex:

g̃b

¯̃ga

gµ
c

= −igsγµfabc (A.2.13)

Three-squark-gluon vertex:

q̃iβ

q̃∗
jα

gµ
a

p1

p2

= igs(p2 − p1)µT aαβδij (A.2.14)

Gluino-(s)quark vertex:

q̃jβ

q̄Iα

g̃a

= i(LIjPL + RIjPR)T aαβ (A.2.15)

Gluino-anti(s)quark vertex:

q̃∗
jβ

qIα

g̃a

= i(L′
IjPL + R′

IjPR)T aαβ (A.2.16)

Four-squark-gluon vertex:

q̃jβq̃∗
iα

gµ
a gν

b

= ig2
sg
µνδij

(
T aT b + T bT a

)
αβ

(A.2.17)

Four-squark vertex:

q̃iαq̃∗
jβ

q̃kγ q̃∗
lδ

= −i (Xijklδαβδγδ + Yijklδαδδγβ + Zijklδαγδβδ) (A.2.18)

A.3 Relations
A list of useful equations.
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A.3.1 Colour
These relations are available in most standard text books on quantum field theory and
the standard model (e.g. [10]).

A.3.1.1 Definitions

The colour constants are defined as

TF = TR = 1
2 , (A.3.1)

CA = Ta = Nc = N = 3 , (A.3.2)

CF = N2 − 1
2N = 4

3 . (A.3.3)

Tr
[
T aT b

]
= TRδab (A.3.4)

A.3.1.2 Fierz identity

The Fierz identity is
T aαβT

a
γδ = 1

2(δαδδγβ − 1
N
δαβδγδ) , (A.3.5)

and consequently
T aαγT

a
γβ = CF δαβ (A.3.6)

follows. One can also solve

fabcT cβαT
b
γβ = iCATRT aγα (A.3.7)

T bβδT
b
γαT

a
δγ = − TR

CA
T aαβ . (A.3.8)

A.3.2 Gamma Matrix
Again, the relations are available in most standard text books on quantum field theory
and the standard model (e.g. [10]).

A.3.2.1 Gamma trace relations

Tr[γµγν ] = 4gµν (A.3.9)

Tr[γµγνγδ] = 0 (A.3.10)

Tr[γµγνγδγρ] = 4(gµνgδρ − gµδgνρ + gµρgνδ) (A.3.11)

A.3.2.2 D-dimensional Gamma Matrix

γµγνγµ = (2 −D)γν (A.3.12)
γµγνγσγµ = (D − 4)γνγσ + 4gνσ (A.3.13)

γµγνγσγργµ = −2γργσγν − (D − 4)γνγσγρ (A.3.14)
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A.3.3 P-operators

We repeat the splitting functions’ complete form Eqs. (2.2.5) to (2.2.8)

Pqq(z) = CF

(
1 + z2

[1 − z]+
+ 3

2δ(1 − z)
)
, (A.3.15)

Pqg(z) = CF
1 + (1 − z)2

z
, (A.3.16)

Pgq(z) = TR
(
z2 + (1 − z)2) , (A.3.17)

Pgg(z) = 2CA
(

z

[1 − z]+
+ 1 − z

z
+ z(1 − z)

)
+ δ(1 − z)β0 , (A.3.18)

give them next in their regularized version [191, Eq. (5.89)]

P qqreg(x) = −CF (1 + x) , (A.3.19)
P gqreg(x) = TR

[
x2 + (1 − x)2] , (A.3.20)

P qgreg(x) = CF
1 + (1 − x)2

x
, (A.3.21)

P ggreg(x) = 2CA
[

1 − x

x
− 1 + x(1 − x)

]
, (A.3.22)

and residue form [191, Eq. (5.93)]

P̂
′qq(x) = CF (1 − x) , (A.3.23)

P̂
′gq(x) = 2TRx(1 − x) , (A.3.24)

P̂
′qg(x) = CFx , (A.3.25)

P̂
′gg(x) = 0 . (A.3.26)

The complete splitting functions can be reconstructed [191, Eq. (5.94)]

P ab(x) = P abreg(x) + δab

[
2T2

a

(
1

1 − x

)
+

+ γaδ(1 − x)
]
. (A.3.27)

A.3.4 K-operator

Using the following identities

xsja = 2pj · pa = m2
j − t ,

xsjb = 2pj · pb = m2
j − u ,

xsab = 2pa · pb = s ,

(A.3.28)
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and constants

γq = 3
2CF Kq =

(
7
2 − π2

6

)
CF

γg = β0 = 11
6 CA − 2

3TRNf Kg =
(

67
18 − π2

6

)
CA − 10

9 TRNf

γq̃ = 2CF Kq̃ =
(

4 − π2

6

)
CF

γg̃ = 3
2CA Kg̃ =

(
7
2 − π2

6

)
CA

(A.3.29)

the K operators read:

K̄aa′
(x) = P aa

′

reg (x) log 1 − x

x
+ P̂

′aa′
(x)

+ δaa
′

[
T2
a

(
2

1 − x
log 1 − x

x

)
+

− δ(1 − x)
(
γa +Ka − 5

6π
2T2

a

)]
(A.3.30)

Kaa′

F.S.(x) = 0 in the MS scheme (A.3.31)

Kq,q
g̃ (x; sja,mj) = Kq,q

q→g̃(x; sja,mj) = 2
[(

log(1 − x)
1 − x

)
+

− log(2 − x)
1 − x

]

+
[
JagQ

(
x,

mj√
sja

)]
+

+ 2
(

1
1 − x

)
+

log (2 − x)sja
(2 − x)sja +m2

j

+ δ(1 − x)
(
m2
j

sja
log

m2
j

sja +m2
j

+ 1
2

m2
j

sja +m2
j

− γg̃
CA

) (A.3.32)

Kq,g
g̃ (x; sja,mj) = Kq,g

q (x; sja,mj) = 2CF
CA

m2
j

xsja
log

m2
j

(1 − x)sja +m2
j

(A.3.33)

Kq,q
q̃ (x; sja,mj) = Kq,q

q (x; sja,mj) −

(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+

+ δ(1 − x)
(

−
m2
j

sja
log

m2
j

Q2
ja

− 1
2
m2
j

Q2
ja

+ γq − γq̃
CF

)
(A.3.34)

= 2
[(

log(1 − x)
1 − x

)
+

− log(2 − x)
1 − x

]
+
[
JagQ

(
x,

mj√
sja

)]
+

+ 2
(

1
1 − x

)
+

log (2 − x)sja
(2 − x)sja +m2

j

−

(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+
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− δ(1 − x) γq̃
CF

(A.3.35)

Kq,g
q̃ (x; sja,mj) = Kq,g

q (x; sja,mj) = 2CF
CA

m2
j

xsja
log

m2
j

(1 − x)sja +m2
j

(A.3.36)

Kg,q
q̃ (x; sja,mj) = Kg,q

q (x; sja,mj) = 0 (A.3.37)

Kg,g
q̃ (x; sja,mj) = Kg,g

q (x; sja,mj) −

(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+

+ δ(1 − x)
(

−
m2
j

sja
log

m2
j

Q2
ja

−
m2
j

2Q2
ja

+ γq − γq̃
CF

)

= Kq,q
q (x; sja,mj) + CA

CF
Kq,g
q (x; sja,mj)

−

(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+

+ δ(1 − x)
(

−
m2
j

sja
log

m2
j

Q2
ja

−
m2
j

2Q2
ja

+ γq − γq̃
CF

)
(A.3.38)

= 2
[(

log(1 − x)
1 − x

)
+

− log(2 − x)
1 − x

]
+
[
JagQ

(
x,

mj√
sja

)]
+

+ 2
(

1
1 − x

)
+

log (2 − x)sja
(2 − x)sja +m2

j

−

(
(1 − x)s2

ja

2[(1 − x)sja +m2
j ]2

)
+

+ 2
m2
j

xsja
log

m2
j

(1 − x)sja +m2
j

− δ(1 − x) γq̃
CF

(A.3.39)

where we have used that Q2
ja = sja +m2

j , and

[
JagQ

(
x,

mj√
sja

)]
+

=

 1 − x

2
(

1 − x+ m2
j

sja

)2 − 2
1 − x

[
1 + log

(
1 − x+

m2
j

sja

)]
+

+
(

2
1 − x

)
+

log
(

2 − x+
m2
j

sja

)
.

A.4 Distributions
A distribution, also known as a generalized function, extends the concept of functions
and instead of producing values directly, defines how to obtain a number by integrating
against a test function.



A.4. DISTRIBUTIONS 192

A.4.1 Dirac delta distribution
The delta distribution, often denoted as δ(x), is a mathematical construct that is not a
function in the traditional sense but rather a distribution or a generalized function. The
delta distribution is defined by the integral for any sufficiently smooth function f(x),∫ ∞

−∞
f(x)δ(x− a) dx = f(a) . (A.4.1)

This property means that the delta distribution effectively “picks out” the value of f(x)
at x = a.

A.4.2 Heaviside step function
The Heaviside step function, θ(x), is a discontinuous function that jumps from 0 to 1 at
x = 0. It is defined as

θ(x) =
{

0 if x < 0 ,
1 if x ≥ 0 .

(A.4.2)

While θ(x) is a simple and intuitive function, it can also be understood as a distribution.
As a distribution, the Heaviside step function is defined by its action on a test function
φ(x). This means that instead of focusing on its pointwise values, we consider how it
integrates against a smooth test function. Specifically, the Heaviside function θ(x) acts
on a test function φ(x) as follows:∫ ∞

−∞
θ(x)φ(x) dx =

∫ ∞

0
φ(x) dx (A.4.3)

This integral highlights that H(x) effectively “turns on” the test function φ(x) at x = 0
and integrates it from 0 to ∞. Furthermore, the Heaviside step function is closely related
to the Dirac delta distribution. The derivative of θ(x) in the distributional sense is the
Dirac delta function δ(x)

dθ(x)
dx

= δ(x) . (A.4.4)

This relationship can be understood through the integral property of the delta function
as

θ(x) =
∫ x

−∞
δ(y)dy (A.4.5)

reproduces the step function.

A.4.3 Plus distribution
The idea behind plus distributions is to modify the integration process in such a way
that singularities are properly managed. The notation for a plus distribution is typically
written as (f(x))+, where f(x) is a function that may have a singularity at some point,
often at x = 0. The plus distribution is defined in such a way that it behaves like
f(x) almost everywhere but ensures that the integral of f(x) against any test function
φ(x) remains finite. Formally, the plus distribution is defined by the subtraction of the
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singular part of the function in such a way that the resulting integral is well-defined.
For instance, if f(x) has a singularity at x = 0, its plus distribution is given by∫ ∞

−∞
(f(x))+φ(x) dx =

∫ ∞

−∞
f(x)(φ(x) − φ(0)) dx . (A.4.6)

Here, φ(x) is a test function that is smooth and vanishes at infinity. The subtraction of
φ(0) inside the integral ensures that the singularity at x = 0 does not lead to an infinite
result, thereby regularizing the integral. Similarly, when the divergence does not occur
at x = 0 ∫ 1

−1
dx
(

1
1 − x

)
+
g(x) =

∫ 1

−1
dx
(

1
1 − x

)
(g(x) − g(1)) . (A.4.7)

A.5 Bonus Material
In this section, we provide additional related materials that did not fit into the main
text.

A.5.1 SISCone jet algorithm
The SISCone algorithm [515] is a sequential recombination algorithm that improves the
Snowmass Cone algorithm to be IRC safe. The algorithm does not need a seed and
instead loops over all particles i to find a list of protojets. It considers cones over all
particles j within 2R of particle i such that i and j are on the circumference of the
circle. Considering all permutations of including or excluding particles i and j results
in four cones that are checked for being unstable, that is if the inclusion and exclusion
of i and j is not consistent. After going over every particle the remaining non-unstable
cones are explicitly checked for stability and considered as protojets if they are stable.
Finally, in a split merging procedure the protojets are clustered into jets.

A.5.2 MLM jet merging
We start with describing the MLM algorithm for merging [516, 517].

1. Generate events and calculate the cross section up to a cutoff defined by the jet
algorithm.

2. Randomly select a parton multiplicity with a probability proportional to its inte-
grated cross section at fixed strong coupling αS .

3. Using the kT jet algorithm (Sec. 3.3.1.5) to cluster the matrix element partons
and reweight the event, using the clustering scales as input for αS .

4. Start the parton shower with the scale set to a reasonable value (ECM for e+e−,√
m2
W + p2

T,W for W-production, ...).

5. Finally, the event will only be accepted if running the jet algorithm on the showered
event yields the same number of jets as used the matrix element.



A.5. BONUS MATERIAL 194

b

b

b

b

b

b

b

b

b

b

b

bATLAS

POWHEG+PY8

POWHEG+HW7

Sherpa

NLO

NNLO

10−5

10−4

10−3

10−2

10−1

1

Inclusive region

d
σ

/
d

p
je

t
T

[p
b

/
G

eV
]

b b b b b b b b b b b

0.5

1

1.5

2

M
C

/
D

a
ta

10
2

10
3

0.5

1

1.5

2

POWHEG-LHE

p
jet
T [GeV]

R
a

ti
o

to
L

H
E

b
b

b

b

b

b

b

b

bATLAS

POWHEG+PY8

POWHEG+HW7

Sherpa

NLO

NNLO

10−6

10−5

10−4

10−3

10−2

Fragmentation-enriched region, E
γ

T < p
jet2
T

d
σ

/
d

p
je

t
T

[p
b

/
G

eV
]

b b b b b b b b

0.5

1

1.5

2

M
C

/
D

a
ta

10
2

10
3

0.5

1

1.5

2

POWHEG-LHE

p
jet
T [GeV]

R
a

ti
o

to
L

H
E

b

b

b

b

b

b

b

b

b

b

b

bATLAS

POWHEG+PY8

POWHEG+HW7

Sherpa

NLO

NNLO

10−6

10−5

10−4

10−3

10−2

10−1

Direct-enriched region, E
γ

T > p
jet1
T

d
σ

/
d

p
je

t
T

[p
b

/
G

eV
]

b b b b b b b b b b b

0.5

1

1.5

2

M
C

/
D

a
ta

10
2

10
3

0.5

1

1.5

2

POWHEG-LHE

p
jet
T [GeV]

R
a

ti
o

to
L

H
E

Figure A.1: Jet transverse momentum as defined by ATLAS [340].

A.5.3 FxFx jet merging

We have seen two merging algorithms that are based on leading order matrix elements.
The FxFx merging algorithm [518] and matrix element + parton shower matching
(MEPS)@NLO algorithm [519] are based on NLO MEs. While FxFx is closely linked to
the MiNLO approach [297], MEPS@NLO instead uses shower kernels to prevent issues
with mismatches in shower ordering values. Going to NLO, another potential source
of double counting arises from an overlap between virtual corrections and the Sudakov
suppression in the zero-emission probability. While in principle similar to the CKKW-L
algorithm it also uses aspects from the MLM algorithm. A tree-level matrix element now
also is the real correction to the parton sample with its multiplicity reduced by one. This
is resolved by introducing a function D(ρ) that splits the soft, intermediate and hard
regions, based on the transition scale ρ between a j and j − 1-jet through the Durham
kT algorithm. Then the proper pieces (Born, Virtuals, Reals, parton shower countert-
erms) of each of the multiple NLO samples are enabled and disabled scale-dependently
preventing double counting. While proceeding as in the CKKW-L prescription two im-
provements are included. First, instead of computing the leading-logarithm Sudakov
form factor to reweight, the actual Monte Carlo Sudakovs from the real-emission matrix
elements are used. Secondly, instead of reweighting by αS the MiNLO procedure [297]
is adopted to obtain a scale, i.e. the geometric mean of intermediate scales. Finally,
there is a MLM-like check if the resulting jets match to the hard subprocesses. For
more technical details on the implementation of the FxFx algorithm within MadGraph
MC@NLO, we refer to the original publication [518].

A.5.4 Jet observables

In this section we show some observables from our ATLAS [340] analysis that did not
include a photon (except for the selection of events).
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Figure A.2: Jet rapidity as defined by ATLAS [340].

A.6 Files
A.6.1 POWHEG-BOX-V2
The complete set of POWHEG BOX, PYTHIA and HERWIG input files used are available under
https://gitlab.com/APN-Pucky/powheg-slurm-runs.

File A.1: POWHEG input file
vdecaymode 1

numevts 10000
ih1 1
ih2 1
ebeam1 2510d0
ebeam2 2510d0

bornktmin 0.25
#bornsuppfact 10d0

! To be set only if using LHA pdfs
lhans1 27100
lhans2 27100

! Parameters to allow or not the use of stored data
use-old-grid 1
use-old-ubound 1

ncall1 500000
itmx1 5
ncall2 80000
itmx2 3
foldcsi 5
foldy 10
foldphi 5
nubound 2000000

! OPTIONAL PARAMETERS
bornonly 1
mass_low 0.1
mass_high 10.0

https://gitlab.com/APN-Pucky/powheg-slurm-runs
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Figure A.3: Jet rapidity difference as defined by ATLAS [340].
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A.6.2 Resummino
All the SLHA and Resummino input files are available under https://github.com/
APN-Pucky/HEPi/tree/master/distribute.

https://github.com/APN-Pucky/HEPi/tree/master/distribute
https://github.com/APN-Pucky/HEPi/tree/master/distribute
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Figure A.4: Jet system mass as defined by ATLAS [340].
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NNPDF4.0 A PDF set [42]. 13, 14, 161

LHAPDF Les Houches Accord (LHA) PDF unified library [45]. 13, 14, 89, 115, 155, 170

MSHT20nlo_as118 A PDF set [44]. 14, 155, 157, 158

CT18 A PDF set [47]. 14, 157, 158, 161

MSHT20 A PDF set [44]. 14, 155, 156, 157, 158, 159, 161

BFG I A FF parametrization [69]. 23

JetPhox A program for the calculation of prompt photon production in hadronic colli-
sions [70–72]. 23, 104

PYTHIA Lund Monte Carlo high-energy physics event generator [61, 81–83]. 25, 57, 89,
90, 91, 92, 95, 96, 97, 103, 109, 110, 115, 116, 117, 118, 119, 171, 181, 182, 195

HERWIG Multipurpose Event Generator (MPEG) [85–89]. 25, 57, 115, 116, 117, 118,
119, 181, 195

Sherpa Simulation of High-Energy Reactions of PArticles [90, 91]. 25, 57, 104, 119, 120

EPPS16 A nPDF set [106]. 26

nCTEQ15 A nPDF set [107]. 27

nCTEQ15HQ A nPDF set [108]. 28, 89, 93, 94, 95, 96, 97, 103, 104

HELAS HELicity Amplitude Subroutines [139]. 41, 43

MadGraph framework that aims at providing all the elements necessary for SM and BSM
phenomenology [140]. 41, 43, 55, 56, 57, 73, 74, 114, 169, 171, 172, 194

Whizard MPEG [141, 142]. 41

FormCalc can be used for automatic Feynman diagram computation [143]. 41, 113, 114

HELAC-NLO HELicity Amplitude at NLO [144]. 41

LoopTools loop library [143]. 43, 46

FF loop library [166]. 46
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Collier loop library [167]. 46

OneLoop loop library [168]. 46

CutTools loop library [169]. 46

QCDloop loop library [170]. 46

MadLoop loop library [171]. 46

Golem loop library [172]. 46

Ninja loop library [173]. 46

Samurai loop library [174]. 46

POWHEG BOX NLO and higher-order calculations in SMC programs according to the
POWHEG method [63, 188, 189]. 51, 57, 63, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 95, 96, 97, 103, 104, 109, 110, 111, 112, 113, 114, 115, 117, 119, 120, 181, 182,
195

VEGAS Adaptive multidimensional Monte Carlo integration [199, 200]. 56

CUBA library for multidimensional numerical integration [201, 202]. 56

FOAM MC integrator [203]. 56

i-flow MC integrator [204]. 57

SPRING-BASES MC integrator [205]. 57

MINT MC integrator [206]. 57, 84

FastJet A software package for jet finding in pp and e+e- collision [238]. 70

Z pp → Z, γ → ll̄ NLO process in POWHEG BOX [295]. 83, 85

Zj pp → Zj, γj → ll̄j NLO process in POWHEG BOX [296]. 87, 88, 91

hvq HQ production at NLO in POWHEG BOX [305]. 88, 91

HEPdata HEP data repository [307]. 89, 92

MSHT20nlo A PDF set [44]. 89, 93, 94, 95, 96, 97, 115

Rivet Robust Independent Validation of Experiment and Theory [309–311]. 89, 90, 92,
114, 115, 116

HepMC Event Record for Monte Carlo Generator [315, 316]. 92, 115

EXODUS MCEG [267]. 92

CTEQ6.6 A PDF set [317]. 92

iminuit numerical function minimization in Python [319, 320]. 101

MCFM MC for FeMtobarn processes [328–331]. 104, 114
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NNLOJET MC integrator for NNLO calculations [78, 332]. 104

trijet pp → jjj NLO process in POWHEG BOX [187]. 111, 112, 114

dijet pp → jj NLO process in POWHEG BOX [345]. 111, 112

directphoton pp → γj NLO process in POWHEG BOX [300]. 111, 112, 182

FORM Symbolic manipulation system [348–350]. 114

SymPy Python library for symbolic mathematics [351]. 114

OpenLoops 2 Evaluation of tree and one-loop matrix elements for any SM [352]. 114

Recola 2 Recursive Computation of 1-Loop Amplitudes [353]. 114

YODA Yet more Objects for (HEP) Data Analysis [309–311]. 114

POWHEG-RIVET-PYTHIA Interface for combining POWHEG BOX with Pythia and Rivet [3,
5]. 115

Resummino Resummation for electroweak BSM particles [2, 355]. 125, 135, 139, 158,
170, 182, 196

MSHT20lo_as130 A PDF set [44]. 155, 170

SPheno SPheno stands for S(upersymmetric) Pheno(menology [462]. 155

CT18NLO A PDF set [47]. 157, 158

NNPDF40_nlo_as_01180 A PDF set [42]. 157

NNPDF40_nlo_pch_as_01180 A PDF set [42]. 157, 158

NNPDF40 A PDF set [42]. 157, 158

NNPDF40_lo_as_01180 A PDF set [42]. 158

PDF4LHC21_40 A PDF set [466]. 159

PDF4LHC21 A PDF set [466]. 161

NNPDF3.1 A PDF set [469]. 161

TACO Code for the Testing Analyses’ COrrelations [479]. 169, 172, 182

UFO Universal FeynRules Output [483]. 169

FeynRules allows the calculation of Feynman rules in momentum space for any QFT
physics model [485, 486]. 169

NNLL-fast Resummation for squarks and gluino [487]. 170

HEPi Python interface for gluing together several HEP programs [6]. 170

NLL-fast Resummation for squarks and gluino [494]. 170
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MadAnalysis A package for event file analysis and recasting of LHC results [497–499].
172, 182

Delphes performs a fast multipurpose detector response simulatio [500, 501]. 172

SFS Simplified Fast detector Simulation [502]. 172

dataverse Open source research data repository software [505–508]. 172

PAD Public Analysis Database [509]. 172

SPEY Smooth inference for reinterpretation studies [514]. 172

KI Disclaimer
In dieser wissenschaftlichen Arbeit wurden Künstliche-Intelligenz und Maschinelles Ler-
nen Technologien zur Unterstützung verschiedener Aspekte der Forschung eingesetzt.
Die Nutzung umfasste unter anderem die Analyse und Auswertung von Literatur und
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und die Interpretation der Ergebnisse beim Autor dieser Arbeit liegt. Die KI diente
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GitHub Copilot4: Programmiervervollständigung und Codedokumentation.

metamorph5, Google Translate6, Deep L7: Umformulierung von Texten und Syn-
onymfindung.

LanguageTool8: Rechtschreibprüfung und Grammatikprüfung.

equation_database_grabber9, pix2tex10: Bild zu LaTeX Formel Konvertierung.
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AA nucleus-nucleus. 26

ALICE A Large Ion Collider Experiment. 28, 82, 89, 90, 92, 93, 95, 98, 99, 100, 101,
102, 105, 110, 181

aNNLO approximate next-to-next-to-leading-order. 135, 141, 143, 158, 161, 163, 164,
165, 167, 168, 170, 181, 182

AP Altarelli-Parisi. 11, 17, 22, 53, 64, 76, 137

ATLAS A Toroidal LHC ApparatuS. 105, 118, 121, 122, 123, 134, 135, 145, 161, 169,
172, 177, 181, 194, 195, 196, 197

AuAu gold-gold. 106

BFKL Balitsky-Fadin-Kuraev-Lipatov. 28, 29

BK Balitsky-Kovchegov. 28, 29

BRST Becchi-Rouet-Stora-Tyutin. 7

BSM Beyond the Standard Model. 125, 128, 130, 199, 201

BW Breit-Wigner. 16, 55, 56, 60

CDR Conventional Dimensional Regularization. 42, 50, 53, 146

CGC Color Glass Condensate. 28

CKKW-L Catani-Krauss-Kuhn-Webber-Lönnblad. 71, 77, 171, 194

CL confidence level of exclusion. 173, 176, 178, 179

CMS Compact Muon Solenoid. 105, 134, 135, 145, 161, 169, 172, 177

CPU central processing unit. 63, 115

CS Catani-Seymour. 33, 49, 51, 55, 76, 120, 146

DCA distance of closest approach. 82, 83

DESY Deutsches Elektronen-Synchrotron. 68
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DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi. 12, 17, 22, 28, 29

DIS deep inelastic scattering. 9, 10, 13, 26, 30

DJR differential jet rate. 72, 73, 172, 175

DM dark matter. 134

DR Diagram Removal. 55

DRED Dimensional Reduction. 42, 43, 146

DS Diagram Subtraction. 55

DY Drell-Yan. 9, 10, 13, 82, 87, 88, 90, 99, 140, 141, 142, 143, 149, 161, 181

EIC Electron Ion Collider. 30

EM electromagnetic. 22, 30

EMC European Muon Collaboration. 27

EW electroweak. 6

FF fragmentation function. 1, 21, 22, 23, 90, 106, 107, 113, 118, 199

FHD Four Helicity Dimension. 43, 146

FKS Frixione-Kunst-Signer. 33, 49, 50, 73, 75, 76, 114

FoCal Forward Calorimeter. 28, 30, 110, 111, 112

FSR final-state radiation. 17, 49, 111

FxFx Frederix-Frixione. 71, 194

GPEG General-Purpose Event Generator. 72

GUT Grand Unified Theory. 129, 134

HEP high-energy physics. 183, 200, 201

HF heavy-flavour. 92, 93, 95, 98

HL-LHC High Luminosity LHC. 73, 134

HQ heavy quark. 88, 89, 91, 101, 200

IC iterative cone. 68

IC-SM IC split-merge. 68

IC-PR IC progressive removal. 68

IMR intermediate-mass region. 81, 91, 92, 93, 98, 99
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IR infrared. 17, 22, 33, 42, 49, 50, 51, 52, 73, 106, 114, 136, 146

IRC infrared-collinear. 24, 67, 68, 81, 193

ISR initial-state radiation. 17, 49, 110, 111

JIMWLK Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner. 28, 29

KLN Kinoshita-Lee-Nauenberg. 10, 33, 51

LF light-flavour. 92, 98, 101

LHA Les Houches Accord. 199

LHC Large Hadron Collider. 1, 2, 10, 24, 25, 28, 29, 30, 57, 75, 81, 89, 92, 104, 110,
125, 134, 135, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 171, 172, 176, 177, 181, 182, 202

LHCb LHC beauty. 30
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LL leading-logarithmic. 135, 138, 139

LMR low-mass region. 81, 92, 95, 98, 101

LO leading-order. 1, 10, 11, 22, 23, 47, 72, 73, 86, 87, 88, 110, 119, 134, 135, 136, 141,
142, 144, 145, 155, 156, 158, 168, 170, 171, 182

LSP lightest supersymmetric particle. 126, 130, 134, 169

MC Monte Carlo. 1, 13, 14, 55, 56, 57, 59, 74, 75, 76, 82, 84, 94, 104, 120, 125, 181,
194, 200, 201

MCEG Monte Carlo Event Generator. 92, 125, 182, 200

MCMC Monte Carlo Markov Chain. 57

ME matrix element. 15, 21, 55, 119, 194

MEPS matrix element + parton shower matching. 194

MiNLO multi scale improved NLO. 87, 182, 194

MiNNLO multi scale improved NNLO. 87

MLM Michelangelo-L.-Mangano. 71, 73, 193, 194

MPEG Multipurpose Event Generator. 199

MPI multiple parton interactions. 90

MSSM Minimal Supersymmetric Standard Model. 1, 2, 56, 125, 126, 127, 128, 130,
131, 134, 135, 155, 159, 160, 169, 176, 181
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nPDF nuclear parton distribution function. 1, 26, 28, 82, 89, 95, 104, 199

ODE ordinary differential equation. 18

OS on-shell. 12, 16, 33, 47, 48, 49, 54, 55, 56, 88, 146
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RGE renormalization group equation. 5, 8, 129, 137

RHIC Relativistic Heavy Ion Collider. 1, 25, 29, 30, 81, 104, 106

SISCone Seedless Infrared-Safe Cone. 68, 70, 193

SLHA SUSY Les Houches Accord. 130, 196

SM Standard Model. 1, 2, 3, 4, 5, 6, 7, 33, 125, 126, 127, 128, 129, 130, 134, 166, 169,
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SMC Shower Monte Carlo. 21, 107, 200
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UV ultraviolet. 5, 33, 42, 46, 47, 49, 114, 146
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