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1. Dark Matters

Chapter 1

Dark Matters

1.1 Composition of the Universe

One of the most basic questions humanity has had about the world surrounding us is the composition
of the universe, but has been proven one to be one of the most difficult to answer. Our knowledge
of matter and energy has progressed astonishingly over the last few centuries, leading to a detailed
understanding of nearly all of the materials and phenomena around us. We have even begun to
understand the principles that have shaped the evolution of our universe itself over the past few
billion years.

One of the most shocking discoveries of recent science, however, is that we still have much to
learn. Only a tiny fraction of the universe seems to be composed of the protons, neutrons, and
electrons we have laboured so long to understand. The identity of the vast majority of the cosmos
remains a mystery.

Our current understanding of the composition of the universe is roughly as follows:

· Baryonic Matter: Approximately a 4% of the mass in the universe. This is ordinary matter
composed of protons, neutrons, and electrons. It comprises gas, dust, stars, planets, people,
etc.

· An approximately 22% of mass of the universe is the so-called dark matter of the universe.
It comprises the halos that surround galaxies and galaxy clusters, and aids in the formation
of structure in the universe.

· Through observations of distant supernovae, two research groups have independently discov-
ered that the expansion of the universe appears to be getting faster with time. This seems
to require some kind of antigravity effect which we do not understand. Cosmologists believe
that the acceleration may be caused by some kind of new energy field that permeates the uni-
verse, perhaps even the cosmological constant that Einstein imagined almost a century ago.
Whatever the source of this phenomenon turns out to be, cosmologists refer to it generically
as dark energy. This last contribution is about the 74% of the composition of the universe.
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1. Dark Matters 1.2 Some Evidences of Dark Matter

Figure 1.1: Diagram showing the proportion of components of the universe.

Here, we only speak about the dark matter and now we are going to shed some light on the
hints and evidences of the existence of this so-called dark matter.

1.2 Some Evidences of Dark Matter

In spite of not being directly detected, the evidences of dark matter arise in several astrophysical
studies. Here we are going to address very few of them just to give a taste and to convince ourselves
that there are strong foundations to consider it. Far more evidences can be found with a very easy
searching.

1.2.1 Coma Cluster

The mass of Coma was first estimated by Zwicky [29, 30] to be M > 5 · 1014M�, using the virial
theorem. This estimation was based on a value [31] of 1200 km/s for the radial velocity dispersion
of the cluster galaxies, σv.

The corresponding mass-to-light ratio was large, M/L >
50M�
L�

, and a form of invisible matter

seemed needed.

1.2.2 Galactic Rotation Velocity Curves

At large distances from the galactic centre the gravitational potential should be that produced by a
central point mass and, in the absence of forces other than gravitation, it should be expected that

Gm

r2 = ω2

r
, (1.1)
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1. Dark Matters 1.2 Some Evidences of Dark Matter

where G is the universal gravitation constant, m is the galactic mass, r is the radius of the galaxy
centre and ω is the rotation velocity; therefore ω ∝ r−1/2, which is called, the Keplerian rotation
curve. This Keplerian decline was not observed, but rather, flat rotation curves with ω = cte were
obtained.

Apparently, this has the direct implication that m ∝ r, thus depending on the quality of the
telescope used. The dark matter hypothesis interprets this result in the sense that the Keplerian
regime holds at much greater distances than those at which we obtain observations. There should be
great quantities of dark matter extending far beyond the visible matter in a more or less spherically
symmetric dark matter halo. If its distribution is spherically symmetric, the mass interior to a
sphere of radius r would be m(r) ∝ r, so that we obtain a first rough model of dark matter density
distribution:

ρ = 1
4πr

2 dm
dr = ω

4πGr2 , (1.2)

i.e. ρ ∝ R−2, for distances far beyond the visible radius. This model is over simplified, as we will
see, but it coincides with the so called nonsingular isothermal profile

ρ = ρ0

1 +
(
r
r0

)2 , (1.3)

(with ρ0 and r0) one of the most frequently types of halos.

The interpretation of rotation curves of spiral galaxies as evidence of dark matter halos was
probably first proposed by Freeman in 1970 [8] who noticed that the expected Keplerian decline was
not present in NGC 300 and M33, and considered an undetected mass, with a different distribution
for the visible mass. The observation of flat rotation curves was later confirmed and the dark
matter hypothesis reinforced by successive studies. Rubin, Ford and Thonnard (1980) [24] and
Bosma (1978, 1981a, b) [3–5] carried out an extensive study, after which the existence of dark
matter in spiral galaxies was widely accepted. Van Albada et al. (1985) [25] analysed the rotation
of NGC 3198 and the distribution of its hypothetical dark matter, concluding that this galaxy has
a dark halo.

3



1. Dark Matters 1.2 Some Evidences of Dark Matter

1.2.3 Cosmic Microwave Background

Angular fluctuations in the cosmic microwave background (CMB) spectrum provide evidence for
dark matter as well. Since the 1964 discovery and confirmation of the CMB radiation, [19] many
measurements of the CMB have supported and constrained this theory. The NASA Cosmic Back-
ground Explorer (COBE) found that the CMB spectrum a blackbody spectrum with a temperature
of 2.726 K. In 1992, COBE detected fluctuations (anisotropies) in the CMB spectrum, at a level
of about one part in 105 . [2] In the following decade, CMB anisotropies were further investigated
by a large number of ground-based and balloon experiments. The primary goal of those was to
measure the angular scale of the first acoustic peak of the power spectrum of the anisotropies, for
which COBE did not have sufficient resolution. Between 2000 and 2001, several experiments, most
notably BOOMERanG [16] found the universe to be almost spatially flat by measuring the typical
angular size of the anisotropies. During the 1990s, the first peak was measured with increasing
sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations
occur at scales of approximately one degree. These measurements were able to rule out cosmic
strings as the leading theory of cosmic structure formation, and suggested cosmic inflation was the
correct theory.

A number of ground-based interferometers provided measurements of the fluctuations with
higher accuracy over the next three years, including the Very Small Array, the Degree Angular
Scale Interferometer (DASI) and the Cosmic Background Imager (CBI). DASI made the first de-
tection of the polarization of the CMB, [14,15] and the CBI provided the first E-mode polarization
spectrum with compelling evidence that it is out of phase with the T-mode spectrum. [21] COBE’s
successor, the Wilkinson Microwave Anisotropy Probe (WMAP) has provided the most detailed
measurements of (large-scale) anisotropies in the CMB as of 2009 [9] and ESA’s Planck spacecraft
returning more detailed results in 2012-2014. [1] WMAP’s measurements played the key role in
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1. Dark Matters 1.2 Some Evidences of Dark Matter

establishing the current Standard Model of Cosmology, namely the Lambda-CDM model, a flat
universe dominated by dark energy, supplemented by dark matter and atoms with density fluctu-
ations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this
universe are determined by five numbers: the density of matter, the density of atoms, the age of
the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations,
and their scale dependence.

Figure 1.2: Cosmic microwave background as seen by Planck mission.

A successful Big Bang cosmology theory must fit with all available astronomical observations,
including the CMB. In cosmology, the CMB is explained as relic radiation from shortly after the
big bang. The anisotropies in the CMB are explained as the result of acoustic oscillations in the
photon-baryon plasma (prior to the emission of the CMB after the photons decouple from the
baryons 379,000 years after the Big Bang) whose restoring force is gravity. [13] Ordinary (baryonic)
matter interacts strongly by way of radiation whereas dark matter particles, such as WIMPs for
example, do not; both affect the oscillations by way of their gravity, so the two forms of matter will
have different effects. The typical angular scales of the oscillations in the CMB, measured as the
power spectrum of the CMB anisotropies, thus reveal the different effects of baryonic matter and
dark matter. The CMB power spectrum shows a large first peak and smaller successive peaks, with
three peaks resolved as of 2009. [9] The first peak tells mostly about the density of baryonic matter
and the third peak mostly about the density of dark matter, measuring the density of matter and
the density of atoms in the universe.

5



1. Dark Matters 1.3 Dark Matter Candidates

Figure 1.3: Planck Cosmic Microwave Background temperature angular power spectrum.

1.3 Dark Matter Candidates

1.3.1 Weakly Interacting Massive Particles (WIMPs)

According to the observations dark matter should be fairly cold, that is, its particles are relatively
slow-moving. If dark matter were composed of relativistic particles (e.g. neutrinos), it would not
clump as well under its own gravity and would wash out certain smaller structures of galaxies in
the universe, which is not what we observe.

At the same time, it should represent around the 20% of the total mass density of the universe.
This can be compared against predictions from particular models for dark matter.

As we pointed before one of the main candidate for a cold dark matter particle is a Weakly
Interacting Massive Particle (WIMP). That is a collective name describing neutral stable particles
with masses of around hundreds of GeV which are predicted to have electro-weak scale cross sections
for interactions with matter. It is a remarkable coincidence that such relic particles have just the
relevant abundance and decoupling temperatures to be a cold dark matter. One of the most popular
WIMP candidates which is considered in the community is provided by the Supersymmetry (SUSY)
theory [17]. That is a lightest supersymmetric particle (LSP), namely neutralino (χ).

At this point, it shall be mentioned that neutralinos are not the only considered candidates
for the dark matter particle. For example, neutrinos were considered a good dark matter particle
candidate since it has been proven that they have mass. As neutrinos are abundant in the Universe
there would be no need to invent new type of particle in order to have a candidate. However,
neutrinos were excluded from being a dark matter because they were relativistic at the time of the
Universe formation and would prevent structure formation.

6



1. Dark Matters 1.3 Dark Matter Candidates

1.3.2 Massive Compact Halo Objects (MACHOs)

There is another possibility instead of considering scenarios where new particles arise. Massive
Compact Halo Objects are non-luminous objects that make up the halos around galaxies. Machos
are thought to be primarily brown dwarf stars and black holes. Like many astronomical objects,
their existence had been predicted by theory long before there was any proof. The existence of
brown dwarfs was predicted by theories that describe star formation.

Brown dwarfs are star but different from normal ones because of their relatively low mass,
brown dwarfs do not have enough gravity to ignite when they form. Thus, a brown dwarf is not
a real star; it is an accumulation of hydrogen gas held together by gravity. Brown dwarfs give off
some heat and a small amount of light.

On the other hand black holes, unlike brown dwarfs, have an over-abundance of matter. All that
matter collapses under its own enormous gravity into a relatively small area. The black hole is so
dense that anything that comes too close to it, even light, cannot escape the pull of its gravitational
field. Stars at safe distance will orbit around the black hole.

Detecting MACHOs is quite a challenge and so far they have been sought directly with the
Hubble Space Telescope and indirectly by gravitational effect of nearby objects and gravitational
lensing. Since the MACHOs are very compact objects we can expect a great bending from the light
of distant stars in the background.

1.3.3 Axions

Axions, introduced in an attempt to solve the problem of CP violation in particle physics, have
been also often discussed as candidates well motivated by theory. Axions are expected to interact
extremely weakly with ordinary particles, which implies that they were not in thermal equilibrium
in the early universe. Moreover, if they are forming a relic remnant they have to be very abundant
as their expected mass is in the range 10−6−3 · 10−2 eV. The searches for these particles are ongoing.

1.3.4 Other Exotic candidates

There are also other exotic dark matter candidates like WIMPziallas, Kaluza-Klein Dark Matter,
Mirror Dark Matter, or self Interacting dark matters. Of course this is beyond any consideration
here and they are referred only for the sake of the completeness.

From all these possibilities for dark matter,here we focus in the neutralino, the particle given
by the Supersymmetric Model. Let us go deeper with this particle.
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2. Neutralino, a Supersymmetric Dark Matter Candidate

Chapter 2

Neutralino, a Supersymmetric Dark
Matter Candidate

2.1 Supersymmetry in a Nutshell

Supersymmetry is widely considered extension to the Standard Model of particle physics.

Table 2.1: Standard Model particles and their correspondent supersymmetric partners.

Standard Model particles SUSY partners
Symbol Name Symbol Name
u, c, t up-quarks q̃1

u, . . . , q̃
6
u up squarks

u, c, t down-quarks q̃1
d, . . . , q̃

6
d down squarks

e, µ, τ leptons l̃1, . . . , l̃6 sleptons
νe, νµ, ντ neutrinos ν̃1, . . . , ν̃3 sneutrinos
g gluon g̃ sgluinos
W± W bosons
W 3 W 3-field (Z0) W̃ 3 wino
B B-field (photon) B̃0 bino
H0

1 , H
0
2 , H

0
3 Higgs bosons H̃0

1 , H̃
0
2 , H̃

0
3 higgsinos

H± charged Higgs bosons χ̃±1 , χ̃
±
2 charginos

SUSY assumes that for each known particle a supersymmetric partner particle exists, referred
to as sparticle. Sparticles would have spin different than particles by 1/2. Therefore, sfermions
would be bosons and sbosons would be fermions. The spectrum of supersymmetric particles which is
introduced in one of the simplest SUSY models, Minimal Supersymmetric Standard Model (MSSM),
is shown in Table 2.1. The MSSM contains two Higgs doublets needed to give mass to up and down
squarks. There two squarks for each quark. The superpartners of the W and charged Higgs bosons,
the charged higgsino and gaugino, mix after electro-weak symmetry breaking and create two mass
eigenstates which are called charginos (χ±). The same thing happens for the superpartners of the

9



2. Neutralino, a Supersymmetric Dark Matter Candidate 2.2 Neutralino Annihilation

photon, Z boson, and two neutral Higgs bosons. The following fields are produced: B (photino),
W̃ 3 (wino) and H̃0

1 , H̃0
2 (higgsinos). These fields create 4 mass eigenstates called neutralinos:

χ̃ = a1B̃ + a2W̃
3 + a3H̃

0
1 + a4H̃

0
2 (2.1)

The lightest neutralino is most likely the LSP and is considered the best motivated WIMP candi-
date. The LSP is stable in the MSSM because theory contains a multiplicatively conserved quantum
number called R-parity (which serves to prevent rapid proton-decay). The value of R is -1 for spar-
ticles and 1 for particles. The LSP has to be stable since it can no longer decay into lighter SUSY
particles and neither it can decay into particles from to the Standard Model only (due to R-parity
conservation).

The limits on the neutralino mass (mχ) depend on the model assumed for the SUSY breaking,
constraints from searches for sparticles at LEP e+e− and Tevatron hadron collliders, and are based
on the cosmological considerations. The lower limit for mχ is around 7-10 GeV and can be derived
from searches for supersymmetric particles at accelerators. The upper limit on neutralino mass,
from cosmology, is approximately 7 TeV. These limits should be considered as a general indication
of scale of WIMP masses as variation of the SUSY and Universe evolution models can yield slightly
different constraints. Neutralinos are expected to have only the electroweak scale interactions with
oridinary matter. One could distinguish two types of their interactions: spin-dependent (SD) and
spin-independent (SI) [11]. In the first case χ couple to the spin of the target nucleus (axial vector
interactions). That is mainly the case for neutralino interactions with nuclei which have odd number
of nucleons (spin is unpaired). In case of spin-independent reactions WIMPs couple to the mass of
the target nucleus (scalar interactions).

2.2 Neutralino Annihilation

WIMPs can annihilate into numerous final states. The most studied ones are those referring to
the neutralino. This is the only particle we are going to consider. The annihilation cross section is
a relevant quantity related to the relic abundance of cosmological dark matter. So it is useful to
know the procedure to compute this cross section.

The dominant annihilation processes are those at the lowest order in perturbation theory, with
two vertices (the so-called tree level). We are going to analyse the annihilation of two neutralinos
to a fermion-antifermion pair in the s-channel.

In this process, an exchange of a Higgs scalar or pseudoscalar bosons may occur so we will
consider both of them separately. The reason we only consider these kind of exchange and not
others is quite simple. The calculations will be easier since we only have scalar bosons. More
realistic calculations would include more possibilities and they may be found in several other works.

As we use Feynman diagrams to compute the cross section it is important to give here a very
brief sum up of the rules for these diagrams in the MSSM.

10



2. Neutralino, a Supersymmetric Dark Matter Candidate 2.3 Feynman Rules

χ

χ

H

f̄

f

2.3 Feynman Rules

· External fermions:

Direction Representation Expression

Incoming
p

• . . . u(s)(p)

Outgoing •
p

ū(s)(p) . . .

· External antifermions:

Direction Representation Expression

Incoming
p

• v̄(s)(p) . . .

Outgoing •
p

. . . v(s)(p)

· Internal 0-spin bosons:

Representation Expression
p

•• i

p2 −m2

Here u(s)(p) and v(s)(p) are the Dirac spinors.
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3. Helicity Amplitudes in Spherical Basis

Chapter 3

Helicity Amplitudes in Spherical Basis

We now consider the relativistic partial wave formalism [10, 27] to calculate S-matrix elements of
a general process a + b → c + d. Our goal will be to get an expression for the S-matrix in a
basis, where the incoming (non-relativistic) state is an eigenstate of the total angular momentum
J and its three-component Jz, the total orbital angular momentum L and the total spin S. The
outgoing (in general relativistic) state is also an eigenstate of J and Jz, but has definite values
for the helicities, of the constituting particles. To obtain these matrix elements, which are also
called helicity amplitudes in spherical basis, we first have to define plane wave helicity states and to
construct eigenstates of total angular momentum out of them. Afterwards we have to find a relation
between these helicity states and the spectroscopic states with definite j, m, l and s before we can
finally construct the desired matrix element and the cross section. In the end of this Chapter, we
present the explicit spherical helicity amplitudes the neutralino annihilation process.

3.1 Angular Momentum States

3.1.1 Euler Angles

Before considering any angular momentum arises the necessity of defining the Euler angles. Con-
sider a right-handed system of coordinates Σ1 with the standard x, y, z axis. The orientation of any
other system of coordinates Σ4 is identical to the orientation of Σ1 after three elementary rotations.
Using the convention of rotations around the axis z-y-z, these transformations are:

1. A rotation of angle α ∈ [0, 2π) around the z-axis, which yields a frame Σ2.

2. A rotation of angle β ∈ [0, 2π) around the y-axis, which yields a frame Σ3.

3. A rotation of angle γ ∈ [0, 2π) around the z-axis, which yields a frame Σ4.

3.1.2 Rotation Operator

As the components Jx,y,z of the angular momentum are the generators of the rotation group, the
rotation operator Rα,β,γ expressed in terms of the Euler angles is

13



3. Helicity Amplitudes in Spherical Basis 3.1 Angular Momentum States

Rα,β,γ ≡ e−iγJz,3e−iβJy,2e−iαJz,1 = Rz,3(γ)Ry,2(β)Rz,1(α), (3.1)

where the indices refer to the explained frames. As the obtained expression is very unhandy for
calculations because the elementary rotations are defined in different coordinate systems. To write
them again in terms containing only the coordinates of Σ1, we have to regard Ry,2 and Rz,3 as
rotated operators itself, i.e. display them as the results of unitary transformations induced by
Rz,1(α) and [Ry,2(β)Rz,1(α)]:

Ry,2 = Rz,1(α)Ry,1(β)Rz,1(α)† (3.2)

Rz,3(β) = [Ry,2(β)Rz,1(α)]Rz,1(γ)[Ry,2(β)Rz,1(α)†]
= Rz,1(α)Ry,1(β)Rz,1(γ)Ry,1(β)†Rz,1(α)†,

(3.3)

the last step following after using the first equation. Substituting these expressions into eq. (3.1)
yields the more useful form:

Rα,β,γ = e−iαJze−βJye−iγJz (3.4)

3.1.3 The Wigner Functions

The Wigner D-function gives the matrix elements of the rotation operatorR in the jm-representation.
For the Euler angles α, β, γ, the D-function is defined as:

Rα,β,γ |jm〉 =
∞∑
j′=0

j′∑
m′=−j′

|j′m′〉 〈j′m′|Rα,β,γ |jm〉

=
j∑

m′=−j
|jm′〉 〈jm′|Rα,β,γ |jm〉

≡
j∑

m′=−j
|jm′〉Dj

m′m(α, β, γ).

(3.5)

In the second step of (3.5) we have used the fact that J2 commutes pairwise with all of its
components and therefore also with Rα,β,γ . Now, using the expression (3.6) and the fact that
e−iγJz |jm〉 = e−imγ |jm〉, we can see that the Wigner D-function can always be written using the
Wigner d-function as:

Dj
m′m(α, β, γ) = 〈j,m|Rα,β,γ |jm′〉

= 〈jm|e−iαJze−iβJye−iγJz |jm′〉
= e−imα 〈jm|e−iβJy |jm′〉 e−im′γ

≡ e−imαdjm,m′(β)e−im′γ ,

(3.6)

14



3. Helicity Amplitudes in Spherical Basis 3.1 Angular Momentum States

where

djmm′(β) = 〈jm|e−iβJy |jm′〉 (3.7)
The last step in (3.6) is the definition of another kind of Wigner functions, namely the Wigner
d-Functions or reduced rotation matrices. Explicit general expressions of these functions will not
be derived, but they can be found in [18]:

djm′m(β) =
∑
n

(−1)n
√

(j +m)!(j −m)!(j +m′)!(j −m′)!
(j −m′ − n)!(j +m− n)!n!(n+m′ −m)!

× cos2j+m−m′−2n β

2 sin2n+m′−m β

2 ,
(3.8)

the sum running over all n that yield positive factorial terms. With our z-y-z-convention for the
Euler angles the djm′m(β) are always real valued, in other conventions half of the elements can also
be purely imaginary. Although eq. 3.8 is somewhat complicated, the dm′m(β) has many simple
properties [22]. Clearly these functions are real and from eq. 3.8,

dm′m(−β) = (−1)m′−mdm′m(β). (3.9)
Also, R† = R−1 implies 〈jm|R|jm′〉 = 〈jm′|R−1|jm〉∗ so that

Dj
mm′(0, β, 0) = 〈jm|e−iβJy |jm′〉 = 〈jm′|eiβJy |jm〉 = Dj

mm′(0,−β, 0), (3.10)

where we have used the reality of the djm′m(β) functions. Thus

djm′m(−β) = djmm′(β). (3.11)
Using (3.9) and (3.11), we find that

djm′m(β) = (−1)m′−mdjmm′(β) (3.12)
and from (3.11) we have

Dj
mm′(α, β, γ) = e−imγdmm′(−β)je−im′α = Dj

mm′(γ,−β, α). (3.13)

From eq. (3.8) we can calculate djm′m(β) for β = π, 2π:

djm′m(β = π) = (−1)j−mδm′,−m, (3.14)

djm′m(β = 2π) = (−1)2jdjm′m(0) = (−1)2jδm′m. (3.15)
Finally, there is the extremely useful orthogonality relation:∫ 2π

0
dα
∫ 2π

0
dγ
∫ π

0
dβ sin βDj∗

mn(α, β, γ)Dj′

m′n′(α, β, γ) = 8π2

2j + 1δmm
′δnn′δjj′ (3.16)

From now expressions containing R without explicit argument are understood to be evaluated
at (α, β, γ), and respectively D or d matrices evaluated at β.

15



3. Helicity Amplitudes in Spherical Basis 3.1 Angular Momentum States

3.1.4 The Clebsch-Gordan Coefficients

Let us now consider the action of the rotation operator on a direct product state of two irreducible
state vectors according to the rotation group:

R(|j1m1〉 ⊗ |j2m2〉) = R|j1j2m1m2〉 =
j1∑

m′
1=j1

j2∑
m′

2=j2

Dj2
m′

1m1
Dj2
m′

2m2
|j1j2m′1m′2〉 . (3.17)

From [28] we can see the properties of group theory and it turns out that the direct product of
states as well as operators acting on these states can be decomposed into a direct sum of quantities
of the respective kind existing in an irreducible representation. For the states we get the well known
expansion

|j1m1〉 ⊗ |j2m2〉 =
j1+j2∑

j1=|j1−j2|
〈jmj1j2|j1j2m1m2〉 |jmj1j2〉

≡
j1+j2∑

j1=|j1−j2|
C (j1j2j;m1m2) |jmj1j2〉 ,

(3.18)

where C is the so called Clebsch-Gordan Coefficients (CGC) [26, 28]. The reduction of the group
yields symbolically:

Dj1 ⊗Dj2 =
⊕
j

Dj , (3.19)

while for a fixed j the Dj act on all elements (indicated by m) of the coupled state obtained above1

To get an explicit expression one can use the desired behaviour for the rotation of the coupled
states

R|jmj1j2〉 =
∑
m′

|jmj1j2〉Dj
m′m (3.20)

and the orthogonality relations of the CGC to obtain the important coupling rule:

Dj1
m′

1m1
Dj2
m′

2m2
=

j1+j2∑
j=|j1−j2|

C (j1j2j;m′1m′2)C (j1j2j;m1m2)Dj
m′

1+m′
2,m1+m2

(3.21)

Both (3.18) and (3.21) are known as the Clebsch-Gordan Series [28]. It is remarkable that
(3.21) still holds if we replace the D-functions with the d-functions.

1This is according to the definition of irreducible, i.e. the action of the group operator in the irreducible represen-
tation leaves no invariant subspaces of the Hilbert space.
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3.1.5 Irreducible Spherical Tensors

As a generalization of angular momentum states we may use their rotation property to define
arbitrary tensorial quantities as irreducible [28] according to the rotation group if they transform
in exactly the same way as the eigenstates of angular momentum do. Therefore we assign the
component m of an irreducible spherical tensor of rank j with Tjm and request all of the 2j + 1
components to transform under rotations in the following way:

RTjm =
j∑

m′=−j
Tjm′Dj

m′m. (3.22)

For example the angular momentum states |jm〉 itself are the components indicated by m of an
irreducible spherical tensor Tjm.

We can also treat three-vectors as irreducible spherical tensors when choosing a basis for them
where they transform in the representation of D1. This basis is found by diagonalizing the 3 × 3
matrix of Jz in the Cartesian basis. The result is the following transformation rule for a four-vector
Aµ,

Aµ → Aa = Am,n =


A�

A1

A0

A−1

 = Am,n =


1 0 0 0
0 − 1√

2 − i√
2 0

0 0 0 1
0 1√

2 − i√
2 0



At
Ax
Ay
Az

 (3.23)

We denote spherical vectors with roman indices a, b, c, . . . covering a time component index “ � ”
and the numbers -1, 0, 1. To indicate only the spatial part we will use the letters l,m, n. Note
that the index 0 now labels the actual z-component of this vector and not the time component,
which stays the same. The complex conjugation of intrinsically complex vectors should be done
with care, since

(A∗)m = (−1)m(A−m)∗. (3.24)

Therefore, the contraction of two vectors in this basis is written as:

A ·B = A�B� −
1∑

m=−1
(−1)mAmBm. (3.25)

In fact may we interpret all angular dependent quantities that appear in a Feynman amplitude as
spherical tensors in the according representation. If they are not coupled already this will be the 1

2 -
(for spinors) or 1- (for vectors) representation . We will refer to this fact when defining the explicit
wave functions for fermions and bosons in the helicity basis.
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3.1.6 Plane Wave Helicity States

One Particle

In order to expand the S-matrix, that is usually defined in a linear momentum basis, we first need to
construct plane wave states which have quantum numbers that are invariant under rotations. [22]
That is we cannot use the spin three-component, but we can use the quantity defined as the
projection of the three-component spin in the direction of motion,

λ ≡ S ·p
|p| = S · p̂, (3.26)

called helicity. The normalization is to preserve partially the invariance under Lorentz- boosts,
unless the boost changes the direction of p.

We begin with the rest state |p = 0, s, λ〉, which has spin s and spin projection λ along the
z-axis. In the rest frame the spin projection and the helicity are equivalent. But when this state
is rotated only the helicity remains invariant, and we will use it to label the state. Physically, the
invariance is due to the fact that the quantisation of the axis p̂ rotates along with the spin S of
the system.

To obtain the state |p, s, λ〉, we first consider a rest frame with |p| = 0. In this rest frame the
helicity equals the spin component in its quantisation axis that we choose to be the z-axis and
hence also equals the z-component of the total angular momentum. Such a state is labelled by
||p| = 0, s, λ = sz〉, with s being the quantum number of the squared spin; λ can therefore receive
2s + 1 different values λ ∈ {−s,−s + 1, . . . , s − 1, s}. To get a general state we have to rotate it
into θ-φ-direction using the D-function and Lorentz boost it with the operator B(p) along that
direction until it has the momentum p:

Rφ,θ,−φ |p = 0, s, λ〉 = B
s∑

sz=−s
Ds
sz ,λ(φ, θ,−φ) |0, s, sz〉 . (3.27)

The reason to choose γ = −φ is explained in the first of the three following comments about
the phases [10]:

1. The angle γ is arbitrary. γ = −φ is convenient to omit an additional phase factor in the case
θ = 0 6= φ:

Rφ,θ=0,−φ |p = 0, s, λ〉 =
∑
m′

Dj
m′λ(φ, 0,−φ) |0, s,m′〉 =

∑
m′

eim
′φδm′λe

iλφ |0, s,m′〉

= |0, s,m′〉 .
(3.28)

2. The description of the state propagating in negative z-direction leaves another freedom in
choosing the angle φ. Here we have to impose the boundary condition:

lim
−pz→0

|−pz, s, λ〉 = lim
pz→0

|pz, s, λ〉 , (3.29)
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using eq. (3.14) yields

e−iπJy |p = 0, s, λ〉 =
∑
λ′

Ds
λλ′(0, π, 0) |p = 0, s, λ′〉

=
∑
λ′

(−1)s−λδλ′,−λ |p = 0, s, λ′〉 = (−1)s−λ |p = 0, s,−λ〉 ,
(3.30)

we have

(−1)s−λe−iπJy |p = 0, s, λ〉 = |p = 0, s,−λ〉 , (3.31)

comparing with (3.29)

|−pz, s, λ〉 = (−1)s−λe−iπJy |pz, s, λ〉 . (3.32)

3. The phases relative to different values of λ can be fixed by the requirement that the ladder
operators of the total angular momentum should act like the corresponding spin matrices in
the correct representation at p = 0:

(Jx ± iJy) |p = 0, λ〉 = (Sx ± iSy) |p = 0, λ〉 =
√

(s∓ λ)(s± λ+ 1) |p = 0, λ+ 1〉 (3.33)

The only difference when describing a massless state is, that it is not possible to transform into
its rest frame and that there are per se two independent solutions according to the helicities λ = ±s
that do not have to be boosted, only rotated. To retain consistency the first and second statements
above stay conventionally true but the third one has to be replaced by what follows from the next
construction.

Let P be the well known parity operator acting like x, y, z → −x,−y,−z. Then a reflection in
the xy plane can be expressed with the operator Y = e−iπJyP:

Y |pz, s, λ = s〉 = η |pz, s, λ = −s〉 , (3.34)

That is the desired relation between the two states. The intrinsic parity η, with |η| = 1, depends
on the explicit construction of the helicity states, i.e. the polarization vectors. Finally, we choose
the convenient Lorentz invariant normalization:

〈p′, s′, λ|p, s, λ〉 = (2π)32Eδ(3)(p′ − p)δs′sδλ′λ. (3.35)

Two Particles

We now construct states that represent two particles that are in plane wave states with momenta
p1 and p2. They are simply the direct product states

|p1, λ1p2, λ2〉 ≡ |p1, λ1〉 ⊗ |p2, λ2〉 . (3.36)
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We now take the center of mass (CM) frame, so that p1 = −p2. Therefore we write again this state
in terms of the common absolute value of the linear three-momentum p, the angles θ, φ denoting
the particle 1 direction and the helicities λ1, λ2. Furthermore is it useful for later calculations to
factor out the summed linear momentum part:

|p1, λ1,−p1, λ2〉 ≡ |p, θφλ1λ2〉 = (2π)3
√

4ECM
p
|θφλ1λ2〉 |Pµ〉 , (3.37)

with summed four-momentum Pµ = (ECM, 0, 0, 0) and CM energy ECM =
√
p2 +m2

1 +
√
p+m2

2.
Last factorization is chosen such that the following normalizations hold:

〈p′; θ′φ′λ′1λ′2|p′; θφλ1λ2〉 = (2π)6 4
√
s

p
δ(4)(Pµ − P ′µ)δ(cos θ − cos θ′)δ(φ− φ′)δλ1λ′

1
δλ2λ′

2
. (3.38)

〈Pµ|P ′µ〉 = δ(4)(Pµ − P ′µ). (3.39)

Note, that the state (3.37) can also be written as:

|p; θ, φλ1λ2〉 = Rφ,θ,−φ |p; 0, 0λ1λ2〉 . (3.40)

3.1.7 Spherical Waves Helicity States

Next task here is to transform the above states into a spherical basis keeping all of the helicity
properties (since they are invariant under rotation). The canonical quantities according to a spher-
ical basis are the total angular momentum j and its three-component m. Therefore we can assign
the new state as

|p; jmλ1λ2〉 . (3.41)

Being also a state in the irreducible representation of R, it has the same transformation properties
as displayed in (3.5). It is important to note that p only assigns the absolute value of the linear
momentum but does not refer to a defined direction because neither of the particles is in an
eigenstate of p.

We may start by expanding the plane wave state as shown in (3.40), afterwards, we insert a
complete set of states (3.41) and after using (3.5) finally identify the resulting terms (p, λi and the
angles will be suppressed since they stay unchanged):

Rφ,θ,−φ |p, θ = 0, φ = 0, λ1λ2〉 =
∑
j,m

〈jm|R|θ = 0, φ = 0〉 |jm〉

=
∑

j,m,j′,m′

〈jm|R|j′m′〉 〈j′m′|θ = 0, φ = 0〉 |jm〉

=
∑
j,m

NjD
j
mλ1−λ2

(φ, θ,−φ) |p; jmλ1λ2〉 .

(3.42)
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The normalization constantNj ≡ 〈j,m = λ|0, 0〉 with λ ≡ λ1−λ2 is obtained, because braketj′,m′|0, 0
does not depend on m′, since it is a projection matrix element on the state |p; θ = 0, φ = 0λ1λ2〉
that has no orbital angular momentum in z-direction and consequently a fixed m = λ1−λ2, leading
to a δm′λ1−λ2 . We may determine the value of Nj by claiming the normalisation:

〈j′,m′, λ′1λ′2|j,m, λ1λ2〉 = δjj′δmm′δλ1λ′
1
δλ2λ′

2
(3.43)

taking the states, where the linear momentum part is factorised out in exactly the same (3.43)

Nj =

√
2j + 1

4π . (3.44)

The final matrix element

〈jmλ1λ2|θφλ′1λ′2〉 =

√
2j + 1

4π Dj
mλ(φ, θ,−φ)δλ1λ′

1
δλ2λ′

2
(3.45)

way also be used to express spherical basis states in terms of plane waves in the following way:

|p; jmλ1λ2〉 = Nj

∫
dΩ Dj∗

m,λ1−λ2
(φ, θ,−φ)Rφ,θ,φ |p; 0, 0, λ1, λ2〉

=
∫

dΩ Dj∗
m,λ1−λ2

(φ, θ,−φ) |p; θ, φ, λ1, λ2〉
(3.46)

with dΩ = sin θdθdφ

3.1.8 Expansion of the S-Matrix in Spherical Basis

It is now straightforward to expand the S-matrix for a process

a+ b→ c+ d (3.47)

in terms of spherical basis states. The initial states are chosen to propagate parallel to the z-axis
with common absolute three-momentum pi and λi ≡ λa − λb and the final state along a direction
θ, φ with pf and λf ≡ λc − λd. After splitting the S-matrix in such a way that

S = 1 + i(2π)4δ(4)(Pµa + Pµb − P
µ
c − P

µ
d )T (3.48)

we can write down the part T of the S-matrix as [20]

Tfi = (2π)2 ECM√
pipf

〈θ, φ, λcλd|T (ECM)|0, 0, λaλb〉 (3.49)

and make use of the conservation of angular momentum on it by inserting complete sets of spherical
helicity states using the matrix element (3.45)
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Tfi = (2π)2 ECM√
pipf

∑
j,m

∑
j′,m′

√
2j + 1

4π

√
2j′ + 1

4π Dj
mλf

(φ, θ,−φ)δmm′δjj′

· 〈jmλcλd|T j(s)|j′m′λaλb〉Dm′λi(0, 0, 0),

(3.50)

where λi ≡ λa − λb and λf = λc − λd. Now let

4π ECM√
pipf

(2j + 1) 〈jmλcλd|T j(s)|j′m′λaλb〉 ≡ T jλaλb;λcλd . (3.51)

Then, our final formula is:

Tfi =
∑
j

T jλaλb;λcλdd
j
λiλf

ei(λi−λf )φ (3.52)

3.1.9 Cross Section for a Non-Relativistic Initial State

Our final goal is to calculate the cross section of the neutralino annihilation in a non-relativistic
limit, as pointed out before. Therefore is it not necessary to calculate the full relativistic Feynman
diagrams but only some selected parts of it that can contribute to the process. For the treatment
of partial waves in the non-relativistic limit it is more convenient to use another basis, and since we
are interested in the total cross section, so do not need to know the dependence of the polarizations
of the initial particles, we may choose the the orbital angular momentum l and the total spin s
instead of helicity quantum numbers. That has the following advantages.

Firstly, an expansion of the initial plane wave at the same time in l and v yields coefficients
that behave like clvl+ cl+2v

l+2 + . . . , what reduces the initial states to account for to S-(l = 0) and
P -(l = 1) wave states since the cross section goes with the squared amplitude. One can prove this
statement by analyzing the representation of a plane wave propagating with absolute momentum
p in θ direction in terms of Legendre polynomials Pl and spherical Bessel functions jl:

〈p, θ|x〉 =
∞∑
l=0

il(2l + 1)jl(p |x|)Pl(cos θ). (3.53)

The argument of the jl is proportional to v in the non-relativistic limit and the jl itself have an
expansion around zero exactly like shown above.

Secondly, the number of selection rules is increased since any eigenstate of the total orbital
angular momentum l is a definite state of parity P:

P = η1 · · · ηn(−1)l |l〉 (3.54)

for a coupled system of n particles owing the intrinsic parities ηi with |ηi| = 1. The phases are only
fixed relative to each other, for example a product of fermionic and antifermionic intrinsic parities
has to be odd. In our case of two Majorana fermions we also have to take Fermi statistics into
account, which fixes the symmetric S-wave to an antisymmetric spin state s = 0 (and consequently
j = 0) and the P -wave to a symmetric s = 1 state. Combining the parity with the charge
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conjugation (which is even for two equal Majorana fermions) we may further state that the S-wave
must be CP-odd and the P -wave CP-even. This gives a restriction to the neutral Higgs particles
that can be exchanged in the s-channel.

Altogether, we find that only four amplitudes arising from the states 1S0, 3P0, 3P1 and 3P2
have to be included. Before we can construct the cross section out of them, we need to know the
projection matrix [10] between the actual spherical helicity basis and the l, s basis. For that we
first use (3.46) to express the helicity states in terms of z-components m1 , m2 of the individual
spins s1, s2 (λ ≡ λ1 − λ2):

|p; jmλ1λ2〉 = Nj

∑
m1,m2

∫
dΩ Dj∗

mλD
s1
m1λ1

Ds2
m2,−λ2

. (3.55)

The product of the D-functions may be simplified using the coupling rule (3.21) and the sym-
metry properties of the D-functions and the CGC (A.2) [7]:

Dj∗
mλD

s1
m1λ1

Ds2
m2,−λ2

=
j+s∑

l=|l−s|

s1+s2∑
s=s1−s2

2l + 1
2j + 1C (lsj; 0, λ)C (s1s2s;λ1,−λ2)

·C (lsj; lz,m1 +m2)C (s1s2sm1m2)Dl∗
ml0.

(3.56)

After the decomposition of the coupled state yields

|p; jmls〉 =
∑

m1,m2

C (lsj; lz,m1 +m2)C (s1s2s;m1m2) |p; llz;m1m2〉 (3.57)

and the expansion of the last uncoupled state in a manner of (3.46)

|p; llz;m1m2〉 =

√
2l + 1

4π

∫
dΩ Dl∗

lz0 |p; θφ;m1m2〉 , (3.58)

so finally we obtain

|p; jmλ1λ2〉 =
∑
l,s

√
2l + 1
2j + 1C (lsj; lz, 0, λ)C (s1s2s;λ1,−λ2) |p; jmls〉

≡
∑
l,s

√
2l + 1
2j + 1Pλ1λ2(2s+1lj) |p; jmls〉

(3.59)

Some of the projectors P have the following explicit expressions:

Pλ1λ2(1S0) = 1√
2

(−1)λ2− 1
2 δλ1λ2 , (3.60)

Pλ1λ2(3P0) = − 1√
6
δλ1λ2 . (3.61)
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These are the states that we will use for the calculations in next section. Expanding the above
amplitude T jλaλb;λcλd in the l, s initial states defines the helicity amplitudes A(2s+1lj) and the full
amplitude in partial wave expansion is written as:

Tfi =
∑
j,l,s

A(2s+1lj)Pλaλb(
2s+1lj)djλiλf (θ)ei(λi−λf ). (3.62)

whereas the A(2s+1lj) can be obtained out of the T jλaλb;λcλd by taking use of the completeness
property of the projectors:

A(2s+1lj) =
∑
λa,λb

T jλaλb;λcλdPλaλb(
2s+1lj). (3.63)

The advantage of the spherical basis shows up when computing the unpolarised cross section. Since
the angular part factorises in terms of the D we can easily integrate it out using the orthogonality
relation (A.6) and furthermore simplify the cross section with CGC orthogonalities. The following
formulae already regard the initial state particles to have the same mass and therefore same energy
ECM/2 and v is again the relative velocity. Moreover, we set φ = 0 for all calculations from now
on since that does not change the final results. We obtain:

σ(χχ→ ff̄) = 1
ECMv

∫ d3pc
(2π)32Ec

d3pd
(2π)32Ed

(2π)4δ(4)(Pµa + Pµb − P
µ
c − P

µ
d )1

4
∑
λa,λb,
λc,λd

|Tfi|2

= pf
4πE3

CMv

∫ dΩ
4π

1
4
∑
λa,λb,
λc,λd

∣∣∣∣∣∣
∑
j,l,s

A(2s+1lj)Pλaλb(
2s+1lj)djλiλf (θ)

∣∣∣∣∣∣
2

= pf
4πE3

CMv

∑
λc,λd,
j,l,s

1
2l + 1

∣∣∣A(2s+1lj)
∣∣∣2 .

(3.64)

With the kinematical factor β̄f = 2pf√
s

the important part of our cross section according to the
expansion up to order O(v2) is given by

σ(χχ→ ff̄)v = β̄f
32πE2

CMQ

∑
λc,λd

[∣∣∣A(1S0)
∣∣∣2 + 1

3

(∣∣∣A(3P0)
∣∣∣2 +

∣∣∣A(3P1)
∣∣∣2 +

∣∣∣A(3P2)
∣∣∣2)] , (3.65)

with Q being a symmetry factor that is 2 for identical final particles and 1 otherwise.

3.2 Calculation of the Diagrams

3.2.1 Construction of the External State Wave Functions

In order to calculate Feynman diagrams in the helicity formalism we have to refine the usual four-
spinors of fermions into helicity eigenstates and moreover express them in terms of d-functions since
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we later want to expand combined expressions in terms of these. We will use exactly the approach
that has been explained in Sec. 3.1.6, i.e. we will take the corresponding solutions of the equations
of motion in the rest frame, then boost and rotate them, ending up with expressions describing
particles with arbitrary energy E propagating into an arbitrary direction θ. For reasons of simplicity
we fix the azimuth angle to φ = 0 which of course does not change the final results of the S-matrix.
We further work only in the CM frame of a two particle system, therefore we additionally define a
corresponding particle 2 moving with the same absolute value p of three-momentum in the opposite
direction −θ. To distinct between both representations, we label them with the labels (1) and (2)
and denote the momentum of particle two with p̃.

We will start with the Dirac equation [20] in momentum space with zero three-momentum
(E = m, p = 0):

(γµpµ −m)u(p = 0) = 0→ (mγ0 −m)u(0) = m

(
−1 1
1 −1

)
u(0) = 0. (3.66)

Its solution for the two values h = ±1/22 of the helicity is given as the direct product of two spinors
being labelled here as the Weyl spinor, containing only the angular dependence, and the Lorentz
spinor, describing the dependence of energy, mass and momentum:

uh(0)χh(θ = 0)⊗ ξh(p = 0), (3.67)

with

χ+(θ = 0) =
(

1
0

)
, χ−(θ = 0) =

(
0
1

)
(3.68)

and

ξh(p = 0) =
√
m

(
1
1

)
(3.69)

the normalisation being in accordance with (3.40). The following boost with rapidity, η, in z-
direction, realised by the operator [20]

e

− η2

(
σ3 0
0 σ3

)
(3.70)

of the Lorentz group, affects only the Lorentz part of the spinor, while rotations done by the
d-matrix in j = 1 representation only affect the Weyl part. We end up with the spinors

χh(θ) =
√
m

 d
1
2
1
2 ,h

(θ)

d
1
2
− 1

2 ,h
(θ)

 , ξh(p) =
√
m

(
e−hη

ehη

)
(3.71)

2From now we will denote it ±

25



3. Helicity Amplitudes in Spherical Basis 3.2 Calculation of the Diagrams

where the exponential e±hη = γ(1 ± 2hβ) is a function of the kinematical quantities γ = E
m and

β = p
E . The corresponding particle 2 with helicity h can be obtained by boosting u−h(0) along

the negative z-axis and then rotating about the same angle θ. The antiparticle wave functions
are defined through v = CūT . In the chiral representation the charge conjugation operator is
C = iσ2 ⊗ σ3. After introducing another spinor

ζh(p) =
√
m

(
(−1)h−

1
2 e−hη

(−1)h+ 1
2 ehη

)
(3.72)

we can summarise our results which are a complete set of spinors that can be used to calculate
Feynman diagrams and have the appealing property that the angular and energy dependences are
separated:

u
(1)
h (p, θ) = χh(θ)⊗ ξh(p), (3.73)

u
(2)
h (p̃, θ) = χ−h(θ)⊗ ξh(p), (3.74)

v
(1)
h (p, θ) = −χ−h(θ)⊗ ζh(p), (3.75)

v
(2)
h (p̃, θ) = χh(θ)⊗ ζh(p). (3.76)

It is important to note that only the χ and ζ spinors depend on the representation of the Clifford
algebra.

3.2.2 Definition of the kinematical quantities

Our following discussions will refer to annihilation processes of the type

χ [(E0, p0), h] + χ [(E0, p0), h]→ f [(E0, p0), λ] + f̄
[
(E0, p0), λ̄

]
(3.77)

calculated in the CM frame. Hence, the initial state three-momenta (±p0) are parallel to the
z-axis and the final state three-momenta (pf = −pf̄ ) are parallel to the θ-direction. This frame
is called the initial frame. It is of course possible and sometimes even easier to do calculations in
the final frame where the final states propagate along the z-axis and the initial states along the
(−θ)-direction. In the present case this would yield to trivial expressions for the final momenta,
spinors and polarization states since the according d- functions reduce to Delta functions at θ = 0,
but nontrivial expressions for the according initial momenta, spinors and polarisation states.

Since we expand all functions of the kinematical variables in the relative velocity v of the
neutralinos we can express them in terms of the mass ratios R ≡ mf/mχ = mf̄/mχ

3 only. The
conservation of energy and momentum then dictates the final state energies and momenta to be

Ef = Ef̄ = E0, (3.78)
3Since the mass of a particle and its antiparticle is the same. From now we will denote it as m
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pf = pf̄ = β̄fE0 = β̄fmχ

[
1 + v2

8 +O(v4)
]
, (3.79)

while the kinematical factor β̄f is

β̄f ≡
√

1− 4 m

ECM
(3.80)

with ECM = E0. In our following calculations we will expand the function β̄f and the s-channel
propagator S(q2

s):

β̄f (v) = β̄f (v = 0) + v2R2

8β̄f (0)
+O(v4), (3.81)

S(q2
s) = 1

mχ(4−R2
s)

(
1− v2

mχ(4−R2
s)

)
+O(v4), (3.82)

where Rs ≡ ms/mχ is the ratio of the propagating particle.

3.2.3 Expansion of the Amplitudes in J

The main task for calculating a 2→ 2 tree-level processes in the presented formalism is to expand
the combined functions of different d1/2 , d1 in terms of djλi,λf since the final result should have
a structure like (3.62), where the coefficients are Taylor expansions up to O(v2). The basic step
to combine d-functions is to use the coupling rule (3.21) in such a way that one finally ends up
with d-functions with the indices λi, λf while all other index contributions should vanish. Due to
the type of process they can only exist in two frames denoted by the angles 0 and θ. In the first
case all related d-functions reduce to Kronecker Delta between the corresponding component of the
quantity (spinor or vector respectively) and the helicity. In the second case we get non-trivial d-
functions that are already constructed in such a way that a contraction between two of them yields
a summation in the indices according to the coupling rule (3.21), ending up with contributions
only from the helicities of the according quantities. For vectors we can directly see that from the
contraction rule (3.24)

∑
m

(−1)mdm,λ1d
1
−m,λ2 =

1∑
j=0

dj0,λ1+λ2
=
∑
m

(−1)mC (11j;m,−m)C (11j;λ1λ2). (3.83)

The spinors χh = (χh, 1
2
, χh,− 1

2
) have to be taken in the right representation for the corresponding

particle using symmetry properties of the d-function:

χh,l =

d
1
2
l,h for a particle in the θ-direction.

(−1)h−ld
1
2
−l,−h for an antiparticle in the (−θ)-direction.

(3.84)
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χ−h,l =

d
1
2
l,−h for a particle in the (−θ)-direction.

(−1)h−ld
1
2
−l,h for an antiparticle in the θ-direction.

(3.85)

If we consider the mixed case we automatically get the right index structure so that particle 1 states
contribute with their positive and particle 2 states with their negative helicity on the appropriate
side. This can be seen from the contraction rule for vectors or the construction of the spinors
respectively. It originates from the group property of rotations, namely the fact that successive
rotations behave additively in the angle. Assuming in particular the initial angle to be θ2, leading
to general helicity states proportional to d1

λ2,−m(θ2), it then follows for a vector contraction:

∑
m

(−1)md1
m,λ2,m(θ)d1

λ2,m(θ2) = (−1)λ2dλ2,λ1(θ − θ2) (3.86)

After discussing separate contractions of vectors and spinors we consider the general case. We will
present three ways of computing the Feynman amplitude. At first, by expanding the appearing
bilinears in the amplitude into some of the fundamental bilinear covariants. This can be done by
first computing the elementary two-spinor bilinears for the ξ, ζ and χ spinors respectively and then
combine them using the tensor product representation of the covariants. In chiral representation
these are given by:

γi = −σi ⊗ iσy, (3.87)

γ5 = −1⊗ σz, (3.88)

3.2.4 Expression of the Helicity Amplitudes

We will subsequently list the nonvanishing amplitudes for the two relevant spectroscopical initial
states, namely the 1S0 and 3P0 states. The result will be given separately for different final state
helicities starting with the conventional amplitude with definite initial and final helicities using the
notation introduced in (3.77). The expression of the propagators are given by (3.82).

The ci, cij are coupling coefficients (in some cases collected in the matrices C = diag(c1, c2) and
Ci = diag(ci1, ci2)) that have to be replaced with the amplitudes for standard MSSM vertices. [6,23]

Since the neutralinos are Majorana fermions we have the freedom to chose whether to take the
u- or v̄-spinor for both initial states or the direction of the fermion line respectively. In our cases
we use u(1) (or respectively v̄(1)) for the neutralino in positive (negative) z-direction. This fixes
the fermion line in such a way that we do not have to take charge conjugated expressions for the
vertices in each of other cases.

For the computation of the cross section, full left/right mixing is taken into account, but ne-
glected generation mixing. From now, the spinor indicated by λ and λ̄ refer to the fermion and
antifermion respectively.
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χ

χ

H

f̄

f

Annihilation via Higgs Pseudoscalar

In the s-channel:

Tfi = v̄
(2)
h̄

(c11PL + c12PR)u(1)
h S(q2

s)ū
(1)
λ̄
c2γ5v

(2)
λ̄

= c2δh̄hδλ̄λS(q2
s)v
†
h̄
σx (c11PL + c12PR)︸ ︷︷ ︸

C1

uhu
†
λ̄
σx(−σz)vλ̄

= c2δh̄hδλ̄λS(q2
s)ζTh̄ σxC1ξhξ

T
λ σx(−σz)ζλ̄

= c2δh̄hδλ̄λ
1

(4−Rs)2

(
1− v2

m2
χ(4−R2

s)

)

× 1
2
[
(−1)h̄+ 1

2 c11e
−η(h̄+h) + (−1)h̄−

1
2 c12e

η(h̄+h)
] [

(−1)λ̄−
1
2 eη(λ̄+λ) + (−1)λ̄−

1
2 e−η(λ̄+λ)

]
(3.89)

At this point some things must be clarified. Firstly h = h̄ and λ = λ̄ and this must hold because
o the two Kronecker delta.4 The second is that applying the expansion given in 3.2.1 and doing a
Taylor approximation until O(v3) since the incoming particles are non relativistic then

Tfi = c2
1

2(4−R2
s)

(
1− v2

m2
χ(4−R2

s)

)

×
(

1 + v + v2

2

)2 [
(−1)h+ 1

2 c11 + (−1)h−
1
2 c12

] [
(−1)λ+ 1

2 + (−1)λ−
1
2
] (3.90)

And this result should yield from the contributions to the amplitude of two total spin states of
s = 0 and s = 1 multiplied by the projectors P. These are theoretically [12]

1. A(1S0)

(−1)λ̄+ 1
2 δλf0

2
√

2c2(c11 − c12)
R2
s − 4

(
1 + v2

4

)
(3.91)

4We are going to denote for simplicity for now 2h ≡ h+ h̄ and 2λ ≡ λ+ λ̄.
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2. A(3P0)

v(−1)λ̄+ 1
2 δλf0

√
6c2(c11 + c12)
Rs − 4 (3.92)

Annihilation via Higgs Scalar

In the s-channel:

Tfi = v̄
(2)
h̄

(c11PL + c12PR)u(1)
h S(q2

s)ū
(1)
λ̄
c2v

(2)
λ̄

= c2δh̄hδλ̄λS(q2
s)v
†
h̄
σx (c11PL + c12PR)︸ ︷︷ ︸

C1

uhu
†
λ̄
σxvλ̄

= c2δh̄hδλ̄λS(q2
s)ζTh̄ σxC1ξhξ

T
λ σxζλ̄

(3.93)

And subsequently:

1. A(1S0)

δλf0
2
√

2β̄fc2(c11 − c12)
R2
s − 4 − v2

c2(c11 − c12)
[
(R2

f − 2)Rs + 4R2
f

]
2
√

2β̄f (R2
s − 4)2 (3.94)

2. A(3P0)

vδλf0

√
6β̄fc2(c11 − c12)

R2
s − 4 (3.95)
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Chapter 4

Conclusions

Once with the expressions of the amplitude we could compute the cross section of the neutralino
annihilation into a fermion pair. As we pointed out before, this calculation is of great relevance,
since it with it we can compute for example the LSP relic density. However, here we only address a
computation with annihilation into fermion pairs. A more refined work would include more possible
states with more difficult particles, but since this is only a bachelor thesis we only include one of
these possibilities to have a brief and a enlightening idea about how does this work.

The obtained explicit expressions for the amplitudes Tfi include the theoretical results shown.
In order to get them from the theoretical expression we can take (3.62) to verify them. This is not
shown until the very last step in this thesis due to date problems. This document was crafted in a
very short time taking into account the needed to take the calculations until the last stage.

Nevertheless, we can see that the explicit calculations are in the right way and they would
eventually show up the results we addressed, and that is the important issue to take into account.
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A. Properties of the Wigner functions

Appendix A

Properties of the Wigner functions

In this section we summarise useful relations needed for handling both, the D- and d-functions.
More concretely, these are orthogonality and completeness as well as symmetry relations and sim-
plifications for certain cases of the indices or arguments.

A.1 Orthogonality and Completeness Relations∑
m′′=−j

Dj
m′m′′(α, β, γ)Dj∗

mm′′(α, β, γ) = δmm′ (A.1)

j∑
m′′=−j

dm′m′′j (β)djmm′′(β) = δmm′ (A.2)

∞∑
j=0

j∑
m,m′=−j

2j + 1
8π2 Dj∗

mm′(α2, β2, γ2) = δ(α1 − α2)δ(cosβ1 − cosβ2)δ(γ1 − γ2) (A.3)

∞∑
j=0

2j + 1
2 djmm′(β1)djmm′(β2) = δ(cosβ1 − cosβ2) (A.4)

∫
dα sin β dβ dγ Dj1

m1m′
1
(α, β, γ) = 8π2

2j1 + 1δj1j2δm1m2δm′
1m

′
2

(A.5)

∫
sin β dβ dj1mm′(β)dj2mm′(β) = 2

2j1 + 1δj1j2 (A.6)

A.2 Symmetry Relations

Dj
−m,−m′(α, β, γ) = Dj

mm′(−α,−β,−γ) = Dj∗
mm′(α,−β, γ) (A.7)

Dj
mm′(−α,−β,−γ) = Dj

m′m(γ, β, α) = Dj∗
mm′(−γ,−β,−α) (A.8)
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Dj
mm′(α, β, γ) = (−1)m−m′

Dm′m(γ, β, α) (A.9)

Dj
m,m′(α, π − β, γ) = (−1)j+mDm,−m′(α, β,−γ) (A.10)

dj−m,−m′(β) = djmm′(−β) = djm′m(β) (A.11)

djmm′(β) = (−1)m−m′
djm′m(β) (A.12)

djmm′(π − β) = (−1)j+mdjm,−m′(β) (A.13)

A.3 Special Cases

From now, the Ylm(α, β) are the spherical harmonics and Pl(cosβ) are the Legendre polynomials.

Dl
m0(α, β, γ) =

√
4π

2l + 1Y
∗
lm(α, β) (A.14)

Dl
00(α, β, γ) = dl00(β) = Pl(cosβ) (A.15)

Dl
mm′(0, 0, 0) = djmm′(0) = δmm′ (A.16)

Dl
m0(0, π, 0) = dmm′(0)j = (−1j+m)δm,−m′ (A.17)
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Appendix B

Pauli Matrices

These matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. They
are

σ1 = σx ≡
(

0 1
1 0

)
, (B.1)

σ2 = σy ≡
(

0 −i
i 0

)
, (B.2)

σ3 = σz ≡
(

1 0
0 1

)
. (B.3)

They verify:

σ2
1 = σ2

2 = σ2
3 = −iσ1σ2σ3 = 1. (B.4)

detσi = 0. (B.5)

Tr σi = 0. (B.6)
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C. Gamma Matrices

Appendix C

Gamma Matrices

The gamma-matrices satisfy the Clifford algebra

{γµ, γν} = 2gµν . (C.1)

Given the four-dimensional representation of the gamma-matrices introduced in the lecture and
check explicitly that they satisfy:

γ0 = (γ0)†, (C.2)

, γi = −(γi)†. (C.3)

The matrix γ5 is defined as γ5 = iγ0γ1γ2γ3. They satisfy that

γ5 = (γ5)†, (C.4)

(γ5)2 = 1, (C.5)

{γ5, γν} = 0. (C.6)
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