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“You must learn to listen,” he says. If particles, forces,
and fields obey the curve that binds the flow of numbers,
then they must sound like harmonies in time. “You think

with your eyes; this is your problem. No one can see four

independent variables mapping out a surface in five or

more dimensions. But the tuned ear can hear chords.”

Richard Powers, The Time of Our Singing
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1. Introduction

Higher order calculations in perturbative Quantum Chromodynamics (pQCD) have become a
powerful predictive tool in the realms of high energy particle physics. Regardless of the efforts
that are put into the evaluation of partonic cross sections in the perturbative regime, the parton
world remains inaccessible for direct observation. The quantities that can be measured relate to
detected hadrons and leptons, in the same way as information on the initial particle is merely
available at hadron level. This calls for the calculation of hadronic cross sections, for which we
cannot avoid to leave pQCD: Hadrons, e.g. a proton, have a spacial extent that is much larger
than the typical distance in hard scattering processes. Moreover, the scattering off a proton
in the parton model is equivalent to the incoherent sum of the scattering processes off the dif-
ferent constituent partons, whose description is of an inherently non-perturbative nature, since
the energy scales inside the proton is to low to allow for the application of pQCD. Hence, any
perturbative calculation at any order whatsoever needs a link to long distance soft QCD and
eventually to observable states.

This link is provided by the so-called parton density functions (PDFs), which cannot be calcu-
lated in QCD but need to be determined experimentally. In the case of the proton, information
on the inner parton distribution is usually collected in deep inelastic electron-proton scattering
(DIS) [1, 2], a process in which the much smaller electron serves to probe the inner structure.
The analysis then basically consists in finding parametrizations for the different parton densities
and to fit them to the data. As the resulting structure functions, which are universal for all
processes, depend on the energy scale at which the underlying data was taken, they have to be
evoluted to the scale of interest if they are used in other processes. The evolution prescription
is again given by theory, where the corresponding scale dependence arises due to factorization
and leads to the DGLAP evolution equations. Further input for the analysis is contributed by
inclusive-jet measurements and fixed target experiments [2] that cover kinematical ranges com-
plementary to DIS.

The kinematical region of electron-proton collisions in which the exchanged photon has a small
virtuality Q ≃ 0 is refered to as photoproduction. This region is of great importance because it
exhibits the largest event rates and well observable hadronic final states, and it was widely stud-
ied in the context of jet production by the experiments H1 and ZEUS at HERA even after the
shutdown of the accelerator in 2007 [3, 4, 5, 6]. The quasireal, spacelike photons are well-suited
for the investigation of the proton substructure, but they can also dissolve on their part into
partons that scatter off the partons in the proton. Therefore, photoproduction is another prom-
ising source of knowledge about the photon structure and serves as a complement to the rarely
existing information that has been extracted from deep inelastic γγ∗ scattering at e+e− colliders.

A recently published analysis of ZEUS inclusive-jet data [3] shows a mismatch of experimental
values and next-to-leading order (NLO) perturbative calculations [7] for the differential inclusive
jet cross section at low transverse momenta and high rapidities. These discrepancies are mostly
related to non-perturbative effects and point out the need for a further study of the photon
structure function. The latter can be accomplished with the help of the photoproduction data
mentioned above. An essential requirement for this kind of study is to have a very accurate
theoretical prediction; for this reason, it is of great interest to include higher order, i.e. next-to-
next-to-leading order (NNLO) contributions in the calculations.

In theory, the evaluation of partonic cross sections leads to a number of divergent integrals.
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1. Introduction

Beyond leading order (LO), the virtual corrections are evaluated from Feynman amplitudes that
contain at least one inner particle loop. The integration over the loop momenta causes so-called
infrared and ultraviolet singularities, of which the latter are absorbed into the fields and couplings
by renormalizing the QCD Lagrangian. This renormalization procedure causes the QCD cou-
pling to run and gives rise to a very important feature which is the asymptotic freedom of QCD.
The energy-scale-dependent coupling strength tends to zero as the energy becomes very large.
It is this feature which makes pQCD valid at high energies, at which the expansion parameter of
the perturbative series is sufficiently small and quarks can be described as independent particles.
On the other hand, at low energies the coupling becomes large; this provides an explanation of
the confinement of coloured states in QCD.
Processes in which the LO amplitude is extended by the emission of one or more real particles,
are called real corrections. Here, another class of singularities arises. Emitted particles whose
momenta tend to zero, produce soft divergences in the final state phase space integration, which
cancel against the infrared divergences from the loop corrections. If a particles radiates further
particles with parallel momenta and zero mass, combinations of so-called collinear divergences
and splitting functions occur, which have to be absorbed into the structure functions by intro-
ducing renormalized parton densities and cross sections. The latter renormalization gives rise to
a running also of the PDFs, which has been mentioned above.

A similar procedure would yield fragmentation functions describing the transformation of the
scattered final state particles into hadrons. Inclusive jet cross sections, which are considered in
this thesis, are characterized by not taking into account specific hadrons or partons, but only
beams of them. Both the reconstruction of jets from detected particle showers on the experi-
mental side, as well as the construction of the former from final state partons on the theoretical
side, are realized by the application of jet or cluster algorithms. Of the several prescriptions that
have been developed [8, 9, 10, 11], each leads to different final results.

Apart from the fact that the coefficients of the perturbative series have to be non-divergent, they
should decrease towards higher orders, as otherwise any finite-order truncation of the expansion
would be meaningless. Because of the incomplete cancellation of the soft terms stemming from
real corrections by the infrared poles of the virtual contributions, logarithmic expressions are
left over at each order in the series which in a certain region of phase space grow large, and
in particular lead to the fact that all coefficients of the expansion have the same order of mag-
nitude. Consequently, all these logarithmic terms should be considered even if the evaluation
of the perturbative series is stopped at some finite order. This is achieved through the method
of resummation, in which the logarithms are summed up to all orders in a soft limit, yielding a
closed exponentiated form for the all-order soft and virtual corrections.

In the case of threshold resummation, only those logarithms that become large at threshold are
resummed. Two different kinds of threshold can be distinguished: The hadronic threshold marks
the limiting case in which all hadronic center-of-mass energy is found in the final state jets.
However, most of the detected events occur relatively far from this hadronic threshold. Of rele-
vance for threshold resummation is the partonic threshold, the region in phase space where the
energy of an emitted particle becomes zero and the final state jets carry the complete partonic
center-of-mass energy.
The corresponding soft and virtual corrections for this order are found by expanding the re-
summed cross section into a perturbative series up to NNLO; these can be added to a fixed order
NLO calculation such as in [7] after a matching has been performed in order to avoid double-
counting of any terms. The NNLO corrections are given at next-to-next-to-leading logarithm
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(NNLL) accuracy in a general form, to be adapted to the particular processes of interest, in a
publication of N. Kidonakis [12].

The aim of this thesis is to incorporate these NNLO corrections into the full NLO calculation
of Klasen and Kramer [7] in order to provide higher accuracy in the calculation of inclusive jet
cross sections in photoproduction. As pointed out before, improved precision is needed for a
better determination of the proton and photon density functions. Another goal is to obtain the
best fitting value of the strong coupling constant αs one the basis of NNLO-NNLL-improved
calculations, using the different PDF sets of the CT10 NNLO series [13].

After giving an overview of some important aspects of QCD and photoproduction, Sec. 2 ex-
amines the calculation of partonic cross sections in pQCD as well as their connection to initial
state hadrons and final state jets. An introduction to the philosophy of resummation marks the
beginning of Sec. 3 and leads to a general discussion of resummation at next-to-leading loga-
rithm (NLL) accuracy. Afterwards, the derivation of the NLO and NNLO master formulæ for
soft and virtual corrections [12] is sketched, and the NLO results are compared to those in [7].
The forth section contains the description of our approach in the implementation of the higher
order terms in the existing full NLO calculation, whereupon the numerical results are presented
and compared to the data of different experiments. Finally, in Sec. 5, the results are summarized
and conclusions are drawn.
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2. Photoproduction in the QCD-improved parton model

We start by providing the theoretical base for our study. Rather than giving a complete review,
we aim at giving an overview of the features of photoproduction and its quantum chromodynam-
ical description which play a major role for the calculations presented in the following chapters.
Furthermore, we use this section state which notations will be used. After a brief introduction
to Quantum Chromodynamics in Sec. 2.1, which follows in parts the corresponding introductory
section in [14], we turn to the foundations of ep scattering at HERA in Sec. 2.2, which will be
discussed first in the framework of the naïve parton model. We then give a preview of the QCD-
improved parton model by introducing the non-perturbative parton densities of the proton (Sec.
2.2.2) and the photon (Sec. 2.2.3), discussing their experimental determination and quoting their
evolution equations. This subsection is partly based on [7].
Sec. 2.3 deals with the calculation of inclusive jet cross sections. Before the needed master
formula for inclusive jet cross sections is derived in Sec. 2.3.2 [15, 7], a link between final state
partons and observed jets is provided by a review of several cluster algorithms (Sec. 2.3.1).
Leading order partonic cross sections of the processes relevant in photoproduction are finally
presented in Sec. 2.4. This first glimpse at perturbative QCD is followed by a discussion of two
central sources of QCD corrections, which are renormalization (Sec. 2.5) and factorization (Sec.
2.6). In both sections, we treat the different divergences which arise at higher order QCD and
shortly explain the origin of renormalization [16] and factorization scales [16, 7].

2.1. Basics of Quantum Chromodynamics

The theory underlying most of our calculations is QCD, a non-Abelian gauge field theory de-
scribing the strong interaction in the Standard Model (SM). It is based on a SU(3) gauge group;
the corresponding massless gauge bosons mediating the interaction are called gluons. The charge
associated to the gauge group is called colour, while the fermions carrying the colour charge are
the quarks. Until now, 6 quarks have been discovered which have different masses, fractional elec-
tromagnetic charge, and which are also distinguished by an additional quantum number called
flavour. They can be grouped in three families of two quarks in each case, as can be seen in the
following table:

family 1 2 3

flavour d u s c b t

name down up strange charm bottom top

el. charge −1/3 2/3 −1/3 2/3 −1/3 2/3

mass (MS) ∼ 4.8MeV ∼ 2.3MeV ∼ 0.1GeV ∼ 1.3GeV ∼ 4.1GeV ∼ 173GeV

Table 1: Summary of the basic properties of the three quark families. The quark masses are
taken from [17].

Apart from these three quark families, there might be more at higher masses, but current research
(e.g. by the CMS Collaboration [18]) has not found any new quarks up to a limit of 675GeV.
See also [17] for lower mass limits of possible 4th generation quarks. In this thesis we will always
assume all particles to be massless, which is a very good approximation at the energy scale we
are considering. However, the heavy top quark is too massive to play a role in photoproduction.
Therefore, we set the number of flavours nf = 5.
As the three lightest quarks have very small and similar masses, the QCD Lagrangian,

L = LG + LF + LGF + LFP, (2.1)
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2. Photoproduction in the QCD-improved parton model

has an approximate U(3) flavour symmetry. On this symmetry the ancient quark model was
build even before the theory of QCD was established. A better approximation would be a
U(2) symmetry, i.e. if we only considered the up and down quark. In the massless limit, the
two chiral components of the quarks become completely independent, leaving us actually with
two U(2) symmetries, U(2)L ×U(2)R. Alternatively, this can be expressed as the symmetry
of vector and axial combinations, U(2)V ×U(2)A. The vector component can be decomposed
into SU(2)I ×U(1)B, thereby expressing isospin and baryon number conservation which is also
observed in nature. However, SU(2)A ×U(1)A is spontaneously broken, so one would expect four
Goldstone bosons to be observed. Three of them, belonging to SU(2)A, are the pions, while the
U(1)A symmetry is indeed explicitly broken. This means that CP invariance is violated in the
strong sector, which has not been observed so far and is known as the strong CP problem.
The first two parts on the left-hand side of Eq. (2.1) contain the kinematic terms of the gluon
and quark fields Gµν

a and ψf as well as their interactions [19]:

LG + LF = − 1

4
Gµν

a Ga
µν +

∑

f

ψ̄f (iγ
µDµ −mf )ψf

= − 1

4
(∂µGν

a − ∂νGµ
a)(∂µG

a
ν − ∂νG

a
µ) +

∑

f

ψ̄f (iγ
µ∂µ −mf )ψf

+ gsG
µ
a

∑

f

ψ̄fγµT
aψf

− gs
2
fabc(∂µGν

a − ∂νGµ
a)G

b
µG

c
ν −

g2s
4
fabcfadeG

µ
bG

ν
cG

µ
dG

e
ν (2.2)

Here, explicit sums run over the different quark flavours, T a are the generators of the SU(3) colour
symmetry and fabc the corresponding structure functions. In perturbative QCD, the second line
of Eq. (2.2) gives rise to the gluon and quark propagators, the third line to quark-gluon vertices,
whereas the last line contains the three and four gluon coupling.
The remaining two terms in Eq. (2.1) are the gauge fixing and the Faddeev-Popov term respec-
tively. They have the form

LGF = − 1

2ξ
(∂µGa

µ)(∂νG
ν
a), (2.3)

with the gauge parameter ξ, and

LFP = −∂µφ̄aDµφa, (2.4)

where φ is a scalar field obeying fermion statistics, the so-called ghost field. Both are introduced
in order to handle unphysical polarizations of the gluon field which cause problems while dealing
with field quantization and gluon loops.
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2.2. Electron proton collisions and parton densities

2.2. Electron proton collisions and parton densities

When in 1992 HERA, the largest particle accelerator at DESY in Hamburg, was put into opera-
tion, it was the first storage ring in the world that could accelerate two different types of particles.
Electrons (or their anti-particles, the positrons) and protons were accelerated in different devices,
travelling in opposite directions through the 6.3 km long storage ring, before colliding at high
energies in one of the huge detectors belonging to the experiments of ZEUS and H1. Together
with Tevatron, the storage ring at Fermilab in Chicago it was also the first accelerator using
superconducting coils to provide the strong magnetic fields needed in order to bend the proton
beam. Data taking continued until 2007, when the experiment was shut down. However, the
data analysis is still in progress. In this section, we will review some important features of ep
scattering and see how experimental data enters into our calculations.

2.2.1. Neutral current ep collisions

First, we will give a short overview of general kinematics. A collision between an electron and a
proton is said to be inelastic if the inner structure of the proton is destroyed and the final state
apart from a lepton merely contains hadronized proton remnants. If the final state lepton is an
electron,

e−(k) + p(p) → e−(k′) +X, (2.5)

the process is called a neutral current (NC) process, mediated by the exchange of a neutral boson
such as the photon or the Z0 boson from weak interaction. However, the contribution of the
weak gauge bosons is largely suppressed due to their high mass (mZ ≃ 91GeV), and possible
multiple photon exchanges due to additional powers of the electromagnetic coupling α. Hence,
we only take single photon exchange into account, see Fig. 2.1. By

S = (k + p)2 ≃ 4EeEp (2.6)

we denote the hadronic center-of-mass energy squared, which at HERA in the later stage was√
S ≃ 318GeV, when electrons of energy Ee = 27.5GeV collided with a proton beam of energy

Ep = 920GeV. The virtuality of the exchanged photon is given by

Q2 = −q2 = −(k − k′)2 (2.7)

and determines the resolution available to probe the proton with the electron. Together with the
Bjorken-x scaling variable,

q

p

k

γ

k′

p

e−

X

e−

Figure 2.1: Electron-proton scattering with exchange of a single photon.
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2. Photoproduction in the QCD-improved parton model
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Figure 2.2: The coverage of the kinematic plane in different experiments. [20]

x =
Q2

2pq
, (2.8)

which gives the momentum fraction of the proton carried by the interacting parton, it provides a
complete description of the scattering kinematics. Fig. 2.2 displays the covered range of HERA
in the (x,Q2) plane. It is clearly visible that the area reached with two accelerated particles at
HERA exceeds the range of fixed target experiments. Yet, the improvements at the LHC enable
us to gain more information about the proton substructure with LHeC especially at high Q2, i.e.
in the deep inelastic scattering (DIS) regime.
DIS implies a virtuality Q2 ≫ 1GeV much larger than the proton mass. The photoproduction
regime lies at lower photon virtualities Q ≤ 1GeV. These quasireal photons are very suitable to
investigate the proton structure. They can either interact directly with the partons in the pro-
ton, or equally contribute a parton to the interaction, as they also fluctuate into hadronic parts
like qq̄ pairs. Therefore, we distinguish between direct processes, which dominantly contribute
to the cross section at high transverse energies, and resolved processes, which are more likely
to produce jets of low transverse energy. It is because of the latter resolved interactions that
photoproduction is also an important tool for gaining knowledge about the hadronic nature of
the photon. In pre-HERA times, information on the photon structure was rare and came solely
from γ∗γ scattering at e+e− colliders.
A significant simplification for theoretical calculations is to use the Weizsäcker-Williams approx-

imation to describe the photon spectrum in the electron. The electron-proton cross section then
factorizes in the following way:

dσep(ep→ eX) =

ˆ 1

0
dxa Fγ/e(xa) dσγp(γp→ X), (2.9)
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2.2. Electron proton collisions and parton densities

pa = xak

p

k

pb = xbp

k′

γ

p

e−

remnant

jets

e−

Fb/p

dσ̂γb

Figure 2.3: Electron-proton scattering in the parton model.

where Fγ/e(xa) denotes the probability to find a photon carrying the fraction xa of the initial
electron momentum. It is given in the approximation mentioned above by

Fγ/e(xa) =
αs

2π

1 + (1− xa)
2

xa
ln

(

Q2
max(1− xa)

m2
ex

2
a

)

. (2.10)

Q2
max is determined from the maximum scattering angle θmax of the electrons,

Q2
max = E2

e (1− xa)θ
2
max, (2.11)

taking into account that at HERA they have to disappear into the beam pipe after scattering as
they are anti-tagged.
According to Eq. (2.9), we have to calculate the photon proton cross section in order to evaluate
the hadronic cross section. For this purpose we will proceed to the QCD-improved parton model
of both the photon and the proton, as both are no pointlike objects. Protons consist of valence
and sea quarks as well as gluons, and their size constitutes a length scale to large to allow for
perturbative calculations. Also, the resolved nature of the photon underlies a non-perturbative
description. We will therefore introduce the concept of parton densities in the following.

2.2.2. Parton density of the proton

As has been mentioned, the proton interacts with the photon via its partonic substructure. The
first indications for this substructure came from deep inelastic electron-proton scattering. In
the parton model, the scattering off a hadron is described as an incoherent sum over scattering
processes off the single massless and pointlike partons. Information about the momentum distri-
bution of the different partons is provided by yet another F function. In case that the scattering
proceeds at a large scale µp, the parton of interest will carry only low transverse momentum,
and its longitudinal momentum is given as a fraction

xb =
qpb
qp

∈ [0, 1] (2.12)

of the initial proton momentum, whereas the proton remnant has the momentum fraction 1−xb.
Then, the photon-proton cross section factorizes again, leaving us with

dσγp(γp→ jets + remnant) =
∑

b

ˆ 1

0
dxb Fb/p(xb, µ

2
b) dσ̂γb(γb→ jets), (2.13)
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2. Photoproduction in the QCD-improved parton model

where the sum is over all different partons b in the proton, which carry the momentum fraction
xb with a probability Fb/p(xb, µ

2
b). The scale dependence is due to factorization, which will be

discussed later in Sec. 2.6. Usually, the chosen scale is of the order of the transverse energy of
the outgoing partons or jets. While dσ̂γb, as indicated by its hat, is a partonic hard cross section
and can be calculated in perturbative QCD, the parton densities Fb/p(xb, µ

2
b), which somehow

provide the link between hadron and parton level, are non-perturbative quantities and have to
be obtained experimentally.
If we work in the leading twist approximation and consider only contributions that factorize
properly (like in Eq. (2.13)), the parton densities gained from deep inelastic scattering are
universal, which means that they can be used for other processes which have incoming nucleons
as well, such as photoproduction. The PDF set we used for this thesis is the ZEUS2002_ZM
[1] set taken from the LHAPDF library. These parton densities were extracted from fixed target
DIS data (BCDMS, NMC, E665, CCFR) and ZEUS cross section data by fitting at a chosen
input scale Q2

0 = 7GeV with a general fitting function of the form

xf(x) = p1x
p2(1− x)p3(1 + p5x), (2.14)

which becomes zero or diverges as x → 0 and vanishes for x → 1. It was employed to deter-
mine five parton densities, namely u valence (xuval), d valence (xdval), total sea quark (xS), and
gluon (xg) density, as well as the difference between u and d contributions to the sea (x∆). The
resulting parameter values are given in Tab. 2, and Fig. 2.4 visualizes the corresponding densities.

PDF p1 p2 p3 p5
xuval(x) 1.69 ± 0.07 0.5 4.00± 0.09 5.04 ± 0.73

xdval(x) 0.96 ± 0.09 0.5 5.33± 0.57 6.2 ± 2.7

xS(x) 0.603 ± 0.055 −0.235 ± 0.014 8.9± 1.4 6.8 ± 2.4

xg(x) 1.77 ± 0.58 −0.20 ± 0.05 6.2± 1.4 0

x∆(x) 0.27 ± 0.07 0.5 10.9 ± 1.4 0

Table 2: PDF parameters at Q2
0, evaluated by the ZEUS-S fit. The values without error were

fixed, see [1] for further details.

For the gluon and the sea quark density, p2 takes a negative value, so these functions are enhanced
for small x. This fact is also reflected in the x → 0 poles of the gq and gg splitting functions,
see Eqs. (2.112) and (2.114). As p3 > 0 throughout, all distributions tend to zero for x→ 1.
However, all PDFs depend on the scale Q2

0, at which the underlying data was taken. Their
evolution to any scale Q2 of interest that is not too low and therefore spoils perturbativity is
described theoretically by the DGLAP equations found by Dokshitzer [21], Gribov and Lipatov
[22, 23], and Altarelli and Parisi [24]:

dFq/p(x,Q
2)

d lnQ2
=
αs

2π

ˆ 1

x

dz

z

[

Pq←q

(x

z

)

Fq/p(z,Q
2) + Pq←g

(x

z

)

Fg/p(z,Q
2)
]

, (2.15)

dFg/p(x,Q
2)

d lnQ2
=
αs

2π

ˆ 1

x

dz

z

[

Pg←q

(x

z

)

Fq/p(z,Q
2) + Pg←g

(x

z

)

Fg/p(z,Q
2)
]

. (2.16)

The so-called splitting functions Pb←b′ appearing in the latter equations can only be calculated
order by order of a perturbative series

Pb←b′ = P
(0)
b←b′ + αsP

(1)
b←b′ + α2

sP
(2)
b←b′ + . . . . (2.17)
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Figure 2.4: The gluon, sea, u and d valence distributions extracted from the ZEUS-SNLOQCD
fit at Q2 = 10GeV2 [1], compared to those extracted from the fits MRST2001 and
CTEQ6.

Of this coefficients, P
(0)
b←b′ and P

(1)
b←b′ have been known for a long time [25, 26], P

(2)
b←b′ was evalu-

ated only a few years ago [27, 28].

2.2.3. Parton density of the photon

So far, we have discussed the photon spectrum in the scattering electrons and how these photons
interact directly with the constituents of the proton. Yet we have not taken into account the
fluctuation of the photon into qq̄ pairs, which on their part can enter the hard scattering process.
Applying again the factorization theorem, we state

dσ̂γb(γb→ jets) =
∑

a

ˆ 1

0
dya Fa/γ(ya, µ

2
a) dσ̂ab(ab→ jets). (2.18)

The resolved photon thus requires an additional integration, and Fa/γ(ya, µ
2
a) gives the proba-

bility of finding a parton a with momentum fraction ya in the photon. The scale dependence
again arises from factorization (see Sec. 2.6), and usually one assumes µa ∼ O(ET ) where ET is
the transverse energy of the outgoing particles or jets. We can include the case of the directly
interacting photon in the last equation by setting

Fγ/γ(ya, µ
2
a) = Fγ/γ(ya) = δ(1 − ya). (2.19)

Experimental data for the determination of the distribution functions is provided, as mentioned
before, by deep inelastic γ∗γ scattering at e+e− colliders. However, finding an appropriate
fitting function is not as simple as in the case of the proton. This can be attributed to the fact
that the photon is the QED gauge boson and therefore goes hand in hand with corresponding
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2. Photoproduction in the QCD-improved parton model

q = xak

p

k

pb = xbp

k′

pa = xayak

γ

p

e−

proton remnant

jets

photon remnant

e−

Fb/p

Fγ/e

Fa/γ

dσ̂ab

Figure 2.5: Electron-proton scattering in the parton model with resolved photon.

electrodynamical contributions. This leads to a violation of Bjorken scaling for the structure
functions even at LO, and the purely perturbative ansatz diverges at small yb for the quark
densities as well as for its gluon counterpart. Also, we cannot apply the momentum sum rule to
the photonic parton densities, as they are QED quantities. See [29] for a more detailed discussion.
The photon PDF set used in this thesis is the GRV-GNLO [30] set, which is based on the so-called
Vector Meson Dominance (VMD) model [31] and uses as a fit function:

1

α
xf(x,Q2) =

[

xa(A+B
√
x+ Cxb) + sα

′

exp

(

−E +

√

E′sβ ln

(

1

x

)

)]

(1− x)D, (2.20)

with the QED coupling constant α = e2

4π and

s ≡ ln

(

ln
[

Q2/(0.248GeV)2
]

ln[µ2HO/(0.248GeV)2]

)

with µ2HO = 0.3GeV2. (2.21)

In Fig. 2.6, one sees different parametrizations of the u quark distribution in the photon at LO
and NLO, including the GRV distribution employed for our calculations. All functions are given
in the MS scheme and exhibit a behaviour at NLO which differs significantly from the behaviour
at LO, whereas for the gluon such a problem does not occur. A possibility to fix this is to
absorb the direct photon contributions at NLO into the photonic quark distribution, which is
done in the DISγ factorization scheme. As a consequence, the photon is always accompanied by
potential quarks it can split up into as a higher order effect, and the initial “pure” photon only
exists at leading order. In other words, the separation between direct and resolved photons is
not physical but rather an artefact of finite order perturbation theory. Especially at NLO, where
divergences get absorbed into the photon structure function due to factorization, we encounter
a scale-dependent mixing of both direct and resolved contributions.
The PDFs obtained from the fit again have to be evoluted to the scale of interest, which is
achieved within the perturbative regime using the inhomogeneous DGLAP equations

dFγ/γ(y,Q
2)

d lnQ2
= 0, (2.22)
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2.2. Electron proton collisions and parton densities
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Figure 2.6: Different parametrizations of the photonic u quark distribution. The NLO densities
are given in the MS scheme [29].

dFq/γ(y,Q
2)

d lnQ2
=
αs

2π

ˆ 1

y

dz

z

[

Pq←q

(y

z

)

Fq/γ(z,Q
2) + Pq←g

(y

z

)

Fg/γ(z,Q
2)
]

+
α

2π
Pq←γ(y) (2.23)

and

dFg/γ(y,Q
2)

d lnQ2
=
αs

2π

ˆ 1

y

dz

z

[

Pg←q

(y

z

)

Fq/γ(z,Q
2) + Pg←g

(y

z

)

Fg/γ(z,Q
2)
]

. (2.24)
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2. Photoproduction in the QCD-improved parton model

2.3. Inclusive jet cross sections in photoproduction

Up to this point, we have described the cross section at parton level by perturbative QCD and
discussed the linking between the unobservable partons and the observable initial hadron states.
For these states, our lack of knowledge about the transition between the perturbative and non-
perturbative regime has been parametrized in the parton distribution functions. Now, we will deal
with the connection between the observed final states and the partonic world. The hadronization
of partons is usually described via so-called fragmentation functions, following a concept similar
to that of the splitting functions and looking for factorization properties. Although factorization
requires some kind of universality of the hadronization part, the latter varies significantly if one
compares e+e− scattering to cases where initial hadrons are involved. This is due to the remnants
of the hadrons, that also interfere in the hadronization process. Therefore, we restrict ourselves
to the mere observation of hadron beams, i.e. a high number of hadrons going more or less in
the same direction forming a jet. However, there is no unique prescription for defining the set of
particles belonging to one of these jets. In the following, we will review several techniques that
have been developed over the past 40 years.

2.3.1. Jet definitions

Hadrons are grouped to constitute a jet by applying a cluster algorithm, which decides whether
a particle belongs to a jet or not. Important features for any of such algorithms are [32]

• to be simply implementable in experimental analysis,

• to be simply implementable in theoretical calculations,

• to be defined at any order of perturbation theory,

• to result in a finite cross section at any order of perturbation theory,

• to yield a cross section insensitive to hadronization.

On the theoretical side, we have to decide in which way the outgoing particles of the hard par-
tonic scattering process should be combined to form two jets. This is trivial at LO, at which we
deal only with two final partons, which leads to an insensitivity of the leading order cross section
to any modelling of hadronization or resolution parameters. At NLO, the situation becomes
more interesting, as the emission of an additional parton leads to a first substructure of one of
the jets, which now consist of two particles. Finally, the NNLO corrections discussed in this
thesis will not bring any new insight into the performance of any algorithm, for we deal only
with soft and virtual corrections, which have two parton final states, and therefore exhibit the
same insensitivity observed at LO.
Experimental jet finding starts on the other side of hadronization. Departing from the detected
hadrons in the calorimeter cells, the algorithm tries to combine the groups to stable ensembles.
The “seed” for starting the algorithm can either be a single cell or already an entire cluster of
them. For both theorists and experimentalists it is important to work with an infrared and
collinear (IRC) safe criterion. Single soft gluons should not give rise to a new jet configuration
even if they are emitted in larger angles with respect to the jet axis. In any case, collinearly
emitted particles should be attributed to the same jet as their source. If these conditions are
met, a stable configuration can be found.

The concept of a Sterman-Weinberg jet is based on the resolution criterion proposed in [8] for
e+e− hadron production. The jet cross section is calculated from events in which all but a small
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2.3. Inclusive jet cross sections in photoproduction

2δεE

Figure 2.7: Jet criterion developed by Sterman and Weinberg [8].

fraction ε of the total energy E is emitted in two oppositely directed cones of opening angle 2δ
(see. Fig 2.7). The cones are supposed to lie within a fixed solid angle range with respect to
the beam axis. This first algorithm guarantees the required IRC safety. In e+e− collisions at
NLO, the outgoing particles will typically be a quark, an anti-quark and possibly a gluon. The
possible combinations this algorithm will create are:

a) Jet 1 is a quark (anti-quark) plus a hard (Eg ≥ εE) gluon, jet 2 is an anti-quark (quark).
b) Jet 1 is a quark, jet 2 is an anti-quark; a soft (Eg < εE) gluon might or might not belong

to one of them.
c) Jet 1 is a quark, jet 2 is an anti-quark (virtual diagram).

However, it is not suitable for hadron collisions with remnant hadrons, which are in general not
correlated with the hard process. The algorithm tends to include the latter into the current jets,
as it cannot handle multi-jet events with possibly overlapping cones. A more convenient choice
for this type of issues are the so-called cone algorithms, which work in (η, φ) space.

η = − ln

[

tan

(

θ

2

)]

(2.25)

is the pseudo-rapidity, which measures the angle θ and thereby the distance between jet and
beam axis, while φ is the usual azimuthal angle. Infrared safety can only be ensured in the case
of inclusive cross sections, where radiated soft particles (i.e. those softer than the hard jet) do
not disturb the jet finding process. Starting with one particle or calorimeter cell i, we define the
jet transverse energy

ETJ
=
∑

Ri≤R

ETi , (2.26)

and the jet axis

ηJ =
1

ETi

∑

Ri≤R

ETiηi, (2.27)

φJ =
1

ETi

∑

Ri≤R

ETiφi, (2.28)

whereas, of course, in the first step the sums are not present and therefore (ETJ
, ηJ , φJ) =

(ETi , ηi, φi) (see Fig. 2.8 a)). In the following, one adds particles to the jet which are in a
distance
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2. Photoproduction in the QCD-improved parton model
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Figure 2.8: Jet cone definition for a) a single parton, b) two combined partons, each with distance
R from the jet axis, c) the same partons, interpreted as single ones.

Ri =
√

(ηi − ηJ)2 + (φi − φJ)2 ≤ R (2.29)

from the current jet axis. The Snowmass meeting in 1990 brought a standardization in the
parameter use for the cone algorithm, stating that the resolution parameter R should lie in the
range from 0.4 to 1, with 0.7 as the standard choice. If we enclose a second parton to the jet,
its axis will move. Due to the ET weighting in Eqs. (2.27) and (2.28), it always represents
the center-of-transverse-momentum axis such that (ETi ,∆ηi,∆φi) and (ETj ,∆ηj ,∆φj) can be
replaced by a single jet (ETJ

, 0, 0) in the newly defined (ET ,∆η,∆φ) space, as can be seen in
Fig. 2.8 b).
Eq. (2.29) only fixes the distance between the single partons and the jet axis. By inserting Eqs.
(2.27) and (2.28) into (2.29), we find for pi and pj:

Ri/j =
ETi/j

ETi +ETj

√

(ηi − ηj)2 + (φi − φj)2 ≤ R. (2.30)

The square root is nothing else than the distance Rij of pi and pj in the (∆η,∆φ) plane. As the
condition has to be fulfilled for both i and j, we find

Rij =
√

(ηi − ηj)2 + (φi − φj)2 ≤
ETi + ETj

max(ETi , ETj )
R. (2.31)

This means that if the transverse energy of two partons is similar or equal (see Figs. 2.8 b)
and c)), they are allowed to have the distance 2R from each other and are still attributed to
the same cone. Equally, one could assign a separate cone of radius R to each of them without
having any overlap. If this is the case, one has to pay attention in highest-ET jet studies to
avoid double counting. Whereas situations like these do not cause any problems in theoretical
calculations, they do so in experimental analysis, as the “seed-finding” will not combine such
particles because of the missing seed in the jet center. Nevertheless, one can compare theoretical
and experimental results if one manages to model the difficulties in the calculations. The latter is
achieved through introducing an additional parameter Rsep, which restricts the distance between
two outgoing partons. Eq. (2.31) now reads

Rij ≤ min

[

ETi +ETj

max(ETi , ETj )
R,Rsep

]

, (2.32)
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2.3. Inclusive jet cross sections in photoproduction

in which R ≤ Rsep ≤ 2R is usually chosen to be Rsep ≃ 1.3 and becomes the limiting para-
meter if ETi and ETj are similar. This algorithm is infrared safe; but since collinear partons will
be merged with their source and soft partons hardly influence the jet axis because of the ET

weighting, it has the disadvantage that cones can overlap, so one would basically have to find all
possibilities to match Eq. (2.29) before deciding on the resulting jet configuration.

Another possible algorithm of a successive combination type was proposed by Ellis and Soper
[10]. It starts with a set of so-called protojets, which are in general single calorimeter cells or
partons, and consists of the following steps:

1. For each protojet, define

di = E2
Ti
, (2.33)

and for each pair of protojets

dij = min(ETi , ETj )
Rij

R
. (2.34)

2. Assign dmin to the smallest of all di and dij.
3. If dmin is a dij , merge the particles to a new protojet according to Eqs. (2.26) - (2.28).
4. If dmin is a di, the corresponding protojet should not be merged but removed from the list

of protojets and added to the list of jets.
5. Repeat from step 1.

This procedure is also IRC safe and produces a long list of jets for each event. But only the
highest ET jets, the last jets to be added to the list, will be of interest for inclusive cross sections,
whereas the others are rather “minijets” or some kind of beam debris.
In the case of small opening angles Rij ≪ 1 and high transversality of the jet, we can set Rij ≃ ∆θ
and ET ≃ E, which results in

dij ≃ min(Ei, Ej)
∆θ

R
≃ k2T

R
. (2.35)

Here, kT denotes the relative transverse momentum of the two particles in the jet, and the
algorithm is therefore also called kT or k⊥ algorithm. R is usually chosen to be of O(1). The
similarity between this successive combination and the cone algorithm is obvious. The jets which
both algorithms find are quite similar as long as R ≃ Rsep.
A severe problem for each of the procedures is the large number of computational steps, which
grows in the case of the kT algorithm for N particles with N3. While at theoretical parton level
only a few outgoing particles occur, this is a time-consuming issue for experimentalists, who have
to deal with thousands of detected hadrons. More recent publications presented a way to reduce
the amount of steps remarkably from O(N3) to O(N ln(N)) [11]. This improvement is primarily
based on the insight that for a given particle i dij becomes minimal if j is its nearest neighbour.
Thus, step 1 of the kT algorithm has to be fully executed only once if one creates an array in
which for every particle i just di and the nearest neighboured particle j, i.e. the one with the
smallest dij, are stored. After merging two particles i and j, step 1 only has to be repeated as
an update for those particles whose nearest neighbour had been j. Apart from the number of
steps, this improvement also reduces the amount of data that has to be processed.

2.3.2. Calculation of photoproduction cross sections

After discussing the links of the partonic cross section to both the initial and final hadronic
states, we will now fix the kinematics of the complete photoproduction process. We combine
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2. Photoproduction in the QCD-improved parton model

Eqs. (2.9), (2.13) and (2.18) to [15, 7]

dσep(ep→ e+ jets + remnants)

=
∑

a,b

ˆ 1

0
dxa Fγ/e(xa)

ˆ 1

0
dya Fa/γ(ya, µ

2
a)

ˆ 1

0
dxb Fb/p(xb, µ

2
b) dσ̂ab(ab→ jets), (2.36)

using the momentum fractions xa, ya and xb as assigned in Fig. 2.5. If we change the integration
over the momentum fraction xa for the photon in the electron into an integration over Xa = yaxa,
the momentum fraction of the parton a in the electron which we newly define to be xa, we arrive
at

dσep(ep→ e+ jets + remnants)

=
∑

a,b

ˆ 1

0
dxa

ˆ 1

xa

dya
ya

Fγ/e

(

xa
ya

)

Fa/γ(ya, µ
2
a)

ˆ 1

0
dxb Fb/p(xb, µ

2
b) dσ̂ab(ab→ jets); (2.37)

the lower bound of the ya integration changed due to the convolution with Fγ/e, which returns
zero as its argument exceeds unity. In order to be able to compare our calculations to experi-
mental results, it is convenient to transform the integration variables mentioned above into a set
of jet variables accessible to measurement. This will facilitate the calculation of corresponding
differential cross sections and also the implementation of technical constraints on the kinematic
range.
The HERA beam axis is taken to be along the z axis of our coordinate system, and the positive
direction is defined to be parallel to the initial proton momentum. By a simple shift in rapidity,

ηboost =
1

2
ln

(

Ee

Ep

)

, (2.38)

we can change into the ep center-of-mass system, in which our perturbative calculation will be
performed. Measurements, however, took place in the HERA laboratory system, where we define
the momenta of the incoming (massless) particles

k = Ee(1, 0, 0,−1) and p = Ep(1, 0, 0, 1) (2.39)

as well as those of the outgoing partons and hard jets respectively,

pi = ETi(cosh(ηi), cos(φi), sin(φi), sinh(ηi)). (2.40)

Exploiting momentum conservation, we find that the jet variables (ETi , ηi) are related to the
initial momentum fractions (xa, xb) in the following way:

xa =
1

2Ee

∑

i

ETie
−ηi , (2.41)

xb =
1

2Ep

∑

i

ETie
ηi . (2.42)

The focus of this thesis is clearly on two particle final states, i.e. we are interested in the case of
two jets which then have to balance their transverse energy, so that ET1

= ET2
= ET , and hence

xa =
ET

2Ee
(e−η1 + e−η2), (2.43)
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2.3. Inclusive jet cross sections in photoproduction

xb =
ET

2Ep
(eη1 + eη2). (2.44)

Due to tagging issues at HERA, the range of xa is restricted to xa,min ≤ xa ≤ xa,max < 1, which
is usually given as an interval

√

xa,minkp ≤ Wγp ≤
√

xa,maxkp. This constrains the rapidity η2
of the second jet, since it is calculated via

η2 = − ln

(

2xaEe

ET
− eη1

)

, (2.45)

and therefore kinematically fixed by ET , xa and η1.
The partonic cross section dσ̂(ab → jets) in Eq. (2.37) is expressed in terms of the usual
Mandelstam variables s, t and u, which are related to the initial and final state variables by

s = (pa + pb)
2 = 4xaxbEeEp = 4E2

T cosh2
(

η1 − η2
2

)

, (2.46)

t = (pa − p1)
2 = −2xaEeET e

η1 = −2xbEpET e
η2 = −E2

T (1 + eη1−η2) (2.47)

and

u = (pa − p2)
2 = −2xaEeET e

−η2 = −2xbEpET e
−η1 = −E2

T (1 + eη2−η1). (2.48)

We can now perform the variable change (xa, xb, t) → (η1, η2, E
2
T ) in Eq. (2.37), where the

differential volume transforms according to

det(J) =
E2

T

4EeEp
(eη1−η2 + eη2−η1 + 2) = xaxb, (2.49)

and thus

dxa dxb dt = xaxb dη1 dη2 dE
2
T . (2.50)

Accordingly, we obtain

d3σ

dη1dη2dE2
T

=
∑

a,b

xa

ˆ 1

xa

dya
ya

Fa/γ(ya, µ
2
a)Fγ/e

(

xa
ya

)

xbFb/p(xb, µ
2
b)
dσ̂

dt
(ab→ jets). (2.51)
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2. Photoproduction in the QCD-improved parton model

2.4. Leading order cross sections

Before we come to the discussion of higher order effects and divergences in the perturbative
calculation of partonic cross sections, we give in this section a brief summary of the results at
leading order. The relevant processes for direct and resolved photoproduction are shown in Figs.
2.9 and 2.10, where only those diagrams are exhibited that we actually need to calculate.
The unpolarized Born matrix elements for direct photons are [33, 34, 7]

|M|2γq→gq(s, t, u) = 2e2e2qg
2
sCF

(

−u
s
− s

u

)

, (2.52)

which is the so-called “QCD Compton Scattering” (see Fig. 2.9), and

|M|2γg→qq̄(s, t, u) = e2e2qg
2
s

(

u

t
+
t

u

)

(2.53)

for the “Boson Gluon Fusion” process. The latter is obtained from crossing the initial quark with
the final gluon in the Compton scattering, which yields a factor (−1) for crossing a fermion line
and requires the exchange s↔ t. In both equations we encounter the fractional charge eq of the
quark involved, and in Eq. (2.52) we used

CF =
N2

C − 1

2NC
=

4

3
, (2.54)

with NC = 3 for SU(3) colour symmetry. Of course, the first process can also take place with
an anti-quark instead of a quark. The corresponding matrix element is found after the crossing
s↔ u, leaving Eq. (2.52) invariant.

In the case of resolved photons, the number of contributing Born processes is somewhat higher.
Nevertheless, only those processes displayed in Fig. 2.10 have to be evaluated, the rest again is
obtained by crossing. We find [35]:

|M|2qq′→qq′(s, t, u) = g4s
CF

NC

s2 + u2

t2
, (2.55)

where q and q′ are quarks of different flavour so that the depicted t-channel (Fig. 2.10 a)) is the
only possible topology, and the resulting matrix element is of a rather simple form. Next, we
have

|M|2qq̄′→qq̄′(s, t, u) = |M|2qq′→qq′(u, t, s), (2.56)

related to Eq. (2.55) by the exchange s↔ u, and

|M|2qq̄→q′q̄′(s, t, u) = |M|2qq′→qq′(t, s, u), (2.57)

q

γ

q

g

q

γ

q

g

Figure 2.9: Born diagrams for direct photoproduction.
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Figure 2.10: Born diagrams for resolved photoproduction.

which is obtained from the same process after crossing s ↔ t. For identical quarks (Fig. 2.10
b)), the matrix element is given by

|M|2qq→qq(s, t, u) = g4s
CF

2NC

(

s2 + u2

t2
+
s2 + t2

u2
− 2

s2

tu

)

, (2.58)

an expression symmetric with respect to t and u, as the final state particles cannot be dis-
tinguished. This fact also requires an additional factor 1

2 which has already been included.
Exchanging s and u, we also get

|M|2qq̄→qq̄(s, t, u) = g4s
CF

NC

(

s2 + u2

t2
+
t2 + u2

s2
− 2

u2

st

)

. (2.59)

The first resolved process involving gluons (Fig. 2.10 c)) has the matrix element

|M|2qq̄→gg(s, t, u) = g4s
CF

NC

(

CF

(

t

u
+
u

t

)

−NC
t2 + u2

s2

)

, (2.60)
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and constitutes a base for the calculation of

|M|2qg→qg(s, t, u) = |M|2q̄g→q̄g(u, t, s) = − 1

CF
|M|2qq̄→gg(t, s, u), (2.61)

where the final partons in contrast to the previous case are not identical and also the averaging
factors for the polarizations are different. Furthermore,

|M|2gg→qq̄(s, t, u) =
1

2C2
F

|M|2qq̄→gg(s, t, u). (2.62)

Finally, the purely gluonic process has four contributing diagrams (see Fig. 2.10 d)), whose
squared sum gives

|M|2gg→gg(s, t, u) = g4s
NC

CF

(

3− tu

s2
− su

t2
− st

u2

)

. (2.63)

In order to obtain the leading order cross sections, the matrix elements have to be integrated
over the phase space for two-particle final states,

dPS(2) =

ˆ

(2π)4
2
∏

i=1

d4piδ(p
2
i )

(2π)3
δ4 (pa + pb − p1 − p2) . (2.64)

The integrations can be performed independently of the matrix elements by exploiting the delta
functions. The latter only fix momentum conservation and masslessness, which already have
been taken into account while evaluating the above elements. As Eq. (2.51) requires partonic
cross sections differential in t, we add also δ(t+ 2pap1), which yields [33]

dPS(2)

dt
=

1

8πs
(2.65)

as the final result. Consequently, the cross section is calculated by multiplying the matrix element
with this universal factor.
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2.5. Renormalization and running coupling

When calculating processes beyond leading order (LO) in perturbative QCD, we have to take
into account diagrams with internal parton loops. Possible topologies belonging to these virtual
corrections are depicted in Fig. 2.11. We distinguish between a) self-energy, b) propagator and
c) vertex corrections. The particles in the loops are virtual and their momenta therefore not
constrained by energy-momentum conservation. Instead, one has to integrate over all possible
momenta, i.e. over the complete momentum space. The propagator of a massless particle with
four-momentum k will result in a factor k2 in the denominator, thereby leading to an integral of
the form

ˆ

d4q

(−q2)ω , ω = 1, 2, . . . . (2.66)

If 2ω ≥ 4, the integrand becomes singular for q2 → 0, which is also called an infrared (IR) diver-
gence, while for 2ω ≤ 4, the expression diverges as q2 → ∞, giving rise to so-called ultraviolet
(UV) divergences. In order to be able to evaluate these integrals, one has to regularize them, e.g.
using the technique of dimensional regularization first presented by ’t Hooft and Veltman [36].
The latter method supposes that one shifts the dimension of integration from 4 to D = 4 − 2ε
dimensions. The transition to physical four-dimensionality is achieved afterwards by taking the
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Figure 2.11: Virtual diagrams at NLO for γq → qg in direct photoproduction. The circle in the
first row can be either a quark, gluon or ghost loop.
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Figure 2.12: Truncated ghost self energy correction.

limit ε → 0. However, the divergences present at 4 dimensions do not disappear, but they are
manifest in the result at next-to-leading order (NLO) as poles ∼ ε−1, ε−2. Note that in dimen-
sional regularization, the leading order cross sections from Sec. 2.3.2 also have to be expressed in
D dimensions in spite of being finite, since terms of order ε or even ε2 might lead to additional
non-vanishing contributions if they interfere with one of these poles.
All loop diagrams arising from the different topologies shown in Fig. 2.11 can be reduced to only
a few basic scalar integrals, which are called A0, B0, C0, etc.. These basic integrals can again be
brought to a form proportional to [37]

In(A) =
(2πµ)4−D

iπ2

ˆ

dDq

(q2 −A+ iδ)n
, (2.67)

which is convergent if D < 2n and A > 0. µ is an arbitrary mass scale introduced to keep the
right mass dimensions of the integral. Finally, In(A) is evaluated in D-dimensional spherical
coordinates after performing a Wick rotation in the complex plane. Then, the result is

In(A) = (−1)n(4πµ2)
4−D

2
Γ
(

n− D
2

)

Γ(n)
(A− iδ)

D
2
−n

=(−1)n(4πµ2)ε
Γ(n− 2 + ε)

Γ(n)
(A− iδ)2−ε−n. (2.68)

From this expression we obtain e.g. in the case n = 1, A = m2 and δ → 0 the scalar A0 integral
for a particle with mass m:

A0(m
2) = − (4πµ2)ε

Γ(ε− 1)

Γ(1)
m2−2ε

=m2

(

1

ε
− γE + ln(4π) − ln

(

m2

µ2

)

+ 1

)

+O(ε). (2.69)

As another example, we calculate the ghost self-energy correction as displayed in Fig. 2.12. We
find for the truncated loop diagram:

Π̃(k2) = − iNCδ
abg2rµ

4−D

ˆ

dDq

(2π)D
k2 + k · q
q2(k + q)2

=NCδ
abg2rk

2 1

ε

Γ(1 + ε)

(16π2)1−
ε
2

(

−µ
2

k2

)ε ˆ 1

0
dxx−ε(1− x)1−ε

=NCδ
ab g2r
32π2

k2
[

1

ε
− γE + ln(4π) + 2 + ln

(

−µ
2

k2

)]

+O(ε), (2.70)

with the same type of pole present. In the last expression, we arrived at the second line using
the standard Feynman integral relations, which is the standard technique for solving this kind
of integrals.

24



2.5. Renormalization and running coupling

If we want to calculate a physical quantity, such as a cross section in QCD with higher order
accuracy, we need to find a way of eliminating the poles that still remain in Eq. (2.70). For the
poles stemming from UV divergences, this is done by a renormalization of fields, the coupling
gs, the masses and the gauge parameter α. We introduce the renormalized fields, denoted with
an index r, as [38]

Ga
µ =

√

Z3G
a
r,µ, φa =

√

Z̃3φ
a
r and ψ =

√
Z2ψr, (2.71)

as well as the renormalized parameters

gs = Zggr, ξ = Z3ξr and m = Zmmr. (2.72)

The Lagrangian in Eq. (2.1) can then be rewritten as

L = Lr + LC, (2.73)

where Lr is obtained from Eq. (2.1) just by replacing the bare fields and parameters by their
renormalized counterpart. LC denotes the so called counter-terms, which are given by [38]

LC = − (Z3 − 1)
1

4

(

∂µGν
r,a − ∂νGµ

r,a

) (

∂µG
a
r,ν − ∂νG

a
r,µ

)

−
(

Z̃3 − 1
)

(

∂µφ̄r,a
)

(∂µφar)

+ (Z2 − 1)
∑

f

ψ̄r,f (iγ
µ∂µ −mr)ψr,f − Z2 (Zm − 1)mr

∑

f

ψ̄r,fψr,f

−
(

Zg

√

Z3
3 − 1

)

1

2
grf

abc
(

∂µGν
r,a − ∂νGµ

r,a

)

Gb
r,µG

c
r,ν

−
(

Z2
gZ

2
3 − 1

) g2r
4
fabcfadeG

µ
bG

ν
cG

d
µG

e
ν +

(

ZgZ̃3

√

Z3 − 1
)

grf
abc
(

∂µφ̄ar
)

φbrG
c
r,µ

+
(

ZgZ2

√

Z3 − 1
)

gr
∑

f

ψ̄r,fT
aγµψr,fG

µ
r,a. (2.74)

If we define a new set of renormalization constants,

Z1 ≡ Zg

√

Z3
3 , Z̃1 ≡ ZgZ̃3

√
Z, Z1F ≡ ZgZ2

√

Z3 and Z4 ≡ Z2
gZ

2
3 , (2.75)

these fulfill together with the former constants the so-called Slavnov-Taylor identity

Z1

Z3
=
Z̃1

Z̃3

=
Z1F

Z2
=
Z4

Z1
, (2.76)

which has to be matched if the renormalized coupling constant gr is supposed to be universal.
The idea behind renormalization is the following: We take the renormalized quantities to be the
physical ones, i.e. the ones we observe in experiments. The Feynman rules for Lr in Eq. (2.73)
are the same as before, and just that the bare quantities have been replaced by the renormalized
ones. Therefore, we will encounter the same divergences again, with the difference that now, we
also have the counter-terms, which can serve to subtract the poles which appeared e.g. in Eq.
(2.69). This is achieved by combining the usual Feynman diagrams with additional diagrams
that arise from LC.
However, when defining the Z constants, we are free to choose the finite terms we want to
remove beside the ε poles. Each choice constitutes a renormalization scheme. The scheme used
throughout this thesis is the modified Minimal Subtraction (MS) scheme which subtracts not
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only the poles, but also the universal ln(4π) − γE part. In this scheme, the renormalization
constants at NLO are found to be [38]

Z1 = 1− g2r
(4π)2

[(

−17

12
+

3

4
ξr

)

NC +
2

3
nf

](

1

ε
− γE + ln(4π)

)

+O(g4r ), (2.77)

as well as

Z̃1 = 1− g2r
(4π)2

NC
ξr
2

(

1

ε
− γE + ln(4π)

)

+O(g4r ), (2.78)

Z1F = 1− g2r
(4π)2

(

3 + ξr
4

NC + ξrCF

)(

1

ε
− γE + ln(4π)

)

+O(g4r ), (2.79)

and finally

Z4 = 1− g2r
(4π)2

[

NC

(

−2

3
+ ξr

)

NC +
2

3
nf

](

1

ε
− γE + ln(4π)

)

+O(g4r ). (2.80)

It is a simple task to verify that these constants are in agreement with the Slavnov-Taylor identity
in Eq. (2.76). In addition, we will soon need

Zg = 1− g2r
32π2

β0

(

1

ε
− γE + ln(4π)

)

+O(g4r ) (2.81)

for our upcoming discussion of the running coupling, in which we will basically follow [16].
Here, we have defined β0 =

11
3 CF − 2

3nf . Before we come to the scale dependence of the coupling
constant, we will have a brief look at mass dimensions. Since the action, which is given by

´

dDxL,
has to be dimensionless, the Lagrangian density should have the dimension [L] = massD. This
implies [gs] = [gr] = mass(4−D)/2 if we consider the definitions of Eq. (2.1) and (2.73). However,
we have so far treated the coupling constant as dimensionless (e.g. in Eq. (2.70)), fixing the
mass dimension by introducing an arbitrary mass scale µ. Thus, gr and gs are scale-dependent,
and should be replaced by g̃s(µs) and g̃r(µr), respectively. Then, we can redefine the couplings
as

gs ≡ g̃s(µs)µ
4−D

2
s and gr ≡ g̃r(µr)µ

4−D
2

r , (2.82)

noting that g̃s and g̃r are still dimensionless, while the bare and renormalized coupling constants
gs and gr are scale-independent. Since Zg depends on g̃r, it also gains a scale dependence. From
gs = Zggr, we derive

g̃r(µr) =

(

µs
µr

)
4−D

2 g̃s(µs)

Zg(g̃r, µr)
=

(

µs
µr

)ε g̃s(µs)

Zg(g̃r, µr)
. (2.83)

By simply differentiating the last equation, we find

β ≡ µr
dg̃r(µr)

dµr
= −

(

ε+
µr
Zg

dZg(g̃r, µr)

dµr

)

g̃r(µr) = −β0
g̃3r (µr)

16π2
+O(g̃5r , ε), (2.84)

which we can recast using αs =
g̃2r
4π as

dαs(µ
2
r)

d ln(µ2r)
= −β0

4π
α2
s(µ

2
r) +O(α3

s). (2.85)
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This result is called the renormalization group equation (RGE) at LO. We will integrate it from
a scale µ0, at which we renormalize the coupling, up to a scale µR, at which we want to evaluate
our results:

αs(µ
2
R) =

αs(µ
2
0)

1 + αs(µ20)
β0

4π ln
(

µ2
R

µ2
0

) =
4π

β0 ln
(

µ2
R

Λ2
LO

) , (2.86)

defining

Λ2
LO ≡ µ20 exp

[

− 4π

β0αs(µ20)

]

. (2.87)

Later on, we will basically set µ = µR, which will give us terms proportional to ln
(

µ2
R

m2

)

, e.g.

in Eq. (2.69). In order to prevent these logarithms from becoming too large, we would have to
choose µ2R ∼ m2 if we dealt with massive particles. A common choice for µR is the mass of the
Z0 boson. Λ2

LO as defined in Eq. (2.87) is the QCD scale parameter, and like the quark masses
it has to be determined experimentally. The values obtained for it are typically in the range of
a few hundreds of MeV.
This scale dependence of αs is the reason why we speak of running coupling. One can see in Eq.
(2.86) that as µR increases, αs(µ

2
R) will decreases, which means that at high scales, the use of αs

as an expansion parameter is justified. Also, we observe that αs(µ
2
R) tends to zero for µ2R → ∞,

giving rise to the property of asymptotic freedom of QCD.
If we also consider two loop contributions, Eq. (2.84) becomes

β ≡ µr
dgr(µr)

dµr
= −β0

g̃3r (µr)

16π2
− β1

g̃5r (µr)

(16π2)2
+O(g̃7r , ε), (2.88)

or equivalently, the RGE at NLO:

dαs(µ
2
r)

d ln(µ2r)
= −β0

4π
α2
s(µ

2
r)−

β1
(4π)2

α3
s(µ

2
r) +O(α4

s), (2.89)

with β1 = 102− 38
3 nf . The solution of the latter equation is somehow more involved and has to

be done iteratively, leading to

αs(µ
2
R) =

4π

β0 ln
(

µ2
R

Λ2
NLO

)







1− β1
β20

ln
[

ln
(

µ2
R

Λ2
NLO

)]

ln
(

µ2
R

Λ2
NLO

) ln







, (2.90)

while

Λ2
NLO ≡ µ20 exp

[

− 4π

β0αs(µ20)

](

4π

β0αs(µ20)
+
β1
β20

)

β1
β2
0 . (2.91)

At µ2R = Λ2, the running coupling has a singularity, called the Landau pole. It is somehow
unphysical, as it would probably not appear in a complete non-perturbative calculation. Still, it
plays an important role when we resum the perturbative series (see Sec. 3). Although perturb-
ation theory breaks down at low energy scales as αs becomes large, and the derived equations
are therefore no longer of any predictive power, one can still attribute the resulting very strong
coupling to the fact that we don’t see isolated quarks or gluons in nature.
As shown by ’t Hooft [39], massless non-Abelian gauge theories can be renormalized to all or-
ders, i.e. we get the same results for the renormalization constants at any order we perform the
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calculation. The proof of this statement would exceed the scope of this thesis, see also [40] for a
short review on the discovery of renormalizability of non-Abelian gauge theories.
So far, we have solved the problem of UV divergences, which arise when integrating over the
inner loop momenta of the virtual corrections by renormalizing the fields and other parameters in
the QCD Lagrangian. As a consequence of the renormalization procedure, the coupling constant
αs runs, which means that it depends on the energy scale at which it is evaluated.
Nevertheless, we are still left with the IR divergences that appear if particles in the loops are
massless. Fortunately, these singularities cancel, if one considers also the real emission diagrams.
In the case an emitted gluon becomes soft, in other words, if its energy tends to zero, the phase
space integration gives rise to the same poles as occur in the virtual diagrams, but with the
opposite sign. Therefore, by combining the two types of diagrams the IR divergences of the loop
integration disappear. This fact is also stated in the Kinoshita-Lee-Nauenberg theorem [41, 42].
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2.6. Initial state singularities and factorization

Beyond LO in perturbation theory, we have to take into account scattering processes such as in
Fig. 2.13 with more than two particles in the final state. This new type of diagram unfortunately
shows up with new types of divergences. If the momentum of one incoming particle and the
directly connected outgoing particle become parallel, the denominator of the adjacent propagator
(in the massless limit) will tend to zero, giving rise to a so-called collinear divergence. Note that
this divergence is very different from the ones encountered in Sec. 2.5, since there we had to
deal with singularities occurring while integrating over some unconstrained loop momentum of
a virtual particle. Here, the divergence appears in the tree level amplitude while performing the
phase space integration for the final states. We will come back to the collinear divergences when
talking about factorization.

In certain regions of phase space, the process in Fig. 2.13 can be interpreted as an initial quark
entering in a hard γq → qg scattering process with the photon, after having emitted a soft gluon.
If we define the emitted gluon in the center-of-mass system of the incident partons, we can assign
to it the momentum fraction 1− zb of the initial quark momentum, where

zb =
p1p2
papb

, zb ∈ [0, 1]. (2.92)

Later, when factorization is discussed, we will see that the lower bound is actually greater than
zero. After the splitting, parton b enters the hard subprocess with the remaining fraction zb
of its initial momentum. It is convenient, to use this momentum fraction zb also for the three
particle phase space integration, which has to be performed over the squared matrix elements of
amplitudes like the one depicted in Fig. 2.13. However, we encounter expressions like

ˆ 1

0
dzb

g(zb)

(1− zb)1−ε
, (2.93)

with a function g(zb) (including the parton distribution function) regular at zb = 1, which are
not finite for ε→ 0+. The case in which zb becomes 1 corresponds to the situation in which the
complete initial parton center-of-mass energy goes into the hard process, and the momentum of
the radiated gluon vanishes. Therefore, this type of singularity is called soft divergence. As was
already mentioned at the end of Sec. 2.5, the soft poles cancel against the infrared ones stemming
from the virtual loop corrections due to the Kinoshita-Lee-Nauenberg theorem. In order to see
how this works, we have to make the pole in Eq. (2.93) visible by expanding it in ε, and also get

zbpb

pb

pa

p2

p1

p3 = (1− zb)pb

Figure 2.13: Higher order process with possible soft gluon emission.
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rid of the zb integration, which is not present in the kinematics of the virtual corrections [43].

ˆ 1

0
dzb

g(zb)

(1− zb)1−ε
=

ˆ 1

0
dzb

g(1)

(1− zb)1−ε
+

ˆ 1

0
dzb

g(zb)− g(1)

(1− zb)1−ε

=
1

ε
g(1) +

ˆ 1

0
dzb

[

1

1− zb
+ ε

ln(1− zb)

1− zb
+O(ε2)

]

[g(zb)− g(1)]

≡ 1

ε
g(1) +

ˆ 1

0
dzb

[(

1

1− zb

)

+

+ ε

(

ln(1− zb)

1− zb

)

+

+O(ε2)

]

g(zb) (2.94)

In the last step, the plus distributions were defined, which are finite quantities. The first term
then is the soft pole and becomes cancelled out by the loop contributions, which in this way
regularize the divergent integrand and lead to plus distributions. These distributions will play a
major role in our calculations and are always a fingerprint of soft corrections.

If in one process several additional particles are emitted, terms exhibiting more than one pole
will appear. These can be combinations of soft and collinear divergences, which cancel as well
with their counterparts from the loop diagrams. But also collinear poles related to different
kinematical variables can show up in a combined way. They are then usually separated from
each other and also from other finite contributions by partial fractioning. Nevertheless, also if
they are isolated, they are not cancelled out by any other contribution. Instead, they have to be
treated similar as the UV divergences in Sec. 2.5: By redefining the parton distribution functions,
we can absorb the remaining collinear divergences. This procedure is known as factorization and
will be illustrated with an example.
Consider the process

γ(pa) + q(pb) → q(p3) + g(p1) + g(p2), (2.95)

which is very suitable for our investigation on photon initial state corrections, as it only has a
collinear pole and no soft one due to fact that gluons cannot couple directly to the photon. The
collinear singularity will occur, if the photon (pa) and one quark (p3) have parallel momenta.
Thus, we are only interested in terms singular in the variable

z′ =
pap3
papb

, (2.96)

which becomes zero in the collinear limit and should not be mixed up with the hard momentum
fraction

za =
p1p2
papb

, za ∈ [0, 1] (2.97)

∼ 1
z′

pa

p2

p1

p3

pb

∼ 1
z′

pa

p2

p1

p3

pb

Figure 2.14: Possible tree-level graphs for the process in Eq. (2.95).
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we introduce analogously to zb of the soft divergences. If z′ vanishes, it means that the propagator
of the massless particle goes on-shell, the internal particle becomes (quasi)real. The diverging
propagator can also be associated with an almost infinite propagation time of the corresponding
particle. Moreover, the scattering proceeds on two very different time scales. First, we have
the collinear decay of the incoming photon and the following long propagation of the quasireal
anti-quark. The hard scattering process then happens on a very short time scale. Hence, in the
limit z′ → 0, the matrix element factorizes and the born matrix element of the hard subprocess
q̄q → gg appears.
The singular terms are given by [7]

|Mcol|2γq→qgg(s
′, t′, u′) = 16παe2qµ

2ε
r N

2
C

1

s′z′
[z2a + (1− za)

2 − ε]|M|2qq̄→gg(s
′, t′, u′), (2.98)

where |M|2qq̄→gg is the unpolarized born matrix element, and the kinetic variables are given as
follows:

s′ = (zapa + pb)
2 = 2zapapb,

t′ = (zapa − p1)
2 = −2zapap1,

u′ = (zapa − p2)
2 = −2zapap2. (2.99)

Integration over the three final particle phase space

dPS(3) =

ˆ

(2π)D
3
∏

i=1

dDpiδ(pi)

(2π)D−1
δD (pa + pb − p1 − p2 − p3) (2.100)

yields

ˆ

dPS(3)|Mcol|2γq→qgg(s
′, t′, u′) =

αN2
C

4π2s′

ˆ 1

0

dza
za

[

1

2NC
Pq←γ(za)

(

−1

ε
+ γE − ln

(

4πµ2r
s

)

+ ln

(

ycut
1− za
za

))

+
e2q
2

]

|M|2qq̄→gg(s
′, t′, u′)

=
αN2

C

4π2s′

ˆ 1

0

dza
za

[

1

2NC
Pq←γ(za)

(

−1

ε̂
− ln

(

µ2a
s

)

+ ln

(

ycut
1− za
za

))

+
e2q
2

]

|M|2qq̄→gg(s
′, t′, u′), (2.101)

Here, we define at LO the splitting function for photons into quarks, which we already introduced
in Eq. (2.23), as

Pq←γ(z) = 2NCe
2
qPq←g(z) = NCe

2
q[z

2 + (1− z)2], (2.102)

and we add also a dependence on a new scale µa, which will soon become clear to be the
factorization scale. Furthermore, we introduce the shorthand notation

1

ε̂
≡ 1

ε
− γE + ln

(

4πµ2r
µ2a

)

. (2.103)

The parameter we got for using the method of phase space slicing, in order to separate the
singular regions in phase space from the non-singular ones, is refered to as ycut. It is actually
phase space slicing, which allows us to describe the kinematics only with the help of s′, t′ and u′
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in this 2 → 3 process, although they would in principle be sufficient only for the description of
2 → 2 kinematics.
The divergent structure in Eq. (2.101) resembles the terms we encountered in Sec. 2.5 while
renormalizing the fields and coupling. In the present case, however, we have to leave perturbation
theory and the purely partonic level in order to remove the ε pole, a fact which is somehow related
to the unobservability of single partons in a direct way.
We write the partonic cross sections in Eq. (2.101) together with leading order contributions
from γq → gq as

dσ̂(1)γq→qgg(pa, µa) = dσ̂(1)γq→qgg(xak, µa)

=
∑

a

ˆ

dza

[

δγaδ(1− za) +
α

2π
Pa←γ(za)

(

−1

ε̂
− ln

(

µ2a
s

))]

dσ̂(0)aq (zaxak) , (2.104)

where for simplicity we kept as an argument only the momentum pa, which is directly related to
the initial electron momentum k. Moreover, we omit in the following the term including ycut as

well as
e2q
2 .

As mentioned before, we have to involve also the hadronic quantities if we want to absorb the
poles in Eq. (2.104). For the moment, we keep our approach as clear as possible by simply
considering an electron-quark scattering, in which we have the hadronic cross section

dσ(1)eq (k) =

ˆ

dxa Fγ/e(xa) dσ̂
(1)
γq (xak). (2.105)

In the latter expression, Fγ/e is the photon spectrum in the electron, given by the Weizsäcker-
Williams approximation (see Sec. 2.2.1), and the index γq of the partonic cross section now
refers to both γq → qgg and γq → qqq̄. We can also write

dσ(1)eq (k) =
∑

a

ˆ 1

0
dXa

ˆ 1

0
dxa

ˆ 1

0
dza δ (Xa − xaza)Fγ/e(xa)

[

δaγδ(1− za)−
α

2π

1

ε̂
Pa←γ(za)

]

×
[

dσ̂(1)aq (Xak) +
∑

a′

ˆ 1

0
dz′a

α(s)

2π

1

ε̂
Pa′←a(z

′
a)dσ̂

(0)
a′q

(

Xaz
′ak
)

]

=
∑

a

ˆ 1

0
dxa

ˆ 1

0
dza Fγ/e(xa)

[

δaγδ(1 − za)−
α

2π

1

ε̂
Pa←γ(za)

]

×
[

dσ̂(1)aq (xazak) +
∑

a′

ˆ 1

0
dz′a

α(s)

2π

1

ε̂
Pa′←a(z

′
a)dσ̂

(0)
a′q

(

xazaz
′
ak
)

]

=

ˆ 1

0
dxa Fγ/e(xa)

{

dσ̂(1)γq (xak) +
∑

a′

ˆ 1

0
dz′a

α

2π

1

ε̂
Pa′←γ(z

′
a)dσ̂

(0)
a′q

(

xaz
′
ak
)

−
∑

a

ˆ 1

0
dza

α

2π

1

ε̂
Pa←γ(za)dσ̂

(0)
aq (xazak)

}

+O(α2α2
s, αα

3
s)

=

ˆ

dxa Fγ/e(xa) dσ̂
(1)
γq (xak) +O(α2α2

s, αα
3
s), (2.106)

which yields the same expression as in Eq. (2.105) if we neglect higher order terms. Xa = xaza
describes the fraction of the electron momentum entering the hard process 2 → 2 subprocess.
In the first line, the squared bracket includes the photonic splitting function that describes the
emission of a collinear particle a. Within the squared brackets in the second line, the terms
take into account also the collinear radiation of a further particle a′ off particle a; the latter, in
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2.6. Initial state singularities and factorization

combination with the δaγ , is a photon, and in that case contributing at NLO. If we proceeded
to NNLO, we would also have to consider the product of the two splitting functions, which
corresponds to the situation that two consecutive particles are emitted from the initial state.
Here, we restrict ourselves to the NLO effects.
The second line of Eq. (2.106) contains what is defined as the renormalized partonic cross section
in the MS factorization scheme:

dσ̃(1)γq (xak, µa) = dσ̂(1)γq (xak) +
∑

a

ˆ 1

0
dza

α

2π

1

ε̂
Pa←γ(za) dσ̂

(0)
aq (xazak). (2.107)

It is a finite quantity, as the poles, e.g. from the matrix element in Eq. (2.101), are removed
together with a certain choice of finite terms; the latter fixes the factorization scheme, analogously
to the renormalization procedure for the fields and couplings reviewed in Sec. 2.5. Note that in

Eq. (2.101) after the renormalization, a term proportional to ln
(

µ2
a
s′

)

is left over, making the

renormalized cross section depend on the factorization scale µa.
Hence, we can render finite our partonic cross section by subtracting the collinear pole. In return,
we have to add the latter to the distribution function, Thereby, we define the renormalized
photonic distribution function of the electron, now a distribution function for partons a, in the
first line of Eq. (2.106) as

F̃a/e(Xa, µ
2
a) =

ˆ 1

0
dxa dza δ(Xa − xaza)

[

δaγδ(1 − za)−
α

2π

1

ε̂
Pa←γ(za) dσ̂

(0)
aq (Xak)

]

Fγ/e (xa)

=

ˆ 1

Xa

dza
za

[

δaγδ(1 − za)−
α

2π

1

ε̂
Pa←γ(za) dσ̂

(0)
aq (Xak)

]

Fγ/e

(

Xa

za

)

. (2.108)

Now, the lower limit of za becomes clear to be Xa, as the za integration is convoluted with the
photon density function, whose argument should not become larger than one. While the term
proportional to the delta function reproduces the bare distribution function, the higher order
term in some sense adds information about the possible splitting of the photon into a quark
anti-quark pair, which can also take part in the hard interaction. At this point, we see the
mixing of direct and resolved photon contributions to photoproduction beyond LO we already
mentioned in Sec. 2.2. Although the higher order term and also the evolution equations for the
parton distribution functions (see. Sec. 2.2) stem from perturbative calculations, the functions
are non-perturbative quantities and have to be determined by experiment. We thus assume the
renormalized parton densities like the one in Eq. (2.108) to be finite by construction and to be the
physical densities subject to observation. In this way, we got rid of the last remaining divergences
that arose while calculating the partonic cross section in perturbation theory. However, the price
we pay for it is that in our finite order calculation we catch yet another scale dependence, which
is unphysical and which only vanishes, if the perturbative series is not truncated, i.e. if it is
evaluated to all orders. This factorization scale µa the redefined parton distribution function
(2.108) as well as the partonic cross section (2.107) depend on serves to separate the soft part of
the hadronic cross section, which are the distribution functions, from the hard partonic one.
In the case of the photon and proton PDFs, the factorization procedure works in a very similar
way. Consequently, they also become scale-dependent:

F̃b′/p(Xb, µ
2
b) =

ˆ 1

Xb

dzb
zb

[

δb′bδ(1 − zb)−
αs

2π

1

ε̂
Pb′←b(zb) dσ̂

(0)
ab′ (Xbp)

]

Fb/p

(

Xb

zb

)

, (2.109)

with Xb = xbzb, the momentum fraction of parton b′ in the proton, being now the lower integra-
tion bound of the zb integral. Note that in the definition of ε̂ in Eq. (2.103), µa here of course
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2. Photoproduction in the QCD-improved parton model

has to be replaced by µb. If we deal with resolved photons, we take for Fγ/e the bare quantity,
whereas the photon PDF is renormalized according to

F̃a′/γ(ya, µ
2
a) =

ˆ 1

Ya

dza
za

[

δa′aδ(1 − za)−
αs

2π

1

ε̂
Pa′←a(za) dσ̂

(0)
a′b(Yap)

]

Fa/γ

(

Ya
za

)

, (2.110)

where Ya = yaza denotes the fraction of the resolved photon momentum that is carried by parton
a′.
For a more general description of factorization, see e.g. [16]. Just as in the case of the running
coupling, one can derive evolution equations for the running parton densities. These are the
DGLAP equations already given in Sec. 2.2. The evolution is governed by the Altarelli-Parisi
splitting functions, which at LO are of the form

P (0)
q←g(z) =

1

2
[z2 + (1− z)2], (2.111)

P (0)
g←q(z) = CF

[

1 + (1− z)2

z

]

, (2.112)

P (0)
q←q(z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1 − z)

]

(2.113)

and

P (0)
g←g(z) = 2NC

[

1

(1− z)+
+

1

z
+ z(1 − z)− 2

]

+
β0
2
δ(1− z). (2.114)

They give the probability that (e.g. in the case of P
(0)
g←q(z)) a quark emits a gluon collinearly

with a momentum fraction z of its longitudinal momentum. The plus distributions were defined
in Eq. (2.94) as

ˆ 1

0
dz [f(z)]+g(z) =

ˆ 1

0
dz f(z)[g(z) − g(1)], (2.115)

where f(z) is a function which usually has a pole at z = 1 and which is regularized by a regular
function g(z).
So far, we have settled everything we need to calculate finite cross sections in the QCD-improved
parton model, and encountered the running of the coupling constant as well as the parton den-
sities, which is not solely an unavoidable theoretical complication but also observed in nature.
Nonetheless, for the finite order perturbative series to be meaningful, the omitted higher order
coefficient not only have to be finite, they also should decrease as the order increases. It are
precisely the latter plus distributions which cause problems at this point; these problems can be
faced with the technique of resummation and will be subject of the discussion in the following
section.
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3. Threshold resummation

In the previous sections, we have seen how in the case of soft gluon emission, the infrared
divergences of the real emission diagrams cancel with those of the virtual contributions, leaving
behind the characteristic plus distributions in the way it was shown by Eq. (2.94). At higher
orders in the perturbative series, multiple gluon emission as depicted in Fig. 3.1 will occur [14].
If we consider the consecutive emission of n gluons with energy fraction 1− zi, as illustrated in
the graphic, the energy of the quark will gradually decrease to a final fraction z =

∏n
i=1 zi of

its initial energy. In the phase space integration over all zi, each gluon can become soft, giving
rise to a pole in ε. These multiple poles produce additional finite contributions in combination
with the higher order terms of the expansion in Eq. (2.94). We will then encounter a sequence
of logarithms

αk
s

(

lnl(1− z)

1− z

)

+

, 0 ≤ l ≤ 2k − 1, (3.1)

where k denotes the order of αs beyond LO. As virtual corrections only exist at threshold, the
balancing of virtual and real contribution is restricted to z = 1. For the real corrections, we still
have to perform the z integration on the full kinematically allowed interval. The expressions in
Eq. (3.1) are finite, but they can grow large. In particular, If z becomes equal or even larger
than a value z̄ satisfying

αs ln
2(1− z̄) ∼ 1, (3.2)

which is always fulfilled somewhere on the integration interval, all terms of the perturbative
series are of the same order of magnitude, and any finite order truncation would be meaningless.
Therefore, we have to take into account the logarithmic terms at every order of perturbation
theory, in order to guarantee that we are not missing any sizeable contributions by cutting our
series. This is what resummation is about. In the following, we are going to sketch the concept
of resummation [44], and give an explicit calculation at leading logarithm (LL) level disregarding
the running coupling effect of QCD [14]. Afterwards, we will present a more general description
of the procedure at NLL, followed by the derivation of the NLO and NNLO master formulæ of
N. Kidonakis [12]. We close the section with a comparison of the NLO results obtained from the
said master formula to the ones from Klasen and Kramer [7], reviewing two different processes.

3.1. Basic concepts and a simplified example

Suppose, we have an infrared sensitive quantity, R(M2,m2), depending on two different scales
M and m. Be M2 a hard scale, and m2 a scale measuring the distance to the critical region, i.e.
the Landau pole. One can show (we skip the highly non-trivial proof) that for m2 ≪ M2 the

1 z1 z1z2 z1z2z3 z1z2 · · · zn
q

1− z1 (1− z2)z1 (1− z3)z2z1 (1− zn)zn−1 · · · z1

Figure 3.1: Consecutive emission of n gluons from a quark parton line.
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3. Threshold resummation

quantity factorizes into a soft and a hard part, separated by a factorization scale µ [44]:

R(M2,m2) = H

(

M2

µ2

)

S

(

m2

µ2

)

(3.3)

This procedure is also called refactorization, in order to distinguish it from the “normal” factor-
ization already discussed in the previous chapter. Here, it leaves the functions S and H with
potentially large scale ratios. It is important to note that refactorization does not necessarily
work out in momentum space. Usually, resummation is performed in the conjugate Mellin or
moment space, defined by the transformation prescription

f̃(N) =

ˆ 1

0
dz zN−1f(z). (3.4)

The latter transformation is a unilateral Laplace transformation

f̃(N) =

ˆ ∞

0
dt e−Ntf(t), (3.5)

in which we choose z = e−t. For future use, we will simply drop the tilde denoting the transformed
function. Mellin transformed quantities then can be identified by their argument N .
If we have applied refactorization in any space whatsoever, we can exploit the factorization scale
independence of R(M2,m2) to obtain two evolution equations for S and H, respectively. One
finds

d ln(H)

d ln(µ2)
= γS(µ

2) = − d ln(S)

d ln(µ2)
, (3.6)

and thus, solving for H and S,

H

(

M2

µ2

)

= H(1) exp

[

−
ˆ M2

µ2

dq2

q2
γS(q

2)

]

, (3.7)

as well as

S

(

m2

µ2

)

= S(1) exp

[

−
ˆ µ2

m2

dq2

q2
γS(q

2)

]

. (3.8)

We observe that for H and S the large scale ratios have vanished and all scale dependence has
been moved into the exponential, the so-called Sudakov form factor, which now allows for safe
use of perturbation theory. Combining the last two equations, we obtain

R(M2,m2) = H(1)S(1) exp

[

−
ˆ M2

m2

dq2

q2
γS(q

2)

]

, (3.9)

where also the final factorization scale independence becomes manifest.
As was clearly demonstrated, the key ingredients of resummation are factorization and exponen-
tiation. We will now return to our example of the n gluon emission. The first step would be to
calculate the corresponding matrix element. We exploit the fact that in the soft limit we can
apply the eikonal approximation, which means that the n gluon emission matrix element Mn

factorizes into matrix elements M1 for single emissions [14]:

Mn(z1, . . . , zn) ≃
1

n!

n
∏

i=1

M1(zi). (3.10)
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3.2. General approach

The proof especially in non-Abelian QCD is rather involved and would exceed the scope of this
thesis. The z phase space is proportional to

n
∏

i=1

dzi, δ

(

z −
n
∏

i=1

zi

)

(3.11)

and does not factorize due to the delta function, whose Mellin transform is given by

ˆ 1

0
dz zN−1δ

(

z −
n
∏

i=1

zi

)

=

n
∏

i=1

zN−1i . (3.12)

Here, we found the zN−1i that will mediate the Mellin transform with respect to each single zi
and also the desired factorization.
The need for resummation arose from the potentially large logarithmic terms in Eq. (3.1), which
are z-dependent and also have to be transformed. In Mellin space, they are of the form

αk
s ln

l (N) , 0 ≤ l ≤ 2k − 1. (3.13)

Therefore, the soft limit (threshold) in N space is at large N . The z dependence of a matrix
element at order n can also be written in terms of the coefficient function C(n)(z), which in the
eikonal approximation factorizes just as the matrix element into soft order 1 coefficients. If we
go to Mellin space, this is expressed as

C(n)(N) ≃ 1

n!

[

C
(1)
soft(N)

]n
, (3.14)

where the singularities are understood to have already been removed by consideration of virtual

contributions. C
(1)
soft(N) will in general contain terms proportional to ln2 (N) (LL) and ln (N)

(NLL = next-to-leading logarithm). Taking only the LL, we have

C
(1)
soft(N) ≃ −A ln2 (N) (3.15)

with a process-dependent constant A, and we obtain as the resummed coefficient function

Cres(N,αs) =

∞
∑

n=0

αn
s

[

C(n)(N)
]

soft
= exp

[

αsC
(1)
soft(N)

]

. (3.16)

This result is only valid at LL accuracy. Again, we achieved exponentiation, through the fac-
torization of the single soft gluon emissions in Eq. (3.14). However, we did not consider the
running of the coupling constant αs; hence, we miss the additional integration over the scale in
the exponent.
The next step will be to discuss threshold resummation for hadronic cross sections in a more
general way.

3.2. General approach

As we have seen, threshold resummation resums logarithmic terms which grow large in the phase
space region close to threshold. For our hadronic cross section, we can distinguish between the
hadronic threshold, expressed through the fraction

τ =
M2

S
, (3.17)
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3. Threshold resummation

where M2 is the invariant mass of the hard process final state particles and S the hadronic
center-of-mass energy, and the partonic threshold manifested in

z =
M2

s
, (3.18)

with s being the partonic equivalent to S. In our notation, both fractions are related through
τ = xaxbz or z = τ

xaxb
, respectively. The logarithms become enhanced as z → 1. This is certainly

the case, if the ep collision is close to threshold and τ → 1, as xaxb will always be less than 1.
But even if τ is far from threshold, which experimentally is a very common situation, we are still
close to partonic threshold if xa and xb are small enough. The latter will happen most likely for
partons whose distribution is peaked at small x, such as sea quarks and gluons in the case of the
density function of the proton. We therefore expect that threshold resummation is important
also relatively far from hadronic threshold, especially for partonic processes with gluons in the
initial state.
We base our approach on [44], but provide a more general discussion taking into account also
final state partons, as has been done in [45, 46, 47]. Our first goal will again be refactorization.
We rewrite the cross section from Eq. (2.37) in a more general form,

M2 dσAB→JJ

dM2
=
∑

a,b

ˆ 1

0
dxa xaFa/A(xa, µ

2
a)

ˆ 1

0
dxb xbFb/B(xb, µ

2
b)

×
ˆ 1

τ
dz zσ̄ab→cd

(

z,M2,
M2

µ2a
,
M2

µ2b

)

δ(τ − xaxbz), (3.19)

in which σ̄ab→cd is rather a hard scattering function than a real cross section as the z integration
has not been performed, yet. Furthermore, we have made the cross section differential in M2 by
adding the delta function

δ
(

M2 − sz
)

=
xaxbz

M2
δ (τ − xaxbz) (3.20)

on the right-hand side. Correspondingly, we find in Mellin space after transforming τ on both
sides in Eq. (3.19), which in combination with the delta function becomes a transformation of
xa, xb and z:

M2dσAB→JJ

dM2
(N − 1) =

∑

a,b

Fa/A(N,µ
2
a)Fb/B(N,µ

2
b)σ̄ab→cd

(

N,M2,
M2

µ2a
,
M2

µ2b

)

. (3.21)

Note that the convolution of the distribution functions in Eq. (3.19) disappears in N space. The
partonic cross section then factorizes in a similar way and can be written as

M2dσ̂ab→cd

dM2
(N − 1) =

∑

e,f

φe/a(N,µ
2
a)φf/b(N,µ

2
b)σ̄ef→cd

(

N,M2,
M2

µ2a
,
M2

µ2b

)

. (3.22)

This procedure is exactly what we discussed as factorization in Sec. 2.6, where the collinear
singularities were absorbed into the parton density functions. Hence, dσ̄ef is now an infrared
safe quantity and can be evaluated perturbatively. φe/a and φf/b are the parton-in-parton distri-
butions for partons e and f in partons a and b respectively. Their factorization scale evolution
is also governed by the Altarelli-Parisi splitting functions, which in Mellin space at LO take the
form

P (0)
q←g(N) =

1

2

2 +N +N2

N(N + 1)(N + 2)
, (3.23)
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3.2. General approach

P (0)
g←q(N) = CF

2 +N +N2

N(N2 − 1)
, (3.24)

P (0)
q←q(N) = CF

[

3

2
+

1

N(N + 1)
− 2ψ(N + 1)− 2γE

]

, (3.25)

P (0)
g←g(N) = 2NC

[

1

N(N − 1)
+

1

(N + 1)(N + 2)
− ψ(N + 1)− γE

]

+
β0
2
, (3.26)

with the DiGamma function ψ. For threshold resummation, we are interested in the large N
limit, in which ψ(N + 1) behaves like ln(N), and therefore we find for the splitting functions

P (0)
q←g(N) ∼ 1

2N
, P (0)

q←q(N) = CF

[

3

2
− 2(ln(N) + γE)

]

+O
(

1

N

)

,

P (0)
g←q(N) ∼ CF

N
, P (0)

g←g(N) =
β0
2

− 2NC [ln(N) + γE ] +O
(

1

N

)

. (3.27)

In this way it becomes obvious that close to threshold the parton mixing contributions are
negligible, so we can recast Eq. (3.22) to

M2 dσ̂ab→cd

dM2
(N − 1) = φa/a(N,µ

2
a)φb/b(N,µ

2
b)σ̄ab→cd

(

N,M2,
M2

µ2a
,
M2

µ2b

)

+O
(

1

N

)

. (3.28)

At this point, we are going to refactorize the cross section, and following the method of Sterman
[48] we rewrite the previous expression as

M2 dσ̂P
dM2

(N − 1) = HP

(

M2,
M2

µ2a
,
M2

µ2b

)

Ψa/a

(

N,M2,
M2

µ2a

)

Ψb/b

(

N,M2,
M2

µ2b

)

× J (c)
(

N,M2
)

J (d)
(

N,M2
)

SP

(

N,
M2

µ2aN
2
,
M2

µ2bN
2

)

+O
(

1

N

)

. (3.29)

In order to reduce clutter in the notation, P replaces ab → cd; as the refactorization scale µ
we chose the factorization scales µa and µb, which were already introduced to separate soft and
hard part of the cross section. Infrared safe contributions are pooled in the hard function HP ,
which can therefore be expanded in a perturbative series:

HP

(

M2,
M2

µ2a
,
M2

µ2b

)

= αkαm
s

∞
∑

n=0

(αs

2π

)n
H

(n)
P

(

M2,
M2

µ2a
,
M2

µ2b

)

, (3.30)

setting k = m = 1 for direct and k = 0, m = 2 for resolved photoproduction. Its renormalization
is determined by

HP,bare =
∏

i=a,b

ZiZ
−1
S HP (Z

∗
S)
−1, (3.31)

introducing the renormalization constants ZS of the soft function SP , and Zi of the incoming
parton field i, i = a, b.
In contrast to φa/a and φb/b in Eq. (3.28), which measure the momentum fraction of partons in
partons, Ψa/a and Ψb/b in Eq. (3.29) are defined in terms of energy fractions. Both densities are
described by different evolution equations. On the one hand, we have

dΨi/i

d ln(µ2i )
= γiΨi/i

(

N,M,
M2

µ2i

)

, (3.32)
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3. Threshold resummation

with γi being the anomalous dimension of the parton field i, given in the axial gauge by the
virtual part (the part proportional to δ(1 − z) in z space and thus the N -independent terms
in Mellin space except the Euler gamma) of the splitting functions. That is, at LO one finds

γ
(0)
g = β0

2 for gluons and γ
(0)
q = 3

2CF for quarks. On the other hand,

dφi/i

d ln(µ2i )
= γi/i(N)φi/i

(

N,M,
M2

µ2i

)

, , (3.33)

which uses the anomalous dimension γi/i of the operator whose matrix element represents the
density φi/i [49]. It is given in the axial gauge by

γq/q = − αs

2π

[

2CF ln(N)− 3

2
CF

]

+
(αs

2π

)2
[

2KCF ln(N) + C2
F

(

3

8
− 3ζ2 + 6ζ3

)

+CFCA

(

17

24
+

11

3
ζ2 − 3ζ3

)

− nfCF

(

1

12
+

2

3
ζ2

)]

+O
(

1

N

)

(3.34)

and

γg/g = −αs

2π

[

2CA ln(N)− β0
2

]

+
(αs

2π

)2
[

2KCA ln(N) +C2
A

(

8

3
+ 3ζ3

)

−nf
(

CF

2
+

2CA

3

)]

+O
(

1

N

)

(3.35)

for initial state quarks and gluons, respectively. The occurring values of the Riemann zeta
function are ζ2 =

π2

6 and ζ3 = 1.2020569 . . . ; also, we defined in both expressions

K = CA

(

67

18
− π2

6

)

− 5

9
nf . (3.36)

J (c) and J (d) are jet functions that organize the fragmentation of the massless final state partons
c and d. Lastly, we encounter again the eikonal approximation in the calculation of SP , which
describes the soft gluon emission. The associated evolution equation is given by

SP,bare = Z∗SSPZS , (3.37)

leading to the following RGE:

(

µr
∂

∂µr
+ β (g̃r)

∂

∂g̃r

)

SP = −2Re (ΓS)SP , (3.38)

where β is defined in Eq. (2.84) and

ΓS = lim
ε→0

g̃r
2

∂

∂g̃r
Res [ZS (g̃r, ε)] (3.39)

is the soft anomalous dimension.
By comparison of Eqs. (3.28) and (3.29), we conclude

σ̄P

(

N,M2,
M2

µ2a
,
M2

µ2b

)

= HP

(

M2,
M2

µ2a
,
M2

µ2b

) Ψa/a

(

N,M2, M
2

µ2
a

)

Ψb/b

(

N,M2, M
2

µ2
b

)

φa/a(N,µ2a)φb/b(N,µ
2
b)

× J (c)
(

N,M2
)

J (d)
(

N,M2
)

SP

(

N,
M2

µ2aN
2
,
M2

µ2bN
2

)

+O
(

1

N

)

. (3.40)
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3.2. General approach

The factors Ψi
φi

are universal between electroweak and hard QCD processes, and together with
the jet functions they provide the LL corrections.
We proceed to the exponentiation of the eikonal function SP . For this purpose, one has to solve
Eq. (3.38) in order to evolve the soft function to the common refactorization scales:

SP

(

N,
M2

µ2aN
2
,
M2

µ2bN
2

)

= SP (N, 1, 1) exp





∑

i=a,b

ˆ M2

N2

µ2
i

dq2

q2
Re
[

ΓS,i

(

αs(q
2)
)]



 (3.41)

Here, ΓS has been split up into two parts ΓS,a + ΓS,b, which correspond to the two different
factorization scales µa and µb. The exponentiation of the parton densities and the jet functions
is achieved in a similar way, i.e. through solving Eq. (3.32).
Finally, we find for the resummed scattering function:

σ̄P,res

(

N,M2,
M2

µ2a
,
M2

µ2b

)

= HP

(

M2,
M2

µ2a
,
M2

µ2b

)

exp

[

GP

(

N,
M2

µ2a
,
M2

µ2b

)]

×SP (N, 1, 1) exp





∑

i=a,b

ˆ M2

N2

µ2
i

dq2

q2
Re
[

ΓS,i

(

αs(q
2)
)]



+O
(

1

N

)

, (3.42)

where HP has been redefined after the absorption of N -independent terms, and where the func-
tion

GP

(

N,
M2

µ2a
,
M2

µ2b

)

=
∑

i

Ei(N) +
∑

j

E′j(N) (3.43)

consists of

Ei(N) =

ˆ 1

0
dz

zN−1 − 1

1− z

{

ˆ (1−z)2M2

µ2
i

dq2

q2
Ai

(

αs(q
2)
)

− νi
(

αs

(

(1− z)2M2
))

}

(3.44)

and

E′j(N) =

{

ˆ (1−z)M2

(1−z)2M2

dq2

q2
Aj

(

αs(q
2)
)

−Bj

(

αs

(

(1− z)M2
))

− νj
(

αs

(

(1− z)2M2
))

}

. (3.45)

These functions arise from the scale evolution of the parton densities and the jet functions. They
correspond to the logarithms of so-called radiation factors. i in the first expression runs over
the initial partons a and b, and the Ai collect initial state contributions from soft gluons which
are collinearly radiated off the parton a and b, respectively. Ai is given by the coefficient of the
plus distribution in the Pii(z) splitting function. The sum over j in Eq. (3.45) is related to
the final state partons c and d, and it only appears if the latter are massless quarks or gluons.
Consequently, Aj and Bj take into account collinear final-state emission. νi and νj collect large-
angle radiation effects. The difference in the scale dependences in the arguments of B and D as
well as in the integration bounds is due to hard scattering kinematics, which affect in a different
way initial- or final-state radiation and soft or collinear emission. Note that all radiative factors
are renormalization-group-invariant quantities. An explicit µR-dependence only appears, if the
expressions are truncated to a certain logarithmic degree, as will become visible below [50].
However, the expressions of Eqs. (3.44) and (3.45) are ill-defined, as the outer integrations make
z to take any value between 0 and 1; the latter means that the scale q2 in the second integral is
forced to reach zero and thereby passes the Landau pole of αs(q

2). One can avoid this problem
in actual calculations by expanding the inner integral in powers of αs and evaluating the Mellin
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3. Threshold resummation

transform separately at each order. Taking the large N limit and resumming the power series
then leads to a finite result.
For all functions A, B and ν, we can now likewise perform a power series expansion in αs, finding

Ai/j =
∞
∑

n=0

(αs

2π

)n
A

(n)
i/j , Bj =

∞
∑

n=0

(αs

2π

)n
B

(n)
j , and νi/j =

∞
∑

n=0

(αs

2π

)n
ν
(n)
i/j . (3.46)

i and j can stand for a quark or a gluon, respectively. The A(n) are obtained from the coefficients
of the plus distributions in the n-loop splitting functions as mentioned before. They are calculated
to be [51]

A
(1)
f = 2Cf and A

(2)
f = 2CfK, (3.47)

with Cf = CF if f = q for quarks and anti-quarks, and Cf = CA = NC = 3 if f = g for gluons.
Analogously, we find

B(1)
q =

3

2
CF , B(1)

g =
β0
2
, (3.48)

whereas the νi and νj, which are used in [12] and correspond to the function D in [50], at lowest
order are given by

ν
(1)
f = 2Cf . (3.49)

After the integrations in Eqs. (3.44) and (3.45) have been performed, GP is rewritten as [52]

GP

(

N,
M2

µ2a
,
M2

µ2b

)

= ln(N)g
(1)
P (λ) + g

(2)
P

(

λ,
M2

µ2a
,
M2

µ2b

)

+
αs

2π
g
(3)
P

(

λ,
M2

µ2a
,
M2

µ2b

)

+O
(

α2
s

)

,

(3.50)

with λ = αs
2π

β0

2 ln(N) and

g
(l)
P (λ, . . . ) =

∞
∑

k=1

(αs

2π
ln(N)

)k
g
(l)
P,k(λ, . . . ). (3.51)

For LL accuracy, we only need the first term in Eq. (3.50), which is given by [50]

g
(1)
ab→cd(λ) =

1

2





∑

i

A
(1)
i −

∑

j

A
(1)
j



h(1)(λ) +
1

2

∑

j

A
(1)
j h(1)

(

λ

2

)

, (3.52)

where

h(1)(λ) =
2

β0λ
[2λ+ (1− 2λ) ln(1− 2λ)] . (3.53)

If NLL accuracy is desired, we also have to evaluate

g
(2)
ab→cd

(

N,
M2

µ2a
,
M2

µ2b

)

=
1

2





∑

i

A
(1)
i −

∑

j

A
(1)
j



h(2)(λ) +
∑

j

A
(1)
j h(2)

(

λ

2

)

−
∑

i ν
(1)
i +

∑

j ν
(1)
j

β0
ln(1− 2λ) + 2

∑

j

(

γEA
(1)
j −B

(1)
j

)

β0
ln(1− λ)

−2λ
∑

i

A
(1)
i ln

(

M2

µ2i

)

+

{

∑

iA
(1)
i

β0
[2λ+ ln(1− 2λ)]

+

∑

j A
(1)
j

β0
[2 ln(1− λ) + ln(1− 2λ)]

}

ln

(

M2

µ2R

)

, (3.54)
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with the auxiliary function

h(2)(λ) = 2
β1
β30

[

2λ+ ln(1− 2λ) +
1

2
ln2(1− 2λ)

]

− 4γE
β0

ln(1− 2λ)− 4K

β20
[2λ+ ln(1− 2λ)] .

(3.55)

Note that although the factorization scale dependence only showed up in Eq. (3.54) and otherwise
has been omitted so far, it has always been present in the running of αs. Its explicit appearance
is due to the truncation of the logarithmic series in Eq. (3.50).
The comparison of Eq. (3.42) (after the replacement HP ↔ HP ) and the power series expansion
of SP with the one of the hard scattering function σ̄,

σ̄P,res

(

N,M2,
M2

µ2a
,
M2

µ2b

)

= αkαm
s

∞
∑

n=0

(αs

2π

)n
σ̄
(n)
P,res

(

N,M2,
M2

µ2a
,
M2

µ2b

)

, (3.56)

yields, as the expansion of the exponential in Eq. (3.42) is 1 at zeroth order:

H(0)
P

(

M2,
M2

µ2a
,
M2

µ2b

)

S
(0)
P = σ̄

(0)
P,res

(

M2,
M2

µ2a
,
M2

µ2b

)

, (3.57)

where αkαm
s σ̄

(0)
P,res represents the Born cross section, which is just as S

(0)
P and HP N -independent.

Consequently, HP will be z-independent in physical space. Thus, the next higher order coefficient

H(1)
P will correspond to the virtual NLO corrections, but also to the contributions of the NLO

real corrections which are proportional to δ(1− z). The latter can be found e.g. in the splitting
functions (2.113) and (2.114).
If we write Eq. (3.42) as a series in αs and use GP at LL accuracy, we obtain, suppressing any
scale dependence in the arguments:

σ̄LLP

αkαm
s

(N) = H(0)
P S

(0)
P +

αs

2π







H(0)
P S

(0)
P





∑

i

Ai +
1

2

∑

j

Aj



 ln2(N)

+H(1)
P S

(0)
P +H(0)

P S
(1)
P +O (ln(N))







+O
(

α2
s

)

. (3.58)

Here, only the coefficients of the highest powers of ln(N) are exact, i.e. the contributions of
ln2(N) at order αs and those of ln4(N) at order α2

s. All other contributions will change if we

proceed to NLL accuracy, that is, if we take into account also g
(2)
P :

σ̄NLL
P

αkαm
s

(N) =H(0)
P S

(0)
P +

αs

2π







H(0)
P S

(0)
P









∑

i

Ai +
1

2

∑

j

Aj



 ln2(N)

+





∑

i

Ai

(

2γE − β0 ln

(

M2

µ2i

))

+
∑

j

(

Bj − 3γEAj − 2Aj ln

(

M2

µ2R

))

+
∑

i

ν
(1)
i +

∑

j

ν
(1)
j + 2γE



 ln(N)



+H(1)
P S

(0)
P +H(0)

P S
(1)
P







+ O
(

α2
s

)

. (3.59)

With the latter expression, we have found the complete resummed partonic cross section in the
soft limit up to NLO. In general, one can obtain all logarithmically enhanced contributions of
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3. Threshold resummation

Log. approx. g
(k)
P up to (HPSP )

(m) up to accuracy: αn
s ln

l(N)

LL k = 1 m = 0 l = 2n

NLL k = 2 m = 1 2(n− 1) ≤ l ≤ 2n

NNLL k = 3 m = 2 2(n− 2) ≤ l ≤ 2n

Table 3: Orders of logarithmic approximations and accurately predicted contributions.

order lnl(N) with 2(n− p) ≤ l ≤ 2n to a fixed order calculation at αn
s with the expansion of the

resummed cross section at NpLL level up to the same order in αs, as is also shown in Tab. 3 for
the first few orders.
After resumming the cross section in Mellin space, we need to transform the result back to
physical z space. However, the inverse Mellin transform of Eq. (3.42) is not defined because of
singularities arising in the exponent at λ = 1 and λ = 0. The former is reached at

NL = exp

(

4π

αsβ0

)

, (3.60)

which represents the Landau pole in N space. In order to perform the necessary integration, one
has to find a prescription that avoids the divergence and that allows to construct a resummed
expression to which the divergent series is asymptotic. In the minimal prescription [53, 14, 54],

σ̄P,res

(

z,M2,
M2

µ2a
,
M2

µ2b

)

=
1

2πi

ˆ CMP+i∞

CMP−i∞
dN z−N σ̄P,res

(

N,M2,
M2

µ2a
,
M2

µ2b

)

, (3.61)

one opts for an integration path in the complex N plane, chosen such that it passes to the left of
the Landau pole and to the right of all other singularities of the integrand (see Fig. 3.2). Then,
the Mellin inversion can be realized order by order in αs(M

2). The slope of the path exhibited
in the graphic can be varied in order to achieve numerical stability of the calculation. Of course,
the final result has to be independent of the choice of slope, which has been shown in [53].
If an integration prescription has been found, one has to match the resummed hard scattering
function to the fixed order calculation of interest. Usually, the NLL resummed result is matched
to the NLO cross section, whereas NNLL contributions are added to a NNLO calculation in such
a way that double-counting of logarithmic terms is avoided. Thus, one subtracts from the full
resummed result its first orders in αs up to the fixed calculation order:

σ̄N
nLO

NpLL (z, . . . ) = αkαm
s





n
∑

j=0

(αs

2π

)j
σ̄
(j)
P (z, . . . )

+
1

2πi

ˆ CMP+i∞

CMP−i∞
dN z−N



σ̄NpLL (N, . . . )−
n
∑

j=0

(αs

2π

)j
σ̄
(j)
NpLL(N, . . . )







 . (3.62)

3.3. NNLO master formula for soft and virtual corrections

Expressions like Eq. (3.59), if kept general throughout the evaluation, can be used to find
master formulæ for soft and virtual corrections at desired order for any hard 2 → 2 process. In
the following, we will sketch the derivation of such a formula for NNLO corrections stemming
from threshold resummation, as it was done in [12, 46, 55].
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Im(N)

Re(N)
c NL

b bbb

Figure 3.2: Integration path for the minimal prescription; the dots on the real axis indicate
singularities, thick lines are evidence of a branch cut.

As we are interested in one-jet inclusive cross sections, we introduce a new threshold variable
which is very suitable to describe this kind of kinematics:

s4 = s+ t+ u, (3.63)

where t and u are defined with respect to the momentum pJ of the observed jet, measures the
invariant mass of the system recoiling against the jet and thus becomes zero at threshold if all
particle involved are massless. Analogously, we define its hadronic counterpart,

S4 = S + T + U, (3.64)

with the hadronic Mandelstam variables

S =
s

xaxb
, T =

t

xa
and U =

u

xb
, (3.65)

which lead us directly to the relation

S4
S

= −(1− xa)
u

s
− (1− xb)

t

s
+
s4
s

≡ wa

(−u
M2

)

+ wb

( −t
M2

)

+ (wJ + wS)
s

M2
. (3.66)

In the second line, we defined the weights wa, wb, wJ and wS for later use, with M2 being any
hard scale of the process under consideration, e.g. the jet transverse momentum pT . The plus
distributions that have to be resummed then take the form

Dl(s4) =

[

ln
(

s4
M2

)

s4

]

+

. (3.67)

Their definition is

ˆ M2

0
ds4 [f(s4)]+ g(s4) =

ˆ M2

0
ds4f(s4) [g(s4)− g(0)] , (3.68)

requiring a smooth function g(s4). Also, the transformation to moment space will change:

f̃(N) =

ˆ ∞

0

ds4
s
e−N

s4
s f(s4). (3.69)
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3. Threshold resummation

With these ingredients, we can perform the transformation of the factorized partonic cross section
with respect to the hadronic threshold variable S4; using also the first line of Eq. (3.66), we obtain
[45]

ˆ

dS4
S
eN

S4
S EJ

d3σ̂ab→cd

d3pJ
=

ˆ

dxae
−Na(1−xa)

M2

s φa/a
(

xa, µ
2
a

)

ˆ

dxbe
−Nb(1−xb)

M2

s φb/b
(

xb, µ
2
b

)

ˆ

ds4
s
e−Nj

s4
s

M2

s EJ
d3σ̄ab→cd

d3pJ

(

s4, s,
s

µ2a
,
s

µ2b

)

≡φa/a
(

Na, µ
2
a

)

φb/b
(

Nb, µ
2
b

)

EJ
d3σ̄ab→cd

d3pJ

(

Nj , s,
s

µ2a
,
s

µ2b

)

. (3.70)

Here, the φi/i are the parton-in-parton distributions analogous to Eq. (3.22), and we neglect
again the parton mixing contributions which will become small in the large-N limit for the
reasons discussed in the previous section. Furthermore, we used s as the hard scattering scale,
and we introduced the moments

Na ≡ −ta
M2

N, Nb ≡
−tb
M2

N, and Nj ≡
s

M2
N (3.71)

with ta = u and tb = t, which are characteristic for the underlying one-jet inclusive kinematics.
The jet energy is refered to as EJ .
Alternatively, before performing the Mellin transform, one can refactorize the partonic cross
section according to the weights we specified in Eq. (3.66). At fixed S4, we find

EJ
d3σ̂ab→cd

d3pJ
= H

(

s,
s

µ2a
,
s

µ2b

)
ˆ

dwadwbdwJdwS Ψa/a

(

wa,
s

µ2a

)

Ψb/b

(

wb,
s

µ2b

)

× J (c) (wJ , s) J
(d) (wJ , s)S

(

w2
Ss

µ2a
,
w2
Ss

µ2b

)

× δ

(

S4
S

− wa

(−u
s

)

− wb

(−t
s

)

− wJ − wS

)

. (3.72)

Note that from now on, we will omit the process-dependent index of H and S for the sake of
clarity. The transition to Mellin space for the last expression is realized as follows:

ˆ

dS4
S
eN

S4
S EJ

d3σ̂ab→cd

d3pJ
=H

(

s,
s

µ2a
,
s

µ2b

)
ˆ

dwae
−waNaΨa/a

(

wa,
s

µ2a

)

×
ˆ

dwbe
−wbNbΨb/b

(

wb,
s

µ2b

)
ˆ

dwJe
−wJNjJ (c) (wJ , s)

× J (d) (wJ , s)

ˆ

dwSe
−wSNjS

(

w2
Ss

µ2a
,
w2
Ss

µ2b

)

≡H

(

s,
s

µ2a
,
s

µ2b

)

Ψa/a

(

Na,
s

µ2a

)

Ψb/b

(

Nb,
s

µ2b

)

× J (c) (Nj , s) J
(d) (Nj, s)S

(

s

Ñ2
j µ

2
a

,
s

Ñ2
j µ

2
b

)

, (3.73)

using Ñj = Nje
γE as shorthand notation. The combination of Eqs. (3.70) and (3.73) then yields

EJ
d3σ̄ab→cd

d3pJ
(N) =

Ψa/a (Na)Ψb/b (Nb)

φa/a (Na)φb/b (Nb)
J (c) (Nj)J

(d) (Nj)H S

(

s

Ñ2
j µ

2
a

,
s

Ñ2
j µ

2
b

)

, (3.74)
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where we hid the factorization scale dependence in the arguments of all functions besides S.
Exponentiation now works just as in the previous section. The parton distribution function are
evaluated at the common scale s:

Ψi/i (Ni, 1)

φi/i (Ni, s)
= Ri (αs (s)) exp

[

Ẽi(Ni)
]

(3.75)

and

Ẽi(Ni) =

ˆ 1

0
dz

zNi−1 − 1

1− z

{

ˆ (1−z)2s

s

dq2

q2
Ai

(

αs(q
2)
)

− νi
(

αs

(

(1− z)2s
))

}

(3.76)

in the MS scheme. Ri is an N -independent function of the coupling and can at lowest order
considered to be unity through normalization. Eq. (3.76) has to be evoluted to the factorization
scale unless we want to set µi = s everywhere. The evolution of Ψi/i and φi/i has already been
specified in Eq. (3.32) and (3.33) and leads us to

Ẽi(Ni) = Ei(Ni) +

ˆ s

µ2
i

dq2

q2

[

αs

(

q2
)

2π
γ
(1)
i + γ′

(2)
i/i

(

αs

(

q2
))

]

(3.77)

Ei(Ni) is obtained from Eq. (3.44) by replacingM2 by s, whereas γ′
(2)
i/i denotes theN -independent

two-loop contributions of γi/i, which are given by Eqs. (3.34) and (3.35), respectively. The fact
that we need only a part of both γi and γi/i is due to the specific form in which we cast our
resummed cross sections. Since this leaves the integration in Eq. (3.77) independent of N , the
corresponding term has been included in the hard function in Eq. (3.42) and did not show up
explicitly there.
In [12], hard and soft function H and S are considered to be matrices in the space of colour
exchanges, whose components in the following will be indicated by capital roman letters. The
dimension of the matrices depends on the colour flow of the hard scattering process. We dis-
tinguish simple colour flow as in the direct photoproduction processes, in which at least one
colourless particle is involved, and complex flow if the Born process is purely partonic. In the
simple case, H, S and ΓS reduce to 1× 1 matrices; the most complex case is gg → gg, providing
8 colour dimensions.
The evolution of the soft matrix S is fixed by the RGE [49]

µR
d

dµR
SKL = −Γ†S,KMSML − SKMΓS,ML, (3.78)

with ΓS now being the soft anomalous dimension matrix, which is calculated at one-loop order
for all hard scattering processes of our interest in [56]. For the evolution of the soft matrix S
from s

N2 to s we find

S

(

s

Ñ2
j µ

2
a

,
s

Ñ2
j µ

2
b

)

= P̄ exp

[

1

2

ˆ s/Ñ2
j

s

dq2

q2
Γ′S
† (
αs

(

q2
))

]

S̃

(

αs

(

s

Ñ2
j

))

×P exp

[

1

2

ˆ s/Ñj

s

dq2

q2
Γ′S
(

αs

(

q2
))

]

. (3.79)

We get Γ′S from ΓS by dropping gauge-dependent terms. This is allowed, since the gauge de-
pendence has shown to cancel out in the final result. The symbol P refers to path-ordering in
the sense of the integration variable q2 in the following exponential, i.e. Γ′S(s) is ordered to
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3. Threshold resummation

the far right, whereas Γ′S

(

s/Ñ2
j

)

will end up on the far left. As one would expect, P̄ denotes

path-ordering in the opposite sense. Path-ordering can be omitted if the Γ′S are diagonalized,
which, however, in the case of complex colour flow can be very complicated.
If we rewrite the hard matrix according to its renormalization properties as

H (αs (s)) = H
(

αs(µ
2
R)
)

exp

[

dαs

ˆ s

µ2
R

dq2

q2
β
(

αs(q
2)
)

]

, (3.80)

where dαs counts the number of QCD vertices in the underlying hard scattering process and is
equal to m in Eq. (3.30), we can unite our previous results to [12]

σ̄res(N) = exp

[

∑

i

Ei(Ni)

]

exp





∑

j

E′j(Nj)





× exp

[

∑

i

ˆ s

µ2
i

dq2

q2

(

αs(q
2)

2π
γ
(1)
i + γ′i/i

(

αs(q
2)
)

)

]

exp

[

dαs

ˆ s

µ2
R

q2

q2
β
(

αs(q
2)
)

]

× Tr

{

H
(

αs(µ
2
R)
)

P̄ exp

[

ˆ s/Ñ2
j

s

dq2

q2
Γ′S
† (
αs(q

2)
)

]

S̃

(

αs

(

s

Ñ2
j

))

×P exp

[

ˆ s/Ñj

s

dq2

q2
Γ′S
(

αs(q
2)
)

]}

, (3.81)

which is the complete expression for the resummed cross section. Here, E′j(Nj) is the same as in

Eq. (3.45) after exchanging M2 for s, and the trace is supposed to be taken in colour space.
The expansion of Eq. (3.81) finally yields the desired master formulæ. At NLO, the soft and
virtual corrections from threshold resummation are given by

σ̄
(1)
ab→cd = σBab→cd

αs

(

µ2R
)

π
{c3D1 (s4) + c2D0 (s4) + c1δ (s4)} (3.82)

and

σ̄
(1)
ab→cd = σBab→cd

αs

(

µ2R
)

π
{c3D1 (s4) + c2D0 (s4) + c1δ (s4)}+

α
dαs+1
s

(

µ2R
)

π
AcD0 (s4) (3.83)

for simple and complex colour flow, respectively. While the Dl distributions have already been
defined in Eq. (3.67), the newly introduced abbreviations are

c3 = 2
∑

i

Cf,i −
∑

j

Cf,j, (3.84)

where as always i runs over initial and j over final state massless partons,

c2 = 2Re
(

Γ′
(1)
S

)

−
∑

i

[

Cf,i + 2Cf,i ln

(−ti
M2

)

+ Cf,i ln

(

µ2i
s

)]

−
∑

j

[

Cf,j +
1

2
B

(1)
j + Cf,j ln

(

M2

s

)]

, (3.85)

of which the first term is only needed for simple colour flow, in which Ac is absent, and

cµ1 =
∑

i

[

Cf,i ln

(−ti
M2

)

− 1

2
γ
(1)
i

]

+ dαs

β0
4

ln

(

µ2R
s

)

. (3.86)
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3.3. NNLO master formula for soft and virtual corrections

Note that c1 = cµ1 + T1, with T1 collecting all renormalization- and factorization-scale-indepen-
dent terms from the full NLO virtual corrections, divided of course by the corresponding Born
cross section; the latter is given by

σB = Tr
(

H(0)S(0)
)

, (3.87)

analogous to Eq. (3.57). Lastly, we specify

Ac = Tr

(

H(0)Γ′
(1)
S

†
S(0) +H(0)S(0)Γ′

(1)
S

)

. (3.88)

These results are compared to the ones in [7] in the following section. For now, we will proceed

to the NNLO formula, which is obtained from the expansion of Eq. (3.81) to order α
dαs+2
s and

matching to the full NLO soft plus virtual result. For simple colour flow, we find

σ̄
(2)
ab→cd =

1

2
c23D3 (s4) +





3

2
c3 c2 −

β0
4
c3 +

∑

j

Cfj

β0
8



D2 (s4)

+







c3 c1 + c22 − ζ2 c
2
3 −

β0
2
T2 +

β0
4
c3 ln

(

µ2R
s

)

+
∑

i

Cf,iK

+
∑

j

Cf,j

[

−K
2

+
β0
4

ln

(

M2

s

)]

−
∑

j

β0
8
B

(1)
j







D1 (s4)

+







c2 c1 − ζ2 c2 c3 + ζ3 c
2
3 −

β0
2
T1 +

β0
4
c2 ln

(

µ2R
s

)

+ 2ReΓ′
(2)
S − 1

4

∑

i

ν
(2)
i

+
∑

i

Cf,i

[

β0
8

ln2
(

µ2i
s

)

− K

2
ln

(

µ2i
s

)

−K ln

(−ti
M2

)]

− 1

4

∑

j

(

B
(2)
j + ν

(2)
j

)

+
∑

j

Cf,j

[

β0
8

ln2
(

M2

s

)

− K

2
ln

(

M2

s

)]

−
∑

j

β0
8
B

(1)
j ln

(

M2

s

)







D0 (s4)

+







1

2
c21 −

ζ2
2
c22 +

1

4
ζ22 c

2
3 + ζ3 c3 c2 −

3

4
ζ4 c

2
3 +

β0
4
c1 ln

(

µ2R
s

)

+ 2ReΓ′
(2)
S ln

(

M2

s

)

− β0
2
T1 ln

(

M2

s

)

+
β0
4
T2 ln

2

(

M2

s

)

+
dαs

16

[

−β
2
0

2
ln2
(

µ2R
s

)

+ β1 ln

(

µ2R
s

)]

+
∑

i

β0
16

[

γ
(1)
i − 2Cf,i ln

(−ti
M2

)]

ln2
(

µ2i
s

)

+
∑

i

Cf,i
K

2
ln

(−ti
M2

)

ln

(

µ2i
s

)

−
∑

i

γ′
(2)
i/i ln

(

µ2i
s

)

+
∑

i

Cf,i

[

β0
6

ln3
(−ti
M2

)

+

(

β0
4

+
K

2

)

ln2
(−ti
M2

)]

+
∑

i

Cf,i
β0
2

ln

(

M2

s

)[

ln2
(−ti
M2

)

− ln

(−ti
M2

)

ln

(

M2

s

)

− 1

2
ln

(

M2

s

)

+ ln

(−ti
M2

)]

+
1

4

∑

i

ν
(2)
i ln

(−ti
M2

)

− 1

4

∑

j

(

B
(2)
j + ν

(2)
j

)

ln

(

M2

s

)

+
∑

j

[

β0
8
Cf,j ln

(

M2

s

)

− K

4
Cf,j −

β0
16
B

(1)
j

]

ln2
(

M2

s

)

+R







δ (s4) , (3.89)
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with ζ4 =
π4

96 . The other two-loop functions are partly derived in [12].
In the case of complex color flow, we have

σ̄
(2)
ab→cd = σ̄

(2)
simple +

α
dαs+2
s (µ2R)

π2

{

3

2
c3A

cD2 (s4) +

[(

2c2 −
β0
2

)

Ac + F

]

D1 (s4)

+

[(

c1 − ζ2c3 +
β0
4

ln

(

µ2R
s

))

Ac + F ln

(

M2

s

)

+G

]

D0 (s4)

+

[

(ζ3c3 − ζ2c2)A
c +

1

2

(

ln2
(

M2

s

)

− ζ2

)

F +
β0
4
Ac ln2

(

M2

s

)

+G ln

(

M2

s

)

+Rc

]

δ (s4)

}

, (3.90)

where we defined

F = Tr

[

H(0)
(

Γ′
(1) †
S

)2
S(0) +H(0)S(0)

(

Γ′
(1)
S

)2
+ 2H(0)Γ′

(1) †
S S(0)Γ′

(1)
S

]

, (3.91)

G =Tr
(

H(1)Γ′
(1) †
S S(0) +H(1)S(0)Γ′

(1)
S +H(0)Γ′

(1) †
S S(1) +H(0)S(1)Γ′

(1)
S

+H(0)Γ′
(2) †
S S(0) +H(0)S(0)Γ′

(2)
S

)

(3.92)

and

Rc = Tr
(

H(2)S(0) +H(0)S(2) +H(1)S(1)
)

− 1

2
T 2
1 . (3.93)

After dropping all Γ′S-dependent terms and R, σ̄
(2)
simple is obtained from Eq. (3.89). As mentioned

before, the one-loop anomalous dimension matrices can be found in [56], the two-loop functions
for 2 → n processes then are simply related to these results by [57]

Γ′
(2)
S =

K

2
Γ′

(1)
S . (3.94)

The higher order matrices of H and S, however, are more difficult to find.
With the master formula whose derivation we sketched above, we can in principle calculate
soft and virtual corrections at NNLO to any process of interest, and therefore also improve the
calculations that have been done in [7]. As far as we know, these will be the first results on
photoproduction beyond NLO. But before passing the border to NNLO, we compare in the last
section of this chapter the outcome of Eqs. (3.82) and (3.83) with the corresponding terms in
[7], in order to see if the different approaches applied lead to the same results.

3.4. Comparison of NLO results

The first step towards a reasonable comparison of the NLO corrections calculated by Klasen and
Kramer [7] and the results obtained by the NLO master formula from the previous section is
to perform a variable transformation, since the threshold variables to be integrated over are not
the same in both cases. Whereas Kidonakis [12] uses s4 as defined in Eq. (3.63), which becomes
zero at threshold, the corresponding variable implemented in [7] is z and closely related to the
threshold variable in Secs. 3.1 and 3.2. However, if we want to stay in one-particle inclusive
kinematics, we have to introduce two independent threshold variables za and zb corresponding to
the initial partons a and b, as was done in Sec. 2.6. Therefore, the occurring plus distributions
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3.4. Comparison of NLO results

will have a slightly different shape, which will also depend on to which initial particle they are
assigned to.
We have in the prescription of Klasen and Kramer [7]

s4 = s+ t+ u = 2papb − 2pap1 − 2pbp1 = 2p2p3 = −s
′

zi

t′i
s′
(1− zi), (3.95)

where the t′i for i = a, b are specified below Eq. (3.71), and thus

ds4 = t′i
dzi
z2i
. (3.96)

Note that the Mandelstam variables s′, t′ and u′ are used here in the sense of [7] and also Sec.
2.3.2, where they are calculated “backwards”, i.e. from jet transverse momenta and rapidities; for
this reason, they are always defined within the hard 2 → 2 subprocess. They fulfill s′+t′+u′ = 0
by definition, which is why we do not have s4 = s′ + t′ + u′ in the present case. Nonetheless, at
NLO at least one of za and zb is equal to one, and it happens that the t′i here are just the same
as the ti in the previous section. In general, we have

s =
s′

zazb
, t =

t′

za
and u =

u′

zb
, (3.97)

whereas at threshold of course both variable sets match. At this point it should be mentioned
that the Born cross section σB , whenever it appears in the formulæ of Sec. 3.3, should be
evaluated at threshold or using the primed variables, even if the terms it is multiplied with are
integrated.
If we introduce

ua ≡ t =
u′a
za
, ub ≡ u =

u′b
zb

(3.98)

the transformation of the Dl(s4) can be written as follows:

ˆ smax
4

0
ds4 Dl(s4) ≡

ˆ smax
4

0
ds4





lnl
(

s4
p2T

)

s4





+

=

ˆ xi

1
ti
dzi
z2i

[

zi
ti(zi − 1)

lnl
(−s
ui

1− zi
zi

)]

+

=

ˆ 1

xi

dzi
z2i

[

zi
(1− zi)

lnl
(−s
ui

1− zi
zi

)]

+

=

ˆ 1

xi

dzi
z2i











lnl
(

−s
ui

1−zi
zi

)

(1− zi)





+

− lnl
(−s
ui

1− zi
zi

)







. (3.99)

Here, we took the definition of Eq. (3.67) and inserted M2 = p2T = tu
s = t′u′

s′ , as is common for
jet cross sections. Next, the delta function is rewritten as

ˆ smax
4

0
ds4 δ(s4) =

ˆ xi

1
ti
dzi
z2i

1

|ti|
δ(1 − zi) =

ˆ 1

xi

dzi
z2i
δ(1 − zi). (3.100)

The upper integration bound smax
4 in principle should be p2T . For our purposes, we chose

smax
4 ≡ ti

xi − 1

xi
, (3.101)
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3. Threshold resummation

reproducing thereby the lower bound xi in [7], where it arises due to the fact that in the occurring
integrals we have the convoluted particle distribution functions with argument xi

zi
, which cannot

become larger than 1 (see also the discussion in Sec. 2.6). This restriction, however, only affects
the part of the distribution, in which the regularizing function is zi-dependent. In particular, we
have

ˆ 1

0
dzi [f(zi)]+g(zi) =

ˆ 1

xi

dz f(z)F

(

xi
zi

)

−
ˆ 1

0
dz f(zi)F (xi). (3.102)

For numerical integration it is convenient to use xi and 1 as boundaries for both integrals in Eq.
(3.102). The remaining part of the second integral,

ˆ xi

0
dz f(z)F (xi), (3.103)

can be calculated analytically (e.g., using Mathematica) and is therefore treated separately. The
explicit results for these extra-terms can be found in Appx. B.

3.4.1. Simple colour flow

Now, that we have fixed the transformation prescription, we can juxtapose the different results.
We restrict ourselves at first to the case of direct photoproduction, where the expressions are less
lengthy due to the fact that the colour factors Cf in Eqs. (3.84)-(3.86) vanish for the colourless
photon. Thus, Eq. (3.82) does not take into account contributions from the collinear splitting
of a photon into a quark anti-quark pair, and the corresponding factorization scale µa will not
appear in the formulæ. For the QCD Compton scattering process, the virtual corrections given
by Klasen and Kramer [7] are

V̄γq→gq(s, t, u) = σB
αS

π

{

CF

[

π2

3
− 7

2
+

1

2
ln2
(

t

u

)]

−NC

[

π2

12
+

1

4
ln2
(

t

u

)]

+
β0
4

ln

(

µ2R
s

)}

+ . . . , (3.104)

stating here only the terms proportional to σB (see Eq. (2.52)). In the NLO master formula, the
virtual corrections correspond to the coefficient c1, whose scale-dependent part for this specific
process takes the form

cµ1,γq = −
[

CF ln

(−u
s

)

+
3

4
CF

]

ln

(

µ2b
s

)

+
β0
4

ln

(

µ2R
s

)

. (3.105)

c3, c2, c
µ
1 and Ac are given for all relevant processes in Appx. A. The scale-independent terms

in Eq. (3.105), which are grouped in T1, are not specified in [12] and have to be taken from an
external full NLO calculation anyway. We see that the renormalization-scale-dependent term in
Eq. (3.104) is reproduced, whereas the additional terms would be assigned to T1 and therefore
do not appear in Eq. (3.105). In the latter expression, also factorization-scale-dependent terms
occur. They can partly be identified with delta contributions from the splitting functions, which
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in [7] are included in the initial state corrections for the proton,

J̄γq→gq(s
′, t′, u′) =

ˆ 1

Xb

dzb
zb

αS

π

{

CF

[

2

(

ln(1− zb)

1− zb

)

+

+

(

ln

(−t′
s′

)

− 1 + z2b
2

ln

(

µ2b
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))

×
(

1

1− zb

)

+

− 2

(

ln(zb)
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)

+

+ δ(1 − zb)

(

1

4
ln2
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s′

)

+
π2

2
− 3

4
ln

(

µ2b
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1− zb
2

− 1

2
ln

(

−t′
s′

(

1− zb
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)2
)]

−NC

[

1

2
ln

(

u′

t′

)

+
1

2
ln

(

t′

u′

)(

1

1− zb

)

+

+δ(1− zb)

(

1

8
ln2
(−t′
s′

)

− 1

8
ln2
(−u′
s′

))]}

σB + . . . . (3.106)

Here, only terms not including the phase space slicing cut parameter have been taken into ac-
count. Furthermore, parton mixing contributions have been neglected, as has been done for
the derivation of the master formula. In the second line, at least one of the two factorization-
scale-dependent terms of Eq. (3.105) is found. However, the missing part, which according to
Kidonakis [12] is exclusively for one-particle-inclusive kinematics, is absent for all processes in
[7].
By Eq. (3.106), we also gave all terms from QCD Compton scattering in [7] which are propor-
tional to plus distributions. They should be compared to the expressions arising from the c3 and
c2 coefficients in Eq. (3.82). For the process under consideration, we find

ˆ

ds4 c3,γq D1(s4) =

ˆ 1

Xb

dzb
z2b

(CF −NC)

{(

ln(1− zb)

1− zb

)

+

−
(

ln(zb)

1− zb

)

+

− ln

(−u′
s′

)(

1

1− zb

)

+

− ln

(−u′
s′

1− zb
zb

)}

(3.107)

and
ˆ

ds4 c2,γq D0(s4) =

ˆ 1

Xb

dzb
z2b

[

−CF ln

(

µ2b
s′

)

+ 4CF ln

(−u′
s′

)

− 3

4
CF − β0

4

+NC ln

(

t′

u′

)

− (CF +NC) ln

(

t′u′

s′2

)

− 2CF ln(zb)

]{(

1

1− zb

)

+

− 1

}

. (3.108)

As becomes obvious in this form, the leading logarithms do not coincide. If we exchange t′ and
u′ in Eq. (3.107) and (3.108), several of the subleading distribution terms in Eq. (3.106) are
reproduced apart from a factor 1

2 . Interestingly, all (quasi)matching contributions in Eq. (3.108)
stem from the 2Re(Γ′S) part in Eq. (3.85). Note that in our numerical calculations we will not
distinguish between the primed and unprimed Mandelstam variables so that the final ln(zi) term
in c2 will be omitted.
The observations made while comparing the different results for the boson gluon fusion process
are basically the same: At LL level the different outcomes do not match, at subleading level a
part of the terms can be identified, which again are linked to Γ′S and miss a factor of 1

2 . Also,
cµ1 is reproduced in parts just as in the previous example. Nevertheless, it stays unclear how to
treat the different powers of zb that stick to the differential.

3.4.2. Complex colour flow

Before closing this chapter, we will extend our comparison on the resolved processes. In partic-
ular, we will consider the scattering of two quarks which have different flavour. The fact that all
partons involved are quarks, makes c3, c2 and c1 symmetric in a and b; an exception form the ti,
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3. Threshold resummation

which of course are different for a and b, but which do not have an equivalent in the results of [7]
anyway. There, correspondingly, the initial state corrections for the the resolved photon and the
proton are the same functions in za and zb, respectively. Thus, we give the following expressions
only for parton a, starting with

cµ,a1,qq′ = −CF

[

ln

(−t
s

)

+
3

4

]

ln

(

µ2a
s

)

+
β0
4

ln

(

µ2R
s

)

, (3.109)

which again can be found in the virtual corrections (in the case of the last term) and as a delta
term in the initial state corrections of [7]:

J̄qq′→qq′(s
′, t′, u′) =
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dza
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+
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+
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+

+
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+

+
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)
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]}

σB + . . . ,

(3.110)

where cut-parameter-dependent contributions and those related to parton mixing have been
omitted. The plus distributions in this equation are compared to

ˆ

ds4 c
a
3,qq′ D1(s4) =

ˆ 1

Xa

dza
z2a
CF

{(
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)

+
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(
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)

+
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+
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(3.111)

and

ˆ

ds4

(

ca2,qq′ +
Ac

σB

)

D0(s4) =
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[
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. (3.112)

Just as before, the expressions in Eqs. (3.110) and (3.111) do not coincide at LL level, although
the difference in this case is merely a factor 2. The analogy to 2Re(Γ′S) in the simple colour flow
is Ac for the complex flow, as it provides additional D0 contributions. Since for this process, Ac

is also completely proportional to the Born cross section, it has been included in Eq. (3.112).
Again, it are these terms, which can also be identified in Eq. (3.110) apart from the usual factor
of 1

2 . This becomes visible after replacing 2CF −NC in latter equation by − 1
NC

.
In spite of some open questions this comparison leaves us with, we used the expressions given
through the NNLO master formulæ in Eqs. (3.89) and (3.90) to complement the NLO calculations
from [7]. The results are presented in the following section.
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4. Numerical implementation of the NNLO corrections

In this section, we will present the results of our NNLO calculations for direct and resolved
photoproduction, compare them to experimental data and see how the higher order contributions
affect the scale dependence of the calculated cross sections. First, we will comment on the
approach we have chosen for implementing the expressions from the previous section.

4.1. Matching the master formula with the NLO code

The basis for our calculation was the FORTRAN code by Klasen and Kramer [7], which already
provides a full fixed order NLO calculation for electron-proton as well as for proton-proton
collisions. It uses Monte Carlo integrations, which are realized with a VEGAS routine.
In order to extend the code with NNLO contributions, the following tasks had to be accomplished:

• All quantities appearing in Eqs. (3.89) and (3.90) had to be identified for each process of
Sec. 2.3.2.

• The integration variables had to be aligned in order to be able to incorporate the additional
contributions into the existing integrations.

• The NNLO corrections had to be separated according to their relation to one of the initial
state particles, so each contribution could be integrated separately.

The first task could be solved only partly. Whereas a lot of the different coefficients and functions

are already given in [12], the two-loop functions B
(2)
j and ν

(2)
i in particular are not completely

specified and not easy to find in literature. In the case of complex colour flow, we also lack the
knowledge of the higher order matrices of H, S and Γ′S , which are merely available at lowest
order in [56] and allow only for the calculation of Ac and F in Eqs. (3.88) and (3.91). Especially
the functions G and Rc as defined in Eqs. (3.92) and (3.93), respectively, could therefore not
be evaluated. We have avoided this problem by only considering the scale-dependent terms of

the master formula (i.e. those proportional to ln
(

µ2

pT

)

with µ being either the factorization

or the renormalization scale), all of which we can doubtlessly derive. More precisely, we have
implemented the full contributions for the three highest logarithmic powers, since they are known
entirely, and we have restricted ourselves to the scale-dependent part of the terms going with
D0(s4) and δ(s4). Although the delta terms had already been reduced and are in any case
easy to treat when it comes to integration, they turned out to spoil the results by contributions
which were far too large and which of course only appeared if the scales were set different from
pT . Although we are rather sure to have reproduced the terms correctly in the code and also
compared our analytical results to the closely related case of photon production discussed in
[58], the problem could not be fixed, which is why we are neglecting in our calculations also all
expressions including δ(s4). Unfortunately, this means that we are missing all NNLO virtual
corrections.
The second and the third task to some degree refer to the same difficulty. In [12] we just have
one threshold variable, s4, which is not explicitly related to any of the particles involved in the
process. Originally, there is only one factorization scale µF commonly defined for the initial
partons a and b. Klasen and Kramer, on the contrary, distinguish two different integration
variables za and zb, as well as two different factorization scales µa and µb. Concerning the scales,
this problem is easily fixed; it has already been solved in the way we have stated the formula in
the previous section. Whenever the factorization scale appears in Eqs. (3.89) and (3.90) it can
uniquely be assigned to one of the particles a and b. However, the issues with the integration
variables are somewhat more involved. Their transformation into each other has been discussed in
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4. Numerical implementation of the NNLO corrections

Sec. 3.4. Yet the question remains, in which of the two z s4 should be transformed. It would not
be right to integrate the entire corrections using just one of za and zb, as due to convolution both
appear in the arguments of the corresponding and in general different parton densities. Hence,
we have to split up the NNLO contributions and perform at least two separate integrations. The
terms can be grouped into four different classes: First, we have the contributions that can be
clearly assigned to either a or b. They can easily be identified and stem from the sums with
index i in the master formula. In these cases, it is also very clear how the integration should be
performed, and especially which integration should be carried out. The terms which are related
to both or none of the two particles constitute the third and fourth class, respectively. Here, the
matter becomes complicated. Physically, the situation is quite clear: At NNLO, in contrast to
NLO, the emission of two gluons, possibly one from each initial particle, is allowed. Thus, we
should actually assume that both za and zb can simultaneously be different from unity, and both
integrations should be carried out, which is not possible at NLO. From Eq. (3.97), we deduce

s4 =
s′ + zbt

′ + zau
′

zazb
(4.1)

for this general case. We see from this expression that it is no longer feasible to derive a reasonable
transformation prescription for the integration over s4. In particular, it remains unclear how the
single integration can be replaced by a two-fold one.
In our search for a reasonable way to handle this problem we have tried several ways to distribute
the new terms to the existing integrations. The simplest solution was to divide the complete
NNLO contributions by two in order to integrate symmetrically over za for one half and over zb
for the other. The two factorization scales had to be distinguished within each integration.
Another possibility we have tested was to divide the different processes into two similar groups
according to the different orders of the initial particles. For example, the contributions resulting
from qg → qg would be integrated over za using solely the factorization scale µa, whereas
gq → gq would be assigned to zb and µb. The idea behind this is sketched in the following.
For qg → qg, at NLO, the initial state corrections to the s-channel diagram, neglecting parton
mixing contributions, would be the ones depicted in Fig. 4.1 a) and b), whereas for gq → gq,
we would correspondingly have the diagrams c) and d). Diagram b) exhibits a gluon radiated

a) b) c) d)

Figure 4.1: Flavour-diagonal initial state corrections.

off initial particle b and thus should be integrated over zb at the scale µb. However, if we flip
it over vertically, it equals diagram c), for which the reverse argument applies. If the flipping
does not affect the calculation of the amplitude, which is definitely correct for the underlying
Born amplitude, one could exchange the diagrams b) and c). Consequently, one would integrate
qg → qg over za and gq → gq over zb, just as stated above. Of course, when trying to transfer
this concept to NNLO amplitudes, we are faced with the old problem if we have radiation off
both initial states.
The way we have finally dealt with these issues has been to really carry out the division of the
contributions into the four classes and to assign one half of class three and four to the integrations
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4.1. Matching the master formula with the NLO code

of each za and zb. For the direct photoproduction part, the purely photon-related terms vanish.
Because here, the assignment of any terms of class three and four to the za integration, and the
consequent convolution of these terms with the photon density have led to absurdly high cross
sections, we have finally used the zb integration for the complete direct contributions.
This whole approach is certainly not entirely correct, but we may take the reasonable results
we are about to present as a justification for it. Further technical comments on the way of
implementation are given in Appx. C.
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4. Numerical implementation of the NNLO corrections

4.2. Numerical results

As a first step, we demonstrate the reliability of our calculations by reproducing existing results.
In [56], the threshold resummation formalism as presented in Sec. 3.3 has been applied to jet
production and has been tested for pp̄ collisions, which are investigated in the Tevatron storage
ring at Fermilab in Chicago. The differential cross section has been evaluated at pure NLO and
also in consideration of NNLO corrections for µR = µa = µb =

1
2ET and for all scales equal to

2ET . For our code, this task has been a check only of the part treating the resolved processes,
since in this case both incoming particles are hadrons and no photons have to be taken into
account. Our calculations using the NLO code of [7] and the new NNLO contributions have
led to the results shown in Fig. 4.2, where we use the NLO curve at µ = 1

2pT as a reference
and give the relative difference to that curve for the remaining outcomes. Note that we obtain
a plot similar to the corresponding graphic in [56], in particular, that the corrections we have
determined are of the same size, and that a similar sensitivity to scale variation can be observed
at both orders.
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Figure 4.2: NLO and NNLO calculations for inclusive jet production in pp̄ collisions at
√
S =

1.8TeV, |ηjet| ≤ 0.5, compared to data from the DØ Collaboration [59].

As a further test, we have used our code to replicate the theoretical curves in an old publication
on photoproduction of the H1 Collaboration at HERA [6], testing for a first time the direct
photon part of the code. Here, we have restricted ourselves to the calculation of the differential
cross section dσ

dET
in only one of the different kinematical ranges. In Fig. 4.3, we see that our

LO and NLO results coincide with the ones in [6]. The NNLO contributions are new and yield a
slight correction towards higher values for each data bin; thereby they amplify the tendency of
the NLO curve, which already lies above the experimental data points throughout the considered
transverse energy range. Thus, the agreement of data and theory has not been improved, but
the corrections brought by our calculations are reasonably small and, as can be seen in Fig. 4.4,
the scale dependence of the theoretical result has been reduced.
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Figure 4.3: LO, NLO and NNLO calculations for the differential inclusive jet cross sections dσ
dET

,

with
√
S = 300GeV, −1 ≤ ηjet ≤ 2.5 and 95 ≤ Wγp ≤ 285GeV, compared to H1

results [6].

Figure 4.4: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.3. The bands display the theoretical uncertainty due
to variation of both factorization scales and the renormalization scale.
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This is expected to be so, since the scale dependence in our expressions is always a consequence
of the truncation of the perturbative series at some finite order, i.e. it is an unphysical artefact.
Thus, if we collected all scale-dependent terms up to infinite order, they ought to cancel out
completely. At NNLO, we are already considering more of these scale-dependent contributions,
so that the sensitivity of the result to scale variations should be reduced. Consequently, we
expect the error band, which is spanned by the relative curves stemming from calculations at
µ = 1

2pT for the upper bound and µ = 2pT for the lower one, to be slenderer at NNLO. In
Fig. 4.4, both error bands have about the same width, but note that the NNLO band would be
narrower, if its two outer curves would be related to the central NNLO instead of the central

NLO result. The central curve is evaluated at µ = pT , which sets all ln
(

µ2

p2T

)

equal to zero. One

observes that the new terms change the NLO result constantly by around 5 percent.

Encouraged by these beginnings, we moved the focus of our interest on more recent photopro-
duction data published by the ZEUS collaboration only one year ago [3]. The theoretical NLO
curves presented there have likewise been obtained using the code of Klasen and Kramer. Start-
ing to replicate these results (see Fig. 4.5), we have encountered problems with the last data
bin, where the theoretical prediction turned out to significantly underestimate the experimental
value. In particular, the direct photon part of the cross section became negative in the high pT
regime. This problem has been fixed by increasing the phase space slicing cut parameter, which
we have finally set to 0.01. Nonetheless, the sum of direct and resolved contributions still lies
well below the data point.
An improvement of these outcomes has been achieved by adding the NNLO contributions, which
are depicted in Fig. 4.5 by the dash-dotted markers. The latter universally correct the NLO
points to higher values of the differential cross section, thereby approaching the experimental
results.
In Fig. 4.6, the scale dependences of the NLO and NNLO calculations are compared. For this
plot, just as described for Fig. 4.4, we have set all scales to a common value, which has again
been 1

2pT , pT and 2pT . While the NNLO error band displays is only slightly narrower at low
transverse energies, this trend becomes clearer towards higher pT . Furthermore, the data point
in the lowest pT bin lies within the NNLO uncertainty. The size of the relative difference between
the two central higher order results is about 3 percent in the low pT range and increases steadily
up to about 6 percent for high tranverse momenta.
Having compared the differential cross section, we also take a look at the total photoproduction
cross section, which is obtained after integrating over all bins in Fig. 4.5. Its value at different
orders of perturbation theory is given in Fig. 4.7, where we have additionally tested the scale
dependence by changing all scales from µ = 1

8pT up to µ = 8pT . As in the previous plots, it
can be seen here that the NNLO corrections are considerably smaller than the NLO corrections.
At the central scale, NLO and NNLO line are rather close together. If the scale-dependence is
reduced, the NNLO curve should exhibit a flatter trend than its lower-order counterpart, even-
tually cutting it at lower values of µ. However, such behaviour is not displayed by our results.
In fact, the NNLO result appears to be more sensitive to scale variations for small µ, whereas
we observe at least a faint improvement at high scales, as the curves drift apart a little.
So far, we have modified the three different scales µR, µa and µb simultaneously when evaluating
the sensitivity of our results to scale variation, although in general they can be chosen independ-
ently. In order to gain a deeper insight into the behaviour of certain parts of the new corrections,
and to discover possible errors in the code, it is interesting to do the same calculations as in Figs.
4.6 and 4.7 varying only one of the scales. The remaining two scales are set equal to pT , which
makes the corresponding logarithms vanish. The fact that the results presented earlier are not
as insensitive to scale variation as expected can be related to either of the three different scales;
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in the following we will check which terms are possibly spoiling the scale dependence.

The first dependence to be checked independently is the one on the renormalization scale, which
finds its way into the calculation of αs and is also present e.g. in the coefficient c1. Its variation
leads to the results depicted in Fig. 4.8. Obviously, the theoretical error increases once we move
to NNLO, especially in the lower pT regime. This may to some extent reflect the problem we
have discussed in Sec. 4, where we have stated that some of the NNLO terms are difficult to
integrate within the framework provided by the code of [7]. The µR-dependent contributions
are part of the terms not directly related to any of the initial state particles, which we have
heuristically divided into two equal halves. It seems that at this point, the latter simplification
gets back on us. Therefore, it may be advisable to search for a better solution to handle the
integration issues, which we have not been able to realize in the context of this project due to a
lack of time. Interestingly, the scale-dependence of the total cross section shown in Fig. 4.9 does
exhibit an improvement at lower scale by even cutting the NLO curve. However, at high scales,
we observe a worsening in the trend of the curve at NNLO compared to the trend at NLO, which
is probably owing to the reasons mentioned above.

Next, we have analyzed the performance of our calculations under the variation of the proton
factorization scale. Fig. 4.10 displays the corresponding results for the differential cross sections.
The central curves, needless to say, are the same as in Figs. 4.6 and 4.8, whereas the error bands
in this case were obtained by changing only µb. Here, we really achieved an improvement of
the scale dependence. Also, more experimental data points are located inside the NNLO band
than in the NLO error range. For small transverse momenta, however, both calculations fail to
describe the increase exhibited by the data. Nevertheless, we take this result as evidence for
the correctness of our calculations regarding the terms related to the proton initial state. Con-
sequently, we also note in Fig. 4.11 an improved behaviour of the total photoproduction cross
section under variation of µb. The expected cutting of the NNLO and the NLO curve is indeed
observed at low scales, and towards higher scales the trend of the NNLO line is also flattened.
Note that the overall dependence on the proton factorization scale is considerably weaker than
the dependence on the renormalization scale.

After these satisfactory results, the last scale dependence to be investigated separately is the one
on µa. For this case, the relative corrections to the differential cross section are given in Fig.
4.12. The error band embracing the central NNLO curve turns out to be significantly wider than
the corresponding band at lower order; evidently, this is contrary to the effect we were hoping
for, although the NNLO band covers most of the data points thanks to its larger extension.
Having seen the results for the proton factorization scale, one might expect to see similarly good
results for the photon scale, since according to the discussion on our approach in Sec. 4 both
initial states have also been treated symmetrically when distributing the unrelated terms. But
note that the symmetry only holds in the case of resolved photoproduction, and that in either
case we have different parton distribution functions for the proton and the photon. From the
direct photon part, we do not get any new contributions containing the photon factorization
scale because all these terms vanish due to the colorlessness of the QED gauge boson. In the
calculations of [7], there is a photon scale dependence caused by the Pγ←q in connection with
collinear poles, which lead to contributions that are proportional to other Born matrix elements
than the initial LO process. On the other hand, in the derivation of the NNLO master formula
these cases are ruled out by dropping the flavour mixing contributions. This means that unlike
the full NLO part, in which resolved and direct contributions complement each other, at NNLO
we miss the direct photon part, which might cause a certain mismatch and spoil the photon scale

61



4. Numerical implementation of the NNLO corrections

dependence as seen in the corresponding plots.
Consequently, we cannot observe the balancing of direct and resolved contributions, as it is
demonstrated in Fig. 28 of [60] for NLO direct and LO resolved photoproduction, at a higher
level. The NNLO direct corrections are µb-independent, and also have turned out to be very
small, so that after adding the NNLO contributions, the direct NLO curve in the graphic of [60]
remains basically.

Having seen the influence of the different scales, we can conclude that in Figs. 4.6 and 4.7, where
all the discussed effects are superposed due to the simultaneous variation of all scales, the slight
improvements which can be seen are mainly related to the proton factorization scale, and are
weakened by the negative influence of the other two scales.

Fig. 4.14 shows the cross section differential in the jet rapidity ηjet for LO, NLO and NNLO
calculations. The Wγp range is the same as in Fig. 4.5, and all jets with ET > 17GeV are taken
into account. We observe that the NLO curve from [3] is again reproduced correctly, but fails
to describe the experimental data especially in the higher rapidity range, i.e. in the forward
direction, where the calculation predicts a considerably smaller cross section. The accordance of
theory and experiment at high rapidities is significantly improved by adding the NNLO contribu-
tions, which account for comparatively large corrections especially in the high ηjet regime. This
is also true for the last two data bins in the backward direction, where the NNLO contributions
shift the NLO result towards lower values. However, it still seems that the proton-related terms
are implemented more accurately. The general discrepancy between theory and experiment in
this low rapidity region emphasizes the need for an update of the photon structure function. It
is also in these outer rapidity regions, where the sensitivity to scale variation is largest. Fig. 4.15
displays the theoretical error bands which were calculated with equal values for all scales. In
contrast to the previous plots of this kind, the central NNLO curve does not exhibit the universal
positive sign of the corrections, but reduces the NLO result in the low ηjet region. Moreover, the
absolute value of the NNLO corrections becomes highest where the differential cross section has
its lowest values. On the contrary, the corrections become small in the rapidity range around
ηjet = 0, where the differential cross section takes its maximum.
Comparing the width of the two error bands, we state that perpendicular to the beam axis the
NNLO calculations are less scale-dependent, whereas in the forward direction, the NNLO band
exceeds the NLO band in its broadness, as already mentioned. Nevertheless, one should keep in
mind that in this outer region the central NNLO value for the cross section is about 8 percent
higher than the result from the NLO calculation, so that the variation relative to the NNLO
result will be a lot smaller.

The next graphic (Fig. 4.16) shows the differential cross section dσ
dηjet

in the same rapidity range

as the previous plots, but this time with a transverse energy cut at ET = 21GeV. Since the
majority of the jets has low transverse energy, a significant number of events is not detected.
Consequently, the differential cross section we arrive at is much smaller. Apart from this fact,
the observation we make regarding the trends of the curves in the ηjet extremes, the size of the
corrections, and the comparison of the scale dependence are mainly the same for Figs. 4.14 and
4.16 as well as for Figs. 4.15 and 4.17.

As a last application we have used our program to determine the best fitting value of the strong
coupling constant αs. For this purpose, we have run our calculation with 13 different NNLO
proton PDF sets by the CT10 collaboration [13] for values of αs(MZ) from 0.112 to 0.124. The
corresponding results have been compared to the same ZEUS data mentioned above; for each
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αs µ = 0.125 pT µ = 0.25 pT µ = 0.5 pT µ = pT
0.112 535 660 1527 2629

0.113 437 423 1171 2207

0.114 384 254 873 1834

0.115 394 135 606 1475

0.116 431 83 380 1132

0.117 513 107 222 850

0.118 629 203 125 615

0.119 782 382 87 420

0.120 965 656 120 263

0.121 1164 1009 224 166

0.122 1393 1440 401 123

0.123 1619 1960 654 133

0.124 1920 2612 1017 209

Table 4: Reduced χ2 for the fitting of NNLO calculations at different scales and values of αs to
recent ZEUS data [3].

PDF set we have evaluated the reduced χ2 at different scales µ = µa = µb = µR and have
obtained the values given in Tab. 4. According to these results, the best fitting is reached by
setting all scales equal to 1

4pT , although the goodness achieved by choosing µ = 1
2pT is similar.

We determine the value of the coupling constant to be

αs(MZ) = 0.116 ± 0.001+0.003
−0.002.

The first uncertainty given here is the experimental one including the statistical and the sys-
tematic error, whereas the second error describes the theoretical uncertainty obtained from scale
variation. Consequently, the world average of 0.118 lies within our uncertainty range. In [3], the
determination of αs has led to αs(MZ) = 0.1206+0.0023

−0.0022(exp.)
+0.0042
−0.0035(th.), which does not match

our result. Note that at least the error ranges overlap, and that the uncertainty of our result is
smaller compared to the result of the ZEUS analysis.
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Figure 4.5: LO, NLO and NNLO calculations for the differential inclusive jet cross section dσ
dET

,

with
√
S = 318GeV, −1 ≤ ηjet ≤ 2.5 and 142 ≤ Wγp ≤ 293GeV, compared to the

ZEUS results in [3].

Figure 4.6: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.5. The bands display the theoretical uncertainty due
to variation of both factorization scales and the renormalization scale.
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Figure 4.7: LO, NLO and NNLO calculations for the total inclusive jet cross section σtot with
all kinematical parameters given in Fig. 4.5. Both factorization scales and the
renormalization scale were set equal to µ.
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Figure 4.8: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.5. The bands display the theoretical uncertainty due
to variation of the renormalization scale.
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Figure 4.9: LO, NLO and NNLO calculations for the total inclusive jet cross section σtot for
different values of the renormalization scale. All kinematical parameters are given in
Fig. 4.5.
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Figure 4.10: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.5. The theoretical error band was obtained by varying
the proton factorization scale.
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Figure 4.11: LO, NLO and NNLO calculations for the total inclusive jet cross section σtot for
different values of the proton factorization scale. All kinematical parameters are
given in Fig. 4.5.
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Figure 4.12: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.5. The theoretical error band was obtained by varying
the photon factorization scale.
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Figure 4.13: LO, NLO and NNLO calculations for the total inclusive jet cross section σtot for
different values of the photon factorization scale. All kinematical parameters are
given in Fig. 4.5.
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Figure 4.14: LO, NLO and NNLO calculations for the differential inclusive jet cross section dσ
dηjet

with
√
S = 318GeV, ET > 17GeV and 142 ≤ Wγp ≤ 293GeV, compared to the

ZEUS results in [3].

Figure 4.15: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.14. The bands display the theoretical uncertainty due
to the variation of both factorization scales and the renormalization scale.
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Figure 4.16: LO, NLO and NNLO results for the total jet cross section σtot with
√
S = 318GeV,

ET > 21GeV and 142 ≤Wγp ≤ 293GeV, compared to the ZEUS results in [3].

Figure 4.17: Relative difference of data points and NNLO calculations to the central NLO result
for the cross section in Fig. 4.16. The bands display the theoretical uncertainty due
to the variation of both factorization scales and the renormalization scale.
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5. Summary and outlook

In Secs. 2 and 3, we have provided the essential theoretical background by shortly presenting
the main features of photoproduction cross sections, renormalization, factorization and threshold
resummation. We have derived the expressions for the NLO and NNLO master formulæ by N.
Kidonakis [12], which arise from the perturbative expansion of a general resummed cross section.
As a next step, we have adapted the NLO formula to the processes relevant for photoproduc-
tion and compared the analytic results to the corresponding NLO corrections in [7]. For this
purpose, we had to transform the threshold variable s4 used in the master formula to za and zb,
which are defined in the work of Klasen and Kramer. The full NLO calculation should gener-
ally contain all of the soft and virtual corrections predicted by the master formula. However,
at leading logarithmic level the coefficients of both results do not match, although they have a
particularly simple form. Several of the terms proportional to the subleading NLL terms are
missing in the expressions of [7], among which we also find those that are supposed to be ex-
clusively connected to one-particle inclusive kinematics. At least we have been able to identify
most of the scale-dependent terms, as well as the terms related to the soft anomalous dimension
matrix Γ′S, except for a constant factor. Sec. 3.4 actually leaves us with some open questions.
If neglect the use of different threshold variables and possible errors, which might be caused by
the transformation, the results are still quite different. As we use the virtual corrections from
[7] for the scale-independent coefficient T1, we gain almost full agreement for c1. If we went
on and dropped the terms assigned to one-particle inclusive kinematics, which are basically the
ti-dependent parts of the master formulæ, the scale-dependent terms would also coincide in both
formulæ. In our calculations, however, we have not given up this ti-dependence.
A further approach we have not taken could be to use the full NLO result of Klasen and Kramer
to redefine c1, c2, c3, and also Ac in the case of resolved photoproduction; this would create a
common base for the NNLO calculations, as the NLO would then match by definition.

The comparison of the NLO results have been followed by the description the method we have
used to implement the new NNLO contributions into the FORTRAN code provided by Klasen and
Kramer. Because in [12] one threshold variable is confronted with two different variables in [7],
exact treatment of the NNLO corrections is only possible for those terms that could be assigned
uniquely to initial parton a or b. Contributions connected to both a and b represent initial state
radiation off both of the incoming partons. For these terms, as well as for those not related to
any initial particle, we have not been able to establish an accurate integration prescription. We
have dealt with this problem by incorporating equal halves of the problematic terms in each of
the z integrations. In the case of direct processes, all non-vanishing terms have been integrated
over zb, which is related to the proton.
The results we have presented exhibit a relative size of the NNLO corrections between about 3
and 6 percent for the inclusive jet cross section differential in ET , which is steadily increasing
towards higher transverse energies in both kinematical regions probed by H1 and ZEUS (4.4,
4.6). For the pure hadronic pp̄ collision we observe a more or less constant correction around
5 percent (see Fig. 4.2). In the case of the ZEUS data, which the originial NLO calculation
tends to underestimate, the NNLO corrections lead to an improved agreement of theoretical
and experimental values. All the previous statements refer to the central choice µ = pT , which

causes a major part of the new terms to vanish due to the logarithmic form ln
(

µ2

p2T

)

of the scale-

dependent terms. Hence, the performance of the results under variation of the scales has been
another important aspect to be checked. In general, the inclusion of higher order scale-dependent
terms should reduce the sensitivity of the overall result. We have tested the dependence of the
NLO and NNLO differential cross section on the renormalization scale (Fig. 4.8), the proton
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5. Summary and outlook

factorization scale (Fig. 4.10) and the photon factorization scale (Fig. 4.12). While the proton
factorization scale dependence is significantly reduced by the new contributions as expected, the
sensitivity to the variation of the renormalization scale is even slightly increased at NNLO. Most
likely, this can be attributed to our treatment of the terms which are neither associated with
parton a nor with b, since a great part of the µR-dependent contributions belong to this class.
Therefore, in order to improve the renormalization scale dependence of the result, the problem
related to the integration has to be solved. A proper integration of the new terms using za
and zb does not seem to be possible. Thus, the only solution we can propose is to set up an
independent integration over the original s4 within the existing NLO program. However, special
attention has to be paid to the proper use of the Mandelstam variables as well as the parton
distribution functions. Especially for the latter, the way in which they enter in the calculation
is not completely specified in [12].
In the case of the photon factorization scale, the scale dependence at NNLO is considerably worse
compared to the NLO calculation. This can be explained by pointing out that for direct photo-
production no µb dependence is added; the NNLO formula provides no explicitly µb-dependent
terms for this class of processes. As discussed in the first chapters of this thesis, the factorization
scale dependence for the photon in photoproduction is governed by an interplay of direct and
resolved contributions at different orders in perturbation theory. In our calculations, the NNLO
corrections stemming from the resolved processes have no counterpart within the group of the
direct ones. Still, the µb dependence of the jet cross sections should be improved, when the
integration issues are fixed.
For the cross section differential in the jet rapidity, both agreement with experimental data and
sensitivity to scale variation have changed for the better, concerning the directions perpendicular
to the beam axis and also in forward direction, which is the direction of the proton. The differ-
ent cuts in the transverse energy (17GeV, Fig. 4.14 and 21GeV, Fig. 4.16) have led to results
that are qualitatively very similar. There is a greater scale uncertainty for both energy cuts in
the outer rapidity ranges, in which a certain excess of the data with respect to the theoretical
calculations at NLO and NNLO can also be observed. These discrepancies are assumed to be
caused by the underlying event, i.e. by beam remnants or initial- and final-state radiation, which
are non-perturbative effects and are therefore not taken into account in the calculation. In [3],
the implementation of different photon PDFs have led to the discovery of a great influence of the
photon density function in the high and low rapidity regime. Here, it would be a great advantage
to have an updated photon PDF, since the newest available set, the GRV set [30] used in our
calculations is based exclusively on the old γ∗γ and e+e− scattering data.
The determination of the strong coupling constant has yielded αs(MZ) = 0.116 ± 0.001+0.003

−0.002

using the ZEUS data from [3] and the NNLO proton PDFs for different values of αs(MZ) by the
CT10 collaboration. Whereas the world average of 0.118 is included in our uncertainty range,
the value obtained in [3] using the same experimental data lies outside of this range.

As soon as the problems concerning the different notations and integrations have been solved, it
would probably be a diligent but routine piece of work to go beyond NNLO. In [61], Kidonakis has
published master formulæ for soft and virtual NNNLO corrections, derived from the same general
resummed cross section which we have quoted in Eq. (3.81). The prescriptions which are used, are
therefore equal; however, as expected, the terms which have to be implemented are considerably
lengthier. Although the number of expressions to be implemented is higher, the corrections they
provide will be even smaller than those from NNLO. Hence, NNNLO contributions will mainly
serve to further reduce the scale dependence of the result. The mismatch of data points and
theory, as e.g. in Fig. 4.14, will only slightly change for the better. Concerning this problem,
further efforts have to be made to an improve the non-perturbative parts of the calculation.
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A. Explicit expressions for the NNLO coefficients

A.1. Direct contributions

Here, we give the c coefficients according to Eqs. (3.84), (3.85) and (3.86) for the two partonic
processes involving direct photons. For the scale-independent part T1 we use (also in the case of
the resolved processes) the virtual corrections of [7].

A.1.1. γg → qq̄

In the case of the boson gluon fusion, the coefficients are given by

c3 = 2(CA − CF ), (A.1)

c2 = −CA ln

(

µ2b
s

)

− 3

2
CF + 2CA ln

(−u
s

)

+ CA ln

(

tu

s2

)

− 2CF ln

(

p2T
s

)

, (A.2)

with 2Re (Γ′S) = 2CF + CA ln
(

tu
s2

)

+ CA [12] and tγ = u, tg = t. From that, we deduce

T2 = −2CA ln

(−u
p2T

)

− 3

2
CF + (NC − 2CF ) ln

(

p2T
s

)

. (A.3)

Lastly, we find

cµ1 =

[

−CA ln

(−u
s

)

− β0
4

]

ln

(

µ2b
s

)

+
β0
4

ln

(

µ2R
s

)

. (A.4)

A.1.2. γq → gq

The coefficients for QCD Compton scattering are

c3 = CF − CA, (A.5)

c2 = −CF ln

(

µ2b
s

)

+ 4CF ln

(−u
s

)

− 3

4
CF − β0

4
+ CA ln

(

t

u

)

− (CF + CA) ln

(

p2T
s

)

, (A.6)

where we assumed tγ = u, tq = t and used 2Re (Γ′S) = 2CF ln
(

−u
s

)

+2CF +CA ln
(

t
u

)

+CA [12].
Consequently, we have

T2 = 4CF ln

(−u
s

)

− 3

4
CF − β0

4
+ CA ln

(

t

u

)

− (CF + CA) ln

(

p2T
s

)

, (A.7)

and also

cµ1 = −CF

[

ln

(−u
s

)

+
3

4

]

ln

(

µ2b
s

)

+
β0
4

ln

(

µ2R
s

)

. (A.8)

A.2. Resolved contributions

Dealing with the resolved processes, one more quantity has to be calculated, which is Ac as
defined in Eq. (3.88). Expressions for the soft, hard and anomalous dimension matrices can
be found in [56]. While at leading order all resolved processes can be calculated from only
four different born matrix elements (see Sec. 2.4), at next-to-next-to-leading order the crossing
relations do not simply hold. We will therefore treat each of the ten processes listed in Sec. 3.3
of [7] separately.
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A. Explicit expressions for the NNLO coefficients

A.2.1. qq′ → qq′

The first process is the scattering of two quarks of different flavours. We find (see Sec. 4.3.1 of
[12])

c3 = 2CF , (A.9)

c2 = −CF

[

ln

(

µ2a
s

)

+ ln

(

µ2b
s

)]

− 11

2
CF , (A.10)

where we are setting T2 = −11
2 CF , and

cµ1 = −CF

[

ln

(−t
s

)

+
3

4

]

ln

(

µ2a
s

)

− CF

[

ln

(−u
s

)

+
3

4

]

ln

(

µ2b
s

)

+
β0
2

ln

(

µ2R
s

)

. (A.11)

The scale-independent part T1 again is taken to be the virtual corrections of [7] after subtracting
the terms depending on the the renormalization scale. Finally, we have

Ac =
α3
S

π
2
CF

N2
C

s2 + u2

t2

[

2CFNC ln

(−u
s

)

− ln

(

tu

s2

)]

. (A.12)

A.2.2. qq̄′ → qq̄′

In this case the c-coefficients are just the same as in the previous section as all partons are of
quark type. Thus, we are only left with

Ac = −α
3
S

π
2
CF

N2
C

s2 + u2

t2
ln

∣

∣

∣

∣

st

u2

∣

∣

∣

∣

. (A.13)

A.2.3. qq̄ → q′q̄′

Again, the c-coefficients are given by Eq. (A.9) - (A.11). For Ac we find

Ac =
α3
S

π
2
CF

N2
C

t2 + u2

s2

[

2CFNC ln

(−t
s

)

− ln

∣

∣

∣

∣

st

u2

∣

∣

∣

∣

]

. (A.14)

A.2.4. qq → qq

In addition to Eq. (A.9) - (A.11), we calculate

Ac =
α3
S

π
2
CF

NC

{

t2 + s2

u2

[

− 1

N3
C

ln

(

tu

s2

)

+ 4
C2
F

NC
ln

(−t
s

)

− 2
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N2
C

ln

(−u
s

)]

+
s2 + u2

t2

[

− 1

NC
ln

(

tu

s2

)

+ 2CF ln

(−u
s

)]

+
2

N2
C

s2

tu
ln

(

tu

s2

)}

. (A.15)

A.2.5. qq̄ → qq̄

Apart from the cµ1 , c2 and c3, which are the same as before, we have

Ac =
α3
S

π
2
CF

NC

{

t2 + u2

s2

[

− 1

N3
C

ln

∣

∣

∣

∣

st
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∣

∣

∣

∣

+ 4
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F
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−s
2 + u2
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2
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ln
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∣

∣

∣
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∣

∣

∣

∣

− 4
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NC
ln

(−u
s

)]}

. (A.16)
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A.2. Resolved contributions

A.2.6. qq̄ → gg

Since for the first time there are gluons involved, the coefficients change with respect to the last
sections. In particular, one finds (compare to Sec. 4.3.2 in [12])

c3 = 4CF − 2CA, (A.17)

c2 = −CF

[

ln

(

µ2a
p2T

)

+ ln

(

µ2b
p2T

)]

− β0
2

− 2CF − 2CA − 2CA ln

(

p2T
s

)

, (A.18)

while

T2 = c2 + CF

[

ln

(

µ2a
s

)

+ ln

(

µ2b
s

)]

, (A.19)

and cµ1 is given in Eq. (3.109). For T1 see the virtual corrections in [7]. We complete this section
with

Ac =
α3
S

π

CF

2NC

[

−4

(

t

u
+
u

t

)

+N2
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(

s2 + t2 + u2
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u
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)

ln
(u

t

)

. (A.20)

A.2.7. qg → qg

For this process the coefficients are (see Sec. 4.3.3 of [12])

c3 = CF + CA (A.21)

and

c2 = −CF ln

(

µ2a
p2T

)

− CA ln

(

µ2b
p2T

)

− 11

4
CF − 2CA − β0

4
− 2CF ln
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)

− 2CA ln

(−t
s

)

,

(A.22)

so we have

T2 = c2 +CF ln

(

µ2a
s

)

+ CA ln

(

µ2b
s

)

. (A.23)

Furthermore,

cµ1 = −
[

CF ln
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(A.24)

and

Ac = − α3
S

π
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. (A.25)

Note that all these results are identical for the process q̄g → q̄g.
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A. Explicit expressions for the NNLO coefficients

A.2.8. gg → qq̄

While the c-coefficients are given by (compare to Sec. 4.3.2 in [12])

c3 = 4CA − 2CF , (A.26)

c2 = −CA

[
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+ ln
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, (A.27)

T2 therefore being

T2 = c2 + CA

[

ln

(

µ2a
p2T

)
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, (A.28)

and
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; (A.29)

the expression for Ac is simply the one for the inverse process qq̄ → gg multiplied by a factor
1

4C2
F

which takes into account the different polarization averages due to the change of the initial

partons.

A.2.9. gg → gg

Finally, the purely gluonic process has the coefficients (Sec. 4.3.4 of [12])

c3 = 2NC , (A.30)
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In addition, we have
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B. Boundary terms for the plus distributions

In this section, we quote the analytical expressions of the additional boundary terms, which
have to be included if the integration over the plus distribution is done numerically. Due to
convolution of the different integrals, the distributions are given by (see Eq. (3.102))

ˆ 1

0
dz [f(z)]+g(z) =

ˆ 1

x
dz f(z)g(z) −

ˆ 1

0
dz f(z)g(1), (B.1)

so that in case the numerical integration is performed over the interval [x, 1] for both integrals,
the remaining part

ˆ x

0
dz f(z)g(1) (B.2)

has to be calculated separately and subtracted from the numerical result. We find (e.g. using
Mathematica):
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C. Comments on the FORTRAN code

This section contains a few comments on how we arranged the new NNLO contributions in the
code, and documents some modifications we made in the original program.

C.1. Structure of the NNLO contributions

Since the soft and virtual corrections to be added are all derived in the soft limit, where only
flavour-diagonal splitting contributes, most of the new terms are proportional to the Born cross
section of the original underlying 2 → 2 hard scattering process. Hence, the outer structure of the
NNLO contributions has simply been copied from the leading order contributions. Nevertheless,
we have introduced new functions for the NNLO contributions, which are

Listing 1: New NNLO functions

mkoyg2qb(s,t,u,z,x,iab) for γg → qq̄,
mkoyq2qg(s,t,u,z,x,iab) for γq → gq,
mkoqp2qp(s,t,u,z,x,iab) for qq′ → qq′,
mkoqr2qr(s,t,u,z,x,iab) for qq̄′ → qq̄′,
mkoqb2pr(s,t,u,z,x,iab) for qq̄ → q′q̄′,
mkoqq2qq(s,t,u,z,x,iab) for qq → qq,
mkoqb2qb(s,t,u,z,x,iab) for qq̄ → qq̄,
mkoqb2gg(s,t,u,z,x,iab) for qq̄ → gg,
mkoqg2qg(s,t,u,z,x,iqg,iab) for qg → qg,
mkogg2qb(s,t,u,z,x,iab) for gg → qq̄,
mkogg2gg(s,t,u,z,x,iab) for gg → gg.

Note that we have calculated proton-electron collisions, so that contrary to the discussion in the
rest of this the is a is related to the proton and b to the photon. The arguments of the new
functions are the Mandelstam variables s′, t′ and u′, the threshold variable z, which can be given
by either za or zb, and the momentum fraction x, which is used for xa, xb or yb. Furthermore,
the flag iab is needed within the functions to choose between µa and µb, as well as ta and tb. An
additional flag has been defined exclusively for the qg → qg process, which is the only process
with different types of partons in the initial state. Thus, iqg is used to fix if a and b are quark
and gluon, or vice versa.
Although at leading order it is sufficient to have five different functions for all cross sections due to
the crossing relations, at NNLO these relations do not hold. In particular, all terms derived from
the anomalous dimension matrix Γ′S have to be calculated separately for each of these processes;
for this reason, we have had to define more than five new functions for the NNLO contribu-
tions. All c coefficients (see Appx. A) are defined within the functions listed above, whereas
the Ac are calculated externally for each resolved process by the functions acqp2qp(s,t,u),
acqr2qr(s,t,u), etc., analogous to the prescription we introduced above.
The transformed plus distributions from Eq. (3.99) as well as the boundary terms from Appx. B
are called within the functions introduced above via d0(z,x), d1(s,ti,z,x), d2(s,ti,z,x)
and d3(s,ti,z,x), for D0(z), D1(z), D2(z) and D3(z), respectively. If the new global flag
idelta is set to .true., the d functions return the corresponding boundary term, which is cal-
culated by s′, t′i and xi. These terms require no additional integration. For idelta = .false.,
the actual plus distribution integrands are returned, which depend on s, t′i (except D0) and zi.
Two further newly introduced flags, innloa and innlob, serve to switch on and off the con-
tributions related to parton a and b, respectively. Hence, for each process the functions in are
called four times:
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innloa & idelta for boundary terms belonging to parton a,
innloa & ¬idelta for integration over plus distributions of za,
innlob & idelta for boundary terms belonging to parton b,
innlob & ¬idelta for integration over plus distributions of zb.

In the case of direct photoproduction, only the first two options are realized.

C.2. Modifications to the original code

In the context of the extension, we have also effected slight changes to the original code. First,
we note that the integrations of the various parts are have different dimensions, since the initial
state corrections, in contrast to the leading order and virtual contributions, require an additional
integration over za and zb, respectively. As in the original version of the program, all contributions
were calculated within one VEGAS call, this led to the fact that e.g. the leading order cross sections
are evaluated through an integration that had two surplus dimensions. The latter caused an
increased numerical error; therefore, we have decided to split up the old integration in kernel 1,

Listing 2: Old VEGAS call

call vegas (kern1,eps,int1,ipoin1,itt,iprn,igraph)

ipoin1= ipoin1*itt*max0(ipt,iy1,iy2,icosth,imjj,11)

ifill = 1

call vegas1(kern1,eps,int1,ipoin1, 1,iprn,igraph)

ifill = 0

sngly = avgt

sngldy = errt

into three consecutive integrations. The first part includes the Born, virtual and final state
contributions, plus the boundary terms of the NNLO corrections, if the flag innlo is set to one
in the input file. Initial state contributions of parton a are integrated over in the second part,
together with possible NNLO contributions related to the same initial particle. In the third part,
the corresponding contributions for particle b are taken into account. The modified code then
takes the form:

Listing 3: New VEGAS call

if(iborn.eq.1.OR.ivirt.eq.1.OR.ifina.eq.1.OR.innlo.eq.1)then
iaini = iaini1
ibini = ibini1
idelta = .true.
innloa = .true.
innlob = .true.
call vegas (kern1,eps,int1,ipoin1,itt,iprn,igraph)
ipoin1 = ipoin1*itt*max0(ipt,iy1,iy2,icosth,imjj,11)
ifill = 1
call vegas1(kern1,eps,int1,ipoin1, 1,iprn,igraph)
ifill = 0
sngly = avgt
sngldy = errt

iaini = iaini+1
ibini = ibini+1
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idelta = .false.
innloa = .false.
innlob = .false.

endif

if(iaini.eq.1.OR.innlo.eq.1)then
iborn = iborn1
ivirt = ivirt1
ifina = ifina1
ibini = ibini1
innloa = .true.
int1=int1+1
ipoin1 = ipoin
call vegas (kern1,eps,int1,ipoin1,itt,iprn,igraph)
ipoin1= ipoin1*itt*max0(ipt,iy1,iy2,icosth,imjj,11)
ifill = 1
call vegas1(kern1,eps,int1,ipoin1, 1,iprn,igraph)
ifill = 0
sngly = sngly+avgt
sngldy = sqrt(sngldy**2+errt**2)

int1 = int11
iborn = iborn+1
ivirt = ivirt+1
ifina = ifina+1
ibini = ibini+1
innloa = .false.

endif

if(ibini.eq.1)then
iborn = iborn1
ivirt = ivirt1
ifina = ifina1
iaini = iaini1
innlob = .true.
int1=int1+1
ipoin1 = ipoin
call vegas (kern1,eps,int1,ipoin1,itt,iprn,igraph)
ipoin1= ipoin1*itt*max0(ipt,iy1,iy2,icosth,imjj,11)
ifill = 1
call vegas1(kern1,eps,int1,ipoin1, 1,iprn,igraph)
ifill = 0
sngly = sngly+avgt
sngldy = sqrt(sngldy**2+errt**2)

int1 = int11
iborn = iborn+1
ivirt = ivirt+1
ifina = ifina+1
iaini = iaini+1
innlob = .false.

endif

This change has reduced the numerical error of the VEGAS output by about 10 percent. A dis-
advantage of this modifications is that the program will run longer, since for every VEGAS call
the grid has to be newly calculated. However, the significantly more time-consuming part of the
calculation, which is located in kernel 2 of the program, has remained untouched. Therefore, the
increase in calculation time is comparatively small.
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Apart from this improvement, we have corrected one error in program code. We have removed
a factor of 2 in the initial state corrections for direct photons:

Listing 4: Original code, direct contributions

c 3. Hadron ElektronStreuung

if((iabs(iatyp).ge.1).and.(ibtyp.eq.0))then
...

c 3.3 ResolvedDirect

if((iares.ge.1).and.

. ((ibres.eq.0).or.(ibres.eq.4)))then
...

if(iaini.eq.1)then
...

sum = sum+zadjac/zad*
. (4.d0*pi*alpha)*(4.d0*pi*alphas)*alphas/(2.d0*pi)*
. ( 8.d0*nc*cf**2*fyqa*(mjyq2qgg1(1,s,t,u,zad)
...
. + 4.d0*nc*cf* fypa*(mjyq2qqb (1,s,t,u,zad)
. +mjyq2qqb (1,s,u,t,zad))
. +16.d0*nc*cf**2*fyga*(mjyg2qbg1(1,s,t,u,zad)
. +mjyg2qbg1(1,s,u,t,zad))
.  4.d0*nc**2*cf*fyga*(mjyg2qbg2(1,s,t,u,zad)
. +mjyg2qbg2(1,s,u,t,zad))

...
. )

endif

...
endif

...
endif

This error has been found by comparing these terms to the corresponding expressions from the
resolved contributions, where the photon y replaced by a gluon. The corrected code then is

Listing 5: Modified code, direct contributions

...
. + 8.d0*nc*cf**2*fyga*(mjyg2qbg1(1,s,t,u,zad)
. +mjyg2qbg1(1,s,u,t,zad))
...

However, this change has had a negligible effect on the overall result.
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