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Abstract

Dark matter (DM), a major component of our universe whose nature remains un-
known, plays a crucial role in understanding our cosmos. This thesis analyzes a
neutrinophilic dark matter model featuring a proposed Dirac fermion that couples
to standard model neutrinos via a vector portal. Using Feynman diagrams, the decay
widths of the interaction boson and the cross sections of the annihilation processes
were calculated. The model’s parameters were systematically scanned to identify
configurations resulting in the correct relic density and to understand how different
parameters affect the final relic density. It was observed that the final relic density
is proportional to the mass of the DM particle, while it is inverse proportional to
the couplings. Comparison with results from micrOMEGAs shows that code fails at
resonance but agrees within 20% in other regions. Measured neutrino fluxes from
experiments were used to constrain the parameter space. These constraints indicate
that the correct relic density imposes stricter limits on most of the scanned param-
eter space. Finally, a bisection method was introduced to optimize one parameter
for fixed combinations of others. Grid scans revealed the connections between pa-
rameters necessary to achieve the correct result. Further study needs broader scans
and better methods for the resonance.

3



4



Contents

1 Motivation and Introduction 7

2 Theoretical Background 9
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Content of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Thermal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Freeze-Out Mechanism and Relic Density . . . . . . . . . . . . . . . . . . 15

2.4.1 Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Relativistic Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Cross Section from Feynman Diagrams . . . . . . . . . . . . . . . . 20
2.6.2 Thermally Averaged Cross Section . . . . . . . . . . . . . . . . . . 22
2.6.3 Non-relativistic thermal averaging . . . . . . . . . . . . . . . . . . 23

3 Analysis and Evaluation 25
3.1 Model for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Calculated Cross Sections and Decay Widths . . . . . . . . . . . . . . . . 26

3.2.1 Z ′ Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Annihilation of DD̄ into νν̄ . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Annihilation of DD̄ into Z ′Z ′ . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Non-relativistic thermal averages . . . . . . . . . . . . . . . . . . . 36

3.3 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Grid Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Indirect Detection Constraint . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Parameter Optimizing with the Bisection Method . . . . . . . . . 44

4 Conclusion and Outlook 49

Appendices 51

A Dirac-Matrices and Trace identities 51

B Feynman rules 53

C Comparison to micrOMEGAs 54

D Code Scripts 58

References 67

5



Notation

For this thesis, mostly the natural units are used with c = h̄ = kB = 1. In addition to
that, Greek indices (µ, ν . . . ) run from 0 to 3, and Latin indices (i, j . . . ) from 1 to 3,
with the Einstein summation convention applied. The time derivative is often denoted
with an overdot (dx/dt ≡ ẋ). Four-vectors are written as a normal letter (e.g. p) and
three-vectors are noted with an arrow above ( #»p ). Also for the Feynman calculations, the
slashed notation /p = γµpµ is used, among other notations discussed in the Appendix.
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1 Motivation and Introduction

Since the beginning of the 20th century, controversies regarding the mass of big struc-
tures such as galaxies have risen. These controversies lead to the assumption of an
additional invisible component of mass, which only interacts through gravitation. This
so-called Dark Matter (DM) takes up about 27% of the universe mass-energy con-
tent. For comparison, the known ordinary matter (Baryons) only takes up a 5%. The
remaining 68% is Dark Energy, which is responsible for the accelerated expansion of the
universe. The true nature of Dark Matter and Dark Energy is still to be determined (p.
22 of [1]).
The best-known example of an observation that probes the existence of additional invis-
ible matter is the rotational speed of spiral galaxies. According to classical dynamics,
considering only the visible matter, the rotational speed is expected to drop with the
distance to the center (red line in fig. 1.1). The observed rotational speed (green line in
fig. 1.1) on the other hand, does not drop as expected.

Figure 1.1: Rotation curves of spiral galaxies. The observed data is fitted with the green
curve and in red is the expected rotation curve just considering the visible matter. This
discrepancy is a probe for the existence of DM. (Figure taken from [2])

This phenomenon can be explained by the existence of said DM. HW Babock measured
the rotational speed of the Andromeda Nebula, compared it to the mass distribution
of the ordinary matter, and found out that in the exterior region of the galaxy there is
about 60 times more DM than ordinary matter [3].
Another piece of evidence for the existence of DM comes from the observation of the
Cosmic Microwave Background (CMB). It suggests that the universe is at large scales
almost flat, which means that the present energy density ρ0 is approximate to the critical
density ρcrit [4]. Due to this it is possible to determine the portions of the different
contributions of the mass-energy content. This will be addressed later in more detail
in chapter 2.2. A third very popular example for the existence of DM is inferred from
the effect of gravitational lensing. According to the general theory of relativity, mass
bends the fabric of space-time, and as a consequence, the straight trajectory of light

7



Figure 1.2: Illustration of gravitational lensing. This happens when the gravity of the
object in between the galaxy and the Earth is so strong that it bends the light around
itself. (Figure taken from [5])

seems to bend as well. So in the presence of a very massive object, it is possible to see
light emitted behind this massive object. An illustration is shown in fig. 1.2. Since
the distortion depends on the mass, it is possible to determine the mass of the massive
object in between. Comparing the determined mass to the visible matter shows again
that the galaxy is surrounded by more matter than ”we see” [6].
In this thesis, we explore the hypothesis that dark matter (DM) can be modeled as
a particle. While DM does not necessarily have to be a particle, this assumption is
a prevalent and effective approach within particle physics, supported by its ability to
explain various astrophysical observations and cosmological phenomena [7].
The detection of DM is divided into two parts. First the direct detection, with the goal
of producing DM in a collision of known particles in a collider or measuring the recoil
of visible matter due to DM scattering [8]. And second, the indirect detection. In the
indirect DM search, the DM particles annihilate into Standard Model (SM) particles
and the resulting flux of known particles is to be measured [9].
This Thesis analyzes a simple model in which the proposed DM particle is a Dirac
fermion that couples through a vector boson to the SM specifically just to neutrinos.
The goal is to explore the parameter Space set by the model consistent with today’s Dm
density.
It is structured in the following way: At first, the theoretical background needed to
understand and derive the equations is discussed. In the Analysis and evaluation chapter,
the explicit calculation of this Thesis is made, including the numerical implementation.
And at the end, a conclusion and an outlook are made.
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2 Theoretical Background

In this chapter, the theory needed will be explained. After a short introduction into
the SM, with an emphasis on the neutrinos, the history of the universe is described in
a brief way, focusing only on the relevant parts for the evaluation. A broader version is
found in the Lecture Notes of Daniel Baumann [1]. The freeze-out mechanism is then
presented, and the concept of relic density is introduced with the explicit example of DM
decoupling. In addition to this, the Boltzmann equation for the yield and the thermally
averaged cross sections are derived. Next, the Feynman rules to acquire the invariant
Amplitude needed for the cross sections are depicted, and the Lorentz invariant phase
space is being addressed to calculate the cross sections. Finally, the rules of how to
handle the relativistic kinematics, including the Mandelstam variables, are mentioned.

2.1 The Standard Model

The Standard Model is the most current and complete description of our understanding
of the particles that exist and the interactions between them. It consists of 12 fermions
(six quarks and six leptons) and five bosons (four gauge bosons and the newest discovered
Higgs boson). The quarks interact through a strong nuclear force, with the gluon acting
as an interaction particle. Photons are the interaction particles of the electromagnetic
interactions, and the Z- and W -bosons are the mediators of the weak interaction. All

Figure 2.1: Elementary particles of the Standard Model. (Figure taken from [10])

components are shown in fig. 2.1.
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The SM is a quantum field theory (QFT). This means that the particles are excitations of
the different fields. QFT combines quantum mechanics with special relativity to create
a more complete description, since the quantum mechanics approach fails at relativistic
conditions. As a consequence, the SM fulfills the requirement of being a relativistic
model. The interactions in QFT are described by a Lagrangian L, which is a local
function of the fields [11].
As only neutrinos play a role in this thesis, a further discussion of the other particles and
their behaviour is omitted but can be found in detail in Quarks and Leptons by Halzen
and Martin [12]

2.1.1 Neutrinos

For a long time the β-decay was believed to be a two-body decay, which leads to problems.
On one hand, the energy of the emitted electron was not discrete but continuous. On the
other, the angular momentum was not preserved. To ensure the conservation of angular
momentum and energy in β-decays, neutrinos were first introduced by Pauli in 1930 as
particles with little to no mass, spin of 1

2 , no electric charge and small interaction rate.
Being emitted as well in the decay makes it a three-body problem, and the quantified
energy can be divided between the electron and the neutrino, so a continuous spectrum is
possible. The experimental proof for the existence of Neutrinos came in 1956 by Cowan
and Reines in the Poltergeist experiment. The detection of neutrinos took a long time
because it required a strong neutrino source due to their small interaction rates. The
newly constructed nuclear power plants eventually provided this necessary source.
There is a corresponding neutrino for each of the three lepton generations (electron,
muon and tau). These different types are in a superposition, so for example, an emitted
electron neutrino can be detected as a muon or tau neutrino [13]. The consequence of
this oscillation is that the neutrinos are not totally massless but possess a very small
mass with an upper bound of 1 eV for the electron neutrino as an example [14].
However, this thesis does consider the mass of neutrinos, as it is negligible compared to
other masses and has minimal impact on the results. Including it would only complicate
the calculations. Furthermore, this work does not differentiate between the three types
of neutrinos.

2.2 Content of the Universe

For further reading and a more detailed version of the following section, Baumann’s
lecture notes [1] are recommended.

It is well known that the universe is expanding at an increasing rate. While the reason
for this acceleration is still unknown, a mathematical description exists. To describe the
expansion of the universe, the scale factor a(t) is essential. Since a(t) can be chosen
freely, it is convention to set a(t0) = a0 = 1 (the indices 0 are used for the present).
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Figure 2.2: Due to the expansion of the universe there is a difference between the
comoving frame and the stationary frame. In the comoving frame the distance between
points is unchanged over time, but the physical distance scales with a(t) and enlarges
over time. (Figure taken from [1])

In fig. 2.2 the expansion is sketched, and it shows that the differentiation between the
comoving frame and the physical frame is crucial. The comoving frame is an imaginary
coordinate system that expands at the same rate that the universe does. In conclusion,
the distance between two points in this frame remains constant. The physical distance,
on the other hand, is increasing due to the expansion of the universe. Thus, the physical
coordinates result in

rphys = r a(t), (2.1)

with r for the comoving coordinate. So, for example, the physical velocity is the time
derivative of the physical coordinate:

vphys =
drphys
dt

= a(t)
dr

dt
+
da(t)

dt
r = a(t)ṙ +Hrphys. (2.2)

H is the Hubble Parameter1 and is defined as

H ≡ ȧ(t)

a(t)
. (2.3)

To describe the dynamics of the universe the Einstein equation

Gµν = 8πGTµν (2.4)

from his general relativity is used, with G the Gravitational Constant. It has the form
of a tensor equation with Gµν as the Einstein tensor and Tµν as the stress-energy tensor,
which functions as a measurement for the matter content of the universe. By observing

1Note that there is a important difference between the Hubble Parameter H and the Hubble Constant
H0. H is time dependent, where as H0 is the value of the Hubble Parameter of today. The true value
of the latter is still debated, since with different approaches the result varies between 68 km Mps−1s−1

and 74 km Mps−1s−1 [15]
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Figure 2.3: Cosmic microwave background as observed by Planck. On a large scale it is
almost homogeneous and isotropic. (Figure taken from [16])

the CMB (fig. 2.3) it is legitimate to assume that the universe is homogeneous and
isotropic on a large scale (Cosmological principle)2. With the Cosmological principle
and the stress-energy tensor the continuity equation

ρ̇+ 3
ȧ(t)

a(t)
(ρ+ P ) = 0 (2.5)

can be derived3. P in this equation is the pressure of the ”fluid” and from now on a(t)

is written as a. In the ΛCDM model the universe content divides into three categories
depending on the contribution to this pressure.

• Matter:
Matter is the term for all non-relativistic particles with |P | � ρ. Equation 2.5
shows that for P = 0 the energy density

ρm ∝ a−3, (2.6)

which is expected, because it depends on the expansion of the volume. The contri-
butions to the energy density of the matter is split into the contribution of ordinary
matter (baryons) ρb and cold DM ρc.

• Radiation:
Radiation is the term for relativistic particles. For these the pressure is a third of
the energy density. So with equation 2.5

ρr ∝ a−4 (2.7)
2The tiny temperature fluctuations represent the marginally more dense and less dense regions of the

universe. For a exact description these fluctuations need to be considered as well
3for the whole derivation look up the lecture notes of Baumann [1]
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follows as a consequence. Due to their small mass neutrinos behaved as radiation
along the history of the universe and started to behave as matter not long ago. For
the energy density contributions of photons and of neutrinos ργ and ρν are used.

• Dark energy:
As mentioned in the introduction Dark Energy will not play a role in this Thesis,
but nevertheless it is still listed for completeness. Dark Energy is a negative
pressure component with P = −ρ. This leads to

ρΛ ∝ a0 (2.8)

if plugged in in equation 2.5. There is a prediction for this effect in QFT called
vacuum energy, but this prediction is around 120 orders of magnitude away from
observed.

So in total we have three contributions to the content of the universe with the propor-
tionalities:

ρ ∝


a−3 matter
a−4 radiation
a0 vacuum

. (2.9)

Also the Cosmological principle simplifies the Einstein equation to two ordinary differ-
ential equations, with the first of these being known as the first Friedmann equation

H2 =
8πG

3
ρ− k

a2
. (2.10)

⇔ H2 =
8πG

3
(ρba

−3 + ρca
−3 + ρra

−4 + ρΛa
0)− k

a2
(2.11)

The parameter k indicates the curvature of the universe with k = −1 for negative, k = 1

for a positive and k = 0 for zero curvature. For a flat universe the energy density of
today is

ρcrit,0 =
3H2

0

8πG
= 1.9 · 10−29 h2 grams cm−3. (2.12)

Using this critical density and the normalization for a0, the Friedmann equation can be
written as

H2

H2
0

= Ωb,0a
−3 +Ωc,0a

−3 +Ωr,0a
−4 +ΩΛ,0 +Ωk,0a

−2, (2.13)

where
Ωξ,0 ≡

ρξ,0
ρcrit,0

, ξ = b, c, r,Λ (2.14)

and
Ωk,0 ≡ −k

(a0H0)2
(2.15)

are dimensionless density parameters, with Ωk,0 being a measurement for the curvature
density. The values of these density parameters are obtained by the Planck experiment
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under assumptions of the ΛCDM model [17]:

Ωk,0 ≤ 0.01, Ωb,0 = 0.05, Ωc,0 = 0.27, Ωr,0 = 9.4 · 10−5, ΩΛ = 0.68, (2.16)

showing that the universe is dominated by dark energy and DM (the so called dark
sector). Since the contribution of the curvature today is less than 1%, and it scales
with a−2 (compared to matter and radiation, which scale with a−3 and a−4), it will be
neglected for all times.

2.3 Thermal Equilibrium

At the beginning the universe was so dense that it was in local thermal equilibrium.
Hence to describe it and its evolution the results of equilibrium thermodynamics is used.
To describe the phase space density the Fermi-Dirac and Bose-Einstein distribution are
used

g

(2π)3
· f(p) = g

(2π)3
· 1

e(E(p)−µ)/T ± 1︸ ︷︷ ︸
Fermi/Bose
distribution

, (2.17)

which are a result of quantum statistical mechanics. T is the temperature and µ the
chemical potential. The + sign applies for fermions and the − sign for bosons. g are
the degrees of freedom and takes the value 2 for Dirac fermions and massless vector
bosons, 1 for scalar bosons and 3 for massive vector bosons. At low temperatures both
distributions approach the Maxwell-Boltzmann distribution:

f(p) ≈ e−(E(p)−µ)/T (2.18)

For each particle species the distribution varies due to different masses and chemical
potentials, where µ is negligible in the early universe.
To calculate the density of a thermodynamic parameter the integral of the phase space
density multiplied by said parameter over the whole phase space needs to be performed.
For the energy density this results in

ρ =
g

(2π)3

∫
d3pf(E)E. (2.19)

This integral gives in the relativistic limit (T � m)

ρ =
π2

30
gT 4 ×

{
1 for bosons
7
8 for fermions

, (2.20)

and in the non-relativistic limit (T � m)

ρ = gm
(mT
2π

)3/2
e−m/T . (2.21)
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The conclusion is that the energy density of relativistic particles scales with T 4, while it
is exponentially suppressed for non relativistic particles.
Let T be the temperature of photons. To get the radiation density (including relativistic
particles) the sum over all relativistic species is performed. These don’t need to be in
thermal equilibrium, so each species has its own temperature Ti. So

ρr =
∑

i
ρi =

π2

30
geff(T )T

4, (2.22)

where geff is the temperature dependent effective number of relativistic degrees of free-
dom. In thermal equilibrium, each species has the same temperature as the photons
Ti = T . For this the effective degree of freedoms is

gtheff(T ) =
∑

i=bos.
gi +

7

8

∑
i=fer.

gi. (2.23)

However a species can decouple from the thermal bath and from then on has a different
temperature (see chapter 2.4). Considering this the effective degrees of freedom result
in

gdeceff (T ) =
∑

i=bos.
gi

(Ti
T

)4
+

7

8

∑
i=fer.

gi

(Ti
T

)4
. (2.24)

In the same way geff is the effective number of degrees of freedom for the energy density,
heff is the number of degrees of freedom for the entropy density

s̃ ≡ S

V
=

2π2

45
heff(T )T

3, (2.25)

with
hdeceff (T ) =

∑
i=bos.

gi

(Ti
T

)3
+

7

8

∑
i=fer.

gi

(Ti
T

)3
. (2.26)

Note that in equilibrium, when all the relativistic species have the same temperature,
heff = geff. These conditions remain valid for t . 1 s in the early universe. The values for
geff and heff are listed in tables. As a parameter to include the content of the universe

g
1/2
∗ (T ) =

heff(T )

g
1/2
eff (T )

(
1 +

1

3

T

heff(T )

dheff
d(T )T

)
(2.27)

is defined. The values for this combined parameter of degrees of freedom are listed in a
table as well.

2.4 Freeze-Out Mechanism and Relic Density

In thermal equilibrium the rate of interaction Γ is higher than the rate of expansion
H, so that equilibrium is reached before the impact of the expansion is notable. With
the universe cooling down, Γ drops faster than H, until the particles decouple from the
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thermal bath at
Γ ∼ H. (2.28)

Since the interaction rate is different between particle species, they can decouple at
distinct times having individual temperatures. This is also known as the particles freeze-
out. For clarity, in figure 2.4 the comoving number density n/T 3 is plotted against m/T ,
which can be seen as a measure of time (low m/T means high temperature, resulting in
early times, and vice versa).

Figure 2.4: Shown is the freeze-out of an arbitrary particle species. At Γ ∼ H the
freeze-out happens resulting in an almost constant relic density. (Figure taken from [1])

At high Temperatures (early times) the density follows its equilibrium value, but when
the expansion rate drops below the expansion rate, the particle species decouples from the
thermal bath, and the freeze out happens. This results in an almost constant comoving
number density or relic density.
This mechanism is explained briefly using the examples of neutrinos. These are coupled
to the thermal bath through weak interactions like

νe + ν̄e ↔ e+ + e−, (2.29)

e− + ν̄e ↔ e− + ν̄e (2.30)

At low temperatures, near freeze-out, the propagators of the weak interaction (W± and
Z) acquire their masses (MW ≈ 80,GeV and MZ ≈ 90,GeV). The cross section and
interaction rate involving these weak interaction bosons are given by

σ ∼ α2

M4
W
T 2, Γ ∼ α2

M4
W
T 5, (2.31)

where α is the fine-structure constant. Using H ∼ T 2/Mpl (with Mpl being the Planck
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mass), the ratio is
Γ

H
∼
(

T

1MeV

)3

. (2.32)

This ratio falls below 1 around T ∼ 1,MeV, marking the temperature at which neutrinos
decouple from the thermal bath.4

The DM particle postulated in this thesis behaves similarly (see Section 3.1), allowing the
relic density to be calculated for various parameter sets to determine which combinations
result in the correct final relic density.
In this thesis the assumption is made that DM is a weakly interacting massive particle
(WIMP) and the relic density is produced via freeze-out. The correct final density of
the dark matter is mentioned in Section 2.2 (Ωc, 0 = 0.27). Since the density depends on
the Hubble constant, whose exact value is still imprecise, it is preferable to use the form
Ωh2. Here, h represents the Hubble constant in units of km Mpc−1s−1, making the result
independent of the exact value of the Hubble constant. Henceforth, when referring to
the relic density of DM, this form will be used. The notation Ωc,0h

2 ≡ Ωh2 is adopted,
indicating the relic density for cold dark matter observed today as:

Ωh2 = 0.120± 0.001. (2.33)

This value is the used to constrain the models parameter space [17].

2.4.1 Boltzmann Equation

Without any interaction the number density of a particle species i can be described with

1

a3
d(nia

3)

dt
= 0. (2.34)

This describes the conservation of the number of particles in a fixed physical volume,
so that the density decreases with the expanding volume resulting in ni ∼ a−3. The
collision term

1

a3
d(nia

3)

dt
= Ci[{nj}] (2.35)

is added to include the effects of collision with other particles. This is the Boltzmann
equation. For an example

1 + 2 � 3 + 4 (2.36)

process
1

a3
d(nia

3)

dt
= −〈σv〉

[
n1n2 −

(n1n2
n3n4

)
eq
n3n4

]
(2.37)

can be derived, where neq
i are the equilibrium number densities and 〈σv〉 is the thermally

averaged cross section times velocity, which will be discussed in more detail in section
2.6.2.

4For further reading and a more detailed introduction, consult Daniel Baumann’s lecture notes [1].
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for the case that both, the particle species and all the species that interact with that
species, are in thermal equilibrium and particle 2 is the antiparticle of particle 1

ṅ+ 3Hn = −1

2
〈σv〉(n2 − n2eq) (2.38)

can be derived [18]. To filter out the expansion of the universe a comoving number
density Y = n/S the yield. S is the total entropy density of the universe. For the yield
the Boltzmann equation can be derived to be

Ẏ = −S
2
〈σvMøl〉(Y 2 − Y 2

eq), (2.39)

where vMøl is the Møller velocity5

vMøl = (|v1 − v2|2 − |v1 × v2|2)1/2. (2.40)

With some modifications and rewriting it as a function of x = m/Tγ the Boltzmann
equation takes the form:

dY

dx
= −

(45
π
G
)−1/2 g

1/2
∗ m

x2
1

2
〈σvMøl〉(Y 2 − Y 2

eq). (2.41)

This formulation is used in the numerical calculations presented in this thesis. The
equation for the yield in equilibrium is given by:

Yeq =
45g

4π4
x2K2(x)

heff(m/x)
. (2.42)

This equation as in the paper by Gondolo and Gelmini [18] is the non-relativistic ap-
proximation of the equilibrium yield. To calculate the final relic density some more steps
need to be made. With the yield at the decoupling YFO and the freeze out temperature
the resulting Yield for today Y0 can be approximated with

1

Y0
=

1

YFO
+
(45
π
G
)1/2 ∫ TFO

T0

g
1/2
∗ 〈σvMøl〉dT, (2.43)

derived, which is then used to finally calculate the resulting relic density with

Ωh2 = gD
mDY0S0

ρcrit
. (2.44)

The index 0 stands for the value of today and gD is the internal degrees of freedom of
the DM particle [18].

5The use of the Møller velocity is a still discussed topic, because it does not ensure that the thermal
average is invariant [19]. Nevertheless it is still used in most simulation codes, as it gives very good
results if the DM is non relativistic at decoupling.
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2.5 Relativistic Kinematics

At this point, it is beneficial to insert a brief interlude about relativistic kinematics and
the so-called Mandelstam variables. The here presented equations are taken from chap-
ter 3.2 of Quarks and Leptons by Halzen and Martin [12].

In special relativity, space and time together build the four-dimensional spacetime. To
describe the energy and momentum of a particle, the four-momentum is used:

pµ ≡ (p0, p1, p2, p3) = (E, #»p ), (2.45)

with the energy as the zeroth component. This is a contravariant vector. A covariant
vector is defined as

pµ ≡ (E,− #»p ). (2.46)

These four-vectors have specific multiplication rules. Using the Minkowski metric:

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (2.47)

the dot product of two four-vectors is given by:

pA ◦ pB = gµνp
µ
Ap

ν
B = pµApBµ = (EAEB − #»pA

#»p B), (2.48)

with #»pA
#»p B being the usual scalar product of the three-momenta. If in equation 2.48

pA = pB = p, then it is obvious that the square of the momentum is:

p2 = E2 − #»p 2 = m2, (2.49)

making use of the relativistic energy-momentum relation. For a scattering process, let
the four-momenta of the incoming particles be pA and pB, and for the outgoing particles
k1 and k2. The first Mandelstam variable is the invariant mass squared:

s = (pA + pB)
2 = (k1 + k2)

2. (2.50)

In a similar way, the other Mandelstam variables are defined as:

t = (pA − k1)
2 = (pB − k2)

2, (2.51)

u = (pA − k2)
2 = (pB − k1)

2. (2.52)

19



These variables are Lorentz invariant and fulfill the relation:

s+ t+ u = m2
A +m2

B +m2
1 +m2

2. (2.53)

The Mandelstam variables are essential in describing the kinematics of particle colli-
sions. They simplify the analysis of scattering processes because they remain invariant
under Lorentz transformations, ensuring that physical predictions do not depend on the
reference frame (page 94 in [12]).

2.6 Cross Sections

Before the earlier mentioned thermally averaged cross section times velocity (〈σv〉) is
discussed, we’ll define what a cross section in general is and how it can be calculated
using the Feynman diagrams. The cross section is a measurement for the probability
that an interaction happens between particles. It has the unit of an area, which can be
seen as a collision area. If the area increases, so does the probability for an interaction.

2.6.1 Cross Section from Feynman Diagrams

The Feynman diagrams and the Feynman rules are shown in detail in appendix B.
Said diagrams are graphical descriptions of mathematical terms used to calculate the
matrix element Mfi = 〈f |U |i〉 essential to get the cross section. For example, incoming
fermions are depicted as an incoming arrow, and incoming antifermions as an outgoing
arrow (because they can be described as fermion moving back in time):

• (2.54)

The point where these lines intersect is called vertex. Here the couplings come into
play, because they are a measurement of how strong the interaction is at that vertex.
The interaction bosons have different symbols. As an example the Feynman diagram
of an annihilation of two incoming particles with the four-momentum pA and pB into
two outgoing particles with the four-momenta k1 and k2 through a interaction particle
γ looks like this:

A

B

1

2

pA

pB

γ
k1

k2

• •

(2.55)
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These Feynman diagrams can represent different orders of the annihilation, and in this
thesis just the leading order, meaning the simplest diagrams will be considered. U is
the time evolution operator to calculate the change of the system from the initial state
|i〉 to the final state 〈f | in time. With the matrix element the invariant amplitude |M|2

can be calculated and with

dσ

dΩ
=

α

64π2s

| #»p f|
| #»p i|

|M|2 (2.56)

the differential cross section in the cms is obtained [12]. Here Ω is the solid angle and
#»p i (

#»p f) is the momentum of the incoming (outgoing) particles and α takes the value 1/2
if the outgoing particles are identical. To calculate |M|2 we have to sum over the possible
outgoing states and average over all possible initial states. Hence for a A + B → 1 + 2

process, where the initial particles have the spin Ja and Jb:

|M|2 = 1

(2Ja + 1)(2Jb + 1)

∑
i,f

|Mfi|2. (2.57)

Analogously the decay width can be calculated with:

ΓA→1+2 = α
| #»p f|

32π2m2
A

∫
|M|2dΩ, (2.58)

for a particle A decaying into two particles 1 + 2 (equation 4.37 in [12]).

The differential cross section in the expressed form of equation 2.56 is not Lorentz
invariant, because the angles change under transformation. To get a Lorentz invariant
expression for the cross section the scattering angle is substituted with the Mandelstam
variable t. To do so t needs to be rewritten as

t = (pA − k1)
2 = p2A − 2pAk1 + k21

= m2
A − 2(EAE1 − #»pA

#»

k 1) +m2
1

= m2
A − 2EAE1 + 2| #»pA||

#»

k 1| cosϑ+m2
1, (2.59)

with ϑ as cms scattering angle. This is the polar angle between the particles A and 1.
Also the Energies and three-momenta of the particles in the center-of-momentum frame
can be rewritten as

EA =
s+m2

A −m2
B

2
√
s

EB =
s+m2

B −m2
A

2
√
s

E1 =
s+m2

1 −m2
2

2
√
s

E2 =
s+m2

2 −m2
1

2
√
s

(2.60)

| #»pA,B| =
1

2
√
s
λ1/2(s,m2

A,m
2
B) | #»p 1,2| =

1

2
√
s
λ1/2(s,m2

1,m
2
2). (2.61)
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Here λ the Källén function

λ(s,m1,m2) = (s−m2
1 −m2

2)
2 − 4m2

1m
2
2, (2.62)

also known as triangle function is used. Using equations 2.60 and 2.61 the differential
cross section takes the form

dσ

dt
=

1

16πλ(s,m2
A,m

2
B)

|M|2. (2.63)

The fraction in front of the invariant Amplitude is also referred to as Flux-Factor. By
integrating this expression the total cross section can be calculated

σA+B→1+2 =

∫ t+

t−

1

16πλ(s,m2
A,m

2
B)

|M|2dt, (2.64)

with

t± = m2
A +m2

1 −
(s−m2

A +m2
B)(s−m2

1 +m2
2)

2s
± 1

2s
λ1/2(s,m2

A,m
2
B)λ

1/2(s,m2
1,m

2
2).

(2.65)
In this Thesis equation 2.64 is used to obtain the total cross sections. For a more detailed
derivation of the final integral for the total cross section and the integral bounds see
[20][21][22]

2.6.2 Thermally Averaged Cross Section

In the Boltzmann equation for the yield 2.41 the thermally averaged cross section times
the Møller velocity appears, which is defined as

〈σvMøl〉 =

∫
σvMøl dn

eq
A dneq

B∫
dneq

A dneq
B

. (2.66)

The equilibrium distribution function, which is the Fermi-Dirac-distribution for fermions
and the Bose-Einstein-distribution for bosons, can be approximated by the Maxwell-
Boltzmann equation. This is a good approximation for x & 1/3, and since in this
Thesis the Boltzmann equation is solved from x = 1 the thermal averaged cross section
concludes to

〈σvMøl〉 =

∫
σvMøl e

−EA/T e−EB/T d3 #»pA d
3 #»p B∫

e−EA/T e−EB/T d3 #»pA d3
#»p B

. (2.67)

Using spherical coordinates to describe the momentum-space volume element in terms
of the Energies of the particle and the relative angle between them, results in:

d3 #»pA d
3 #»p B = 4π| #»pA|EAdEA 4π| #»p B|EBdEB

1

2
d cosϑ. (2.68)
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With the substitution of

E± = EA ± EB (2.69)

s = m2
A + 2EAEB − 2| #»pA|| #»p B| cosϑ+m2

B, (2.70)

equation 2.68 becomes

d3 #»pA d
3 #»p B = 2π2EAEBdE+dE−ds. (2.71)

Plugging this into equation 2.67 and doing some reshaping the final expression for the
thermally averaged cross section times Møller velocity is derived to be

〈σvMøl〉 =
x

8m5K2
2 (x)

∫ ∞

4m2
ds σ(s− 4m2)

√
sK1

(√sx
m

)
. (2.72)

Ki is the modified Bessel function of the i-th kind. This expression applies for particles
that follow the Maxwell-Boltzmann distribution. As mentioned earlier this will be the
only case treated in this thesis [18].

2.6.3 Non-relativistic thermal averaging

To later recast the limits on the parameter space set by the experiments that measure the
neutrino Flux it is necessary to expand the thermally averaged cross section in powers
of the velocity:

〈σv〉 = a+ b〈v2〉+O(v4). (2.73)

This can be used as a non-relativistic approximation, where 〈v2〉 is the averaging over
the DM velocity at the signal source. To get the for the constraints relevant s-wave
(a) and p-wave (b) contribution the Mandelstam variable s needs to be expanded and
approximated as

s = m2
A +m2

B +
m2

A +m2
B√

1− v2
≈ (2m2

A + 2m2
B)
(
1 +

v2

4

)
. (2.74)

If
ε ≡

s− (2mA + 2m2
B)

(2mA + 2m2
B)

(2.75)

is plugged into equation 2.74 the velocity can be calculated as

v =
2
√
ε(1 + ε)

1 + 2ε
(2.76)

The expansion of the thermally averaged cross section is given by

σv =

∞∑
n=0

a(n)

n!
εn = a(0) + a(1)ε+

1

2
a(2)ε2 + . . . , (2.77)
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where a(n) represents the n-th derivation with respect to ε of σv at ε = 0. With the
definition of ε the expansion is

σv = a(0) + a(1)
(
v2

4

)
+

1

2
a(2)

(
v4

16

)
+ · · · . (2.78)

The s-wave contribution is the first expansion factor (a = a(0)) and for the p-wave con-
tribution the second factor is used (b = a(1)/4). Since the constraints for the parameter
space set by the p-wave contribution are normally less strict than the constraints set by
the s-wave contribution only latter will be regarded in this Thesis [18].
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3 Analysis and Evaluation

In this section, the theoretical background discussed is used to obtain some results.
First, the model used for the DM candidate is presented, along with its Lagrangian,
which is only used to obtain the processes that come along with the proposed model. The
Feynman diagrams and rules are then employed to calculate the cross sections and decay
rates. Additionally, the calculation for the non-relativistic approximation is presented.
This is done, because neutrino flux experiments around the globe can set upper limits for
this approximation, which can be transferred to constraints on the parameter space of
the model (since the the DM particle couples to neutrinos only). Following the analytical
calculations, the numerical solution of the Boltzmann equation 2.41 is performed in order
to calculate the final relic density for different sets of parameters. Finally, a bisection
method is presented as a final step in the process, allowing for the optimal value of a
parameter to be identified, ensuring that the calculated relic density is always correct.

3.1 Model for Dark Matter

The model for Dark Matter in this thesis consists of the Standard Model (SM) as the
visible sector and proposes a hidden sector including a Dark Matter particle D and its
antiparticle D̄, both with masses mD. These particles are Dirac fermions, thus having
spin 1

2 . Additionally, a vector boson Z ′ with mass MZ′ serves as a portal between the
hidden and visible sectors. The Z ′-portal couples exclusively to the neutrinos of the
visible sector. The total Lagrangian of this model can be written as

L = LSM + Lkin + Lint. (3.1)

To the already known Lagrangian of the SM, two additional terms are included: the free
Lagrangian and the interactions of the hidden sector. These are given by

Lkin = −1

4
Z ′
µνZ

′µν +
1

2
M2

Z′Z ′
µZ

′µ + D̄(iγµ∂µ −mD)D, (3.2)

Lint = −ν̄iγµ(gij − g′ijγ5)Z
′
µνj − gXD̄γ

µ(1− γ5)Z
′
µD. (3.3)

Here, γ5 is the fifth Dirac matrix (see appendix A), which is needed for the mathematical
description that only left-chiral particles participate in weak interactions. gij and g′ij are
the coupling constants that measure the strength of the interactions of the hidden sector
that are coupled to neutrinos. For simplicity, these are assumed to be diagonal, so
gij = gδij and g′ij = g′δij . As a result, the three neutrino flavors are treated equally in
the Z ′ ↔ νν̄ vertex, and no flavor changing occurs between the three neutrino types.
From the Lagrangians in equations 3.2 and 3.3, the following processes can be derived:

• The term −ν̄iγµ(gij − g′ijγ5)Z
′
µνj encodes the interaction between the portal and

the neutrinos. From this, the decay Z ′ → νν̄ can be extracted.
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• The term gXD̄γ
µ(1−γ5)Z ′

µD describes the interaction within the dark sector, and
the decay Z ′ → DD̄ can be derived.

• Using both vertices described by the Lagrangian, two annihilation processes are
possible:

1. DD̄ → νν̄

2. DD̄ → Z ′Z ′

In the following sections, the cross sections of these processes are calculated to determine
the final relic density.

3.2 Calculated Cross Sections and Decay Widths

Here, the explicit calculations to obtain the invariant amplitude of the Z ′ decays and
the annihilation processes are shown using Feynman diagrams and rules (a short list of
the Feynman rules are in appendix B). These calculations are then used to derive decay
width of the portal and the cross sections of the annihilation processes. Note that in
the following calculations, the distinction between contravariant and covariant indices is
ignored, as the correct application of Feynman rules ensures proper results. Therefore all
indices are noted as superposition (appart from γ5). also important to mention is that
some steps of the calculation were performed using the FeynCalc package in MATHEMATICA
13 [23].

3.2.1 Z ′ Decays

For this first calculation the steps are noted more detailed than in the later processes,
as the procedure is similar and can be transferred to the other terms.
The diagram for the first Decay is:

Z ′

ν

ν

pA

k1

k2

•

(3.4)

For the incoming Z ′-vector boson, the Feynman rule is ελ(pA). The outgoing neutrino
is noted as ū(s1)

ν (k1) and the antineutrino as v(s2)
ν (k2), where ν in the index refers to the

neutrino and is not summed over. From the Lagrangian in equation 3.3, the interaction
term for the Z ′ ↔ νν̄ vertex can be derived as iγµ(g − g′γ5). Applying the rules for
spinors and Dirac-matrices (see appendix A for the Dirac-matrix rules) the chain follows
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to be

M = εµλ(pA)ū
(s1)
ν (k1)iγ

µ(g − g′γ5)v(s2)
ν (k2)

= iεµλ(pA)u
†(s1)
ν (k1)γ

0γµ(g − g′γ5)v(s2)
ν (k2), (3.5)

where the parenthesised superscription denotes the spin of the different particles. To
obtain the absolute square (|M|2 = MM†) the hermitian adjoint

M† =
[
iενλ(pA)u

†(s1)
ν (k1)γ

0γν(g − g′γ5)v(s2)
ν (k2)

]†
= v†(s2)

ν (k2)(g − g′γ5)†γν†γ0†u(s1)
ν (k1)(−i)ε∗νλ (pA) (3.6)

is needed. Making use of:

γν† = γ0γνγ0 and γ0† = γ0 (3.7)

it concludes to

M† = −iv†(s2)
ν (k2)(g − γ5g

′)γ0γνγ0γ0u(s1)
ν (k1)ε

∗ν
λ (pA)

= −iv†(s2)
ν (k2)(g − γ5g

′)γ0γν1u(s1)
ν (k1)ε

∗ν
λ (pA). (3.8)

Because γ5 anticommutes with the other γ-matrices, when the remaining γ0 is passed
to the other side of the parenthesis the sign changes from − to + inside the parenthesis:

⇒ M† = −iv†(s2)
ν (k2)γ

0(g + γ5g
′)γνu(s1)

ν (k1)ε
∗ν
λ (pA)

= −iv̄(s2)
ν (k2)(g + γ5g

′)γνu(s1)
ν (k1)ε

∗ν
λ (pA)

= −iv̄(s2)
ν (k2)(g + g′γ5)γνu(s1)

ν (k1)ε
∗ν
λ (pA). (3.9)

So the amount square concludes to be

|M|2 = MM†

=
[
εµλ(pA)ū

(s1)
ν (k1)iγ

µ(g − g′γ5)v(s2)
ν (k2)

][
−iv̄(s2)

ν (k2)(g + g′γ5)γνu(s1)
ν (k1)ε

∗ν
λ (pA)

]
= εµλ(pA)ū

(s1)
ν (k1)γ

µ(g − g′γ5)v(s2)
ν (k2)v̄

(s2)
ν (k2)(g + g′γ5)γνu(s1)

ν (k1)ε
∗ν
λ (pA) (3.10)

Since the polarization ε commutes with the other elements, the completeness relation
for massive vector bosons

∑
λ

εµλ(pA)ε
∗ν
λ (pB) = −gµν +

pµAp
ν
B

M2
Z′
. (3.11)
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elements can be applied. Note that here gµν is the Minkowski metric (see equation
elements2.47) and not the coupling constant. Using this relation the expression becomes:

|M|2 = ū(s1)
ν (k1)

(
−gµν+

pµAp
ν
A

M2
Z′

)
γµ(g−g′γ5)v(s2)

ν (k2)v̄
(s2)
ν (k2)(g+g′γ5)γνu(s1)

ν (k1). (3.12)

As mentioned in section 2.6.1, it is necessary to sum over the different spins of the
neutrino and antineutrino and average over the possible initial polarizations of Z ′ (see
equation 2.57). For simplicity, only one component will be considered, allowing every
part of the term to commute. Applying these considerations, the invariant amplitude
becomes:

|M|2 = 1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
ū(s1)
ν (k1)a

[
γµ(g − g′γ5)

]
abv

(s2)
ν (k2)bv̄

(s2)
ν (k2)c

[
(g + g′γ5)γν

]
cdu

(s1)
ν (k1)d

=
1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
u(s1)
ν (k1)dū

(s1)
ν (k1)a

[
γµ(g − g′γ5)

]
abv

(s2)
ν (k2)bv̄

(s2)
ν (k2)c

[
(g + g′γ5)γν

]
cd

(3.13)

Recall that the Einstein summation convention also includes Latin indices. After rear-
ranging and since the spin sum is applied, the relations∑

s

u(s)(p)aū
(s)(p)b = (/p+m)ab, (3.14)∑

s

v(s)(p)av̄
(s)(p)b = (/p−m)ab, (3.15)

as well as the Feynman slash notation /p ≡ γµpµ are used. Plugging this into the
expression 3.13 gives

|M|2 = 1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
Tr
[
( /k1 +mν)γ

µ(g − g′γ5)( /k2 −mν)(g + g′γ5)γν
]
. (3.16)

In this thesis the neutrinos are approximated to be massless, so the term becomes:

|M|2 = 1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
Tr
[
/k1γ

µ(g − g′γ5) /k2(g + g′γ5)γν
]

(3.17)

=
1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
Tr
[
/k1γ

µ /k2(g + g′γ5)2γν
]

(3.18)

=
1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
Tr
[
/k1γ

µ /k2(g
2 + g′2 + 2g′γ5)γ

ν
]
. (3.19)

The trace of an odd number of γ-matrices vanishes, so only terms containing an even
number are considered. For the trace of γ-matrices, the identities in appendix A are
utilized. In the expression 3.19 for the invariant amplitude the trace with the γ5-matrix
vanishes because k1 and k2 are symmetric under permutation and the epsilon-Tensor in

28



those indices is not. So the expression gets

|M|2 = 1

3

(
−gµν +

pµAp
ν
A

M2
Z′

)
(g2 + g′2)kσ1 k

ρ
2Tr

[
γσγµγργν

]
(3.20)

=
1

3
(g2 + g′2)kσ1 k

ρ
2

(
−gµν +

pµAp
ν
A

M2
Z′

)
Tr
[
γσγµγργν

]
(3.21)

=
1

3
(g2 + g′2)kσ1 k

ρ
2

(
8gρσ +

8pρAp
σ
A

M2
Z′

−
4p2Agρσ

M2
Z′

)
(3.22)

=
1

3
(g2 + g′2)

(
8(k1k2) +

8(pAk1)(pAk2)− 4p2A(k1k2)

M2
Z′

)
. (3.23)

Plugging in the results of the scalar products

p2A = EA =MZ′ (3.24)

k1k2 =

(
Eν

~k1

)(
Eν

− ~k1

)
= E2

ν +
~k1

2
= E2

ν + E2
ν −mν = 2E2

ν =
1

2
M2

Z′ (3.25)

pAki =

(
EA

0

)(
Eν

~ki

)
= EAEν =MZ′

1

2
MZ′ =

1

2
M2

Z′ (3.26)

gives:

|M|2 = 1

3

(g2 + g′2)

M2
Z′

(
4M2

Z′ + 2M2
Z′ − 2M2

Z′
)

(3.27)

=
1

3
4(g2 + g′2)M2

Z′ . (3.28)

One last step needs to be done. Because there are three different generations of neutrinos
this result needs to be multiplied by three, resulting in

|M|2 = 4(g2 + g′2)M2
Z′ , (3.29)

as the final expression of the invariant amplitude. With equation 2.58 the decay width
of the Z → νν̄-decay concludes to be

ΓZ′→νν =
| ~k1|

32π2M2
Z′

∫
4(g2 + g′2)M2

Z′dΩ (3.30)

=
| ~k1|

32π2M2
Z′
4(g2 + g′2)M2

Z′

∫
dΩ (3.31)

=
| ~k1|

32π2M2
Z′
4(g2 + g′2)M2

Z′4π (3.32)

=
| ~k1|(g2 + g′2)

2π
(3.33)
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The absolute of the momentum can be rewritten as

E2
ν = m2

ν | ~k1|2 (3.34)

⇔ | ~k1| =
√
E2

ν −m2
ν =

√
1

4
M2

Z′ =
1

2
MZ′ (3.35)

giving the expression

ΓZ′→νν =
(g2 + g′2)

4π
MZ′ (3.36)

as the decay width for this first decay.

The Feynman diagram for the second decay is

Z ′

D

D

pA

k1

k2

•

(3.37)

Analog to the previous decay the chain and its hermitian adjoint conclude to be

M = εµλ(pA)ū
(s1)
D (k1)igXγ

µ(1− γ5)v
(s2)
D (k2)

= iεµλ(pA)gXū
(s1)
D (k1)γ

µ(1− γ5)v
(s2)
D (k2) (3.38)

M† = −v†(s2)
D (k2)(1− γ5)

†γν†u
†(s1)
D (k1)g

†
Xε

∗ν
λ (pA)i

= −iε∗νλ (pA)gXv̄
(s2)
D (k2)(1 + γ5)γ

νu
(s1)
D (k1) (3.39)

So for the amount square the result is

|M|2 =
(
−gµν+

pµAp
ν
A

M2
Z′

)
g2Xū

(s1)
D (k1)γ

µ(1−γ5)v(s2)
D (k2)v̄

(s2)
D (k2)(1+γ5)γ

νu
(s1)
D (k1). (3.40)

Only regarding one component, making use of the relations 3.14 and 3.15, and using the
trace identities the invariant amplitude becomes

|M|2 = 2

3
g2Xk

σ
2 k

ρ
1

(
8gρσ +

8pρAp
σ
A

M2
Z′

−
4p2Agρσ

M2
Z′

)
. (3.41)

30



The scalar products result in

p2A = EA =MZ′ (3.42)

k1k2 =

(
Eν

~k1

)(
Eν

− ~k1

)
= E2

ν +
~k1

2
= E2

ν + E2
ν −m2

D = 2E2
ν −m2

D =
1

2
M2

Z′ −m2
D

(3.43)

pAki =

(
EA

0

)(
Eν

~ki

)
= EAEν =MZ′

1

2
MZ′ =

1

2
M2

Z′ . (3.44)

Plugging this results and the additional factor 3 into the invariant amplitude gives

|M|2 = 8

3
g2X(M

2
Z′ −m2

D) (3.45)

and with equation 2.58 the decay width for the second decay is

ΓZ′→DD =
g2X
6π
MZ′

√
1−

4m2
D

M2
Z′

(
1−

m2
D

M2
Z′

)
(3.46)

The total decay width for the vector portal Z ′ is the addition of the two decay widths
calculated above:

ΓZ′ = ΓZ′→νν + ΓZ′→DD. (3.47)

3.2.2 Annihilation of DD̄ into νν̄

The first annihilation process happens when the DM particle collides with its antiparticle
and they produce a pair of neutrino and antineutrino through the Z ′-portal as interaction
boson. The Feynman diagram for this process is

D

D

ν

ν

pA

pB

(pA + pB)

Z ′
k1

k2

• •

(3.48)

Because the propagator has the momentum q ≡ (pA + pB) =
√
s, this process is referred

to as the s-channel. In this scenario, it is the only channel that occurs. This contrasts
with the other annihilation process, where the t- and u-channels are involved. Again,
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the different parts of the diagram lead to the chain

M =
[
v̄
(s1)
D (pB)igXγ

µ(1− γ5)u
(s2)
D (pA)

]−i(gµν − qµqν

M2
Z′

)
q2 −M2

Z′

[
ū(s3)
ν (k1)iγ

ν(g − g′γ5)v
(s4)
ν (k2)

]

= −igX

(
−gµν + qµqν

M2
Z′

)
q2 −M2

Z′

[
v̄
(s1)
D (pB)γ

µ(1− γ5)u
(s2)
D (pA)

][
ū(s3)
ν (k1)γ

ν(g − g′γ5)v
(s4)
ν (k2)

]
(3.49)

Notice that the Z ′ boson has a different term than in the decays. This is because here
it acts as a propagator and not as an incoming particle. The hermitian adjoint of the
chain is

M† = igX

(
−gσρ + qρqσ

M2
Z′

)
q2 −M2

Z′

[
v̄(s4)
ν (k2)(g + g′γ5)γσu(s3)

ν (k1)
][
ū
(s2)
D (pA)(1 + γ5)γ

ρv
(s1)
D (pB)

]
.

(3.50)
Multiplying M and M† results in

|M|2 = g2X

(
−gµν + qµqν

M2
Z′

)(
−gσρ + qρqσ

M2
Z′

)
(q2 −M2

Z′)2
[
v̄
(s1)
D (pB)γ

µ(1− γ5)u
(s2)
D (pA)

]
[
ū(s3)
ν (k1)γ

ν(g − g′γ5)v
(s4)
ν (k2)

][
v̄(s4)
ν (k2)(g + g′γ5)γσu(s3)

ν (k1)
]

[
ū
(s2)
D (pA)(1 + γ5)γ

ρv
(s1)
D (pB)

]
(3.51)

With the temporary substitution for better oversight

Fµνρσ = g2X

(
−gµν + qµqν

M2
Z′

)(
−gσρ + qρqσ

M2
Z′

)
(q2 −M2

Z′)2
, (3.52)

and summing over the spins of the outgoing neutrinos and averaging over the spins of
the incoming DM particles while regarding only one component and making use of the
fermion spin sum relations (3.14 and 3.15) the invariant amplitude for this annihilation
is

|M|2 = 1

4
FµνρσTr

[
( /pB − mD)γ

µ(1 − γ5)( /pA + mD)(1 + γ5)γ
ρ
]

Tr
[
/k1γ

ν(g − g′γ5) /k2(g + g′γ5)γ
σ
]
. (3.53)

Note that q2 = s. With the trace identities and calculating the scalar products including
Fµνρσ

|M|2 =
12g2X

(s−M2
Z′)2

[(
g2 + g′2

) (
s2 + 2st− 2m2

Ds+ 2
(
m2

D − t
)2)

+ 2sgg′
(
2t+ s− 2m2

D
)]

(3.54)
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is the result for the invariant amplitude of this first annihilation. Note that here again
the additional factor 3 was added, because of the three neutrino generations. To obtain
the total cross section the integral 2.64 needs to be performed. This results in

σ′DD→νν
=
g2X(g

2 + g′2)

2π

√
s(s−m2

D)√
s− 4m2

D(s−M2
Z′)2

(3.55)

as the cross section for this process. To prevent that the cross section tends to infinity at
the resonance MZ′ = 2mD the total decay width needs to be included in the denominator,
because in this case the Z ′ boson is created on shell and can decay through the processes
calculated before. So the final cross section for DD̄ → νν̄ is

σDD→νν =
g2X(g

2 + g′2)

2π

√
s
(
s−m2

D
)√

s− 4m2
D
[
(s−M2

Z′)2 +M2
Z′Γ2

Z′
] . (3.56)

3.2.3 Annihilation of DD̄ into Z ′Z ′

As previously mentioned, this process involves both t- and u-channel. This means that
the matrix element is the sum of the matrix elements of both channels M = Mt +Mt.
So for the total invariant amplitude of this process

|M|2 = |Mt|2 + |Mu|2 + 2Re(MtM†
u) (3.57)

needs to be calculated.

t-channel

For the t-channel of this annihilation the Feynman diagram looks like this:

D
Z ′

D Z ′

pA

(pA − k1)D

pB

k1

k2

•

•

(3.58)
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See how here the momentum of the propagator, which is D in this case, is (pA − k1) =

t ≡ q2t . So applying the according rules the chain

Mt =
[
v̄
(s1)
D (pB)igXγ

µ(1− γ5)
i( /qt +mD)

q2t −m2
D
igXγ

ν(1− γ5)u
(s2)
D (pA)

]
ε∗νλ1

(k1)ε
∗µ
λ2
(k2)

=
−2ig2X
t−m2

D
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(k1)ε
∗µ
λ2
(k2)

[
v̄
(s1)
D (pB)γ

µ
/qt(1 + γ5)γ

νu
(s2)
D (pA)

]
, (3.59)

and the adjoint

M†
t =

2ig2X
t−m2

D
εσλ1

(k1)ε
ρ
λ2
(k2)

[
ū
(s2)
D (pA)γ

σ(1− γ5) /qtγ
ρv

(s1)
D (pB)

]
(3.60)

can be obtained. Multiplying these and following the same steps as in chapter 3.2.2
results in

|Mt|2 =
1

4

8g4X
(t−m2

D)
2

{
− 2

M4
Z′

[
4M8

Z′ − 4M6
Z′
(
m2

D + 2t
)
+M4

Z′
(
t(4s+ 5t)− 3m4

D
)

+ 2M2
Z′
(
m2

D − t
) (
m4

D − 2m2
Dt+ t(2s+ t)

)
+
(
m2

D − t
)2 (

m4
D − 2m2

Dt+ t(s+ t)
)]}

(3.61)

for the amount square of the t-channel. An additional factor 1
2 is necessary, because the

two outgoing Z ′-bosons are indistinguishable:

|Mt|2 =
g4X

(t−m2
D)

2

{
− 2

M4
Z′

[
4M8

Z′ − 4M6
Z′
(
m2

D + 2t
)
+M4
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(
t(4s+ 5t)− 3m4

D
)

+ 2M2
Z′
(
m2

D − t
) (
m4

D − 2m2
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)
+
(
m2

D − t
)2 (

m4
D − 2m2

Dt+ t(s+ t)
)]}

(3.62)

This gives the first part to calculate the invariant amplitude with equation 3.57.
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u-channel

Here the Feynman diagram looks like this:

D

D Z ′

Z ′

pA

(pA − k2) D

pB
k2

k1

(3.63)

Analog to the t-channel the results

Mu =
−2ig2X
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(3.64)
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⇒ |Mu|2 =
g4X
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(3.66)

can be derived. With the previous result from the t-channel the interference term is

2Re
[
MtM†

u

]
=

2g4X
(t−m2

D)(u−m2
D)

{
− 2

M4
Z′

[
M6
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(
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(
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(
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)
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. (3.67)
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So this

|M|2 = −
4g4X
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{
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(3.68)

is the expression for the invariant amplitude that will be used to calculate the cross sec-
tion, with equation 2.64, for the DD̄ → Z ′Z ′ process. The cross section concludes to be

σDD→Z′Z′ =
g4X

4πM4
Z′s
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D
){
√(
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Z′
) (
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)
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Z′m2

D(s
2 − 6M2

Z′s− 8M4
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]
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}
,

with

B =
s− 2M2

Z′ +
√
(s− 4M2

Z′)(s− 4m2
D)

s− 2M2
Z′ −

√
(s− 4M2

Z′)(s− 4m2
D)
. (3.69)

With the sum of the cross sections of the two processes

σ = σDD→νν + σDD→Z′Z′ (3.70)

the total annihilation cross section from the hidden sector is calculated.

3.2.4 Non-relativistic thermal averages

Following the steps in section 2.6.3 the s-wave contribution for the two annihilation
processes can be derived, to later set constrains on the parameters of the DM model in
section 3.3.2. If the mass of the DM particle is smaller than the mass of the interaction
bososn, the annihilation into neutrinos will be the dominant at FO and the final relic
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density is determined by the DD̄ → νν̄ process. With the presented procedure

a =
3m2

Dg
2
X(g

2 + g′2)

π(M2
Z′ − 4m2

D)
2

(3.71)

is the term for the s-wave-contribution of the first annihilation process. If mD is greater
than MZ′ the DD̄ → Z ′Z ′ process becomes kinematically accessible and will play a
greater roll in determining the final relic density. Here

a′ =
g4Xm

2
D

πM2
Z′(2m2

D −M2
Z′)

(
1−

M2
Z′

m2
D

)3/2

(3.72)

is the derived term for the s-wave contribution of the second annihilation process.

3.3 Numerical Calculation

In this section the numerical solution to solve the Boltzmann equation is presented.
The calculation was fully implemented in MATLAB, and the plots and the constraints
were created and calculated using Python. The most important scripts are appended in
appendix D. For the results the mass ratio R = MZ′/mD is used instead of the mass of
the portal. At first the expressions for the cross sections 3.56 and 3.69 are transferred
into the Script Oh2Calculator, in which the ODE is solved with ode15s [24] and Ωh2

is calculated. It uses the function SigmaV22 to calculate the thermally averaged cross
section according to equation 2.72. With the yield in equilibrium 2.42, everything to
solve the Boltzmann equation for the yield 2.41 is given. This is done in the lines:

47 %% ODE Solver
48 options = odeset ( 'RelTol',1e-5,'AbsTol',1e-100 );
49 tspan = [xstart xend];
50 initialCondition = Y_eq(tspan(1,1));
51
52 [x, Y] = ode15s(@(x, Y) Boltzmann_rhs(x, Y), tspan,

initialCondition , options);

The initial condition to solve the differential equation is chosen as Y (xstart) = Yeq(xstart),
because for high temperatures the DM decoupling did not take place and the DM is
still in equilibrium. After solving the ODE the first time, the freeze-out point xFO is
determined, as the point where the ratio of the Y (x) and Yeq(x) is greater than 2.5. This
Value is now used as xend for the ode15s. With the yield at the decoupling YFO and
the freeze out temperature, IntergateTillToday uses equation 2.43 to approximate
the resulting Yield for today, which is than used in equation 2.44 to finally calculate the
resulting relic density Oh2.
The parameters to vary are mD, R, gX, g, and g′ resulting in a five dimensional parameter
space. To grasp the impact the parameters have on the final relic density for all further
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calculations g′ is set equal to g, lowering the dimensions of the parameter space from
five to four. The results are stored in a text file to plot them in Python.

3.3.1 Grid Scans

By constructing for-loops around Oh2calculator it is possible to do grid scans over two
Parameters, while the other two are fixed and observe how Ωh2 changes depending on
the two variables.
Furthermore the grid scans in this section were made with a resolution of 200 × 200 =

40000 data points

Grid Scan mD −R

The fist grid scan is over R and mD with

0.5 < R < 4, in linear steps

101 < mD < 103, in logarithmic steps

g = 0.1

gX = 0.2

and is presented in the heat-map 3.1, where the colour represents the relic density cal-
culated. The regions where the correct final relic density (Ωh2 = 0.12±0.01) is achieved
are marked in pink. For Values R→ 2 there is a anomaly noticeable. The code struggles
to compute the calculation with the resulting white areas showing in the figure. This
white areas have no physical implication.
To start analyzing the result and set it into physical context the general impact of mD

on Ωh2 can be observed. No matter what R is, the relic density is proportional to mD. It
can be traced to the connection between cross sections and the relic density. If the cross
section is high, the DM particles annihilate more often, leading to a lower abundance of
DM at FO and hence a lower final relic density. If mD increases, the annihilations get
kinematically more difficult, and the cross section decreases resulting in an increase of
the final relic density. So the code describes this behaviour correctly.
Also interesting is the dependency on R. The two Values R = 1 and R = 2 seem im-
portant, because the tendency of Ωh2 changes here. For R < 1 the process DD̄ → Z ′Z ′

is kinematically accessible and therefore dominant at FO and determines the final relic
density and for R → 1 the cross section decreases, because the Z ′-Portal gets heavier
(regarding one fixed mD). This happens until at R = 1 the annihilation into Z ′ gets
kinematically excluded. So for R > 1 the annihilation DD̄ → νν̄ sets the final relic
density. If the ratio increases more, this means that the Z ′-Portal gets heavier than the
DM-fermion, which leads to a preferred Annihilation into neutrinos lowering the number
of DM at FO.
For R = 2 a resonance occurs, which leads to a drastic drop of the final relic density. In
this case Z ′ is exactly twice as heavy as the Portal enabling the Z ′ → DD̄ decay. In the
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Figure 3.1: Ωh2 for the grid scan of mD and R. The relic density is represented in
the colour in a logarithmic scale. The pink area represents those combination that give
Ωh2 = 0.12 ± 0.01. The fixed parameters are g = 0.1 and gX = 0.2. For R → 2 (the
resonance) the code struggles explaining the white areas.

Code this resonance is not simulated well, because instead of giving results that tend to
zero it returns exactly zero or negative densities (more in section 4).
Once the mass of the portal is greater than than twice the DM mass the cross section
just gets smaller and smaller for higher R, leading to a steady increasing of Ωh2. This
tendency does seem to flatten out, but should continue for R→ ∞.

Grid Scan gX −R

This grid scan is over the parameters gX and R with

0.5 < R < 4, in linear steps

10−3 < gX < 0.3, in logarithmic steps

g = 0.1

mD = 100GeV

The result is presented in figure 3.2 Since an increment of the coupling gX affects both
Processes and increases the cross section, it has the opposite effect than an increment
of mD resulting in a mirrored behaviour of the final relic density along the x-axis. The
dependency of R does not change and is analogous to Grid Scan mD −R
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Figure 3.2: Ωh2 for the grid scan of gX and R. The relic density is represented in the
colour in a logarithmic scale. The pink area represents those combination that give
Ωh2 = 0.12 ± 0.01. The fixed parameters are g = 0.1 and mD = 100GeV. For R → 2
(the resonance) the code fails and returns nonphysical results.

Grid Scan mD − gX

As the last example the grid scan over mD and gX is shown in figure 3.3, with the
parameters

0.5 < mD < 4, in logarithmic steps

10−3 < gX < 0.3, in logarithmic steps

R = 1.5

g = 0.1
Here the resonance is not visible, because R is set to 1.5 and does not change. The
connection between the parameters mD and gx and the final relic density were men-
tioned earlier. For higher masses the cross section decreases and the relic density at FO
increases. For increasing couplings it is vice versa and the final Ωh2 decreases. This
matches the depiction in figure 3.3.
To control the accuracy of the results a comparison to micrOMEGAs is made in appendix C.
micrOMEGAs is a code used for the calculation of DM properties including the relic den-
sity for generic models. The deviation to the results of micrOMEGAs are generally under
10%, but obviously it diverges for values approaching the resonance at R = 2. Also for
the value of R = 1 a small discrepancy can be observed, indicating that the switch of
one process to another does not compute smoothly. Nevertheless for the mD − gX grid
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Figure 3.3: Ωh2 for the grid scan of mD and gX. The relic density is represented in
the colour in a logarithmic scale. The pink area represents those combination that give
Ωh2 = 0.12± 0.01. The fixed parameters are R = 1.5 and g = 0.1.

scan the maximal percentage deviation is below 4%, showing that the code produces
good results across the rest of the parameter space.

3.3.2 Indirect Detection Constraint

The DM particle in this model only annihilates into neutrinos. So the experiments
around the world that measure the neutrino flux constrains the parameter space of
this model. In [25] the restrictions on the first factor of the expansion by existing and
future experiments are elaborated. Using the data of that paper the restriction of the
first order of 〈σv〉n.r = a is shown in figure 3.4. Only the experiments that cover the
range used in this thesis are taken into account and to express the results in natural
units the conversion 1 cm3s−1 = 8.57 · 1016 GeV−2 is used. To determine the parameter
space excluded, for each combination of the parameters, The expression for the s-wave
contributions 3.71 and 3.72 from section 3.2.4 are compared to the upper limit given by
the (future) experiments. If the expansion factor is larger, this combination is excluded
as a possibility. Doing this for the mD−R grid scan the excluded areas in the parameter
space are added in figure 3.5.
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Figure 3.4: Using the data of [25] the restriction on the first expansion factor depending
on mD are obtained. With the expression from section 3.2 the parameter space of this
model can be constrained.
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Figure 3.5: The constrains from the neutrino experiments are added to the grid scan of
3.1. The constraints imposed by the requirement for the correct relic density are stricter
than the restrictions set by existing experiments
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Figure 3.6: Constrains for the gX − R grid scan. Here neither the already existing nor
the future experiments set significant constrains, so that the strictest restriction comes
from the correct relic density.

It can be observed that the existing experiments do not constrain the model strictly
enough to exclude some combinations that give the correct result. However, future ex-
periments are expected to examine a small section of the parameter space that results
in the correct relic density. Having a look at figure 3.4 it is obvious that the strictest
constraints for mD values over 200GeV in the future will come from the KM3NeT ex-
periment.6 Also the failing of the code at the resonance is not very problematic, since
this area is almost completely excluded. The same procedure is done for the other grid
scans resulting in the added exclusion areas in figures 3.6 and 3.7. In 3.6 the excluded
area of the experiments does not restrict the combinations that lead to the correct final
relic density and the future experiments only constrain a small portion at the resonance.
For the mD − gX scan the constrains are not strict enough to give an relevant limitation
of the parameter space that yields in the correct final density (see figure 3.7).
The conclusion is that either the existing nor the future planned experiment set con-
strains strict enough to verify the parameters of this model that conclude in the correct
value for Ωh2. Only some small areas are excluded by the future experiment KM3NeT.

6KM3NeT is a future underwater neutrino telescope experiment located in the Mediterranean Sea,
designed to explore distant astrophysical sources and study neutrino properties using optical sensors
[26].
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Figure 3.7: Constrains for the mD − gX grid scan. Here again the correct relic density
sets the stricter limitations to the parameter space than the restrictions coming from
either the already existing nor the future experiments

3.3.3 Parameter Optimizing with the Bisection Method

Regarding the proportion of the combinations that give the correct relic density (Ωh2 =
0.12 ± 0.01) to the combinations that lead to wrong results, it is obvious that most of
the computing time is used to calculate unnecessary combinations. To consider only
relevant combinations a bisection method is used to find the corresponding parameter
that concludes in the correct relic density for a fixed combination of the other parame-
ters. The function optimizeParameter.m does exactly this using Oh2calculator.m to
calculate Ωh2 in each iteration. optimizeParameter.m takes the parameter to optimize
as a string and returns the optimized value of it, ensuring the relic density is the ex-
pected result. Some changes were made to the typical structure of a bisection method.
Instead of using a tolerance for the bisected parameter7 a tolerance for the resulting Ωh2

is implemented. Also because it is difficult to predict the range in which the optimal
parameter lies, a stuck counter is initialized to interrupt the loop if the bisection results
15 consecutive times in a value within one percent of the lower or upper bound. The
output value is then the last set value.
In OptimizeGridSearch.m for-loops are build around the optimize function in a similar
way as in GridSearch.m. So now it is possible to find combinations of three parameters

7Normally a tolerance is set to determine the accuracy of the bisected parameter, i.e. the method
keeps working while (upper_limit - lower_limit > tolerance).
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that conclude in the correct relic density and not just two as in the method of the plain
grid scan. The accuracy of the following scans is set to 0.01, meaning for all combinations
the final relic density is Ωh2 = 0.12 ± 0.01 (except the bisection method gets stuck on
the lower or upper limit), showing how the parameter need to change to get the correct
relic density. The grid scans have a total data points of 50× 50, reducing the resolution
from 40000 to 2500.

Optimize mD for gX −R

In this scan the optimal value for mD is determined for this set of parameters:

0.5 < R < 4, in linear steps

10−3 < gX < 0.3, in logarithmic steps

g = 0.1
This is depicted in figure 3.8.
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Figure 3.8: Optimal mD for the grid scan of gX and R. For each combination of these
parameters the calculated relic density is Ωh2 = 0.12 ± 0.01. The fixed parameter is
g = 0.1.

As a fist step to interpret the heat map the way mD has to change when gX increases
to still hit the targeted density. For every R an increment of gX leads to a increment of
the mass. This makes sense, because a greater gX result in a lower Ωh2 and to counter
this effect, the mass has to increase. At the resonance mD theoretically has to tend to
infinity, to compensate the relic density, which tends to zero.
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Optimize mD for gX − g

As another example for optimization of a parameter by the bisection method mD is
optimized for different couplings gX and g. The chosen parameters are:

10−3 < gX < 0.3, in logarithmic steps

10−3 < g < 0.3, in logarithmic steps

R = 1.5
The result is shown in figure 3.9.
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Figure 3.9: Optimal mD for the grid scan of gX and g. For each combination of these
parameters the calculated relic density is Ωh2 = 0.12 ± 0.01. The fixed parameter is
R = 1.5.

The influence of the couplings on the cross section is known. In general the increment
of a coupling increases the cross section and therefore decreases the final relic density.
For g this is only the case for ratios over one, because else the process determining Ωh2

is DD̄ → νν̄, which does not depend on g. The results of the grid scan indicate that
either for higher g or gX the relic density drops, which leads to a necessary increment
of the DM mass, to encounter this effect. Besides it is noticeable that for high g and
low gX (g > 7 × 10−2 and gX < 5 × 10−3) a change of the coupling to the dark sector
does not have any impact on mD, meaning that is does not have a impact on the final
relic density. This makes sense, because in the dominant process gX and g appear once
(in the first order of the Feynman diagram) and a increment of one would cancel out
a decrease of the other. On the other hand this would mean that for high gX and low
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g the same tendency should be observable, which is not the case in this grid scan. A
possible reason for the asymmetric appearance is that the couplings influence the relic
density not in the same way and the effect would be visible for even higher gX and lower
g than the here used range.
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4 Conclusion and Outlook

In this thesis a neutrinophilic dark matter model with a vector portal was investigated
presented in section 3.1. With the given Lagrangians the possible interaction of the
added hidden sector

• The Z ′ → νν̄ decay

• The Z ′ → DD̄ decay

• The DD̄ → νν̄ annihilation

• And the DD̄ → Z ′Z ′ annihilation

were obtained. With the Feynman diagrams and the according rules, the decay width
of the portal and the cross sections of the annihilation processes were calculated in sec-
tion 3.2. These results were then implemented in MATLAB to numerically solve the
Boltzmann equation for the yield. The effects of the four dimensional parameter space
consisting of mD, MZ′ (R as the mass ratio in the numerical calculations), gX, and g
was analyzed by doing grid scans over two parameters, while fixing the other two and
observing how the final relic density changes for changes of the two scan parameters in
section 3.3.1. The results show, that the final relic density increases with higher masses
of the DM particle and decreases with higher coupling constants, as expected. Inter-
esting is the dependency on the mass ratio R. Here the influence is not as linear as
in the other parameters, because the dominant annihilation determines the final relic
density and said changes if the mass of the vector portal is equal to the mass of the DM
particle, leading to a complex behaviour. Additionally a resonance occurs at R = 2 in
which the cross section gets big and the relic density abundance drop. Here the code
fails to give correct results, so an improvement of the numerical method to handle the
resonance will provide better results for that area in the parameter space and give a
better understanding about the behaviour of the model near the resonance.
The comparison with micrOMEGAs shows that, excluding the resonance region, the code
produces results that are generally accurate, with deviations around 10% from those of
micrOMEGAs. In the mD−gX grid scan, the maximum deviation observed was even lower
with ca. 4%.
Because in this model only couples to neutrinos the experiments that measure neutrino
flux can be used to constrain the parameter space, by giving an upper limit for the
non-relativistic thermal average. Including this restrictions and considering future ex-
periments, that will measure neutrino flux the parameter space can be narrowed. The
results in section 3.3.2 show what regions are excluded from the (future) experiments.
In general, one can say that the strictest constraints result from the correct relic density.
Only a small section for mD > 200GeV in the future experiment KM3NeT will set
stricter restrictions. This indicates that said experiment will be the only one in the near
future with the potential to play a significant role in the search for dark matter, as it
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explores a small region of the correct relic density.
At the end a bisection method was implemented to optimize one parameter (here mD

was chosen) in such way that for a set of other fixed parameters the correct relic density
is matched. By performing grid scans over two parameters now combinations of three
parameters can be found that conclude in the right result, showing how the mass of the
DM particle needs to adapt to a change of the other parameters.
There are several avenues for future work to build upon the results of this thesis. First
the better numerical calculation for the resonance can give a deeper understanding of
the model in this area. Also the range of the grid scans can be expanded leading to
additional insights of the model, to maybe uncover unknown behaviour and amplifying
the impact of the constraints. These are possible approaches to improve and extend the
results of this thesis and analyze the model in a deeper way. Of course the obvious next
step is to amplify the model or use a different one and see how the results change to
keep studying the dark matter and get a better understanding.

Overall, this thesis sets a solid foundation for understanding this specific model and
presents analytical methods that can be applied to other models, potentially advancing
our exploration of the nature of dark matter.
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Appendices

A Dirac-Matrices and Trace identities

In this section a closer look to the Dirac γ-matrices and the Trace relations including
these is made using [27]. To understand the Dirac matrices at first the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
(A.1)

need to be addressed. These are used to represent spin operators for spin 1/2 particles
in quantum mechanic and fulfill the Pauli algebra

[σi, σj ] = 2iεijkσk, (A.2)

with εijk is the Levi-Civita-tensor. Using the Pauli matrices the Dirac matrices can be
constructed in the following way:

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
(A.3)

Some fundamental relations of the γ-matrices are:

(γ0)2 = 1 (A.4)

(γi)2 = −1 (A.5)

(γµ)† = γ0γµγ0 (A.6)

{γi, γj} = 2gij (A.7)

{γ0, γi} = 0 (A.8)

γµγµ = 4 (A.9)

γµγαγµ = −2γα (A.10)

with g being the Minkowski metric, and {a, b} = ab+ ba being the anti commutator.
Often an additional fifth matrix

γ5 = γ0γ1γ2γ3 (A.11)

is defined, with the properties:

(γ5)† = γ5 (A.12)

(γ5)2 = 1 (A.13)

{γ5, γµ} = 0. (A.14)
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These matrices fulfill the following trace identities

1. The trace of an odd number of γ-matrices vanishes:

Tr(γµ1γµ2 . . . γµ2n+1) = Tr(γµ1γµ2 . . . γµ2n+1γ5γ5)

(moving γ5 over each γµi) = −Tr(γ5γµ1γµ2 . . . γµ2n+1γ5)

(cyclic property of trace) = −Tr(γµ1γµ2γ5γ5)

= 0 (A.15)

2. The trace of the identity matrix is equal to one:

Tr(1) = 4 (A.16)

3. the trace of two γ- matrices is 4 times the Minkowski metric:

Tr(γµγν) = Tr(2gµν − γνγµ)
(2.)
= 8gµν − Tr(γνγµ) = 8gµν − Tr(γµγν)

⇒ 2Tr(γµγν) = 8gµν ⇒ Tr(γµγν) = 4gµν (A.17)

This also results in:
Tr(/a/b) = 4ab (A.18)

4. The trace of the fifth Dirac matrix is zero:

Tr(γ5) = Tr(γ0γ5γ0) = −Tr(γ5)

⇒ Tr(γ5) = 0 (A.19)

5. The trace of four Dirac matrices follow the relation:

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.20)

6. And the trace of four γ-matrices with a γ5-matrix is:

Tr(γ5γµγνγργσ) = −4iεµνρσ, (A.21)

which are necessary for the calculation of the invariant amplitude.
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B Feynman rules

Here the Feynman rules and how to derive the matrix element from the Feynman diagram
by using those is explained in more detail making use of [27].
The Dirac equation

(iγµ∂µ −m)Ψ = 0 (B.1)

is used to describe how fermions behave via a wave function that fulfills the equation.
Ψ is the Dirac spinor and can be separated into two two-component spinors as

Ψ =

(
ψ1

ψ2

)
, (B.2)

where ψ1 and ψ2 are themselves two-component spinors. For free particle solutions,
these can be interpreted as follows:

Ψ =

(
u(p)

v(p)

)
, (B.3)

where u(p) is the spinor for fermions, which are particles with half-integer spin, positive
energy, and moving forward in time, and v(p) describes antifermions, which can be seen
as particles with half-integer spin, positive energy, and moving backward in time. In
the diagrams the difference between external and internal lines is made. External lines
are represented by the polarization vector (in this thesis used for the decays of the Z ′

massive vector boson) or by the spinor (here the ingoing and outgoing fermions). The
notation is visible in table B.1.

Table B.1: expressions for the different parts in a Feynman diagram to construct the
chain (matrix element).[27]

particle Feynman Rule Depiction
ingoing fermion u(p) •

outgoing fermion ū(p) = u†(p)γ0 •

ingoing antifermion v̄(p) = v†(p)γ0 •

outgoing antifermion v(p) •

ingoing vector boson εµ(p) •

outgoing vector boson ε∗µ(p) •

ingoing scalar boson 1 •

outgoing scalar boson 1 •

Here it gets visible that antifermions are treated as fermions moving back in time since
in the Feynman diagrams the time is represented on the abscissa. Now for the particles
that serve as propagator the Feynman rules differ. If a vector boson acts as propagator
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the Feynman rules are:

q

m
• •

= −
i
(
gµν−

qµqν

m2

)
q2 −m2

for massive bosons (B.4)

q

• • = − ig
µν

q2
for massless bosons (B.5)

Now if a fermion acts as prpagator

qf

•

• =
i(/q +m)

q2 −m2
(B.6)

is the according term to use in the chain. Also the spin sums (or completeness relations)

∑
λ

εµλ(pA)ε
∗ν
λ (pB) = −gµν +

pµAp
ν
B

m
. (B.7)∑

s
u(s)(p)aū

(s)(p)b = (/p+m)ab (B.8)∑
s
v(s)(p)av̄

(s)(p)b = (/p−m)ab. (B.9)

used in the calculations are derived in [22]

C Comparison to micrOMEGAs

The comparison to the results of microMEGAs is presented in this Appendix.
micrOMEGAs is a code used for the calculation of DM properties including the relic density
for generic models. With a Python script it can be looped in the same way the grid scans
were made, so a comparison to the code used in this thesis is possible and a percentage
deviation can be analyzed to find the areas where differences occur. For the mD−R grid
scan the deviation is depicted in figure C.1. The color scale is limited to a maximum
value of 100%, because at the resonance the discrepancy tends to infinity, which makes
it difficult to observe the deviation in the other regions.
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c) Percentage deviation of the relic density for mD vs. R.

Figure C.1: Comparing both heat maps of the relic density it is obvious that the results
of the two codes are similar. This is reflected in the deviation heat map. Except for the
values approaching the resonance the discrepancy is about 10%. The mass of the DM
particle seem to have no to little impact on the accuracy of the result.

As expected for values approaching the resonance the difference between the results gets
greater. Apart of this both codes provide results that deviate from each other by less
than 10%. Moreover, at R = 1, the discrepancy appears to be greater than for the
ratios situated immediately above and below, which leads to the conclusion that the
implementation of the change in the dominant process is distorting the relic density at
this point. The value of mD has almost no impact on the difference, leading to the
conclusion that the calculation is correct over the span used for the mass of the DM
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particle.
For the other two exemplar grids the comparison to micrOMEGAs are shown in figure C.2
and C.3.
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Figure C.2: Here as well both code give similar results except for the resonance. For
lower gX the deviation increases.

Again as expected the deviation increases for ratios approaching the resonance. Also
for lower couplings the deviation seem to increase, meaning that the code has trouble
producing the correct result for this case.
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Figure C.3: For this grid scan the difference to micrOMEGAs for the whole range lies
below 4%.

Here the tendencies observed before are confirmed, because a change of mD has a smaller
impact than a reduction of gX. This last comparison leads to the assumption that R is
the parameter mainly responsible for the difference of the two codes, because for a fixed
value the deviation does not fluctuate as much and it does not exceed a value of 4%.
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D Code Scripts

Here some of the code used to calculate the results is presented:

Oh2Calculator.m
1 format long e
2 % Add degrees of freedom
3 addpath bessel degrees_of_freedom
4 dof
5
6 %% Cross Sections
7 DecayWidth_ZZnunu = (MZ * (g^2 + g_prime^2)) / (4 *

pi);
8 if R >= 2 % Z -> DD only if mZ >= 2mD, otherwise

set width to zero
9 DecayWidth_ZZDD = (gX^2 * MZ * (1 - mD^2 / MZ

^2) * sqrt(1 - 4 * mD^2 / MZ^2)) / (6 * pi);
10 else
11 DecayWidth_ZZDD = 0;
12 end
13 DecayWidth = DecayWidth_ZZDD + DecayWidth_ZZnunu;
14
15 CrossSection_DDnunu = @(s) (gX^2 .* (g.^2 + g_prime

.^2) .* sqrt(s) .* (s - mD.^2)) ./ (2 .* pi .* sqrt(s - 4 .*
mD.^2) .* ((s - MZ.^2).^2 + MZ.^2 .* DecayWidth.^2));

16
17 A = @(s) (gX.^4) ./ (4 .* pi .* MZ.^4 .* s .* (s -

4 .* mD.^2));
18 B = @(s) (sqrt((s - 4 .* MZ.^2) .* (s - 4 .* mD.^2)

)) ./ (MZ.^4 + mD.^2 .* (s - 4 .* MZ.^2));
19 C = @(s) mD.^4 .* (s.^2 - 8 .* MZ.^2 .* s + 14 .*

MZ.^4) + mD.^2 .* MZ.^4 .* (24 .* MZ.^2 - 7 .* s) - 8 .* MZ
.^8;

20 D = @(s) (2 .* (mD.^4 .* (6 .* MZ.^4 + 4 .* MZ.^2
.* s - s.^2) + 2 .* MZ.^4 .* (s.^2 + 4 .* MZ.^4) ...

21 + 2 .* MZ.^2 .* mD.^2 .* (s.^2 - 6 .* MZ
.^2 .* s - 8 .* MZ.^4))) ./ (s - 2 .* MZ.^2);

22 E = @(s) (s - 2 .* MZ.^2 + sqrt((s - 4 .* mD.^2) .*
(s - 4 .* MZ.^2))) ./ (s - 2 .* MZ.^2 - sqrt((s - 4 .* mD

.^2) .* (s - 4 .* MZ.^2)));
23
24 CrossSection_DDZZ = @(s) A(s) .* (B(s) .* C(s) + D(
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s) .* log(E(s)));
25
26 csSum = @(s) CrossSection_DDZZ(s) +

CrossSection_DDnunu(s);
27
28 % Cross sections at zero velocity
29 csDDnunu_a = 3*mD^2*gX^2*(g^2+g_prime^2)/(pi*(MZ

^2-4*mD^2)^2);
30 csDDnunu_b = gX^2*(g^2+g_prime^2)*mD^2*(MZ^2+20*mD

^2)/(4*pi*(MZ^2-4*mD^2)^3);
31
32 csDDZZ_a = gX^4*mD^2/(pi*MZ^2*(2*mD^2-MZ^2))*(1-

MZ^2/mD^2)^(3/2);
33 csDDZZ_b = gX^4*sqrt(mD^2-MZ^2)/(24*pi*mD*MZ^4)

*((32*mD^10-128*mD^8*MZ^2+272*mD^6*MZ^4 ...
34 -192*mD^4*MZ^6+45*mD^2*MZ^8+MZ^10)/(MZ

^2-2*mD^2)^4);
35
36 %% Equilibrium Yield
37 g_D = 2.0;
38 Y_eq = @(x) (45.*g_D*x.^2.*besselk(2,x))./(4.*pi

.^4.*heff(mD./x));
39
40 %% Boltzmann Equation
41 entropy = @(T) (2.*pi.^2./45).*heff(T).*T

.^3;
42
43 Boltzmann_rhs = @(x,Y) sqrt(90./(pi.^2.*geff(mD

./x))).*gtilde(mD./x).*x.*MPlanck./mD.^2.*(entropy(mD./x)

...
44 .*(SigmaV22(mD./x, mD,

mD, CrossSection_DDnunu)+SigmaV22(MZ./x, MZ, MZ,
CrossSection_DDZZ)) ...

45 .*(Y_eq(x).^2-Y.^2));
46
47 %% ODE Solver
48 options = odeset ( 'RelTol',1e-5,'AbsTol',1e-100 );
49 tspan = [xstart xend];
50 initialCondition = Y_eq(tspan(1,1));
51
52 [x, Y] = ode15s(@(x, Y) Boltzmann_rhs(x, Y), tspan,
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initialCondition , options);
53
54 counter = 0;
55 for i=1:length(x)
56 y_ratio = Y(i)/Y_eq(x(i));
57 if y_ratio >= 2.5
58 xf = x(i);
59 counter = counter + 1;
60 end
61 if counter == 1
62 break
63 end
64 end
65
66 tspan_new = [xstart xf];
67 [x, Y] = ode15s(@(x, Y) Boltzmann_rhs(x, Y),

tspan_new , initialCondition , options);
68
69 %% Calculate relic density
70 Td = mD/xf; % decoupling temperature
71 Yd = Y(end); % Yield at decoupling
72
73 % Calculate the yield today
74 YieldToday = IntegrateTillToday(Td,T0,Yd,R,mD,

csDDnunu_a ,csDDnunu_b ,csDDZZ_a ,csDDZZ_b);
75
76 Oh2 = g_D * mD * YieldToday * s0 / rhoc_h2;
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GridSearch.m
1 clearvars
2 clc
3 format long e
4
5 % Add degrees of freedom
6 addpath bessel degrees_of_freedom
7 dof
8 % Start Timer
9 tic

10 % Import Constants (MPlank, G, rhoc_h2 ...)
11 Constants
12
13 % Parameters of model
14 mD = 100;
15 g = 0.1;
16 g_prime = g;
17 % Arrays to loop
18 gX_array=logspace(-3, log10(0.3), 200);
19 R_array=linspace(0.5, 4, 200);
20 % Initialize result matrix and counter
21 Oh2_array=zeros(length(R_array), length(gX_array));
22 Zaehler=0;
23 % Grid search
24 for n=1:length(R_array)
25 R=R_array(n); % Declare R
26 for m=1:length(gX_array)
27 gX=gX_array(m); % Declare gX
28 MZ=R*mD;
29 Oh2Calculator % ODE solver and calculates relic Density
30 Oh2_array(n,m)=Oh2; % Save value
31 Zaehler=Zaehler+1;
32 disp(num2str(Zaehler));
33 end
34 end
35 %% Code to save file (left out here)
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optimizeParameter.m
1 function [optimizedParameter , finalOh2] = optimizeParameter(

Parameter , lower_bound , upper_bound , ~, mD, R, g, gX)
2
3 %adding paths
4 addpath bessel degrees_of_freedom
5 dof
6
7 Constants
8
9 %Todays relic Density

10 goal_relic_density = 0.12;
11 deltaOh2 = 10;
12 tolerance = 0.01;
13
14 tic
15
16 switch Parameter
17
18 case 'mD'
19 %% Bisection method for finding mD
20
21 i=0; %for counting the interations
22 stuckCounter = 0;
23 while deltaOh2 > tolerance
24 % Choose midpoint
25 mD = (lower_bound + upper_bound) / 2;
26 MZ = R.*mD;
27 g_prime = g;
28
29 Oh2Calculator
30
31 deltaOh2 = abs( Oh2 - goal_relic_density);
32
33 % Bug fixing. If value is stuck at upper or lower

limit ( 1% margin) after
34 % 10 iterations it is just set there.
35 if (mD <= lower_bound + 0.01*lower_bound) || (mD >=

upper_bound -0.01*upper_bound)
36 stuckCounter = stuckCounter + 1;
37 else
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38 stuckCounter = 0;
39 end
40
41 if stuckCounter == 15
42 deltaOh2 = tolerance/2;
43 stuckCounter = 0;
44 end
45
46 %% Update bounds
47 if Oh2 > goal_relic_density
48 upper_bound = mD;
49 else
50 lower_bound = mD;
51 end
52 i=i+1;
53
54 disp(['Current mD : ', num2str(mD) ])
55 disp(['Current Oh2 : ', num2str(Oh2) ])
56 disp(['DeltaOh2 : ', num2str(deltaOh2)])
57 disp('-------------------------------------------')
58
59 end
60
61 optimizedParameter=mD;
62 finalOh2=Oh2;
63
64 %% Cases for the other parameters with the same structure are

left out
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OptimizeGridSearch.m
1 clc
2 clearvars
3 format long e
4
5 addpath bessel degrees_of_freedom
6 dof
7
8 tic
9

10 %% Optimal mD for different gX with given g and variing R
11
12 % Parameters of model
13 mD = 100; %random Value gets overwritten later
14 g = 0.1;
15 g_prime = g;
16 gX = 0.2;
17 R = 1.5;
18 MZ = R.*mD;
19
20 R_values = linspace(0.5, 4, 50);
21
22 gX_values = logspace(-3, log10(0.3), 50);
23
24 optimized_mD_values = zeros(length(R_values),length(gX_values))

;
25 for k = 1:length(R_values)
26
27 R = R_values(k);
28
29 l = 1;
30
31 while l <= length(gX_values)
32
33 gX = gX_values(l);
34 disp(['For R: ', num2str(R),' and gX: ', num2str(gX)])
35 [mD, Oh2] = optimizeParameter('mD', 0.01, 10000, 0.01,

mD, R, g, gX);
36 optimized_mD_values(k,l) = mD;
37
38 l=l+1;
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39 end
40 end
41
42 toc
43
44 %%Saving the data in txt.file (left out here)
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