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Zusammenfassung

Das Standardmodel der Teilchenphysik ist eines der erfolgreichsten Theo-
rien in der Geschichte der Naturwissenschaften. Es hat die Quantenchro-
modynamik und die Theorie der elektroschwachen Wechselwirkungen in ein
gemeinsames elegantes Model vereint, welches natürliche Phenomäne mit
beispielloser Genauigkeit erklären vermag. Jedoch gibt es theoretische und
experimentelle Hinweise, die darauf schließen, dass das Standardmodel er-
weitert werden muss um alle natürlichen Phenomäne präzise erklären zu
können. Auch abgesehen von den sehr wichtigen Problemen der Gravita-
tion und der dunklen Energie, wird das Standardmodel im elektroschwachen
Sektor in der Form von dunkler Materie, der nicht verschwindenden Neutri-
nomassen, welches das Standardmodel alleine nicht erklären kann, heraus-
gefordert. Darüber hinaus gibt es Andeutungen im Higgs Sektor wie zum
Beispiel das Hierarchieproblem, welches auch auf die Notwendigkeit einer
neuen Physik hinweist.

Bei der Suche nach neuer Physik sind präzise Vorhersagen von zentraler
Bedeutung. Zusammen mit der steigenden Präzision von experimentellen
Ergebnissen können diese zu wichtigen Beschränkungen oder gar zu einer
kompletten Ausschließung von Modellen führen. In dieser Arbeit werden
wir Präzisionsrechnungen dieser Art im supersymmetrischen und nicht-su-
persymmetrischen Kontext durchführen.

Der Fokus des ersten Teils der Arbeit liegt auf Resummationsvorher-
sagen am LHC für den elektroschwachen Sektor einer minimalen supersym-
metrischen Erweiterungen des Standardmodells. Wir werden zeigen, wie
diese Vorhersagen zu vernünftigen Resultaten in kinematischen Regionen
führt, in denen die perturbative Störungsreihe nicht mehr konvergiert. Des
Weiteren wird dadurch die Präzision des Wirkungsquerschnitts erhöht und
die Skalenunsicherheit reduziert.

In dem zweiten Teil wird unser Fokus auf den beiden Hauptprobleme
des elektroschwachen Sektors liegen: die Existenz der dunklen Materie und
die Existenz der nicht verschwindenden Neutrinomassen. Wir werden eine
geringfügige Erweiterung des Standardmodels analysieren, welches Neutrino
Massen im 1-Loop erzeugt und Kandidaten für die dunkle Materie beinhal-
tet. Wir werden den Parameterraum des Modells untersuchen und zeigen,
dass es realisierbare Regionen für alle vorhandenen experimentellen Ein-
schränkungen gibt, jedoch auch, wie zukünftige Experimente in naher Zukunft
diese Regionen untersuchen können.
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Abstract

The standard model of particle physics is one of the most successful theo-
retical frameworks in the history of science. It has provided the unification
of quantum chromodynamics and the electroweak theory into a common
elegant model that can explain natural phenomena with unprecedented ac-
curacy. However there are theoretical and experimental reasons to conclude
that the standard model must be extended to properly explain all natural
phenomena. Even apart from the very important issues of gravity and dark
energy, the standard model faces challenges in the electroweak sector, in the
form of dark matter, the nonzero neutrino masses which the standard model
alone cannot accommodate, and some hints in the the Higgs sector like the
hierarchy problem also point towards the need for new physics.

In this quest for new physics, precision is of vital importance, since
precise theoretical predictions coupled with the every-increasingly precise
experimental results are necessary to constrain and eventually rule out the
different theoretical possibilities. We will investigate in this work approaches
to this type of precise predictions in both supersymmetric and nonsupersym-
metric contexts.

In the first part of this work we will focus on supersymmetric models and
we will investigate the use of resummation procedures for predicions in the
electroweak sector of the minimal supersymmetric standard model at the
LHC, and we will show how they lead to sound predictions in kinematical
regions where fixed-order approaches fail and overall how they improve the
precision of the cross section computations and considerably reduce the scale
uncertainties.

In the second part we will focus on arguably the two main issues of the
electroweak sector: the existence of dark matter and the existence of nonzero
neutrino masses. We will analyze a minimal extension of the standard model
that generates neutrino masses radiatively at one-loop, and contains dark
matter candidates. We will explore the parameter space of this model and
show that it contains viable regions for all current constraints, but will also
show how expected future sensitivities will probe these regions in the near
future.
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Chapter 1

The Standard Model and
Beyond

The standard model of particle physics is arguably one of the most successful
scientific theories ever made. From a theoretical point of view it combined
in a single mathematical framework what appears to be distinct physical
effects as explained by quantum chromodynamics or the electroweak theory,
and from an experimental point of view it has lead to some of the most
precise predictions of any physical theory. However, despite this success,
there are both theoretical hints and experimental evidence that the standard
model need to be modified or extended to explain the universise as observed.
We will briefly introduce some of the issues as motivation for beyond the
standard model theories as will be further studied in this work, and name
the most promising candidates to solve some of these issues.

Arguably the most prominent of the issues of the Standard Model is that
it contains no renormalizable theory of gravity, and therefore an important
part of the physical phenomenology cannot be explained by the Standard
Model alone. A quantum theory of gravity continues to be one of the main
open problems in science. A second issue is that a large portion of the energy
bucket of universe as we measure through cosmological measurements is in
the form of dark energy, which is known to have a different behavior than
that of matter and radiation, and the Standard Model alone cannot account
for such type of energy. This two issues may well be related to each other,
since a full account of gravitational phenomena may be necessary to explain
the nature of dark matter. But even within the realm of the electroweak
and quantum chromodynamics sectors there are open issues. The Standard
Model has no particle with the required properties to explain an important
part of the matter content of the universe, the so-called dark matter. We
will study this issue in more detail in Ch. 5. And last, it is not possible
to introduce a renormalizable neutrino mass term in the Standard Model
lagrangian, whereas we have enough experimental evidence to clain that (at
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12 CHAPTER 1. THE STANDARD MODEL AND BEYOND

least two of) the neutrinos must have a nonzero mass. We will analyze this
issue also in detail in Ch. 6.

Apart from these issues, there are other indications, that while not prob-
lem of the theory by themselves, serve on different grounds as hint for the
possible existence of possible extensions that would contain natural expla-
nations for such observations. For example, the Standard Model requires
relatively many free parameters and many particles which seem to ap-
pear independently of each other. In particular, there seems to exist three
copies (families) of each particle type, without any convincing explanation
for this multiplicity. Another issue is the so-called strong CP problem:
The Standard Model does not seem to violate CP invariance in the strong
sector, whereas there seems to be no reason for that terms to vanish. An
important case of this in the case of supersymmetry is the so-called hierar-
chy problem, i.e. the fact that a very precise fine-tuning or cancellation is
required to obtain the correct mass of the Higgs boson (of tens of order of
magnitude the actual Higgs boson mass).

Different theories provide a solution to a different set of these problem or
issues. We will analyze the different theoretical possibilities to develop such
models. For that we first notice that since the SM is a quantum field theory
(QFT) it is therefore uniquely determined by its gauge symmetries and a
set of particles that transform under a given representation of the gauge the
symmetries. The symmetries in turn are usually classified into gauge (or
internal) and spacetime (or external). Thus, if we want to extend the SM
but remain in the QFT framework, we can do one or more or the following:

Firstly, we can extend the gauge symmetries. This kind of theories can at
the same be divided into two groups: top-down and bottom-up approaches.
In top-down approaches, the symmetries at low energy scales are the re-
sult of the breaking of more symmetric gauge groups through spontaneous
symmetry breaking. To this group belong the Grand Unified Theories. In
bottom-up approaches, new gauge symmetries are added to the SM gauge
group in a constructive way. There are several theoretical motivations for
these kind of theories, like left-right symmetries. These both approaches are
of course not exclusive, and certain theories can be studied from either point
of view.

Respecting the spacetime symmetries there are also two possibilities: a
first obvious possibility is just to increase the number of spacetime dimen-
sions (Extra-Dimensional theories, ED). But even if one wants to remain
in four dimensions, it is possible to extend the symmetries by introducing
Supersymmetry. Supersymmetric theories are one of the most interesting
BSM theories from a theoretical and phenomenological point of view.

Lastly, it is possible to keep the same symmetries, but add new particles
to the model. This is for example the case of seesaw mechanism.

These different options are not exclusive between each other and can
be combined with each other in some models. Interestingly enough, if one
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wants to leave the QFT framework (e.g., string theory) one finds all of these
options are usually required on mathematical consistency grounds.
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Part I

Collider phenomenology
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Chapter 2

Theoretical background

As we have seen, supersymmetry is one of the most promising beyond the
standard model (BSM) theories. Current experimental studies require very
precise theoretical predictions to investigate the supersymmetric parameter
space, and therefore procedures like resummation become crucial in super-
symmetry studies at hadron colliders. In this chapter we will review the
necessary theory for such studies, and in particular we will focus on resum-
mation predictions for gaugino production at hadron colliders. In 2.1 we will
review the required background for perturbative quantum chromodynamics
which will be the basis of further computations. In 2.2 we will introduce
the resummation framework for precise computations at hadron colliders in
kinematical regions where fixed-order computations become unestable due
to the existence of potentially large logarithms, and finally in 2.3 we will
review the theory of supersymmetry and in particular its gaugino sector.

2.1 Perturbative QCD

Since the first observation of the scaling obeyed by deep inelastic structure
functions it has been known that the strong interaction becomes weaker at
smaller distances, and in fact the construction of quantum chromodynamics
as the quantum field theory of strong interactions has been based on the
property of asymptotic freedom, i.e. that the strong coupling vanishes as
the relevant distance of the phenomenon goes to zero. The smallness of the
coupling in this limit implies that the use of perturbation theory is justified,
which has a great relevance in the phenomenology of strong interactions,
since it allows for a systematic analytical computational method. However,
as we will see long-distance physics also enters crucially in the computation,
so that factorization will be necessary to split those contributions which
cannot be computed perturbatively. We will follow the computations in [1].

17
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Figure 2.1: Measurements of αS as a function of the energy scale Q. The
solid curves are QCD predictions by extrapolating the world average mea-
surement of αS(MZ) using 4-loop computations. From [3].

2.1.1 Running coupling

Quantum Chromodynamics is defined by the lagrangian density [2]

LQCD = −1

4
FµνF

µν + ψ̄(i /D −M)ψ +
1

2ζ
(∂ ·A)2 + ∂µc̄a(∂

µca + gfabccbA
µ
c )

(2.1)
where A,ψ, c are the gluon, quark and Faddeev-Popov ghost fields, Dµ =
∂mu + igAaµtaFmuν is the covariant derivative, Fµν is the field strength
tensor, fabc are the SU(3) structure constants and ta are the SU(3) generators
of the fundamental representation. The ζ term is a gauge-fixing term.

As usual, to avoid ultraviolent divergences we require renormalization
of the defined lagrangian. Since we know that quantum chromodynamics
is renormalizable, the nonphysical degrees of freedom, i.e. the longitudinal
gluons and ghosts, must decouple from the physics, and using the Ward
identities it can be shown that the theory is gauge invariant.

We can regulate the divergences in a gauge-invariant way using dimen-
sional regularization, and then introduce renormalization factors Zi for the
coupling, masses fields, and gauge fixing parameter ζ. It can be shown that
no extra counterterms other than those are required to make the Green
function finite after removing regularization.

The Z coefficients of the renormalization procedure have some arbitrari-
ness, since finite parts can be added to the counterterms. This fredom can
be used to remove large logarithms that would spoil the perturbativity.
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When one changes the renormalization scale µ, since the unrenormal-
ized parameters g0,M0 are fixed, the values of the renormalized parameters
g,M must vary to preserve renormalization group invariance. Thus the cou-
pling becomes a function of the scale µ given by the renormalization group
equation

µ
dg(µ)

dµ
= β(g(µ)) (2.2)

where β can be determined through perturbative calculations

β(g) = −g
(
αS

4π
β1 +

(αS

4π

)2
β2 +O(α3

S)

)
(2.3)

and is obtained as

β1 = 11− 2nf/3 = (11Nc − 2nf )/3 (2.4)

with Nc the number of colors and nf the number of flavors. The first positive
term comes mostly from nonabelian diagrams and the second negative term
comes from the fermion loop diagram, and fot β2 we obtain

β2 = 102− 38nf/3. (2.5)

With this, to the lowest order of approximation we can write

αS(µ2) =
αS(µ0)

1 + (β1/4π)αS(µ2
0) log(µ2/µ2

0)
(2.6)

where we have evolved the value of αS to an arbitrary value of µ from the
knowledge of αS(µ0) at a certain level µ0 e.g. frequently the mass of the Z
boson mZ . When written in this form it may seem that the running depends
on αS(µ0) and µ0 independently, which is not possible because it must be
independent of the reference taken. A more appropriate representation thus
combined both dependencies into a single variable

αS(µ2) =
4π

β1 log(µ2/Λ2)
(2.7)

We can also write a more accurate approximation by taking into account
also β2 in eq. (2.3), and we get

αS

4π
=

1

β1 log(µ2/Λ2)
− β2 log(log(µ2/Λ2)))

β3
1 log2(µ2/Λ2)

+O
(

1

log3(µ2/Λ2)

)
. (2.8)

2.1.2 QCD factorization

The fact that the strong coupling as we have seen becomes larger at low
energies at the point of the Landau pole divergence at the QCD scale ΛQCD
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leads to the property of parton confinement of QCD, i.e. the fact that
partons hadronize forming baryons or mesons on timescales ∼ 1/Λ [4]. This
makes it impossible to describe the structure, in this case of the proton, from
a perturbative point of view. However, the minus sign in Eq. (2.3) leads to
another of the crucial properties of QCD, the Asymptotic Freedom [5, 6], or
the fact that the strong coupling becomes weaker at larger energies therefore
allowing the description of QCD processes at high energies as that of the
partons (quarks and gluons) inside the proton as interacting “freely”. This
allows to understand the hadronic process as two separated processes, first
the description of the partons inside the proton in the form of a structure
function, known as the parton distribution function, convoluted with the
partonic scattering process where the rest of the proton structure is ignored.
This is known as the QCD factorization property and is a key factor in
allowing theoretical predictions in hadronic processes such as those at hadron
colliders.

At leading order, the parton distribution functions (which will be stud-
ied in more detail in the next section) can be simply understood as the
probability that a given parton type carries a given fraction of the pro-
ton total momentum. At further orders this simple picture is lost, but the
computational power they offer for hadronic processes remains. A physical
explanation or interpretation for this factorization property lies in the sep-
aration of physical time (or energy) scales. If we set of the center of mass
frame, it is easy to see that the two hadrons are Lorentz contracted with re-
spect to each other. This means the interactions of a parton inside a hadron
with the other hadron will occur in time scales much shorter than those
happening inside its own hadron. Also those interactions inside one hadron
will be time dilated and therefore further separating the time scales. All this
leads to the collision interactions happening at significantly shorter scales
than those inside a hadron given the collision happens at enough energy.

In the following section we will focus on these parton distribution func-
tion starting as is usual in these cases in a deep inelastic scattering frame-
work.

2.1.3 Parton distribution functions

One of the crucial tools to investigate the structure of hadrons is deep inelas-
tic scattering experiments, where a lepton (an electron, muon, or neutrino)
interacts with a hadron, mainly through the exchange of photons. This
process provides one of the main tests of perturbative quantum chromody-
namics, and also serves to determine the structure function of the hadron
which is later used on collider experiments.

We consider the scattering of a lepton with momentum k with a hadron,
in particular a proton with momentum p, through a virtual photon with
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momentum q. The variables for this process are usually noted [1]

Q2 := −q2

M2 := p2

ν := p · q = M(E′ − E)

x :=
Q2

2ν
=

Q2

2M(E′ − E)

y =
q · p
k · p

= 1− E′/E, (2.9)

where the energies are referred to the target rest frame and M is the proton
mass.

We parametrize the structure of the proton in terms of the so-called
structure functions Fi(x,Q

2) such that we can write the cross section as

d2σ

dxdy
=

8πα2ME

Q4
×((

1 + (1− y)2

2

)
2xF1 + (1− y)(F2 − 2xF1)− (M/2E)xyF2

)
, (2.10)

in the limit Q2 � M2
Z for the charged lepton case, and similarly for the

neutrino

d2σ

dxdy
=
G2

FME

π

(
(1− y − M

2E
xyF ′2 + y2xF ′1 − y(1− 1

2
y)xF ′3

)
. (2.11)

We now define the limit Q2, ν → ∞ with x fixed, the so-called Bjorken
limit, and it is observed that in this limit that the structure function depends
only on x, i.e. to a good approximation it does not depend on Q2,

Fi(x,Q
2)→ Fi(x). (2.12)

This implies that the virtual photons interact with pointlike particles inside
the proton, since otherwise there would be a dependence on Q. If we consider
the limit for a highly energetic proton, and consider that the photon scatters
off a pointlike quark inside the proton moving parallel to it (i.e. with no
transverse momentum) and carrying a fraction ξ of its momentum we can
rewrite eq. (2.10) as

d2σ

dxdy
=

4πα2ME

Q4
×
(

(1 + (1− y)2)F1 +
1

x
(1− y)(F2 − 2xF1)− (M/2E)xyF2

)
.

(2.13)

On the other hand one can compute the process e−q → e−q, and using
the usual Mandelstam variables one obtains∑

|M̄ |2 = 2e2
qe

4 s
2 + u2

t2
, (2.14)
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and therefore with
dσ

dt
=

1

16πs2

∑
|M̄ |2 (2.15)

and subtituting the deep inelastic scattering variables t = −Q2, u = s(y−1)
and s = ξQ2/(xy) the cross section can be expressed as

dσ

dQ2
=

2πα2e2
q

Q4
(1 + (1− y)2). (2.16)

Now the mass-shell constract for the outgoing quark gives

p′2q = (pq + q)2 = q2 + 2pq · q = −2p · q(x− xi) = 0, (2.17)

which implies x = ξ. By using then
∫ 1

0 dxδ(x− ξ) = 1 we finally obtain

d2σ

dxdQ2
=

4πα2

Q4
(1 + (1− y)2)

1

2
e2
qδ(x− ξ). (2.18)

By comparing now eqs. (2.10) and (2.18) we can get the structure func-
tions as

F2 = xe2
qδ(x− ξ) (2.19)

for F2 and similarly for F1

F1 = e2
qδ(x− ξ), (2.20)

i.e., F2 = 2xF1.
We can interpret F2(x) as proving a quark inside the proton with mo-

mentum fraction x = ξ, which gives raise to the so-called naive parton model,
where q(ξ)dξ represents the probability that a quark carries momentum frac-
tion in [ξ, ξ + dξ) for 0 ≤ ξ ≤ 1, and the photon interacts incoherently with
the quark inside the proton with the corresponding momentum fraction.

Thus we can obtain the proton structure functions by integrating the
quark distribution functions with the quark probability,

F2(x) = 2xF1(x) =
∑
q,q̄

∫ 1

0
dξq(ξ)xe2

qδ(x− ξ) =
∑
q,q̄

e2
qxq(x). (2.21)

In QCD the naive parton model is broken. In particular, the assumption
that quarks have negligible transverse momentum does not hold, since a
quark can emit a gluon and acquire transverse momentum kT which can
be large with probability ∼ αSdk2

T/k
2
T for large kT, up to the kinematical

limit k2
T ∼ Q2 giving rise to logarithmic constributions of the form αS logQ2

breaking the Bjorken scaling where the structure function does not depend
on Q in the limit Q2 → ∞ with x fixed. We will now compute these
corrections to the structure function obtained in eq. (2.19) and obtain the
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QCD parton model, since it will be useful to understand certain aspects of
the parton distribution functions as used in collider phenomenology.

If we consider a free quark with momentum p (i.e. setting ξ = 1)

γ∗(q) + q(p)→ q(l) (2.22)

where we have shown the four-momenta is brackets for the corresponding
particles. The matrix element is trivially given by

Mα = −ieqū(l)γαu(p), (2.23)

so when summed and averaged over spins and colors we obtain

nαnβ
∑
|M̄αβ|2 = 4e2

q , (2.24)

where we have projected out the F2 contribution, and which together with
the phase space

dΦ1 = 2πδ((p+ q)2), (2.25)

and finally inserting the flux factor 1/(4π) gives us the structure function

F2(x) = e2
qδ(1− x) (2.26)

which corresponds to the naive parton model with ξ = 1, as expected.

First we consider the real gluon emissions. In particular we start with
the leftmost diagram. The invariant phase space is given in this case by

dΦ2 =

∫
d4r

(2π)2

d4l

(2π)3
δ+(r2)(l2)(2π)4δ4(p+ q − r − l), (2.27)

and introducing kµ for the parton line we obtain

dΦ2 =
1

4π2

∫
d4kδ+((p− k)2)δ+((k + q)2). (2.28)

We can express kµ as

kµ = ξpµ +
k2

T − |k2|
2ξ

nµ + kµT, (2.29)

d4k =
dξ

d2ξ
dk2d2kT (2.30)

from which we can obtain

(p− k)2 = (1− ξ) |k
2|
ξ
− kT

ξ
, (2.31)

(k + q)2 = 2ξν −Q2 − |k2| − 2qT · kT, (2.32)
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which let us rewrite the phase space in eq. (2.28) in the form

dΦ2 =
1

16νπ2

∫
dξdk2dk2

Tdθ(k2
T − (1− ξ)|k2|)×

δ

(
ξ − x− |k|

2 + 2qT · kT

2ν

)
(2.33)

with 0 < θ < π.
We now obtain the matrix element, which is given by

Mα = −igeqū(l)γα
1

/k
/εtAu(p), (2.34)

which after summing and averaging spins and colors, gives∑
|M|2αβ =

1

2
e2
qg

2
∑

CFTr(γβ(/k + /q)γ
α/k/ε/p /ε

∗/k)
1

k4
. (2.35)

Projecting out again the F2 contribution we obtain

1

4π
nαnβ

∑
|M|2αβ =

8e2
qαS

|k2|
ξP (ξ), (2.36)

where we have used the splitting function P (ξ)

P (ξ) = CF
1ξ2

1− ξ2
, (2.37)

of the QCD qqg vertex. Now combining together eqs. (2.28) and (2.37) and
performing the integrations over k2

T and θ we obtain

F2 = e2
q

αS

2π2

∫ 2ν

0

d|k2|
|k2|

∫ ξ+

ξ−

dξ
ξP (ξ)√

(ξ+ − ξ)(ξ − ξ−)
(2.38)

where we have defined the ξ± functions

ξ±(z, x) = x+ z − 2zx±
√

4x(1− x)z(1− z) (2.39)

together with the z = |k2|/(2ν) variable to simplify the notation. It is
important at this time that |k2| is not limited to small values and this leads
to a logarithmic divergency at small |k2|. We can most simply use a cutoff κ2

to regularize this divergence for now, and using the fact that limz→0 ξ± = x
and that ∫ ξ+

ξ−

dξ
1√

(ξ+ − ξ)(ξ − ξ−)
= π (2.40)

we finally obtain

F2|div = e2
q

αS

2π
xP (x)

∫ 2ν

κ2

d|k2|
|k2|

= e2
q

αS

2π
xP (x) log

(
2ν

κ2

)
. (2.41)
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It can be seen that this is the only diagram with a logarithmic divergence
contribution, the other diagrams giving a finite contribution to the structure
function.

In total, and by using log(2ν) = log(Q2)− log(x) the structure function
including real corrections is given then by

F2(x,Q2) = e2
qx

(
δ(1− x) +

αS

2π

(
P (x) log

(
Q2

κ2

)
+ C(x)

))
, (2.42)

where C is a function which can be computed. This shows that Bjorken
scaling is broken at next-to-leading order in the structure function by log-
arithms logQ2, which can be seen in the corresponding quark distribution
function

q(x,Q2) = δ(1− x) +
αS

2π

(
P (x) log(Q2)

µ2

κ2
+ C(x)

)
. (2.43)

At this point we note that this is not the full next-to-leading-order contri-
bution, since virtual corrections are still left. Those contribution can be
computed using standard methods, and actually the ultraviolet divergences
will cancel in the sum. We will not reproduce here the full computations,
but the final result is given by1

q(x, µ) = q0(x)
αS

2π

∫ 1

x

dξ

ξ
q0(ξ)

(
P

(
x

ξ

)
log

µ2

κ2
+ C

(
x

ξ

))
+ . . . (2.44)

2.2 Resummation

In this section we will introduce the concept of resummation, will investigate
why it is necessary and its advantages over fixed-order calculations, and will
briefly present the main aspects of the mathematical formalism of threshold
and transverse-momentum resummation. Comprehensive reviews on the
topic can be found in [7, 8, 9]. This section will also be based on the reviews
in [10, 11, 12, 13, 14].

2.2.1 Introduction

Perturbative computations in the QCD framework are typicall done at the
fixed levels in the αS parameter which correspond to the different topologi-
cal families of tree diagrams. The Kinoshita-Lee-Neuenberg theorem [15, 16]
guaranteed (given the appropriate assumptions) that the singular infrared
contributions of real and virtual nature cancel eah other and make the QCD
next-to-leading cross section an infrared-safe quantity. However, in given
kinematical regions, e.g. z → 1 and pT → 0 (which will later give rise to

1The full derivation is in [1].
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threshold and transverse-momentum resummation, respectively) these can-
celations are constrainted and potentially large logarithms are left in the
partonic cross sections, eventually spoiling the convergence of the magni-
tudes. This can be seen for example in the case z → 1 as in the case of
massive particles, close to the threshold the available phase space for the
real emission is limited and only allows for soft emission. If we compute
the fixed-order cross section at O(αS) we can easily find that it will be
proportional to

M∝ 1

(p− k)2
= − 1

2p · k
= − 1

2p0k0(1− cos θ)
, (2.45)

where we can see that this can lead to divergencies in the limits k → 0 (soft
emission) and θ → 0 (collinear emission). It is important to note that collider
detectors cannot detect either of those limits: in the former case because of
the low energy of the emission and in the latter one because of collinearity
with the beam, meaning we need to include those two contributions to our
formally 2→ 2 process calculation.

When integrating this matrix element together with the corresponding
phase space we obtain something of the form:

αS

∫
d4k

(2π4)

p · p′

p · kp′ · k
∝ αS

∫
dp0

p0

∫
dθ

θ
∝ αS log2(. . .). (2.46)

If we now apply dimensional regularization to (2.46) as is usual we obtain

αS

∫
d4−2εk

(2π4)

p · p′

p · kp′ · k
∝ αS

∫
dp0p

−ε
0

p0

∫
dθ sin−ε θ

θ
∝ αS(

1

ε
+ log2(. . .)),

(2.47)
where the double logarithm is due to the both soft and collinear contribu-
tions.

Although what we have seen holds at theO(αS) level, it can be shown that
the same pattern follows to all orders. In a simplified way, we can write the
cross section as

σ ∝ 1 + αS(L2 + L+ 1) + α2
S(L4 + L3 + L2 + L+ 1) + . . . , (2.48)

where the 1 terms mean some constant non-dependent on αSand the L terms
are the logarithmic ones, whose particular form depend of the particular
kinematical region.

The aim of resummation if to sum some of the logarithmic contributions
to all orders in αS. As we will see this restores the convergence properties of
the series as well as improved the overall precision of the cross section com-
putation, reducing the dependencies on the arbitrary physical factorization
and renormalization scales µF and µR. This is done by exponentiating the
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elements in (2.48) to different resummation orders. Again schematically we
obtain something of the form

σ ∝ 1 + αS(L2 + L+ 1) + α2
S(L4 + L3 + L2 + L+ 1) + . . .

= exp (Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .)C(αS), (2.49)

where g1 sums at the leading-log (LL) order, g2 corresponds to the next-to-
leading-log order (NLL), etc., and some suppressed terms are neglated.

We will now review the particular application of this idea to the treshold
and transverse momentum cases.

2.2.2 Threshold resummation

When computing cross section in the perturbative QCD paradigm we nor-
mally consider one physical scale that is used for the arbitrary renormaliza-
tion and factorization scales. We normally set those scales µR and µF, e.g.
in the case of the Drell-Yan process to the invariant mass of the process M .
However in some kinematical regions we may have a two-scale process and
after the cancelation of the soft and collinear divergences potentially large
logarithms remain [7].

Process illustration

Before doing the real threshold calculation we will show the process and
ideas in a simplified manner. After that will present the different steps into
more details. For illustration, let us consider an infrared-sensitive quantity
depending on two scales M and m, R(M2,m2). In this case, M will be
the hard scale of the process while m measures the distance to a critical
kinematical region. The first step as we will later see in detail will be the
factorization of the quantity into a hard part H and soft part S,

R(M2,m2) = H(M2/µ2)S(m2/µ2), (2.50)

where we have introduced a factorization scale µ. The hard function H
will contain the information about the hard process while the soft part S
contains the long-distance behavior. It is important to notice that such a
factorization can be very non-trivial in real processes [7] and that will usually
hold in a transformed space of the original variables, e.g. the Mellin space.
If we set the scale µ = M we will obtain very large logarithmic contributions
in S, spoiling the convergence of the series even in the case of small αS. We
will investigate in this section the specific forms of these logarithms. It is
the part S that we will try to resum in the soft limit.

To accomplish this we will first note that from the dependencies of H
and S we can write the evolution equations

dH

d logµ2
= − dS

d logµ2
=: γS(µ2), (2.51)
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where we have defined the anomalous dimensions γS. We can now solve this
equation by using separation of variables to obtain

S(m2/µ2) = S(1) exp

(
−
∫ µ2

m2

dq2

q2
γS(q2)

)
. (2.52)

By now choosing the scale µ = M we obtain the resummed result

R(M2,m2) = H(1)S(1) exp

(
−
∫ M2

m2

dq2

q2
γS(q2)

)
, (2.53)

where we can see that we no longer have the potentially large logarithms
in the H and S terms so they can be computed safely in the perturbation
theory framework. The exponential factor in (2.53) is the Sudakov factor
which can be computed up to the different resummation orders.

Factorization

We will apply now these ideas to the case of threshold resummation. As
discussed, when z → 1 we obtain potentially large logarithms in the fixed-
order cross section of the form

αnS

(
logm(1− z)

1− z

)
+

, (2.54)

where m ≤ 2n− 1.
Let us consider then the doubly differential hadronic cross section

M2 d2σAB
dM2dp2

T

(τ) =
∑
ab

∫ 1

0
dxa

∫ 1

0
dxb xafa/A(xa, µ

2)xbfb/B(xb, µ
2)

× zσ̂ab(z,M2,M2/p2
T,M

2/µ2)δ(τ − xaxbz), (2.55)

where τ := M2§. We can rewrite this by using the Mellin transformation

F̃ (N) :=

∫ 1

0
dxN−1F (X) (2.56)

into

M2 dσAB
dM2dp2

T

(N − 1) =
∑
ab

fa/A(N,µ2)fb/B(N,µ2)

× σ̂ab(N,M2,M2/p2
T,M

2/µ2), (2.57)

where we have used the slight abuse of notation F̃ (N) ≡ F (N) to simplify
the notation.
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The partonic cross section can also be written in the Mellin space as

M2 dσab
dM2dp2

T

(N − 1) =
∑
cd

φc/a(N,µ
2)φd/b(N,µ

2)

× σ̂cd(N,M2,M2/p2
T,M

2/µ2), (2.58)

with φc/a(xc, µ
2) the parton-in-parton distribution of parton c in parton d.

The evolution of the φ functions are given as a function of µ by the
Altarelli-Parisi equation [17]

∂φc/a(N,µ
2)

∂ logµ2
=
∑
b

Pcb(N, aS(µ2))φb/a(N,µ
2), (2.59)

where Pcb are the splitting functions, which can be calculated in perturbation
theory. The LO values are given by:

P (LO)
qq (N) = CF

(
3

2
+

1

N(N + 1)
− 2

N∑
k=1

1

k

)
, (2.60)

P (LO)
qg (N) =

1

2

(
2 +N +N2

N(N + 1)(N + 2)

)
, (2.61)

P (LO)
gq (N) = CF

(
2 +N +N2

N(N2 − 1)

)
, (2.62)

P (LO)
gg (N) = β0 + 2CA

(
1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N∑
k=1

1

k

)
. (2.63)

As a mathematical tool we now introduce the QCD evolution operator
Eab(N,µ

2, µ2
0), defined as:

∂Eab(N,µ
2, µ2

0)

∂ logµ2
=
∑
c

Pac(N, aS(µ2))Ecb(N,µ
2, µ2

0). (2.64)

With this we can rewrite the Altarelli-Parisi equation in the form:

φc/a(N,µ
2) =

∑
b

Ecb(N,µ
2, µ2

0)φb/a(N,µ
2
0). (2.65)

The Mellin transformation of the logarithmic terms we want to resum is
given by (

logm(1− z)
(1− z)

)
+

→ logm+1N + · · · . (2.66)

If we keep the leading terms in N and ignore O(1/n) contributions in
the splitting functions, we can find the behavior of Eqs. (2.60)-(2.63) in the
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logN →∞ limit as:

P (LO)
qq (N) = CF

(
3

2
− 2 log N̄

)
+O

(
1

N

)
, (2.67)

P (LO)
qg (N) ∼ 1

2N
, (2.68)

P (LO)
gq (N) ∼ CF

N
, (2.69)

P (LO)
gg (N) = β0 − 2CA log N̄ +O

(
1

N

)
, (2.70)

where N̄ = NeγE and γE the Euler constant.
From Eqs. (2.67)-(2.70) we see that the mixing contributions can be

ignored at leading order in N , which together with Eq. (2.58) integrated
over pT leads to

M2 dσab
dM2

(N − 1) = φa/a(N,µ
2)φb/b(N,µ

2)σ̂ab(N,M
2,M2/µ2) +O

(
1

N

)
.

(2.71)
It can be shown that (2.71) can be factorized [8] into

M2 dσab
dM2

(N − 1) = ψa/a(N,M
2)ψb/b(N,M

2)

×Hab(M
2,M2/µ2)Sab(N,M

2/µ2) +O
(

1

N

)
, (2.72)

where the Hab function is infrared-safe and independent of N, so it can be
computed perturbatively as

Hab(M
2,M2/µ2) =

∞∑
n=0

anSH
(n)
ab (M2,M2/µ2), (2.73)

the parton-in-parton distributions ψ are dependent on the invariant mass
M instead of the scale µ and satify in this case the evolution equations

∂ψa/a(N,M
2)

∂ logM2
= γa(aS(M2))ψa/a(N,M

2), (2.74)

with γa the anomalous dimension, given perturbatively by

γa(aS) =
1

Za

∂Za
∂ logµ2

=
∑
n

aSγ
(n)
a , (2.75)

and corresponds to the N -independent virtual terms in Paa(N, aS). The
function Sab corresponds in turn to the large-angle emission of soft gluons
and can be computed in the eikonal approximation.
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From (2.50) and (2.72) we can obtain

σ̂ab(N,M
2,M2/µ2) =

ψa/a(N,M
2)ψb/b(N,M

2)

φa/a(N,µ2)φb/b(N,µ2)

× Sab(N,M2/µ2)Hab(M
2,M2/µ2) +O

(
1

N

)
. (2.76)

By solving then the evolution equations for φ, ψ in the threshold imit
and using gauge invariance and renormalization group equations, and the
exponentiation of the eikonal function, the cross section can be then written
as

σ̂ab(N,M
2,M2/µ2) = Hab(M

2,M2/µ2) exp(Gab(N,M
2,M2/µ2))+O

(
1

N

)
,

(2.77)
with

Gab(N,M
2,M2/µ2) = log ∆a(N,M

2,M2/µ2)

+ log ∆b(N,M
2,M2/µ2)

+ log ∆ab(N,M
2,M2/µ2), (2.78)

where

log ∆a(N,M
2,M2/µ2) =

∫ 1

0
dz

zN−1 − 1

1− z

∫ (1−z)2M2

µ2

dq2

q2
Aa(aS(q2)),

(2.79)

log ∆ab(N,M
2,M2/µ2) =

∫ 1

0
dz

zN−1 − 1

1− z
Dab(aS((1− z)2M2)). (2.80)

The soft collinear gluon radiation from parton a is here included in Aa
which is calculable perturbatively and the large-angle soft gluon emission
contributions are included in Dab also perturbatively calculable.

Introducing the integrated (2.79) and (2.80) into (2.53) we obtain

σ̂ab(N,M
2,M2/µ2) = Hab(M2,M2/µ2)

× exp(Gab(N,M2,M2/µ2)) +O
(

1

N

)
. (2.81)

This Hab, as opposed to the hard function Hab, includes the non-logarithmic
terms resulting from the integrations:

H(0)
ab (M2,M2/µ2) = H

(0)
ab (M2,M2/µ2) (2.82)

H(1)
ab (M2,M2/µ2) = H

(1)
ab (M2,M2/µ2) +

π2

6
(A(1)

a +A
(1)
b )H

(0)
ab (M2), (2.83)



32 CHAPTER 2. THEORETICAL BACKGROUND

and Gab can be shown to have the expansion

Gab(N,M2,M2/µ2) = log N̄g
(1)
ab (λ)+g

(1)
ab (λ,M2/µ2)+aSg

(3)
ab (λ,M2/µ2)+· · ·

(2.84)

with λ = αSβ0 log Ñ . The functions g
(i)
ab determine the order of the resum-

mation result: g
(1
ab) is the leading logarithm contribution (LL), whereas g

(2)
ab

resums up to the next-to-lading logarithmic order (NLL). Similarly the rest

of g
(i)
ab resum at larger orders.

For reference we will present the values for the g
(i)
ab necessary for up to

NLL resummation [18]

2λβ0g
(1)
ab (λ) = (A(1)

a +A
(1)
b )(2λ+ (1− 2λ) log(1− 2λ) (2.85)

2β0g
(2)
ab (λ,M2/µ2) = (A(1)

a +A
(1)
b ) log(1− 2λ) log

M2

µ2

+ (A(1)
a +A

(1)
b )

β1

β2
0

(2λ+ log(1− 2λ) +
1

2
log2(2− 2λ))

− (A(1)
a +A

(1)
b )

1

β0
(2λ+ log(1− 2λ)) +D

(1)
ab log(1− 2λ),

(2.86)

with the coefficients

A(1)
a = 2Ca, (2.87)

A(2)
a = 2Ca

[(
67

18
− π2

6

)
CA −

5

9
nf

]
, (2.88)

D
(1)
ab = 0, (2.89)

where Cq = CF and Cg = CA.
The function Hab is then, by comparing (2.81) with the perturbative

expansion of ŝigmaab and identifying terms:

H(0)
ab (M2,M2/µ2) = σ̂

(0)
ab (M2,M2/µ2), (2.90)

H(1)
ab (M2,M2/µ2) = σ̂

(0)
ab (M2,M2/µ2) (2.91)

× (A0 + (δP (1)
aa + δP

(1)
bb ) log

M2

µ2
+
π2

6
(A(1)

a +A
(1)
b )),

(2.92)

where δP
(1)
aa is the coefficient of the δ(1 − x) term in the splitting function

P
(
aa1), and A0 is the infrared-finite part of the renormalized virtual correc-

tion

M †(1)M (0) + h.c. = aS

(
4πµ2

M2

)ε
× Γ(1− ε)

Γ(1− 2ε)

(
A−2

ε2
+
A−1

ε
+A0

)
|M (0)|2 +O(ε), (2.93)



2.2. RESUMMATION 33

where we have used the MS renormalization scheme.

The resummed cross sections are valid near the threshold, but fixed-order
predictions are still valid far from this thresholds and must be retained,
therefore it is necessary to combine these two values through a matching
procedure,

σ̂ = σ̂res + σ̂f.o. − σ̂exp, (2.94)

with σ̂res, σ̂f.o., σ̂exp the resummed, fixed-order, and expansion results, which
corresponds to the resummed cross section expanded to the same order in
αS as the fixed-order result:

σ̂exp
ab = H

(0)
ab (M2,M2/µ2) + aSH

(1)
ab (M2,M2/µ2)

−aS

(
2L− log

M2

µ2

)∑
c

(H
(0)
ab (M2,M2/µ2)P

(1)
cb (N)+P (1)

ca H
(0)
cb (M2,M2/µ2))

− aSH
(0)
ab (M2,M2/µ2)(L2(A(1)

a +A
(1)
b ) + L(B(1)

a +B
(1)
b )). (2.95)

2.2.3 Transverse momentum resummation

We will now briefly review the resummation procedure to resum potentially
large logarithmic terms that appear when computing transverse momentum
distributions. These terms have the form

anS

(
logm(M2/p2

T)

p2
T

)
+

, (2.96)

with m ≤ 2n − 1. This resummation procedure follows the Collins-Soper-
Sterman formalism [19].

In this case it is more convenient to work with the usual Fourier trans-
form Wab os the cross section,

M2 d2σab
dM2dp2

T

(N) =

∫
d2

4π
eib·pTWab(N + 1,M2,M2b

2
,M2/µ2), (2.97)

where b is the impact parameter and b̄ := bγE/w. After performing the
angular part of the integral we obtain

M2 d2σab
dM2dp2

T

(N) =

∫ ∞
0

db
b

2
Wab(N + 1,M2,M2b

2
,M2/µ2). (2.98)

The pT → 0 singularities appear as large logarithms for Mb̄→∞ which
take the particular form(

1

p2
T

logn
(
M2

p2
T

))
+

→ logm+1M2b
2

+ . . . (2.99)
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It can be shown [19] that the Fourier-transformed cross section can be
factorized as

Wab(n,M
2,M2b

2
,M2/µ2) =

∑
c,d

Hcd(M
2,M2/µ2)Scd(N,M

2b
2
)

× Pc/a(N, b2,M2b
2
)Pd/b(N, b

2,M2b
2
) +O

(
1

M2b2

)
, (2.100)

where Scd is an eikonal function describing the soft-gluon emission, Pc/a is
the parton-in-parton ditribution at fixed transverse momentum, and Hcd is
an infrared-safe hard function, which perturbatively is given by,

Hcd(M
2,M2/µ2) =

∞∑
n=0

anSH
(n)
cd (M2,M2/µ2). (2.101)

It is also worth noting that although our choice of notation is similar on
purpose to the threshold case, the particular definitions of H and S are
different in both formalism.

By solving the evolution equations for Pc/a we can rewrite Wab as

Wab(N,M
2,M2b

2
,M2/µ2) =

∑
c,d

Hcd(M
2,M2/µ2)

× Pc/a(N, b2, 1)Pd/b(N, b
2, 1) exp(Gcd(M

2,M2b
2
,M2/µ2)), (2.102)

where the exponen Gcd can be written as

Gcd(M
2,M2b

2
,M2/µ2)

= −1

2

∫ M2

1/b
2

dq2

q2

(
Ac(aS(q2)) log

(
M2

q2

)
+Bc(aS(q2))

)
+ (c↔ d), (2.103)

and the Pc/a functions can be expressed as

Pc/a(N
2, b, 1) =

∑
c

Cbc(N, aS(1/b
2
)φc/a(N, 1/b

2
). (2.104)

To obtain our final results we now need to perform the inverse Fourier
transform for the Wab quantity, and evolve the φc/a functions from the scale
µ to 1/b̄2, which yields

σab(N,M
2,M2/p2

T,M
2/µ2)

=

∫ ∞
0

db
b

2
J0(bpT)

∑
c,d,e,f

Hcd(M
2,M2/µ2) exp(Gcd(M

2,M2b
2
,M2/µ2))

× Cce(N, aS(1/b
2
)Cdf (N, aS(1/b

2
)Eea(N, 1/b

2
, µ2)Efb(N, 1/b

2
, µ2).
(2.105)
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The different resummation orders are now given by the perturbative
orders of the functions Hab, Aa, Ba, Cab in αS,

Aa =

∞∑
n=1

anSA
(n)
a , Ba =

∞∑
n=1

anSB
(n)
a , Cab(N) = δab +

∞∑
n=1

anSC
(n)
ab (N),

(2.106)

where the LL accuracy is given by the H
(0)
ab , A

(
a1) terms, the NLL precision

requires also H
(1)
ab , A

(2)
a , B

(1)
a , C

(1)
ab and the NNLL order would also require

the H
(2)
ab , A

(3)
a , B

(2)
a , C

(2)
ab terms.

After performing the integral in (2.103) we obtain

Gab(m
2,M2b

2
,M2/µ2) = log(M2b

2
g

(1)
ab (λ)) + g

(2)
ab (λ,M2/µ2) + . . . , (2.107)

with λ := αSβ0 log(M2b̄2). The function g
(1)
ab resums up to LL and the g

(2)
ab

corresponds to the NLL contributions. These are given by

2λg
(1)
ab (λ) = (A(1)

a +A
(1)
b )(λ+ log(1− λ)), (2.108)

2β0g
(2)
ab (λ,M2/µ2) = (A(1)

a +A
(1)
b )

(
λ

1− λ
+ log(1− λ)

)
log

(
M2

µ2

)
+ (A(1)

a +A
(1)
b )

β1

β0

(
λ+ log(1− 1λ)

1− λ
+

1

2
log2(1− λ)

)
− (A(2)

a +A
(2)
b )

1

β0

(
λ

1− λ
+ log(1− λ)

)
+ (B((1)

a +B
(1)
b ) log(1− λ), (2.109)

where the values for A
(i)
a , B

(i)
a are the same as for threshold resummation.

Differently from the threshold case, the functions H
(1)
ab , C

(1)
ab , B

(2)
a are not

unique [20] and a consistent set must be chosen. We will use the factors as
originally chosen [19, 21, 22], which are given by

Hab(M
2,M2/µ2) = σ

(0)
ab (M2,M2/µ2), (2.110)

B(2)
a = −2δP (2)

aa + β0

(
2π2

3
Ca +A0

)
, (2.111)

C
(1)
ab (N) = δab

(
Ca
π2

6
+

1

2
A0

)
− [P

(1)
ab (N)]ε, (2.112)

where [P
(1)
ab (N)]ε is the O(ε) terms in the expansion of P

(1)
ab and the other

factors coincide with the threshold case.
Finally it is also necessary to perform the fixed order matching as before,

σ̂ = σ̂res + σ̂f.o. − σ̂exp, (2.113)
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which in this case is given by

σ̂exp
ab (n,M2,M2/p2

T,M
2/µ2) = H

(0)
ab (M2,M2/µ2) + aSH

(1)
ab (M2,M2/µ2)

−aS

(
J − log

M2

µ2

)∑
c

(H(0)
ac (M2,M2/µ2)P

(1)
cb (N)+P (1)

ca (N)Hcb(M
2,M2/µ2))

+ aS

∑
c

(H(0)
ac (M2,M2/µ2)C

(1)
cb (N) + C(1)

ca (N)H
(0)
cb (M2,M2/µ2))

− aSH
(0)
ab (M2,M2/µ2)

(
J 2

4
(A(1)

a +A
(1)
b ) +

J
2

(B(1)
a +B

(1)
b )

)
, (2.114)

where

J :=
1

2

∫ ∞
0

db J0(bpT) log(M2b
2
). (2.115)

2.3 Supersymmetry

In this section we will present the basic ideas and formulations of super-
symmetry. We will first introduce the necessary components to build the
supersymmetry lagrangian and later will use this to build and analyze the
supersymmetric gaugino sector. For further details the reader is referred to
[23].

2.3.1 Introduction

As we have seen, the possibilities to extend the spacetime symmetries of
the Standard Model are severely constrained if we are to remain in a con-
sistent Quantum Field Theory. In particular, if we are to remain in a four-
dimensional spacetime outside conformal theories the Haag-Lopuszanski-
Sonius theorem [24], which is based on the Coleman-Mandula theorem [25]
restrict that for realistic theories including chiral fermions the generators Q
and Q† must satisfy the anticommutation relations

{Q,Q†} = Pµ,

{Q,Q} = {Q†, Q†} = 0,

[Pµ, Q] = [Pµ, Q†] = 0, (2.116)

where Pµ is the generator of spacetime translations. We can note here
that as we know that Pµ transforms as a spin-1 object, the supersymmetry
generators Q,Q† act as spin-1/2 objects. These generators also commute
with the gauge transformation generators.



2.3. SUPERSYMMETRY 37

2.3.2 Construction of the supersymmetric lagrangian

We will introduce the formalism of supersymmetry using the superspace
framework. We will introduce the basic of the superspace algebra, and
introduce the construction of the different supersymmetry lagrangian by
parts. We will follow the construction of [23] and references therein.

Superspace

The superspace is a manifold which extends the spacetime usual bosonic
coordinates t, x, y, z by adding four fermionic coordinates such that points
are determined by

xµ, θα, θ†α̇, (2.117)

where the coordinates θα, θ†α̇ are complex anticommuting two-component
spinors.

A general superspace will therefore be a function of these superfields.
We can expand such a function in a power series in the θ, θ†. Howver, since
θ(†) is anticommuting this expansion can be simplified. In particular, if we
consider a general anticommuting variable η we know that η2 = 0, which
means that the series expansion always terminates:

f(η) = f0 + ηf1, (2.118)

from which is easy to see that dη
df = f1 and similarly

∫
dηf(η) = f1, and in

particular that integration and differentiation are the same for functions of
an anticommuting variable.

Going back to the superpotential, we can use this fact to write:

S(x, θ, θ†) = α+θξ+θ†χ†+θθb+θ†θ†c+θ†σ̄µθvµ+θ†θ†θη+θθθ†ζ†+θθθ†θ†d,
(2.119)

where we have also used the fact that

θα =
1

2
εαβθθ,

θ†α̇θ
†
β̇

=
1

2
εβ̇α̇θ

†θ†,

θαθ
†
β̇

=
1

2
σµ
αβ̇

(θ†σ̄µθ). (2.120)

The superfield S as we have writte could be either commuting or anticom-
muting, and in general could carry additional Lorentz or spinor indices, from
in this whole section we will assume the simpler case without Grassman-odd
or extra indices information. In that case we can observe that we have eight
bosonic fields a, b, c, d as well as four fermionic fields ξ, χ†, η, ζ†. In particu-
lar we observe that both bosonic and fermionic degrees of freedom are the
same (16 real degrees of freedom). However in general this will be as we
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will see a reducible representation of the supersymmetry. Chiral and vector
superfields will then be obtained by imposing additional constraints.

Derivatives with respect to the anticommuting coordinates which will be
further needed for the construction are defined as:

∂θβ

∂θα
= δβα,

∂θ†
β̇

∂θα
= 0,

∂θ†α̇

∂θ†
β̇

= δα̇
β̇
,

∂θβ

∂θ†α̇
= 0. (2.121)

Using these, we can define the supersymmetry generators as:

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ,

Q̂α = −i ∂
∂θα

+ (θ†σ̄µ)α∂µ,

Q̂†α̇ = i
∂

∂θ†α̇
− (σ̄µθ)α̇∂µ

Q̂†α̇ = −i ∂

∂θ†α̇
+ (θσµ)α̇∂µ. (2.122)

With these, we can obtain the infinitesimal supersymmetry transforma-
tion for a superfield S through a series expansion in ε, ε† as

√
2δεS = −i(εQ̂+ ε†Q̂†)S =

(
εα

∂

∂θα
+ ε†α̇

∂

∂θ†α̇
+ i(εσµθ† + ε†σ̄µθ)∂µ

)
S

= S(xµ + iεσµθ† + iε†σ̄µθ, θ + ε, θ† + ε†)− S(xµ, θ, θ†). (2.123)

Equation (2.123) can be interpreted as a superspace traslation

θα → θα + εα,

θ†α̇ → θ†α̇ + ε†α̇,

xµ → xµ + iεσµθ† + eε†σ̄µθ. (2.124)

Using this we can obtain the transformation of all the fields in the general
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superfield S
√

2δεa = εξ + ε†χ†
√

2δεξα = 2εαb− (σµε†)α(vµ + i∂µa),
√

2δεχ
†α̇ = 2ε†α̇c+ (σ̄µε)α̇(vµi∂µa),

√
2δεb = ε†ζ† − i

2
ε†σ̄µ∂µχ,

√
2δεc = εη − i

2
εσµ∂µχ

†,

√
2δεv

µ = εσµζ† − ε†σ̄µη − i

2
εσν σ̄µ∂νξ +

i

2
ε†σ̄µ∂νχ

†,

√
2δεηα = 2εαd− i(σµε†)α∂µc−

i

2
(σν σ̄µε)α∂µvν ,

√
2δεζ

†α̇ = 2ε†α̇d− i(σ̄µε)α̇∂µb+
i

2
(σ̄νσµε†)α̇∂µvν ,

√
2δεd = − i

2
ε†σ̄µ∂µη −

i

2
εσµ∂µζ

†. (2.125)

It is important to note here that each term of these operators is pro-
portional to either ε or ε†, meaning that bosons will be transformed into
fermions and fermions into bosons when acting with them.

Finally we arrive at the point where we can obtain the anticommutators
of the supersymmetry generators Q̂, Q̂† which will make more explicit the
connection to the concepts introduced in 2.3.1.

{Q̂α, Q̂†β̇} = 2iσµ
αβ̇
∂µ = −2σµ

αβ̇
P̂µ,

{Q̂α, Q̂β} = 0,

{Q̂†α̇, Q̂
†
β̇
} = 0. (2.126)

Chiral covariant derivatives

As is usual in lagrangian constructions we need to find an invariant deriva-
tive of the superfield with respect to the new anticommuting coordinates.
Obviously the naive choice ∂/∂θα (or similarly ∂/∂θ†α̇) is not valid as is not
supersymmetric covariant:

δε

(
∂S

∂θα

)
6= ∂

∂θα
(δεS). (2.127)

Thus in this case we define the chiral covariant derivatives with respect
to the anticommuting fields as

Dα :=
∂

∂θα
− i(σµθ†)α∂µ,

Dα := − ∂

∂θα
+ i(θ†σ̄µ)α∂µ. (2.128)
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We also define for Grassman-even fields the antichiral covariant deriva-
tive as

D̄α̇S
∗ := (DαS)∗, (2.129)

which combined with (2.128) gives

D̄α̇ :=
∂

∂θ†α̇
− i(σ̄µθ†)α̇∂µ,

D̄α̇ := − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ. (2.130)

Wtih this we can now verify that these definitions are indeed supersym-
metry covariant by noticing that

{Q̂α, Dβ} = {Q̂†α̇, Dβ} = {Q̂α, D̄β̇} = {Q̂†α̇, D̄β̇} = 0, (2.131)

so that
δε(DαS) = Dα(δεS), δε(D̄α̇S) = D̄α̇(δεS). (2.132)

Chiral superfields

As previously discussed we need to impose constraints on the superfield S.
In the case of a chiral superfield, we impose on a general superfield Φ(x, θ, θ†)
the constraint

D̄α̇Φ = 0. (2.133)

In the case of antichiral superfields we impose similarly the constraint

DαΦ∗ = 0. (2.134)

To solve this constraints we define an auxiliary field y

yµ := xµ + iθ†σ̄µθ, (2.135)

and rewrite the superfield as a function of the new variable Φ(yµ, θα, θ†α̇.
The chiral covariant derivates can be then rewritten as

Dα :=
∂

∂θα
− i(σµθ†)α

∂

∂yµ
,

Dα := − ∂

∂θα
+ i(θ†σ̄µ)α

∂

∂yµ
,

D̄α̇ =
∂

∂θ†α̇
,

D̄α̇ = − ∂

∂θ†α̇
. (2.136)

We can see that the constraint is solved by functions of yµ, θ that do not
depend on θ†, so we find

Φ = φ(y) +
√

2θφ(y) + θθF (y), (2.137)



2.3. SUPERSYMMETRY 41

and for the antichiral case

Φ∗ = φ∗(y∗) +
√

2θ†φ†(y∗) + θ†θ†F ∗(y∗), (2.138)

where yµ∗ = xµ − iθ†σ̄µθ and where we have used a complex scalar φ, a
two-component fermion φ and an auxiliary field F .

By undoing the variable transformation we can obtain the superfields in
the original coordinates

Φ = φ(x) + iθ†σ̄µθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x)

+
√

2θφ(x)− i√
2
θθθ†σ̄µ∂µψ(x) + θθF (x),

Φ∗ = φ(x)− iθ†σ̄µθ∂µφ∗(x) +
1

4
θθθ†θ†∂µ∂

µφ∗(x)

+
√

2θ†φ†(x)− i√
2
θ†θ†θσµ∂µψ(x) + θ†θ†F ∗(x). (2.139)

By comparison this with the general superfield (2.119) we can easily
obtain the supersymmetry transformations

δεφ = εψ,

δεψα = −i(σµε†)α∂µφ+ εαF,

δεF = −iε†σ̄µ∂µψ. (2.140)

It is possible to construct a chiral (or antichiral) superfield from a general
superfield S by using

Φ ≡ DDS ≡ D̄α̇D̄
α̇S,

Φ∗ ≡ DDS∗ ≡ DαDαS
∗. (2.141)

In fact, given a chiral superfield Φ it is always possible to find a superfield S
for such construction. Also it can also be used that W (Φi) is a superchiral
field for an arbitrary holomorphic function W and superchiral fields Phii.

Vector superfields

A vector superfield can be obtained by imposing the constraint reality V =
V ∗, which is equivalent to imposing

a = a∗, χ† = ξ†, c = b∗, νµ = ν∗µ, ζ† = η†, d = d∗. (2.142)

It is customary to define in this case

ηα = λα −
i

2
(σµ∂µχ

†)α, νµ = Aµ, d =
1

2
D +

1

4
∂mu∂

µa, (2.143)
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so we can write the superfield expanded as

V (x, θ θ†) = a+ θξ + θθb+ θ†θ†b∗ + θ†σ̄µθAµ + θ†θ†θ(λ− i
2σ

µ∂muξ
†)

+θθθ†(λ† − i
2 σ̄µξ) + θθθ†θ†(1

2D + 1
4∂µ∂

µa). (2.144)

The transformations can be obtained similarly as for the chiral case from√
2δεV = −i(εQ̂+ ε†Q̂†)V and can be found e.g. in [23].

At this point we note that if Φ is a chiral field, then Φ+Φ∗, i(Φ−Φ∗) and
ΦΦ∗ are all vector fields. If the vector superfield represents a supermultiplet
it will contain gauge bosons, gauginos, and gauge auxiliry fields Aµ, λ,D.
The other components a, ξ, b mass dimensions 0, 1/2, 1 are auxiliary fields
that are gauged away.

Supersymmetric lagrangians

Using the components we have presented we now turn to the issue of how to
build a lagrangian using superfields. The first component is to realize that
the integral of any superfield over the whole superspace is invariant δεA = 0
with

A =

∫
d4x

∫
d2θd2θ†S(x, θ, θ†), (2.145)

since Q̂(†) are defined as sums of total derivatives with respecto the su-
perspace coordinates. This gives the form of the dynamic contributions to
the action where the vector S must be superfield a vector superfield V to
preserve the reality of the action. To obtain the lagrangian density L we
integrate over the fermionic coordinates

VD =

∫
d2θd2θ†V (x, θ, θ†) = V (x, θ, theta†)

∣∣∣
θθθ†θ†

=
1

2
D +

1

4
∂µ∂

µa,

(2.146)
where we note that the ∂µ∂

µa term will disappear after integration over∫
d4. This is the so-called D-term contribution to the lagrangian density.

The other type of contribution can be obtained from the fact that the F -
term of a chiral superfield is also a total derivative under a superysmmetry
transformation, so one can introduce contributions of the form

ΦF = Φ|θθ =

∫
d2θΦ

∣∣∣∣
θ†=0

=

∫
dθd2θ†δ(2)(θ†)Φ = F. (2.147)

Since the F -term in general can be complex, it is necessary to add as usual
ΦF + c.c. terms to the lagrangian.

In general we can form a complete lagrangian then as

L = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) (2.148)

where W can be any holomorphic function of the chiral superfields.
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Name Families Symbol Spin 0 Spin 1/2 SU(3)× SU(2)×U(1)

Quarks 3 Q (ũL, d̃L) (uL, dL) (3,2, 1/6)

& squarks 3 ū, ũ∗R U †R (3̄,1,−2/3)

3 d̄ d̃∗R d†R (3̄,1, 1/3)

Leptons 3 L (ν̃, ẽL) (ν, eL) (1,2,−1/2)

& sleptons 3 ē ẽ∗R e†R (1,1, 1)

Higgs 1 Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) 1,2, 1/2)

& higgsinos 1 Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1/2)

Table 2.1: Particle content of the Minimal Supersymmetric Standard Model.

2.3.3 The Minimal Supersymmetric Standard Model

In this section we will introduce a minimal extension of the Standard Model
that includes Supersymmetry, the Minimal Supersymmetric Standard Model
(MSSM). We will begin introducing its particle content and construct its
lagrangian using the results of the previous section. We will then introduce
the soft symmetry breaking in the MSSM. In particular we will focus on the
neutralinos and charginos sector of the MSSM as it is the relevant one in
this thesis.

Particle content and lagrangian

The particle content of the MSSM is the one in Tab. 2.1. Using the develop-
ments of the previous section, the superpotential of the MSSM can be found
to be

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd, (2.149)

where Hu,d, Q, L, ū, d̄, ē are the chiral superfields of the supermultiplets in
Tab. 2.1 and the yu,d,e are the Yukawa matrices of each family. The last
µ term is the supersymmetric equivalent of the Higgs boson mass terms in
the SM lagrangian. We can note here that terms of the form H∗H are not
holomorphic in the chiral superfields and therefore do not appear in the
lagrangian. Also interesting to note here is that we can see from this that
both Hu and Hd are necessary to give mass through the Yukawa terms to
quarks and leptons: Terms like ūQH∗d are not holomorphic and therefore we
need the Q̄Hu term (and following a similar argument for Hd), apart from
anomaly cancellation arguments.

R-parity

The superpotential (2.149) does not contain all renormalizable gauge-invariant
terms holomorphic in the chiral superfields. In particular by omitting cer-
tain terms we have implicitly adopted certain extra symmetries, namely the
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baryon number B and lepton number L conservation. Those extra terms
can be written as the following, where we have excluded family indices:

W∆L=1 =
1

2
λLLēk + λ′LQd̄k + µ′LH (2.150)

W∆B=1 =
1

2
λ′′ūd̄d̄. (2.151)

Chiral supermultiplets have B = 1/3 in the case of Q and B = −1/3 for
ū, d̄, whereas L has L = 1 and ē has leptonic charge L = −1. All others
assignments are either B = 0 or L = 0. With this it is easy to see then
that (2.150) violates lepton number by one unit whereas (2.151) violates
baryonic number also by one unit. This leads to an obvious issue sibce
B- and L-violating processes are heavily constrained experimentally. In
particular, one of the first and most obvious contraints is the one coming
from the non-decay of the proton. For example, if we were to allow such
processes, a simple diagram from p+ → e+π0 or similar processes would give
approximately

Γp→e+π0 ∼ m5
p

∑
2,3

‖λ′1iλ′′1i‖2/m4
d̄i
, (2.152)

which for couplings 1 and sparticle masses of 1 TeV would mean a decay
time of less than a second, whereas experimental bounds are well above
1032 years.

The gaugino sector

The quantum gauge eigenstates for higgsinos and gauginos mix with each
other giving rise to mass eigentstates. The neutral higgsinos and gauginos
combine to four neutralinos χ0, and the charged higgsinos and winos combine
into two charginos χ±.

We will start analyzing the neutral sector. The MSSM lagrangian has a
term of the form

L ⊃ −1

2
ΦTM0Φ + c.c. (2.153)

where Φ is the gauge-eingenstate basis Φ = (B̃, W̃ 0, H̃0
d , H̃

0
u) and the mixing

matrix Mχ̃ can be written from the MSSM lagrangian as

M0 =


M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0

 , (2.154)

where we have used the VEVs for the Higgs scalars, and use the usual
notation sβ = sinβ, cβ = cosβ, sW = sin θW and cW = cos θW . This mixing
matrix can be diagonalized by a unitary matrix N such that

N∗M0N
−1 = diag(m0

χ1
,m0

χ2
,m0

χ3
,m0

χ4
). (2.155)
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The parameters M1,M2, µ are in general complex but a phase redefini-
tion of B̃, W̃ allows us to choose M1,M2 real and positive. The parameter
µ still remains complex as there are no further degrees of freedom to rotate.
However a nonreal µ can have CP-violating consequences unless nontrivial
cancellations apply, and therefore it is usually chosen real, although with
arbitrary sign.

We now review the charged sector, which is very similar to the neutral
case. The lagrangian term in this case is given by

L ⊃ −1

2
(Ψ)TM±Ψ + c.c. (2.156)

with Ψ = (W̃+, H̃+
u , W̃

−, H̃−d ) and the mixing matrix is given in this case
by

M± =

(
0 XT

X 0

)
(2.157)

with

X :=

(
M2

√
2sβmW√

2cβmW µ

)
(2.158)

with the same conventions as in the neutralino case.
The mass eigenstates are then given by 2×2 unitary matrices U and V

for the negatively and positively charged particles, respectively. They are
chosen so that

U∗XV−1 = diag(mχ̃±1
,mχ̃±2

) (2.159)

All the corresponding Feynman rules can be found in [26].
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Chapter 3

Resummino

Resummino a software package to compute resummation predictions for par-
ticle production in beyond the standard model theories at hadron colliders.
The different parts of the software have been developed over time for pre-
diction in different theoretical frameworks. In this chapter we will present
the software package in its current form. We will first briefly review the
context of resummation software in , then present in somewhat more de-
tail the software package structure of Resummino in , briefly considering its
evolution, later in we will present detailed instructions for building and in-
stalling Resummino (including its software dependencies), and finally in we
will present usage instructions and show examples of running the software.

3.1 Software implementations of resummation

As we have developed in Ch. 3, resummation predictions require a relatively
complex and specific mathematical framework, in general distinct from the
other usual fixed-order or parton showering approaches like Pythia at LO
or MadGraph at NLO [27]. This requires specific software programs with
the required mathematical components to perform the resummation cor-
rections. Resummation computations has been long been successfully for
Standard Model processes [8]. An example of resummation software rele-
vant for standard model cross sections are the different variants of ResBos
that include Z and W production [28, 29, 30], Higgs production [31, 32] and
low-mass Drell-Yann [28, 29].

As currently the ATLAS and CMS experiments at LHC search for new
physics, BSM resummation predictions have become necessary to constrain
larger regions of the vast parameter spaces. In particular, for SUSY resum-
mation, strong production channels have precise resummed cross sections
as implemented by the software package NNLL-fast [33], which provides
NNLL corrections matched to approximated NNLO for SUSY colores par-
ticles, both for squarks and gluinos [34] and stop and sbottom production

47
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[35]. In the case of this program, the NLO results are obtained separately
by the software package Prospino [36, 37, 38].

Resummino [39] has been developed to provide precise resummation pre-
dictions for several Beyond the Standard Model particle production pro-
cesses, including supersymmetric [40, 41, 42, 43, 44, 45, 46, 39, 47, 48, 12,
10, 49] and non-supersymmetric Z ′,W ′ production [50, 51]. The implemen-
tation of resummation in software requires certain different components that
will be analyzed in this chapter.

3.2 Code architecture and structure

In this section we will present the current code structure, with the different
components and how they relate to each other, including the dependency of
internal as well as external codes of the different modules. We will briefly
compare the current form with previous versions of the code.

3.2.1 Build system

Software written in compiled languages like C++ require a compiler to trans-
form the code into running binaries and a linker to link those binaries to
external dependencies in the system, e.g. shared libraries.

Although a manual compilation of the code is possible, automated build
systems are required for packages of this complexity, so as to avoid having
to manually find and reference external dependencies and define the compi-
lation process. Also this provides more resilience to changes in the system
paths and makes it easier to build on heterogeneous systems, e.g. in the
case of Resummino on Linux or OS X systems.

Traditionally the compilation process was defined using hand-written
Makefiles. Initial versions of the software used this approach, where it was
necessary to manually modify a Makefile to compile the software in a given
system. This included referencing the different software components as well
as the relevant compilers, including system paths. This approach is not
sustainable as it inevitably has assumptions about which particular system
or compiler (and compiler version) is going to be used, and has in the past
caused issues where compilation of the system was difficult and error-prone.
Modern Resummino uses the CMake build system for compilation. Through
a series of files in the code this defines the necessary dependencies and the
build process in a system-agnostic way, and the CMake software automati-
cally adapts the generation of appropriate Makefiles adapted to the target
system. When compiling Resummino, the CMake software will (1) find if
the required compiler, libraries and dependencies are present in the system,
and what varities and versions of them to use; (2) if that is the case, where
in the system they can be found, and (3) uses that information together with
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the build description of the package to generate the crafted Makefiles that
can be used to build Resummino and link it to the external dependencies.

The main CMake file is called CMakeLists.txt and is located at the root
of the code tree. This file defines the project, loads the rest of the modules,
and initiates the build process.

Some of the modules are located in the cmake folder. These are small
pieces of CMake code that locate some of the dependencies. In particular in-
cluded are modules to locate the right version of GSL, LHAPDF and LoopTools

as well as some required Boost libraries. These models will handle the ap-
propriate linking. In 3.3.3 we will see how to indicate to the modules where
the external libraries are located, if they are not in standard paths.

Finally the compilation of the main Resummino code is done in the file
src/CmakeLists.txt, where the source code files are listed and the instruc-
tions for the creation of the Resummino library are located.

3.2.2 Included external dependencies

Resummino depends on several packages that can be found or at least eas-
ily installed on modern systems (see 3.3), and in those cases it has been
preferred to use the external link. This allows to leverage the upstream up-
dates for those packages including bug fixes. But it also depends on other
packages that are more difficult to find in binary form or that present more
issues for compilation. In this case, the decision has been to include these
packages into the Resummino code itself and compile it together with the
main code. This happens mostly transparently for the user.

In particular Resummino has a version with the package LoopTools [52]
included with the source code (although the user can choose to use a version
without it and provide its own linked version). Also, the SLHAea library
(in the form of a stand-alone header) is included for convenience.

These packages can be found in the lib folder of the source tree (or in
include in the case of header-only libraries).

3.2.3 Code structure

The Resummino code itself is structured over different files inside the src

folder of the source tree. As is typical in C++ packages, the code is dis-
tributed into modules with separate header (.h files) and source code (.cc
files). In previous versions of the software, the files were spread into several
directories (including e.g. some kinematical code in an inc folder together
with vendored code and some PDF inside a tmp folder). These extraneous
directories have been removed and their contents reorganized. Also the con-
tents of the different files have been reorganized into different files, which
have been renamed for clarity. Overall we intent to have a set of properly-
named files that make the structure of the code more obvious. We will
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briefly review this structure of files, their content and organization, as well
as their mutual relationships.

We can differentiate two different blocks inside the code. The first one is
focused on the mathematical computations, and the second one responsible
for the user interaction. Resummino is comprised of the following modules
and the corresponding files:

• Matrix elements: matrix *.cc files

• Partonic cross sections: pxs *.cc and pxs.h files

• Kinematics module: kinematics.{cc,h} files

• Dipoles module: dipoles.{cc,h}

• Integration module: integration method.{cc,h} files

• Hadronic cross section module: hxs.cc, hxs dlnm2.cc, hxs dpt2.cc

files for total cross sections, invariant mass distribution, and transverse
momentum distribution respectively, as well as hxs.h as common mod-
ule header.

• Resummation module: resummation.{cc,h} files

• PDF module: pdf.{cc,h} files

• Mathematics utilities: The files maths.{cc,h} for the general purpose
mathematical functions, as well as npf.h for n-point functions

• General utilities: utils.h files

• User interface: main.cc file

• User parameters handling: params.{cc,h} files

The matrix elements block contains the functions that evaluate the ma-
trix elements of the different diagrams contributing to the different orders
of the fixed-order computation. The different files contain the matrix ele-
ments grouped by type, and the naming should be obvious. This includes
born for the tree-level order, the ones ending in real which contain the
real contributions and the box, bubble and triangle which contain the
corresponding type of the loop diagrams, plus the counterterm file for the
counterterms. The different conventions with respect to the naming of the
different variables and the name of the naming of the functions themselves
are documented in the header of every file, for example pa (pb) represents
the momentum of the first (second) incoming particle, similarly for p1, p2
for the outgoing particles, and MBss() is the function which computes the
matrix element squared M for the tree-level contribution (B) of the s-channel
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when squared with itself ss. The reader is referred to the code for other
cases.

The partonic cross sections module uses the matrix elements block to
obtain the partonic cross section. In particular it sets the appropriate prop-
agators, couplings, and sums over the all the relevant matrix elements. For
debugging purposes channels can be temporarily enabled and disabled in
this module. The relevant file in the case of gauginos is pxs gauginos.cc

and similarly for the other processes implemented.
The kinematics module contains several useful kinematical transforma-

tions that are used by the partonic cross sections block to set the appropriate
values when evaluating the matrix elements (for example expressing the dot
products of the form pi · pj in terms of the Maldestam variable s, t, u).

The dipoles module contains all the relevant code for the Catani-Seymour
dipoles [53, 54] and the Altarelli-Parisi splitting functions.

The integration module performs the final integration of the partonic
cross sections together with the kinematical factors to obtain the hadronic
cross sections. This module makes heavy use of the GNU Scientific Library
[55] to perform the Vegas integration [56]. The integration algorithm and
most important parameters are programmed in this module and are very
relevant for the correct functioning of the software.

The hadronic cross section module uses the integration module to per-
form the integration. The integration is thus split into two different blocks
with different responsibilities: In this module only the physical parameters
and processes are defined, whereas the integration block defines all tech-
nical parameters and algorithm choices related to the technical process of
integration. In particular this module uses the previously obtained partonic
cross section integrand together with the kinematical variables to build the
integrand with the phase space, define the relevant integration variables and
its limits as well as any further factors (e.g. conversion factors to obtain the
expected physical units). This integration can be done for the total cross
section (hxs.cc), or for transverse momentum (hxs dpt2.cc) or invariant
mass (hxs dlnm2.cc).

The resummation module implements as expected the functions related
to the resummation procedure as in 2.2 to obtain the unintegrated hadronic
cross that can be integrated by the previous modules.

The PDF module is a crucial piece of the resummation computation. It
not only wraps the usual PDF-related functions that allow Resummino to
use the different PDF sets, it also handles the transformation of the PDF
into Mellin space through a fit of the chosen PDF which is then transformed
mathematically.

The mathematical and general utilities modules contain convenient defi-
nitions that are used in the rest of the package, for example defining special
functions like the Γ function or defining the PDG particle codes to handle
user input.
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The parameters module holds all relevant physical parameter for a given
process. These include the process parameters (e.g. energy or type of col-
lider) as well as the physical model including particle masses, the SUSY
benchmark point through the use of the SLHA convention as well as rele-
vant couplings. This module also handles the reading of the parameters in
the different input files read by the software.

Finally the user interface implements the command-line interface that
is used the by the use to interact with the software. This includes reading
interpreting the user input, running the corresponding calculations by using
the other modules, and creating the output in the different formats for the
user, as well handling any errors in the user input or in any of the rest of
the modules.

3.3 Software requirements and installation

The software Resummino requires several external software packages to
be compiled (compile-time dependencies) and ran (run-time dependencies).
Here we will briefly review the different external codes used and their func-
tion inside the Resummino codebase. After that we will review how to make
sure these dependencies are properly installed in the system and how to build
the software using the CMake software as seen in 3.2.1. These dependencies
have significantly changed from previous versions of the code, since loop in-
tegrals as well as PDF handling used different libraries which did not allow
for the flexibility of these new options.

3.3.1 Explanation of dependencies

The Resummino code makes use of the following packages that we will briefly
describe:

• LoopTools

• CMake

• Boost headers

• GNU Scientific Library

• LHAPDF

• SLHAea

The LoopTools package is a run-time dependency (although it can be op-
tionally included with the codebase as seen in 3.2.2) to numerically perform
loop integrals.
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The CMake binaries are a compile-time dependency necessary to compile
the software as explained in 3.2.1. As a compile-time dependency once
the Resummino binary has been built it is not needed anymore (and in
particular it does not have to be installed in the system running the code in
production).

The Boost headers are a compile-time dependency that includes a vast
array of practical C++ functions. They are widely used in the C++ com-
munity, and in the case of Resummino they are used for their string parsing
support used in the input section of the user interface.

The GNU Scientific Library is a run-time dependency used for numer-
ical computations inside Resummino [57]. In particular several parts of
this library are used for different mathematical operations, including multi-
dimensional Monte Carlo Vegas integration in the phase space, numerical
fits of the PDFs used for the necessary transformations in the resumma-
tion procedure, special functions (in particular dilog and ζ functions), and
different optimized vector and matrix operations.

The LHAPDF library [58] is a run-time dependency that implements a
interpolator used for evaluating PDF grids, as well as a collection of those
grids in an standarized format. LHAPDF is the way Resummino reads
external PDFs, and therefore any PDF set implemented in such framework
can be used in Resummino (previous versions did not use LHAPDF and
were limited to some PDF families).

The SLHAea is a header-only library used to parse SLHA input files that
is included together with the Resummino code for convenience.

3.3.2 Installation of dependencies

Before proceding to the installation it is necessary to make sure that all
dependencies are installed in the system.

In the case of LHAPDF this is very simple, and following the public
instructions this can be done by downloading the appropriate tarball and
decompressing it and entering into the created directory

$ tar xf LHAPDF-<version>.tar.gz

$ cd LHAPDF-<version>

where <version> is the version of LHAPDF to use, and once in the directory
compiling with the usual UNIX verbs

$ ./configure

$ make

$ make install

If the user does not have enough rights, sudo may be needed in the last step
(or the user can choose an alternative installation path, see the LoopTOols
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documentation for details). Please note that LHAPDF, as well as Resum-
mino itself, require the Boost packages (which can be installed by using the
standard system package tools).

LoopTools is installed in a very similar way in case the user wants to use
their own LoopTools package.

3.3.3 Compilation

Resummino is distributed in tarballs named resummino-<version>.tar.bz2

or similarly, therefore the first step in the compilation process is to extract
the contents of the files:

$ tar -xvf resummino-<version>.tar.bz2

Once extracted, we enter the newly created folder where we can find the
Resummino code:

$ cd resummino-<version>

It is recommended to build the code out-of-source, which avoid polluting
the source tree with binary files and allows for independent build, for which
we will create a new empty folder where to put the binaries and enter it:

$ mkdir build

$ cd build

Now we can run the CMake binary that will look for all the dependencies
and prepare all the Makefiles ready for compilation in the target system:

$ cmake ../ -DLHAPDF=/usr/local/lhapdf \

-DCMAKE_INSTALL_PREFIX=/usr/local/resummino

Many compilation options can be given in this step. We will briefly
review the most relevant ones here for convenience.

Finally we can compile the main Resummino binaries with:

$ make

If needed we can also install the software (to the target path given above),
for which we can issue:

$ make install

It is important to note that if the target path is a system-wide folder (which
is the default) we will require root privileges for this step, and therefore we
will need to do something similar to:

$ sudo make install

provided we have sudo rights on the machine.
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3.4 Software usage

The different input parameters that define the process and the type of com-
putation to perform are passed to Resummino using an input file. Earlier
versions of the code did not have the concept of input file and instead relied
on execution scripts that defined the input parameters as variables. This is
cumbersome and error-prone and therefore the decision was made to move
the software to a simple input file format. An example input file is found
in the code as input/resummino.in. This file contains the main definitions
of the process to perform (type of collider, energy, etc.). The SUSY model
has to be specified in a separate input file following the standard SLHA
format [59, 60]. An example SLHA file can be found in the release source
code as input/slha.in. The particular SLHA file to use is specified in the
Resummino input file using the slha parameter. Please note that the path
to the SLHA file must be specified relative to the Resummino input file, so
in this case the variable will be slha = slha.in.

3.4.1 Input file

The different blocks that need to be configured in the Resummino input file
are:

• Collider type and energy

• Physical process

• Type of computation to perform

• SUSY model

• Parton Distribution Function (PDF)

• QCD scales

• Integration parameters

The first block that should be configured in the input file is the type and
energy of the collider, which is done with the following variables:

collider_type = proton-proton

center_of_mass_energy = 13000

The center of mass energy parameter is in GeV. Also possible for the
collider type is proton-antiproton.

After that it is necessary to define the physical process for which to
compute the cross sections. This is done by specifying the two outgoing
particles:
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Particle type Particle PDG code

Slepton ẽ−L 1000011
Slepton ẽ−R 2000011
Slepton ν̃eL 1000012
Slepton µ̃−L 1000013
Slepton µ̃−R 2000013
Slepton ν̃µL 1000014
Slepton τ̃−1 1000015
Slepton τ̃−2 2000015
Slepton ν̃τ 1000016
Gaugino χ̃0

1 1000022
Gaugino χ̃0

2 1000023
Gaugino χ̃0

3 1000025
Gaugino χ̃0

4 1000035
Gaugino χ̃+

1 1000024
Gaugino χ̃+

2 1000037

Table 3.1: PDG number codes for the different supersymmetric particles
understood by Resummino.

particle1 = 1000011

particle2 = -1000011

This parameters follow the PDG numbering scheme , and in particular a
minus sign implies the corresponding antiparticle.

For reference we list here the particle codes understood by Resummino
in Fig. 3.1.

It is also necessary to specify the type of computation to perform. This
can be a total cross section, transverse momentum cross section, transverse
momentum cross section using the joint resummation formalism, or the in-
variant mass cross section:

result = total

M = auto

pt = auto

For the result variables the possible values are total, pt, ptj, or m, corre-
sponding to the possibilities above. The variable M contains the invariant
mass scale of the process. For total cross sections or transverse momentum
ones, this should be left as auto and it will be assigned to

√
(p1 + p2)2. For

invariant mass distribution computations, this should be set at the invari-
ant mass point to compute. Similarly with the pt variable for transverse
momentum distributions (whether or not in the joint formalism).

The SUSY model used for the computations must be defined in an exter-
nal file in the standard SLHA format [59, 60]. That file must be referenced
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in the Resummino input file using the variable:

slha = slha.in

where the file slha.in is the SLHA file to use. In case of using a relative
path it must be relative to the Resummino input file.

For the Parton Distribution Function Resummino uses the standard
LHAPDF library which contains a large nuber of different PDF families in
common standard formats. In Resummino the PDF options are controlled
by the variables:

pdf_format = lhgrid # lhgrid or lhpdf

pdf_lo = CT14llo

pdfset_lo = 0

pdf_nlo = CT14nlo

pdfset_nlo = 0

In this case, the pdf format variable can take the values lhgrid or lhpdf

depending on the format of the LHAPDF files used. After that we define
the Leading Order (LO) and the Next-to-Leading Order (NLO) PDFs by
specifying the family name and the set inside the family. (Normally sets are
used for uncertainity computations. Typically it will be necessary to run all
the sets inside a given family.)

Finally Resummino offers the user some low-level integration parameters:

precision = 0.01

max_iters = 5

where precision is the desired numerical uncertainty precision in the in-
tegration and max iters is the maximum number of integration iterations.
These parameters are passed to the GSL integration functions. The default
values work for a large array of situations.

3.4.2 Running Resummino

Once compiled the Resummino binaries can be ran by issuing on the termi-
nal:

$ resummino <input_file>

where <input file> is the path to the the input file as described above.
A typical use-case while running Resummino is to compute a set of cross

sections with similar but not exactly the same process parameters. For
example, when computing invariant-mass or transverse momentum distri-
butions, or scanning a mass parameter space. In that case, it would be
impractical to have a huge set of similar input files. The solution is then to
override one or a few input file parameters using command-line options. In
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those cases, instead of having one input file per PDF subset, you can just use
a common input file and use the pdfset lo and pdfset nlo command-line
options to override the PDF subsets.

If a command-line option is specified, the value from the input file is
ignored. Possible values for the command line arguments are the following:

• particle1 and particle2: Replace particle1 and particle2 re-
spectively

• invariantmass or m: Replaces m

• transversemomentum or t: Replaces pt

• pdfset lo and pdfset nlo: Replace pdf lo and pdf nlo respectively

• mu f and mu r: Replace mu f and mu r respectively

• output file or o: Make Resummino create an output file with the
output in a machine-readable format for further analysis (see 3.4.3);
this option does not have an input-file equivalent

Resummino also offers the possibility of only running up to a certain
fixed level of precision (LO or NLO), useful for debugging and for comparing
with other tools. In those cases no resummation is performed and the fixed-
order results are outputted. Some values which are not calculed will be set
numerically to 0.

Resummino also understand the special syntax for input file - which will
be interpreted as stdin making it useful for passing the input file on-the-fly
e.g. through UNIX pipes, which allows for more advanced use cases.

3.4.3 Resummino output

Each time Resummino is called, it produces as output three cross sections
(the cross section for the specified process at LO, NLO and NLO matched
with NLL). This can be either a total cross section for the process or a point
in a transverse momentum or invariant mass differential distribution. These
numbers (including the appropriate units) will be printed to stdout in a
human-readable form.

Optionally it can also create an output file in a machine-readable format
for further analysis. In particular Resummino can output the results to a
JSON format, which is a standard format available in a variety of languages
and analysis tools.

However, usually a subsequent analysis of this data is required to, e.g.,
determine the uncertainties, or to obtain a distribution plot, which is sim-
plified by a computer-friendly output format. While there are established
standards for the input to Resummino (SLHA and LHAPDF), there is so
far no clearly defined way to output cross sections in a standarized way.
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The decision has been to include an option to output the results to a JSON
file . This is a well-known and established format with implementations in
virtually every programming language. To obtain the JSON output, you
have to specify the output file command-line argument as shown in 3.4.2.

The Resummino JSON output is a dictionary containing the following
variables:

{

"key": "",

"pt": -1,

"m": -1,

"pdflo": "MSTW2008lo68cl",

"pdfsetlo": 0,

"pdfnlo": "MSTW2008nlo68cl",

"pdfsetnlo": 0,

"muf": 0.5,

"mur": 0.5,

"lo": 2.8873845e-03,

"nlo": 0.0000000e+00,

"nll": 0.0000000e+00,

"nllj": 0.0000000e+00,

"units": "pb"

}

3.5 Examples

For reference purposes we will include in this section some example cross
sections for processes implemented in the Resummino code [39]. We chose to
implement this examples in the benchmark point 31 of [61]. In this scenario
tanβ = 40, µ > 0, A0 = −500 GeV and the SUSY-breaking-scale masses
are set at m0 = 400 GeV and m1/2 = 600 GeV. After renormalization group
equations almost all squark and gluino masses are∼ 1.5 TeV and electroweak
particles have masses ∼ 250–850 GeV. These computations were originally
done for the 8 TeV LHC run and use MSTW 2008 PDF sets [4]. We perform
scale variation by multiplying the central scale which is set to the average
mass of the outgoing particles by factors 1/2, 2. We produce two sets of cross
sections: In Tab. 3.2 we show results for gauginos and in Tab. 3.3 we show
cross sections for another process implemented in Resummino as an example
of a non-gaugino process implemented in the same software framework.
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Pair LO (fb) NLO (fb) NLO+NLL (fb)

χ̃0
1χ̃

0
1 0.1245+8.6%

−7.5% 0.1605+3.6%
−3.6% 0.1554+0.2%

−0.0%

χ̃0
2χ̃

0
2 0.0875+12%

−10% 0.1065+4.5%
−3.7% 0.1043+0.3%

−0.0%

χ̃+
1 χ̃

0
2 4.3674+9.9%

−8.5% 4.8750+2.0%
−2.4% 4.8248+0.3%

−0.5%

χ̃−1 χ̃
0
2 1.4986+10%

−8.6% 1.7333+2.1%
−2.4% 1.7111+0.6%

−1.1%

χ̃+
1 χ̃
−
1 2.8874+9.9%

−8.5% 3.3463+3.3%
−3.3% 3.3086+0.7%

−0.3%

Table 3.2: Example total cross section for different gaugino pair production
at LO, NLO and NLO+NLL for benchmark point 31.

Pair LO (fb) NLO (fb) NLO+NLL (fb)
˜̀+
R

˜̀−
R 0.0749+11%

−9.1% 0.0868+2.7%
−3.0% 0.0854+0.2%

−0.4%
˜̀+
L

˜̀−
L 0.0477+12%

−10% 0.0543+2.8%
−3.4% 0.0534+0.5%

−0.3%

τ̃+
1 τ̃
−
1 0.5878+7.6%

−5.3% 0.7093+2.5%
−2.5% 0.6985+0.0%

−0.2%

Table 3.3: Same as for 3.2 but for sleptons, as an example of non-gaugino
process implemented in the same reference code.



Chapter 4

Gaugino production

In this chapter we will present the results of resummed computations for
gaugino production at the LHC by using the software Resummino presented
in previous chapters. The results presented in this chapter were published
in [39, 47] and will follow the outlines of those. In 4.1 we will contextualize
the results and present the current searches and constraints, in 4.2 we will
introduce the different benchmark points that will be used for the different
computations, and the results of those will be presented in 4.3 for total
cross sections and in 4.4 for the invariant-mass and transverse-momentum
distributions.

4.1 Current experimental searches and constraints

We will now review the current state of searches at hadron colliders for the
different gauginos, as well as the current limits on the masses and parameter
space. The most current limits can be found in [4] and updates. We will first
briefly remember the most relevant parameters when considering the gaugino
sector, and then analyze the main production channels for charginos and
neutralinos, and revise the most recent constraints coming from the different
hadron collider experiments, with a focus on the current LHC limits.

As we have seen, the gaugino states mix together with the higgsinos to
produce the physical charginos (composed of the charged wino and higgsino
states) and neutralinos (composed of the neutral bino, wino and higgsino
states). The parametrization of this mixing leads to some dimensions in the
parameter space. In the case of the charginos, the wino mass parameter
M2, the higgsino mass parameter µ and the mixing tanβ. For neutralinos
we also have a bino mass parameter M1. When one of the parameters is
significantly small, the physical states are dominates by specific states and
we use the nomenclature bino-line (M1 �M2, µ) and similarly for wino-line
(M2 �M1, µ) and higgsino-like (µ�M1,M2). Furthermore we can assume
GUT unification of masses, which sets M1 = 5

3 tan2 θWM2 for θW the weak

61
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Figure 4.1: Cross sections for the pair production of different supersymmet-
ric particles at the LHC for different mass particles. Results are shown for
previous 8 TeV runs (solid) as well as for 13-14 TeV runs (dashed). Re-
sults for squarks and gluinos are computed using resummation procedures,
whereas results for electroweak partners are computed using fixed-order re-
sults, motivating results from this chapter. Plot from [4].

mixing angle.
We will now revise the case of the charginos. When kinematically allowed

the dominant decay mode of the charginos is the two-body process into two
fermions, for example χ̃± → lν̃ and χ̃± → l̃ν. If this process is kinematically
constrained then the three-body process χ̃± → ff̄ ′χ̃0 through virtual W or
sfermions. When sfermions are heavy the dominant channel will be the W
and branching ratios will be similar to W decay, whereas where sleptons are
lighter and play a more significant role leptonic final states are enhanced.

These channels have been probed in different hadron colliders (LEP,
Tevatron and LHC): At LEP a general lower limit of 103.5 GeV has been
found through hadronic, semi-leptonic and leptonic decay modes [62, 63],
except in areas of the parameter space with low sneutrino masses where
there is destructive interference in chargino production, or where the mass
difference between χ̃± and χ̃0 is small. In those areas a lower limit of 92 GeV
was set.

At Tevatron the focus was on associated χ̃±1 χ̃
0
2 production, and final

states with multilepton states provided the best signal against the large
multiject background [64, 65]. Analysis focused on signals of at least three
charged isolated leptons, for two leptons with missing transverse momentum,
or two leptons with the same charge.

The program at LHC follows a similar strategy to that of Tevatron.
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Since cross section for gauginos is in the relevant range at least a couple
orders of magnitude smaller than for colored particles, high statistics is
required. With LHC Run 1 and the first results of Run 2, ATLAS and CMS
have started to improve on previous LEP and Tevatron constraints of SUSY
parameter space. We will analyze then these results in more detail.

For chargino pair production the signal is searched for in the dilepton
plus missing momentum channel. In a simplified model of interpretation
of results, that assumed chargino decay by light sleptons, ATLAS finds a
chargino mass contraint of 740 GeV for massless LSP [66] but no limits
can be established for χ̃0

1 of 350 GeV or more. This limit is quite robust
against slepton mass except where masses of chargino and slepton becomes
similar. At the 8 TeV Run, a chargino mass limit of 180 GeV was also
established through W boson decay [67] for massless LSP but no limits can
be established for LSP masses of 25 GeV or more.

The trilepton plus missing momentum signal can be used to set limits
on χ̃±1 χ̃

0
2, assuming wino-like χ̃± and χ̃0

x, bino-line χ̃0
1 and mχ̃± = mχ̃0

2
.

Branching fractions of lepton final states will be determined by the slepton
masses. If we further assume l̃R heavy the decay will be mediated mainly
by l̃L and the three lepton flavors will be produced in equal amounts. It
is further assumed that sneutrinos have masses equal to ml̃L

. With these
constraints, chargino masses can be constrained at 1140 GeV by ATLAS
[66] and CMS [68] for massless LSP. Limits cannot be established for LSP
masses above 700 GeV. If, on the other hand, the decay is dominated by a
light L̃R the chargino will have a large higgsino component, and decay to
τ will be favored. In this scenario, if a flavor-democratic case is assumed,
CMS sets limits of 1060 GeV on the chargino mass for massless LSP, and
if the assumption is that both χ̃± and χ̃0

2 decay to τ in the final state
the limit lowers to 620 GeV for massless LSP [68]. ATLAS on the other
hand assumed a simplified model with τ̃ significantly lighter than the other
sleptons to obtain a multi-tau final state, setting a chargino mass limit of
760 GeV in that case [69].

In the case of heavy sleptons, the chargino is assumed to decay to a
W boson plus LSP and the χ̃0

2 into Z or H plus LSP. In the WZ channel
limits on the chargino mass can be set at 610 GeV for massless LSP by both
ATLAS [66] and CMS [70], but no limits are set for LSP above 250 GeV. In
the WH channel using mH = 125 GeV with the Higgs decaying to bb̄, γγ
and WW by ATLAS [71] plus ZZ and τ+τ− by CMS [70] assuming SM-like
branching ratios, chargino masses up to 480 GeV for massless LSP can be
set, and no limit for LSP above 100 GeV.

For the electroweak gaugino searched in simplified models [72, 73] for
light or decoupled sleptons, ATLAS and CMS have comparable limits. In
the wino and the higgisino regions the neutralino χ̃0

1 and the chargino χ̃±1
have similar masses, the chargino decay products are soft. Since this is a
difficult experimental case, some dedicated strategies are being follow, yet
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Figure 4.2: Current gaugino mass limits at 95% C.L. [4] for gaugino pair
production from ATLAS experiment results at LHC under the assumption
of light sleptons.

Figure 4.3: Current gaugino mass limits at 95% C.L. [4] for gaugino pair
production from CMS experiment results at LHC under the assumption of
decoupled sleptons and chargino decay through W ∗, Z∗, H.
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with limited sensitivity. Photons or jets can be used to tag such decays.
As an alternative vector-boson fusion with two additional jetswith large a
rapidity gap can be used to suppress backgrounds.

We now swith the focus to neutralino searches. In a wide area of the
MSSM parameter space for a viable dark matter candidate the LSP is the
lightest neutralino χ̃0

1. Given its properties and that it is only weakly inter-
acting it ill escape detextors, and therefore detection must be done indirectly.
Limits on invisible width of the Z boson could apply for neutralinos with
a mass below 45.5 GeV, but they depend on the coupling which could be
vanishing, and therefore no general constraint of the mass of the lightest
neutralino can be set [74]. With GUT mass-unificating models a lower limit
can be found from direct searches at around 47 GeV [4]. In even more con-
strained models like the cMSSM the limit can be improved to 50 GeV from
LEP and improved by LHC to above 200 GeV [4]. In the case of gauge-
mediated SUSY breaking (GMSB), the LSP will be typically a gravitino
and the phenomenology is mostly determined by the nature of the NSLP. If
this is a neutralino it will decay to a gravitino and a SM particle determined
by the nature of that neutralino. For the case of bino-like neutralinos states
with high pT photons and missing momentum signatures can be interpreted
[75, 76, 77, 78, 79]. For decays with at least two neutralinos per event, neu-
tralinos with large non-bino components cam be searsched for through final
states with missimg momentum plus two SM bosons of γ, Z,H. This leads
to a rich phenomenology explored by LHC [68, 78, 79, 80, 81].

Apart from the lightest neutralino, χ̃0
1, some searches have also focused

especially on the heavier χ̃0
2. Some seaches with a combined chargino pro-

duction have been discussed in this section, from the assumption of equal
masses mχ̃±1

= mχ̃0
2

the mass limits for the chargino χ̃±1 also apply to the

neutralino χ̃0
1. Another one of the main channels is the decay into a χ̃0

1 plus
an SM boson γ, Z,H. Multilepton analyses can be used to set limits on χ̃0

2χ̃
0
3

production, which by assuming equal mass and decay through light sleptons
leads to a limit of 680 GeV for massless LSP [72]. Also channels with a χ̃0

2

decaying into χ̃0
1 have been proved and shown to be useful in measuring

mass differences in case of signal [72] and even in the search itself [80, 82].

If we also consider models with R-parity violation, the LSP can decay
into a multilepton final state, and these states have also been looked into.
For decays with nonzero λ events with four or more charged lepton are
analyzed [83], and for small couplings lepton pairs. In the case of nonzero
λ′ coupling events with a displaced hadronic vertex [84], and in the case of
nonzero λ′′ for hadronic final states and jet pair resonances.

Outisde the simplified models, work on the phenomenological MSSM
(pMSSM) has shown that the simplified models cannot capture some rel-
evant physical phenomenology. In particular, LSPs compatible with the
known dark matter relic density constraints need specific values of mixing
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parameters and masses that are not properly captured by the simplified
models.

4.2 Benchmark points

SUSY results by the LHC starting ruling out most of the SPS benchmark
points that had been long in use [85], so these cMSSM points were replaced
[61]. From the analous magnetic momentum of the muon (g − 2)µ and
rare decay b → sγ models with positive off-diagonal Higgs mixing µ > 0
and vacuum expectation values of the neutral components of the two Higgs
doublets tanβ and universal soft trilinear coupling of the Higgs fields to
squarks at GUT scale A0 satisfying tanβ = 10, A0 = 0 GeV or tanβ =
40, A0 = −500 GeV were chosen. A total of 49 benchmark points were
selected for detailed studies.

For this study 13 out of the total 49 points were chosen in the two
model lines 10.1 and 10.3 with tanβ = 10, A0 = 0 GeV plus 7 points on
the line 40.1 with tanβ = 40, A0 = −500 GeV. For more detailed analyses
and for comparison with Monte Carlo predictions we focus on one specific
benchmark point for each line.

For the first point with tanβ = 10, A0 = 0 GeV we choose an optimistic
scenario with low universal scalar mass m0 as well as the universal gaugino
mass m1/2, which corresponds in particular to the point 1 of the LPCC
numbering scheme. These parameters lead to a neutralino and chargino
mass at the electroweak scale of about 150–550 GeV. Gluino and squark
masses lie in the 1–2 TeV range and therefore in the allowed region from
current ATLAS and CMS constraints. The production of χ̃±1 together with
χ̃0

2 leads often to the golden trilepton signature. We note that indeed for
all the scenarios on 10.1 the lightest chargino and the sleptons always decay
in first approximation to a single observable lepton and missing transverse
energy.

For the second point we chose point 18 in the LPCC numbering schema,
which lies on the model line 10.3. This point also has Higgs VEVs set to
tanβ = 10 and vanishing trillinear coupling A0. This point has higher values
for the universal scalar m0 and gaugino masses m1/2 giving slightly heavier
neutralino and chargino masses in the range 250–770 GeV, whereas the
squark and gluino masses stay in a similar range as point 1 in the 1–2 TeV
so this point is also not excluded by ATLAS and CMS current constraints.
The next-to-lightest neutralino days mostly to a Higgs boson since is an
almost pure light wino and cannot decay into heavier superpartners of the
left-handed leptons and quarks. Also because of the heavy squark masses
t- and u-channel squark diagrams leading to neutralino and gaugino pair
production are suppressed. Final states containing one or two neutralinos χ̃0

2

are significant via s-channel weak boson exchanged with reduced destructive
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interferences with the t and u channels. Since the lightest chargino decays
with a 89% branching ratio to a W boson one can obtain the production
rate of golden signatures from the values of the χ̃0

2χ̃
±
1 total cross sections

presented in the next section after accouting for the branching ratio of a
Higgs boson decaying into a pair of tau leptons and the rate of lepton W
boson decays.

Finally the third selected point is point 31 in the LPCC numbering
scheme, which lies in a model line similar to that of 40.1, with a large value
of tanβ = 40 and large A0 = −500 GeV. As in the second chosen point, we
keep high universal scalar and gaugino masses. The neutralino and chargino
masses are similar to those in point 18 since they do not depend drastically
on the tanβ,A0 parameters, and are in the range 250–825 GeV. Similarly
with the gluino and first and second generation squark masses. However,
the different tanβ,A0 do have an important effect in the mixing among
the third generation squark interaction eigenstates and (with a somewhat
smaller impact) the τ̃ states. From this, the masses of the lightest t̃ and b̃
are much lower than the average squark mass and these states are almost
maximal admixtures of the left- and right-handed third-generation squark
eigenstates. We also present in Tab. ?? the two main decay modes of the
second neutralino, to an associated pair of stau (decaying later to a τ and
χ̃0

1) and tau lepton but also at a smaller rate to a Higgs boson and missing
energy carried by the lightest neutralino. As in the previous chosen points,
the trilepton cross section can be decuded from the values of the total cross
sections of the next section together with the branching ratios of the lightest
Higgs boson to taus and the one of the tau leptonic decays.

We notice that although future experimental limits of the squark and
gluino masses might exclude these cMSSM scenarios, the gaugino masses
may still remain viable and their total cross sections will be approximately
valid.

4.3 Total cross sections

In this section we will present next-to-leading logarithm computations for
chargino and neutralino production in the benchmark points presented in
Sec. 4.2. These processes have been computed initially at the leading order in
the QCD running α [86] and later polatization [87] and flavor-violating [42]
effects have been included. Additionally next-to-leading order corrections
have been included [44] sizable due to large logarithmic contributions from
soft and collinear parton emissions. Since these contributions can spoil the
convergence of the perturbative series resummation procedures are necessary
for reliable predictions over the relevant areas of the phase space. Transverse
momentum and threshold resummation have been performed at next-to-
leading logarithmic accuray [44].
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First we present in Tab. ?? total production cross sections for neutralino
and chargino pairs for benchmark points 1, 18 and 31 as presented in Sec. 4.2
at the NLL threshold resummation order matched to NLO results. The LO
results are computed as in [87] convoluting unpolarized partonic cross sec-
tions with the LO set of MSTW 2008 PDF with five light flavors of mass-
less quarks as agreed by SUSY working groups of ATLAS, CMS and the
LPCC. The top quark mass is set at 173.1 GeV and mZ = 91.1876 GeV and
mW = 80.403 GeV, setting the CKM matrix to the identity matrix. The rel-
evant SUSY spectra have been generated using SuSpect to obtain low-energy
masses and parameters from the GUT values evoled down through renor-
malization group running at the two-loop level. The central value is found
setting the factorization scale µF to the average final state particle masses of
the produced pair and uncertainties are estimated by multiplying the central
value of µF by factors in the 0.5–2 range. For NLO predictions the detailed
computations can be found in [87] where the SM and SUSY QCD contribu-
tions are included. For NLO we use the corresponding MSTW 2008 NLO
PDF sets and the theoretical uncertainties for the scale variation are per-
formed simultaneously for µF and µR by multiplying the average particle
mass by a factor 2. For PDF, the uncertainties are derived following the
PDF set recommended approach, i.e. as defined by the formulas

(∆σ+)2 =

n∑
k=1

{max(σ+
k − σ0, σ

−
k − σ0, 0)}2, (4.1)

with σ0 the cross section value as computed with the central set of the
PDF and σ+

k , σ
−
k are those obtained from the ±σ variation along the kth

eigenvector of the covariance matrix of the PDF fit, and similarly

(∆σ−)2 =

n∑
k=1

{max(σ0 − σ+
k , σ0 − σ−k , 0)}2, (4.2)

with the same notations.

The numerical results show some expected features from resummation
total cross sections. In the first place, we observe the large scale uncertainity
of the LO results, due to the the induced large logarithmic terms to give
around a 10% uncertainty. This is reduced at NLO though one obtains a
further renormalization scale dependency through the coupling constant in
the loop contributions. We observe however than after the matching to the
resummation NLL terms this dependency is reduced thanks to the dominant
contributions being included in the Sudakov factor G. We also observe that
PDF uncertainties are not significantly reduced, which is expected since they
use the same PDF sets as for NLo results.

We now show the results for the golden trilepton channel χ̃0
2χ̃

+
1 total

cross sections as a function of their (almost equal) mass mχ̃ at the LHC
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Figure 4.4: Total cross section for gaugino pair production at LO (dotted),
NLO (dashed) and NLO+NLL (solid) with scale (green) and PDF (yellow)
uncertainities for χ̃0

2χ̃
+
1 pair production as a function of their degenerate

mass mχ̃ at the LHC at 8 TeV for bencjmark points 1-7.
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with 8 TeV center-of-mass energy. The results of the model line 10.1 can be
seen in Fig. 4.4 for LO, NLO and NLO+NLL cross sections. The soft SUSY-
breaking mass increases from 400 GeV to 700 GeV, with the gaugino masses
increasing from 300 GeV to 550 GeV, and the total cross section decreasing
as expected, from ∼ 40 fb to ∼ 2 fb. We observe a sizable NLO correction
and similar NLO+NLL total results, decreasing however in uncertainity. As
discussed above, the main source of uncertainity then becomes the PDF
contributions. Similar results are obtained for model lines 10.3 and 40.1.

4.4 Invariant mass and transverse momentum

Signatures of gauginos and higgsinos production typically involve significant
initial state QCD ration, which has a big impact on kinematical distribu-
tions due to the potentially large logarithmic contributions in the soft and
collinear regions. To obtain reliable predictions in this case it is necessary to
treat these logarithmic terms at all orders in the strong coupling constant.
We have analyzed how this can be done at the next-to-leading order through
resummation procedures matched to next-to-leading fixed order, which leads
to an appropriate description both in the soft and collinear regions as well
as in the hard regions (due to the fixed-order matching). Experimental
and phenomenological studies sometimes rely on Monte Carlo simulations
with similations of jet productions by using tools such has Herwig [88] or
Pythia [89] which simulate QCD emission by probabilitistic branching of
partion using Markov Chain techniques built using the Sudakov form fac-
tor. These tools typically use only leading-logarithm accuray (as opposed to
the next-to-leading-logarithms accuracy presented in the resummation tech-
niques employed here), sometimes including only partial next-to-leading-
logarithm contributions. This is a limitation o the Monte Carlo algorithms
used. Also, supersymmetric processes are typically only implemented at the
leading-logarithm level and are not fully implemented into NLO tools such
as MC@NLO [90] or Powheg [91].

Matrix-element approaches are accurate for hard and separated emis-
sions, but fail in the soft and collinear limits, whereas parton showers give
accurate results in the soft and collinear limits but understimate hard emis-
sions, which leads to the need of matching algorithms. Developments in this
area include the Carani-Krauss-Kuhn-Webber (CKKW) scheme [92] and the
Mangano scheme [93]. The reader is referred to the references for details on
these approaches. The key property is that they avoid the double counting
that arises from combining the matrix element and the parton shower results
from the Sudakov form factor. These algorithms have been applied to both
SM and BSM theories (see [4] and references therein for a review).

In this section we will present a comparison of between fixed next-to-
leading order results, resummation up to the next-to-leading-logarithms re-
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sults matches to next-to-leading order and parton showering matched to
matrix elements for charginos and neutralinos for transverse momentum pT

and invariant mass M distributions. For the parton showering with will
follow the hard matrix elements matched following the MLM kT scheme us-
ing the implemented in MadGraph MadEvent generator [94] with Pythia.
The UFO model files [95] will be generated using FeynRules [96] for the
different benchmark points obtained with SuSpect [97]. Three parton-level
event samples will be generated with the pair of supersymmetric particles
plus zero, one, and two extra partons. These will be merged after parton
showering using the MLM scheme. The jets are generated with a minimum
of kT ≥ 50 GeV where

k2
T ≡ min(p2

Ti, p
2
Tj)Rij (4.3)

for i, j the final state partons and Rij the angular distance in the (η, φ)
plane. When one of the partons is an initial state parton, the jet measure
is defined as

kT ≡ pTi (4.4)

and we require in this case kT ≥ 20 GeV. The events are then showered using
Pythia and jets reconstructed using FastJet [98] with the kT-jet algorithm
with a cutoff scale Q = 70 GeV. The events are selected if each jet is
matched to one parton (with the exception of the two-jet sample), i.e., is
the kT-measure is smaller than Q.

As is usual we neglect all quark masses except the t quark, and use
the MSTW 2008 PDF at the LO and NLO levels. The factorization and
renormalization scales for the resummation method are set at the average of
the mass of the final state particles, whereas for the showering algorithm is
set at the jet measure at each branching. Since the value of the total cross
section of the matched event sample is usually close to the original tree-level
process, we reweight the produced events to the resummed cross sections
obtained. We also perfom on-shell substraction of intermediate resonanced
which could appear in the sampled with extra partons using narrow-width
approximation. Finally we employ MadAnalysis for the final results analysis.

4.4.1 Invariant mass distributions

We focus now our analysis in the invariant mass distribution dσ/dM of
the gaugino pair for the production of a lightest chargino χ̃+

1 and second
lightest neutralino χ̃0

2 a shown in Fig.4.5 in the benchmark point 1. We
present results for threshold resummation, fixed-order NLO calculation and
LO Monte Carlo simulations with MadGraph interfaced to Phythia, which is
normalized to the total resummation cross section. We find the results to be
very close. We show the spectrum from M ∼ 600 GeV since the two gauginos
have similar masses of m ∼ 300 GeV. The shape is mainly the result of the
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Figure 4.5: Invariant mass distribution for χ̃0
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mass of 304 GeV (benchmark point 1) at the 8 TeV LHC at NLO+NLL
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gaugino nature of the outgoing sparticles, since this leads to a suppression
of the s channel W boson exchange with respect to the P wave production
through t and u squark exchange channels with the mass of the squarks
being ∼ 800 GeV. The resummed contributions are similar to the fix order
results since threshold effects are most relevant in the production threshold
limit, i.e. with the invariant mass similar to the center-of-mass energy.
The curves obtained by the different MadGraph and Pythia agree well with
each other. They correspond to three different matching procedures. The
“no-matching” scenario corresponds to the tree-level matrix element only,
i.e. the process pp → χ̃0

2χ̃
+
1 without extra radiation. Parton-level events

were passed to Pythia for parton showering with no matchind procedure
applied, and results were normalized to the resummed results. The “1-jet
matching” results has been obtained by applying the kT-MLM matching
procedure by incorporation the matrix elements containing one additional
QCD emission, i.e. adding the process pp → χ̃0

2χ̃
+
1 j to the previous matrix

elements with j a quark, antiquark or gluon, and matched consistently to
parton showering. We again normalize to the total resummed cross section.
Finally the third plot line “2-jet matching” corresponds to the addition of
up to tw extra partons as before, summing in this case the contribution from
pp → χ̃0

2χ̃
+
1 jj. For the cases ob benchmark points 18 and 31 the gaugino

masses are heaving at mχ̃ = 472 GeV and mχ̃ = 479 GeV which leads to a
reduced cross section for the pair production by about an order of magnitude
down to 5.22 fb and 4.81 fb respectively. The resulting behavior (using the
new K factors for normalization of the MadGraph plus Pythia results) is
very similar as before. We show the case of benchmark point 18 for reference
in Fig.4.6.

4.4.2 Transverse momentum distributions

We now show the transverse-momentum distribution dσ/dpT of the com-
bined production of lightest chargino and next-to-lightest neutralino pair
χ̃+

1 χ̃
0
2. It is easy to see that in this case the fixed-order result diverges in

the limit pT as expected because of the non-canceled logarithmic terms of
the soft parton radiation. After matching to the resummed calculations the
finite behavior is restored. More importantly we also observe that the effects
of resummation are not confined to the pT → 0 limit but extend to inter-
mediate transverse momentum values giving a considerably different curve
shape as expected.

Similarly as before, we now analyze the three different predictions ob-
tained with MadGraph in combination with Pythia. Again we normalize
the total production rate to the resummed cross sectin values. We observe
a good agreement between the resummed result with the MadGraph and
Pythia results with additional jets, but we observe that a simple parton
showering without extra jets results if a significant divergence in the mod-



74 CHAPTER 4. GAUGINO PRODUCTION

  [ GeV ] 
T

p
0 20 40 60 80 100 120 140

 ]
 

­1
  
[ 

fb
 G

eV
T

/d
p

σ
d

0

0.1

0.2

0.3

0.4

0.5
No matching

1­jet matching

2­jet matching

NLO

NLO+NLL

 at the  LHC (8 TeV), s cenario  1
­

1
χ
∼

 
0

2
χ
∼

 →p p 

  [ GeV ] 
T

p
0 100 200 300 400 500 600

 ]
 

­1
  
[ 

fb
 G

eV
T

/d
p

σ
d

­3
10

­2
10

­1
10

1

No matching

1­jet matching

2­jet matching

NLO

NLO+NLL

Figure 4.7: Transverse momentum pT distribution for χ̃0
2χ̃

+
1 pair produc-

tion for benchmark point 1 at LHC 8 TeV at fixed-order NLO (blue solid),
NLO+NLL (red solid) compared to matrix elements matched to no jet (green
dotted), one jet (blue dashed) as well as two jets (red dot-dashed).
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Figure 4.8: Same as Fig. 4.7 for benchmark point 18.
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erate pT resgion, which is expected since parton showering methods do not
properly address that kinematical region. In general, in the moderate pT

region we can observe a visible departure from agreement (as opposed to the
invariant-mass case) for all three matching procedures. The peak position
does not depend heavily on the presence of additional partons at the ma-
trix level, but the global shape of the spectrum does. We can finally notice
that th ebest match at those kinematical regions corresponds to the “1-jet”
case, which is to be expected since that is the same matrix element levels
used in the resummed case. Qualitatively similar results are obtained for
benchmark point 18 in Fig. 4.8 as shown, only with rates around an order of
magnitude smaller due to the larger gaugino masses. We also show in Figs.
4.9 and 4.10 the production of pairs χ̃−1 χ̃

0
2 as well as χ̃+

1 χ̃
−
1 , again with the

Monte Carlo curves normalized to the resummed values. The distributions
are similar to the golden channel, but the absolute size of the latter is larger
as expected for proton-proton collisions.
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Chapter 5

Dark matter

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.
— William Shakespeare, Hamlet.

There is plenty of evidence, which ranges from from dwarf galaxies scales
to the largest cosmological scales, that the current cosmological model based
on Einsteins general relativity applied to the visible matter cannot explain
certain observed behaviors. As always when this kind of problems arise,
when of our two premises must be false, i.e. either there is some yet unseen
type of matter that accounts for the deviations, or we have to modify the
current laws of physics. And in the history of science we certainly have
had examples of both cases: When the motion of Uranus seemed to show
anomalous, Le Verrier and Couch proposed the existence of Nepture, even-
tually discovered; but when the anomalies in the movement of Mercury were
explained by an unseen planer Vulcan failed, we had to wait until Einsteins
theory of relativity allowed us to make more precise gravitational predic-
tions. We face a similar situation with dark matter today, although in this
case, as we will see, there are reasons that make us believe that this time it
is indeed a form of matter yet to be discovered.

In this chapter we will first review the current evidence for dark mat-
ter existence and some of the most promising models that account for this
observed anomalies. After that we will analyze the current status of exper-
imental detection, and finally show some standard calculations that will be
required on following chapters.

5.1 Evidence for dark matter

The first observations of the existence of dark matter were realized by Zwicky
in the 1930’s when he measured the velocity dispersion of galaxies in the
Coma cluster, which led him to find the they could not be explained by the

81
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Figure 5.1: Expected and observed (solid) rotational circular velocity for
several luminous objects as a function of the distance to the center. The
observed value becomes flat for large r. Plot from [100].

gravitational attraction of the stars, gas and dust observed. He arrived to
the conclusioins that there was about six times more mass than what was
visible.

5.1.1 Anomalous velocity of luminous objects

One of the oldest yet most convincing evidences for dark matter existence
comes from the discrepancy between the expected and observed velocity
profiles of various luminous objects, which range from stars, gas clouds,
globular cluster and even entire galaxies [99]. In particular, the rotation
curve of galaxies, which can be measured by combining observations of the
21 cm with surface photometry.

The expected circular velocity v(r) is expected from Newtonian mechan-
ics to vary as a function of the radius as

v(r) ∝
√
M(r)

r
, (5.1)

where M(r) := 4π
∫
ρ(r)r2dr is the mass inside the sphere of radius r with

ρ(r) the density profile. However the observed velocity profile becomes flat
at large r, as can be seen in a typical example in Fig. 5.1.1.

5.1.2 Gravitational lensing

A “direct” observation of dark matter densities is achieved through what is
known as gravitational lensing. As predicted by General Relativity, photons
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Figure 5.2: Cosmic Microwave Background variations as measured by Planck
[101].

are defleceted when passing thtough a region with some mass density due
to the space-time deformation, which modifies the apparent shape and flux
of the light source. This can be used to observe properties. In particular, it
can be seen[100, Ch. 4] that the deflection angle can be expressed as

α(x) =
4G

c2

∫
Σ(x′)

x− x′

|x− x′|2
d2x′, (5.2)

which in the point mass approximation simplifies to

α =
4GM

c2x
, (5.3)

where x is the impact parameter.
Arguably the most prominent example of such observations is the Bullet

cluster (1E0657-558), which passed through another cluster, and hot gas
was decelerated and the galaxies obeyed ballistic trajectories. Gravitational
lensing was used to infer that most of the total mass also moved ballistically,
indicating weak self-interaction [100].

5.1.3 Cosmological measurements

The most accurate determination of dark matter density so far comes from
cosmological measurements from cosmic microwave background (CMB). On
the other hand these determination relies on the assumption of a particular
cosmological model, namely the Standard Model of cosmology, plus some
assumptions on dark matter, in particular that it is cold, i.e. it has negligible
velocity with respect to structure formation, the ΛCDM model.

Discovered in 1965 [102], The CMB constitutes the main form of radi-
ation in the universe, and is well described by a black body radiation with
T ≈ 2.73 K. The current state-of-the-art measurements come from ESA’s
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Figure 5.3: Multipole expansion of the Cosmic Microwave Background as
measured by Planck [101].

Planck experiment [101] complemented by ground-based experiments such
as the Atacama Cosmology Telescope, which have superseded the previous
NASA’s WMAP [103] and the older seminal measurements by the COBE
satellite [104]. The main observable is the very small intensity differences
with respect to the observation angle, and to a minor extent the polariza-
tion. The temperature profile can be expanded using the spherical harmonic
expansion as

T (θ, φ) =
∑
lm

almYlm(θ, φ). (5.4)

The two-point function averaging over the modes is therefore

Cl =
∑
m

|alm|2

2l + 1
, (5.5)

which can be seen in Fig. 5.1.3.
The universe is considered to obey Einstein’s equations with a perturbed

Robertson-Walker metric. The fitted parameters [4]

Ωnbmh
2 = 0.1198± 0.0026. (5.6)

Some part of the baryonic matter could also contribute to dark matter,

Ωbh
2 = 0.02207± 00027. (5.7)

5.2 Models of dark matter

There is plenty of different possible extensions of the Standard Model that
contain a dark matter candidate. In this section we will review only the
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most relevant possibilities and the most important scenarios, both in su-
persymmetric and non-supersymmetric theories. The reader is referred to
[100, 105] and references therein for further details.

5.2.1 Supersymmetric candidates

One of the main motivations for supersymmetric theories is as we have
seen in other chapters the fact that supersymmetric theories contain nat-
ural dark matter candidates. In particular superymmetric theories usually
lead to dark matter candidates in the Weakly Interacting Massive Particle
(WIMP) framework. WIMPs are particles (usually denoted χ) with cross
sections of the order of the weak interaction with masses approximately in
the ∼ 10 GeV − −10 TeV mass range [4]. Initially at T > mχ they were
in thermal equillibrium with SM particles and they “freeze out” once their
production and annihilation rates become out of equillibrium. After the
freeze out happens the comoving WIMP density remains essentially con-
stant. The freeze out typically happens at T ∼ mχ/20 in many scenarios
[4] which means that at freeze out the dark matter candidate is already
non-relativistic. More details and the mathematical framework for these
calculations is presented later in this chapter in section 5.3.

The most important WIMP candidate is arguably the supersymmetric
LSP with exact R-parity [106] as seen in Ch. 2. Since the dark matter candi-
date must be neutral, sneutrinos and neutralinos are the obvious candidate
choices. WIMP searches have ruled out the former (see [4] for a review),
but theoretical and especially experimental work continues with the latter.
In particular it is known [100] that a neutralino LSP gives rise to the right
thermal relic density in several different regions of the parameter space [4]:
When the LSP χ is mostly a bino or photino if mχ and some sleptons have
masses somewhat below 150 GeV, or if mχ is close to the mass of some
sfermion (leading to coannihilations), or if 2mχ is close to the mass of the
CP-odd supersymmetric Higgs; or when χ has large higgsino or wino com-
ponent.

5.2.2 Non-supersymmetric candidates

Outside the supersymmetric framework there are also many different ways
to realize dark matter candidates [100]. Some non-supersymmetric theo-
ries also contain WIMPs similar to the supersymmetric case. Examples
include the lightest T -odd particle in Little Higgs models with T -parity or
technibarions in technicolor theories. Sterile neutrinos are also possible dark
matter candidates [107], and extra dimensional theories offer also viable can-
didates, e.g. in Universal Extra Dimensions (UED) models or as the lightest
Kaluza-Klein particle [105]. A full study of these is outside the scope of this
chapter. A review of the examples mentioned as well as others can be found
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in [4, 100, 105].

5.3 Relic density calculation

An important observable which has been measured with a great precision is
the relic density of dark matter particles. At high temperatures dark matter
particles were supposed to be in thermal equilibrium with standard model
particles. As temperature decreased (time increased)

The density of dark matter particles today can be computed using the
Boltzmann equation, which describes the evolution of the number density n
of dark matter candidates,

dni
dt

= −3Hni − 〈σv〉(n2 − n2
eq), (5.8)

where H is the Hubble parameter and 〈·〉 represents the thermal average.
The first term in the RHS in (5.8) accounts for the expansion of the

universe, and the second term for the annihilations (in both directions).
Combining (5.8) with the equation for the entropy density s, ds

dt = −3Hs
and defining Y := n/s and x := m/T with T the photon temperature, we
obtain

dY

dx
=

1

3H

ds

dx
〈σv〉(Y 2 − Y 2

eq). (5.9)

The Hubble parameter can be computed using the Friedman equation
as

H2 =
8π

3M2
P

ρ. (5.10)

At the same time, the energy and entropy densities can be related to the
photon temperature by

ρ =
π2

30
geff(T )T 4, s =

2π2

45
heff(T )T 3, (5.11)

with geff and heff the effective degrees of freedom.

It is customary to define a degrees of freedom parameter g
1/2
∗ by

g
1/2
∗ =

heff

g
1/2
eff

(
1 +

1

3

T

heff

dheff

dT

)
, (5.12)

which allows us to rewrite (5.9) as

dY

dx
= −

(
45

πM2
P

)−1/2 g
1/2
∗ m

x2
〈σv〉(Y 2 − Y 2

eq) (5.13)

Without coannihilations

〈σv〉 =

∫∞
0 dp p2W (s)K1(

√
s/T )

m4TK2
2 (m/T )

(5.14)
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Figure 5.4: Dark matter density as a function of the temperature (time) in a
typical freeze-out process [105]. Note the present-day WIMP relic density as
a result of the freeze-out and its dependence on the dark matter annihilation
cross section via 〈σv〉.

where W (s) is the annihilation rate per unit volume and unit time,

W (s) := 4σij

√
(pi · pj)2 −m2

im
2
j (5.15)

All that is left is to compute W (s) for our particular process, integrate
the thermal average (5.14), insert it into (5.13), and solve it, possibly nu-
merically, with the initial condition Y = Yeq at x ≈ 1 to obtain the present
WIMP abundance Y0. With that, the relic density will be given by

Ωh2 =
ρ0h2

ρ0
c

=
ms0Y0h

2

ρ0
c

, (5.16)

with ρ0
c the present critical density and s0 the present entropy density. If

we use T0 = 2.726 K and heff(T0) = 3.91, which corresponds to photons and
three neutrino species, we can compute the prefactors, giving

Ωh2 ≈ (2.755× 108 GeV)Y0m. (5.17)

A typical numerical solution for (5.13) is shown in Fig. 5.3.

5.4 Dark matter detection

In this section we will study the different dark matter detection possibilities
depending on whether the incoming or outgoing particles in the relevant
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process investigated are standard model or dark matter candidates.

5.4.1 Direct detection

Direct detection experiments aim to measure the interactions of the dark
matter particles in the Milky Way’s halo with elastically scatter off nuclei.
Assuming a WIMP model for the dark matter candidate, the flux on Earth
should be of the order of (105 cm−2 s−1)(100 GeV/m) [100], which is suffi-
ciently large to cause measurable effects. The information the experiments
try to measure is the rate R (directional or not) of nuclear recoils and its
energy ER.

The rate R for a nucleus of mass M is given by

dR

dER
=

ρ0

mM

∫ ∞
v0

vf(x)
dσ

dER
(v,ER)dv, (5.18)

with ρ0 the local dark matter density, σ the cross section for the scattering
and f(v) the speed distribution in the detector frame.

Since we know that the scattering is non-relativistic, the recoil energy
can be obtained in terms of the scattering angle in the center of mass frame
easily as

ER =
µ2v2(1− cos θ)

m
, (5.19)

where µ is the reduced mass of the dark matter particle-nucleus system.
The total event rate can be obtained by integrating (5.18),

R =

∫ ∞
ET

dER
ρ0

mM

∫ ∞
v0

vf(x)
dσ

dER
(v,ER)dv, (5.20)

for a threshold energy ET for the detector.
The cross section σ can be obtained by first computing the dark matter

particle-quark interaction and then convoluting with the hadronic matrix
elements describing the nucleon content in quarks and gluons (which leads
to large uncertainties).

This cross section σ can be separated into spin-dependent and spin-
independent components

dσ

dER
=

dσSD

dER
+

dσSI

dER
, (5.21)

so that the final cross section can be calculated by adding both contributions,

dσ

dER
=

m

2µ2v2
(σSD

0 F 2
SD(ER) + σSI

0 F
2
SI(ER)), (5.22)

with the form factor F (ER) includes the dependence on the momentum
transfer q :=

√
2mER, and σ0 is the cross section at zero momentum transfer.
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Figure 5.5: Dark matter spin independent cross sections as a function of the
dark matter candidate [4]. The relevant experiments are indicated in the
captions.

The spin-dependent contribution is given by the axial-vector couplings,

L ⊃ αSχ̄χq̄q + αVχ̄γµχq̄γ
µq, (5.23)

whereas the spin-independent contribution arises from the scalar and vector
couplings

L ⊃ αA(χ̄γµγ5χ)(q̄γµγ5q). (5.24)

5.4.2 Indirect detection

Indirect detection experiments focus on detecting byproduct particles pro-
duced by annihilation or decay of dark matter particles. Arguably the most
interesting case is the emission of gamma rays, since they travel in straight
lines and are not strongly absorbed in the local universe.

The annihilation rate in a given direction with angle φ with respect to
the galactic center can be obtained as [108]

Φγ ≈ (0.94× 10−13 cm−5 sr−1)Nγσv

(
100 GeV

m

)2

J(φ), (5.25)

where we have defined

J(φ) :=
1

8.5 kpc

(
1

0.3 GeV cm−3

)2 ∫
L
ρ2(l)dl(φ), (5.26)
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where L represents the line of sight, and ρ(l) the dark matter density along L.

There are of course several possible sources of gamma rays in the uni-
verse, so it is important to understand the features of emission due to dark
matter. There are basically two types of gamma ray emission due to dark
matter annihilation. When the dark matter particle decays into quarks and
gauge bosons (with later hadronization and ion decays) we observe a con-
tinuum spectrum, as opposed to direct annihilation to gamma rays with
gives rise to to characteristic spectral features difficult to explain by other
means [109]. In any case these signals must be compared to predictions of
other astrophysical gamma sources (like common power laws or exponential
cut-offs typical of pulsars). Together with spatial information this can be
used to identify dark matter sources [110]. (For example more spherical
emission is expected from dark matter halos instead of conventional diffuse
emission, and square density dependence of dark matter sources contrasts
with linear density dependence of conventional gamma ray flux [111, 112]).

Different experiments observe different energy ranges of gamma ray emis-
sions. In the range 100 MeV–100 GeV pair-conversion telescopes of satellites
like the Fermi Large Area Telescope (Fermi-LAT) are used. Above 100 GeV
Cherenkov telescopes (HESS, MAGIC, VERITAS) are more sensitive. There
are some tradeoffs between the two alternatives: Satellite experiments have
smaller effective areas, but are basically background free, whereas experi-
ments on Earth have smaller field of views, and are typically used for dark
matter only a relatively small fraction of the time (around 10%) [109]. Some
contraints from gamma ray detectors are shown in Fig. 5.7.

Gamma rays are not the only possible cosmic rays which may originate
from dark matter interactions. Neutrinos and charged rays are also object
of intensive study. In the case of neutrinos, they can be used to probe for
dark matter annihilation similarly to gamma rays, but its most interesting
contribution is from the scattering of dark matter particles by hydrogen in
the Sun, which is very sensitive to the spin-dependent contribution. The ex-
periments IceCube and ANTARES are the most prominent example of such
searches. Some results from IceCube are shown in Fig. 5.7. For annihila-
tion current limits by neutrino telescopes are only competitive for very high
dark matter particle masses, but for the spin-dependent contribution of the
dark matter particle-nucleon interaction they currently hold state-of-the-art
results [109].

With respect to charged cosmic rays, the most prominent signature are
the anti-proton and positron channels, since antiparticles are rarely pro-
duced in secondary processes what allows a good detectable signal for dark
matter annihilation. The main experiments for this signals are PAMELA
and AMS.
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Figure 5.7: (Top) Current indirect detection contraints on averaged cross
section vs. dark matter mass from Fermi-LAT, HESS dwarf galaxies and
halo, VERITAS and MAGIC. (Bottom) Contraints on annihilation cross
section vs. dark matter mass obtained by neutrino telescope IceCube Virgo
cluster and the multipole analysis of the halo 79. From [109].



5.4. DARK MATTER DETECTION 93

5.4.3 Collider searches

As we have seen, all present-day information we have about dark matter
is obtained from gravitational sources at cosmological scales. This includes
the overall dark matter density in the universe, as well as information about
its density distribution at the galaxy level. Measurements at the particle
level are however of vital importance. In particle physics, mass and coupling
measurements are necessary to deeply understand its behavior and how it fits
together with the rest of the particles in the various models, and ultimately
unveil its nature. Also, astrophysical measurements depend crucially on the
mass of the dark matter candidate as well as on the relevant cross section,
be it the scattering cross section for direct detection or annihilation cross
section for indirect detection experiments.
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Chapter 6

Neutrino masses

It is by now well established experimentally that neutrinos must have nonzero
mass and mixing [4]. In this chapter we will review the evidence for neu-
trino masses, why the Standard Model does not allow for such masses and
the theoretical possibilities to extend the Standard Model to include them.
First we will review some of the evidence for nonzer neutrino masses in
6.1, in 6.2 we will review the theoretical conditions to accomodate nonzero
neutrino masses, and will focus on the Majorana case in 6.3. We will then
investigate mechanishm to generate Majorana masses in beyond the stan-
dard model theories in the seesaw mechanism in 6.4 as well as in radiative
seesaw variants in 6.5. Finally we will close the chapter by analyzing the
lepton flavor violation consequences of these type of models 6.6.

6.1 Evidence for neutrino masses

Oscillations are an experimental consequence of neutrino flavor mixing, re-
quiring nonzero neutrino masses. We can see this by taking a neutrino of
a given flavor (say, produced by an electroweak process involving a given
lepton flavor), and expressing it as a a combination of mass eigenstates,

νlL(x) =
∑
j

UljνjL, (6.1)

for l one of e, µ, τ . The matrix U is a unitary matrix known as the Pontecorvo-
Kami-Nakagawa-Sakata, or PMNS matrix for short.

So far all neutrino oscillation data can be described by three flavors, and
data on Z invisible decay width is only compatible with three light flavors
coupling to Z [4]. This does not rule out the possibility of heavier or sterile
neutrinos that can in general mix with the known neutrinos.

Another crucial neutrino issue is that of its nature. Being electrically
neutral, massive neutrinos can be either Dirac or Majorana particles [113].
In the Dirac case some lepton charge, usually the total lepton charge L must

95
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be conserved, and the neutrino ν and antineutrino ν̄ will be distinguished by
its number L, whereas in the Majorana case, no lepton charge is conserved
and the neutrino ν and antineutrino ν̄ would be the same particle. We will
mainly focus on the Majorana case throughout this chapter.

In the case of three light neutrinos the neutrino PMNS matrix can be
parametrized by three angles and one CP violation phase for Dirac or three
CP violation phases for Majorana neutrinos [114],

U = V P (6.2)

with

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (6.3)

where cij = cos θij and sij = sin θij , and

P = diag(1, eiα21/2, eiα31/2), (6.4)

with α21, α31 the two extra CP violation phases in the Majorana case.
The amplitude of the probability to observe a neutrino νl′ if a neutrino

νl was produced after a time T and a distance L can be written as [115]

A(νl → νl′) =
∑
j

Ul′jDjU
†
jl (6.5)

, where Dj described the propagation of the neutrino between the source and
the detection point, and can be found using relativistic quantum mechanics
to be

Dj = e−i(EjT−pjL), (6.6)

and the associated probability is then

P (νl → νl′) = |A(νl → νl′)|2. (6.7)

The relevant quantity for the calculation of (6.7) is

δφjk = (Ej − Ek)T − (pj − pk)L, (6.8)

which after some considerations (see, e.g., [4]) can be shown to be

δφjk ≈
m2
j −m2

k

2p
L, (6.9)

for p = (pj + pk)/2. This phase difference δφjk is a Lorentz invariant.
This computation assumes a plane wave propagation, and a wave packet

description introduces some conditions, most importantly the condition of
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Figure 6.1: Example of neutrino oscillations as a function of the energy of
the neutrino for a baseline of 180 km [116].

overlapping of the wave packets for the different flavors at the detection
point.

From eqs. (6.5), (6.6) and (6.9) we obtain the oscillation probabilities

P (νl → ν ′l) =
∑
j

|Ul′j |2|Ulj |2 +2
∑
j>k

|Ul′jU∗ljUlkU∗l′k| cos

(
∆mjk

2p
L− φll′;jk

)
,

(6.10)
for neutrinos and

P (ν̄l → ν̄ ′l) =
∑
j

|Ul′j |2|Ulj |2 +2
∑
j>k

|Ul′jU∗ljUlkU∗l′k| cos

(
∆mjk

2p
L− φl′l;jk

)
,

(6.11)

where l, l′ represent e, µ, τ and φl′l;jk = arg
(
Ul′jU

∗
ljUlkU

∗
l′k

)
.

We see from eq. (6.5) that to have nonzero neutrino oscillations, at least
two neutrinos should have different masses and U 6= 1, i.e., there should be
lepton mixing. For the mixing effects to be large, the neutrino oscillation
length Lνjk for j 6= k should be of the order or, of smaller than the source-
detector distance L, so that there is enough time for neutrinos to oscillate
before reaching the detector, in particular,

|∆m2
jk|

2p
L = 2π

L

Lνjk
& 1, j 6= k. (6.12)

It can be easily seen from eqs. (6.10) and (6.11) that P (νl → νl′) =
P (ν̄l′ → ν̄l), which is a consequence of CPT invariance. For CP invariance
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we have P (νl → νl′) = P (ν̄l → ν̄l′), and for T invariance P (νl → νl′) =
P (νl′ → νl), P (ν̄l → ν̄l′) = P (ν̄l′ → ν̄l). It can be seen from eqs. (6.10)
and (6.11) that CP violation can only occur if φl′l;jk 6= πq for q = 0, 1, 2,
which is only possible if Ul′jU

∗
ljUlkU

∗
l′k ∈ C \ R. From what we have seen,

To measure CP and T violation in neutrino oscillations we can consider the
following asymmetries

Al
′l

CP := P (νl → νl′)− P (ν̄l → ν̄l′), (6.13)

and

Al
′l

T := P (νl → νl′)− P (νl′ → νl), (6.14)

and we can actually compute from eqs. (6.10) and (6.11) in the case of CP
violation

Al
′l

CP = 4
∑
j>k

=(Ul′jU
∗
ljUlkU

∗
l′k) sin

(
∆mjk

2p
L

)
(6.15)

If we consider mixing of the three neutrinos with 0 < ∆2
21 < |∆2

31(32)| and

|Ue3|2 = | sin θ13|2 � 1, then ∆2
21 and θ12 are the parameters associated with

solar νe osicllations, and ∆2
31, θ12 and θ23 are associated with the atmospheric

νµ oscillations. Thus, θ12 and θ23 are denoted solar and atmospheric neutrino
mixing angles and sometimes noted as θ12 = θ� and θ23 = θA and similarly
∆2

21 and ∆2
31 are referred to as solar and atmospheric neutrino mass squared

differences and noted as ∆2
� and ∆A respectively.

Neutrino oscillations have been shown to exist by experiments involving
solar, atmospheric, reactor and accelerator neutrinos.

Neutrino oscillation experiments are classified by the average energy of
the neutrinos detected Ē and the source-detector distance L. As we have
seen, the requirement Lνjk . 2πL determines the minimal values of squared

mass differences ∆m2 that can be measured, min(∆m2) ∼ 2Ē/L. In general,
this value is relatively small.

Table 6.1: Current best fits fot neutrino mixing parameters. From [4].

Parameter Best fit (±1σ)

∆m2
21 [10−5 eV2] 7.54+0.26

−0.22

|∆m2
21| [10−3 eV2] 2.43± 0.06 (2.38± 0.06)

sin2 θ12 0.308± 0.017

sin2 θ23,∆m
2 > 0 0.437+0.033

−0.023

sin2 θ23,∆m
2 < 0 0.455+0.039

−0.031

sin2 θ13,∆m
2 > 0 0.0234+0.0020

−0.0019

sin2 θ13,∆m
2 < 0 0.0240+0.0019

−0.0022
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Figure 6.2: Solar neutrino energy spectrum in the standard solar model
[117].

6.1.1 Solar neutrino experiments

We can write the reactions by which Solar neutrinos are produced as

4p→4 He + 2e+ + 2νe, (6.16)

which after positron annihilation and considering the solar thermal energy
gives rise to

4p+ 2e− →4 He + 2νe + 26.73 MeV − Eν , (6.17)

where Eν represents the energy of the neutrinos, with an average value of
Ēν 0.6 MeV.

One needs a model of the sun to predict the fluxes of the neutrino emis-
sions of the sun. As more information has been obtained and better theo-
retical models have been developed, these predictions have been updated.
In particular we show in 6.2 the predictions of one of these models. In any
way, since the first solar electron neutrino observations, it has been signifi-
cant that the flux was smaller than predicted by theoretical models, as we
will now discuss.

One of the first experiments to observe was Homestake based of a method
by Pontecorvo [118], and which consists on the neutrino interaction on 37Cl
as follows

νe +37 Cl→37 Ar + e−, (6.18)
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where the argon atoms which are produced are radioactive and can be col-
lected and measured for several times its half-life so as to measure its signal.

As we have already said, it was already apparent a mismatch between
predicted neutrino fluxes and the measurement, giving raise to the solar
neutrino problem. Also later other experiments like GALLEX and GNO at
Grand Sasso, or SAGE in Russia confirmed these results.

Later the Kamiokande experiment in Japan was able to perform real-
time measurements through νe scattering,

νx + e− → νx + e− (6.19)

in a water Cherenkov detector. This experiment is directional, and can
therefore drastically reduce the background by taking advantage of the cor-
relation between the angles of the neutrino and the recoil electron, and
guaranteeing also that the electrons came from the direction of the sun.
This was later followed by the Super-Kamiokande experiment [119] which
improved its statistics. It is important to note that this experiment is in
principle sensitive to all neutrino flavors, but has a much higher sensitivity
to νe.

6.2 Majorana neutrinos and the Weinberg opera-
tor

In the SM there are in principle no right-handed neutrinos νR, and there-
fore the only possible neutrino mass term is of Majorana type. However,
the combination νcLνL is clearly an SU(2) triplet, so a higher-dimensional
term is needed to generate masses. With the SM particle content the least-
dimensional term that can generate Majorana neutrino masses after EWSB
is the is unique d = 5 Weinberg operator [120],

δL =
1

2

K5
αβ

Λ
(LαH̃

∗)(H̃†Lβ) + h.c., (6.20)

where α, β are the families, and Λ is the new-physics scale. This operator is
nonrenormalizable as can be seen from its dimensionality. It can be seen as
an effective operator of seesaw, or a one-loop [121].

6.3 Majorana masses

We will briefly review a couple of important aspects of massive Majorana
fermions, since we will require them to study massive Majorana neutrinos.
There are of course theories of massive Dirac neutrinos, but we will not
study those cases here.
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The Lagrangian for a massive Majorana particle is given by

L =
i

2
χ̄/∂χ− 1

2
mχ̄χ, (6.21)

where we assume m ∈ R. We can decompose the Majorana field into two
chiral spinors

χ = eiαψL + eiβψcL, (6.22)

in such a way that the Majorana field satisfies the extended Majorana con-
dition

χc = e−(α+β)χ. (6.23)

In this way the mass term is given by

L ∼ −m
2

(
e−i(α−β)ψ̄Lψ

c
L + e−i(α−β)ψ̄cLψL

)
. (6.24)

By defining M := mei(α−β), we obtain

L ∼ −M
2
ψ̄cLψL + h.c. (6.25)

This term obviously breaks lepton number. Also, the mass M is at this
point complex, but the phase can be absorbed in the ψL field. This motivates
the next section.

As we have seen, the Majorana mass matrix is constructed in principle
with complex values. A nave diagonalization of a Majorana mass matrix
using the common eingevalue decomposition can lead to negative masses.
(The matrix is till Hermitian and so the eigenvalues are still real.) The
reason is that the Majorana condition posseses a degree of freedom which
has to be exploited to obtain physically-sensible values for the mass by
redefinition of the fields (ψL in the previous section). The diagonalization
in this case can be done by using the Takagi decomposition [122], which is in
fact a particular case of the well-known Singular Value Decomposition. We
will review this diagonalization method and analyze its physical significance.

Firstly, we should recall the traditional eigenvalue decomposition. It
is well known that for every nonsingular matrix M ∈ Cn×n there exists a
matrix U such that

UMU−1 = diag(m1, . . . ,mn), (6.26)

where mi are the eigenvalues of M . It can also be easily seen that M =
M † =⇒ U−1 = U †,mn ∈ R, and that M = MT =⇒ U−1 = UT .

The Singular Value Decomposition, unlike the eigenvalue decomposition,
can be applied to any arbitrary matrix M ∈ Cm×n (also nonsquare and
singular matrices). For any such matrix, it can be shown that there exist
V ∈ Cmin(m,n)×m and W−1 = W † ∈ Cn×min(m,n) such that

V ∗MW † = diag(m1, . . . ,mmin(m,n)), (6.27)
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Figure 6.3: The three tree level realizations of the Weinberg operator, cor-
responding to the three seesaw mechanisms.

with mi ≥ 0,∀i ∈ (1, . . . ,min(m,n)).
In the case of a symmetric matrix M = MT ∈ Cn×n, it can be shown

that there exists a matrix U ∈ Cn×n such that U−1 = U † and

U∗MU † = diag(m1, . . . ,mn) (6.28)

with mi ≥ 0,∀i. This is the so-called Takagi decomposition.
Althought very similar to the eigenvalue decomposition, the Takagi de-

composition is actually a particular case of a Singular Value Decomposition
where V = W ∗. In particular, it should be noted that in general U∗ is not
necessarily the inverse of U †.

Physically, this is corresponds to a redefinition of the fields (through the
mixing matrices). In particular, those fields with negative masses can be
redefined as ξ → iγ5ξ, or equivalently, ξR(L) → ±iξR(L).

6.4 Seesaw and inverse seesaw models

The simplest way to generate the effective term in Eq. (6.20) in a renormal-
izable framework is arguably the seesaw mechanism, in which the Weinberg
operator is realized as an effective term which is the result of integrating out
a heavy field in a tree-level process. It can be seen that there are three and
only three ways to obtain the effective term (6.20) at tree-level (see, e.g.,
Ref. [123]).

In the so-called Type-I seesaw [124], we assume the existence of an SU(2)
singlet νR and a mass term of the form

δL = fνRνL〈φ0〉+
M

2
νcRνR + h.c. (6.29)



6.4. SEESAW AND INVERSE SEESAW MODELS 103

By the Takagi diagonalization of the mass matrix for (νL, νR),(
0 m
m M

)
(6.30)

the Dirac mass term in Eq. (6.29) induces a mass

mνL '
m2

M
(6.31)

for the left-handed neutrino. Another way to see this is to look at the process
in Fig. 6.3(a) and integrate out the highly massive νR. The smallness of the
neutrino mass thus in this case arises naturally associated to the large new
scale M .

In the Type-II seesaw [125, 126, 127, 128, 129, 130], which we can see
in Fig. 6.3(b), we alternatively introduce an SU(2) triplet scalar χ. The
lagrangian in this case would be

δL =
1

2
HLcLχ+ λMφφχ+M2χ∗χ+ h.c. (6.32)

By integrating out χ the effective term would be

δLeff =
hλ

2M
φφLcL. (6.33)

A last option, known as Type-III seesaw [131], is to introduce a fermionic
SU(2) triplet Σ to couple to the SU(2), which leads to

Y HLcΣ +
M

2
ΣcΣ. (6.34)

By integrating out the heavy Σ in diagram Fig. 6.3(c) we obtain an effec-
tive (6.20) term.

In the seesaw models we have seen, the masses of the neutrinos are of the
order mν ∼ v2/Λ. For O(1) couplings and the current limits on the neutrino
masses, this means that the new scale Λ is close to the Planck scale and in
any case far out of reach of current (and future) colliders.

Models with an accessible new physics scale require a suppression mecha-
nism for neutrino mass. We will present in the next sections two examples of
these mechanisms, namely the inverse seesaw and the radiative seesaw mod-
els. It is also possible that the operator in (6.20) is forbidden or suppressed
by a yet unknown mechanism and therefore higher dimensional effective
operators are required, but we will not study that possibility here.

We will also briefly mention the inverse seesaw model [132] as an alter-
native to the radiative seesaw models we will study later.

In the inverse seesaw the mechanism that suppresses the neutrino mass
is the small amount of lepton number violation and not a large energy scale.
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The model contains right-handed neutrinos as well as the corresponding
number of singlets Si which couple in a lepton-number conserving way. A
suppression mechanism for the right-handed neutrino Majorana mass term
must be supposed (e.g., some additional symmetry). In this way, the lepton-
number violation comes from the singlet Majorana mass term,

L ∼ Y L̄H̃νR +mRScνR +
1

2
mSScS + h.c. (6.35)

The mass matrix is therefore

M =

(
0 mR

mT
R mS

)
, (6.36)

which for MS �MR gives rise to two heavy Majorana neutrinos with similar
masses (difference ∼ mS). By integrating out these heavy particles at tree
level (with the same diagram as in Type-I seesaw) gives a neutrino mass
matrix

Mν = v2Y 2M−1
R MS(M−1

R )T . (6.37)

Comparing this to the normal seesaw mechanism, we see thatmν ∝ Y 2MSM
−1
R

instead of mν ∝ Y 2, and therefore a small MSM
−1
R acts as a suppression

mechanism.

6.5 Radiative seesaw models

It is also possible to generate the operator (6.20) via loop diagrams. In this
way, the neutrino mass is naturally suppresed by the loop integrals entering
the diagram. A systematic study of all 1-loop scenarios can be found in [121].
We will briefly review the canonical Zee model [133].

In the Zee model, we introduce a scalar field S ∼ (1,−1) to break lepton
number,

L ∼ κLciLjS
∗ + h.c. (6.38)

and at least a second Higgs doublet, so that in the Higgs sector we obtain a
term of the form

L ∼ λHiHjS + h.c. (6.39)

From (6.38) and (6.39), lepton number is broken by two units and a
Majorana mass term is induced from the diagram in Fig. 6.3(a),

mij =
1

16π2
κ(m2

j −m2
i )λ12

v2

v1

1

m2
S −m2

h

log
m2
S

m2
h

(6.40)

where mi = mli . A mixing term is induced from (6.39) between S and h†+.
If we assume λ ∼ mh,mS � mh, v1 ' v2, then the neutrino mass matrix is
found to be

mij ∼
1

16π2
κmh

m2
j −m2

i

m2
S

. (6.41)
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Figure 6.4: Best lepton flavor violation constraints by year. Initially the
best constraints are those from cosmic ray muons, later from stopped pion
beams, and more recently from stopped muon beams, corresponding to the
three clusters in the image. Current constraints are set by MEG [134]. From
[135].

6.6 Lepton flavor violation processes

A concept distinct from but closely related to neutrino masses is that of lep-
ton flavor violation [136]. Lepton flavor is necessarily violated to generate
neutrino masses as we have seen in eq. (6.25). (Although neutrino masses is
not the only meaningful way to break lepton number, see e.g. [137].) How-
ever lepton flavor has never been observed violated despite the considerable
experimental efforts and has been severaly constrained by ever-improving
experiments (see fig. 6.4). The current best limits are set by constraints on
the muonic channels BR(µ → eγ) and BR(µ → 3e), as we will review in
Ch. 8. The former is usually evaluted in the form of µ+ → e+γ. The reason
for this is that oviously the cross sections for π+ are larger from proton col-
lisions that for π−, but more importantly muon capture, i.e. the fact that
muons captured in the nucleus typically lead to ejection of nucleons and pho-
tons producing accidental rates in the detector [135]. Trivial Dirac masses
in the SM lead to unobservables rates of BR(µ → eγ) ∼ O(10−54) which
makes this process a great beyond the standard model physics probe [138].
It is also important to mention the BR(µ→ 3e) which also has competitive
limits as we will review.

Another of the promising channels to probe lepton flavor violation is
muonic atoms, 1s bound states with a µ− stopped in the target. The
muon then decays either through SM channels or new physics lepton-flavor-
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violating processes. A typical process is the µ−e conversion, µ−+(A,Z)→
e− + (A,Z). The rate for this process typically increases with the atomic
number and is maximum around 30 ≤ Z ≤ 60 [139]. The signature for this
process is a monoenergetic electron with energy of ∼ 100 GeV (the particu-
lar values is target-dependent) easily detectable and therefore a very good
experimental channel. The tightest constraints come from CR(µ−e, T i) [4].
We will review this and other channels in Ch. 8.



Chapter 7

Minimal models

Frustra fit per plura quod potest fieri per pauciora.1

— William of Ockham, Summa Totius Logicae.

As we have seen in previous chapter, neutrino masses and dark matter
are the most important issues of the electroweak sector of the standard
model. Thus, it seems motivated to attempt to find models that combine
the solutions to both problems extending the standard model minimally.
In this chapter we will present the theoretical developments for a minimal
model of neutrino masses with dark matter candidates that will be later
investigated numerically.

We will first review in 7.1 previous minimal models in the literature for
neutrino masses to establish the context for the model we will study. We
will then in 7.2 precisely define this model mathematically and explore its
particle content and symmetries. Finally we will investigate its phenomenol-
ogy in 7.3 from a theoretical point of view, as well as analyze the limits of
the computation from the self-energy of the dark matter candidate mass.
Numerical results are deferred to a later chapter.

7.1 Introduction and review of current minimal
models

One of the first (and simplest) models that can explain neutrino masses and
its smallness is the Zee model [133]. This model propses the extension of
the SM with a single scalar field h and two Higgs boson doublets Φ1,Φ2.
The singles h then couples to the leptons on one side as well to the Higgs
doublets. Of the Higgs doublets only Φ1 couples to the leptons. This can

1It is futile to do with more things that which can be done with fewer.
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be seen from the lagrangian

L ⊃ fLiτ2Lh+m12Φ1iτ2Φ2h
† +

ml

〈Φ1〉
L̄Φ1lR + h.c., (7.1)

where m12 = −m21 is a real mass parameter, f is an antisymmetric coupling.
The neutrino obtains its mass at one loop.

The mass patterns of the Zee model are very distintictive and well studied
[140]. If the couplings f do not have a strong hierarchy, the two heavy
neutrinos ν2, ν3 are very degenerate and mix almost maximally to give νµ, ντ .
The neutrino ν1 is therefore almost νe with a much smaller mass m1 � m2 ∼
m3.

Given that apart from neutrino masses the the other main issue of the
electroweak sector of the standard model is dark matter, this led to the
study of neutrino masses in combination with dark matter. The initial Zee
model was also analyzed in the context of dark matter [141], and especially
later some models were proposed that combined the explanation for neu-
trino masses with dark matter candiates [142, 143], but especially relevant
is that of Ma [144], where the standard model is extended with three singlet
fermions Ni and a scalar doublet η, all Z2-odd. The Yukawa interactions
are then given by

L ⊃ f(φ−ν + φ̄0l)lc + h(νη0 − lη+)N + h.c., (7.2)

where we have suppressed some indices for clarity. In this model neutrinos
obtain Majorana masses through a one-loop radiative seesaw mechanism,
and the dark matter candidate is the lightest of η0 or N1.

The one-loop mass generation of the Zee and Ma models can actually
be understood as a particular case in a general study of the one-loop Wein-
berg operator realizations, and all such models have been classified [121].
Futhermore, of these, the possibilities that naturally contain dark matter
candidateshave also been systematically classified [145]. We will use these
classifications to contextualize the studied model in the next sections.

7.2 Definition of the model

The extension of the Standard Model that we studied [146], with respect to
the general classification of one-loop neutrino mass models belongs to the
T1-iii family [121], and in particular corresponds to the T1-3-A family with
α = 0 (where setting α sets the hypercharge) in the classification of models
with neutrino masses and dark matter [145].

To extend the Standard Model we add a two chiral (i.e., one vector-like)
fermionic SU(2) doublets, noted D and D′, one left-handed singlet fermion
S, as well as two real scalar singlets φi. The second scalar singlet is added
to guarantee enough degrees of freedom in the neutrino mass generation.
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As is usual in this type of models, a Z2 symmetry is added to the Standard
Model gauge group to guarantee the stability of the dark matter candidate.
As expected, new fields are odd, whereas Standard Model fields are even
under this new Z2 symmetry. Thus, the charges of the new particules under
the SU(2)×U(1)× Z2 gauge group are given by

D =

(
ψ
E

)
∼ (2,−1

2
,−), D′ =

(
−E′
ψ′

)
∼ (2,

1

2
,−),

(7.3)

in the case of the fermionic doublets, and

S ∼ (1, 0,−), φi ∼ (1, 0,−) (7.4)

for the fermion and scalar singlets, respectively. We show the Standard
Model electroweak sector charges to fix notations:

H =

(
φ+

φ−

)
 

(
0

1√
2
(v + h)

)
∼ (2,

1

2
,+), Li =

(
νiL
eiL

)
∼ (2,−1

2
,+),

(7.5)

where, as usual, H is the Higgs doublet, and L is the lepton doublet, and

eiR ∼ (1, 1,+) (7.6)

for the right-handed electron singlet. The rest of the Standard Model par-
ticles also have Z2 charge +1.

The most general Lagrangian terms that we can add to the Standard
Model lagrangian compatible with the symmetries we introduced can be
expressed as

L ∼ αijD′Lcjφi − µDcD′ − βDcHS − β′D′H̃Sc (7.7)

− γhφH∗Hφ2 − γφφ4 1

2
m2
φφ

2 − 1

2
mSScS + h.c. (7.8)

where we define
H̃ := iσ2H. (7.9)

The second line of the equation represents the scalar potential, and the first
line contains the terms most relevant for the rest of the discussion, which
includes a Dirac mass term for the vector-like fermionic doublet, a Majo-
rana mass term for the fermionic singlet, and Yukawa interactions terms for
the fermionic singlet and doublet, plus a Yukawa term with the Standard
Model lepton doublet. This last interaction term is the most relevant to
our discussion since it is what allows for the generation of nonzero neutrino
masses.
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The scalar fields φ do not acquire a vacuum expectation value, and the
neutrinos remain massless at tree level. But at one loop a Majorana mass
term is generated for the neutrinos. A necessary condition for this is that the
Lagrangian must violate lepton number, which we can see as the following:
The scalar fields φ have naturally lepton number zero, and similarly the
Majorana fermionic singlet S. But that being the case, the α and β terms
in (7.7) cannot be lepton-number-conserving simultaneously unless αij =
βk = 0, in which case neutrino masses will vanish.

Once expanded, the lagrangian includes the mass terms,

Lm = −µψcψ′ − µEcE − vβ

2
ψcS (7.10)

− vβ′

2
ψ′Sc − 1

2
mSScS −

1

2
mφφ

2 + h.c. (7.11)

and the couplings with the Standard Model particles,

LY = αijψ′ν
c
jLφi + αijE′ν

c
eLφi +

β√
2
ψcSh+

β′√
2
ψ′Sch+ h.c. (7.12)

From (7.10) and defining Ψ := (ψ,ψ′, S), the mass matrix can be written
as

mΨ =
1

2


0 µ βv√

2

µ 0 β′v√
2

βv√
2

β′v√
2

1
2mS

 , (7.13)

and the physical particles and its masses are obtained by diagonalization.
If we let χi be the i-th physical particle and mi its mass (with mi < mj

for i < j), and ξ the diagonalization (with the negative-mass corrections)
matrix,

Ψi ≡ ξijχj , (7.14)

we can write the relevant couplings from (7.12) as

αijψ̄
′νcjLφi = αijξ2kχ̄kν

c
jφi. (7.15)

7.3 Phenomenology

In this section we will investigate the potential phenomenological signatures
that our model can have in order to later constrain its different parameters.

7.3.1 Collider constraints

First of all we notice that apart from the Majorana fermions our particle
spectrum contains a charged Dirac fermion with mass µ is is constrained
by collider searches to be larger than about 103.5 GeV [4], plus two natural
scalars φ1,2.
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φ

ν χ ν

Figure 7.1: Diagram for one-loop radiative neutrino mass generation in our
model.

7.3.2 Neutrino masses

Neutrino masses are obtained at one loop through a radiative seesaw mecha-
nism, similar to that of [147]. The main diagram contributing to the neutrino
masses is shown in Fig. 7.3 can be computed as

Mk,r
ij =

1

16π2
ΓrjkΓ

r
ikmk

×
(

(1 + ∆)−
m2
k

m2
k −m2

r

log

(
m2
k

µ2

)
+

m2
r

m2
k −m2

r

log

(
m2
r

µ2

))
, (7.16)

where Γrlm is the coupling between φr, χm, and νcL in Fig. 7.3, and which
corresponds to the couplings in (7.15), i.e., Γrlm := αrlξ2m; ∆ ∝ 1

ε , and µ is
an arbitrary renormalization constant. (We will see that the results will be
independent of µ.)

The neutrino mass matrix element mν
ij generated by the radiative seesaw

mechanism can therefore be computed using (7.16) and (7.15). Taking α ∈ R
for simplicity of the notation:

mν
ij =

∑
k,r

Mk
ij =

∑
k,r

1

16π2
mkαriαrjξ2kξ2k

(
m2
k

m2
k −m2

r

log

(
m2
k

m2
r

))
, (7.17)

where we have used the fact that∑
k

ξ2kmkξ
T
k2 = (mT

Ψ)22 = 0. (7.18)

At this point we notice that the final result is finite and thus independent
of the unphysical renormalization factor µ as expected. (This is only true for
the sum of all the diagrams, whereas each diagram independently diverges,
and thus the µ factor in (7.16).)

In the limit where β, β′ � µ,mS , we can diagonalize (7.13) analytically
at leading order in β, β′ as

ξ =


i√
2

1√
2

2mSβ+4µβ′

m2
S−4µ2

v

− i√
2

1√
2

2mSβ
′+4µβ

m2
S−4µ2

v

i β′−β
mS+2µ

v√
2

β+β′

2µ−mS

v√
2

1

+O(β2) +O(β′2) +O(ββ′)

(7.19)
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Figure 7.2: Ratio of the α corresponding to τ over the one corresponding to
e with respect to the angle θ.

so the neutrino masses (7.17) can be expressed as

mν
ij =

∑
r

1

16π2
mSα

2
ri

(
2mSβ

′ + 4µβ

m2
S − 4µ2

)2

v2

(
m2
S

m2
S −m2

r

log

(
m2
S

m2
r

))
.

(7.20)
For the numerical scan we reparametrize the model by using neutrino

mixing data [4] instead of αi as free parameters using a Casas-Ibarra-like
reparametrization [148].

First, notice, how (7.17) can be rewritten in the form

mij = αT
irFrαrj , (7.21)

with

Fr =
∑
k

1

16π2
mkξ2kξ2k

(
m2
k

m2
k −m2

r

log

(
m2
k

m2
r

))
, (7.22)

With this we can write the coupling matrix α as

α = iU∗
√
mO
√
F−1, (7.23)

where m = diag(m1,m2,m3), F = diag(F1, F2) and O is a 3×2 matrix such
that OOT = 1, which can be expressed as

O =

 0 0
cos θ ± sin θ
− sin θ ± cos θ

 . (7.24)

Because U in our case is given it is easy to see that there will be a relation
between the different α values. just by multiplying the matrices in (7.23)
we see that the ratios are fixed by the θ value as shown in Fig. 7.3.2. In
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φ

µ E e

γ

Figure 7.3: Diagram responsible for lepton flavor violation in our model.

LFV Process Present Bound Future Sensitivity

µ→ eγ 5.7× 10−13 [149] 6× 10−14 [150]
τ → eγ 3.3× 10−8 [151] ∼ 3× 10−9 [152]
τ → µγ 4.4× 10−8 [151] ∼ 3× 10−9 [152]
µ→ eee 1.0× 10−12 [153] ∼ 10−16 [154]
τ → µµµ 2.1× 10−8 [155] ∼ 10−9 [152]

τ− → e−µ+µ− 2.7× 10−8 [155] ∼ 10−9 [152]
τ− → µ−e+e− 1.8× 10−8 [155] ∼ 10−9 [152]

τ → eee 2.7× 10−8 [155] ∼ 10−9 [152]
µ−,Ti→ e−,Ti 4.3× 10−12 [156] ∼ 10−18 [157, 158]
µ−,Au→ e−,Au 7× 10−13 [159]
µ−,Al→ e−,Al 10−15 − 10−18 [160]
µ−,SiC→ e−,SiC 10−14 [161]

Table 7.1: Current experimental bounds and future sensitivities for the most
important LFV observables.

particular, we see that a large ratio (which we need to satisfy dark matter
and LFV constraints) is only possible for two very narrow windows of values
of θ, separated by π.

7.3.3 Lepton flavor violation

This model leads to lepton flavor violating processes. The most stringent
experimental limits come from constraints in BR(µ→ eγ).

In our model, we can obtain this value similarly to [162]

BR(µ→ eγ) =
3αem

64πG2
Fm

4
E

∣∣∣∣∣∑
r

αr,1αr,2G(m2
φr/m

2
E)

∣∣∣∣∣
2

, (7.25)

where [163]

G(x) =
2− 3x− 6x2 + x3 + 6x log x

6(x− x)4
. (7.26)
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Figure 7.4: General diagram for relic density computations.

A similar expression also holds for the related processes τ → µγ and τ → eγ.
Other processes have more complicated analytical expressions and will be
analyzed numerically, as shown in the following chapter.

In these models, typically the tightest lepton flavor violation constraint
comes from the µ→ eγ process. But this situation may change in the near
future with the experimental improvements achieved for other processes. We
show a summary of this in table 7.1.

Lepton flavor violation constraints impose two conditions on the param-
eters of our model. Firstly, the particle in the loop must be not too heavy;
and secondly the relevant couplings α must be of the order 0.1 to 1. This is
compatible with neutrino masses since although very similar neutrino mass
generation processes and lepton flavor violating processes differ in that the
former violates lepton number whereas the latter does not. Thus, both con-
traints are compatible as long as β remains small, from what we saw in
previous sections.

7.3.4 Dark matter

The dark matter candidate will be the lightest neutral particle with Z2

charge −1. In general this dark matter candidate could be in our model
any of the two scalars or one of the three Majorana fermions. Both options
are possible since the masses are free parameters in our lagrangian. In the
fermionic case, the phenomenology will be similar to that of the singlet-
doublet model [164, 165, 166], which has been investigated in the literature
(see e.g. [167, 168, 169, 170, 171]). It is known in this case [172] that adjust-
ing the mixing between the singlet and the doublet it is possible to obtain
the right relic density for masses below around 1 TeV. In our specific case
coannihilations with the extra scalard may introduce slight modifications
result.

We will therefore focus our attentions in the case where the dark matter
candidate is one of the scalars. We have in this case we have two possible
scenarios. When the dominant interaction of the scalar is with the Stan-
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dard Model Higgs boson we have a so-called singlet scalar or Higgs-portal
mode[173, 174, 175] with annihilations mediated by the Higgs. This type of
models have been extensively studies in the literature (e.g. [176, 177, 178,
179, 180]). We will therefore in the following work with the second option,
i.e. when the Yukawa interactions are the dominant mechanism. In this
case the dark matter candidate will annihilation into leptons through the
t-channel diagrams as seen in fig. 7.4 with the fermions propagators and
which will be proportional to α4. We have therefore nontrivial relations be-
tween neutrino masses, lepton flavor violating, and dark matter processes,
which will give rise to a rich phenomenology and potentially a stark avenue
to constraint the different parameters.

As we have already seen, the mediator cannot have too large a mass,
and the parameter α must be of order one, as seen for lepton flavor violating
processes. We also notice that the dark matter candidate will be leptophilic,
which will have implications for direct detection processes as we will analyze
in later sections.

Given the described setup, the dark matter annihilation rate into charged
leptons is given, in the non-relativistic limit, by [181]

σv(φ1φ1 → `+`−) =
α4

1`v
4

60π

v4

m2
φ1

1

(1 +m2
E/mφ1)2

. (7.27)

This expression accounts in principle for any possible combination of
lepton pairs, although we will see that given the lepton flavor violation con-
straints from µ → eγ the final state with τ+τ− will dominate numerically.
One important aspect to note is the somewhat unusual strong velocity de-
pendence ∼ v4 which will have effects on indirect detection signatures as we
will see in the next chapter. For neutrinos, the corresponding annihilatin
cross section has t and u channel contributions from the exchanges of neutral
fermions χlχm,

σv(φ1φ1 → νν̄ ′) =
∑
l,m

m2
φ1
v2α2

1να
2
1ν′ξ

2
2lξ

2
2m

12π

×
2m2

φ1
mχl

mχm +m2
χl

(
m2
φ1

+m2
χm

)
+m2

φ1

(
m2
φ1

+m2
χm

)
(
m2
φ1

+m2
χl

)2 (
m2
φ1

+m2
χm

)2

+ O(v4). (7.28)

7.3.5 Dark matter self-energy

The self-energy of the dark matter candidate plays an important role in
the understanding of the limits of the phenomenological calculations since
the results are limited to regions where the corrections are negligible in
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comparison to the mass of the particle itself. Therefore we will now turn
the focus to the computation for this self-energy.

The contributions to the dark matter self-energy will come from diagrams
like in Fig. ??. Here the leptons in the loop can correspond to either neutral
ν, χ pairs, or charges l±, E± pairs. We will compute both cases at the
same by setting general couplings Γ1(2) = L(′)PL + R(′)PR. The result of
computing the loop can be then written as a function of the so-called form
factor A as

M =
i

(4π)2
A(p2), (7.29)

with the form factor in this case given by

A(p2) =
[
2(LL′ +RR′)m1m2B0 − 2(LR′ +RL′)(A0(m2

1) +m2
0B0 + p2B1)

]
,

(7.30)
where we have used as is customary the definitions of the scalar integrals

A0(m2) = m2(∆− log
m2

µ2
+ 1) (7.31)

and where for B0 we take the approximation of negligible mass in one of the
loop particles (either ν or l± in this case)

B0(p2, 0,m2) = ∆− log
m2

µ2
+ 2 +

m2 − p2

p2
log

(
m2 − p2

m2

)
(7.32)

and the scalar coefficient of the two-point function

B1(p2,m2
1,m

2
2) =

1

2p2
1

(
A0(m2

1)−A0(m2
2)− (p2

1 −m2
2 +m2

1)B0(p2,m2
1,m

2
2)
)

(7.33)
In our particular case, we notice that in the case of the neutral loop,

the α coefficients are suppressed by the mixing matrix elements η, and that
even for the charged contribution only the contribution for the larger α is
sizable. By estimating the order of magnitude of the different terms (and in
particular taking into account the loop suppression factors) it can be seen
that the contribution becomes relevant in the TeV region, which is as we
will see ruled out because of phenomenological reasons.



Chapter 8

Results

In this chapter we will present our numerical investigations of the model
presented in the preceding chapter. We will start by describing our numerical
setup in 8.1, and then present and analyze the numerical results obtained
in 8.2.

8.1 Numerical implementation

We will start by presenting the different components entering the numerical
computations as well as their mutual relationships.

8.1.1 Overview

The software setup for the numerical computations involves several compo-
nents linked together which are summarized in Fig. 8.1:

1. The model is defined using SARAH.

2. SPheno takes the model parameters (at the lagrangian-level), and
computes the masses, mixing matrices and branching ratios.

3. FlavorKit computes branching rations relevant for lepton flavor vio-
lation.

4. DarkSUSY computes the relevant observables for dark matter con-
straints.

5. Finally we have a program that controls these computations, and
makes the necessary scans of the parameter space (using the Metropolis-
Hasting Markov Chain Monte Carlo algorithm as well as through de-
fined grids or random scans).

The compilation of all the external programs for a given model is handled
by the BSM Tool Box scripts [182], which eases the process.

117
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User

Controller
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SPheno

darkSUSY FlavorKit

SARAH

Model

DM LFV

Figure 8.1: Diagram of the different components of our software setup for
numerical computations and mutual dependencies.

8.1.2 SARAH

The input to SARAH is our model definition in files using their own conven-
tions, and which must include the lagrangian, the list of particle definitions
(gauge and mass eigenstates) and the list of parameters. We used as tem-
plate the SM example included in the distribution, which also served as
model (together with the seesaw models also included in the distribution).

8.1.3 SPheno

SPheno computes all the masses and mixing matrices for our model given
a set of input parameters. It includes FlavorKit. Calls to SPheno are ex-
pensive though, and therefore a previous filter for potentially viable points
is used.

8.1.4 Micromegas

In a first attempt Micromegas was used to compute dark matter constraints.
However, there seems to exist numerical difficulties in the integration in
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CalcHEP, in particular it seems that the integration of different diagrams
is done in such a way that it misses a crucial cancelation between them. A
plot of these discrepancies between CalcHEP and analytical results can be
seen in Fig. 8.2.

8.1.5 DarkSUSY

For the implementation of the relic density computations we use DarkSUSY.
We use the equation for σv from [183], taking only the τ contribution (i.e.,
ignoring the negligible contributions from e, µ, that were always far below
1%), which gives

σv =
α4

13

60π

v4

m2
φ1

1

1 + (mE/m2
φ1

)4
. (8.1)

We use this to compute the invariant annihilation rate as defined in the
DarkSUSY manual, and use the function dsrdens() from the DarkSUSY
package, which computes the relic density for general (not necessarily SUSY)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1

s
ig

m
a
/p

b

v/c

Mathematica integrated
Calchep integrated

Literature (valid for low v)

Figure 8.2: Comparison of the annihilation cross section as computed an-
alytically by us and integrated using Mathematica (red line), the expected
value at low velocity from [183] (blue line), and result from CalcHEP (green
line).
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models. The computations done in this way were checked to roughly match
approximate analytical results.

8.2 Numerical results

For the reasons we have seen in previous chapters, we expect non-trivial
interactions between dark matter, neutrino masses and lepton flavor phe-
nomenology. In the following we will analyze in more detail these interac-
tions. To this end we first scan through viable models which respect current
the experimental constrains, and then analyze the potential effects of future
improvements on these bounds, especially in the lepton flavor violation case.

After the Casa-Ibarra-like parametrization we saw in the previous chap-
ter, we are left with a total of seven free parameters in the model, namely
mφ1,2 , µ,mS , β1,2, θ. We do the sampling in two steps: First, we use a Markov
Chain Monte Carlo method to learn about our space parameter and its re-
gions of interest. Then using this information we sample over the allowed
values for those models imposing the following constraints:

• Neutrino masses: We use the reparametrization shown in the pre-
vious chapter so that neutrino mass constraints are automatically sat-
isfied in our parameter scan.

• Dark matter relic density: ΩDMh
2 ∼ 0.12

• Lepton flavor violation: BR(µ→ eγ) < 5.8× 10−13

We also impose an arbitrary perturbativity limit on dimensionless cou-
plings of three. We assume that the dark matter relic density is obtained
via thermal freeze-out and ignore coannihilation effects by imposing a lower
bound of 1.2mφ1 on masses. Lastly we impose an upper bound on mass of
10 TeV.

8.2.1 Parameter space

First we start to investigate the viable parameter space region. We show
in fig. 8.3 the viable points as projected in the (mφ, α1i for i = e, µτ . We
notice that the lepton flavor violation constraint imposed on BR(µ → eγ)
suppressed αe1, αµ1 and therefore ατ1 can be or order 1, as required as
we will see for the correct dark matter relic density, and therefore dark
matter annihilates into τ+τ− dominantly. We also observe how ατ1 increases
with the dark matter mass, reaching the perturbativity limit at around
mφ ∼ 600 GeV, therefore imposing an upper bound of the dark matter
candidate.
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Figure 8.3: Values of neutrino couplings α1i vs. dark matter candidate mass
for viable models. The α1i determine the dark matter annihilation rate and
therefore there must be at least one non-negligible.
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Figure 8.4: Values of θ as a function of the dark matter candidate mass for
viable models. Notice how the conditions obtained in Ch. 7 mean that θ is
constrained to a very narrow set of values.
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Figure 8.5: Values of β2 vs. β1 for viable models. Neutrino mass constraints
impose that these be small.

The condition α1τ � α1e, α1µ is not satisfied for generic values of the
αij couplings. According to Eq. (7.23), we have that

α1τ

α1e
=

√
mν

2 cos(θ)(−c23s12s13 − c12s23)−
√
mν

3 sin(θ)c13c23√
mν

2 cos(θ)c13s12 −
√
mν

3 sin(θ)s13
, (8.2)

and

α1τ

α1µ
=

√
mν

2 cos(θ)(−c23s12s13 − c12s23)−
√
mν

3 sin(θ)c13c23√
mν

2(c12c23 − s12s13s23) cos(θ)− c13

√
mν

3s23 sin(θ)
. (8.3)

If we now require α1τ � α1e, α1µ we get that, for typical values of the
neutrino parameters, θ ∼ 0.35. The left panel of Fig. 4 shows the value of
θ for our set of viable models. We see that, indeed, θ varies only within a
narrow range around 0.35. Thus, the dark matter constraint and the limits
on LFV processes select a rather specific value for θ.

We know that the neutrino masses arise from nonzero β couplings, and
therefore imposing the small neutrino masses should make the β parameters
small. This is what we in fact see in fig. 8.5, which shows the projection of
the viable models onto the (β1, β2) plane. We observe that β1 has an upper
bound of 10−4 and that β2 is also constrained to lie between 10−6 and 10−4.

The dark matter relic density contraint imposes a strong correlation be-
tween the masses of the dark matter particle and the Dirac fermion which
mediates the annihilation. We show in fig. 8.6 the ratio of these two masses,
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Figure 8.6: Ratio of the charged Dirac fermion E and the dark matter mass
as a function of the dark matter candidate. Relic density favors a relatively
small ratio.

mE/mφ as a function of the dark matter candidate. We note that as previ-
ously seen the lower bound of 1.2 is imposed to prevent coannihilations. We
see that the two masses tend to be more similar the higher the dark matter
mass, and this bounds the charged fermion mass to be small than around
720 GeV.

The masses of two of the Majorana fermions are going to be in general
similar to each other since the mass split is generated by the small β param-
eters, being then both close to µ. The other Majorana fermion S can have
in general a different mass. We plot in fig. 8.7 the largest mass of the three
Majorana fermions and notice that although it can reach its upper bound
of 10 TeV it tends to concentrate close to the dark matter mass.

8.2.2 Lepton flavor violation processes

We will focus in this section in the most relevant lepton flavor violating
processes and compare their predicted rates with current and future exper-
imental bounds. We will se that the most promising constraints will be
BR(µ→ eγ) and CR(µ− e).

First we investigate lepton flavor processes involving τ . In particular, in
fig. 8.8 we show the branching ratios for processes τ → µγ and τ → eγ for
given dark matter masses. We also show the current experimental bounds
(solid lines) as well as the expected future constraints (dashed lines). We
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Figure 8.7: Mass of the heaviest odd Majorana fermion as a function of the
dark matter candidate mass.

! "!! #!! $!! %!! &!! '!!

()*+,-)../*,-)00,12/34

"!
5"%

"!
5"#

"!
5"!

"!
56

"!
5'

7
*)
8
9:
;8
<
,=
).
;>

!,5?,!"

!,5?,/"

Figure 8.8: Branching ratios of τ → µγ (blue squares) and τ → eγ (red stars)
as a function of the dark matter candidate mass. Solid lines are the current
experimental limits, and dashed lines the expected future sensitivities.
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Figure 8.9: Branching ratios of the most relevant lepton flavor violating
processes as a function of the dark matter candidate mass for viable models.

notice that both processes have similar behavior and values, and that in
general the range tends to concentrate for larger dark matter masses, with
the maximum clearly diminishing with the dark matter mass. We also note
that for dark matter masses below around 250 GeV the limits are already
competitive, and that future bounds can significantly constrain the viable
model space for all dark matter masses.

The most relevant processes for lepton flavor violation are expected to be
those related to µ− e. We show them in fig. 8.9, in particular the branching
ratios for µ→ eγ and µ→ 3e as well as the conversion rate CR(µ− e,Ti).
The current limits on BR(µ→ eγ) are only exceeded for low masses, but we
observe that the one for CR(µ− e,Ti) can be relevant over the whole dark
matter mass range.

We analyze also the interaction between the different lepton flavor violat-
ing processes. For that we plot in fig. 8.10 BR(µ→ eγ) against BR(µ→ 3e),
and in ?? BR(µ → eγ) against CR(µ − e,Ti). Again we show for every
process the current experimental bound with a solid line and the expected
future values in a dashed line. As we have already observed, current limits
on µ→ 3e and µ− e are already competitive to rule out viable points, and
thus imposing BR(µ → eγ) limits is not necessary to analyze the lepton
flavor violation phenomenology of this model. It is also important to notice
that future improvements in BR(µ → eγ) are not expected to be dramatic
in terms of ruling out viable models, but improvements on µ→ 3e and µ−e
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Figure 8.10: Relationship between branching ratios for µ → eγ and µ →
3e. Solid lines are current experimental constraints and dashed lines are
expected future sensitivities.
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Figure 8.11: Similarly as 8.10 for µ→ eγ and µ− e conversion.
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Figure 8.12: Similarly as 8.10 for µ→ 3e and µ− e conversion.

have the potential to rule out significant portions of the currently viable pa-
rameter space. In fact, as can be seen in fig. 8.12, where we plot BR(µ→ 3e)
against CR(µ− e,Ti), each of those two processes have the potential to rule
out a significant portion of the viable parameter space, but when combined
together no single viable point remains, which points towards the fact that
improvements in lepton flavor constraints have the potential to probe the
viable parameter space almost completely, or even completely.

8.2.3 Direct detection

Direct detection is not a promising path to phenomenologically study this
model, because the dark matter particle is leptophilic, having vanishing tree-
level scattering cross sections with nuclei. Even though radiative corrections
generate a small nonzero contribution, they are still negligible with respect
to detection purposes. At one loop, contributions mediated by Higgs and
photon are possible. Similar effects have been studied [184] and the signals
were below expected future sensitivities. Since in our case this would be
even more suppressed by lepton masses and β parameters, this possibility is
not a viable probing method.

8.2.4 Indirect detection

Wtih respect to indirect detection, we notice that in this model the velocity
suppression is v4 for Majorana particles. Given the v ∼ 10−3 dependency
for dark matter particles in the galactic halo, this implies around twelve
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orders of magnitude below the thermal annihilation rate. However, and
although neutrino, positron and antiproton channels are not expected to be
of relevancy, internal bremsstrahlung processes [185] can have a sizable effect
[183, 186] through high-energy gamma-ray emission which could potentially
be observed in gamma-ray telescopes.

8.2.5 Collider phenomenology

Since the model contains several particles theoretically in range for LHC
searches, we will briefly review the possibility of collider searches. In par-
ticular there is a charged fermion and the dark matter scalar which should
be both in the hundreds of GeV. In particular our model seems to have
similarities with the MSSM gaugino sector, where the Z2-odd charged and
neutral particles correspond to the charginos and neutralinos. However, the
fermions in the model do not decay via “golden” channel with missing trans-
verse energy (as studied in Ch. 4), but directly into two charged leptons, a
charged lepton and a neutrino or two neutrinos plus dark matter particles,
which are invisible. Therefore the tripleton ATLAS and CMS analyses do
not apply in our case. Two-lepton final states have been analyzed by AT-
LAS [67] and CMS [187], but with assumptions on the slepton masses. The
case of Z ′ searches [188, 189] lack the missing transverse energy requirement,
and W ′ analyses [188, 190] rely on the partial reconstruction of an s-channel
resonance that is not applicable in this case. Therefore these analysis do not
impose limits to the model, and a study would require a full reanalysis of
the full signal together with background and detector similations. Even in
that case no significant further constraints are expected to the presented
parameter space study.
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Chapter 9

Conclusions

In particle physics, precision plays a central role. The standard model of
particle physics yields results with accuracies unheard of in other branches
of physics and science for that matter, yet there is clear evidence that a new
framework will be needed to overcome some important theoretical and phe-
nomenological difficulties. Only very precise theoretical results coupled with
sources of very precise experimental measures can point to how these beyond
the standard model frameworks may look like, for in physics accuracy has
a qualitative and not only quantitative effect, and more precise predictions
and measurements can rule out whole set of theories and drastically change
our view of the universe. In this work, we have explored some different av-
enues to apply these concepts in the search for beyond the standard model
physics in the era of unprecedented energies at hadron colliders such as the
LHC and increasingly impressively accurate electroweak measurements.

We have started with a (necessarily very) brief summary of the standard
model and its limitations that has served to put into context the following
work. After that, this work has been divided in two more or less distinct
parts, with of them focusing on one approach to precision predictions for
particle physics: A first part has focused on supersymmetry at hadron col-
liders, and therefore has dealt with perturbative quantum chromodynamics
(for resummation); and a second part has focused on non-supersymmetric
minimal models for neutrino masses and dark matter. A further common
theme in these two parts is that the sectors investigated were predominantly
the electroweak sector of each of the model families (the supersymmetric
electroweak sector with gauginos and obviously the electroweak sector of
the standard model for the second part).

The first block comprises Ch. 2 to Ch. 4, and as discussed we have focused
on precision predictions for supersymmetry at hadron collider. In particular
we have focused on resummation predictions for gaugino1 production. We

1We have used the word gaugino to mean charginos and neutralinos throughout this
work.
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have started in Ch. 2 by presenting the necessary theoretical components
for further analyses, namely an introduction to quantum chromodynamics
as required to investigate hadron collider phenomenology, a necessarily con-
cise presentation of resummation, where we have attempted to present the
formalism as close to our implementation of it as possible (together with a
more general introduction to simplify the developments), and lastly a pre-
sentation of the basic of supersymmetry to contextualize the gauginos in the
theory. We have tried to present in these introductions as much as possible
all details required for the later developments, but obviously some details
had to be left out for space reasons. The reader is referred to the references
pointed out in the different sections as a source of further details as required.

In Ch. 3 we have introduced the software Resummino that was developed
for computations resummation predictions for beyond the standard model
particle production. This software has been developed throughout time by
different people in the research group of Prof. Michael Klasen [40, 41, 42,
43, 44, 45, 46, 39, 47, 48, 12]. In this thesis we present the work on the
software presented in [39] comparing with previous versions of the code, and
later in Ch. 3 we review the results published in [47] for gaugino production
and that are widely used by experimental collaborations ATLAS and CMS.
Further work has continued on this code as can be seen e.g. in [10].

In the second part, which comprises Ch. 5 to Ch. 8 of this thesis, we
have focused on the electroweak sector of the standard model. In particular
we have studied the issues of dark matter and neutrino masses as problems
of the standard model of particle physics, and have set up a computational
framework that allowed us to analyze theoretically and phenomenologically
a possible minimal model that combined the solution to both issues.

In Ch. 5 we have reviewed the problem of dark matter, the existing
evidence for the existence of dark matter, some of the different theoretical
models that provide dark matter candiates, and the different experimental
ways that have been and are being used to detect and measure it, as well as
some practical aspects on relic density calculations.

In Ch. 6 we have focused on the issue of neutrino masses, and have re-
viewed some of the experimental evidence for a nonzero mass of neutrinos,
have analyzed how the neutrino mass can be approached as an extension
of the standard model, how such mass terms can look like, and some of
the theoretical possibilities to realize such masses, as well as the lepton fla-
vor violation consequences of those theoretical possibilities, which are phe-
nomenologically very relevant.

In Ch. 7 we have presented the model we have analyzed from a theoretical
point of view. We have contextualized it in terms of other previous or similar
models, we have defined it mathematically in detail, and have analyzed its
phenomenology, for dark matter, neutrino masses, lepton flavor violation,
and collider constraints, as well as analyzed the the theoretical limits of
these calculations.
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Finally in Ch. 8 we have presented the numerical results of the phe-
nomenological study. The first part of the chapter contains a more or less
detailed explanation of the computatinal framework used to peform these
analyses, and some of the limitations encountered as well as the solutions
found, and in the second part of the chapter we have reviewed the results
originally published in [146], with again a focus on dark matter, neutrino
masses, lepton flavor vilation as well as collider phenomenology. A similar
variation of this framework has been later used in a related study for another
minimal model originally presented in [191].

Overall we have presented in this work some distinct approaches to the
issue of precision in particle physics, and have presented results which can
be used to constrain the parameter space of some both supersymmetric
and non-supersymmetric models and with the ever-increasing accuracy of
the different running experiments test the current theoretical beyond the
standard model ideas, leading to unforeseen new theoretical frameworks
that will shape our understanding of Nature.
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Appendix A

Gaugino total cross sections

For reference we present here the total cross sections tables for gaugino pair
production from the computations in Ch. 4. The reader is referred to that
chapter for further details.

Process m1 [GeV] m2 [GeV] LO [fb] NLO [fb] NLO+NLL [fb]

pp→ χ0
1χ

0
1 161.7 161.7 0.81+5.8%

−5.3% 1.06+3.5%
−3.0%

+2.8%
−2.0% 1.03+0.5%

−0.6%
+2.9%
−2.0%

pp→ χ0
1χ
−
1 161.7 303.5 0.16+6.0%

−5.5% 0.20+2.5%
−2.4%

+2.9%
−2.4% 0.20+0.0%

−0.3%
+2.9%
−2.5%

pp→ χ0
2χ

0
2 303.8 303.8 0.85+9.2%

−7.9% 1.07+3.5%
−3.5%

+3.1%
−2.2% 1.05+0.0%

−0.4%
+3.5%
−1.9%

pp→ χ0
2χ

0
3 303.8 526.5 0.21+9.4%

−8.1% 0.25+2.6%
−2.9%

+3.2%
−2.3% 0.25+0.1%

−0.5%
+3.2%
−2.3%

pp→ χ0
2χ
−
1 303.8 303.5 14.46+6.7%

−6.1% 17.25+1.6%
−1.7%

+3.0%
−2.6% 17.05+0.2%

−0.7%
+3.1%
−2.6%

pp→ χ0
3χ

0
4 526.5 542.4 0.83+11.0%

−9.3% 0.97+2.8%
−3.3%

+3.9%
−2.4% 0.96+0.4%

−0.9%
+3.8%
−2.5%

pp→ χ0
3χ
−
1 526.5 303.5 0.12+9.4%

−8.1% 0.15+2.6%
−2.9%

+3.8%
−2.9% 0.15+0.1%

−0.6%
+3.8%
−3.0%

pp→ χ0
3χ
−
2 526.5 542.2 0.42+11.2%

−9.5% 0.50+2.8%
−3.3%

+4.9%
−3.6% 0.49+0.4%

−0.9%
+4.9%
−3.5%

pp→ χ0
4χ
−
2 542.4 542.2 0.39+11.3%

−9.6% 0.47+2.7%
−3.2%

+4.9%
−3.6% 0.46+0.5%

−1.1%
+4.9%
−3.7%

pp→ χ+
1 χ

0
1 303.5 161.7 0.38+6.0%

−5.4% 0.46+2.5%
−2.4%

+2.8%
−2.1% 0.46+0.2%

−0.5%
+2.9%
−2.1%

pp→ χ+
1 χ

0
2 303.5 303.8 35.16+6.3%

−5.8% 40.90+1.6%
−1.7%

+2.9%
−2.2% 40.51+0.0%

−0.3%
+2.9%
−2.2%

pp→ χ+
1 χ

0
3 303.5 526.5 0.34+9.2%

−7.9% 0.40+2.6%
−2.9%

+3.7%
−2.4% 0.40+0.0%

−0.3%
+3.6%
−2.5%

pp→ χ+
1 χ
−
1 303.5 303.5 25.64+6.6%

−5.9% 30.37+1.7%
−1.9%

+2.7%
−2.0% 30.04+0.0%

−0.5%
+2.7%
−2.1%

pp→ χ+
2 χ

0
3 542.2 526.5 1.27+11.1%

−9.4% 1.46+2.9%
−3.3%

+4.4%
−2.7% 1.45+0.3%

−0.7%
+4.3%
−2.9%

pp→ χ+
2 χ

0
4 542.2 542.4 1.21+11.2%

−9.5% 1.37+2.7%
−3.2%

+4.4%
−2.8% 1.36+0.4%

−0.8%
+4.6%
−2.6%

pp→ χ+
2 χ
−
2 542.2 542.2 0.86+10.9%

−9.3% 1.00+2.6%
−3.1%

+4.0%
−2.4% 0.99+0.4%

−0.9%
+4.1%
−2.4%

Table A.1: Total cross sections for gaugino pair production for the 8 TeV
LHC run for benchmark point 1 at LO, NLO and NLO+NLL. Cross sections
below 0.1 fb are omitted.
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Process m1 [GeV] m2 [GeV] LO [fb] NLO [fb] NLO+NLL [fb]

pp→ χ0
1χ

0
1 249.6 249.6 0.13+8.6%

−7.5% 0.16+3.5%
−3.4%

+3.3%
−2.3% 0.16+0.2%

−0.3%
+3.5%
−2.4%

pp→ χ0
2χ
−
1 471.9 471.8 1.63+10.0%

−8.6% 1.88+1.8%
−2.4%

+4.1%
−3.1% 1.86+0.6%

−1.2%
+4.1%
−3.1%

pp→ χ+
1 χ

0
2 471.8 471.9 4.73+9.8%

−8.4% 5.28+1.8%
−2.4%

+3.9%
−2.5% 5.22+0.3%

−0.6%
+4.0%
−2.5%

pp→ χ+
1 χ
−
1 471.8 471.8 3.13+9.8%

−8.4% 3.57+1.9%
−2.5%

+3.5%
−2.2% 3.52+0.4%

−0.7%
+3.7%
−2.3%

pp→ χ+
2 χ

0
3 766.3 754.0 0.16+14.2%

−11.6% 0.17+3.5%
−4.2%

+6.1%
−3.8% 0.17+1.0%

−1.8%
+6.1%
−3.8%

pp→ χ+
2 χ

0
4 766.3 766.6 0.15+14.3%

−11.7% 0.16+3.4%
−4.2%

+6.1%
−3.9% 0.16+1.1%

−1.8%
+6.1%
−4.0%

pp→ χ+
2 χ
−
2 766.3 766.3 0.11+13.6%

−11.2% 0.12+3.1%
−3.9%

+6.0%
−3.5% 0.12+1.0%

−1.8%
+6.0%
−3.6%

Table A.2: Same as Tab. A.1 for benchmark point 18.

Process m1 [GeV] m2 [GeV] LO [fb] NLO [fb] NLO+NLL [fb]

pp→ χ0
1χ

0
1 251.7 251.7 0.12+8.6%

−7.5% 0.16+3.5%
−3.4%

+3.3%
−2.3% 0.15+0.2%

−0.3%
+3.4%
−2.4%

pp→ χ0
2χ
−
1 478.5 478.5 1.50+10.1%

−8.6% 1.73+1.8%
−2.4%

+4.2%
−3.1% 1.71+0.6%

−1.2%
+4.1%
−3.2%

pp→ χ+
1 χ

0
2 478.5 478.5 4.37+9.9%

−8.5% 4.86+1.8%
−2.4%

+3.9%
−2.5% 4.81+0.3%

−0.6%
+4.2%
−2.6%

pp→ χ+
1 χ
−
1 478.5 478.5 2.89+9.9%

−8.5% 3.28+1.9%
−2.5%

+3.5%
−2.3% 3.24+0.5%

−0.7%
+3.8%
−2.3%

Table A.3: Same as Tab. A.1 for benchmark point 31.
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