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1 Introduction 1

1 Introduction

Conditions of the early universe can, albeit for fractions of a second, be produced in
experiments. As it turns out, simply colliding protons at ever higher energies does not
produce a detectable medium, but collisions of heavy nuclei, lead in the case of the
LHC, at ultra-relativistic velocities do. Without a medium, high-energy jets consisting
of quarks and gluons, the subatomic constituents of protons and neutrons, form after
the collision and later hadronise into detectable particles. The unobservability of quarks
and gluons is a property of the strong interaction, coined confinement. The short-lived
state of free quarks and gluons in the collision is called the quark-gluon plasma. Jet
quenching is referring to the loss of energy a jet suffers while passing through a dense
and hot medium, namely the quark-gluon plasma, after heavy nucleus collisions, due
to strong interactions with constituents of the medium. Properties of the medium can
then be deduced by comparing the result of measurements with the expected values
in the vacuum case, where no medium is present. A chief observable for this, and the
main focus of this thesis, is the nuclear modification factor, defined as

RAA =

1
NEvt

d2NAA
jets

dpT dη

∣∣∣
cent

〈TAA〉 d2σjets

dpT dη

∣∣∣
pp

, (1.1)

where NAA
jets is the jet yield, the number of jets, in heavy nucleus collisions divided

by the differential cross section of jet production in pp-collisions. To account for the
increased size and number of constituents of a lead nucleus as compared to a single
proton, 〈TAA〉 is introduced. This quantity is obtained in the framework of the Glauber
model, to be discussed in more detail later, and should normalise the ratio to 1, if
nothing else happens. In experiments a value significantly below 1 is reported, hinting
at the presence of a medium. In this thesis the nuclear modification factor will be
calculated with JEWEL, a leading-order Monte Carlo event generator that includes
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medium effects, and compared to experimental data. In order to run JEWEL with
newer PDF sets like nCTEQ15 and give estimates about scale uncertainties some slight
modifications will be made to JEWEL, to be discussed in more detail later.

The thesis is structured as follows: the basics of quantum chromodynamics will be
discussed first in chapter 2. The Feynman rules will be given and the chapter ends
with a brief discussion of the running strong coupling. A discussion of deep inelas-
tic scattering follows in chapter 3, referring to scatterings where the beam particles
are completely unravelled. After the parton model, which was used as a model for
proton-proton collisions before the advent of QCD, the basic notion of PDF’s will be
introduced, accounting for the substructure of composite objects like protons, Together
with the DGLAP equations and factorisation. Afterwards, the parton shower, an es-
sential ingredient of simulations concerning particle collisions, is reviewed. The chapter
closes with a discussion of the Glauber model, which nowadays is mostly used to give
geometric corrections for the comparison of proton-proton (pp) collisions with lead-
lead (Pb+Pb) collisions. Chapter 4 will expand the notion of jets, as a proxy for initial
outgoing products of the hard scattering, which can be measured in experiments. An
intuitive view of the formation of a quark-gluon plasma (QGP) is given in chapter 5.
The Bjorken model is introduced, which gives a one-dimensional expansion of the QGP.
Also basic mechanisms of interactions in the medium are reviewed, together with pos-
sible probes. Next, chapter 6, discusses some details of JEWEL. Results obtained by
JEWEL are compared to three experimental analyses in chapter 8. Chapter 7 gives
a list of available experimental analyses, which could be used for future works. In
Appendix A the calculation of QCD matrix elements at leading order is exemplified.
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2 Quantum chromodynamics

A natural starting point for the investigation of jet quenching phenomena in heavy-
ion collisions is the theory of strong interactions, quantum chromodynamics (QCD).
A brief overview of the main aspects of QCD and group theory will be given in this
chapter. In the last part, the strong coupling constant αs will be discussed. For more
detailed derivations and explanations one can look at textbooks by e.g. Schwartz [40]
or Peskin and Schröder1 [37].

2.1 A very brief look at the development from QED to
QCD

The success of quantum electrodynamics (QED) - which governs the behaviour of
charged particles, photons and interactions between those two based upon the Abelian
local gauge group U(1) - in calculating e.g. the anomalous magnetic moment of the
electron and cross sections showed that quantum field theories (QFTs) are a worth-
while subject of investigation. For this people had to learn how occurring divergent
expressions at intermediate steps in calculations could be handled to yield finite re-
sults. From QED people also gained a very important insight: the coupling constant
of the electromagnetic force αel is not a constant, but it possesses a scale dependence:
The coupling constant gets smaller with increasing energy. This running coupling con-
stant offered a possible solution to a puzzling problem people were facing back then.
With the advent of particle accelerators and scattering experiments and the increase
of collision energy in ever larger and sophisticated machines, it soon became appar-
ent that the proton is not a fundamental particle, but composed of what would later

1Upon which this chapter is mainly based.
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be identified as quarks and gluons. These particles themselves have never been ob-
served outside of a proton. This fact, together with additional insights from collider
experiments about the substructure of protons, lead to the formulation of two defining
properties for the force of strong interactions, which governs the behaviour of quarks
and gluons: confinement and asymptotic freedom. Confinement states that quarks and
gluons have to be bound inside of particles in nature and cannot be observed in e.g. a
detector2, while asymptotic freedom states that quarks and gluons can be considered
as free particles at very small distances, for example inside of a proton. The coupling of
a theory of strong interactions thus needs to be small at large energy scales and big at
small scales, the opposite behaviour of αel.. As it turns out, it is possible to construct
such a theory. These theories are generalisations of QED, using a non-Abelian group
as gauge group and are therefore known as non-Abelian gauge theories or otherwise
Yang-Mills theories. QCD is based upon the special unitary group SU(3)c and it will
be shown later that the coupling of QCD gets weaker with increasing energy. SU(3)c
stands for SU(3) colour, with the colour charges of QCD green, blue and red. The
QCD Lagrangian possesses other symmetries besides the colour symmetry, but these
will be explicitly marked when talked about, so that mentions of the SU(3) symmetry
of QCD refers to the colour part. Though SU(3) is established as gauge group for QCD
to describe measurements, one can give give many relations and formulas for a general
SU(N) gauge group, which will be done in the next sections, while continuing to talk
about e.g. gluons as the gauge bosons. One can simply put in a 3 for every N that
turns up and will obtain the result for QCD. As a last closing remark: natural units
are used in all following chapters, which means that c = ~ = 1. In natural units it
follows that E = p = 1

l
with the energy E, the momentum p and a length l, while

also making occurring formulas nicer to write down. Results obtained in natural units
can afterwards be multiplied by appropriate powers of c and ~ to obtain the right
dimensions of units.

2Or only colour-neutral objects can exist in nature.
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2.2 QCD Lagrangian

The Lagrangian of QCD, after quantisation, is given by:

L =ψ̄i

(
δiji/∂ + g /A

a
T a
ij −mδij

)
ψj −

1

4

(
F a
µν

)2
+ (∂µc̄

a)
(
δac∂µ + gfabcAb

µ

)
cc − 1

2ξ

(
∂µA

a
µ

)2
. (2.1)

The quark fields ψi with their mass m are described by spin-1/2 spinors, the mid-
alphabet Latin letters are used to signify colour indices. Sum convention is implied:
a sum is running over every index that appears twice. There are 6 different known
quarks3, each with its own anti-particle, grouped in three generations. Since they can
not be measured as free particles, there are some subtleties involved in giving a mass to
a quark. Their mass can only be given in a specific renormalization scheme, see table 2.1
for the masses in the most widely used scheme. Feynman slash notation /∂ = γµ∂

µ is
used, with the gamma matrices γµ. The g is the strong coupling constant and Aa

µ are
the gluon fields, massless spin-1 fields. Gluons carry a colour charge, as opposed to
the uncharged photons in QED. This charged mediator of the strong force leads to a
vastly different phenomenology for QCD, but it also means that calculations become
more complicated. The early-alphabet Latin letters index the different generators T a

of SU(N); there is one gluon field for each generator. The next section will be a brief
discussion of group theory, where more details are given. The field strength tensor is
defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2.2)

with the structure constants fabc.
ca and c̄a are the Faddeev-Popov ghosts, spin-0 particles with fermionic statistics. Since
they violate the spin-statistics theorem, they cannot appear as physical fields, but they
can appear in the path integral formulation. When expanding the path integral in per-
turbation theory, ghost appear in internal lines of Feynman diagrams. They suppress
unphysical degrees of freedom of gluons in calculations. There is one ghost pair for
every gluon, but it is not required from the derivation that ghost and anti-ghosts are
related. The last term written down is the so-called gauge-fixing term.
The QCD Lagrangian possesses some accidental symmetries. There is a global U(1)

symmetry, which constitutes the conservation of the baryon number. For the first

3Also called flavours.
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Quark down up strange charm bottom top
mass (MeV) 4.7 2.15 93.5 1270 4180 163000

Charge −1/3 +2/3 −1/3 +2/3 −1/3 +2/3

Table 2.1: Quark masses in the MS scheme and their charges.

three quark flavours there exists an additional SU(3)F symmetry, the flavour symme-
try. Neglecting the masses, this is an exact symmetry; with the different quark masses
included, it still represents an approximative symmetry, meaning that results calcu-
lated by assuming an exact symmetry still give mostly correct results. Another global
symmetry of the Lagrangian is the BRST (Becchi, Rouet, Stara and Tyutin) invari-
ance, which is important for the renormalisability of non-Abelian gauge theories. With
the help of BRST invariance, one can show that only a finite amount of counterterms
are necessary to cancel all infinities of the theory.

2.3 Group theory

This section is a short summary of basic aspects of group theory. In mathematics, a
group is an algebraic structure (G, ◦) which connects a set of elements via the operation
◦. A group needs to fulfil four axioms, also called the group axioms:

(G0) : Closure

(G1) : Associativity

(G2) : Identity

(G3) : Inverse

∀a,b ∈ G : a ◦ b ∈ G

∀a,b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c)

∃e ∈ G : ∀a ∈ G : e ◦ a = a = a ◦ e

∀a ∈ G : ∃b ∈ G : a ◦ b = e = b ◦ a .

(2.3)

Groups can be very abstract constructs, but there are also quite simple and intuitive
examples for groups. Integers Z with addition form a group (Z,+). An important
class of groups for physics are the so-called Lie groups. These are groups with an
infinite number of elements but only a finite number of generators. Any group element
connected to the identity can be written as

U = exp (ı̇θaT a) · 1 , (2.4)
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where T a are the group generators and θa are numbers. The generators of a Lie group
form a Lie algebra which is defined as the Lie bracket:

[
T a, T b

]
= ı̇fabcT c , (2.5)

with the structure constants fabc, corresponding to a mapping G × G → G . The struc-
ture constants fulfil the Jacobi identity:

fabdfdce + f bcdfdae + f cadfdbe = 0 . (2.6)

The group elements can be placed in operators that act on a vector space; a particular
embedding is called a representation. For finite-dimensional representations they will
be embedded in matrices. Given a representation, the Lie bracket from equation (2.5)
can be defined as a commutator:

[A,B] = AB −BA . (2.7)

With this, the Jacobi identity (2.6) can also be formulated in terms of commutators:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 . (2.8)

For every application in physics, the group elements can be embedded into matrices;
the more abstract definition (2.5) is included for completeness’ sake.
Furthermore, for physical applications there is a very important kind of Lie algebras
like su(N) or so(N), the simple Lie algebras. They are defined as having no non-trivial
ideals. Ideals are subalgebras defined by:

∃I ⊂ G : ∀g ∈ G : ∀i ∈ I : [g, i] ⊂ I . (2.9)

A semisimple Lie algebra is an algebra that is made out of the direct sum of simple
Lie algebras, like the Lie algebra of the Standard Model su(3) ⊕ su(2) ⊕ u(1) . The
important part now is the existence of a theorem that states that all finite-dimensional
representations of semisimple algebras are Hermitian.

For the last part we focus on the group SU(N), the special unitary group. It preserves
a complex inner product, so U †U = 1. Also det(U) = 1 is required. The group acts on
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an N-dimensional vector space and elements can be written as (2.4). The generators
are Hermitian and can be found by expanding this expression around 1. In total
there are N2 − 1 generators, so the dimension of the group is d(SU(N)) = N2 − 1.
Commonly used representations in physics are the (anti-) fundamental or defining and
the adjoint representation, with the fundamental representation being the smallest
non-trivial representation of the algebra. By default the generators T a will be in the
fundamental representation; other representations are denoted by a subscript. For the
fundamental one, the generators are N×N -dimensional Hermitian matrices with trace
0. Under infinitesimal group transformations, a set of N fields, in our case the quark
fields φi, transforms as

φi → φi + ı̇αa(T a)ijφj (2.10)

with αa being real numbers. The antiquarks are described by complex conjugated fields,
which transform in the anti-fundamental representation, defined as T a

anti−fund = −(T a)∗.
Now one can work out the generators in the fundamental representation. In the case
of the SU(3) for QCD these are in most cases given as T a = 1

2
λa, with the Gell-Mann

matrices λ:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −ı̇ 0

ı̇ 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −ı̇
0 0 0

ı̇ 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , (2.11)

λ7 =


0 0 0

0 0 −ı̇
0 ı̇ 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

The normalisation of the structure constants is commonly chosen as

∑
c,d

facdf bcd = Nδab (2.12)

in physics. This implies the following normalisation in the fundamental representation:

tr
(
T aT b

)
=

1

2
δab . (2.13)
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The adjoint representation is defined by

(
T a
adj

)bc
= −ı̇fabc . (2.14)

These operators act on the vector space of the operators themselves; they are embedded
in N2 − 1-dimensional matrices, equal to the dimension of the group. The gauge fields
transform in the adjoint representation.
A basis-independent characterisation of the representation is given by the quadratic
Casimir operator C2(R):

T a
RT

a
R = C2(R)1 , (2.15)

with an implicit sum over a. This operator commutes with all other operators. After
some calculation the Casimirs can be given as

CF ≡ C2(fund) =
N2 − 1

2N
, CA ≡ C2(adj) = N (2.16)

in the fundamental and adjoint representation.

At the end of this section, there will be a collection of relations that will often be used
in calculations involving SU(N):

tr
(
T aT b

)
=T a

jiT
b
ij = TF δ

ab , (2.17)∑
a

(T aT a)ij =CF δij , (2.18)

facdf bcd =CAδ
ab , (2.19)

with the index of the fundamental representation TF = 1
2

and the Casimirs given by
(2.16).

2.4 Perturbative quantum chromodynamics

To perform perturbative calculations one needs to work out the Feynman rules from the
Lagrangian (2.1). A thorough derivation of how this is done can be found in textbooks,
so just the final Feynman rules for QCD are given here. Calculations with Feynman
rules in QCD are often referred to as perturbative QCD (pQCD).
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In the Lagrangian there is a sum over N2−1 free gauge bosons; each single propagator
is identical to the propagator of a photon and given by:

p
ν; b µ; a = i

−gµν + (1− ξ) pµpν

p2

p2 + iε
δab . (2.20)

For intermediate states one must sum over all possible gluons.
The ghost propagator is given by:

pb a =
iδab

p2 + iε
. (2.21)

For coloured fermions the propagator is given by:

p
j i =

iδij

/p−m+ iε
. (2.22)

The factors δij describe the conservation of colour. Colour can be exchange in interac-
tion vertices between the partaking particles, but propagators describe the movement
of (virtual4) intermediate states between two vertices, in the language of Feynman di-
agrams. Therefore the colour must remain unchanged by a propagator, since there is
no colour source involved in this movement.

Coming now to the possible interactions in QCD. These are given by terms in the
Lagrangian (2.1) that have several different fields in them, giving the possible interac-
tions between the particles of the theory. Pictorially they are given as vertices, with
the number of incoming particles dependent on the amount of fields in the interaction
term. The first vertex considered here describes the interaction of three gluons, the
triple-gluon vertex. All momenta are chosen as incoming, so that p + k + q = 0. It is
given by:

p

k

qν; b

µ; a

ρ; c

= gfabc [gµν (k − p)ρ + gνρ (p− q)µ + gρµ (q − k)] . (2.23)

4Virtual particle means that the particle obeys Q2 = E2 − p2 where Q is the virtuality, instead of
the normal (on-shell) energy-momentum-relation m2 = E2 − p2 from relativity.
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There is also a four-gluon vertex; the momenta are also chosen as incoming:

µ; a ν; b

σ; dρ; c

= −ig2 ×
[
fabef cde (gµρgνσ − gµσgνρ)

+facef bde (gµνgρσ − gµσgνρ)

+fadef bce (gµνgρσ − gµρgνσ)
]
.

(2.24)

Ghosts only interact with gluons:

p
cc

µ; b

c̄a

= −gfabcpµ . (2.25)

There is also one vertex for the interaction of gluons and fermions:

j

µ; a

i

= igγµT a
ij . (2.26)

Some examples for the calculations of tree-level matrix elements in non-Abelian gauge
theories can be found in Appendix A.

2.5 Running coupling

With the basics of QCD and group theory covered, the end of this chapter will be a
brief discussion of the strong coupling g. When calculating loop diagrams in QCD to
obtain corrections for tree-level processes, one encounters divergent diagrams. Still,
physically observable quantities should be finite. To get finite results one employs a
technique called renormalisation. The basic idea behind this is that physics at long
distances should decouple from the exact physics at short distances, so finite results
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can be obtained despite the infinities at short distances in intermediate steps. This
also implies that one is able to deform the short-distance behaviour, without changing
the long-distance behaviour, by introducing a regulator. Usually one uses an analytic
continuation to d = 4− ε dimensions nowadays and takes ε→ 0 after the calculation.
This regulator introduces an unphysical scale µ which in the end should drop out
of physical predictions. Also the constants in the Lagrangian (2.1) are not physical
quantities and can therefore not be measured as it turns out, they are referred to as eg.
the bare charge g0. Nevertheless they can be given in terms of measurable quantities,
which are called renormalised, with some additional renormalisation factors. These
renormalised quantities, identified by the subscript R, have to be measured at some
scale µR. Working in the MS-scheme usually µ will be set equal to µR. For the strong
bare charge one then finds for example:

g0 = gR
Z1

Z2

√
Z3

µ
4−d
2 . (2.27)

For calculations one often employs renormalised perturbation theory, meaning that
after introducing the renormalized constants one also adds so-called counterterms to
the Lagrangian. For example, take the vacuum polarisation graphs:

+ +

+ + , (2.28)

with the last graph being the counterterm. Calculating the first four diagrams reveal
that the result is composed of a finite and a divergent part.The counterterms are then
infinite quantities, chosen in such a way, that they exactly cancel the divergencies ap-
pearing in the result of the calculation. QCD has four renormalisation factors and eight
counterterms at 1-loop level as it turns out; more details can be found in textbooks.
Now returning to the charge. Since the scale µ was artificially introduced, the bare
charge can not depend on it, so:

µ
d

dµ
g0 = 0 . (2.29)

Equations like this are called renormalisation group equations (RGE). But the renor-
malised charge possesses a scale dependence in its definition. Therefore the behaviour
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Figure 2.1: Running coupling αs in the MS scheme from experimental data. The cur-
rent value is αs(mZ) = 0.1184± 0.0007 . Image taken from [13].

of the renormalised charge is scale-dependent and governed by the β-function via the
equation

µ
d

dµ
gR = β(gR) . (2.30)

The β-function can be calculated perturbatively. For a 1-loop calculation one finds

β(gR) = −ε
2
gr −

g3R
16π2

[
11

3
CA − 4

3
nfTF

]
. (2.31)

Now for QCD one defines the strong coupling constant αs = g2

4π
. Also taking the

Casimir operator to be N = CA = 3, NF = 1
2

and ε = 0 one obtains the 1-loop RGE
for QCD:

µ
d

dµ
αs = −α

2
s

2π
β0 , (2.32)

with β0 = 11− 2nf

3
. For the known number nf of quark flavours b0 is a positive number.

Equation (2.32) can be solved by separation of variables to obtain:

αs(µ) =
2π

β0

1

ln µ
ΛQCD

, (2.33)

where ΛQCD is the location of the Landau pole in QCD, i.e. the point at which per-
turbation theory breaks down. Since αs gets smaller for larger scales, this equation is
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valid for µ > ΛQCD. The strong coupling has to be measured once to fix the Landau
pole and afterwards the coupling constant can be calculated at any scale of interest.

Due to the dependence of the coupling on the scale one talks about the “running cou-
pling constant”. Equation (2.33) shows that the coupling becomes large for low energies
and small for high energies, so the strong coupling can account for the phenomena of
confinement and asymptotic freedom. This behaviour can be verified by experiment,
see Figure 2.1. For calculations at tree level one usually identifies the scale µ with the
momentum of the virtual particle. To get at least an estimator for errors due to the
scale uncertainties, one calculates the process several times varying the scale in each
run.
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3 Deep inelastic scattering

The running of the strong coupling can qualitatively motivate the existence of protons
and other colourless bound states like mesons or baryons. Though one problem re-
mains: the perturbative methods from the previous chapter are not suited to describe
these objects since for the relevant energy scales the strong coupling is large and so
perturbation theory breaks down. Calculations on the lattice can show confinement
and the formation of bound states, but since the calculations are still very expensive,
from a computational standpoint, one is limited to calculating the behaviour of small
systems. They are also ill-suited to calculate scattering amplitudes of e.g. two colliding
protons. Since historically speaking much knowledge about the fundamental structure
of matter was gained through scattering experiments, starting from Rutherford shoot-
ing α-particles at gold foils to discover that atoms had a hard core of size ∼10−15m, and
the success of QED to describe relativistic scattering experiments involving electrons
and positrons, one would hope to be able to relate QCD calculations to scattering ex-
periments. Remembering the running of the strong coupling, these scatterings should
happen at high energy scales. A high energy scale is also needed to reveal the sub-
structure of the proton, since the energy of a particles is by de Broglie related to a
wavelength and to resolve a structure one needs wavelengths that are smaller then char-
acteristic length scales of the structure. This chapter shows how perturbative QCD
calculations can be related to scatterings in the high energy regime, where the strong
coupling is small and quarks and gluons can be viewed as essentially free particles.

Deep inelastic scattering (DIS) refers to scattering processes at energy scales in which
the incident particle, be it a proton or a heavier nucleus, is completely unravelled.
Theoretical predictions in this regime are possible, since the problem reduces to the
case of scattering point-like particles. For this purpose first the parton model will be
given as a general framework. Afterwards corrections to this resulting from QCD are
discussed. The last part of this chapter will be spent on the Glauber model, which gives
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geometrical factors needed for comparing the results of proton-proton (pp) scattering
with e.g. lead-lead (PbPb) scatterings. More detailed derivations can be found in
textbooks [37] [40] and referenced papers.

3.1 Parton model

Before the advent of QCD, DIS was discussed in the context of the parton model,
introduced by Feynman. The parton model states that the substructure of the proton
consists of partons, which can be viewed as free particles inside their confinement.
These partons would later be identified as quark, antiquarks, gluons and basically
every other particle in the SM that can exists in the proton as quantum fluctuations1.
Now to test the substructure of the proton a probe is needed. High-energetic electrons
were first used as a probe, since the interaction of the electron was well understood and
more importantly, it can still, for all intents and purposes, be viewed as a point-like
particle. So for now DIS processes of the form e−p+ → e−X are considered, where an
electron e− collides with a proton p+ and the proton breaks apart. Here X stands for
all possible final state that can result from this. A proton starts to break apart, when
the involved momentum transfer or the center of mass energy is greater than the mass
of the proton.

To get more concrete now consider the following diagram for the process e−p+ → e−X:

k k'

P

q

(3.1)

with the initial kµ and final k′µ momentum of the electron, the proton momentum
P µ and the momentum transfer qµ = kµ − k′µ via the virtual photon. From this the
proton momentum and electron momenta before and after the scattering are the best
variables to observe experimentally, so it is useful to express predictions in terms of

1At least in principle, but one usually restrains this to quarks and gluons.
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these quantities. With E denoting the energy of the electron and θ the angle between
the incoming and outgoing electron, the cross section can be written in the lab frame
as: (

dσ

dΩdE′

)
lab

=
α2
e

4πmpq4
E ′

E
LµνWµν , (3.2)

with the leptonic tensor Lµν , which contains information about polarisations, and the
hadronic tensor Wµν . There are some additional useful variables, which can be used.
One is the energy scale of the collision Q ≡

√
−q2 > 0 and the Bjorken x:

x ≡ Q2

2P · q
. (3.3)

One can contract the two tensors and express the result in terms of the scattering
angle:(

dσ

dΩdE′

)
lab

=
α2
e

8πE2 sin4
(
θ
2

)[mp

2
W2(x,Q) cos

2 θ

2
+

1

mp

W1(x,Q) sin
2 θ

2

]
, (3.4)

where W1 and W2 are newly introduced structure functions, determined by measure-
ments of the angle and energy.
Up to this point only the proton momentum came up, but in the parton model the
interaction is between a single parton and the photon. In principle this is nothing new,
it still is the known case of scattering with point-like particles, but the momentum of
the parton before the scattering is not exactly known. Due to momentum conservation
pµi + qµ = pµf must hold, with pi,f being the initial and final momentum of the parton.
With the mass mq of the parton it follows that

m2
q + 2pi · q + q2 = m2

q =⇒ Q2

2pi · q
= 1 . (3.5)

Now while the exact momentum of the parton is unknown, it must have some fraction
ξ of the proton’s momentum, pi = ξP . With this ξ = ξQ2

2pi·q = x, so the Bjorken x is
equal to the fraction of the proton momentum in the parton model. They are often
used interchangeably in the literature.
Taking the unknown fractional momentum of a parton into account, the parton model
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gives the cross section for e−P+ → e−X scattering as a cross section for e−pi → e−X

integrated over all possible momentum fractions and summed over all partons species:

σ
(
e−P+ → e−X

)
=
∑
i

1∫
0

dξ fi(ξ)σ̂
(
e−pi → e−X

)
, (3.6)

where fi(ξ) are the parton distribution functions (PDFs). They give the probability
to find a parton of the species i with fraction ξ of the proton momentum. PDFs will
be the focus of the next three sections, where more details will be given. A common
convention was also introduced in the last equation: partonic quantities wear a hat like
the cross section σ̂.
Like already mentioned before, the partonic cross section is just the scattering of point-
like particles. Furthermore the cross section at fixed x should also be independent of
Q2, a feature known as Bjorken scaling. So the partonic cross section is given by the
Rosenbluth formula with form factors F1 = 1 and F2 = 0. These form factors encode
the assumption of free partons; generic form factors would violate Bjorken scaling.
Inserting the Rosenbluth formula into equation (3.6) one obtains the cross section
prediction from the parton model:(

dσ (e−P+ → e−X)

dΩdE′

)
=
∑
i

fi(x)
α2
eQ

2
i

4E2 sin4 θ
2

[
2mp

Q2
x2 cos2

θ

2
+

1

mp

sin2 θ

2

]
, (3.7)

where Qi is the fractional charge of the quark. With this equation the form factors of
equation (3.2) can be given a concrete form:

W1(x,Q) = 2π
∑
i

Q2
i fi(x) , (3.8)

W2(x,Q) = 8π
x

Q2

∑
i

Q2
i fi(x) . (3.9)

These form factors fulfil the Callan-Gross relation W1(x,Q) =
Q2

4x2W2(x,Q), verifying
that quarks are fermions with spin 1

2
.
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The generalisation of this to proton-proton scattering is straightforward. An example
diagram for one possible process looks like this:

P1
P2

x1P1 x2P2

q

(3.10)

Most of the interactions of partons in such collisions will be soft interactions, meaning
that only small momentum exchanges are happening. These interactions cannot be
treated perturbatively, but soft interactions give a background activity in experiments.
In calculations, models of the evolution of this so-called underlying event are sometimes
employed. But also some scatterings with high momentum exchange happen; these can
be treated like above. For the process exemplified in (3.10) the cross section would look
like this:

σ(p(P1)p(P2) → Y X) =

1∫
0

dx1

1∫
0

dx2
∑
i

fi(x1)fi(x2)σ
(
qf (x1P )qf (x2P ) → Y

)
,

(3.11)
where the sum runs over all quark flavours, Y is the final state of the hard interactions
and X denotes the final state of everything else that is going on. In general all possible
hard processes in proton-proton collisions that can produce the desired final state have
to be taken into account for theoretical predictions. The general form of equation
equation (3.11) still applies for all these processes, but the specific cross section and
PDFs that have to be inserted can be different.

3.2 Parton distribution functions

Returning to the PDFs now. The PDFs are constructed as probabilities fi(ξ) to find
a specific parton species i inside the proton with a fraction ξ of the total proton
momentum. To be used as probabilities the PDFs have to fulfil some constraints.
Before these are worked out there are two points that need to be mentioned. As it will
turn out at leading order QCD agrees with the parton model, but calculating loops
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introduces corrections. Especially noteworthy is the logarithmic violation of Bjorken
scaling in Q2 these corrections introduce and in turn the cross section and PDFs will
be dependent on the scale Q2 of the process. Logarithmic corrections are a general
sign of loop corrections and they will be discussed in the next chapter, where the
DGLAP equations are at least motivated. Second, it is not obvious that the same
PDFs can be used in every calculation i.e. that PDFs can be regarded as universal
objects. This requires a proof of factorisation, which shows that short-range physics
like the calculation of scatterings can be separated from the long-range physics encoded
in the non-perturbative PDFs and so justifies the usage of the same PDFs in different
processes. Factorisation will be motivated briefly after the DGLAP equations.

In the constituent quark model the proton consists of one down and two up quarks, also
called the valence quarks. A PDF of down or up quarks integrated over all momentum
fractions should reproduce these quantum numbers. Since in reality there are quark-
antiquark pairs in the proton, one also has to take the PDF fq of the anti-quark into
account for the normalisation. Since the quark number is a conserved quantity in QED
and QCD this results in ∫

dξ [fu(ξ)− fu(ξ)] = 2 (3.12)

for the normalisation of the up quark PDFs. Similarly for down quarks:∫
dξ [fd(ξ)− fd(ξ)] = 1 . (3.13)

The PDFs of the four other quark flavours must obey∫
dξ [fi(ξ)− fi(ξ)] = 0 , (3.14)

where i refers to strange, charm, bottom and top quarks. There is no such sum rule
associated with the gluon PDF fg, since there is no conserved gluon number. It is
easy to get the corresponding PDFs for a neutron from this. Due to isospin symmetry
the up quark PDF of a proton should be equal to the down quark PDF of a neutron.
Additionally all PDFs have to obey a constraint due to momentum conservation. When
taking into account the momentum of all partons inside the proton one has to recover
the total momentum of the proton:

∑
j

∫
dξ [ξfj(ξ)] = 1 . (3.15)
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After working out all PDFs for the quarks one can use this last relation to restrain
the gluon PDF, assuming that all momentum not accounted for is carried by gluons.
To give a feeling for the actual momentum distribution, in a proton about 40% of
the momentum is carried by the valence quarks. Depending on scale of the process
30 − 50% of the momentum is carried by gluons and the rest of the momentum is in
sea quarks, the quark-antiquark pairs.

There are several collaborations that perform global fits to obtain the PDFs. For these
fits, data available from many different processes like ep, pp, Drell-Yan process2 etc. is
taken. For a complete list of processes and data used one should check the available
papers corresponding to the PDF set of interest. The different groups differ in the way
they parametrise their PDFs and the weight they assign to each data set for example.
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Figure 3.1: The nCTEQ15 fit for bound pro-
ton PDFs in lead. Taken from
[32].

A further complication arises when theo-
retical predictions for collisions involving
nucleons have to be calculated. Protons
inside a larger nucleus have a modified
substructure compared to free protons.
Ideally, a set of PDFs would have to be
constructed for each nucleus, where the
constraints from above are modified to
the appropriate quantum numbers. In
the context of this thesis there will be a
comparison between heavy ion collision
data from the LHC using lead and the-
ory, so a PDF for lead is needed. But
in addition to the more involved analy-
sis as a result of the increase in complex-
ity of the composite objects, there is also
less precise experimental data available.
Therefore one introduces a modification
factor for PDFs that is dependent on the
number of protons and neutrons in the
nucleus. Also some extra assumptions

2Lepton pair production in proton-proton collisions.
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have to made in order to constrain the PDFs over a large kinematic region, since this
cannot be done with the available data alone. Collaborations also use different as-
sumptions for these constraints. Nuclear PDFs (nPDFs) are therefore only available
with larger uncertainties.

For the calculations in this thesis the nCTEQ15 [32] full nuclear PDFs, which are
constructed for direct use in calculation, for lead and the equivalent free proton PDF
are used. An example for the lead PDFs can be seen in Figure 3.1. The PDFs f (A,Z)

i

of a nucleus are constructed from PDFs fp/A
i of bound protons in a nucleus A and the

PDFs fn/A
i of bound neutrons by

f
(A,Z)
i (x,Q) =

Z

A
f
p/A
i (x,Q) +

A− Z

A
f
n/A
i (x,Q) , (3.16)

where Z is the number of protons and A is the number of protons and neutrons. The
nCTEQ15 PDFs use 16 parameters for their PDFs. To encode the uncertainties of
PDFs for calculations of observables 32 error PDFs f±

k are generated, where a pair of
two error PDFs f+

k , f
−
k corresponds to the uncertainty of a single parameter. Errors

on observables dependent on PDFs can then be calculated as

∆X =
1

2

√∑
k

(
X
(
f+
k

)
−X

(
f−
k

))2
. (3.17)

3.3 DGLAP equations

At leading order, the only process that can contribute to e−p+-scattering is γ∗q → q.
Returning to equation (3.2) and defining the hadronic tensor W µν in terms of partonic
quantities Ŵ µν(z,Q) given by the matrix element |M(γ∗q → X)|2 with z ≡ Q2

2pi·q , the
form factors W1 and W2 are recovered after some calculation. Before working out
the corrections for this process it is useful to contract the hadronic tensor with the
Minkowski metric gµν to obtain the form factor W0 ≡ −gµνWµν . One can regard W0

as the cross section for the unpolarised process. For large scales one can give this form
factor as

W0(x,Q) = 4π
∑
i

Q2
i fi(x) , (3.18)



3 Deep inelastic scattering 23

which is also used as a definition of PDFs. At leading order the independence from
Q still holds. At next-to-leading order there are three diagrams that additionally con-
tribute to this process: A virtual correction diagram and two real-emission diagrams.

pi

q

pf

γ∗

pi

q

pf

pg
γ∗

pf pg

q pi

γ∗

(3.19)

The full calculation of these diagrams in d = 4 − ε dimensions is lengthy and will
not be given here; it can be found in textbooks. But there are a few results from
this calculation that are worth highlighting. After having worked out the diagrams,
one notices that the virtual diagram has a pole proportional to 1

ε2
. The same pole

exists in the real emissions as well, but to see the cancellation, one has to expand some
expressions in ε and introduce the plus functions. These are defined as

1∫
0

dz
f(z)

[1− z]+
≡

1∫
0

dz
f(z)− f(1)

1− z
(3.20)

so 1
[1−z]+

= 1
1−z

for z 6= 1. With the help of the plus function one can give the
distribution known as the DGLAP3 splitting function:

Pqq(z) = CF

[(
1 + z2

)[ 1

1− z

]
+

+
3

2
δ(1− z)

]
. (3.21)

The splitting function will return later in the context of parton showers. From the
partonic structure function one can then again find an expression for the structure
function:

W0(x,Q) = 4π
∑
i

Q2
i

1∫
x

dξ

ξ
fi(ξ)

[
δ

(
q − x

ξ

)
− αs

2π
Pqq

(
x

ξ

)(
2

ε
+ ln

µ̃2

Q2

)
+ finite

]
(3.22)

3For Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.
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The remaining pole comes from the parton level and since

1∫
0

Pqq(z) dz = 0 (3.23)

the total cross section for DIS will be finite, given by integrating W0 over x at a fixed
Q. So the physical prediction from DIS is finite, as it should be. W0 will however be
divergent at fixed x, but the difference of W0 at scales Q and Q0 will be finite:

W0(x,Q)−W0(x,Q0) = 4π
∑
i

Q2
i

1∫
x

dξ

ξ
fi(ξ)

[
αs

2π
Pqq

(
x

ξ

)
ln
Q2

Q2
0

]
. (3.24)

Since QCD is renormalisable W0(x,Q) should be finite in a full QCD calculation as
well. The last divergence would be cut off by a physical scale like the mass of a quark.
But this in turn would introduce new logarithms of the form ln mq

Q
. For processes with

scales Q� mq these logarithms would be very large, so that the difference between two
scales Q and Q0 would still be a more practical quantity. The calculation of differences
can be replaced by a calculation with renormalised quantities. For this one says that
equation (3.18) is exact at some reference scale Q0. Like before with the running
coupling, the cross section should be independent of this scale. This independence
then leads to a RGE, which governs the dependence of the PDFs on the scale µ:

µ
d

dµ
fi(x, µ) =

αs

π

1∫
x

dξ

ξ
fi(ξ, µ)Pqq

(
x

ξ

)
. (3.25)

This equation is known as the DGLAP evolution equation. The scale introduced here
is called the factorisation scale µF ; usually it will be set equal to the renormalisation
scale, so µ = µR = µF . At next-to-leading order, gluons can also be part of the initial
state, as can anti-quarks. With the probabilities to find these particles in the initial
state, all of the corresponding PDFs actually mix in the RGE. For quarks and gluons
the DGLAP equation can thus be given as:

µ
d

dµ

fi(x, µ)

fg(x, µ)

 =
∑
j

αs

π

1∫
x

dξ

ξ

Pqiqj

(
x
ξ

)
Pqig

(
x
ξ

)
Pgpj

(
x
ξ

)
Pgg

(
x
ξ

) fj(ξ, µ)
fg(ξ, µ)

 , (3.26)
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with the additional splitting functions

Pqg(z) = TF
[
z2 + (1− z)2

]
, (3.27)

Pgq(z) = CF

[
1 + (1− z2)

z

]
, (3.28)

Pgg(z) = 2CA

[
z

[1− z]+
+

1− z

z
+ z(1− z)

]
+
β0
2
δ(1− z) . (3.29)

In general these functions can be calculated as cross sections of processes like g → gg

or g → qq̄, like in [37].

3.4 Factorisation

So far everything in this chapter assumes factorisation, meaning that PDFs are univer-
sal objects. More exactly, that the cross section of any hadronic process can be written
as σ = f ⊗ H + O

(
ΛQCD

Q

)
with the PDFs f and the calculation of the hard process

H. The ⊗ denotes a convolution and also, since this separation cannot be completely
right, an error term depending on the scale of the process.
On an intuitive level one can motivate factorisation quite easily. Starting with the scale
Q of the hard process, a time scale 1/Q can be associated with this process. This scale
will be larger than the scale of internal processes in the proton. So the time scale of
the scattering is much smaller than the time scale of the interaction. Add to that the
Lorentz contraction, rendering the proton to be essentially a flat disk from the point
of view of the electron. So during the scattering the electron sees a flat disk of frozen
particles, which justifies the given notion and usage of PDFs.
Real proofs of factorisation are notoriously difficult, since it has to be shown that all
energy scales that turn up in the process are large enough at any given time and many
subtleties further obstruct the intuitive picture. And so far it could only be done for
a few select processes such as the Drell-Yan process or inclusive DIS. A rigorous proof
of the available processes would be way beyond the scope of the thesis.
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3.5 Parton shower

The perturbative picture developed so far works well for the calculation of processes
with small numbers of particles in the initial and final state, like general 2 → 2 pro-
cesses. But at high energy experiments a huge amount of particles is measured in
detectors, especially in heavy-ion collisions. These particles accumulate into cone-like
shapes called jets, streams of particles moving in roughly the same direction. The no-
tion of jets will be the topic of the next chapter. To compare theory against experimen-
tal results, Monte Carlo (MC) event generators4 are used. An important ingredient in
these MC generators is a semi-classical approximation, called the parton shower. With
the help of parton showers one can get to high multiplicity final states from an initial
2 → 2 hard process. First the general approach will be described in this chapter, which
will afterwards be formulated in a probabilistic fashion suited for MC methods.

As a start consider the real-emissions diagrams γ∗q → qg from the DGLAP section
again. Working out the cross section in four dimensions leads to

|M|2 = 2e2Q2
iCFg

2
s

(
− t̂

â
− ŝ

t̂
+

2ûQ2

ŝt̂

)
, (3.30)

with ŝ = (q + pi)
2, t̂ = (pg − pi)

2 and û = (pi − pf )
2. The cross section diverges as

ŝ or t̂ go to zero, but at fixed incoming momenta the quantity ŝ will be greater then
zero. Which leaves the divergence as t̂ goes to zero. Defining θ as the angle between
the gluon and quark in the center of mass (CMS) frame leads to

t̂ = (pg − pi)
2 = −2pg · pi = −4EgEi sin

2

(
θ

2

)
. (3.31)

So the divergence in t̂ corresponds to the angle between gluon and quark going to zero,
a so-called collinear divergence. One can then show that the emission of a gluon almost
collinear to a quark or anti-quark has a universal nature in QCD. In the collinear limit
the cross section for a real emission can always be given as

dσ (X → Y+ g) = dσ (X → Y) dt dz
1

t

[
αs

2π
CF

1 + z2

1− z
+O

(
t

Q2

)]
. (3.32)

4MC methods are generally defined as algorithms making decisions based upon comparing calculated
probabilities with random numbers.
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The variable t can be any variable; often used are the momentum transverse to the
beam direction squared p2T [47], the virtuality Q [54] or the splitting angle θ for example.
Here z stands for the energy of the daughter quark after the splitting divided by the
energy of the mother quark. Also the DGLAP splitting function Pqq (3.21) returns. The
function can be interpreted as the probability for a quark to branch. The probability
for a branching in very soft, collinear gluons is the largest, due to the growth with 1

t
,

but this soft radiation cannot be resolved by detectors. Therefore in simulations the
hardest emission is happening, or picked, first and afterwards it is evolved down to the
softest emission in a Markov chain process.
Now to get the probability R(t) to find a gluon at a specific scale t, at which the
collinear limit has to be valid, one has to integrate the splitting function over z. The
energy fraction z can neither be one nor zero; the constraints can be worked out from
kinematics, but the resulting expressions differ with the exact choice of t, so

R(t) =
αs

2π
CF

1

t

zmax(t,Q)∫
zmin(t,Q)

dz
1 + z2

1− z
. (3.33)

The Sudakov form factor ∆(t0, t) is defined as the probability to find no gluon between
the two scales t and t0. The calculation of the Sudakov factor is best done when
considering infinitesimal shifts δt of the scale t. This can be expanded in a Taylor
series ∆(t0, t+ δt) = ∆(t0, t) + δt d

dt
∆(t0, t). This also leads to

∆(t0, t+ δt) = ∆(t0, t)

1−
t+δt∫
t

dt′R(t′)

 = ∆(t0, t)−R(t)δ∆(t0, t) . (3.34)

From the two expressions a differential equation for ∆(t0, t) can be derived:

d

dt
∆(t0, t) = −R(t)∆(t0, t) . (3.35)

With the condition t0 = Q2 the solution of the differential equation is given by

∆(Q, t) = exp

−
Q2∫
t

dt′

t′

zmax∫
zmin

dz
αs

2π
CF

1 + z2

1− z

 . (3.36)
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So far, again, only the splitting of a quark into a quark and gluon was considered,
but in calculations all possible splittings have to be considered. Also, after the initial
splitting further splittings can happen. The starting scale in the form factor is then
the scale th after the splitting, down to a cut-off scale tc, which is usually of order
O
(
1GeV2). With this the Sudakov factor [36] becomes:

∆a(th, tc) = exp

−
th∫

tc

dt′

t′

zmax∫
zmin

dz
∑
b

αs

2π
Pab(z)

 , (3.37)

describing the probability that a mother parton a emits no resolvable radiation be-
tween the two scales. With this iterative procedure the many-particle final state can
be reduced to the calculation of a hard 2 → 2 process with subsequent splitting. This
framework describes how final state radiation (FSR) is generated, but it is also possible
to get radiation from the two incoming particles before the collisions. The usual strat-
egy here is to first select a hard process and then evolve the two initial partons back in
time. For this initial state radiation (ISR) the Sudakov factor has to be modified by

∆(IS)
a (th, tc, x) =

f(x, tc)

f(x, th)
∆a(th, tc) , (3.38)

where f(x, t) are the PDFs. Here one views the probability of the parton being part
of some mother parton at a higher scale. Constraints are set by the scale of the hard
scattering as the lower limit and the maximum possible scale of the parton in the
proton as the upper limit.

As closing remark for this section, the Sudakov factor performs a leading logarithmic
resummation, which sends the previously divergent cross section for the emission of
the hardest gluon at a given scale in the case t = 0 to σ = 0. More information about
the parton shower can be found in [36] and [46].

3.6 Hadronisation/Fragmentation

After calculating the hard process and evolving the initial outgoing partons via parton
shower down to a multiparticle final state, one final component is still missing. The
objects that remain after the parton shower are quarks and gluons, coloured objects.
But as previously stated, only colour-neutral objects can be observed in detectors.
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So one needs a mechanism to bind the quarks into hadrons (qqq-states) and mesons
(qq̄-states). For this, phenomenological models have to be used, since this mechanism
sets in at scales where perturbative methods break down. This mechanism is called
fragmentation or (often used interchangeably) hadronization. Technically speaking
fragmentation describes the initial formation of hadrons and mesons. These states can
afterwards still decay and hadronisation includes the decay of the heaviest meson and
baryon states down to the pseudostable states detected in experiments. One model,
the Lund string model, will be discussed briefly. Further information about the exact
implementation in PYTHIA 6 is given in their extensive manual [46].

The Lund string model is built upon the QCD potential of a quark-antiquark pair,
that together form a colour singlet. This potential can approximately be given as

VQCD(r) ≈ −4

3

αs

r
+ κr , (3.39)

where r is the distance between them and αs is the strong coupling [26]. From lattice
calculations the string tension is κ ≈ 1GeV/fm. Consider the case of a single initial
quark-antiquark pair q0q̄0 being produced in a collision. The distance between them
will grow with time after the collision, which is why the first term in the potential can
usually be ignored. This increasing distance leads to an increase in potential energy,
so that at some point a new pair q1q̄1 can be formed from the vacuum, leading to two
colour singlets q0q̄1 and q1q̄0, which is an energetically favourable configuration. This
is also referred to as string breaking. For this it is also assumed that the colour of the
produced pair match the original colour. These new pairs can then be subjected to
string breaks as well, leading to the production of many new qq̄-pairs.
What has to be considered now is which fraction z of the initial energy and longitudinal
momentum E+pz the hadron obtains. This is governed by the fragmentation function
f(z), which gives a probability for a fraction z. In the program a choice has to be made
whether to start the fragmentation process from the quark or antiquark, but since this
is arbitrary the final result should not depend on this. With this symmetry condition
f(z) can be given as the Lund symmetric fragmentation function:

f(z) ∝ 1

z
zaα
(
1− z

z

)aβ

exp

(
−bm

2
⊥
z

)
. (3.40)
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Where there is an a for each flavour, while usually picking all aα,β to be the same, and
m⊥ = m2+ p2x+ p2y is the transverse mass, with the direction of movement being along
the z-axis.
To obey local conservation of flavour a qq̄-pair has to be formed at one point. This
is strictly speaking only possible if the pair has no transverse momentum or mass;
otherwise they would have to be created at a certain distance, so that the field energy
between them can be transformed into the transverse masses. To obtain pairs with a
(common) transverse momentum tunneling can be used, the pair is then created at one
point to obey flavour conservation and instantly tunneled to the appropriate distance.
The corresponding probability can be given as

exp

(
−πm

2
⊥

κ

)
= exp

(
−πm

2

κ

)
exp

(
−πp

2
⊥
κ

)
, (3.41)

where p⊥ is the transverse momentum.
After all the flavours of the qq̄-pairs have been chosen, they have to be assigned to
a meson multiplet. In PYTHIA 6 six meson multiplets, characterised by the valence
quark spin S and internal angular momentum L coupling to J = L+ S, are included.
First the spin is chosen according to a probability based on the quark content of the
meson. The default behaviour then is to assign L = 0, but it is possible to produce
L = 1 if wished. Then there are four additional probabilities, corresponding to the
four possible states with L = 1. Baryons, which contain three quarks, have to also
be included in this procedure somehow, since they are observed in experiments. But
the production of baryons does not follow as nicely from the picture of the Lund
string model, which inserts only new qq̄-pairs. There is no unique generalisation to
include baryons. There are three scenarios in PYTHIA: diquarks, simple and advanced
popcorn. The diquark scenario just states, that instead of a quark-pair a diquark-pair
in a colour triplet could be produced and subsequently form baryons. This happens
basically as before, where probabilities to produce the various diquarks are given. In
the popcorn scenarios the basic idea is that the formed quarkpair does not need to
have the same colour as the original pair in every case. If the new pair also drifts
apart a second pair can be formed between them, leading to configurations in which
two baryons can be formed.
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3.7 Glauber model

The Glauber model was originally formulated as an approach to quantum-mechanical
scattering with composite particles. For usage in relativistic heavy-ion physics it is
nowadays mostly used with regards to nuclear geometry. By introducing quantities
like the number of participants Npart or the number of binary nucleon-nucleon colli-
sions Ncoll it makes comparisons between different reaction systems or measurements
in different centrality bins possible. The notion of centrality will be briefly discussed
later. The main relevance for this thesis is the application of the Glauber model to the
particle production in pp and PbPb collisions. Due to factorisation, the only difference
between collisions of the two systems should be an increase in parton flux for the PbPb
collisions. This increase should correspond to a scaling of the particle yield with Ncoll,
the number of binary collisions. At least in the absence of any nuclear effects, violations
of this relation are used to study the properties of the medium formed during heavy-ion
collisions. More details on this will be given in chapter 5. For a more extensive review
of the Glauber model see [35].

The collision of two nuclei can be formulated in terms of the interactions of individual
constituent nucleons. This is done in the optical limit, meaning the high energy regime.
There the overall phase shift of the collision is the sum over all phase shifts from two-
nucleon interactions. The phase shift can ne related to a cross section with the optical
theorem. The model is based on some assumptions, namely that the nucleons can
move independently inside the nucleus and that the nucleus is large compared to the
nucleon-nucleon force.
Take now two heavy ions colliding at relativistic speed with an impact parameter b, a
vector characterising the distance between the center of the projectile B and the target
A. For a sketch of the situation see Figure 3.2. This choice of naming is also used for
experiments with two colliding beams. Consider a tube located at a displacement s

from the center of the target. The probability to find a nucleon per unit transverse
area in this tube is given by:

TA(s) =

∫
ρA(s, zA) dzA , (3.42)

where ρA is the probability per unit volume for finding the nucleon at (s, z). There
will be an overlap between this target tube and a tube in the projectile, displaced from
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Figure 3.2: Sketch of the optical Glauber model geometry. Image taken from [35].

the center by s− b. The same expression holds for finding a nucleon in the projectile
tube. With the help of these probabilities one can define the thickness function T (b),
giving the joint probability per unit area of nucleons being in the target and projectile
tubes of differential area d2s:

TAB(b) =

∫
TA(s)TB(s− b) d2s (3.43)

T (b) can be interpreted as the overlap area in which a nucleon from A can interact with
a nucleon from B. The probability of such an interaction happening can then be given
by T (b)σNN

inel, were σNN
inel is the inelastic nucleon-nucleon cross section. As σNN

inel entails
processes with low momentum transfers it cannot be calculated in pQCD and has to
be measured in experiments. With the probability of one nucleon-nucleon interaction
the probability of having n such interactions between nucleus A and B can be given by
a binomial distribution:

P (n,b) =

(
AB

n

)[
TAB(b)σ

NN
inel

]n[
1− TAB(b)σ

NN
inel

]AB−n
. (3.44)

Concerning the notation, a nucleus A consists of A nucleons and a nucleus B contains
B nucleons. From this a total probability for an interaction between A and B is given
by

d2σA+B
inel

db2
≡ pA+B

inel (b) =
A+B∑
n=1

P (n,b) = 1−
[
1− TAB(b)σ

NN
inel

]AB
. (3.45)



3 Deep inelastic scattering 33

For unpolarised scatterings the impact parameter can be given by a scalar distance.
The total cross section can then be found through

σA+B
inel =

∞∫
0

2πb
{
1−

[
1− TAB(b)σ

NN
inel

]AB
}
db . (3.46)

The total number of nucleon-nucleon collisions can be calculated as

Ncoll(b) =
AB∑
n=1

nP (n, b) = AB TAB(b)σ
NN
inel . (3.47)

Lastly the number of participants, or the number of wounded nucleons (i.e. the number
of nucleons that interact from A and B at impact parameter b) is given by

Npart =A

∫
TA(s)

{
1−

[
1− TB(s− b)σNN

inel

]B}
d2s+

B

∫
TB(s− b)

{
1−

[
1− TA(s)σ

NN
inel

]A}
d2s . (3.48)

These quantities are most often calculated in Monte Carlo implementations. There
a discrete collection of nucleons is generated according to the probability ρA in three
dimensions, as opposed to the continuous distributions used in the optical limit. Af-
terwards a random impact parameter is chosen from the distribution dσ

db
= 2πb. The

nucleons now travel in straight lines along the beam axis. Also σNN
inel is assumed to be

independent of prior collisions of a given nucleon. A collision then takes place, in the
simplest models, if the distance d between the two nucleons, in the plane orthogonal
to the beam axis, satisfies d ≤

√
σNN
inel/π.

These Glauber quantities are not directly measurable quantities though. But mean
values for them can be calculated in MC simulations and afterwards be connected
to measurements from an experiment. For that one defines centrality classes in the
measured distribution and the calculated distribution. The distributions share the
same average Glauber quantities per centrality bin. The underlying assumption of
centrality classes is that the impact parameter is directly and monotonically related to
the number of produced particles. For large impact parameters one expects to find only
a small amount of particles at mid rapidity and a large amount of particles in the beam
direction. These collisions are called peripheral. Whereas for small impact parameters,
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ch

Figure 3.3: Illustration of the relation between the Glauber quantities and a final state
observable. Taken from [35].

called central collisions, the reverse applies. In particle physics the rapidity, with the
momentum along the beam axis pz, is defined as

y =
1

2
ln
E + pz
E − pz

. (3.49)

Rapidity defined this way gives the boost needed along the beam axis from the lab
frame to the frame in which the particle moves exactly perpendicular to the beam
axis. Also the difference between the rapidities of two particles is invariant under
Lorentz boosts. Alternatively the pseudorapidity η = ln

[
tan θ

2

]
is often used, since it

is easier to measure in experiment. For massless particles or very high energies this is
equivalent to the rapidity. For an illustration of centrality see Figure 3.3, which shows
the relation between measurable quantities and Glauber parameters. The binning in
centrality classes is done after an ensemble of events has been measured. Then the
total integral of the distribution can be calculated. A centrality class is defined as a
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fraction of the total integral. A centrality of 10 − 20% for example is defined by the
boundaries which satisfy

n10∫
∞

dNevt

dNch
dNch

0∫
∞

dNevt

dNch
dNch

= 0.1 and

n20∫
∞

dNevt

dNch
dNch

0∫
∞

dNevt

dNch
dNch

= 0.2 , (3.50)

where dNevt

dNch
is used as an example distribution corresponding to the number of charged

particles produced in an event. These boundaries do not need to be identical for the
measured and simulated distributions.
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4 Jets

After establishing the theoretical tools to calculate predictions for scattering exper-
iments with high particle multiplicities in the final state, it is now time to expand
on the notion of jets. A jet is an obvious structure in detectors, consisting of many
particles travelling in roughly the same direction. With this picture of jets a relation
to the initial parton seems intuitive. The radiation from the initial parton due to the
shower will mostly still travel in the same direction and by gathering all energies from
the particles in a jet one relates this to the original parton and can therefore study
parton distributions in the proton for example. Another usage of jets is the identifica-
tion of decaying heavy particles. A jet can also stem from the additional emission of
the gluon; the rate of jet production can then give information about the underlying
process. One should keep in mind though that the identification of a jet coming from a
single parton is ambiguous. Still the measurement of inclusive jet properties and also
of the substructure are important sources of information. For a more extensive review
see [38].

A jet is not a uniquely defined object; there are many different definitions of jets,
mostly due to them being an essential part of many varied experiments over the last
30 years. It is not obvious what the ”perfect” definition of a jet should be. So a jet
definition is a set of rules by which criteria to gather particles into a jet and how to
assign a momentum to the final jet. There are some agreed-upon guidelines of what
general properties a jet definition should posses. These are gathered in the ”Snowmass
accord”, which reads as follows:

1. Simple to implement in an experimental analysis.

2. Simple to implement in the theoretical calculation.

3. Defined at any order of perturbation theory.
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4. Yields finite cross sections at any order of perturbation theory.

5. Yields a cross section that is relatively insensitive to hadronisation.

Jet definitions can be separated into two distinct categories: cone algorithms and se-
quential recombination algorithms. The first kind takes a cone of given radius R and
uses the fact that branching and hadronisation leave the energy flow mostly unchanged.
The radius R is a measure of distance in the plane spanned by the azimuthal angle φ
and the (pseudo-) rapidity (η) y. Cone algorithms are just mentioned for complete-
ness and will not be discussed here. The different kinds of sequential recombination
algorithms generally work in a similar fashion. Some sort of distance measure is intro-
duced, a pair of particles that is closest with regards to this measure is then combined
into a single particle. This process is repeated until only particles remain that fulfil a
threshold condition; the remaining objects are called the jets. So sequential recombi-
nation can be seen as ”reversing” the probabilistic splitting generated by the parton
shower. An important factor in determining which jet algorithm to use was the differ-
ence in computation time. In the past, most sequential recombination algorithms were
not usable for jet clustering of events with many particles, since their computation
time scaled with the number of particles N3. But with improvements in numerical
techniques this has mostly been resolved: the anti-kT algorithm now only scales with
N lnN . A further important property of jet algorithms is the infrared and collinear
(IRC) safety. An algorithm is IRC safe if the introduction of an arbitrary amount of
”ghost” particles, particles with basically no energy or momentum, to the event does
not change the properties of the jet, like its momentum or its active area.

The anti-kT algorithm is an example of a sequential recombination algorithm. It will
be used later as the jet definition in calculations. This algorithm is IRC safe and has
the nice property to produce circular jets around a hard seed. A comparison between
different jet algorithms and the shapes they produce can be seen in Figure 4.1. The
anti-kT algorithm introduces two distance measures:

dij = min
(
p−2
Ti , p

−2
Tj

)∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2 , (4.1)

diB = p−2
Ti , (4.2)
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Figure 4.1: Example of clustering for a generated parton-level event with four different
jet algorithms and an ensemble of soft ”ghosts”. The shaded area corre-
sponds to the active area of the jet.Taken from [38].
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where dij is a dimensionful distance between two particles i and j, given by the
minimum of their squared transverse momentum and their distance in the rapidity-
azimuthal angle plane, and diB is a distance used for defining final jets. These distance
measures are invariant under longitudinal boosts. The algorithm then works as follows:

1. Work out all the dij and diB in an event.

2. Find the minimum of all distance measures.

3. If this is a dij, combine the particles i and j into a new particle and return to
step 1.

4. If this is a diB declare i to be a jet and remove it from the particle list. Return
to step 1.

5. Stop when no particles remain.

In this algorithm jets are fundamentally determined by the parameter R; if no particle
remains in a distance R then the particle will become a jet. Also all particles of the
event will be included in a jet. This can lead to arbitrary soft particles becoming jets,
therefore it is common to also specify a minimum amount of transversal momentum
a jet should have. To give this momentum to a jet, a recombination scheme has to
be used. Most widely used is the E-scheme or the four-vector recombination scheme.
When merging two particles their corresponding four-vectors are just added. For com-
parison between experiment and calculation the same jet algorithm has to be used.
The implementation of the anti-kT algorithm used later is provided by the FastJet
package [17].
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5 Quark-gluon plasma

After having worked out the behaviour of the fundamental building blocks of matter
and being able to compare theoretical predictions to experimental measurements there
are several questions one might ask: are there other states of matter and if these exist,
how do transitions between these states happen? Our general understand of physics
works well for the densities of matter we encounter around us, from the 1 nucleon/m3

density of the universe to the density of heavy nuclei of about 1044 nucleon/m3 . But
we know of scenarios where the density should be much larger than this, for example
in the early universe. Due to the expansion the universe tends towards lower densities,
but shortly after the Big Bang there should have been a state of extreme density,
by reversing this logic and going to higher density states of the universe if time runs
backwards. And this very early state of the universe can correspond to a new state
of matter. That such a new state should emerge at some point can be illustrated
quite intuitively. Starting from a gas of nucleons, which usually possesses densities of
about 1030 nucleon/m3 , as the low-density state of matter, the nucleons of the gas can
form nuclei, where heavy nuclei posses a density of 1044 nucleon/m3 , like mentioned
before. A schematic view of this can be seen in Figure 5.1, where the gas or atomic
state corresponds to (a) and a heavy nucleus to (b). Increasing the density further
leads to quark matter (c); the transitions happens, as it turns out, at densities of
1045 nucleon/m3 . Using the fact that nuclei possesses a substructure gives an intuitive
understanding of why this happens. With increasing density the constituents of the
nuclei come close to one another and at some point these constituents ”forget” to
which nucleus they originally belonged, forming an area of ”free” quarks and gluons,
the quark-gluon plasma (QGP). Of course quarks and gluons are not really free ,
rather the amount of other coloured particles in the direct vicinity renders the notion
of bound states in this area obsolete. This is also enhanced by the effect of charge
screening, known from solid state physics, which reduces the range of the strong force
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(a) (b) (c)
Figure 5.1: Schematic view for (a) atomic, (b) nuclear and (c) quark matter, corre-

sponding to an increase in density. Taken from [39].

exponentially with the colour charge density, suppressing the development of long range
effects.

The exact nature of this transition is still unknown though and under active inves-
tigation. An important source of information are calculations on the lattice. These
calculations are e.g. calculations of the energy density with regard to the dependence on
temperature. From the understanding of the running coupling it should be no surprise
that this transition can also happen after a sufficient increase in temperature. There a
significant growth in energy density is observed at temperatures around 170MeV, which
is in good agreement with values obtained from experimental observations. There are
only few degrees of freedom in the low-temperature regime, corresponding to bound
matter. The sudden increase in density corresponds to an increase in degrees of free-
dom. An in-depth discussion about phase transitions would require to involve renor-
malisation, scaling critical exponents and corresponding universality classes and will
not be done here. Also there is debate about exactly what kind of medium is formed
in experiments. Competing models are a plasma of quarks and gluons or a colour glass
condensate. A more detailed account can be found here [39]. For the purpose of this
thesis it is sufficient to state that a transitions happens at all.
In experiments the creation of this new state of matter is achieved in relativistic heavy
nucleus collisions. For this a large amount of energy is deposited in a small area during
a collision, heating the system up. This energy also leads to the production of new
particles; one can show that after a certain energy threshold every further increase in
energy directly goes into the production of new particles and not into further heating
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the system, so a very high density is achieved. The next section will be a brief review of
a model governing the spatial-temporal evolution of the QGP. After having established
a model for the evolution of the medium, there will be a discussion about what can be
learned about this medium from experiment. The focus will be put onto jet quenching,
but other aspects will be briefly mentioned.

5.1 Bjorken Model

The Bjorken model is a 1D model of the space-time evolution in the central rapidity
region after nucleus-nucleus collisions [14]. It formulates the evolution of the energy
density in the context of a Landau hydrodynamic model. For hydrodynamics to be
applicable it assumes that the medium reaches thermal equilibrium shortly after the
collision, which is after 1 fm. Also assumed is the existence of a symmetric central-
plateau, so that particle production is a function of rapidity. This implies that the
evolution of the system is the same in every center-of-mass frame. In these frames
the nuclei are flat disks or ”pancakes”, due to Lorentz contraction, receding from
the collision at nearly the speed of light. So a symmetry is imposed on the initial
conditions, which is respected by the hydrodynamic equation. Also implied by this is
that the initial energy density is Lorentz-invariant and so is then necessarily the time
evolution of the medium. The fluid should expand longitudinally and homogeneously
near the collision axis z of the heavy nuclei in this model. While the fluid is at rest
in the center of the collision, it should pick up a velocity z/t when moving away from
this point, where t is the time after the collision. Of course this simplified approach
only holds for short times scales. After some time, about 5 − 10 fm, transversal flows
and a three-dimensional expansion take place, which leads to a rapid cooling of the
medium. It is assumed that the medium very quickly goes out of thermal equilibrium
at this stage. A complicated behaviour of (unstable) flows is expected here and pion
production could take place in outer, cooler layers of the fluid. This behaviour is not
described by the Bjorken model.
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The applicability of hydrodynamics means that a local energy density ε(x), pres-
sure p(x), temperature T = β−1(x) and four-velocity uµ(x) exist. For the velocity
u2 = uµu

µ = 1 holds. With this, the energy-momentum tensor can be given as:

Tµν = (ε+ p)uµuν − gµνp . (5.1)

The tensor is a conserved quantity

dTµν
dxµ

= 0 . (5.2)

Natural variables for this problem are the proper time τ =
√
t2 − z2 and the rapidity

y. But since the initial conditions are invariant under boosts, there should be no
dependence on the later, therefore the evolution is completely governed by the proper
time τ . The variables and their initial conditions can thus be given as:

ε = ε(τ) with ε(τ0) = ε0 , (5.3)

uµ =
x̃µ
τ

with uµ(τ0) =
1

τ0
(t, 0, 0, z) ≡ x̃µ

τ0
. (5.4)

Making use of the derivatives of the proper time and velocity with respect to xµ one
can simplify equation (5.1) to

dε

dτ
= −(ε+ p)

τ
. (5.5)

Requiring that the trace of Tµν is positive implies that ε ≥ 3p, which leads to

(τ0
τ

) 4
3 ≤ ε(τ)

ε(τ0)
≤
(τ0
τ

)
(5.6)

for equation (5.5). An ideal relativistic fluid has ε = 3p and therefore a proper-
time dependence of τ− 4

3 . Another feature of the hydrodynamic Landau model is the
conservation of entropy S. An entropy density can be given as s = S

V
= β(ε+ p) with

a corresponding entropy current sµ ≡ suµ. A local conservation

dsµ
dxµ

= 0 (5.7)

is obtained by contracting equation (5.2) with uν , which also gives

ds

dτ
= −s

τ
. (5.8)
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This equation governs the proper-time dependence of the entropy density, leading to

s(τ) = s(τ0)
τ0
τ
. (5.9)

The model could thus be defined by giving an initial entropy density. The time de-
pendence of the fluid can also be calculated. Starting again from equation (5.5) and
expanding the derivative yields:

dε

dτ
=

dε

dp

dp

dT

dT

dτ
= −(ε+ p)

τ
= −Ts

τ
. (5.10)

It is known from thermodynamics that the pressure is related to the free energy F and
the volume V via p = −F

V
. With the entropy S = − dF

dT

∣∣
V

it follows that

dp

dT
=
S

V
= s . (5.11)

Using the sound velocity
dε

dp
=

1

v2s
(5.12)

and putting all parts into equation (5.10) yields

1

T

dT

dτ
= −v

2
s

τ
(5.13)

for the time dependence of the temperature. The solution of this equation is given by

T (τ) = T (τ0)
(τ0
τ

)v2s
. (5.14)

The velocity of sound depends on the exact equation of state. In the context of this
model it is usually given by v2s ≤ 1

3
, which results in a slow decrease of temperature

during this phase of one-dimensional expansion.

5.2 Probing the QGP

Having established an intuitive view of the medium formation in heavy-ion collisions
and a model for the expansion of this medium, the question of how to extract actual
information about this medium arises naturally [39]. For probing the internal structure
of this medium we need to resolve its substructure, so a probe with wave-length λ < L
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is needed, which in the case of a hot QGP coincides with λ < 1/T . For this approach a
possible probe are hard electromagnetic radiation, consisting of photons or heavy lepton
pairs. Since they only interact electromagnetically these will pass the medium relatively
unscathed and information about the conditions of the formation can be extracted
from them. But especially in the case of photons, there are many additional competing
sources of photon production, like particle-antiparticle annihilation or just thermal
radiation, since every object is hotter than the vacuum and thus emits radiation, and
pion decays. The contributions of each process have to be taken into account. The
production rate of heavy quark resonances like J/Ψ or Υ can also be used as a probe,
comparing the cases with and without medium. Due to screening effects in the medium
these resonances can be dissolved, if the temperature is high enough, reducing the rate
of production. Lastly the energy loss of jets resulting from strongly interacting partons,
called jet quenching, gives information about the medium. The last mechanism will be
the main focus now. One additional approach deserves mention. The outermost layers
of the plasma are colder than the interior of the plasma, so hadronisation takes place
here first. Measuring interferences of identical hadronic particles in “HBT” detector
set-ups allows estimates of source sizes. The source size should be dependent on the
initial temperature of the medium, since a hotter medium needs to expand more to
cool down. The initial temperature is connected to the initial energy density, which
in turn is related to the collision energy, meaning that higher collision energies should
result in larger source sizes. This generally agrees with estimates from experiments.

Returning now to jet quenching. After the formation of the QGP it is reasonable to
assume that any initial quark or gluon of the hard event passes through several fm
of QGP, before leaving and hadronising. The basic picture here is the same as an
electric charge passing through matter with other (bound) charges. With sufficiently
high energy, direct scatterings between the charges take place and result in energy loss
due to the radiation of photons. In the familiar energy regime from e.g. experimental
exercises, the energy of the photon is on average ω ∼ E, leading to an energy loss per
unit length of

− dE

dz
∼ E (5.15)

assuming successive scatterings of a probabilistic nature. But this breaks down at
high energies, where the scatterings cannot be viewed as n independent scatterings.
Destructive interference between the photon emissions arises, which for the case of a



5 Quark-gluon plasma 46

crystal leads to the complete cancellation of all photon emissions except for the first
and last photon. This is called the Landau-Pomeranchuk-Migdal (LPM) effect, which
actually reduces the radiative energy loss. An adequate effect can be derived for QCD,
but since the QGP is not a crystal a total cancellation should not occur. Only a general
sketch of the LPM effect will be given here. The basic idea is to look at the time scale
tc that is needed for the emission of the gluon after a scattering. This can be given as

tc =
E

2P ′k
, (5.16)

where E is the energy, P ′ is the momentum of the colour charge after the gluon emission
and k is the gluon momentum. Of interest is the transversal momentum of the gluon,
while still requiring kL � kT (that the longitudinal momentum is much larger); this
leads to

tc '
ω

k2T
. (5.17)

Any scattering taking place during this formation time will interfere destructively,
meaning that only one gluon will be emitted. The formation time can be associated
with a coherence length zc, or with any scattering taking place in this distance inter-
fering destructively. The same proportionality as in equation (5.16) follows. Still, for
each scattering the charge will pick up a kT-kick proportional to the mean free path
length λ of the medium and the screening mass µ:

k2T ' µ2 zc
λ
. (5.18)

With this one can give the formation length in terms of the mean free path and medium
mass as

zc '

√
λ

µ2
ω . (5.19)

The distinction between coherent and incoherent regime can now be given by comparing
the two length scales zc and λ. For λ > zc the scatterings are incoherent and can be
viewed as n scatterings leading to

− dE

dz
' 3αs

π

E

λ
, (5.20)
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while for λ < zc there is coherent scattering with the destructive interference, leading
to the LPM bulk expression

− dE

dz
' 3αs

π

√
µ2E

λ
. (5.21)

The thickness L of the medium has also be taken into account, since for L = zc only
one gluon can be emitted in the coherent region. For a fixed energy one can thus give
a critical thickness as Lc =

√
Eλ
µ2 . The bulk LPM behaviour takes place for the case

L > Lc, while for L < Lc there is still energy loss, since scatterings are taking place,
albeit reduced.
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6 JEWEL

Final state parton showers should evolve for several fm/c, which is comparable to the
extension of the QGP in heavy-ion collisions. The fundamental idea of parton shower
evolution in a vacuum has been talked about in chapter 3. In the presence of a QGP this
evolution has to be modified to reproduce jet quenching behaviour. One possible model
of this modification is given in the MC event generator JEWEL (Jet Evolution With
Energy Loss), which is used for the calculations in the next chapter. Here interactions
of the partons with constituents of the medium are treated as standard 2 → 2 QCD
processes, like the initial hard interaction. Coupling this with the parton shower leads
to a framework where energy loss due to scattering and radiation, i.e. bremsstrahlung,
takes place naturally and in a probabilistic fashion. A non-Abelian version of the
LPM effect is also included in JEWEL. Details of the implementation will be discussed
briefly in the following. For further details and references see the corresponding JEWEL
publications [50] [51] [52] [53] [54] and [55].

6.1 Process Generation

The event generation with JEWEL takes place in three steps:

1. A hard matrix-element is generated by PYTHIA 6.4 according to the specified
phase space cuts. PYTHIA also generates the virtuality-ordered initial-state
radiation. Multi-parton interactions and the calculation of the underlying event
are turned off.

2. JEWEL takes the outgoing hard partons and chooses an impact parameter. Af-
terwards the final state parton shower is generated
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3. The final state is handed back to PYTHIA for hadronisation and written in the
event record.

There is an option to run JEWEL without a medium. In this case the three steps are
also followed, but the parton shower reduces to the virtuality-ordered parton shower
in the vacuum. This is useful to generate pp-baselines for the process of interest.

6.2 Medium Modifications

While there are some theoretical insights about jet evolution in a dense and strongly
interacting hot plasma these are mostly restrained to some limiting case, like the high
energy eikonal limit for example. In general the kinematic constraints for these insights
to be valid cannot be assumed to hold for the full evolution of a jet in the plasma.
Therefore some assumptions are needed to construct a framework for full jet evolution.
The base assumptions of JEWEL are:

1. The jet can resolve individual partons of the medium, so the medium can be
viewed as a collection of partons with a distribution in phase space. Factorisation
holds for all scatterings of a jet with a parton of the medium.

2. Many scatterings between jet and medium will be soft. A continuation of the
QCD matrix elements into the infra-red region can describe the dominating effect
of these soft scatterings.

3. Emissions can be attributed a formation time. JEWEL will discriminate between
competing sources of radiation based on the associated emission times.

4. The basic physical picture of the LPM effect, which is formally derived in the
eikonal limit, also holds in the non-eikonal region.

As mentioned before, in the case that no medium is generated JEWEL is just a nor-
mal parton shower. In the medium, scatterings can take place and these secondary
scatterings are treated like the initial hard scattering. What happens when a parton
associated with a parton shower that is not finalised scatters in the medium is governed
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by formation times. The formation is dependent on the emitting parton’s energy E
and virtuality Q:

τ =
E

Q2
. (6.1)

If a parton is due to split at a scale Q1 on a timescale τ1 and simultaneously or shortly
before that a scattering at scale ts2 takes place, then JEWEL initiates a hypothetical
parton shower with starting scale ts2. If this hypothetical shower does not produce
radiation it is discarded and the splitting at t1 takes place. If the hypothetical shower
produces radiation at a scale t2 with the corresponding time scale t2 a comparison
between the scales t1 and t2 takes place. The splitting associated with the shorter
formation is chosen, while the other one is discarded and the parton shower evolution
continues normally until the next rescattering happens. Also the exact kinematic of
every splitting in the medium is directly calculated, which for the vacuum case com-
plicates the calculation, but is necessary to avoid difficulties related to the treatment
of possible rescatterings.
Though to treat the rescattering in the medium like the 2 → 2 hard process with
parton showers some notion of PDF is required to correctly treat initial-state radia-
tion. But the partons of the medium were not constituents of an incoming nucleus
before the scattering; the same holds for the parton of the shower evolution. Therefore
JEWEL invokes the notion of ”partonic PDFs”, which give a density of partons inside
of partons. These are constructed in a way that a cut-off scale Qc is introduced. No
radiation is possible for processes at or below this scale. Above the scale Qc radiation
can be generated, so one can think of this as sort of an resolution scale. The partonic
PDFs are computed with the DGLAP equation obeying the boundary condition

f j
i (x,Q

2
c) =

δ(1− x) if i = j

0 if i 6= j
. (6.2)

So elastic processes, inelastic processes with many particle final states and scatterings
with bremsstrahlung can be generated by the same process.
Since many interactions in the medium will be soft, an infra-red regulator is introduced
to the matrix element. The cross section for 2 → 2 processes is given as

σi(E, T ) =

Q̂2
max(E,T )∫
0

dQ̂2

xmax(Q̂2)∫
xmin(Q̂2)

dx
∑

j∈q,q̄,g

f i
j(x, Q̂

2)
dσ̂j

dQ̂2
. (6.3)
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The maximum momentum transfer Q̂2
max = 2ms(T )[Ep −mp] is determined by the

initial kinematics, where ms(T ) is the temperature-dependent mass of the medium
parton and Ep and mp are the energy and the (virtual) mass of the projectile parton.
The boundaries on x are given by xmin(Q̂

2) = Qc

4Q̂2
and xmax(Q̂

2) = 1 − Qc

4Q̂2
. The

partonic cross sections are regularised by a Debye mass µD ≈ 3T :

dσ̂

dQ̂2
= CR

π

ŝ2
α2
s(Q̂

2 + µ2
D)
ŝ2 + (ŝ− Q̂2)2

(Q̂2 + µ2
D)

2
→ CR2πα

2
s(Q̂

2 + µ2
D)

1

(Q̂2 + µ2
D)

2
, (6.4)

where CR = 4
9

for quark-quark, CR = 1 for quark-gluon and CR = 9
4

for gluon-gluon
scattering.
Now only the implementation of the LPM in JEWEL is left. This is done in a prob-
abilistic fashion, meaning that, like with any other emission, the gluon emission is
associated with a formation time τ =

k2T
2ω

, where ω is the energy of the gluon. Ad-
ditional scatterings taking place during this time act coherently, meaning their mo-
mentum transfers q⊥ are added in a vector sum to give the total momentum transfer
Q⊥ =

∑
i q⊥,i. After every scattering Q⊥ and kT are calculated and the formation

time is updated accordingly. When the last scattering is still within this update time,
counted from the first scattering, it is included, otherwise rejected. When there are no
further coherent scatterings the emission of the gluon is accepted with a probability of

1
Nscat

, where Nscat is the number of coherent scatterings. There is one complication in
the non-eikonal limit, namely the formation there is not related to the scale ts of the
momentum transfer but to the scale of the emission, which can be between that and the
cut-off scale tc. Now considering the scale ts1 before the last scattering, the scale ts2 after
the last scattering, including the momentum transfer, may now be larger or smaller
than before the scattering, since the momentum transfer is added vectorially. Since
the scale before the scattering might be a scale in a parton shower one has to correct
the phase space, emission probability and account for possible existing radiation at a
scale t1 when updating this scale. The different cases are

• ts2 < tc: No radiation is possible, existing radiation is rejected.

• existing radiation, ts2 > ts1: The emission scale might have to redetermined. The
old scale is kept with a probability given by the Sudakov form factor ∆(ts2, t

s
1).

Otherwise the new scale t2 from this interval is chosen.
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• existing radiation, ts1 > ts2 > tc: The existing emission is rejected with a probabil-
ity of (1−∆(ts1, tc))/(1−∆(ts2, tc)). If it is not rejected but the scale t1 is larger
than ts2, a new scale from the interval has to be chosen.

• no existing radiation, ts2 > ts1: A new emission with probability 1 − ∆(ts2, t
s
1) is

chosen at a scale t2 between the scales before and after the scattering.

• no existing radiation, ts1 > ts2 > tc: Nothing happens in this case, because the
probability of emission is smaller and nothing has to be reweighted.

JEWEL uses a Bjorken model for the evolution of the medium. The the initial energy
density εi is related to the initial temperature Ti at the proper formation time τi by
εi ∝ T 4

i . Depending on the centrality of the collision this is further modified by

ε(x, y, b, τi) = εi
npart(x, y, b)

〈npart〉
(b = 0) with 〈npart〉(b = 0) ≈ 2A

πRA

, (6.5)

where npart is the density of participating nucleons in the transversal plane and b the
impact parameter. This leads to a decrease of initial temperature or energy density
with centrality. Also symmetric A + A-nuclei collisions are assumed. The default
critical temperature is given by Tc = 170MeV; scatterings stop when the temperature
drops below this value.

6.3 Background subtraction

In experiments there is a large background activity in heavy-ion collisions. Estimates
of these backgrounds are calculated and afterwards they are subtracted from the mea-
sured jets, to obtain the spectrum of the ”true” jets. While JEWEL does not simulate
the underlying events, the way it handles the recoil partners of the hard partons in
the medium requires a subtraction procedure to correct jets as well. For more details
on this see [33]. If a recoil happens, the parton from the medium is, without further
interaction in the medium, taken into the colour string and included in the hadroni-
sation process. The momentum of this parton then has two components, its original
thermal momentum and the momentum transferred in the scattering. Only the latter
component contains information about medium responses and the thermal component
has to be subtracted from the jets. In the calculations the subtraction method 4Mom-
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Figure 6.1: Comparison of the jet yield scaled by Ncoll = 1501 (left) and 743 (right)
calculated with and without the 4MomSub algorithm, at √sNN = 2.76TeV
and a jet-rapidity of |η| < 0.5 for the centrality bins 0 − 10% (left) and
10− 30% (right). The anti-kT algorithm with R = 0.2 was used. The data
points are taken from [8].

Sub from the referenced paper was used, which exactly removes all thermal momenta.
To do this two things have to be done. First, all thermal momenta of recoil partners
have to be stored in the event record and second, a large set of ”ghosts” has to be
introduced. As mentioned before, these ghosts do not change the jet’s momentum or
structure, since they are IRC safe. But they make the matching of a thermal momen-
tum with its corresponding jet in the rapidity-azimuthal angle plane easier, since they
inflate the number of particles belonging to each jet and thus make the area of the jet
more concise.

The 4MomSub algorithm proceeds as follows:

1. Cluster all particles into jets.

2. Find all thermal momenta in the final state (HepMC status code 3).

3. For each jet find all the thermal momenta within a distance ∆R < 10−5 of a jet
constituent.

4. Sum up all the thermal momenta for each given jet.



6 JEWEL 54

5. Subtract the sum of thermal momenta from the jet’s four momentum to obtain
the corrected jets.

6. Jet observables can now be calculated with the corrected four-momenta.

A comparison between the jet yield in PbPb-collision with and without the use of the
algorithm can be seen in Figure 6.1.
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7 Experimental data of jet production
in lead-lead collisions from the LHC

This chapter provides a brief overview of published papers about lead-lead collisions
(PbPb) and measurements of jet properties from the main experiments at the LHC.
For completeness’ sake we first gather some definitions of variables used in the table1

and clarify some notations.

Generally the transverse momentum will be called pT. A number in the pT-column
that is written like 120(50) signifies cuts on dijet systems. The first number is the
requirement on the leading jet’s transverse momentum called pT1, the second on the
subleading jet’s called pT2. The jet mass is called m. The rapidity is denoted by y, the
pseudorapidity by η and ϕ is the azimuthal angle. Now for some observables, starting
with the dijet momentum balance Aj. It is calculated as:

Aj =
pT1 − pT2

pT1 + pT2

. (7.1)

The nuclear modification factor RAA is defined as the jet yield N in PbPb-collisions
divided by the differential cross section in pp-collisions scaled by TAA :

RAA =

1
Nevt

d2N
dpT dy

< TAA >
d2σ

dpT dy

. (7.2)

1One should check the exact definition used in the specific paper of interest. Also one should in any
case check the exact cuts and if further selection criteria are applied, like e.g. particle tracks with
a minimum pT in a jet.



7 Experimental data of jet production in lead-lead collisions from the LHC 56

Angularity or girth g is defined as the the sum over the pTi of all jet constituents
divided by the jet pT times the distance ∆Rjet,i in the (η, ϕ) plane of the constituent
and the jet axis:

g =
∑
i∈jet

pT,i

pT,jet

∆Rjet,i . (7.3)

Another jet shape observable is the momentum dispersion pTD:

pTD =

√∑
i∈jet

p2T,i∑
i∈jet

pT,i

. (7.4)

This list obviously does not claim completeness, things like multi-particle correlations
and similar analysis have been left out. One can always check arXiv for newer analysis
as well. Here comes the list:

arXiv Coll.
√
s [TeV] Observable pT [GeV] |y| Jet alg. R

1809.07280 ATLAS 5.02 Jet to photon pT

ratio [3]
> 31.6 2.8 Anti-kT 0.4

1807.06854 ALICE 2.76 Jet shapes,
angularity,
momentum
dispersion [7]

40− 60 0.7 anti-kT 0.2

1805.05635 ATLAS 5.02 RAA, RAA ratios
for different
y-bins [4]

50− 1000 2.8 Anti-kT 0.4

1805.05424 ATLAS 5.02 Fragmentation
functions, RD [2]

126− 398 2.1 Anti-kT 0.4

1805.05145 CMS 5.02 Groomed jet
mass [44]

> 140 1.4 Anti-kT 0.4

1803.00042 CMS 5.02 jet shapes
ρ(∆r) [43]

> 120 1.6 Anti-kT 0.4

1802.00707 CMS 5.02 b tagged jets,
pT2/pT1 and
∆ϕ [42]

> 100(40) 1.5 Anti-kT 0.4
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arXiv Coll.
√
s [TeV] Observable pT [GeV] |y| Jet alg. R

1711.09738 CMS 5.02 ϕ and pT

correlations of
photons and
jets [45]

> 30 1.6 Anti-kT 0.3

1706.09363 ATLAS 2.76 Dijet momentum
fraction xj [1]

> 25 2.1 Anti-kT 0.3

0.4

1702.01060 CMS 5.02 Z-jet pT-fraction,
RjZ average
number of jet
partners [41]

30 1.6 Anti-kT 0.3

1702.00804 ALICE 2.76 dσPbPb

dM / dσpPb

dM ,
< M > [6]

60− 120 0.4 anti-kT 0.4

1611.01664 CMS 5.02 RAA in PbPb
and pPb [30]

1− 400 1 Anti-kT 0.4

1609.06667 ALICE 2.76 Peak shapes in
∆ϕ and ∆η (Two
particle
correlations) [11]

1− 8

1609.06643 ALICE 2.76 Similar to
above [10]

1609.05383 CMS 2.76 RAA [31] 70− 300 2 Anti-kT 0.2

0.3

0.4

1609.02466 CMS 2.76 Jet shape ρ(∆r),
az. distribution
of ch.particle pT,
Aj [28]

> 120(50) 2 Anti-kT 0.3
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arXiv Coll.
√
s [TeV] Observable pT [GeV] |y| Jet alg. R

1601.00079 CMS 2.76 Jet-track angular
correlations,
symmetrized ∆η

and ∆ϕ for
ch.tracks [27]

> 120(50) 2 Anti-kT 0.3

1509.09029 CMS 2.76 pT balance
against opening
angle and jet
radius, dijet
asymmetry [29]

> 120(50) 2 Anti-kT 0.2

0.3

0.4

0.5

1502.01689 ALICE 2.76 RAA [8] 40− 120 0.5 Anti-kT 0.2

1205.5872 CMS 2.76 Fragmentation
function,
z = ptrack‖ /pjet,
(sub)leading
pTdistributions
[20]

> 100(40) 2 Anti-kT 0.3

1202.5022 CMS 2.76 ∆ϕ, Aj,
pT2/pT1 [19]

> 120(30) 2 Anti-kT 0.3

1102.1957 CMS 2.76 ∆ϕ, Subleading
vs. leading pT,
leading jet-pT,
Aj, (pT1-
pT2)/pT1 [18]

> 120(50) 2 Anti-kT 0.5

Table 7.1: Papers on arXiv for jet-measurements in lead-lead collisions at the LHC.
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8 Results

At last, it is now time to compare results obtained by JEWEL with experimental
measurements. For this thesis, the jet observable of interest is the nuclear modification
factor RAA; it is defined as

RAA =

1
NEvt

d2NAA
jets

dpT dη

∣∣∣
cent

〈TAA〉 d2σjets

dpT dη

∣∣∣
pp

, (8.1)

where NAA
jets is the jet yield in Pb+Pb collisions for a given centrality range, binned in

the transverse momentum pT and rapidity η. NEvt is the number of Pb+Pb collisions;
some more comments on this normalisation will be given below. The jet yield is then
scaled by the nuclear thickness function TAA and divided by the jet cross section σjets

in pp collisions. As discussed in chapter 3, the difference between pp and Pb+Pb
can, in geometric terms, be accounted for by the Glauber model. TAA thus sufficiently
normalises the yield in Pb+Pb collisions; without a medium the ratio should therefore
be equal to one; deviations arise due to jet quenching effects in a medium. Partons
going through the QGP lose energy, so the jet yield should be reduced for a given
pT-range. How much the yield is suppressed depends on the nature and density of the
medium.

JEWEL is compared to the results of three papers, one from the ALICE collaboration
[8], one from CMS [31] and one from ATLAS [4]. These papers differ in the pT-range
of the jets, the rapidities, the jet radius and also the center-of-mass (CMS) energy, so
theoretical predictions can be compared to experiments over a range of parameters.
Before results are presented, there are a few things that need to be talked about: event
generation, the normalisation of the Pb+Pb calculations and also some modifications
to JEWEL, which were made in the context of this thesis.
Starting with process generation. A user can choose various parameters for the run: the
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number of events Nsim to be generated, η and also a minimum transverse momentum
pmin and a maximum transverse momentum pmax, which have to be smaller/larger
than the pT-range of the measurement. The rapidity should be chosen large enough
to cover the range of the experiment and Nsim should be sufficiently large to ensure
a small statistical error. The events will then be generated according to the chosen
parameters, where a pT in the specified range is drawn from a distribution given by
the cross section. Since the cross section decreases massively over several orders of
magnitude for typical pT-ranges measured in experiments, most events generated would
have small pT, so getting sufficient statistics in high-pT bins is very costly, considering
computation time. There are two ways to circumvent this [46]: the first is to cut the
whole pT-range into n intervals with interval edges pi, i = 0, ..., n, where p0 = pmin

and pn = pmax. Starting runs in each interval makes sure that there is sufficient
statistics of high-pT events; also each of these runs can be viewed as independent,
since they probe different areas of phase space. This is in turn implies that each run
has to be normalised independently and the results from different intervals can be
summed to obtain the theoretical prediction. Results are usually given as histograms,
for the above-mentioned papers binned in pT. For this the number of events that
survive the pT-/η-cuts or other requirements specific to the analyses are counted in the
corresponding bin of the histogram. The normalisation then happens as follows: take
for example the doubly differential cross section d2σ

dpT dη and let i denote a pT-bin of the
histogram. The end result is given by summing over the contribution of each of the n
intervals for this bin:

d2σ

dpT dη
[i] =

n∑
j=1

σj
Nj

Nacc,j[i]

∆pT∆η
, (8.2)

where σj is the cross section of the given interval, usually given by the event generator.
Nj is the number of events generated in the interval. This is then multiplied by the
number of events in the bin that got through the analysis Nacc,j and divided by the
width of the transverse momentum ∆pT and the rapidity range ∆η.
The other possibility is to work with weighted events. This means that one takes the
whole pT-range for event generation, but oversamples the high-pT region, so events are
generated according to a flat distribution in pT. To still retain the original decrease
in the cross section, generated events are associated with a event weight ωi, which
decrease for high pT. For the normalisation one gathers all the event weights in a bin
and divides by the sum of all event weights. When combining different runs it has to be
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ensured that all the event weights are added in such a way that the result corresponds
to a single large run. By contrast, the way to generate events mentioned first is also
referred to as working with unweighted events; there, each event carries the weight 1.

The normalisation of the jet yields in Pb+Pb collisions requires some attention as well.
JEWEL calculates hard events and supplements these with a parton shower evolution,
but the normalisation of the yield is the number of nucleus-nucleus collisions. So a
way to relate hard events in a given pT-range to the number of Pb+Pb collisions is
needed. Working with weighted events, a significant dependence of the normalisation
on pmin can be observed when one naively sets NEvt = Nsim. A correct normalisation
of the generated events should be independent of pmin, if it is chosen sufficiently small.
The normalisation used here for the Pb+Pb events is constructed with the Glauber
model. Let σhard be the cross section of the hard process, which is given by the event
generator. Going with the Glauber model this can be viewed as the cross section for
a hard nucleon-nucleon collision. One can also give a total cross section for inelastic
nucleon-nucleon collisions σNN

inel from experiments. Not all contributions to the total
cross section can be given perturbatively, so it cannot be calculated. The number of
hard events Nhard divided by NEvt for nucleon-nucleon interactions is then given by the
ratio of σhard over σNN

inel. In a single nucleus-nucleus collision an average of 〈Ncoll〉 of
these collisions happen in a given centrality. Taking everything together leads to

Nhard

NEvt

= 〈Ncoll〉
σhard
σNN
inel

. (8.3)

So the normalisation of the generated hard events is obtained by

NEvt =
Nhard

〈Ncoll〉
σNN
inel

σhard
, (8.4)

where Nhard can be set equal to the number of generated events. Taking the parametri-
sation from PYTHIA-8.2 [48] one obtains σNN

inel = 62.0403mb for √sNN = 2.76TeV and
σNN
inel = 67.8932mb for √

sNN = 5.02TeV.

JEWEL is based upon PYTHIA-6.4, which uses LHAPDF5 [49] for PDF’s. In JEWEL
one chooses a proton PDF, which then gets modified by the EPS09 [25] nuclear factor
to construct a bound proton PDF of the given nucleus. There are newer nPDF sets
available, but they are only part of LHAPDF6 [16]. Here one can use an interface
called LHAGLUE for legacy code built around LHAPDF5. This interface gives the
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illusion of using LHAPDF5, while actually working with LHAPDF6, so that one can
use the newer PDF sets. For the calculation of RAA the nCTEQ15-full_nuclear [32] set
for lead together with the free proton PDF from nCTEQ15 is used. The full nuclear
PDF is constructed as the PDF of an average parton in the nucleus, so using it as
the ”proton” PDF in JEWEL and turning off the modification factor from EPS09
gives the right initial state for hard Pb+Pb collisions. Due to the construction of
bound PDF’s with the EPS09 factor, JEWEL has to differentiate between the PDF’s
of protons and neutrons. Neutron PDF’s are constructed via isospin-symmetry. So
there are process sub-channels for proton-proton, proton-neutron and neutron-neutron
collisions, into which the total number of events is distributed. Since the used nPDF
now describes an average parton, it is sufficient to only consider the pp-channel. For
consistency with the nCTEQ15 parametrisation the number of flavours to evaluate
αs is taken to be 5 and the Landau pole is set to 0.226GeV. The PDF errors are
calculated with the 32 error PDF’s. This is then also compared to, at least, the central
value of the EPPS16 nPDF [24]. For the EPPS16 to work with JEWEL there are
some minor adjustments to be made. JEWEL uses the Landau pole and a number
of flavours to calculate αs, but EPPS16 is parametrized by the mass of the Z-boson
and the value of αs at that scale. With the help of RunDec [21] one easily obtains
the values necessary for JEWEL as ΛQCD = 0.208 364GeV for five flavours evaluation
of αs. Each PDF set in LHAPDF comes with an info file, where general information
about scales and number of set members are given, that are read out before the PDF’s
are used. An entry AlphaS_Lambda5 equal to the value given above has to be added
to the EPPS16 info file. Also there is a flag titled Particle that needs to be modified.
There the number 1000822080 is given, which is the PDG ID code for lead, but in the
initial state of JEWEL there is a proton, so this needs to be changed to 2212, which
stands for proton. The EPPS16 grids for lead available on the LHAPDF website are
also constructed as the PDF’s of an average parton inside the nucleus, as stated by
their website1, so following the logic from above this should then also give hard events
in Pb+Pb collisions with JEWEL.

One further modification is introduced to JEWEL; additional parameters to vary the
renormalisation and factorisation scale in the initial hard process. PYTHIA-6 [46]
contains several switches for exactly this purpose. The parameter mstp(33) has to be
set to 3, then one has the parameter parp(33) for variations of the renormalisation scale

1http://r.jyu.fi/ufd, accessed 07.05.2019.

http://r.jyu.fi/ufd
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µR of the hard process. The factorisation scale for the evaluation of the PDF can be
varied with parp(34). The scales come in as a factor in the calculation of αs. It is easy
to then introduce additional flags for the parameter file in the main program to be read
in and expand the initialisation routine for PYTHIA with parameters mentioned above,
set to the read-in value. For the estimation of scale uncertainties the so-called seven-
point method is used, which means that every calculation is repeated six additional
times. In this method both scales are varied in certain steps; the exact values for the
factors are given in the following table:

µR µF

1. 0.25 0.25

2. 1 0.25

3. 0.25 1

4. 1 1

5. 4 1

6. 1 4

7. 4 4

The per-event analysis has been done with Rivet [15], where the anti-kT algorithm is
used as the jet definition. All the following plots were created with the Python code
matplotlib [22]. The data points of the experimental measurement were taken from
the corresponding entry in the HEPdata archive [34] for the three papers.

8.1 ALICE

First comes the ALICE paper [8]. There the pT-spectrum of jets and the nuclear modi-
fication factor were measured at √sNN = 2.76TeV in the rapidity range |η| < 0.5. The
anti-kT algorithm with R = 0.2 was used to reconstruct the jets. Two centrality ranges
for Pb+Pb collisions are given, with a pT-range of 40 < pT,jet < 120GeV/c in 0− 10%

and 30 < pT,jet < 100GeV/c in 10 − 30% collisions. Additionally each jet needs to
contain one particle track with pT > 5GeV/c. This is done to decrease the number of
jets that are constructed purely from background activity in the experiment. For more
details on the exact experimental set-up and data unfolding see the referenced paper.
Before looking at the nuclear modification factor it is instrumental to look at its two
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Figure 8.1: Comparison between the differential jet cross section for pp collisions at√
s = 2.76TeV for jet radius R = 0.2 and |η| < 0.5 obtained by ALICE

and JEWEL. The yellow shaded bands give the scale uncertainties. Data
points taken from [5].

parts, the differential cross section for pp-collisions and the jet yield in Pb+Pb collisions
separately at first, in order to quantify possible sources of deviation in RAA. Starting
with the differential cross section in pp-collisions. A comparison between measurement
and the prediction of JEWEL can be seen in Figure 8.1. The yellow bands correspond
to the scale uncertainties obtained with the seven point scale variation; a ratio of the
theoretical prediction over the experimental data can be seen in the bottom panel,
where basically everything is just divided by the reported experimental value. Statisti-
cal errors from the MC simulations are not included in all of the following figures. The
data points for this figure were actually taken from [5], which uses the same cuts as the
above-mentioned analysis, but without the track requirement, since the original paper
above does not give the differential cross section. A good agreement between JEWEL
and experiment can be reported. Taking into account the missing track requirement
on the data points from ALICE, the JEWEL results should actually be slightly better.
Only slightly, because no significant impact of this requirement on jets was reported
in [8]. The scale uncertainties are fairly large, as is to be expected for a leading-order
calculation.
Next is the jet yield in Pb+Pb collisions. The result can be seen in Figure 8.2, where
the green shaded bands correspond to the uncertainty of nCTEQ15, estimated with the
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Figure 8.2: Comparison between the differential jet yield in Pb+Pb collisions at√
s = 2.76TeV for jet radius R = 0.2 and |η| < 0.5 obtained by ALICE

and JEWEL in the centrality ranges 0 − 10% (left) and 10 − 30% (right).
The yellow shaded bands give the scale uncertainties and the green shaded
bands correspond to PDF uncertainties. Data points taken from [8].

error PDF sets. The yellow shaded band corresponds to the scale uncertainty, again.
For comparison the central PDF of EPPS16 is also included. The jet yields are given
for the centrality ranges 0− 10% on the left and 10− 30% on the right. Here again a
very good agreement between JEWEL and the experimental values is seen, where the
result for the most central collision seems to fare slightly better. The central values of
both PDF sets also seem to agree very well, with some minor deviations. Uncertain-
ties due to the scale and the nCTEQ-PDF are approximately of the same size. These
calculations were not done for the EPPS16 set, since the JEWEL calculation in the
presence of a medium are very time-intensive. As a rule of thumb, turning the medium
off for calculations reduces the time required for generating the same number of events
by a factor of 25.
Combining the two previous results then gives the nuclear modification factor RAA, as
defined in Equation (8.1). This can be seen in Figure 8.3, where the results agree well
with experimental data. This comes as no surprise, since the two previous results are
in good agreement with the data. The general trend of a slight increase in RAA with
pT can be replicated by JEWEL. JEWEL seems to overestimate RAA in the low-pT
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Figure 8.3: Comparison between the nuclear modification factor RAA at
√
s = 2.76TeV

for jet radius R = 0.2 and |η| < 0.5 obtained by ALICE and JEWEL in the
centrality ranges 0 − 10% (left) and 10 − 30% (right). The yellow shaded
bands give the scale uncertainties and the green shaded bands correspond
to PDF uncertainties. Data points taken from [8].

region for − 10% centrality though, but the results agree within their margin of error.
The scale uncertainty is dominant now. RAA was calculated for each of the seven scale
combinations separately. The plotted points correspond to µR = µF = 1 and the band
was generated by searching for the maximum and minimum in the remaining six com-
binations. Proceeding like this can be viewed as a rather conservative estimate of the
scale uncertainty for a combined observable like RAA, but like mentioned before, it is
now considerably larger than the PDF uncertainty.

The critical temperature in JEWEL is by default given as TC = 170MeV, also an
initial temperature of TI = 360MeV is given. Newer values for these temperatures
deviate from this, because at the time of writing JEWEL is already a few years old. So
as a last step the effect of varying the initial and critical temperature on the jet yield
in Pb+Pb collisions is quantified. The critical temperature is given by latest lattice
calculations as TC = (156.5± 1.5)MeV [12]. Giving a value for the initial temperature
is more difficult, see for example [9]. Depending on the initial time of the evolution
and the model calculation estimates range from 300 to 700MeV. Additionally a de-
crease of TI with centrality can be observed. Starting with the critical temperature.
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Figure 8.4: Dependence of the jet yield on the critical temperature TC of the QGP.
The default value in JEWEL for TC is 170MeV. The PDF uncertainties
correspond to the green shaded band.

The effect of increasing it from 150MeV to 180MeV in steps of 5MeV can be seen
in Figure 8.4. There a spline interpolation for the points from JEWEL and the PDF
uncertainty was used for better visibility. Since the scale uncertainties are roughly
equal to the PDF uncertainty they are not shown here. The dependence is what one
would expect. A higher TC corresponds to shorter duration for the medium evolution,
which in turn implies fewer opportunities for partons from the hard event to interact
with the medium. So jets should be less suppressed for higher TC, which is seen in the
plot. The dependence on TC is rather small for the jet yield though and well within
uncertainties from the PDF. So no real conclusions can be drawn with the current size
of uncertainties related to nPDF. Figure 8.5 shows the dependence on TI, where only
two different values have been used. Here the same logic from above applies, but a
higher TI corresponds to a longer evolution of the medium and thus more suppression.
While, again, the shape remains relatively unchanged, the suppression is more pro-
nounced and larger than PDF-related uncertainties. So some conclusions about initial
temperatures can be gained from calculations. Also the aforementioned decrease of
temperature with centrality can be observed. While the ”ideal” critical temperature
for centrality 0−10% appears to be slightly higher than the default value. In contrast,
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Figure 8.5: Dependence of the jet yield on the initial temperature TI of the QGP.
The default value in JEWEL for TI is 360MeV. The PDF uncertainties
correspond to the green shaded band.

for centrality 10− 30% a value lower than default would describe the ALICE data bet-
ter. A point to remember, though, is that the JEWEL medium is based on a Bjorken
model and thus a one-dimensional expansion, which corresponds to a rather slow cool-
ing of the medium, as seen in section 5.1. A full three-dimensional expansion would
induce a faster cooling and in turn reduce the effect of these temperature variations.
To get more precise one would need to calculate the expansion in separate simulations
to obtain sensible initial and critical temperatures for JEWEL, consistent with newer
experimental values by comparison. Another caveat is the more general question about
how well one- and three-dimensional medium models can be compared at all and three
dimensional expansion is definitely happening in the experiment. But it is good to see
that the jet yield behaves as expected with regard to temperature variations.

8.2 CMS

Next is the CMS analysis [31]. The general procedure will be exactly as outlined above;
only the experimental cuts for the jets have changed. The CMS analysis also happens
at √

sNN = 2.76TeV, but now a rapidity range of |η| < 2 is considered. The results
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Figure 8.6: Comparison between the differential jet cross section for pp collisions at√
s = 2.76TeV for different jet radii and |η| < 2 obtained by CMS and

JEWEL. The yellow shaded bands give the scale uncertainties. Data points
taken from [31].

are reported for the anti-kT algorithm with three jet radii R = 0.2, 0.3 and 0.4 in a pT-
range of 70 < pT,jets < 300GeV. For the comparison with JEWEL only the centrality
0− 5% is used.

Starting again with the differential cross section in pp-collisions. The result can be
seen in Figure 8.6, yellow shaded bands corresponding to the scale uncertainty. While
the agreement of the shape generated by JEWEL is reasonable, with a slight drop
in the high-pT bins, for the three jet radii, the overall prediction is to small. These
deviations become smaller with increasing jet radius. For the most part, JEWEL is
well within the experimental margin of error. The scale uncertainties are again quite
large; comparable in size to the previous analysis. All experimental values are within
these uncertainties.
Moving on to the jet yield in Pb+Pb collisions, shown in Figure 8.7. Green shaded
bands correspond to the nCTEQ15 uncertainty and only the central member of EPPS16
is plotted as a comparison. The result obtained by JEWEL here is overall worse, at
least compared to the ALICE analysis. For R = 0.2 the first few bins agree nicely
with experiment, but overall the jet yield is dropping too rapidly, with not even the
errors from experiment and calculation overlapping. For the two larger jet radii the
agreement is better, but also here the jet yield drops too rapidly in the last bins, with
a tendency to decrease with an increase in jet radius. But at the same time larger jet
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Figure 8.7: Comparison between the differential jet yield in Pb+Pb collisions at√
s = 2.76TeV for different jet radii and |η| < 2 obtained by CMS and

JEWEL in the centrality range 0− 5%. The yellow shaded bands give the
scale uncertainties and the green shaded bands correspond to PDF uncer-
tainties. Data points taken from [31].

radii seem to over-predict the jet yield in the low-pT region. In the given errors the
results for R = 0.3 and 0.4 agree quite nicely with experiment though. Here again
the deviations from the central members of nCTEQ15 and EPPS16 are very small and
uncertainties due to scale and PDF are roughly of equal size again.
Combing both for the nuclear modification factor results in Figure 8.8. The fact hat

the differential cross section and the jet yield are both too small on their own cancels
somewhat in the ratio, so the prediction for RAA is not too bad. But the sharper
increase in the first bins is not replicated by JEWEL. While there is again an initial
increase with pT, this is not pronounced enough. The error margins of the experiment
are especially large in these first bins and a JEWEL lies within these errors. Also for
the last bins RAA starts to drop, which corresponds to the behaviour of the jet yield,
which decreases too strongly with larger pT’s. For R = 0.3 and 0.4 the nearly constant
RAA for the mid-pT range is replicated nicely. The error of RAA is again dominated by
the scale uncertainties, which were estimated in the same way as outlined above. In
the margin of error there is a good general agreement between between JEWEL and
data, which is satisfactory for a leading-order calculation.
The variation of TC and TI was also done for this analysis. The results for TC can be
seen in Figure 8.9 and for TI in Figure 8.10. In general all the points mentioned for
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Figure 8.8: Comparison between the nuclear modification factor RAA at
√
s = 2.76TeV

for different jet radii and |η| < 2 obtained by CMS and JEWEL in the cen-
trality range 0− 5%. The yellow shaded bands give the scale uncertainties
and the green shaded bands correspond to PDF uncertainties. Data points
taken from [31].

the temperature variation above apply here as well, with the effect of TC appearing
to be even smaller here. The behaviour of TI at around 200GeV seems curious. But
since the statistical error, not shown here, also increases significantly at this point, it
most likely is just a fluctuation caused by numerics, since the statistics of the runs are
rather small. Further runs or runs with higher statistics will probably resolve this, but
due to time constraints, pointing to the large error in these fluctuations has to suffice
for ruling out anything special happening there. The fluctuation is at the same place
for each jet radius since the underlying events are the same and just the jet radius has
been varied in the analysis.
A further point to consider is the used rapidity interval. The rapidity-interval consid-
ered for these calculations with temperature variations may have been chosen too small.
Due to scatterings in the medium, some partons, that would originally move within
the cuts, can have their direction changed and not be included after analysis cuts have
been applied. The reverse applies as well: partons that would not be included without
medium can have their direction altered to land inside the analysis cuts. Because of
this, the rapidity has to be larger than the analysis cuts, which in turn needs to be
chosen even larger, if more interactions in the medium can happen with higher initial
temperatures.
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Figure 8.9: Dependence of the jet yield on the critical temperature TC of the QGP.
The default value in JEWEL for TC is 170MeV. The PDF uncertainties
correspond to the green shaded band.
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Figure 8.10: Dependence of the jet yield on the initial temperature TI of the QGP.
The default value in JEWEL for TI is 360MeV. The PDF uncertainties
correspond to the green shaded band.

Due to time constraints, the effect of varying the rapidity range could not be included in
this thesis. Increasing the initial temperature like this almost doubles the computation
time again, while a larger rapidity range also has a noticeable effect. But in general
the same conclusion as before follows, the effect of higher initial temperatures is larger
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Figure 8.11: Comparison between the differential jet cross section for pp collisions at√
s = 5.02TeV for jet radius R = 0.4, |η| < 2.8 (left) and |η| < 0.3 (right)

obtained by ATLAS and JEWEL. The yellow shaded bands give the scale
uncertainties. Data points taken from [4].

than underlying uncertainties. The plot also shows a first hint of reduced suppression
for high-pT jets. This will be discussed more below, since this effect is more pronounced
in the next analysis.

8.3 ATLAS

Coming now to the last experimental analysis considered [4]. This ATLAS paper re-
ports the jet yield and nuclear modification factor at √

sNN = 5.02TeV. In turn the
pT-range of the jets is considerably higher; it ranges from 100GeV up to 1000GeV in a
rapidity interval |η| < 2, 8. The anti-kT algorithm was used again with R = 0.4. Only
the most central events in a centrality range of 0 − 10% are compared to predictions
from JEWEL.
The differential cross section for pp-collisions can be seen in Figure 8.11 for |η| < 2.8

on the left and |η| < 0.3 on the right; yellow shaded bands corresponding to scale un-
certainties. JEWEL is in good agreement with the measured differential cross section,
with the prediction for the last pT-bins being too small again. The results achieved for
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Figure 8.12: Comparison between the differential jet yield in Pb+Pb collisions at√
s = 5.02TeV for jet radius R = 0.4 and |η| < 2.8 obtained by AT-

LAS and JEWEL in the centrality range 0 − 10%. The yellow shaded
bands give the scale uncertainties and the green shaded bands correspond
to PDF uncertainties. Data points taken from [4].

smaller rapidity intervals seems to fair better again, a trend also previously observed.
The agreement here is excellent. The scale uncertainties are again quite large, with
the upper edge of the band describing the data better again in general, as was the case
with the CMS analysis. For leading-order the agreement is very satisfactory.

The differential jet yield in Pb+Pb collisions can be seen in Figure 8.12, where
the green shaded bands correspond to the PDF uncertainties again. As in the previ-
ous analyses, scale and PDF uncertainties are roughly of equal magnitude. All in all
JEWEL manages to replicate the measured data very nicely, minus the last pT-bin,
which JEWEL drastically underestimates. Also both central PDF members produce
results in good agreement with each other.

Combining both gives the nuclear modification factor in Figure 8.13. Here again
JEWEL under-predicts the initial increase in RAA, but only slightly now. After a pT of
200GeV the agreement of JEWEL with data is excellent, reproducing RAA over accu-
rately over a very large pT-range. Here again the scale uncertainties are the dominant
factor, with all PDF uncertainties lying well within the yellow band.
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Figure 8.13: Comparison between the nuclear modification factor RAA at√
s = 5.02TeV for jet radius and |η| < 2.8 obtained by ATLAS

and JEWEL in the centrality range 0 − 10%. The yellow shaded bands
give the scale uncertainties and the green shaded bands correspond to
PDF uncertainties. Data points taken from [4].

A variation of the critical temperature, Figure 8.14, has also been done. The influence
of this variation on the jet yield is again negligible. A more interesting result is the
variation of the initial temperature seen in Figure 8.15. The irregular bumps in the plot
are again due to statistics. The interesting point is, that the suppression is stronger
for low-pT jets, where it produces effects that are larger than the PDF errors. For the
high-pT jets this suppression is reduced, lying well within the margin of error. This
suggests that very hard jets can pass the medium relatively unaffected. Following this
train of thought leads to the conclusion, that the best strongly interacting probe for
properties of the QGP are low-momentum jets, since these are especially sensible to
medium effects. Also from the theoretical point this is the only regime were the effect
is of comparable size to the underlying uncertainties.
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Figure 8.14: Dependence of the jet yield on the critical temperature TC of the QGP.
The default value in JEWEL for TC is 170MeV. The PDF uncertainties
correspond to the green shaded band.
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Figure 8.15: Dependence of the jet yield on the initial temperature TI of the QGP.
The default value in JEWEL for TI is 360MeV. The PDF uncertainties
correspond to the green shaded band.
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9 Conclusion

To recap, with the help of the LHAGLUE-interface it is possible to run code like
JEWEL, that was built around PYTHIA-6.4, with up-to-date PDF sets like nCTEQ15
and EPPS16. The predictions of JEWEL for the nuclear modification factor were then
tested against three experimental analyses from the LHC. For small rapidity intervals
and transverse momentum jets in the case of the ALICE experiment (Figure 8.3) an
excellent agreement was found. Going to a higher rapidity interval and higher pT-
jets, in the case of CMS, decreases the accuracy of JEWEL for the jet yield. The
differential cross section (Figure 8.6) was replicated nicely with regard to the general
shape, being slightly too small overall, mostly with in margin of experimental error.
There are, however, large scale uncertainties involved in the calculation. At the time
of writing, the scale dependence is further investigated in next-to-leading order (NLO)
calculations. The scale dependence in NLO should decrease and also one can deduce
a more ”natural” scale for the LO calculation from it. At the time of writing however
this is still a work in progress. For the CMS analysis the scale pT/2 describes the
data accurately. The jet yield (Figure 8.7) decreases too steeply, at least for small jet
radii. The agreement becomes better when increasing the jet radius. Going to higher
CMS energies in the case of ATLAS results in a better agreement for the jet yield in
Pb+Pb collisions, while also, at least for the first bins, achieving a better result for
the cross section in pp-collisions. A better result for smaller rapidity intervals was
also found here. Both combined result in excellent agreement for RAA (Figure 8.13);
only the initial increase with pT is underestimated slightly. This is also true for the
RAA obtained with regard to the CMS-analysis (Figure 8.8), there the errors on the
experimental data is quite large in the first bins. All in all the results are in very good
agreement with experimental data; considering that JEWEL works at leading order.
It was also found that the uncertainties related to the scale and PDF’s was of the
same order of magnitude for the jet yield, while for the nuclear modification factor the
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scale is the biggest factor of uncertainty despite the rather conservative estimate laid
out in the previous chapter. Also it could be shown that the central PDF members of
nCTEQ15 and EPPS16 give similar predictions for the jet yield in all three analyses.
The effect of variations in the critical temperature turned out to be rather negligible,
because they were very small compared to the other uncertainties involved. More
interesting was the case of higher initial temperatures, where the suppression of the
jet yield was greater than the PDF uncertainties, at least for jets with small pT. The
calculations showed that high-pT jets are very insensitive to medium effects, so no
insights about e.g. the initial temperature can be gained from them with current PDF
uncertainties. But, like previously mentioned, here sensible temperature values for the
one-dimensional expansion in JEWEL would have to be obtained by other simulations
first.
For future work there are many more jet observables available, which are sensitive to
interactions with the medium, to test the capacity of JEWEL and the performance of
newer PDF sets. See for example the long list in chapter 7, which by no means claims
to be complete. Otherwise the investigation of the nuclear modification factor could be
extended to the case of peripheral Pb+Pb scatterings, since in this thesis only the most
central intervals were considered in each analysis. A variation of initial temperature
should also be included then, since ,as it was shown for the ALICE analysis, the initial
temperature for peripheral collisions has to be lower than for central ones. The CMS
and ATLAS paper report results over a large centrality range, giving opportunity to
directly extend the analysis of this thesis.
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A Calculation of invariant matrix
elements in pQCD at tree level

Three matrix elements will be calculated here. The quarks will be taken as massless.
The results can be checked with [23] or for the gluon scattering [40].

A.1 qq̄ → q′q̄′

Starting with the easiest process, the annihilation of a quark-antiquark pair into a
pair of another flavour. There is just one diagram contributing to this process, the
s-channel diagram. Taking the Feynman rules from chapter 2 in the Feynman-t’Hooft
gauge ξ = 1 one obtains:

iMs =

p1

p2

p
p3

p4

q

q̄

q′

q̄′

= v̄(p2)ı̇gγ
µT a

iju(p1)
−ı̇gµν

p2
δabū(p3)igγ

νT b
klv(p4)

= iT a
ijT

a
kl

g2

s
v̄(p2)γ

µu)p1ū(p3)γµv(p4) , (A.1)

where s = p2 = (p1 + p2)
2 and some indices have been contracted. The colour indices

of the spinors have been suppressed here, since it is easier in most cases to calculate
the diagram and the colour factor separately. To calculate the squared matrix element,
the complex conjugate of the above is needed. The relations γ†µγ0 = γ0γµ and γ†0 = γ0

are needed to obtain:

M†
s =

g2

s
T a
ijT

a
klv̄(p4)γµu(p3)ū(p1)γ

µv(p2) . (A.2)
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Taking both together yields:

|M|2 = g4

s2
(
T a
ijT

a
kl

)2
[v̄(p2)γ

µu(p1)][ū(p3)γµv(p4)][v̄(p4)γνu(p3)][ū(p1)γ
νv(p2)] . (A.3)

The quantities in the brackets are just numbers, so they can be freely rearranged. Tak-
ing a sum over the spins and averaging over initial spins with the identity, which like
some trace relations used later can be found in the textbooks,

∑
s v

s
α(p4)v̄

s
β(p4) =

(
/p4

)
αβ

,
which in the case for massless quarks is the same for a sum over the u, this becomes

1

4

∑
spin

|M|2 =
∑
s,s′

g4

4s2
(
T a
ijT

a
kl

)2
v̄s(p2)γ

µ
/p1γνv

s(p2)ū
s′(p3)γµ/p4γ

νus
′
(p3) . (A.4)

There are still two spin sums left to be done. To do this, one decomposes the expression
in index notation; since there everything is just a number, one is again free to rearrange:

∑
s

v̄s(p2)γ
µ
/p1γνv

s(p2) =
∑
s

v̄sβ(p2)(γ
µ)βδ

(
/p1

)
δς
(γν)ςαv

s
α(p2)

=
(
/p1

)
δς
(γν)ςα

(
/p2

)
αβ
(γµ)βδ = tr

(
/p1γν/p2γ

µ
)
. (A.5)

This trick will be used a lot in calculations, and so equation (A.4) becomes

1

4

∑
spin

|M|2 = g4

4s2
(
T a
ijT

a
kl

)2
tr
(
/p1γ

ν
/p2γ

µ
)
tr
(
/p3γµ/p4γν

)
. (A.6)

At this point one can show a whole host of relations for traces over gamma matrices;
needed here is the relation

tr
(
γαγµγβγν

)
= 4
(
gαµgβν − gαβgµν + gανgµβ

)
, (A.7)

also for completeness the slash notation used above is /p = pµγ
µ. Inserting this into the

expression yields

1

4

∑
spin

|M|2 = 4g4

s2
(
T a
ijT

a
kl

)2
pα1p

β
2

(
gανgβµ − gαβgµν + gαµgνβ

)
pρ3p

σ
4 (g

ρµgσν − gρσgµν + gρνgσµ)

Contracting all the momenta with the shorthand notation pij = pipj leads to

1

4

∑
spin

|M|2 = 4g4

s2
(
T a
ijT

a
kl

)2
(2p14p23 + 2p13p24) . (A.8)
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Introducing the Mandelstam variables for massless particles

s = 2p12 = 2p34 , (A.9)

t = −2p13 = −2p24 , (A.10)

u = −2p14 = −2p23 , (A.11)

to simplify this further gives

1

4

∑
spin

|M|2 = 2g4

s2
(
T a
ijT

a
kl

)2(
t2 + u2

)
. (A.12)

All that is left now is to calculate the colour factor using a Fierz identity

∑
a

T a
ijT

a
kl =

1

2

(
δilδkj −

1

3
δijδkl

)
(A.13)

and the properties of the Kronecker delta δilδil = δii = 3 to obtain

(
T a
ijT

a
kl

)2
=

1

4

(
δilδkj −

1

3
δijδkl

)(
δilδkj −

1

3
δijδkl

)
=

1

4

(
δllδkk −

1

3
δlkδlk −

1

3
δlkδlk +

1

9
δjjδlkδlk

)
=

1

4

(
3δll −

1

3
δll −

1

3
δll +

1

3
δll

)
=

1

4
(9− 1) = 2 . (A.14)

The quark can have one of three colours and so can the antiquark, giving in total
nine combinations. Since there can be no way of knowing about the colour state
one has to average over it, giving an additional factor of 1

9
. So the end result for

the invariant matrix element squared for quark-antiquark-annihilation into a pair of a
different flavour is

1

36

∑
spin
colour

|M|2 = 4g4

9

(
t2 + u2

s2

)
. (A.15)

A.2 qg → qγ

The next process is a quark and a gluon going into a quark and a photon. There are
some QED Feynman rules needed now, which in general are not very different from
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the QCD ones. Just leave out delta’s signifying colour conservation from propagators,
since QED does not interact with the colour charge. Also for QED there is just one
vertex, which governs the interaction of photons with charged fermions. This vertex
is identical to the quark-gluon vertex equation (2.26), albeit a bit simpler. Since QED
is based on the Abelian group U(1) there are no generators in the expression. Also,
obviously, the strong coupling has to be replaced by the electric charge of the fermion.
Incoming and outgoing gluons and electrons are associated with polarization vectors
εµ(p); summing over polarizations later will give

∑
pol ε

∗
µεν → gµν . Two diagrams

contribute to this process, an s-channel annihilation diagram and a t-channel scattering
diagram. Starting with the s-channel, the diagram is

iMs =

p1

p2

p
p4

p3

q

g

q

γ

= ū(p4)(−ı̇)efγµε∗µ(p3)
i/pδik

p2
u(p1)ı̇gγ

νT a
ijεν(p2) (A.16)

where again p = p1+p2 and ef is the fractional charge of the quark. Next the t-channel
diagram:

iMt =

p1 p3

p′

p2 p4

q γ

g q

= ū(p4)ı̇gγ
νT a

kiεν(p2)
i/p′δij

p′2
u(p1)(−ı̇)efγµε∗µ(p3) (A.17)

where p′ = p1−p3. For completeness, the incoming quark has the colour j, the outgoing
the colour k and the virtual quark has the colour i. The colour is conserved in the
propagator and in the QED vertex. Adding both together gives the matrix element
M = Ms +Mt. Now the complex conjugate for the calculation is needed, which can
be given as

M† = efgε
∗
α(p2)εbeta(p3)ū(p1)

[
T a
jiγ

α/pδik

s
γβ + T a

ikγ
β /p

′δij

t
γα
]
u(p4) , (A.18)



A Calculation of invariant matrix elements in pQCD at tree level 84

where the Mandelstam variables from before were used again. Squaring the matrix
element yields

|M|2 = |Ms|2 + |Mt|2 + |MsM†
t |+ |MtM†

s| . (A.19)

Each term will be dealt with separately. Starting with the s-channel squared and
summing over polarizations gives

∑
pol.

|Ms|2 =
e2fg

2

s2
gανgβµT

a
ijT

a
jiū(p4)γ

µ
/pγ

νu(p1)ū(p1)γ
α
/pγ

βu(p4) . (A.20)

Contracting the gamma matrices with the metrics, summing over spins in the final and
averaging over initial spin and using equation (2.17) leads to

1

4

∑
pol.
spin

|Ms|2 =
e2fg

2

4s2
TF ū(p4)γ

µ
/pγ

ν
/p1γ

ν
/pγ

µu(p4) . (A.21)

Some useful relations between gamma-matrices now are for the case of one interme-
diate matrix γµγνγµ = −2γν and for three γµγνγργσγµ = −2γσγργν . With these two
relations and the calculation trick from the last section this expression reduces to

1

4

∑
pol.
spin

|Ms|2 =
e2fg

2

s2
TF tr

(
/p4/p/p1/p

)
. (A.22)

The calculation has been done in the last section; with TF = 1
2

this becomes

1

4

∑
pol.
spin

|Ms|2 = 2
e2fg

2

s2
(2p12p34 − 2p12p14) =

e2fg
2

s2
(
s2 + su

)
= e2fg

2

(
− t

s

)
, (A.23)

where s + t + u = 0 for massless particles has been used in the last step. Averaging
over the colours of the quark for the final expression gives:

1

12

∑
pol.
spin
colour

|Ms|2 = −1

3
e2fg

2

(
t

s

)
. (A.24)
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Since t < 0 and s > 0 this result is indeed positive. There is nothing new to learn from
calculating the squared t-channel. The steps are basically the same, one just swaps the
s and t in the end, resulting in

1

12

∑
pol.
spin
colour

|Ms|2 = −1

3
e2fg

2
(s
t

)
. (A.25)

All that is left now are the interference terms. Starting with

∑
pol

|MsM†
t | =

e2fg
2

st
gανgβµT

a
ijT

a
abū(p4)γ

µ
/pγ

νu(p1)ū(p1)γ
β
/p
′γαu(p4) . (A.26)

Performing the sum over spins leads to

1

4

∑
pol.
spin

|MsM†
t | =

e2fg
2

st
T a
ijT

a
abū(p4)γ

µ
/pγ

ν
/p1γ

µ
/p
′γνu(p4) . (A.27)

Focusing on the gamma-matrix part, we can use the relation from before to simplify

γµ/pγ
ν
/p1γ

µ
/p
′γν = −2/p1γ

ν
/p/p

′γν . (A.28)

Using a relation for two intermediate matrices γµγνγργµ = 4gνρ this becomes

− 2/p1γ
ν
/p/p

′γν = −8/p1p
µp′µ . (A.29)

Inserting p = p1+p2 and p′ = p1−p3 and using the Mandelstam variables the contracted
momenta yield

pp′ = (p1 + p2)(p1 − p3) = p21 − p1p3 + p1p2 − p2p3 = 0 + t+ s+ u = 0 (A.30)

so this interference term vanishes for massless particles. As before the calculation for
the second term is identical: the other interference term also vanishes. So in total the
squared invariant matrix element for this process is

1

12

∑
pol.
spin
colour

|M|2 = −1

3
e2fg

2

(
s

t
+
t

s

)
. (A.31)
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A.3 qq̄ → gγ

A process that is similar to the last one is the quark-antiquark annihilation into a
gluon and a photon. Both these processes together are all contributions from QCD to
the so-called prompt photon production at tree level. The process qq̄ → gγ has two
contributions again, a t-channel diagram and an u-channel diagram. The t-channel
looks as follows

iMt =

p1 p3

p

p2 p4

q g

q̄ γ

= v̄(p2)(−ı̇)efγµε∗µ(p4)
i/pδjk

p2
u(p1)ı̇gγ

νT a
ijε

∗
ν(p3) , (A.32)

where p = p1 − p3. For the u-channel one obtains

ı̇Mu = p′

q γ

q̄ g

= v̄(p2)(−ı̇)efγµε∗µ(p3)
/p′δjk

p′2
ε∗ν(p4)T

a
jiı̇gγ

νu(p1) , (A.33)

where p′ = p1−p4. In both diagrams the index i is the colour of the ingoing quark and
j the colour of the antiquark. The complex conjugated matrix elements are computed
for this to calculate the total squared matrix element

|M|2 = |Mt|2 + |Mu|2 + |MtM†
u|+ |MuM†

t | . (A.34)

Not only do these diagrams look very similar to the diagrams of the last process, the
calculation of the diagrams follows all the same steps. The results for the squared s-
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and u-channel have an identical form and all interference terms will come out as zero
for massless particles again. Doing the explicit calculation for these diagrams leads to

1

36

∑
pol.
spin
colour

|M|2 = −8

9
e2fg

2

(
u

t
+
t

u

)
. (A.35)

There is a symmetry called crossing symmetry, which lets one reproduce results from
calculations with a rotated diagram. Here it leads to a replacement of s with u, so
the result does not have to be calculated explicitly again. Of course this is not a real
physical symmetry, but it gives relations which can save some work. More on this
can be found in textbooks. Of course another colour factor is associated with these
diagrams, since the initial state and colour factor are different.

A.4 gg → gg

The last process is only possible in non-Abelian theories: the scattering of gauge-
bosons, since they carry a charge and can therefore self-interact. There is no such
process in QED, well at least there is no scattering at leading order. Higher-order terms
can exist though. This self-interaction drastically increases the number of diagrams
that have to be calculated. Also the naive calculation of gluon scattering is very
cumbersome and involves a huge quantity of terms, which in the end will give zero.
There is a more efficient way to do these calculations in the spinor-helicity formalism.
First some basic points about this formalism, following Schwartz [40], will be gathered
and afterwards comes the calculation. For this section all momenta are chosen as
incoming.

A.4.1 Spinor-Helicity Formalism

The spinor-helicity formalism is based on bispinors Pαα̇, since momenta transform in
the

(
1
2
, 1
2

)
representation of the Lorentz group. Introducing left-handed Weyl spinors

ψα transforming in
(
1
2
, 0
)

and right-handed ψα̇ transforming in
(
0, 1

2

)
one can define
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helicity spinors as doublets transforming in one of the two representations. With this
one can give inner products as

〈λχ〉 = εαβλαχβ = λαχ
α = −λαχα, [λχ] = εα̇β̇λα̇χβ̇ = λα̇χ

α̇ = −λα̇χα̇ , (A.36)

where εαβ can lower or raise indices like gµν , but is antisymmetric:

εαβ = −εαβ = εα̇β̇ = −εα̇β̇ =

(
0 1

−1 0

)
. (A.37)

Also the helicity spinors are anti-symmetric:

〈λχ〉 = −〈χλ〉, [λχ] = −[χλ] , (A.38)

which ultimately leads to
〈λλ〉 = [λλ] = 0 . (A.39)

With help of the σ-matrices one can give momenta as bispinors from four-vectors and
the other way around:

pαα̇ ≡ σαα̇
µ pµ, pα̇α ≡ σ̄µ

α̇αpµ, pµ ≡ 1

2
σµαα̇pα̇α, pµ ≡ 1

2
σ̄µ
α̇αp

αα̇ . (A.40)

A very useful property for the case of massless particles like gluons is det
(
pαα̇
)
= 0, so

that matrices can be given as an outer product

pαα̇ = λαλ̃α̇ = p〉[p , (A.41)

where the last equality is a convenient notation for this. The product of two massless
vectors then becomes

p · q = 1

2
〈λχ〉[χλ] . (A.42)

For some useful relations, writing i] for pi] one can write with momentum conservation

∑
j

〈ij〉[jk] = 0 (A.43)
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and a given spinor can be given in terms of two others

1〉 = 〈13〉
〈23〉

2〉 − 〈12〉
〈23〉

3〉 (A.44)

which leads to the Schouten identity

〈12〉〈34〉+ 〈13〉〈42〉+ 〈14〉〈23〉 = 0 . (A.45)

For gluons one also needs to construct polarisation vectors, which satisfy the relations
ε∗µε

µ = −1 and pµε
µ = 0. Additionally another four-momentum, the reference momen-

tum, rµ is introduced. This reference momentum must not be aligned with with the
momentum pµ of the gluon (r · p 6= 0). This is the only constraint on choosing the
reference momentum. The aforementioned relations can be fulfilled by

[
ε−p (r)

]αα̇
=

√
2
p〉[r
[pr]

,
[
ε+p (r)

]αα̇
=

√
2
r〉[p
〈rp〉

. (A.46)

With these definitions ε+ · ε+ = ε− · ε− = ε± · p = 0 also follows. In calculations it is
convenient to take the reference momentum as the momentum of another gluon in the
problem. As a shorthand εi(j) is the polarisation vector of a gluon i with momentum
pµi and reference momentum rµ = pµj . With this all possible contractions can be worked
out:

ε−1 (i) · ε−2 (j) =
〈12〉[ji]
[1i][2j]

, p1 · p2 =
1

2
〈21〉[12], (A.47)

ε−1 (i) · ε+2 (j) =
〈1j〉[2i]
[1i]〈j2〉

, ε+1 (i) · ε+2 (j) =
〈ij〉[21]
〈i1〉〈j2〉

, (A.48)

ε−1 (i) · p3 =
1√
2

〈13〉[3i]
[1i]

, ε+1 (i) · p3 =
1√
2

[13]〈3i〉
〈i1〉

(A.49)

By choosing one reference momentum for all gluons one obtains

ε+i (r) · ε+j (r) =
〈rr〉[ji]
〈ri〉〈ri〉

= 0 , (A.50)

leading to a quite general result. Namely, all amplitudes with all positive or negative
helicities vanish at tree level in QCD. It can be further shown that only amplitudes
with two negative and two positive helicities contribute, these are called maximum
helicity-violating (MHV).
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A.4.2 Diagrams

For the calculation the diagram will be calculated first and the colour factor will be
treated afterwards. Also it is enough to calculate one MHV amplitude and get the other
results by crossing. The MHV amplitude calculated will be M(1−, 2−, 3+, 4+). For the
following matrix elements this will be left implicit. Also the Mandelstam variables in
this section will be t = (p1 + p4)

2, u = (p1 + p3)
2 and finally s = (p1 + p2)

2, while still
fulfilling s+ t+ u = 0. Choosing the reference momentum for ε1 and ε2 as r = p4 and
for ε3 and ε4 as r = p1 leads to ε2 · ε3 being the only non-vanishing contraction. For the
process there are now four diagrams to consider. Starting with the four-gluon vertex
and the conventions laid out above this becomes

ı̇M4 =

µ; a ν; b

σ; dρ; c

= −ig2 ×
[
fabef cde (gµρgνσ − gµσgνρ)

+facef bde (gµνgρσ − gµσgνρ)

+fadef bce (gµνgρσ − gµρgνσ)
]

ε−1,µ(4)ε
−
2,ρ(4)ε

+
3,ν(1)ε

+
4,σ(1)

= ı̇g2
{
fabef cde

[(
ε−1 (4) · ε−2 (4)

)(
ε+3 (1) · ε+4 (1)

)
−
(
ε−1 (4) · ε+4 (1)

)(
ε+3 (1) · ε−2 (4)

)]
+ facef bde

[(
ε−1 (4) · ε+3 (1)

)(
ε−2 (4) · ε+4 (1)

)
−
(
ε−1 (4) · ε+4 (1)

)(
ε+3 (1) · ε−2 (4)

)]
+ fadef bce

[(
ε−1 (4) · ε+3 (1)

)(
ε−2 (4) · ε+4 (1)

)
−
(
ε−1 (4) · ε−2 (4)

)(
ε+3 (1) · ε+4 (1)

)]}
= 0 . (A.51)

So the four-gluon vertex does not contribute to this process. In the following the refer-
ence momentum will still be chosen as above, but will not be written down explicitly.
Next is the s-channel diagram:

ı̇Ms =

p1

p2

q
p3

p4

µ; a

ν; b

χ; f

ϕ; e

= ı̇g2ε1,µε2,νf
abcfdef

[
gµν(p1 − p2)

ρ + gνρ(p2 + q)µ

+ gρµ(−q − p1)
ν]−gρσδcd

q2
[
gσϕ(q − p3)

χ

+ gϕχ(p3 − p4)
σ + gχσ(p4 − q)ϕ

]
ε∗3,ϕε

∗
4,χ

= −ı̇ g
2

s
fabcf efc

[(
ε−1 ε

−
2

)
(p1 − p2)

ρ + 2ε−,ρ
2

(
ε−1 p2

)
− 2ε−,ρ

1

(
ε−2 p1

)]
×
[(
ε+3 ε

+
4

)
(p3 − p4)

ρ + 2ε+,ρ
4

(
ε+3 ε

+
4

)
− 2ε+,ρ

3

(
ε+4 ε

+
3

)]
(A.52)
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Now it is time to use the spinor products from above. The Mandelstam variables also
have to be expressed in terms of these products:

s = 〈21〉[12] = 〈34〉[43] (A.53)

t = [14]〈41〉 = [23]〈32〉 (A.54)

u = 〈31〉[13] = 〈42〉[24] . (A.55)

The s-matrix element then becomes

Ms = 4
g2

s
fabcf efc

(
ε−2 ε

+
3

)(
ε−1 p2

)(
ε+4 p3

)
= 2g2fabcf efc 1

〈21〉[12]
〈21〉[34]
[24]〈13〉

〈12〉[24]
[14]

[43]〈31〉
〈14〉

= 2g2fabcf efc 〈12〉[34]2

[12][14]〈41〉
. (A.56)

This can be simplified by writing the 1 more complicated e.g. s/s; also using equa-
tion (A.43) one can write 〈12〉[23] = −〈14〉[43]. With this:

Ms = 2g2fabcf efc 〈12〉[34]2

[12][14]〈41〉

(
[14]〈41〉
[23]〈32〉

)(
[12]〈21〉
〈34〉[43]

)(
〈12〉[23]
〈14〉[34]

)
= −2g2fabcf efc 〈12〉3

〈23〉〈34〉〈41〉
. (A.57)

In many in-between steps the order in bispinors was swapped, which introduces addi-
tional minus signs. Turning to the t-channel diagram now:

ı̇Mt =

p1 p3

q

p2 p4

µ; a σ; d

ν; b ρ; c

=− i
g2

t
fadef cbeε−1,µε

−
2,νε

+
3,ρε4,σ

[
gµθ(p1 + q)σ + gθσ(−q − p4)

µ

+gσµ(p4 − p1)
θ][gνρ(p2 − p3)

θ + gσθ(p3 − q)ν + gθν(q − p2)
ρ]

= −ı̇ g
2

t
fadef cbe

[(
ε−1 ε

+
4

)
(p4 − p1)

θ + 2εθ1
(
ε+4 p1

)θ − 2εθ4
(
ε−1 p4

)]
×[(

ε−2 ε
+
3

)
(p2 − p3)

θ + 2εθ3
(
ε−2 p3

)θ − 2εθ2
(
ε+3 p2

)]
. (A.58)
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Using the bispinors

p1ε
+
4 =

1

2

[41]〈44〉
〈41〉

= 0 , ε−1 p4 =
1

2

〈14〉[44]
〈14〉

= 0 , ε−1 ε
+
4 =

〈11〉[44]
[14]〈14〉

= 0 (A.59)

it follows that
Mt = 0 . (A.60)

The last remaining diagram is the u-channel

ı̇Mu = q

µ; a σ; d

ν; b ρ; c

= −ı̇g2faecf bdfε1,µε2,νε3,ρε4,σ
[
gµθ(p1 + q)ρ + gθρ(−q − p3)

µ

+ gρµ(p3 − p1)
θ]gθϕδef

u

[
gνσ(p2 − p4)

ϕ + gσϕ(p4 − q)ν

+ gϕν(q − p2)
ρ]

= −ı̇ g
2

u
facef bde

[(
ε−1 ε

+
3

)
(p1 − p3)

θ + 2εθ3
(
ε−1 p3

)
− 2εθ1

(
ε+3 p1

)]
×[(

ε−2 ε
+
4

)
(p2 − p4)

θ + 2εθ4
(
ε−2 p4

)
− 2εθ2

(
ε+4 p2

)]
(A.61)

Now using the relation between polarisations and expressing everything as bispinors

Mu =
4g2

u

(
ε+3 ε

−
2

)(
ε−1 p3

)(
ε+4 p2

)
= 2g2facef bde 1

〈31〉[13]
〈21〉[34]
[24]〈13〉

〈13〉[34]
[14]

[42]〈21〉
〈14〉

= 2g2facef bde 〈21〉2[34]2

〈13〉[13][14]〈14〉

(
[14]〈41〉
[23]〈32〉

)(
−〈21〉[13]
〈42〉[34]

)(
−〈12〉[23]
〈41〉[34]

)
= −2g2facef bde 〈21〉4

〈14〉〈42〉〈23〉〈31〉
. (A.62)

Summing the two non-vanishing contributions gives the matrix element:

M
(
1−, 2−, 3+, 4+

)
= −2g2

[
fabcf efc 〈12〉3

〈23〉〈34〉〈41〉
+ facef bde 〈21〉4

〈14〉〈42〉〈23〉〈31〉

]
.

(A.63)
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For the calculation of the squared matrix element the bispinor part will come first
and afterwards comes the colour part. Bispinors under complex conjugation behave as
(〈14〉)† = [41] so that

∣∣∣∣ 〈12〉3

〈23〉〈34〉〈41〉

∣∣∣∣2 = 〈12〉3[21]3

〈23〉[32]〈34〉[43]〈41〉[41]
=
s2

t2
, (A.64)∣∣∣∣ 〈21〉4

〈14〉〈42〉〈23〉〈31〉

∣∣∣∣2 = 〈21〉4[12]4

〈14〉[41]〈42〉[24]〈23〉[32]〈31〉[13]
=

s4

t2u2
, (A.65)

[12]4〈21〉4

[12][23][34][41]〈14〉〈42〉〈23〉〈31〉
=

s4

st2u
, (A.66)

for the squared matrix elements, where the Mandelstam variables from above were
used. Turning to the colour factor now, there are two different calculations to be done,
namely

(
fabef cde

)2 and
(
fabef cde

)(
facgf bdg

)
. For this the structure constants can be

expressed in terms of generators:

fabc = −2ı̇ tr
([
T a, T b

]
T c
)
. (A.67)

One can give some relations that are useful for calculating several traces involving
generators:

tr(T aA) tr(T aB) =
1

2

(
tr(AB)− 1

N
tr(A) tr(B)

)
, (A.68)

tr(AT aBT a) =
1

2

(
tr(A) tr(B)− 1

N
tr(AB)

)
. (A.69)

Starting with
(
fabef cde

)2 and the trace relations above:

(
fabef cde

)2
=
(
−2 tr

([
T a, T b

][
T c, T d

]))2 (A.70)

=
(
−2 tr

(
T aT bT cT d − T aT bT dT c − T bT aT cT d + T bT aT dT c

))2
. (A.71)
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Using trace properties tr(A+B) = tr(A) + tr(B) and introducing 1 as shorthand for
the colour factor T a coming from gluon 1 etc. this then becomes

(
fabef cde

)2
=4
(
tr(1234) tr(1234)− 2 tr(1234) tr(1243)− 2 tr(1234) tr(2134)

+ 2 tr(1234) tr(2143) + tr(1243) tr(1243) + 2 tr(1243) tr(2134)

− 2 tr(1243) tr(2143) + tr(2134) tr(2134)− 2 tr(2134) tr(2143)

+ tr(2143) tr(2143)
)

(A.72)

The calculation will now be demonstrated for some examples: the full calculation is
in principle not difficult, but very lengthy and prone to error, so is better left to some
computer algebra system like Form. Starting with tr(1234) tr(1234) it is easiest to
start with the trace over two generators and going up in complexity, while noting that
tr(T a) = tr(1) = 0 and using the relation from above. Also using the unit matrix 1

and tr(1) = N :

• tr(11) = tr(1111) =
1

2

(
Tr(1) tr(1)− 1

N
tr(1)

)
=
N2 − 1

2
, (A.73)

• tr(12) tr(12) = 1

2

(
tr(22)− 1

N
tr(2) tr(2)

)
=
N2 − 1

4
, (A.74)

• tr(1212) = 1

2

(
tr(1) tr(1)− 1

N
tr(11)

)
=

1−N2

4N
, (A.75)

• tr(123) tr(123) = 1

2

(
tr(2323)− 1

N
tr(23) tr(23)

)
=

1

2

(
1−N2

4N
− N2 − 1

4N

)
(A.76)

=
1−N2

4N
,

• tr(123123) = 1

2

(
tr(12) tr(12)− 1

N
tr(1212)

)
=
N4 − 1

8N2
, (A.77)

• tr(1234) tr(1234) = 1

2

(
tr(234234)− 1

N
tr(234) tr(234)

)
=
N4 + 2N2 − 3

16N2
. (A.78)

As another example look at tr(1234) tr(2143):

tr(1234) tr(2143) = tr(1234) tr(1432) =
1

2

(
tr(234432)− 1

N
tr(234) tr(432)

)
=

1

2

[
1

2

(
tr(1) tr(3443)− 1

N
tr(3443)

)
− 1

2N

(
tr(3443)− 1

N
tr(34) tr(43)

)]
=
N6 − 4N4 + 6N2 − 3

16N2
. (A.79)
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Working everything out leads to

(
fabef cde

)2
= N2

(
N2 − 1

)
(A.80)(

fabef cde
)(
facgf bdg

)
=

1

2
N2
(
N2 − 1

)
. (A.81)

Putting all the parts together gives the squared matrix element

∑
colour

∣∣M(
1−, 2−, 3+, 4+

)∣∣2 = 4g4N2
(
N2 − 1

)( s4

t2u2
− s2

tu

)
. (A.82)

There are in principle five more MHV amplitudes that contribute, which are related to
the one above by crossing symmetry. The other amplitudes correspond to the possible
permutations of the s, t and u. Averaging the initial state gives a factor 1

4
for the spin

and there are N2 − 1 colours. Taking N = 3 now for QCD gives

1

256

∑
pols.

colours

|M|2 = 9

2
g4
(
3− su

t2
− ut

s2
− st

u2

)
. (A.83)

The relation s+ t+u = 0 is used a lot here. These calculations are best left to be done
by CAS, since they are, again, very lengthy.
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