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1. Introduction and Outline Siddha Hill

1. Introduction and Outline
High energy hadron collisions have made remarkable contributions to a better understan-
ding of the content and structure of nuclei, the behaviour of elementary particles and the
forces acting between them. The importance of particle productions in hadron-hadron
collisions is evident, when we consider that about 75% of the total cross section at
incoming laboratory momenta plab > 5 (GeV/c) are production processes [22].
This thesis aims to show a sanity check for the agreement between the theoretical

prediction for the multiplicity and experimental data of a pp→ (K+ +K−)X process,
taken from Betty Bezverkhny Abelev et al. [1]. From this comparison a statement can
be made about the validity of the underlying theory for the given framework conditions.
The predicted fractional contribution of all two-to-two processes as functions of pT is
then examined.

To study the production process and to obtain the corresponding theoretical prediction
for a cross section, an introduction into the underlying field theory quantum chromo-
dynamics is given. In this context the locally gauge invariant Lagrangian is studied
for a general non-abelian SU(N) gauge group. These results allow direct access to
the information about the Lagrangian of the SU(3) gauge group, and therefore about
the strong interactions in quantum chromodynamics. Reasoning for the perturbative
approach is given by the analysis of the running coupling constant αs, which is sufficiently
small for the energies that are being regarded in this thesis. The following section gives a
translation of the Lagrangian into the Feynman diagrams with corresponding propagator
and vertex factors at tree-level. The study of the kinematics and the cross section for
a particle production in hadron-hadron collisions sets groundwork for the numerical
evaluation and further comparison to experimental data. The fifth section sets focus on
the computation of the invariant matrix elements for two-to-two parton sub-processes of
hadron-hadron collisions for massless partons. This thesis discusses the calculation of
the invariant squared matrix of the sub-processes qq → gg and qg → qg in great detail.
Section 6 compares the theoretical pT distribution of the cross section of a charged kaon
production, which is numerically evaluated with the application of the Monte Carlo
method, to experimental data.
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2. Introduction to Quantum Chromodynamics Siddha Hill

2. Introduction to Quantum Chromodynamics
Quantum chromodynamics is a quantum field theory covering the strong interaction
between the constituents of hadronic matter, based on the gauge group SU(3). Hadrons
are classified as mesons and baryons composed of a quark-antiquark pair and three quarks
(or antiquarks), respectively. There are 6 known flavours of quarks that can be ordered
into the doublets u

d

 c
s

 t
b


with each quark being described by the a Dirac-field. Hence, the fields can be written as

q = (qϕ) =


q1

q2

q3

q4

 (2.1)

or qf = (qϕf), where the quark is characterised by the newly introduced flavour index
f = 1, 2, . . . , Nf and Nf = 6.
A motivation for the postulate of the unobserved quantum number colour is the

explanation of the following two issues. First, there is no particular reason why only
qqq and qq states are observed i.e. no free particle with fractional charge of +2/3 e and
−1/3 e for u, c, t and d, s, b-quarks, respectively. Secondly, difficulties occur because the
antisymmetric wave functions for particles such as the ∆++ baryon with spin 3/2 and
charge +2 e cannot be constructed. Its wave function |∆++〉 = |u↑u↑u↑〉 is symmetrical
and does not obey Fermi-Dirac statistics, despite being a fermion. Thus, a new degree
of freedom - described by the quantum number colour - is introduced, which makes
|∆++〉 = εijk |ui↑uj↑uk↑〉 antisymmetric with respect to an interchange of two quarks.
This new quantum number leads to an additional colour index i = 1, 2, 3. Quarks are
now represented by qαfi. It is of importance that an additional condition is formulated,
which states that only colour singlet states are physical [6, p. 1]. In other words, observed
particles are ’white’ or ’colourless’, which explains the association of colour indices with
the three additive colours red, green and blue. The corresponding anti-colours (anti-red,
anti-green and anti-blue) are demanded due to the fulfilment of colour charge conservation.

- 2 -



2. Introduction to Quantum Chromodynamics Siddha Hill

The colour singlet states and the corresponding hadrons are

qiq
−i mesons

εijkqiqjqk baryons

and

εijkq
−iq−jq−k antibaryons

with the totally antisymmetric tensor εijk.

2.1. Short Review of Symmetry and Groups

Particle interactions follow gauge symmetries, which are associated with locally conserved
quantities like colour in quantum chromodynamics. The interactions are encoded in
the Lagrangian of the system. Occurring terms are identified with vertex factors and
propagators. To be more precise, propagators are associated with terms that are quadratic
in fields, while the remaining terms are vertex factors. Motivation for the approach to
derive Feynman rules is given in section 3. Prerequisites for this discussion are the gauge
theories and therewith symmetries. Symmetries are of great interest because they are
closely linked to conservation laws. Symmetries are transformations of a state which do
not alter the observed quantity. Their presence indicates that the absolute value of a
physical quantity is not measurable [13, p. 315].

For instance, the consequence of a continuous translation symmetry is that the absolute
position in space cannot be determined. Similarly, it is not possible to measure the
absolute phase of a complex field describing an electron. Therefore, the phase can
be chosen as an arbitrary value α. The chosen value applies to every point in space
because phase differences are measurable (see Aharonov-Bohm effect [2]). Global gauge
transformations maintain an invariant Lagrangian when the parameter α is freely chosen
and determined for every point in space-time.
If the transformation depends on an arbitrary value α(x), chosen independently at

every x in space-time while the Lagrangian remains invariant, it is called a local gauge
symmetry. As stated above we try to obtain the Feynman rules and properties of QCD
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2. Introduction to Quantum Chromodynamics Siddha Hill

from a local gauge invariant Lagrangian. The QCD-Lagrangian is going to be formulated
in section 2.3 after a brief review of groups. By imposing a SU(N) symmetry on the
Lagrangian of a Dirac-field, we introduce gauge fields which are coupled to the particles.
A group is a set G = g, h, k, . . . of elements with an operation ◦ where all elements

fulfil the following axioms:
(i) The group is closed to its operation. For g, h ∈ G is g ◦ h ∈ G.
(ii) Existence of a unit element such that e ◦ g = g ◦ e = g.
(iii) There is an inverse element g−1 ∈ G for each g ∈ G that satisfies g−1◦g = g◦g−1 = e.
(iv) Associativity (a ◦ b) ◦ c = a ◦ (b ◦ c) applies for ∀a, b, c ∈ G.
The group is abelian if ∀g, h ∈ G : g ◦ h = h ◦ g. Hence, non-commutative groups are
called non-abelian.
Lie groups are continuous groups with elements g = g(α1, α2, . . . αn), where an

infinitesimal neighbourhood around g can be defined. The parameters αj are either real
or complex. Operators U ∈ G where

U †U = UU † = 1⇒ U † = U−1 (2.2)

are called unitary. If G is a strongly continuous one-parameter unitary group (on Hilbert
space) the unitary transformation can be written as

U(t) = exp[iAt] (2.3)

for all t ∈ R, with the self-adjoint infinitesimal generator A (Stone’s Theorem [12, p. 210]).
In preparation for the study of the underlying symmetry group of QCD, special

attention is paid to the unitary group SU(N). This group is a subgroup of transformations
consisting of unitary N ×N matrices

U = exp
−iN2−1∑

a=1
αaTa

 with |det U |2 = 1. (2.4)

The transformations depend on parameters αa, with a = 1, . . . , N2− 1 for the generators
Ta. Since SU(N) is unitary, it is apparent that the generators Ta are hermitian and
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2. Introduction to Quantum Chromodynamics Siddha Hill

αa ∈ R. The group is generally non-abelian, with its generators forming the Lie-algebra

[Ta, Tb] = ifabcTc, (2.5)

where fabc are the structure constants of the group.

2.2. Non-Abelian Gauge Theory

The Lagrangian of a free Dirac-field is going to be investigated under a global SU(N)
symmetry, followed by the extension into a local symmetry, following the idea given by
[19, pp. 203–207]. This leads to the formulation of a covariant derivative and gauge
fields to maintain the invariance of the Lagrangian under local SU(N) transformations.
The demand that the gauge fields should be dynamic fields leads to an additional gauge
invariant term, which is associated with the kinetic energy. The Lagrangian

L = ψ(x)(iγµ∂µ −m)ψ(x) (2.6)

for a free Dirac field

ψ(x) =


ψ1(x)

...
ψN(x)

 (2.7)

is invariant under global transformations U ∈ SU(N). This can be shown with

ψi(x) −→ ψ′i(x) = (Uψ(x))i = Uijψj

⇒ψ′i (iγµ∂µ −m)ψ′i = ψiU
†
ij(iγµ∂µ −m)Ujkψk

=ψiU
†
ijUjk(iγµ∂µ −m)ψk

=ψi(iγµ∂µ −m)ψi

(2.8)
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2. Introduction to Quantum Chromodynamics Siddha Hill

since U is unitary. Imposing a local gauge variance with transformations performed by
U(x) ∈ SU(N)

U(x) = exp
−iN2−1∑

a=1
αa(x)Ta

 (2.9)

leads to the introduction of a covariant derivative Dµ, since U(x) does not commute with
operator ∂µ anymore, which causes the Lagrangian to break gauge invariance. With

Aµ := AaµTa =
N2−1∑
a=1

AaµTa (2.10)

the covariant derivative reads

Dµ = ∂µ − igAaµ(x)Ta = ∂µ − igAµ (2.11)

with coupling constant g and N2 − 1 gauge fields to regain an invariant Lagrangian. To
obtain the transformation of the gauge field, one can take advantage of the imposed
invariance of the Lagrangian. After the substitution of the covariant derivative, the
Lagrangian

L = ψ(x)(iγµDµ −m)ψ(x) (2.12)

follows. A transformation of fields and covariant derivative yields

ψ
′
i (iγµD′µ−m)ψ′i = ψiU

†
ij(x)(iγµD′µ −m)ψ′, (2.13)

which means that the transformation must satisfy

D′µψ
′(x) != U(x)Dµψ(x) = U(x)DµU

†(x)ψ′(x). (2.14)

Inserting eq. (2.11) gives

(∂µ − igA′µ(x))ψ′(x) = U(x)(∂µ − igAµ(x))U †(x)ψ′(x)
⇔
[
(∂µ − igA′µ(x))− (U(x)(∂µ − igAµ(x))U †(x))

]
ψ′(x) = 0,

(2.15)
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2. Introduction to Quantum Chromodynamics Siddha Hill

and therewith the transformation

⇒A′µ(x) = U(x)AµU †(x) + i

g
U(x)∂µU †(x) (2.16)

for the gauge fields, after applying product rule and demanding that eq. (2.15) holds
for all ψ′(x). It is sufficient to investigate infinitesimal transformations, if SU(N) is an
element of the Lie group. The transformation U(x) becomes

U(x) = 1− iαa(x)Ta (2.17)

along with the transformations

ψ′(x) = ψ(x)− iαa(x)Taψ(x) (2.18)

A′µ(x) = Aµ(x)− iαa(x) [Ta, Aµ(x)]− 1
g
αa(x)Ta (2.19)

⇒ A′aµ Ta = Aaµ(x)Ta − iαa(x)AbµfabcTc −
1
g
αa(x)Ta

=
(
Aaµ + αbA

c
µfbca −

1
g
∂µαa

)
Ta

(2.20)

for the Dirac and gauge field. The commutator depends on the generators of the Lie-
algebra from eq. (2.5), since Aµ = AaµTa. If the gauge field is a dynamic property with
an associated kinetic energy, an additional locally gauge invariant term

Lkin = −1
4F

a
µνF

µν
a (2.21)

must be added to the Lagrangian, which depends on field strength tensors F a
µν . The

relation

Fµν = i

g
[Dµ, Dν ]

= ∂µAν − ∂νAµ − ig [Aµ, Aν ]
= ∂µA

a
νTa − ∂νAaµTa + gAaµA

b
µfabcTc

= (∂µAaν − ∂νAaµ + gAbµA
c
µfbca)Ta

:= F a
µνTa

(2.22)
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2. Introduction to Quantum Chromodynamics Siddha Hill

between the covariant derivative and the field strength tensor can be found, and a field
strength tensor F a

µν is defined. The field strength tensor transforms under local gauge
transformations U(x) ∈ SU(N) as follows:

F ′µν = i

g

[
D′µ, D

′
ν

]
= i

g

[
U(x)DµU

†(x), U(x)DνU
†(x)

]
= U(x)FµνU †(x).

(2.23)

2.3. QCD Symmetry Group and Lagrangian

This section studies the construction of the Lagrangian and imposes a local gauge
symmetry due to colour conservation, which then applies the results from section 2.2
for this given quantum field theory based on gauge group SU(3). An intuitive approach
for the invariance of interactions under rotations in colour space is that the quantum
number colour itself is not observed due to colour conservation. The Lagrangian for free
quarks was already discussed in the previous section since quarks are spin 1/2 particles
and therefore fermions which obey Fermi-Dirac-statistics. The Lagrangian for free quarks
reads therefore

L =
∑
i,f

qif (iγµ∂µ −mf )qif , (2.24)

where the sum over colour index i and flavour index f is written explicitly while the
spinor index ϕ is suppressed due to an improved legibility. The invariance under local
gauge transformations is shown in eq. (2.8). Since the group elements depend on a set of
continuous parameters, we identify SU(3) as Lie group with dimension 8 = 32 − 1 due to
the eight generators. By applying

det
{
eA
}

= eTr{A} (2.25)

and the condition det{U} = 1, it is clear that

Tr{Ta} = 0. (2.26)
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2. Introduction to Quantum Chromodynamics Siddha Hill

A realization of the traceless, hermitian generators Ta is given by the linear independent
Gell-Mann-matrices Ta = λa/2, which are often referred to as a generalisation of the
Pauli-matrices in three-dimensional space with

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
−i 0 0

 , λ6 =


0 0 0
0 0 1
0 1 0



λ7 =


0 0 0
0 0 −i
0 −i 0

 , λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 .

(2.27)

The algebra of the group is defined by the relationship

[Ta, Tb] = ifabcTc (2.28)

between the generators, with structure constants

fabc = −2iTr{[Ta, Tb]Tc}, (2.29)

which are antisymmetric under exchange of any pair of indices. The eight gauge fields
are denoted as gluon fields with field strength tensor

Ga
µν = ∂µA

a
ν − ∂νAaµ + gsfabcA

b
µA

c
ν (2.30)
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2. Introduction to Quantum Chromodynamics Siddha Hill

transforming according to eq. (2.16). The QCD-Langrangian reads therefore

LQCD = q(iγµDµ −m)q − 1
4G

a
µνG

µν
a (2.31)

= q(iγµ∂µ −m)q − gsqγµAaµTaq −
1
4G

a
µνG

µν
a (2.32)

as a sum of the Lagrangian for free quarks and the gauge invariant kinetic energy term
for the dynamic gluon field. The final Lagrange density is given by

L = LQCD + Lgauge−fixing + Lghost, (2.33)

in which the two additional terms are motivated by the fact that the propagator for
the gluon field cannot be defined without a choice of gauge and ghost fields cancel out
unphysical degrees of freedom such as a polarisation along the direction of propagating
gluons [6, p. 8]. The sum over flavour indices is implied in these equations. Gluons have
no mass contribution in the Lagrangian, they are therefore massless. An additional term
involving the gluon-mass cannot exist, because it would violate the gauge invariance.
As a result of the multiplication of the field strength tensors, interesting consequences
are observed in QCD. In order to get a first idea of these consequences, it is best to
reconstruct the Lagrangian into a symbolic form

LQCD = “qq + gsqqA+ A2 + gsA
3 + g2

sA
4”, (2.34)

which highlights participating particles in possible interactions. By looking at the first
and third term, which are quadratic in fields, it is clear that freely propagating quarks and
gluons are described. Terms that are interpreted to express particle interactions contain
the strong coupling constant gs. Consequently, quark-antiquark-gluon interactions are
seen in the second term. In great contrast to quantum electrodynamics, self-interactions
between gluons are noticed in the fourth and fifth term. This self-coupling is caused by
gluons carrying colour charge. It is unique since it has no analogue to photons in QED.
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2.3.1. Comparison to QED

To enable a comparison, we study the QED Lagrangian

L = ψ(x)(iγµ∂µ −m)ψ(x) (2.35)

following the same procedure as in the previous section. The Lagrangian of quantum
electrodynamics is based on a U(1) symmetry, since the absolute phase of a complex
field is not measurable. The transformation operators

U = e−iqα (2.36)

are commutative, and form an abelian group in contrast to the previous section. The
global gauge invariance of the Lagrangian under these transformations can be seen from
eq. (2.8). A local transformation

U(x) = e−iqα(x) (2.37)

requires the covariant derivative

Dµ = ∂µ + iqAµ(x) (2.38)

with coupling constant q, which transforms as seen in eq. (2.14) and introduces the gauge
field (photon field), which obeys the gauge transformations given in eq. (2.16). The
dynamic gauge field adds the invariant term

LA = −1
4FµνF

µν (2.39)

with

Fµν
eq. (2.22)= ∂µAν − ∂νAµ, (2.40)

which gives the QED-Lagrangian

LQED = ψ(x)(iγµDµ −m)ψ(x)− 1
4FµνF

µν . (2.41)

- 11 -
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A reconstruction into a symbolic form gives

LQED = “ψψ + qψψA+ A2”. (2.42)

The quadratic terms express propagating fermions and gauge particles – the photons –
while the interaction of two fermions through a photon is given by the second term. An
abelian symmetry group in QED leads to the absence of any self-interaction of gauge
particles that were seen in QCD. Both Lagrangians do not contain a “m2A2” term, which
shows that the gauge bosons are massless due to the gauge invariance.

2.4. Running Coupling Constant: Confinement and Asymptotic
Freedom

The characteristic property of the strong coupling constant is the energy dependency
of the running coupling constant αs(Q2) = g2

s(Q2)/4π in QCD (see fig. 1), which is a
consequence of the self-interaction of gluons [16, p. 15]. It is observed to be large at
small energies and small at large energies, which causes the confinement of coloured
quarks in hadrons and the asymptotic freedom, for the number of quark flavours nf < 16.
The asymptotic freedom justifies the application of perturbation theory in QCD, which
considers quasi-free constituents of hadrons at sufficiently high energies and therefore
short distance interactions [13, p. 171]. The behaviour of the coupling constant in regards
to the momentum transfer Q2 := −q2 is described by the differential equation

Q
d

dQ
gs(Q) = β(gs). (2.43)

The β-function is a power series where the lowest order approximation is given by

Q
d

dQ
gs(Q) ≈ − 1

16π2

[
11− 2

3nf
]
· g3

s(Q) (2.44)
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with nf quark flavours. Applying the method of separation of variables for solving
eq. (2.44) and substituting g2

s(Q2) = 4παs(Q2) yields

αs(Q2) = αs(µ2)
1 + 1

4π · (11− 2
3nf ) · αs(µ2) · ln

(
Q2

µ2

) . (2.45)

With the introduction of scale-parameter Λ, the coupling constant can be written as

αs(Q2) = 4π[
11− 2

3nf
]

ln
(
Q2

Λ2

) = 4π
β0 ln

(
Q2

Λ2

) . (2.46)

Λ is used as a boundary for the distinction between strongly bound states and quasi-free
particles, which can be studied with perturbative computations. The latter point applies
to Q2 � Λ2. Thus, bound states (hadrons) are considered for Q2 in order of Λ2.
The scale-parameter is determined by

Λ2 = Q2 exp
{
− 4π
β0αs(Q2)

}
(2.47)

through experiments (see fig. 1). A brief motivation for the colour confinement, and
therefore the reason why only ’colourless’ particles are observed, will be shown by the
simplified example of a meson and the self-interaction between gluons based on the idea
from [8, p. 158]. The field that ’bonds’ a quark-antiquark pair into a colourless meson
can be described by gluonic field lines. In contrast to electrodynamics, where the density
of field lines decreases with increasing distance of two particles of opposite charge, a
separation of a quark-antiquark pair (of opposite colour) does not lead to a diminishing
field line density. This is a consequence of the attraction of field lines due to the self
interaction of gluons, which causes them to form a tube of a diameter in order of 1 fm,
consisting of almost parallel field lines. Hence, the mediated force is constant, while the
potential field energy grows approximately linearly with increasing distance r in the far
field according to

V (r) ≈ −4
3 ·

αs(r)
r

+ k · r. (2.48)

- 13 -
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Figure 1: Running coupling constant αs in theoretical calculation compared to data from
different processes as function of energy scale Q. The respective degree of QCD
perturbation theory used in the extraction of αs indicated in brackets (NLO:next-
to-leading order; NNLO: next-to-next-to leading order; res.NNLO: NNLO matched
with resummed next-to-leading logs;NNNLO (N3LO): next-to-NNLO), taken from
[20].

Eventually, it turns out to be energetically favourable to create a corresponding qq pair
from the vacuum, where the created particles form the new start or endpoint of the
significantly shortened gluonic field lines. This Lund string model is the underlying
process for the hadronisation of scattered quarks and gluons in high-energy proton-proton
collisions.

- 14 -
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3. Feynman Rules
The previous section gives a brief introduction of the Lagrangian LQCD and the asymptotic
freedom, leading to the application of perturbative QCD. Perturbation theory can only
be performed with the addition of a gauge fixing term, supplemented by a ghost term.
This section uses the Lagrangian to derive the Feynman rules, which are represented by
graphs displaying the perturbation series of the transition amplitude for a process from
the initial to final state following [6, pp. 8–11] and [21, pp. 240–250]. It shows that the
Feynman rules can be obtained from the action

S = i
∫
d4xL, (3.1)

which is the phase of the transition amplitude. A more detailed derivation is given in
[21, pp. 182, 250]. Since L can be decomposed into a non-interacting term L0 and LI ,
which contains the terms describing interactions, the expression

S = i
∫
d4xL0(x) + i

∫
d4xLI(x) (3.2)

follows. The Lagrangian can be written as L = L0 + LI where

L0 = qi (iγµ∂µ −m) qj︸ ︷︷ ︸
quark propagator

−1
2∂µA

a
ν∂

µAνa + 1
2∂νA

a
µ∂

µAνa + Lgauge−fixing︸ ︷︷ ︸
gluon propagator

and

LI = gsqiγ
µAaµTaqj︸ ︷︷ ︸

quark-quark-gluon

+ 1
4gsfabc(∂µA

a
νA

µ
bA

ν
c − ∂νAaµA

µ
bA

ν
c + AbµA

c
ν∂

µAνa − AbµAcν∂νAaµ)︸ ︷︷ ︸
3-gluon interaction

− g2
sf

abcfabcA
b
µA

c
νA

µ
bA

ν
c︸ ︷︷ ︸

4-gluon interaction

+ Lghost︸ ︷︷ ︸
gluon−ghostinteraction

.

(3.3)

The allocations of the interactions to the corresponding terms can be made intuitively
by recognising the interacting fields such as the two quark fields qi/j, which will be
investigated first.
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The following method gives the inverse propagator of the corresponding part of −S0 and
the vertex factors of the interactions given in SI , which are treated as perturbations [6,
p. 8].
Since one can translate the operator ∂µ = −ipµ into momentum space, the propagator

qi qj
iδij

1
/p−m

= i
/p+m

p2 −m2 (3.4)

follows. It is interpreted as a quantity of the probability of the particle to propagate at
the given energy and momentum. The covariant fixing term for a choice of gauge

Lgauge-fixing = − 1
2λ (∂µAµa)2 (3.5)

is chosen accordingly to [6, p. 8] and added to the Lagrangian L0, which then can be
rewritten as

1
2A

a
µ

[
gµν2 +

(
1− 1

λ

)
∂µ∂ν

]
Abν , (3.6)

with the d’Alembertian operator 2 = ∂µ∂
µ. In a similar pattern to the latter procedure,

the negative, inverse gluon operator can be expressed as

iδcd

[
p2gµν −

(
1− 1

λ

)
pµpν

]
. (3.7)

Hence, the propagator

Aµc Aνd
δcd

[
−gµν + (1− λ) p

µpν

p2

]
i

p2 (3.8)

follows for an arbitrary parameter λ. In the following calculations the Feynman gauge
with λ = 1 is chosen. The term associated with the vertex of a quark-gluon-quark
interaction is taken from the first term of LI . It follows the vertex factor
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Aaµ

qi

qj

−igsT aijγµ (3.9)

with the corresponding diagram fraction.
The triple gluon vertex

1
4gsfabc(∂µA

a
νA

µ
bA

ν
c − ∂νAaµA

µ
bA

ν
c + AbµA

c
ν∂

µAνa − AbµAcν∂νAaµ) (3.10)

can be rewritten as

ifabc
gs
2 (gµνp1λ − gλµp1ν)AµaAνbAλc (3.11)

with the substitution of i∂µAµa = pµA
µ
a . The summation of eq. (3.10) over all 3!

permutations for all possible gluon arrangements gives

−gsfabc
(
gµν (p1 − p2)λ + gνλ (p2 − p3)µ + gλµ (p3 − p1)ν

)Aaµ

Acλ

Abν

p3

p2

p1

(3.12)

for the triple gluon vertex. Finally, the ghost vertex
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Aaµ

ηb

ηc

p1

p2

−gsfabc(p1)µ (3.13)

is introduced, which is a consequence of the additional term

Lghost = ∂µη
b∂µηb + gsf

abc (∂µca)Aaµηc (3.14)

to the Lagrangian. The ghost propagator and the 4-gluon vertex will not be reviewed as
they do not appear in the explicitly calculated processes in section 5. They can be found
along with all the Feynman rules in [18].
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4. Kinematics

4.1. Mandelstam Variables and Rapidity

Mandelstam variables describe useful quantities, which are invariant under Lorentz
transformations in 1 + 2→ 3 + 4 scattering processes. They are used to replace energies,
three-momenta and scattering angle of the interacting particles with

s = (p1 + p2)2 = (p3 + p4)2

= m2
1 +m2

2 − 2(E1E2 − |~p1||~p2| cos θ1)
(4.1)

t = (p1 − p3)2 = (p2 − p4)2

= m2
1 +m2

3 − 2(E1E3 − |~p1||~p3| cos θ2)
(4.2)

u = (p1 − p4)2 = (p2 − p3)2

= m2
1 +m2

4 − 2(E1E4 − |~p1||~p4| cos θ3).
(4.3)

Momentum conservation p1 + p2 = p3 + p4, eqs. (4.1) to (4.3) and the invariant mass
p2
i = mi yield the relation

s+ t+ u = p2
1 + p2

2 + p2
3 + p2

4 = m2
1 +m2

2 +m2
3 +m2

4. (4.4)

It is evident that only two of the three Mandelstam variables are independent. The
particles’ masses are negligible at sufficiently high energies, which leads to

s ≈ 2p1 · p2 = 2p3 · p4 (4.5)
t ≈ −2p1 · p3 = −2p2 · p4 (4.6)
u ≈ −2p1 · p4 = −2p2 · p3. (4.7)

Two sets of variables are required to describe hadron-hadron collisions, since hadrons
consist of quarks. This is also the reason why the centre-of-mass frame of two colliding
partons is typically boosted with regards to the colliding hadron-hadron beams. We
denote s, t, u, . . . and ŝ, t̂, û, . . . as variables at hadron- and parton-level, respectively.

The probability of partons to be found with momentum fraction x of the total hadron
momentum is described by parton distribution functions (PDF’s) f(x,Q2) at factorisation
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scale Q2. The rapidity

y = 1
2 ln E + pz

E − pz
(4.8)

is introduced to simplify further calculations for particles with boosts parallel to the z-axis,
by being additive for Lorentz transformations and showing boost-invariant differences for
two rapidities. A relation between Ecm =

√
s at hadron level and

√
ŝ at parton-level is

given by the momentum fractions

x1 = pT√
s

(ey3 + ey4) (4.9)

and

x2 = pT√
s

(
e−y3 + e−y4

)
, (4.10)

which are a consequence of momentum conservation ŝ = x1x2s for the observed final-state
rapidities y3/4 and transverse momentum pT .
The four-momenta of the hadron beams read

P1 = (E1, 0, 0, P1) , P2 = (E1, 0, 0,−P1) , (4.11)

which leads to the four-momentum

ph,cm = [(x1 + x2)E1, 0, 0, (x1 − x2)P1] (4.12)

of the parton-frame, with x1/2 being the corresponding fraction of the hadron momentum
in the lab frame. The boost of the parton system to the lab frame is therefore given by

y = 1
2 ln x1

x2
. (4.13)

In the partons’ centre-of-mass system, both final state particles scatter back-to-back with
a rapidity of

±ŷ = y3 − y4

2 , (4.14)
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while the laboratory rapidity of the two outgoing particles is

ycm = y3 + y4

2 (4.15)

depending on the observed rapidities y3/4. The scattering angle in the parton’s centre-of-
mass system can be extracted from

cos ŷ = p̂z

Ê
= sinh ŷ

cosh ŷ = tanh
(
y3 − y4

2

)
. (4.16)

With the latter two expressions, the momentum fractions can be rewritten as

x1 = 2pT eycm cosh ŷ, x2 = 2pT e−ycm cosh ŷ, (4.17)

which gives the relation

ŝ = 4p2
T cosh2 ŷ (4.18)

between measurable observables and the square of the parton’s centre-of-mass energy.
With transverse momentum pT , azimuthal angle Φ and ET =

√
p2
T +m2 the four-

momentum can be rewritten as

pµ = (E, px, py, pz) = (ET cosh y, pT sin Φ, pT cos Φ, ET sinh y). (4.19)

4.2. Cross Section

A cross section is a quantity of the probability of an interaction, such as absorption,
scattering, reaction, etc. between two colliding particles to occur. For instance, a
differential cross section dσ/dΩ describes the angular distribution of a scattering process.

The hard scattering of two hadrons is described by the parton model, in which the cross
section of particles with incoming four-momenta P1/2,hadron is written as a combination of
the short-distance cross section σ̂ of partons and PDF’s fi(x,Q2), defined at factorisation
scale Q2. Hence,

dσ(H1H2 → H3H4) =
∑
i,j

∫
dx1dx2fi(x1, Q

2)fj(x2, Q
2)dσ̂(ij → kl) (4.20)
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follows with p1/2,parton = x1/2 · P1/2,hadron and the characteristic hard scattering scale Q.
This expression is integrated over all momentum fractions and summed over all relevant
pairs of partons. Since the coupling is small at high energies, the short distance cross
section can be evaluated with the application of perturbation theory (see fig. 1). The
differential cross section for a two particle interaction via 1 + 2→ 3 + 4 + . . . n is given by

dσ̂ =
∑|M|2
F

dPSn, (4.21)

where ∑ corresponds to the average over initial and the sum over final spin and colour
states. F = |~v1−~v2| · 2E1 · 2E2 denotes the invariant flux for a general colliniear collision,
which ensures a normalisation-independent measure of the initial and final states of the
process [13, p. 89]. The flux can be written as

F = 4 ·

√√√√E2
1E

2
2

(
~p1

E1
+ ~p2

E2

)2

= 4 · |~pi|
√
E1 + E2 (4.22)

= 4|~pi|
√
ŝ = 2ŝ (4.23)

for initial momenta ±~pi in the centre-of-mass frame. The Lorentz invariant phase space
factor is written as

dPSn = 1
(2π)3n−4

n∏
l=1

d3~pl
2El

δ(4)
(
p1 + p2 −

n∑
l=1

pl

)
(4.24)

for n final state particles. The Lorentz invariant phase space element for a 1 + 2 −→ 3 + 4
scattering process reads

dPS2 = 1
(2π)2

d3~p3

2E3

d3~p4

2E4
δ(4) (p1 + p2 − p3 − p4)

eq. (4.26)= 1
8π2

d3 ~p3

E3
δ(4)(p1 + p2 − p3 − p4)d4p4δ(p2

4 −m2
4)

eq. (4.27)= 1
8π2

d3~p3

E3
δ
(
ŝ− 2p0 · p0

3

)
,

(4.25)

where the 4-dimensional delta function vanishes due to the integration over the d4p4
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element. The substitution of

d3~p

2E = d4pδ
(
p2 −m2

)
(4.26)

and

p = p1 + p2 =
√
ŝ
(
1,~0

)
, p3 =

(√
ŝ/2, ~p

)
, p4 =

(√
ŝ/2,−~p

)
(4.27)

are used for massless particles in the centre-of-mass frame. Hence, the differential short
distance cross section

Edσ̂

d3~p
=
∑
|M|2 1

2ŝ
1

8π2 δ
(
ŝ− 2p0 · p0

3

)
(4.28)

follows. To describe a particle production, another modification of the cross section
given in eq. (4.20) is implemented. Thus, the hard inelastic cross section of a particle
production reads

Ekd
3σ

d3~pk
= 1

16π2s

∑
i,j,k,l=q,q,g

dx1

x1

dx2

x2
dx3fi(x1, Q

2)fj(x2, Q
2)Dh/k(x3, µ

2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

δ
(
ŝ− 2p0 · p0

3

)
,

(4.29)

which is the previous cross section accompanied by a fragmentation function Dh/k(x3, µ
2)

and the extension of the sum over all relevant initial and final parton pairs [15, p. 170].
Fragmentation functions represent a measurement of the probability density of parton
k to be scattered into a a hadron h with momentum fraction x3 = ph/pk, which is
transferred from the parton to the hadron. Fragmentation functions can be understood
as the final-state analog of initial-state PDF’s. It is favourable to rewrite the differential
cross section further in terms of transverse momentum pT and rapidity y to make direct
use of experimentally accessible variables which are bound to the experimental setup of
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the detector. With

Ed3σ

d3~p

polar= Ed3σ

d2pTdpz
eq. (4.31)= d3σ

dyd2pT

= d2σ

2πpTdydpT
,

(4.30)

where the relation

dpz
eq. (4.19)= Edy (4.31)

and symmetry in azimuthal angle Φ were used, the differential cross section can be
written as

d6σ

dx1dx2dx3dykdp2
T

= 1
16π2ŝ

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dk/K(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

δ (x1x2s− ŝ)
(4.32)

with

2p0p0
3 = 2

√
ŝ

√
ŝ

2 . (4.33)

The transformation x1/2 =
√
τe±ycm of the momentum fractions leads to dx1dx2 = dτdycm,

and therefore,

d6σ

dx3dykd2pTdycmdτ
= 1

16π2τs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dh/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

δ (τ − ŝ/s) ,
(4.34)

where the Dirac-delta function was rewritten δ (τs− ŝ) = δ (τ − ŝ/s) /s. The integration
over dτ fixes τ to

τ
eq. (4.9)= 4p2

T

s
cosh2 ŷ, (4.35)
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which yields

d5σ

dx3dykd2pTdycm
= 1

16π2τs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dh/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

.

(4.36)

To gain access to the measured information, another transformation from
ykycm → y3y4 is given by

yk = ŷ = y3 − y4

2 , ycm = y3 + y4

2 (4.37)

with the Jacobian matrix

det{ J} = det
{
∂(yk, ycm)
∂(y3, y4)

}
= 1

2 . (4.38)

Simultaneously d2pT = 2πpTdpT is substituted, which gives

d4σ

dx3dy3dy4dpT
= pT

16πτs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dh/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

.

(4.39)

Since pT is the transverse momentum of the outgoing partons and energy fraction
x3 = Ph/p3 = PT,h/pT of the outgoing hadron h the determinant of the Jacobian matrix
of the transformation from x3 → PT,h gives

∂x3

∂PT,h
= 1/pT . (4.40)

Subsequently, the differential cross section

d4σ

dPT,hdpTdy3dy4
= 1

16πτs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dh/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

(4.41)
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is integrated over the partonic transverse momentum pT and rapidity dy3, which leaves
a dependency on y4 and PT,h for comparisons to experimental data. Limits for the
integration over transverse momentum of the parton result from PT,h ≤ pT ≤

√
s/2.

Rapidity y3 is bound by

p3 = pT cosh y3, p4 = pT cosh y4, p3 + p4 =
√
s, (4.42)

which gives

y3,min/max = ± arcosh
(√

s

pT
− cosh y4

)
, (4.43)

and therefore,

d2σ

dPT,hdy4
=

√
s

2∫
PT,h

dpT

y3,max∫
y3,min

dy3
1

16πτs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)Dh/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

(4.44)

with x1/2 = x1/2(s, pT , y3, y4) and x3 = x3(pT , pT,h). If the experimental data is given in
terms of the differential multiplicity, the relation

1
Nev

1
2πpT,K

d2N

dPT,Kdy
= E

d3σ

d3p

1
σtot

(4.45)

with the number of events Nev, number of detected particles N and total cross section
σtot, can be used for comparisons to the theoretical cross section.
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5. Analytical Computation of Invariant Matrix Elements
This section investigates and computes the invariant matrix elements at tree-level for the
two following processes. First, the annihilation of a massless quark anti-quark pair into a
pair of gluons, and secondly, the quark gluon scattering. The results will be given as
functions of the Mandelstam variables ŝ, û, t̂, which allow the direct implementation in
the cross section derived from the previous section. A detailed calculation is given for the
squared invariant amplitude of the t-channel of the first process. The same procedures
are applied to the remaining invariant amplitudes. Einstein’s summation convention is
implied throughout this section along with the Feynman slash notation /p = γµpµ. The
results of all two-to-two parton processes are displayed at the end of this section for
further analysis and comparison to experimental data.

5.1. qq → gg

The process

q(p1)q(p2)→ g(p3)g(p4)

corresponds to the three lowest-order Feynman diagrams shown in fig. 2 for a quark-
antiquark annihilation into a gluon-gluon pair. In order to obtain the cross section, the
sum over the unobserved final degrees of freedom with corresponding averaging factor
for the initial degrees is introduced. Thus, a summation and averaging over polarisation
and colour states

∑
≡ 1
N2
C(2jq + 1)2

∑
pol.

∑
col.

(5.1)

results, with NC = 3, since colour change would not be detectable, and jq = 1/2 for the
polarisation of fermionic quarks. The invariant unpolarized squared amplitude of the s-,
t- and u-channels is given by

|M|2 =∑[
|Ms|2 + |Mt|2 + |Mu|2 + 2 ReM†

tMs + 2 ReM†
uMs + 2 ReM†

tMu

]
.

(5.2)
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p1, i, S1

p2, j, S2

p3, λ, a, S3

p4, κ, b, S4

c, µ d, ν

p1 + p2

p1, i, S1

p2, j, S2

p3, κ, a, S3

p4, λ, b, S4

p1 − p3

k

l

p1, i, S1

p2, j, S2

p3, κ, a, S3

p4, λ, b, S4

p1 − p4

k

l

Figure 2: Feynman diagrams (s-, t-, and u-channel) for qq annihilation to a pair of gluons.

The invariant amplitudes are labeled with i, j, k, l = 1, 2, 3 for quark colour, while indices
a, b, c, d = 1, 2, 3, . . . , 8 stand for gluon colours. The corresponding polarisations of the
external fermionic and bosonic field are represented by index S. In consideration of a
negligible gluon and quark mass, one obtains the following invariant amplitudes for the
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tree level Feynman diagrams in fig. 2

−iMt = −ig2
s v

(S2)
j (p2) γλ

/p1 − /p3
(p1 − p3)2γκ u

(S1)
i (p1)T bjlT akiδkl εκ∗a,(S3)(p3)ελ∗b,(S4)(p4) (5.3)

−iMu = −ig2
s v

(S2)
j (p2) γλ

/p1 − /p4
(p1 − p4)2γκ u

(S1)
i (p1)T ajlT bkiδkl εκ∗a,(S3)(p3)ελ∗b,(S4)(p4) (5.4)

−iMs = g2
s v

(S2)
j (p2) γµu(S1)

i (p1) gµν

(p1 + p2)2 δcdAνλκ(p1 + p2,−p4,−p3)

× fdbaT cji εκ∗a,(S3)(p3)ελ∗b,(S4)(p4)
(5.5)

with Dirac spinors u(S1)
i

(
u

(S1)
i

)
and v

(S1)
i

(
v

(S1)
i

)
for ingoing (outgoing) particles and

antiparticles, respectively, and

Aνλκ(p1, p2, p3) ≡ gνλ(p1 − p2)κ + gλκ(p2 − p3)ν + gκν(p3 − p1)λ (5.6)

resulting from the three-gluon vertex. The completeness relations

∑
S

= uS(p)uS(p) = /p+m (5.7)
∑
S

= vS(p)vS(p) = /p−m (5.8)

and substitution

∑
S

ελ∗a,Sε
λ′

a,S → −gλλ
′ (5.9)

are used when the spinors of the fermions and polarisation vectors of gluons are summed
over polarisation S. The calculation of the hermitian conjugate, which is required for the
squared matrix elements and interference terms, is shown explicitly for the spinor part of
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the t-channel by
[
v(S2) γλ(/p1 − /p3)γκ u(S1)

]†
=
[
v(S2)†γ0γλ(/p1 − /p3)γκu(S1)

]†
=u(S1)†γ†κ(/p†1 − /p

†
3)γ†λγ0†v(S2)

=u(S1)†γ0γκγ
0(γ0

/p1γ
0 − γ0

/p3γ
0)γ0γλγ

0γ0v(S2)

=u(S1)γκ(/p1 − /p3)γλv(S2)

(5.10)

with suppression of explicit momentum dependency and colour indices for an improved
legibility and with usage of the relations given in eqs. (A.8) to (A.10). Thus, the hermitian
conjugated amplitudes

iM†
t = ig2

s u
(S1)
i (p1) γκ′

/p1 − /p3
(p1 − p3)2γλ′ v

(S2)
j (p2)T aik′T bl′jδk′l′ ε

κ′

a,(S3)(p3)ελ′

b,(S4)(p4) (5.11)

iM†
u = ig2

s u
(S1)
i (p1) γκ′

/p1 − /p4
(p1 − p4)2γλ′ v

(S2)
j (p2)T bik′T al′jδk′l′ ε

κ′

a,(S3)(p3)ελ′

b,(S4)(p4) (5.12)

iM†
s = g2

su
(S1)
i (p1)γµ′v

(S2)
j (p2) gµ

′ν′

(p1 + p2)2 δc̃d̃Aν′λ′κ′(p1 + p2,−p4,−p3)

× f d̃baT c̃ijεκ
′

a,(S3)(p3)ελ′

b,(S4)(p4)
(5.13)

follow. The summed, averaged, squared invariant amplitude of the t-channel diagram
reads

∑
M†

tMt =
∑ g4

s

(p1 − p3)4 ε
κ′

a,(S3)(p3)ελ′

b,(S4)(p4) εκ∗a,(S3)(p3)ελ∗b,(S4)(p4)

× u(S1)
i (p1) γκ′

(
/p1 − /p3

)
γλ′v

(S2)
j (p2) v(S2)

j (p2) γλ
(
/p1 − /p3

)
γκ u

(S1)
i (p1)

× T aik′T bk′j T
b
jkT

a
ki.

(5.14)

For further calculations, it is helpful to decompose the squared matrix element into a
product of a term describing colour and a term Lpλλ′κκ′ depending on the momenta. The
latter term will be written with explicit matrix indices α, β, . . . following [13, p. 122],
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which gives

Lpλλ′κκ′ =
∑
pol.

(
u

(S1)
i (p1)

)
α

(γκ′)αβ
(
/p1 − /p3

)
βγ

(γλ′)γδ
(
v

(S2)
j (p2)

)
δ

×
(
v

(S2)
j (p2)

)
ε
(γλ)εζ

(
/p1 − /p3

)
ζη

(γκ)ηθ
(
u

(S1)
i (p1)

)
θ
.

(5.15)

An application of the completeness relations eqs. (5.7) and (5.8) for massless particles
yields

Lpλλ′κκ′ =
(
/p1

)
θα

(γκ′)αβ
(
/p1 − /p3

)
βγ

(γλ′)γδ
(
/p2

)
δε

(γλ)εζ
(
/p1 − /p3

)
ζη

(γκ)ηθ

= Tr
{
/p2γλ(/p1 − /p3)γκ/p1γκ′(/p1 − /p3)γλ′

}
.

(5.16)

With an additional substitution of the Mandelstam variables ŝ = (p1 +p2)2, t̂ = (p1−p3)2

and û = (p1 − p4)2 as denominator to emphasize the t-, s- and u-channel character and
eq. (5.9), the terms

∑
S

|Mt|2 = g4
s

t̂2
gκκ

′
gλλ

′ Tr
{
/p2γλ(/p1 − /p3)γκ/p1γκ′(/p1 − /p3)γλ′

}
T aik′T bk′j T

b
jkT

a
ki (5.17)

∑
S

|Mu|2 = g4
s

û2 g
λλ′
gκκ

′ Tr
{
/p2γκ(/p1 − /p3)γλ/p1γλ′(/p1 − /p3)γκ′

}
T bik′T ak′j T

a
jkT

b
ki (5.18)

and

∑
S

|Ms|2 = g4
s

ŝ2 g
κκ′
gλλ

′ Tr
{
/p2γ

µ
/p1γ

µ′}
AνλκA

ν′λ′κ′
T cjif

cbaT c̃ijf
c̃ba (5.19)

follow accordingly, when summed over the polarisation states. The t-channel can be
deducted from the u-channel due to their similar construction (an interchange of p3 and
p4). Similarly, we obtain the interference terms

∑
S

M†
tMu = g4

s

ût̂
gκκ

′
gλλ

′ Tr
{
/p1γκ′(/p1 − /p3)γλ′/p2γλ(/p1 − /p4)γκ/p1

}
T aik′T bk′jT

a
jkT

b
ki (5.20)

∑
S

M†
tMs = g4

s

ŝt̂
gκκ

′
gλλ

′
gµνAνλκ Tr

{
/p1γκ′(/p1 − /p3)γλ′/p2γµ

}
iT cjif

cbaT aikT
b
kj (5.21)

∑
S

M†
uMs = g4

s

ŝû
gκκ

′
gλλ

′
gµνAνλκ Tr

{
/p1γκ′(/p1 − /p4)γλ′/p2γµ

}
T cjif

cbaT bikT
a
kj. (5.22)
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The evaluation of the traces is straight forward and is best done by using the relations
given in eqs. (A.1) to (A.5). The t-channel trace from eq. (5.16) is shown explicitly as an
example with the metric tensors resulting from the completeness relations. This gives

gκκ
′
gλλ

′
Lpλλ′κκ′ = gκκ

′
gλλ

′ Tr
{
/p2γλ(/p1 − /p3)γκ/p1γκ′(/p1 − /p3)γλ′

}
= Tr

{
/p2γλ(/p1 − /p3)γκ/p1γ

κ(/p1 − /p3)γλ
}

eq. (A.7)= 4 Tr
{
/p2(/p1 − /p3)/p1(/p1 − /p3)

}
eq. (A.5)= 32(p2p3)(p1p3)
eq. (4.5)= 8t̂û

(5.23)

for particles with negligible mass. Due to the summation over the colours, one encounters
the following constellations of Gell-Mann matrices T aij = λa/2 and structure factors
fabc as introduced in section 2.1. The summation over colour with explicitly written
summation over repeated indices is straight forward and result in the following relations

∑
i,j,a,b

∑
k,k′

T aik′T bk′jT
b
jkT

a
ki = 1

16
∑
a,b

Tr
{
λaλbλbλa

}
= 16

3 (5.24)

∑
i,j,a,b

∑
c,c̃

T cjiT
c̃
ijf

cbaf c̃ba =1
4
∑
a,b

∑
c,c̃

f cbaf c̃ba Tr
{
λcλc̃

}
= 12 (5.25)

∑
i,j,a,b,c

∑
k

if cbaT cjiT
b
ikT

a
kj =1

8
∑
a,b,c

if cba Tr
{
λcλbλa

}
= −6 (5.26)

∑
a,b,i,j

∑
k,k′

T ajkT
b
kiT

a
ik′T bk′j = 1

16
∑
a,b

Tr
{
λaλbλaλb

}
= −2

3 . (5.27)
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Finally, one obtains

∑
|Ms|2 = −g4

s

2(8t̂2 + 6t̂û+ 8û2)
3ŝ2 (5.28)

∑
|Mt|2 = g4

s

32û
27t̂

(5.29)

∑
|Mu|2 = g4

s

32t̂
27û (5.30)∑

2 ReM†
tMu = 0 (5.31)∑

2 ReM†
tMs = g4

s

4(ŝ− t̂+ û)
3ŝ (5.32)

∑
2 ReM†

uMs = g4
s

4(ŝ+ t̂− û)
3ŝ (5.33)

after the summation over colour and polarisation states, the evaluation of the Dirac traces
and inclusion of the averaging factor. The summation in eq. (5.9) considers all polarisation

p1, i, S1

p2, j, S2

p3, a, S3

p4, b, S4

c, µ d, ν

p1 + p2

p1, i, S1

p2, j, S2

p3, a, S3

p4, b, S4

c, µ d, ν

p1 + p2

Figure 3: Feynman diagrams (s-channel) for qq annihilation to a ghost-antighost pair cc.

states, including the non-physical longitudinal polarisation. The summation can be either
modified and summed exclusively over physical polarisations, or the introduction of
the Fadeev-Popov ghosts (see Feynman diagram fig. 3) is required. They function as
correction terms to subtract the non-physical polarisations. The latter approach is chosen
in this thesis, which gives

|M(qq → gg)|2 = |M′(qq → gg)|2 + |Mg(qq → cc)|2. (5.34)
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Because both Feynman diagrams in fig. 3 lead to the same result, we will only evaluate
the the left, with the invariant matrix element

−iMg,A = g2
sv

(S2)
j (p2)γµu(S1)

i (p1) gµνδcd
(p1 + p2)2p3,νT

c
jif

dba (5.35)

= g2
s

ŝ
v

(S2)
j (p2)/p3u

(S1)
i (p1)T cjif cba. (5.36)

After following the same steps as in the previous calculations

∑
S

|Mg,A|2 = g4
s

ŝ2 Tr
{
/p2/p3/p1/p3

}
T cjif

cbaT c̃ijf
c̃ba, (5.37)

and therewith,

|Mg,A|2 =
∑
|Mg,A|2 = −g4

s

2ût̂
3ŝ2 (5.38)

is obtained. The minus sign gets assigned due to the ghost’s character as a fermion,
because the squared matrix element is represented by a Feynman diagram with a closed
fermion loop. At an intuitive level, all unphysical processes are subtracted, so that the
resulting cross section is a cross section of physical states only. With the subtraction of
longitudinal polarised gluons the final result reads

|M(qq → gg)|2 = |M′(qq → gg)|2 + 2 · |Mg,A(qq → cc)|2 (5.39)

= g4
s

[
32
27
t̂2 + û2

t̂û
− 8

3
t̂2 + û2

ŝ2

]
, (5.40)

which is verified by the results given in [6, p.249].

5.2. qg → qg

The second sub-process of the proton-proton scattering, which is calculated explicitly is

q(p1)g(p2) −→ q(p3)g(p4)
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with the corresponding Feynman diagrams at tree level shown in fig. 4. After comparing
to the process in section 5.1, the diagrams of the two sub-processes can be divided into
pairs of two, where the corresponding diagrams are identical when rotated by 90°. Due

p1, i, S1

p2, κ, a, S2

p3, j, S3

p4, λ, b, S4

k l

p1 + p2

p1, i, S1

p2, κ, a, S2

p3, j, S3

p4, λ, b, S4

k lp1 − p4

p1, i, S1

p2, κ, a, S2 p4, λ, b, S4

p3, j, S3

p1 − p3

c, µ

d, ν

Figure 4: Feynman diagrams (s-, u-, and t-channel) for qg → qg process.
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to the different initial and final states, the averaged sum equals

∑
≡
∑
pol.

∑
col.

1
4 ·NC(N2

C − 1) (5.41)

with NC = 3. The fermionic quark has 2 polarisation and 3 colour states, which was
already used in section 5.1. The gluons, with spin 1 have 2 polarisation states in contrast
to massive spin 1 particles, because only the polarisation states transverse to the direction
of propagation of a gluon describe physical properties. The squared invariant amplitude
reads

|M|2 =∑[
|Ms|2 + |Mt|2 + |Mu|2 + 2 ReM†

tMs + 2 ReM†
uMs + 2 ReM†

tMu

] (5.42)

with

−iMs = −ig
2
s

ŝ
u

(S3)
j (p3)γλ(/p1 + /p2)γκu(S1)

i (p1)δklT bjlT akiελ∗b,(S4)(p4)εκa,(S2)(p2) (5.43)

−iMu = −ig
2
s

û
u

(S3)
j (p3)γκ(/p1 − /p4)γλu(S1)

i (p1)δklT ajlT bkiελ∗b,(S4)(p4)εκa,(S2)(p2) (5.44)

−iMt = g2
s

t̂
u

(S3)
j (p3)γνu(S1)

i (p1)gνµδcdAκµν(p2, p1 − p3,−p4)

× fabcT djiελ∗b,(S4)(p4)εκa,(S2)(p2).
(5.45)

The Lorentz tensor is defined in eq. (5.6). We once again sum over all polarisation states,
which leads to the evaluation of the Dirac-traces from

∑
S

|Ms|2 = g4
s

ŝ2 g
λλ′
gκκ

′ Tr
{
/p3γλ(/p1 + /p2)γκ/p1γκ′(/p1 + /p2)γλ′

}
T bjkT

a
kiT

a
ik′T bk′j (5.46)

∑
S

|Mu|2 = g4
s

û2 g
λλ′
gκκ

′ Tr
{
/p3γκ(/p1 − /p4)γλ/p1γλ′(/p1 − /p4)γκ′

}
T ajkT

b
kiT

b
ik′T ak′j (5.47)

∑
S

|Mt|2 = g4
s

t̂2
gλλ

′
gκκ

′ Tr
{
/p3γν/p1γν′

}
gµνgµ

′ν′
AκµνA

κ′µ′ν′
fabcT cjif

abc̃T c̃ij (5.48)
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for the squared and

∑
S

M†
sMu = g4

s

ŝû
gλλ

′
gκκ

′ Tr
{
/p1γκ′(/p1 + /p2)γλ′/p3γκ(/p1 − /p4)γλ

}
T ajkT

b
kiT

a
ik′T bk′j (5.49)

∑
S

M†
sMt = g4

s

ŝt̂
gλλ

′
gκκ

′ Tr
{
/p1γκ′(/p1 + /p2)γλ′/p3γν

}
gµνAκµνif

abcT cjiT
a
ik′T bk′j (5.50)

∑
S

M†
uMt = g4

s

t̂û
gλλ

′
gκκ

′ Tr
{
/p1γλ′(/p1 − /p4)γκ′/p3γν

}
gµνAκµνif

abcT cjiT
b
ik′T ak′j (5.51)

for the crossed terms. The colour factors were already calculated in eqs. (5.24) to (5.27)
and the Dirac traces can be taken from section 5.1, with an interchange of corresponding
momenta due to the relation of the diagrams through a 90° rotation.

p1, i, S1

p2, a, S2 p4, b, S4

p3, j, S3

p1 − p3

c, µ

d, ν

p1, i, S1

p2, a, S2 p4, b, S4

p3, j, S3

p1 − p3

c, µ

d, ν

Figure 5: Feynman diagrams (s-channel) for qc→ qc and qc→ qc process.

Since the substitution eq. (5.9) with summation over all polarisation states includes
non-physical states, the Faddeev-Popov ghost are introduced. The invariant matrix
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element reads

−iMg,A′ = −ig2
su

(S3)
j (p3)γνu(S1)

i (p1) gµνδcd
(p1 + p2)2p4,µf

cbaT dji

= g2
s

ŝ
u

(S3)
j (p3)/p4u

(S1)
i (p1)f cabT cji

⇒
∑
S

|Mg,A′|2 = g4
s

ŝ2 Tr
{
/p3/p4/p1/p4

}
f cabf c̃baT cjiT

c̃
ij.

(5.52)

Both Feynman diagrams containing the Faddeev-Popov ghosts lead to the same results,
therefore we only study the left diagram. The calculation is carried out as described in
the previous section, which involves Dirac traces, the averaging factor and the summation
over colour and polarisation states. This leads to the following results

∑
|Ms|2 = −g4

s

4û
9ŝ (5.53)

∑
|Mu|2 = −g4

s

4ŝ
9û (5.54)

∑
|Mt|2 = g4

s

8t̂2 + 10t̂û+ 10û2

4t̂2
(5.55)∑

2 ReM†
sMu = 0 (5.56)∑

2 ReM†
sMt = g4

s

ŝ

t̂
(5.57)

∑
2 ReM†

uMt = g4
s

û

t̂
(5.58)

∑
|Mg,A′ | = −g4

s

ŝû

4t̂2
(5.59)

and the invariant matrix element squared

|M(qg → qg)|2 = |M′(qg → qg)|2 + 2 · |Mg,A′(qc→ qc)|2 (5.60)

= g4
s

[
ŝ2 + û2

t̂2
− 4(ŝ2 + û2)

9ŝû

]
. (5.61)

This result coincides with the cross section given in [6, p. 249]. A summary of matrix
elements squared for all two-to-two parton sub-processes is given in table 1.
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Table 1: Invariant matrix elements squared for all two-to-two parton sub-processes for massless
partons, taken from [6, p. 249]

Process ∑|M|2/g4
s

qq′ → qq′
4
9
ŝ2 + û2

t̂2

qq′ → qq′
4
9
ŝ2 + û2

t̂2

qq → qq
4
9

(
ŝ2 + û2

t̂2
+ ŝ2 + t̂2

û2

)
− 8

27
ŝ2

ût̂

qq → q′q′
4
9
t̂2 + û2

ŝ2

qq → qq
4
9

(
ŝ2 + û2

t̂2
+ t̂2 + û2

ŝ2

)
− 8

27
û2

ŝt̂

qq → gg
32
27
t̂2 + û2

t̂û
− 8

3
t̂2 + û2

ŝ2

gg → qq
1
6
t̂2 + û2

t̂2û2
− 3

8
t̂2 + û2

ŝ2

gq → gq −4
9
ŝ2 + û2

ŝû
+ û2 + ŝ2

t̂2

gg → gg
9
2

(
3− t̂û

ŝ2 −
ŝû

t̂2
− ŝt̂

û2

)
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6. Numerical Results and Comparison with Experiment
This section provides a comparison between the predicted multiplicity and the experimental
data for a pp → (K+ + K−)X process at

√
s = 2.76TeV taken from [1]. To obtain

the graph of the QCD predicted cross section, eq. (4.44) has to be computed, which
leaves a dependency on the parameters PT,K , y4 and s. In this experimental setup the
centre-of-mass energy of the colliding protons is determined to be

√
s = 2.76GeV and

the kaons are measured at central rapidity y4 ≤ |0.8|. The chosen scales are Q =
√
s and

µ = pT .
The summation over relevant quark and gluon combinations follows directly from

K+ = |us〉 and K− = |su〉. Equations eq. (2.46) and eq. (2.47) show that the coupling
constant αs(Q2) is sufficiently small, which justifies the application of perturbative QCD
(pQCD). The integration in eq. (4.44) is executed numerically via the Monte Carlo
method. The Monte Carlo integration for definite integrals is based on the ratio of the
total number of randomly (or pseudo-randomly) generated points in a simple domain
D containing the integrated area A and the number of points which are inside of the
boundaries of A. The usage of the VEGAS algorithm improves the estimated integral
and simplifies the computation through a variable transformation, which flattens the
integrand [17]. It turns out to be beneficial to introduce the new variables r1/2 ∈ [0, 1],
which leads to

pT =
(√

s

2 − PT,Kaon
)
· r1 + PT,Kaon (6.1)

y3 = 2 · arcosh
(√

s

pT
− cosh y4

)
· r2 − arcosh

(√
s

pT
− cosh y4

)
. (6.2)

With substitution of the variables r1/2 in eq. (4.44) the integral reads

d2σ

dPT,Kaondy4
=

1∫
0

dr1 ·
(√

s

2 − PT,Kaon
) 1∫

0

dr2 · 2 arcosh
( √

s

pT (r1) − cosh y4

)

× 1
16πτs2

∑
i,j,k,l=q,q,g

fi(x1, Q
2)fj(x2, Q

2)DKaon/k(x3, µ
2)

×
∑
|Mij→kl|2

1
1 + δij

1
1 + δkl

.

(6.3)
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The parton density functions fi(x,Q2) are supplied by the LHAPDF library [3]. The
implementation of the PDF’s is done via the python interface of version LHAPDF-6.3.0
and usage of the central set CT10. The fragmentation function DKaon/k(x3, µ

2) for
unpolarised cross sections is given by de Florian et. al. in [4, 5, 7] for x3 ≥ 0.05 and
µ ≥ 1GeV. Discrete data points of the total cross section σtot shown in fig. 6 are extracted
with the program Graph Grabber [10]. A function of the form

σfit(x) = a0 · ln2 x+ a1 · ln x+ a3 (6.4)

is fitted to the series of data points of the total cross section for
√
s = 3.5, . . . , 770044GeV

following [9, p. 22], where x =
√
s with a0 = (1.15± 0.01)mb, a1 = (−3.90± 0.09)mb

and
a2 = (41.24 ± 0.32)mb. Hence, the total cross section of a proton-proton collision at
√
s = 2760GeV is

σtot,fit(2760GeV) = (82.41± 0.88)mb, (6.5)

which allows the conversion between cross section and multiplicity according to eq. (4.45).

Figure 6: Total, elastic and inelastic cross sections for proton-proton collisions, as function of
laboratory beam momentum and total centre-of-mass energy, taken from
[11, p. 705].
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The resulting pT distribution of the K+ +K− production, measured in pp collisions at
√
s = 2.76TeV for y ≤ |0.8|, is shown in fig. 7. The experimental data points are taken

from Betty Bezverkhny Abelev et al. [1].
The blue curve is the QCD prediction in first order perturbation theory at O(α2

s). The
smallest relative deviation from the predicted multiplicity to the given data is observed
for pT < 5 GeV. The predicted curve lies above the data points, with the exception for
1.5GeV≤ pT ≤ 3.5GeV. The quotient of the experimental data and theoretical prediction
decreases for large pT . The quotient of the data and prediction shows that the predicted
multiplicity is in the order of magnitude of the experimental data. Therefore, this
comparison provides a sanity check for the agreement of the theoretical framework used
to describe the particle production in a hadron-hadron collision and the experimental
data.

Figure 7: Cross section pT distribution of a charged kaon production in proton-proton collisions
at
√
s = 2.76TeV from the ALICE collaboration [1], compared with a leading order

QCD prediction.
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The predicted fractional contributions of the two-to-two sub-processes is shown in fig. 8.
The probability of a charged kaon being the outcome of the dominating gg → gg process
decreases for increasing pT from 90% to 64% for pT = 1, . . . , 19GeV. The qg → qg

process is the second most important, with a fractional contribution increasing from 6%
to 26%. The remaining processes contribute therefore 4% to 10% to the charged kaon
production.

Figure 8: Fraction of the charged kaon production for the two-to-two processes as a function
of pT .
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7. Conclusion and Outlook
In this thesis, we have studied the particle production in hadron-hadron collisions in
leading order of perturbative QCD. A short introduction to the underlying theoretical
background is followed by a discussion of cross sections and the explicit calculation
of two matrix elements of the two-to-two sub-processes in hadron-hadron collisions.
The numerical evaluation in section 6 has succeeded in showing the agreement on the
experimental data with the predicted behaviour of the cross section in order of magnitude
as a function of the transverse momentum pT . This is followed by the presentation of
the predicted fractional contribution of all two-to-two processes depending on pT , while
gg → gg and qg → qg are the most contributing processes.
Further research on the calculation of the invariant matrix elements is suggested,

since this thesis only considers the tree-level matrix elements. An improvement in the
agreement between the prediction and the experimental data can be achieved by the
computation of higher order correction terms in perturbation theory. The next-to-leading
order correction consists of virtual corrections (virtual loops including the incorporation
of UV renormalisation), real corrections (radiation of extra particles relative to leading
order) and subtraction terms arising from infrared singularities [14, p. 38]. The strong
dependency of the PDF’s and fragmentation function on the scale factors in leading
order calculations can be mitigated by the inclusion of higher order terms. Additionally,
further analysis can be accompanied with the discussion of the uncertainties caused by
the PDF’s and the fragmentation function. The computation of the uncertainties was
neglected due to the extensive computation time.

- 44 -



A. Appendix Siddha Hill

A. Appendix

A.1. Dirac Traces

The calculation of the trace of Dirac matrices can be simplified when the following
relations taken from [13, p. 123] are applied

Tr{γν1 · · · γν2k+1} = 0 k ∈ N0 (A.1)
Tr{γνγµ} = 4gνµ (A.2)
Tr{γνγµ} = 16 (A.3)

Tr{γνγµγργσ} = 4 [gνµgρσ − gνρgµσ + gνσgµρ] (A.4)
Tr
{
/a/b/c/d

}
= 4 [(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)] (A.5)

γµγ
µ = 4 (A.6)

γµ/aγ
µ = −2/a. (A.7)

A.2. Dirac Matrices

Dirac matrices γµ obey the Clifford algebra

1
2{γ

µ, γν} ≡ 1
2(γµγν + γνγµ) = gµν1 (A.8)

γµ† = γ0γµγ0, (A.9)

and therefore,

(γ0)2 = −(γi)2 = 1, γ0† = γ0, γi† = −γi. (A.10)
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