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Chapter 1

Introduction

Although dijet events are some of the most common occurrences in particle colliders, there
are still phenomena that have not been thoroughly explained by quantum chromodynam-
ics (QCD), even though we have known about them for more than half a century. One such
example is jet-gap-jet events, where the two jets produced have a region between them that
is devoid of particles.
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Figure 1.1: On the left the number of charged particles produced between the two leading
jets is plotted for events with two jets on the same side (SS) and on opposite sides (OS).
Image taken from [Col17]. On the right is a Monte Carlo simulation of the same observable
for OS events using Born-level QCD processes.

As seen in Fig. 1.1, if both jets from the event are in opposite hemispheres there is an
excess of events with no charged particles between them, when compared with events in
which the jets exit in the same hemisphere.

Using Born level quantum chromodynamic predictions it is possible to reproduce the
observed behaviour when jets end in the same hemisphere, but it is not possible to explain
the gap that forms when jets are back to back. For that we need to go beyond regular
perturbative QCD.

This master thesis will give an introduction to the physics involved in such events and
will perform a phenomenological analysis of results using an up-to-date Monte Carlo event
generator.
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In Ch. 2 the framework which serves as a foundation for subsequent work, quantum
chromodynamics will be explored, paying close attention to the most important properties
of the theory. Then the DGLAP formalism will be briefly laid out as an introduction for
the next sections as well as explore how QCD deals with soft physics in hadrons. The last
two sections focus on the special cases considered in this work, BFKL dynamics and the
Mueller-Tang analysis.

In Ch. 3 the means by which QCD is explored in hadron-hadron collisions is discussed,
Monte Carlo (MC) event generators. Each part of the MC used in this work will be explained,
starting from the partonic processes, parton showers, secondary soft processes and finally
hadronisation. An overview for the physics behind each one will be given so that later
sections can be easily understood.

In Ch. 4 the Mueller-Tang analysis is performed for different settings and always com-
paring the results with experimental data. Extensive analysis of various effects observed is
also done in order to understand the exact mechanisms that lead to our results.

Finally in Ch. 5 the main points and conclusions obtained in the previous chapter, as
well as an overview of possible next steps, will be laid out.
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Chapter 2

Physics Background

Quantum Chromodynamics is the non-Abelian quantum field theory used to model the
strong interactions in the Standard Model. Although it has had many successes, there are
still challenges when it comes to making predictions. In order to get around those problems
two main approaches are taken: Lattice QCD and Perturbative QCD. The former makes
numerical computations on a lattice of points, given the potentials and interactions that
arise from the theory, and the latter makes predictions making use of perturbation theory,
with the limitations and constraints that it carries. This chapter will focus on this last
approach and explain the strengths and weaknesses of it.

2.1 Quantum Chromodynamics
First of all, let us consider the main characteristics present in Quantum Chromodynam-
ics (QCD) in this section. We do not attempt to give an exhaustive explanation of the
theory, instead we try to give a sufficient introduction to it in order to be able to make sense
of subsequent chapters.

2.1.1 QCD Basics

The basic components of QCD are quarks and gluons. Quarks are massive fermions that
carry electric charge either +2/3e or −1/3e and one colour charge, either red, green or blue.
The quark antiparticles, antiquarks, carry opposite electric charge and one anticolour charge.
Gluons on the other hand are massless bosons, force carriers, with no electric charge but
they carry one colour and one anticolour charge.

The simplest Lagrangian for QCD is enough to illustrate the properties and kinks of the
theory that are required to be understood for this work. Denoting a quark field of flavour
f and carrying colour i by qfi (x), it’s anti-quark field by q̄fi (x) and the gluon fields carrying
colour index a in the adjoint representation by Aa

µ(x), the Lagrangian density is

LQCD =
∑
f

q̄fi (x)[iγ
µDµ −mf ]ijq

f
j (x)− 1

4
F a
µνF

aµν , [2.1]
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2.1. QUANTUM CHROMODYNAMICS

where the gauge covariant derivative is

Dµ = ∂µ − igtaAa
µ

and the gluon field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν .

The generators of SU(3) in the fundamental representation are ta, equivalent to the Gell-
Mann matrices multiplied by a factor of 1/2, λa/2, and fabc are the structure constants of
colour SU(3).

2.1.2 Perturbation Theory
When introducing interactions between free particles it is no longer possible to solve the field
equations exactly, which means that some kind of approximation needs to be taken. One
such method is called perturbation theory, in which one expects the interaction to be small
and expands any observable A as a power series,

A = Anα
n + An+1α

n+1 + An+2α
n+2 + An+3α

n+3 + . . . , [2.2]

where n denotes the order of the leading contribution and α is a parameter of the theory
which has to be sufficiently small in order for the expansion to converge.

The most common way to study different orders of perturbation theory is by use of
the graphical method of Feynman diagrams, in which each element of a graph represents a
mathematical element in the amplitude calculation.

One common occurrence is that many, or even all, orders of perturbation theory will
have terms that can be treated as a convergent series, e.g. a geometric series. When that
happens it is possible to perform a resummation in said factors. On the other hand, using
perturbation theory to calculate an observable up to an order n is referred to as fixed-order
perturbation theory.

2.1.3 Feynman Rules
In order to calculate the amplitude of a process at a given order of perturbation theory, all
Feynman diagrams that give a contribution to said order must be considered and the result-
ing amplitudes added together. Translation between Feynman diagrams and mathematical
expressions is done with the use of Feynman rules, which for QCD are:

quark propagator: i j
p

= i
6p+m

p2 −m2 + iε
δab,

gluon propagator: pa
µ

b
ν

= i
−Dµν(p)

p2 + iε
δab,

ghost propagator: a b
p

= i
1

p2 + iε
δab,
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CHAPTER 2. PHYSICS BACKGROUND

quark-gluon vertex: a
i
j

µ
= igsγ

µ(ta)ij,

ghost-gluon vertex: a

i

p+ k

j

pµ
= gs(p+ k)µfabc

three-gluon vertex: b

c

a

k2

ν

k1

µ

k3
ρ =

−gsf
abc[(k1 − k3)

νgµρ + (k2 − k1)
ρgµν

+ (k3 − k2)
µgνρ]

,

four-gluon vertex:
a

µ

d

σ
b

ν

c
ρ

=

ig2s [f
abef cde(gµρgµσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)

+ fadef bce(gµνgρσ − gµρgνσ)]

.

In addition to those rules one needs to add the ones that apply to all field theories, such
as conservation of energy and momentum or adding a -1 factor for each loop in the diagram.

A tree level gluon exchange between a qq̄ pair is then represented by the following Feyn-
man diagram and has the amplitude,

i j

k l

p1 p2

q

p3 p4

= (ta)ji(t
a)kl(igs)

2ūj(p2)γ
µui(p1)

−i
[
gµν−(1−ξ)

qµqν
k2

]
k2

v̄k(p3)γ
νvl(p4).

This diagram also serves to illustrate how colour charges interact. The colour behaviour
is determined by the factor (ta)ji(t

a)kl, which translates to potentials [Sch14, § 26.2]

V (r) = −4

3

gs
4πr

if charges are in colour singlet state, [2.3a]

V (r) =
1

6

gs
4πr

if charges are in colour octet state. [2.3b]

Therefore only colour singlet states are stable. This potential does not hold for partons
inside hadrons as perturbation theory breaks down for low energy interactions, as discussed
in the next section.
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2.1. QUANTUM CHROMODYNAMICS

2.1.4 Running Coupling
When performing precise calculations, loop diagrams such as the one in Fig. 2.1 need to be
taken into account. Unfortunately they lead to infinities when integrating momenta over the
loops, which requires some treatment in order to make the theory predict finite observables.

i j

k l

p1 p2
q

p3 p4

Figure 2.1: One loop diagram correction.

There are several ways to deal with these divergences, known as renormalisation schemes.
One well known scheme is the Modified Minimal Subtraction or MS-bar scheme, MS, [Sch14,
§ 26.6] which introduces a renormalisation scale, µ2, that absorbs the divergences. Since this
scale is purely theoretical, observables must not depend on it. That is, for an observable O,

µ2 d

dµ2
O(µ, αs) = µ2

(
∂

∂µ2
+

∂αs

∂µ2

∂

∂αs

)
O(µ, αs) = 0. [2.4]

This equation is known as the renormalisation group equation. The right hand side tells
us that the coupling must change in order for the observable to remain independent of µ2.
Solving it for QCD at leading order yields,

αs(µ
2) =

1

β0 ln
(

µ2

Λ2
QCD

) =
12π

(33− 2nf ) ln(µ2/Λ2
QCD)

, [2.5]

where nf is the number of flavours considered and ΛQCD is a parameter of the theory,
commonly called Landau pole of QCD, which can’t be predicted and depends on the specifics
of the renormalisation scheme used. However, its value is commonly around ΛQCD ∼ 300MeV,
i.e similar to the constituent mass of valence quarks in protons.

The coupling constant depending on the energy scale involved is called Running Coupling.
The running of the strong coupling in Eq. 2.5 gives rise to the two main properties of QCD,
what is known as asymptotic freedom and colour confinement. Asymptotic freedom refers
to the fact that, at high energy scales, µ2 � Λ2

QCD, the coupling becomes very small and
interacting particles can be approximated as free particles. Meanwhile, the phenomenon of
never encountering free colour octet charges in nature is called colour confinement and it is
a bit harder to explain from a theory point of view but will be expanded upon in Sec. 3.4.
Basically, for µ2 ∼ Λ2

QCD, αs(µ
2) grows and ultimately diverges. Since it is possible to equate

high energy with smaller distances and low energies with longer distances, the aforementioned
behaviour results in the confinement of particles within hadrons, and given the nature of the
interactions given by Eq. 2.3, in colour singlet states.
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CHAPTER 2. PHYSICS BACKGROUND

Lastly, perturbative QCD uses αs as the expansion parameter. The running of the
coupling provides the main limit to the use of perturbative QCD; requiring αs to be sufficiently
small translates to µ2 being sufficiently large compared with Λ2

QCD. Therefore it is not
possible to apply perturbation theory to situations with low energy interactions such as the
interior of hadrons.

2.2 DGLAP
When studying scattering events involving hadrons one encounters two different scales: a
soft, non-perturbative scale that dominates the interactions between partons belonging to
the same hadron and a hard, perturbative scale that is given by the transferred momentum
between the interacting particles. The hard scale interaction can be readily calculated using
the perturbative Feynman rules given in Sec. 2.1.3. However, the soft scale interaction is not
so easy to deal with, and, in fact, there is no perturbative or analytical way to predict how
partons behave inside hadrons.

There is a way around this limitation, however, since it is possible to ”lump” all non-
perturbative physics dominated by the soft scale into parton distribution functions (PDF),
which give the probability density of finding any given parton carrying longitudinal momen-
tum fraction x when being probed at energy scale Q2. This is known as the factorisation
theorem [Sch14, § 32.4] which, roughly speaking, states that cross sections can be calculated
in two parts as

σ = f ∗H, [2.6]

where f is a PDFs containing all the soft physics, H is the perturbatively calculated cross
section and ∗ denotes convolution. This approach works as long as Q2 � Λ2

QCD, which
equates to saying the interaction time (also known as Ioffe time, cf. [KL12, § 2.3]) and spatial
resolution of the hard interactions are small when compared with the soft interactions.

Fortunately, even though it is not possible to predict PDFs, it is also not required to mea-
sure them at all energy scales; just one is enough. After measuring the PDF at energy scale
Q2

0, applying Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [Sch14, § 32.3] equations
it is possible to ”evolve” it to another value of the scale Q2.

DGLAP equations account for diagrams in which a splitting occurs, such as the ones seen
in Fig. 2.2, where the final, interacting parton comes from a succession of splittings from
other partons.

Taking into account these corrections amounts to performing a resummation of all dia-
grams in the parameter

αs ln
(

Q2

Λ2
QCD

)
,

with the energy scale Q � ΛQCD. The reason to resum all diagrams with this factor
instead of just αs is that αs is considered small while lnQ2/Λ2

QCD becomes big enough so
that αs lnQ

2/Λ2
QCD ∼ 1. For this reason it is often referred to as the leading log approximation

(LLA) or leading order DGLAP.
Working from that assumption, the DGLAP equations can be found, entirely within the

realm of perturbative QCD. This gives a set of coupled differential equations that tell how
PDFs change as the interaction scale changes, based on the values of all other PDFs and
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2.2. DGLAP

Figure 2.2: Diagrammatic representation of the lowest order corrections to parton distribu-
tion functions, represented by the blob, where the interacting parton takes part in one gluon
loop diagrams in addition to the hard interaction (lower vertex, not represented). The right
side of the line represents the complex conjugate. Figure taken from [KL12, p. 45].

the possible vertices in QCD seen in Sec. 2.1.3. There are different ways to represent the
DGLAP equations, but one of the most intuitive is, at leading order,

Q2 d

dQ2

(
fi(x,Q

2)

fg(x,Q
2)

)
=
∑
j

αs

π

∫ 1

x

dξ

ξ

(
Pqiqj(

x
ξ
) Pqig(

x
ξ
)

Pgqj(
x
ξ
) Pgg(

x
ξ
)

)(
fj(x,Q

2)

fg(x,Q
2)

)
, [2.7]

with fi(x,Q
2) being the ith flavour parton distribution function and fg(x,Q

2) being the
gluon distribution function. The functions Pji(z) are called splitting functions and give the
probability density of a parton i taking part in a split that produces parton j. The exact
form of the splitting functions at leading order is

Pqq(z) = CF

[
1 + z2

[1− z]+
+

3

2
δ(1− z)

]
[2.8a]

Pqg(z) = TF

[
z2 + (1− z)2

]
[2.8b]

Pgq(z) = CF

[
1 + (1− z)2

z

]
[2.8c]

Pgg(z) = 2CA

[
z

[1− z]+
+

1− z

z
+ z(1− z)

]
+

β0

2
δ(1− z), [2.8d]

with the plus notation meaning,∫ 1

x

dz
1

[1− z]+
f(z) =

∫ 1

x

dz
1

1− z
[f(z)− f(1)] + f(1) ln(1− x). [2.9]

A problem with the DGLAP equations arises when the centre of mass energy of the
interaction,

√
s, is much larger than the interaction scale Q. For a 2 → 2 process, kinematics

dictate that
x1 x2 =

4p2T
s

cosh2(η̂). [2.10]

8



CHAPTER 2. PHYSICS BACKGROUND

Increasing s will make the product x1 x2 become smaller, leading the conclusion

s ∼ 1/x, =⇒ high s ≡ small x, [2.11]

which is an important heuristics when studying high energy events. As a consequence terms
with large ln(s) = ln(1/x) become large and need to be taken into account.

2.3 BFKL
The Balinsky-Fadin-Kuraev-Lipatov (BFKL) [KL12, § 3] equation sets out to do what the
DGLAP equation does, but instead of evolving the distribution in the Q2 direction, it evolves
it in the 1/x direction, as illustrated in Fig. 2.3. This means that now the resummation is
performed in the parameter

αs ln
(
1
x

)
.

Figure 2.3: Parton distribution function representation in the transverse plane as a function
of lnQ2 and ln 1/x. Figure taken from [KL12, p. 115].

As a result, BFKL takes into account large logarithms in s that were ignored in the
DGLAP equations presented in the previous sections. The derivation of the BFKL equation
is long and arduous [KL12; FR97], so instead let us present the equation and discuss its
properties and consequences. In light cone perturbation theory, the BFKL equation takes
the form

∂G(~l⊥, ~l′⊥, Y )

∂Y
=

αsNC

π2

∫
d2 ~q⊥

(~l⊥ − ~q⊥)2

[
G( ~q⊥, ~l′⊥, Y )−

~l⊥
2

2 ~q⊥
2G(~l⊥, ~l′⊥, Y )

]
, [2.12]

where G(~l⊥, ~l′⊥, Y ) is called the Green function of BKFL.
The derivation of the BFKL equation relies on two assumptions: perturbative QCD is

valid and the Regge limit is applicable. As discussed previously, perturbation theory is
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2.3. BFKL

reliable only when the running coupling is sufficiently small (cf. Sec. 2.1.4) which means that
energy scales are far away from the QCD Landau pole, that is, Q2 � Λ2

QCD.
The second assumption makes use of the Regge limit [FR97, § 1], named after Italian

physicist Tulio Regge, who studied high energy collisions using S-matrix formalism. What
would latter be called Regge theory predicted that as centre of mass energy becomes much
greater than the exchanged momentum for a 2 → 2 process, s � Q2, cross sections asymp-
totically approach

σ ∝ sα(Q
2), [2.13]

with the function α(Q2) being called Regge trajectory. When particle exchanges follow this
behaviour they are said to Reggeize.

Thus, with these two assumptions the BFKL equation imposes a strict hierarchy of
energy scales; where DGLAP demanded only that Q2 � Λ2

QCD, BFKL instead demands
s � Q2 � Λ2

QCD.
When talking about these evolution equations there is a certain level of ambiguity. They

always do the same, but the separation between the diagrams in Fig. 2.2 belonging to the
collective wave function of the hadron or being part of the hard interaction diagram is
arbitrary and a matter of the factorisation scheme used. This is possible only because
those diagrams are calculated using perturbative theory and are not part of the soft physics
enclosed by PDFs, otherwise it would not be possible to extract them. Therefore, the BFKL
equation can also be interpreted as an exchange diagram. In this case the corresponding
diagram would be a ”ladder” diagram, like the one in Fig. 2.4.

Figure 2.4: BFKL ladder diagram. The sides of the ladder are reggeized gluons (bold
corkscrews) and the vertices are effective Lipatov vertices (Fig. 2.5). Figure taken from
[KL12, p. 94].

The sides of the ladder are Reggeized gluons, whereas the rungs of the ladder are regular
gluons. The black dots represent Lipatov effective vertices, represented in Fig. 2.5, which
take into account all diagrams with a real emitted gluon.

The result of all of this is an exchange of momentum, with no transfer of colour or electric
charges, or flavour across the colliding particles. For this reason it is often called the hard

10



CHAPTER 2. PHYSICS BACKGROUND

Figure 2.5: Lipatov effective vertex. It takes into account all diagrams with a real emission
gluon. Figure taken from [KL12, p. 85].

Pomeron, as it matches with the qualities of the Pomeron, a Regge trajectory that carries
the quantum numbers of the vacuum and is the only trajectory that has a positive intercept,
but that is entirely derived using perturbative QCD.

2.4 Mueller-Tang Analysis
The focus of this work is the analysis of a type of event commonly referred to as Mueller-
Tang jets [MT92] (MT). The MT analysis is based on two foundations: forward jets and a
gap.

Imposing forward jets enhances the Pomeron exchange. This is easiest seen in terms of
kinematical relations. For a 2 → 2 process (cf. Appendix A), the relation

cos θ = 1− 2Q2

s
, [2.14]

where θ is the scattering angle, makes it so that having a small scattering angle implies
Q2 � s, placing the event inside the Regge limit. Since the particles exchanged can be
considered as reggeized, thus following Eq. 2.13, and the Pomeron is the only Regge trajectory
with a positive intercept, there is an enhancement of Pomeron exchange with respect to
basic QCD reggeized components. Unfortunately two problems arise: detectors cannot cover
extremely forward scattering angles and even if they could,

∆η � 1 =⇒ Q2 ∼ p2T [2.15]

means that as p2T → 0, predictability is lost as all scales become soft and perturbative QCD
becomes unreliable. This would also break the second condition of the BFKL hierarchy
Q2 ∼ p2T � Λ2

QCD.

11



2.4. MUELLER-TANG ANALYSIS

If p2T is made to be not too small the BFKL Pomeron enhancement that motivated this
setup in the first place is partially lost. Here enters the second foundation: a gap with
no particles produced between the two leading jets. Since the Pomeron carries no electric
charge, no QED emissions take place, and since no colour charge is transferred there is no
QCD production of particles in the space between the two resulting jets. However, because in
QCD all leading order particle exchanges carry colour charge particle production is heavily
favoured. Therefore a lack of particles found between the leading jets can be used as a
signature of BFKL events. We shall discuss the mechanisms of particle production through
colour interactions in more detail in Sec. 3.4.

The importance of this analysis to study BFKL events cannot be overstated. It gives a
kinematical regime that is extremely easy to enforce in particle accelerators, greatly enhanc-
ing BFKL cross sections and additionally provides a way to discriminate BFKL from other
types of events.

Using the MT prescription [MT92] at NLL-BFKL [KMR10] the resulting amplitude for
MT jets is

A(∆η, p2T) =
16NCπα

2
s(p

2
T)

CFp2T

∞∑
p=−∞

∫
dγ

2iπ

[p2 − (γ − 1/2)2] exp{ᾱ(p2T)χeff

(
2p, γ, ¯α(p2T)

)
∆η}

[(γ − 1/2)2 − (p− 1/2)2] [(γ − 1/2)2 − (p+ 1/2)2]
,

[2.16]
with the integral running from 1/2 − i∞ to 1/2 + i∞ and with only even conformal spins,
p, contributing. In the amplitude χeff (p, γ, ᾱ) is the effective kernel obtained from the NLL
kernel using the formula

χeff = χNLL(p, γ, ᾱχeff ). [2.17]

Once again we see the enhancement in BFKL cross section in the exp(∆η) factor in the
amplitude. For details and discussion on the amplitude calculation we refer to [MR09].

12



Chapter 3

PYTHIA 8

Monte Carlo (MC) event generators have proven an invaluable tool in high energy physics.
The use of random numbers to sample from probability distributions is a natural way of
probing theories that deal with complex and hard to disentangle effects that would other-
wise be unfeasible to compute analytically. Here we present a brief overview of the main
components of Monte Carlo generators.

The mechanism by which MC event generators work is by sampling from distributions in
order to make decisions about the event evolution. The result is a single, random ”trajectory”
of the event out of all possible ones for the process considered. When enough events are
sampled, the overarching distribution can be revealed through statistic analysis.

There are many different Monte Carlo event generators for high energy physics on the
market such as HERWIG or PYTHIA. This work uses PYTHIA 8 (v8.244) since it is still
regularly updated to this day and its robustness has been extensively tested. Therefore, while
the different components and the physics behind them apply to all MC event generators,
any implementation details refer only to how PYTHIA 8 deals with them.

The sections presented here are not meant to be an extensive explanation of the algo-
rithms and theory behind each component. Instead they are meant to give a good picture of
the inner workings of the event generators, so that latter explanations may be more easily
understood. For example, multi-parton interactions, final and initial state radiations do not
take part independently, as might be suggested by their presentation in this chapter, but
are instead computed in an inter-leaved algorithm that generates all of them using the same
evolution scale. This is, however, an implementation detail that is not strictly required to
understand the basis of each section.

3.1 Partonic Processes

We are mainly interested in 2 → 2 processes, a kind of process that PYTHIA is optimised to
handle along with 2 → 1 processes. One such process, in generic form, would be ab → cd,
with the corresponding diagram in Fig. 3.2. The cross section for regular, Born-level par-
tonic QCD interactions can be easily calculated using perturbation theory. In colliders,
however, the basic objects are not partons, but hadrons, so the cross sections needed are
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3.1. PARTONIC PROCESSES

Figure 3.1: Representation of different parts of a MC event generator. Figure taken from
[Enb03, p. 45].

those convoluted with PDFs as

σab→cd =

∫
dx1

∫
dx2 f

1
a (x1, Q

2) σ̂ab→cd f
2
b (x2, Q

2), [3.1]

where f j
i (x,Q

2) is the parton distribution function corresponding to the parton flavour i,
inside hadron j and probed at Q2.

a c

b d

Figure 3.2: Generic diagram for ab → cd process.

PYTHIA offers all possible 2 → 2 possible events present in vanilla QCD, both elastic
and inelastic. One thing to note is that PYTHIA uses an unregularised QCD cross section,
which means that a cutoff, pT,0, needs to be used in order to avoid divergences as pT → 0.
In effect the cutoff acts as a generation limit below which no calculations are considered.
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CHAPTER 3. PYTHIA 8

Besides the 2 → 2 QCD processes, BFKL events are made use of in the Mueller-Tang
analysis. As BFKL events are always elastic there is no need to consider different end
particles. It is worth mentioning that BFKL couples equally to quarks and gluons, only
differing in a colour factor.

BFKL ladder exchange is added into PYTHIA by introducing the differential cross sec-
tions of the process and making PYTHIA sample from it. The cross section is at next-to-
leading log (cf. Eq. 2.16) using the S4 resummation scheme [MR09] and is not calculated on
the spot, since that would require performing a calculation that would be too computation-
ally expensive to be useful. Instead, the cross section parametrisation from [KMR10] has
been fed to PYTHIA machinery,

dσ

dp2T
=

α4
S(p

2
T)

4πp4T
[a+bpT+c

√
pT+(d+epT+f

√
pT)·z+(g+hpT)·z2+(i+j

√
pT)·z3+exp(k+lz)],

[3.2]
where z(p2T) = ᾱ(p2T)∆η/2 and ᾱ(p2T) = αS(p

2
T)Nc/π. The use of this fit to the cross section

is why our results will be often referred to as ”approx”.
In addition to this, another element needs to be taken into consideration, impact factors.

These impact factors account for the coupling between partons and the BFKL ladder, such
that the parton distribution function can be evolved using regular DGLAP while maintaining
consistency with BFKL calculations. The impact factors are at leading-order, and together
with the BFKL fit have been implemented into PYTHIA by Jens Salomon and Federico
Deganutti.

It is worthwhile to note that in the event generator flow, it is the partonic process at the
very beginning what sets the scale for all subsequent routines.

3.2 Parton Showers
Showers take into account diagrams where one or more emissions happen in addition to the
hard interaction, as seen in Fig. 3.3. This happens in almost every event, since the partons
in hadrons are constantly splitting inside hadrons, Sec. 2.2, and the splitting functions have
a collinear singularity, giving raise to jets. In the context of Monte Carlo event generators,
the former is called initial state radiation while the latter is called final state radiation.

Showering algorithms are based on Sudakov form factors and splitting functions, like the
ones in Eq. 2.8, in addition to the electrodynamic splitting functions, as quarks and many
of the final state particles (hadrons) have electric charges and can, consequently, engage in
such interactions.

Figure 3.3: Initial and final state radiation diagrams.

Sudakov form factors give the probability of a split happening in a given interval. If the
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3.2. PARTON SHOWERS

differential probability of a single particle branching out is given by

dP =
∑
ij

αij

2π
Pij(z) dt dz, [3.3]

where the sum over ij goes over all possible branchings, including QED ones, and αij is the
coupling constant involved in the splitting in question. In general, t can be any variable
singular in the collinear limit [Sch14, § 32.3], but in PYTHIA [SMS06, § 10.1.1], dt is
particularly defined as

dt = d ln(Q2) =
dQ2

Q2
, [3.4]

and z is the proportion of energy that one of the daughter particles in the branching get
from the mother particle, while the other one gets 1− z.

Integrating over all allowed values of z one obtains

I(t) =
∑
ij

∫ z+(t)

z−(t)

αij

2π
Pij(z) dz, [3.5]

which is the differential probability that any branching occurs for the particle observed with
respect to the variable t. The probability that no branching has occurred in an interval δt
is 1− I(t)δt.

For a parton that begins at t0, the cumulative probability that it has not branched by
t is equal to the product of the probabilities that no branching occurs in all previous t
differentials. That is, the probability that no branching has happened between t0 and t
exponentiates and is given by

Pno-branch(t0, t) = exp

{
−
∫ t

t0

dt′ I(t′)
}

= S(t, t0). [3.6]

S(t) is also known as the Sudakov form factor. The probability of an emission happening
in an interval δt is therefore the differential probability that it happens within said interval
times the probability that no branching has happened before,

dP(t) = I(t)S(t, t0). [3.7]

Given this cumulative probability it is possible to iteratively generate random numbers
and proceed through the branching any given parton undergoes. Notice that the variable
t fulfils a role similar to time, in the sense that as the shower progresses in time, t always
decreases until it reaches a cutoff, at which point the shower generation is stopped.

This sets the basis for showering algorithms in most event generators. While the algo-
rithm above is efficient for final state radiation, which would account for showers between
the hard collision, at tmax, and a cutoff for infrared safety, at t0, initial state radiation
needs a slight modification to the algorithm in order to be efficiently computed using PDFs.
Since the hard interaction scale is fixed at the very beginning, instead of trying different
”time”-forwards until a matching branching history that ends in the correct tmax is found, a
”time”-backwards algorithm is used that evolves from tmax to the initial scale t0.
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3.3 Soft Interactions
This section revolves around non-perturbative interactions that may happen during the
scattering event. It is roughly divided into two parts: multiparton interactions and colour
reconnections. One thing to note is that since these are non-perturbative, very little is known
about the exact details of how they happen in the context of QCD. Therefore, models may
vary widely, with their success being measured mainly by their ability to reproduce data.

Multiparton interactions (MPI) try to correct the naïveness of assuming there is only one
single interaction between partons when hadrons collide. In PYTHIA these secondary inter-
actions happen at a lower interacting scale than the main hard event, but are, nonetheless,
considered to have the same perturbative cross sections as if they were hard interactions.
The basic probability parameter is the ratio between partonic hard interaction cross sec-
tion, σhard(pT,min) and non-diffractive inelastic hadronic cross sections, σnd(s), such that the
average number of secondary interactions is

n̄ =
σhard(pT,min)

σnd(s)
. [3.8]

There is an additional scale that has been introduced in the partonic cross section, pT,min,
in order to regularise the infrared divergence these cross sections have. With this, a Sudakov-
like factor can be constructed, which allows the use of an algorithm similar to that of the
showers.

Additionally, an impact parameter, b, is introduced. The physical intuition of this pa-
rameter is that it is equal to the closest approach between the two hadrons, and is used in
conjunction with some model for the mass distribution of the hadrons as a prefactor to cross
sections so that ”direct” impacts, with more overlap, produce more secondary interactions
than a grazing one, with barely any overlap. A bit more nuance is required, as experimen-
tally the dependence on this factor seems to saturate and some mass distribution models,
such as the double Gaussian, never return a null value, which demands the imposition that
no soft interactions can occur if not preceded by a hard one.

Finally, each MPI needs to fulfil some further conditions, such as the beam remnant,
i.e. what remains of colliding hadrons, taking the recoil from any emissions while preserving
energy and momentum, as well as assigning colour charges in a way that is consistent with
the initial hadrons being in singlet states. Each MPI system can also have their own showers,
by the way.

One important concept to understand is that of the colour connection. When a system of
partons is in a colour singlet state, the colour charges of the partons are not static since the
attractive interaction they experience is mediated by gluons, which cause rotations in colour
space. However, even though the colour charges can change, defining one colour charge
immediately defines the other so the colour singlet is preserved, e.g. a colour singlet dipoles
can alternate between the states |rr̄〉, |gḡ〉 and |bb̄〉. Instead of tracking colour charges that
can randomly change it is much more efficient to use colour connections, which just indicate
which partons have their colour charges linked so they form a colour singlet state.

After MPI, all colour connections are determined. Partons that were scattered may
be colour connected if they exchanged a triplet or octet charge and all other emissions
from a colour singlet partonic system will be assigned a colour in order to preserve total

17



3.3. SOFT INTERACTIONS

colour charge. This, however, completely negates the possibility of exchanging super soft
gluons that basically carry zero momentum but still carry colour charge, which results in a
rearrangement of colour connections, which will have a great impact on the hadronisation
procedure (cf. Sec. 3.4). Colour reconnection (CR) deals with such events.

Figure 3.4: Colour reconnection example. The two dipoles on the left get their colour
connections rearranged into the right side configuration. Figure taken from [CS15, Fig. 7].

There are many different models for CR but the default one in PYTHIA decides which
colour singlet systems to reconnect based on a probability defined as

P =
p2T,Rec

p2T,Rec + p2T
, [3.9]

where pT,Rec is pT,min times range. The latter is a free parameter of the model while the
former is an energy dependent dampening parameter set in the MPI routine. This definition
of probability favours reconnections between low pT systems and in effect seeks to minimise
total string length (cf. Sec. 3.4).

PYTHIA works in next-to-leading colour [CS15], which means it considers also the cre-
ation of colour connection junction topologies. The simplest example of a junction colour
connection would be a baryon, which can not be neatly connected with simple connections
that begin in triplet and end in anti-triplet colours.

Figure 3.5: Colour reconnection example. The three dipoles on the left side get their colour
connections rearranged in the junction topology on the right side, corresponding to one
baryon and one anti-baryon. Figure taken from [CS15, Fig. 7].

The need for these two parts of event generators comes from phenomenological analysis.
Each simulates non perturbative effects and have been found to provide a better fit to data
when included.
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3.4 Hadronisation
Hadronisation refers to the process that ensures all final state particles are in a colour singlet
state. It turns all partons generated by any of the previous steps into stable hadrons.

The hadronisation, also referred to as fragmentation, routine in PYTHIA 8 is based on
the popular Lund String model [And+83] [Sjö84]. It is based on the fact that the potential
between partons in a colour singlet state can be described by a linear potential,

V (r) = κr, [3.10]

with κ ∼ 1GeV/fm.
This assumption is supported by lattice QCD calculations, bag model results, char-

monium spectroscopy and Regge phenomenology [Sjö84] [Eks15]. Therefore, partons that
experience an attractive potential can be construed as if they were connected by a string
that stretches and stores a linear energy density.

Figure 3.6: Representation of the Lund String fragmentation model. Horizontal lines denote
colour string connections between the partons whose trajectories occupy adjacent diagonal
lines. Figure taken from [Sjö84, Fig. 9].

Strings are massless objects that extend from a triplet charge to an anti-triplet charge.
When both charges get separated, the energy of the string increases until a qq̄ pair ap-
pears through quantum tunneling. The tunneling probability is easily described by quantum
mechanics and is of the form

P ∝ exp

(
πp2⊥,q

κ

)
exp

(
−
πm2

q

κ

)
, [3.11]

which exponentially suppresses the creation of heavy quarks as well as quarks with large
transversal momentum.
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This new pair is connected through strings to the previous pair in such a way that two
colour singlets are formed, following the Colour Confinement Theorem. The new quarks
initially have zero or very low momentum, so they will begin moving as they begin to feel
the force from their corresponding string, which will stretch, again raising the amount of
energy stored in that string, which may or may not cause a new split. This process is
repeated until no further splits occur. At that point, all partons are in colour singlet states
forming hadrons which will be the observed particles.
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Chapter 4

Analysis

4.1 Setup
The main objective of this work is to reproduce or compare BFKL predictions with the
experimental results from the CMS Collaboration at the LHC for 13TeV pp collisions [CT20].
In particular we focus on the Mueller-Tang analysis (cf. Sec. 2.4), with the peculiarity that
instead of looking for particles between jets, only charged particles are considered due to
experimental concerns. The kinematical limits imposed on the leading jets in pT are

pT,jet > 40GeV, [4.1a]
1.4 < |ηjet-1,jet-2| < 4.7, [4.1b]

ηjet-1ηjet-2 < 0. [4.1c]

Finding the jets was done via anti-kt algorithm [CSS08] with SlowJet, which is already
integrated in PYTHIA 8, and setup as

Algorithm = anti-kt [4.2a]
Max η = 5.2 [4.2b]
Radius = 0.4 [4.2c]

Min jet pT = 10GeV [4.2d]
Select = only visible [4.2e]

Masses = on-shell [4.2f]

In order to be counted towards the charge multiplicity, the particles in the gap region
need to satisfy

pT > 200MeV, [4.3a]
|η| < 1. [4.3b]

The lower rapidity limits are such that jets with radius R = 0.4 will not spill into the
rapidity gap region.

There are some parts in this chapter where other experiments are mentioned, mainly
pp collisions at the LHC with 7 TeV CME [Col17] and pp̄ collisions at the Tevatron at
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1.8 TeV CME [aC98]. Our setup always changes to match those from the experimental
results with the only exception of the jet finder for Tevatron in which the Cone jet finder
algorithm was used experimentally while we still use the anti-kt one.

The main observable is the fraction of colour singlet exchange, or fCSE, which is defined
as

fCSE =
NCSE

NCSE +Nnon-CSE
. [4.4]

Experimentally it is not straightforward to differentiate between CSE and non-CSE events,
so an auxiliary definition is devised: making use of the charge multiplicity distribution in
the gap region, the background distribution is extracted by fitting a Negative Binomial
Distribution (NBD) in the region 3 < Ntracks < 35 and then subtracting the background
from the total distribution, so

fCSE =
Ntot −Nnon-CSE

Ntot
. [4.5]

This represents the biggest divide between the analysis performed in experiments and
ours since we are able to just differentiate between the two during event generation but
cannot perform such a fit for the whole distribution. The problem lies in that MPI models
are considered to be less reliable than theoretical calculations [KMR18], so instead a Gap
Survival Probability (SP) parameter will be used. SP acts as a constant that resizes the
contributions from the lowest multiplicity bins of the CSE events. Unfortunately there is no
telling how the cross section is redistributed so it is not possible to perform the NBD fit to
reproduce the experimental analysis. The final formula used for the fraction of CSE events
by us is thus

fCSE =
N<3, CSE · SP

NCSE +Nnon-CSE
. [4.6]

Finally, this observable is studied with respect to three independent variables: transverse
momentum of the second leading jet, pT,jet-2, and the differences in rapidity and azimuthal
angle between the two leading jets, ∆ηjj and ∆φjj. Rapidity and azimuthal angle are mea-
sured from the centre of each jet.

The tune CP1 based on NNPDF3.1 [Col+17] from the CMS Collaboration for PYTHIA 8
was used [Col19].

4.2 Main Results

4.2.1 Main 13 TeV
One thing to note is that applying the tune as is for the CSE events was found to reduce fCSE
by a factor of about 2 without changing the dynamical behaviour. In order to obtain a better
agreement with data only one parameter is required to change, SpaceShower:rapidityOrder
which is left turned on for CSE, leaving the CP1 tune intact for QCD events, which has
SpaceShower:rapidityOrder off (cf. Sec. B.1). As can be seen in Sec. B.1, SP can also be
raised. In the end it was not done this way in order to reduce statistical uncertainties.
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Figure 4.1: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj using the tune
CP1 from [Col19] but setting the parameter SpaceShower:rapidityOrder = on for CSE
events. The experimental data is in orange circles, a previous prediction by RMK is in blue
and our results using Eq. 3.2 are in black crosses. Corresponds with Tables 2, 3 and 4 or
Figure 8 in [CT20].

Fig. 4.1 shows fCSE with respect to the usual variables. Our results are labelled as
”S_4 (approx) Münster”, with ”approx” referencing the fact that Eq. 3.2 was used instead
of performing a full calculation of the cross section. All kinematical limits and bin sized have
been taken from [CT20].

The first two plots with respect to pT,jet-2 and ∆ηjj show good agreement with the previous
theoretical prediction from the Royon, Market, Kepka (RMK) model, successfully reproduc-
ing previous results. The vertical displacement between results can be explained using a
different value of SP; the important part is the dynamical behaviour. This is really impor-
tant since it indicates that the implementation and setup used were correctly implemented.
Let us discuss now the agreement with experimental data.

For the variable pT,jet-2, no strong dependence was expected. Both experimental and
theoretical predictions have only a mild correlation with the variable, although they seem to
have opposite behaviours. The error bars on the experimental values advise caution however.
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The variable ∆ηjj presents the most concerning disagreement between experiment and
theory. Naïvely, in the Mueller-Tang analysis one would expect more forward jets to present
a larger fraction of CSE events since more forward jets imply lower exchanged momentum t.
Indeed, experimental data mostly agrees with this. Theoretical predictions, however, seem
to contradict this intuition and point towards a decrease of CSE events as the exchanged
momentum goes down.

RMK used a different MC event generator for showering, which is probably why the
∆φjj plot is not equal. RMK used HERWIG in conjunction with NLOJet++ to make their
predictions, which may explain the qualitative difference with our results from PYTHIA.
The ∆φjj distribution is the most affected by the choice of MC simulator since at parton
level it is just a Dirac delta as δ(φjet-1 − φjet-2).

In regards to the difference with the experimental values it is possible that a full model of
the things that are on shakiest ground are required. It was attempted to use NLO QCD to
reproduce the data, however, no noticeable change in the ∆φjj was observed (cf. Sec. 4.2.2).
Alternatives not contemplated in this work include rescattering, NNLO QCD or alternative
soft physics models other than SCI (cf. Sec. 4.8).

4.2.2 NLO QCD

The leftmost experimental point in the ∆φjj in Fig. 4.1 seems to indicate that effects beyond
LO might be important. In order to check for effects from fixed order NLO QCD POWHEG
is used to generate such events to feed them via Les Houches Event Files [Boo+01] to
PYTHIA 8 in order to generate the showering. For the NLO simulations the CP3 tune from
the CMS Collaboration [Col19] is used as CP1 is only meant to be used for LO QCD.

Since event generation at NLO is much more costly than at LO, count number is reduced
in comparison with other plots. For this reason Gaussian error bands (±

√
N) are included

in the plots in Fig. 4.2.
Not much changes in terms of results, and the behaviour with respect to ∆φjj, which

was the original motivation for moving to NLO, is nearly identical. My hypothesis is that
we face a selection effect. Since there is a requirement for pT,jet > 40GeV, when there are
three hard emissions, the third jet will carry part of the momentum that would normally be
carried by one of the leading jets. This in turn can prevent both leading jets from making
the cut, creating a bias towards two jet events.

Other things that seem to point in that direction is that the NLO QCD distribution with
respect to ∆φjj is more peaked than at leading order (cf. Sec. B.3), pointing towards events
with no back to back jets not making the cut. Three jet events are more likely to not be
back to back in ∆φjj.

Lastly, the QCD cross section distribution with respect to pT,jet-2 is a bit less pronounced
for lower values in NLO than in LO, pointing again to lower pT,jet-2 events being discriminated
more strongly than at LO.

In terms of fCSE the distributions seen in Fig. 4.2 are mostly unchanged. ∆ηjj still has the
downwards trend seen at LO, although it seems to have a more moderate incline. This small
shift can also be seen in the QCD cross section distribution with respect to ∆ηjj in Sec. B.3.
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Figure 4.2: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj using the tune
CP1 from [Col19] but setting the parameter SpaceShower:rapidityOrder = on for CSE
events. Experimental data represented with orange dots, a previous prediction by RMK in
light blue, LO QCD indicated by black crosses and NLO QCD in dark blue line. Corresponds
with Tables 2, 3 and 4 or Figure 8 in [CT20].

4.2.3 7 TeV
In order to see how well our predictions hold for lower values of CME the analysis from [Col17]
is also replicated. It also involves studying Mueller-Tang jets to extract the fraction of CSE
events. The kinematical limits are slightly different, although this should have no impact
(cf. Sec. B.2), but the analysis on ∆ηjj is performed in three brackets of pT,jet-2 instead of for
all values as for 13 TeV, see Fig. 4.4. The kinematical limits changed are

|ηjet-1,jet-2| > 1.5 [4.7a]
Jet finder Radius = 0.5 [4.7b]

For these simulations we use ISR and SP = 0.1 [KMR10], which was the value predicted to
correct parton level results (cf. Sec. 4.3), i.e. with no ISR. Predictions are largely unaffected
because at 7 TeV the effect of ISR is much less noticeable than at 13 TeV.

25



4.2. MAIN RESULTS

50 60 70 80 90 100 110 120
pTjet2 [GeV]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

f C
SE

 %

fCSE with respect to pTjet2 [GeV] (Ntracks < 3)
Survival Probability = 0.1

S_4 (approx) Münster
CMS s  = 7 TeV

Figure 4.3: General differential fCSE with respect to pT,jet-2. Experimental data represented
with orange dots and our results indicated by black crosses. Corresponds to Table 2 or
Figure 9 in [Col17].

The results are consistent with what is found for the main analysis at 13 TeV; the order
of magnitude obtained for fCSE is correct, but the exact dynamical behaviour with respect
to ∆ηjj shows the same disagreement.

4.2.4 Tevatron

Although these results can be studied on their own, the original motivation was to reproduce
the predictions for Tevatron in [Che+09; KMR10], which used the same BFKL cross section
parametrization that we use but achieve a much better agreement with experimental data
than the one we observe in our own simulations. For this purpose the [aC98] experimental
setup is replicated while following the simulation prescription of [Che+09; KMR10]. The
results can be seen in Fig. 4.5. Notable differences with respect to other simulations in this
work: no ISR or FSR is considered, SP has a value of 0.1 and the beams are pp̄.

The most remarkable thing here might be the lack of agreement despite using the same
BFKL cross section formula as the previous work. There are two main differences when it
comes to how the results were obtained. First of all, they used HERWIG in combination
with NLOJet++ while we use PYTHIA 8. HERWIG is also the MC used by the D0 Collab-
oration [aC98] when they observed that showering creates an upwards trend of fCSE as ∆ηjj
increases. The previous result using NLL BFKL also considered NLO QCD while we stayed
at LO QCD, although this should not have an impact large enough on its own (cf. Sec. 4.2.2).

If we study these plots on their own, we find a similar situation to the main results: the
order of magnitude of predictions matches that of experimental data, albeit with a bit more
disagreement in the low-pT graph, but the dynamical behaviour does not agree.
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Figure 4.4: Double differential plots of fCSE with respect to ∆ηjj for different ranges of pT,jet-2.
Experimental data represented with orange dots and our results indicated by black crosses.
Corresponds with Table 3 or Figure 10 in [Col17].

4.3 Survival Probability
SP predictions [KMR10] pointed towards a value of 0.03 at the LHC. In this work, however,
a value of 0.1 is used since it provides a better fit to experimental data. This seeming
contradiction can be resolved by examining the definition of SP a bit more carefully.

The survival probability is the total probability that not one of several effects which are
not simulated destroys the gap. Therefore, the more gap-destroying effects are explicitly
simulated, the less impact this parameter will have: if we assume two survival probabilities,
SP1 and SP2, where SP2 needs to compensate less effects than SP1, then

SP1 =
∏n

i (1− Pi)

SP2 =
∏n−1

i (1− Pi)

}
=⇒ SP2 > SP1. [4.8]

The previous theoretical prediction was made using the Eikonal Model, which does not
take into account any kind of ISR or FSR. Following the prescription that SP encapsulates all
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Figure 4.5: Differential plots of fCSE with respect to pT,jet-2 and ∆ηjj for two brackets of
pT,jet-2. Results obtained at parton level while reproducing Tevatron experimental conditions.
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Figure 4.6: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj after turning off
ISR. The experimental data is in orange circles, a previous prediction by RMK is in blue and
our results are in black crosses. The survival probability has been lowered to SP = 0.035.
Corresponds with Tables 2, 3 and 4 or Figure 8 in [CT20].

effects that destroy the gap and should be increased if more effects are explicitly simulated,
it is easy to figure out why we find a higher value for SP than predicted. Our simulations
have been done with ISR turned on by default and turning off ISR for CSE made us adjust
the value of SP to 0.035, as seen in Fig. 4.6, which is much more in line with previous
predictions.

Ideally, if all effects were being taken care of the survival probability would be unneces-
sary, meaning that it would take a value of 1.

Two final remarks about turning ISR off: First of all, the pT,jet-2 distribution is closer to
the experimental values than before, and furthermore, it has reversed the trend, going from
decreasing fCSE as pT,jet-2 increases to slightly increasing with pT,jet-2. High pT,jet-2 events
probe the PDF at higher Q2, which makes the algorithm take more steps (emissions) before
reaching the cutoff. More emissions increase the probability that charged particles end up
in the gap, reducing the perceived fraction of CSE events. Thus, turning off ISR generation
causes that pT,jet-2 behaviour to vanish.
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The second notable thing is that the ∆φjj distribution is very close to the partonic one,
so FSR seems to have little impact in this observable, indicating that efforts to improve
predictions may be better allocated in areas other than FSR.

The results with respect to ∆ηjj remain largely unaffected, so it is safe to discard ISR as
the reason why the incorrect behaviour is obtained. FSR can also be indirectly discarded
since it was shown in ∆φjj to have very little effect in displacing the jets.

4.4 PDF Influence
There are many different PDF choices on the market, each with slight differences. In order
to check how much PDF choice is impacting the results, a fake PDF is constructed. This
PDF is completely flat, giving equal probability of finding all types of partons at all values
of x when probed at any scale Q2. Then fCSE is calculated using the PDF indicated for the
CP1 tune from the CMS Collaboration [Col19] and this fake PDF. Additional plots can be
seen in Sec. B.2.
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Figure 4.7: Cross section and fCSE distributions with respect to η = ∆ηjj/2. At the top are
the individual CSE and QCD distributions, while the bottom plots have the differential fCSE
obtained using the results on top. On the left are the results using a normal PDF, while the
results on the right were obtained using a flat PDF. Kinematical conditions are the same as
in the standard simulations.

Except for statistical uncertainties both the flat and normal PDFs result in the same fCSE.
Not only that, but changing the kinematical limits also leaves fCSE invariant(cf. Sec. B.2).
A closer inspection of the definition of fCSE reveals how certain changes may cancel out.
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If we have an observable f(x) that is the ratio between two different distributions with
the same variable dependency, H(x) and G(x), such that

f(x) =
H(x)

G(x)
, [4.9]

then it is possible to apply variations dependent of another variable, y, that is independent
from x, and leave our initial observable invariant, as long as both H(x, y) and G(x, y) have
the same factorizable dependence with y.

To see this, suppose that H(x, y) = h1(x)h2(y) and G(x, y) = g1(x)g2(y). Because we
are only observing with respect to the x variable it is necessary to integrate over all possible
values for y for each distribution:

f(x) =

∫
H(x, y) dy∫
G(x, y) dy

=
h1(x)

∫
h2(y) dy

g1(x)
∫
g2(y) dy

.

[4.10]

If we were to cull the phase space, such that ∆(x, y) gives the contribution of each point
towards the total then

f(x) =

∫
H(x, y)∆(x, y)dy∫
G(x, y)∆(x, y)dy

=
h1(x)

∫
h2(y)∆(x, y)dy

g1(x)
∫
g2(y)∆(x, y)dy

.

[4.11]

If both H(x, y) and G(x, y) have the same dependency with respect to y, that is, h2(y) =
g2(y), then the observed distribution f(x) is independent of the cull function ∆(x, y).

The previous formalism can be applied to the change in kinematical limits straight away,
however, we need to prove that this can be applied to PDFs. First of all we need to move to
parton level variables.

Now, using rapidity properties (differences of rapidities are Lorentz invariant and changes
of frames of references equates to addition), considering that in the CM frame of reference
η̂1CM = −η̂2CM = η̂CM , and that the boost required to go from CM frame to detector frame
is γ, the laboratory frame variables are defined as

η1 = η̂CM + γ

η2 = −η̂CM + γ

η̂CM =
1

2
(η1 − η2)

γ =
1

2
(η1 + η2).

It is easy to argue that η̂CM and γ must be independent variables. If they were not, all
the processes dependent on the center of mass energy would be altered simply by changing
our frame of reference, without changing the system itself. Representing the independent
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variables in vector form verifies that the transformation from (η̂CM , γ) → (η1, η2) preserves
the independency:

Base :=

[
η̂CM

γ

]
=⇒ ~η1 =

[
1
1

]
~η2 =

[
−1
1

]
[4.12]

Since ~η1 · ~η2 = 0 we still have linearly independent variables.
Notice how the variable ∆ηjj is ∆η at hadron level, which in turn is related to η̂CM by

∆η = 2η̂CM. Additionally, if we are talking in the context of detector variables we need to
take twice the absolute value, as detectors cannot distinguish between forward and backward
scattering jets. We have that for a hadronic process:

dσHadronic =
∑
ij

∫
dx1 dx2 fi(x1) fj(x2) dσ̂partonic(ŝ, t̂). [4.13]

For the following change of variables

dx1dx2dt̂ =
ŝ

s
dη1dη2d(p

2
T ) =

2ŝ

s
d∆ηdγd(p2T ), [4.14]

the Jacobian determinant is,

J [η1, η2 → ∆η, γ] =

∣∣∣∣∣ dη1d∆η
dη1
dγ

dη2
d∆η

dη2
dγ

∣∣∣∣∣ =
∣∣∣∣ 1 1
−1 1

∣∣∣∣ = 2. [4.15]

Putting everything together,
dσH

d∆η
=
∑
ij

∫
2ŝ

s
dγ d(p2T ) fi(x1) fj(x2)

dσ̂

dt̂
(ŝ, t̂). [4.16]

The variable t̂ necessarily has to be independent of the boost with respect to the lab-
oratory system, γ. Whether the variable ŝ is also not dependent on the boost is not so
trivial.

If we have a 2 → 2 process then the relation p1 + p2 = p3 + p4 has to hold. Taking into
account the relations:

P µ = (mT cosh(η), ~pT ,mT sinh(η)), with mT =
√

m2 + p2T .

we arrive at the following relation between Bjoken-x and the rapidity variables:

x1 =
pT√
s
(eη3 + eη4) =

2pT√
s
eγcosh(ˆ̂η) [4.17a]

x2 =
pT√
s

(
e−η3 + e−η4

)
=

2pT√
s
e−γcosh(ˆ̂η) [4.17b]

Now it should be clearer that ŝ loses its dependency with the boost when we operate
with our chosen variables, as one x’s contribution cancels the other as

ŝ = x1x2s = 4p2T e
γ−γcosh2(η̂) [4.18a]

= 4p2T cosh
2(η̂) [4.18b]

= 2p2T (cosh(∆η) + 1). [4.18c]
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Similarly t̂ variable is found to also be independent from γ as

t̂ = (p1 − p3)
2 = −p2T (1 + e−2η̂) [4.19a]
= −p2T (1 + e−∆η) [4.19b]
= −2p2T e

−η̂cosh(η̂) [4.19c]

Therefore, if we take as valid that the invariant partonic cross section, dσ̂/dt̂, only de-
pends on ŝ and t̂, then it can be factorized out of the dγ integral.

There is still another integral to be resolved, the d(p2T ) one. One can approach this
two different ways. First one is to say that we are only observing a narrow section of the
possible pT space, and therefore we could take it as a constant, making it possible to factorize
everything again. In this case the cancellation would be only approximate.

The alternative is realising that as 2 → 2 processes have a 1/p4T dependency, regardless
of them being CSE or normal processes, then the condition that dependency has to be the
same is automatically fulfilled.

4.5 Process Initiators
In this section, the cross section distributions are separated based on which particles enter
in the initial state. Only three kinds of process initiators are considered, gg, gq and qq.
The initiators are grouped based on the closest match with that classification, so a process
qq̄ → gg would be included in the qq category. Fig. 4.8 shows the distributions with respect
to Ntracks, pT,jet-2, ∆ηjj and ∆φjj.

For BFKL with LO impact factors, the cross section for all three processes should have
the same dynamical behaviour and differ only in a colour factor. Indeed it is easy to see that
gg is approximately 9/4 times as large as qg and (9/4)2 times as large as qq. What we see
however, is not the pure cross section, but its convolution with the PDFs.

Previous works [aC98] found a strong correlation between rising fCSE and qq initiated
processes as can be seen in Fig. 4.9. Since the cross sections couple equally to gg, qg and qq,
this result has to be caused by PDFs.

From Eq. 4.18 one sees that as ∆ηjj increases, x1 x2 also increases. Gluon distribution
functions decrease rapidly for large values of x, which makes fCSE drop since it is being
divided by the inclusive cross section, which takes into account all contributions. In contrast,
the contributions that have at least one q get a boost as their proportional contribution raises.

At the end of the day, fluctuations between the three have to cancel, since PDF depen-
dence has to cancel in the ratio as was discussed in Sec. 4.4. Thanks to Cristian Baldenegro
for the fruitful discussion about these plots.
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Figure 4.8: Differential cross section with respect to Ntracks, pT,jet-2, ∆ηjj and ∆φjj displaying
individual contributions from different initiators for CSE on the left and Born-level QCD on
the right.
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Figure 4.10: fCSE as a function of gap amplitude.

4.6 Variable Gap Amplitude
Given Eq. 2.14, the possibility of forcing events to be more forward was considered. In
theory this should increase the number of CSE events, as the kinematical limits push events
further and further into the Regge region. In order to carry this out, the gap amplitude
from Eq. 4.1c was extended and total fCSE plotted against it, always taking care of keeping
the jets outside of the gap region. As can be seen in Fig. 4.10 the result was the opposite of
what was expected.

ISR was found to be mostly isotropic between the jets which means that as the gap
region is increased, so is the amount of ISR particles that get counted inside of it. To the
best of my knowledge this was also seen in experimental data (in private discussions with
Christophe Royon and Cristian Baldenegro).

Alternatively, increasing just the minimum distance between the jets and the gap, while
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Figure 4.11: fCSE as a function of ηjet,min.

leaving the gap area intact to prevent flooding from ISR, was considered in Fig. 4.11. This
is, increasing the lower limit for ηjet from Eq. 4.1c while leaving η from Eq. 4.3b intact.

This time fCSE decreases simply because, to all effects, this is roughly equivalent to
cutting the left part of a regular ∆ηjj plot and then averaging over all values. Since in our
previous simulations fCSE with respect to ∆ηjj decreases as ∆ηjj rises, averaging only for
high values of ∆ηjj naturally results in lower values of total fCSE.

4.7 Sources of Error
Three sources of error from the MC are considered: factorization scale, renormalization
scale and PDF replicas. In theory observables should not depend on either factorization or
renormalization scales. However that is only strictly true if all diagrams to all orders are
considered. Since this is not really feasible, a multiplicative factor for each is introduced and
varied to verify the degree of independence of fCSE with respect to these scales. The factor-
ization scale enters at the PDF evaluation as the the probing scale Q2. The renormalization
scale enters in the renormalization scheme for the strong coupling constant. The multiplica-
tive factor for the factorization scale is denoted by µF and the one for the renormalization
scale by µR, such that

µF → fi(x, µF Q2), [4.20a]
µR → αs(µR Q2). [4.20b]

The PDF replicas come because extracting the values from scattering data carries un-
certainty. In order to give a measure of this uncertainty a hundred replicas are given, each
with slight variations with respect to the central one, which is what is used by default.

Despite what was calculated in Sec. 4.4, the error from PDF does not cancel. This is
because it was calculated assuming independent variations in numerator and denominator.
That is, propagating the resulting standard deviation through the fCSE formula. The scaling
errors are calculated by making the multiplicative factors µF and µR take the values 4 or 1/4
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without mixing scale variations, i.e. if one changes the other stays with the default value of
one. As we expected, the uncertainty coming from the renormalization scale almost vanishes.
However, there is a very notable lack of cancelation for factorization scale uncertainties.
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Figure 4.12: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj displaying
variations with respect to the renormalization and factorization scales, as well as PDF un-
certainties.

The reason why the factorization scale variation does not cancel like the renormalization
one does is that it does not symmetrically affect numerator and denominator. After the
partonic hard process PYTHIA 8 is at a scale µF Q2 and emits new particles until it reaches
lower cutoff scale Q2

0. By increasing µF , more emissions take place before halting the routine.
This makes it so that high multiplicity events are the ones most affected by this change, as
can be seen in Fig. 4.13.

However, increased emissions are not enough to explain the large variation seen. A
secondary effect is also taking place: interference between the jet finder and ISR particles.
Increasing µF Q2 not only increases particle multiplicity, but it also increases the momentum
carried by said emissions. When those emissions fall within the cone of a jet, their momentum
is added to it, which subsequently makes jets overcome the pT,jet > 40GeV cut. Since cross
sections fall as 1/p4T,jet, a small displacement from the left side of the distribution towards
higher pT,jet-2 values adds a lot of cross section to the events that make the cuts (cf. Fig. 4.8,
pT,jet-2 plot).

Since the numerator in the fCSE definition represents events with no particles in the
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Figure 4.13: Ntracks distribution for CSE events and how it is affected by different variations
from scales and PDF.

gap region, it is not affected, creating a discrepancy and preventing the cancellation of
the variation. Turning ISR off confirms this hypothesis since then the factorization scale
uncertainty cancels to a degree comparable with the renormalization scale (cf. Sec. B.4).

4.8 Soft Colour Interactions
The Soft Colour Interactions (SCI) [EEI17; EIR95; Rat98] model is noteworthy for being
the only model to get the correct ∆ηjj in [Col17]. SCI is an alternative routine for the
colour reconnection routine in PYTHIA; developed initially for PYTHIA 6 it is now inte-
grated into PYTHIA 8 as part of this work (for implementation details see Appendix C).
Whereas PYTHIA 8’s default has the specific aim of reducing string length, SCI takes a
different approach and treats all possible reconnections as equals, with a fixed probability of
reconnecting any two dipoles that depends only on the overall event dynamics.

The basic element of SCI is the probability,

P = p0 log(1− t̂/400)b, [4.21]

where p0 and b are parameters of the model and t̂ is the dynamical variable of the event, the
transferred momentum for the 2 → 2 process. While there is some leeway in the values of
both parameters, it is recommended to only change p0, since b has been fit to data.

The default values given by the creators of the model are

p0 = 0.7,

b = 0.1.

Using these values is how Fig. 4.14 was obtained. The events generated with this model
are nearly guaranteed to destroy the gap instead of resulting in an effective gap survival
of 0.1, as well as producing events with too many charged particles. For comparison,
typically experimental charged multiplicity distributions peak at Ntracks ∼ 20.

Trying different values of p0 does not change the obtained distribution except for ex-
tremely small values of around p0 ∼ 0.001. To explain this we need to consider that for our
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Figure 4.14: Ntracks distributions for CSE and QCD events using SCI with default parameter
values. This plot displays the saturation result.

experimental setup t̂ > 1600GeV2, which sets the factor log(1− t̂/400) ∼ 1.05 and growing
very slowly. Therefore the probability of reconnection is, to a good approximation,

P ∼ p0.

Because of how the model is built, if there are n colour dipoles, n(n− 1)/2 attempts at
reconnecting dipoles will be made, resulting in the average number of reconnections

P n(n− 1)

2
∼ p0

n(n− 1)

2
. [4.22]

We can now define the ratio of colour reconnections to number of dipoles, which gives a
rough estimate of how many times each dipole is reconnected, as

R ∼ p0
n− 1

2
. [4.23]

Now it is easy to see that the number of particles, and therefore possible colour dipoles,
scales with CMe, and so does the number of times each dipole gets reconnected. The reason
p0 has little to no effect is that in a typical event at 13 TeV, n ∼ 100 and each dipole gets
reconnected ∼ 50 p0, resulting in the final state colour topology being completely random
for the default value of p0 = 0.7.

Comparing with PYTHIA 8’s default colour reconnection, about 20 − 40 reconnections
happen for a typical event with number of dipoles n ∼ 100. From Eq. 4.22, we obtain a
value of p0 ∼ 0.005, which matches the critical value observed to exit the saturation regime.

Another difference is noted; for pp collisions at 13 TeV, PYTHIA 8’s default CR reduces
the amount of charged particles produced while SCI seems to always increase it. This may
point towards one of the possible venues of improving on the model.

Special thanks to Andreas Ekstedt, Rikard Enberg and Gunnar Ingelman for extensively
discussing their model with us.

39



4.9. DEFAULT COLOUR RECONNECTION + MPI

4.9 Default Colour Reconnection + MPI

In order to have a direct comparison with SCI, the default colour reconnection scheme along
with PYTHIA 8 MPI is also tested. The interest in finding a good description of data with
MPI instead of using SP goes beyond finding a good agreement with data. Performing the
same analysis as the one performed in experiments (cf. Sec. 4.1) is not feasible while using
a static SP. Obtaining the complete charged multiplicity distribution enables us to perform
the same kind of fit as the experimentalist use, as seen in Fig. 4.15 (cf. Sec. 4.1).
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10 5

 (m
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fCSE = 0.7981% (Ntracks < 3)
CSE = 0.165 ; nonCSE = 0.169

Survival Probability = 1

NBD fit
Fit region
Non-CSE
CSE

Figure 4.15: Ntracks joint distribution for CSE and QCD events in log scale, along with best
fit to Negative Binomial Distribution, showing excess gap events with respect to background.

Now with the analysis being identical to the experimental one the results are shown
in Fig. 4.16. By far the most notable thing from this analysis is that using PYTHIA 8
internal machinery for MPI, a reasonable result is obtained at all. The only remaining
difference now between the simulation of CSE and regular QCD events is the parameter
SpaceShower:rapidityOrder (on for CSE and off for QCD, cf. Sec. B.1), which is worth
mentioning that it is not mandatory or even standard practice for PYTHIA tunes. Anyhow,
rapidity ordering was not found to change the dynamic behaviour of fCSE, but merely reduced
it by half.

While this does not assure that MPI and CR in PYTHIA 8 is ready to be used as a
substitute for theoretical predictions of SP, it is worth considering just for the benefit of
reproducibility of analysis and having a more dynamic predictor than just a constant SP.

In regards to that last point, based on theoretical predictions SP is not expected to have
a strong dependence on kinematical variables, only on CMe. However, the change required
in order to reverse the ∆ηjj tendency is not a strong one, and small deviations can contribute
towards better predictability. Indeed, the ∆ηjj behaviour seems a bit less decreasing, so while
dynamical SP might not be the full answer, it is possibly part of it.
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Figure 4.16: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj using the tune
CP1 from [Col19] but setting the parameter SpaceShower:rapidityOrder = on for CSE
events. The experimental data is in orange circles, a previous prediction by RMK is in blue
and our results using PYTHIA 8 MPI and CR routines are in black crosses. Corresponds
with Tables 2, 3 and 4 or Figure 8 in [CT20].

4.10 Challenges
It is worth remarking that literature studies on BFKL seem to be heavily influenced by the
MC used. The authors of the original D0 Collaboration for Tevatron at 1.8 GeV [aC98] noted
that showering in HERWIG altered the ∆ηjj behaviour, getting an upwards trend, while the
parton level results obtain the same downwards trend we observe. They mentioned that
”parton showering for standard QCD processes reduces the jet ∆η separation at the jet level
relative to the parton level”. While this effect is observed when trying to reproduce Tevatron
results (cf. Sec. B.5), it is not enough to reverse the trend.

Previous works by [KMR10; Che+09] using HERWIG in conjunction with NLOJet++
could very accurately reproduce fCSE data from extracted from Tevatron by the D0 Col-
laboration [aC98], but obtained much worse results for [CT20] using PYTHIA 8 for QCD
and HERWIG for CSE. This work, using PYTHIA 8 for CSE and QCD and the same
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parametrization for the BFKL cross section as [KMR10; Che+09] was unable to reproduce
the fCSE predictions for the data from the D0 Collaboration at Tevatron [aC98], but agreed
to a good extent with the same model’s (RMK) predictions for LHC at 13 TeV [CT20].

The SCI model, using PYTHIA 6 obtained the correct behaviour with respect to ∆ηjj for
LHC at 7 TeV [Col17], but when implemented into PYTHIA 8 did not get a good agreement
with data without further tuning for LHC at 13 TeV.

The variability introduced by different Monte Carlo event generators, even when using
the same underlying hard physics (namely BFKL), is an important factor that should be kept
present when analysing generated data. Even changing the setup, such as CME requires the
use of different tunes, which may alter in no obvious ways how the different routines inside
the MC generator shape the distributions, thus altering the dynamical behaviour observed.
Perhaps the most convincing argument towards the importance of minute details of different
MC is that the difference need not be very significant at all, since just a small deviation is
enough to reverse ∆ηjj behaviour for the Mueller-Tang analysis (cf. Sec. B.5)
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Chapter 5

Summary and Outlook

This work produced the first results from an implementation of BFKL at NLL with LO
impact factors into PYTHIA 8 successfully reproducing a previous result for fCSE as well as
confirming a previous theoretical prediction for the Survival Probability. Analysis also brings
attention to the resulting distribution of fCSE with respect to ∆ηjj as concerning, since they
seem to contradict both theoretical intuitions and experimental data.

Attention has also been brought upon the standard Multi-Parton Interactions and Colour
Reconnection routines in PYTHIA 8, which were originally discarded in accordance with
standard practice for BFKL studies but has shown promising results. More work needs to
be done in order to validate the model for future analysis, such as its robustness in other
setups, like LHC at 7 TeV, or how much it is affected by different tunes.

As a follow up, NLO contributions for fixed order QCD using POWHEG were com-
puted and along with Parton Distribution Functions, the latter through both analytical
and phenomenological analysis, have been discarded as causes for strong deviations from
experimental observations in MC predictions.

Different parts of PYTHIA 8 have been studied and their impact and effects on ob-
servables explored, both in the main text as well as in Appendix B. In particular, special
attention is required to be put into the Initial State Radiation routine, as it has many im-
portant repercussions, from producing large factorization scale uncertainties, to being the
main influence in ∆φjj and, to a lesser extent, pT,jet-2 distributions. Additionally, ISR seems
to spoil the prospect of enlarging the gap region, as it being nearly isotropic between the
jets makes charged multiplicities grow with the gap amplitude.

An alternative model for the Colour Reconnection routine in PYTHIA 8, the Soft Colour
Interactions model, has been implemented from the previous FORTRAN code. The basic
model seems to saturate and produce unsatisfying results for LHC at 13 TeV without re-
tuning. Some steps towards integrating the new junction colour topologies from PYTHIA 8
have already been taken, and in the future they could be fully integrated.

Finally, a short historical context is given. It serves to display the difficulties in studying
BFKL dynamics while using Monte Carlo simulators, as they may be having a stronger
influence in results than previously anticipated, not because of large deviations from physical
events, but rather because of how sensible our observable is to small variations.
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In regards to next steps, they can be divided into two broad categories: reproducing
previous results and improving soft physics. In order to reproduce previous results [Che+09;
KMR10] that showed a much better agreement with experimental data, both CSE and QCD
contributions should be examined, validating them, for example, with individual BFKL
cross section predictions from [KMR10] and other NLO QCD calculations for dijet events.
Exploring the reasons why our predictions do not match theirs is key to furthering our
understanding of BFKL phenomenology.

As for improving soft physics, the default MPI+CR routines in PYTHIA 8 are a great
place to start. The model should be tested in different scenarios for which we already have
data, and compare against theoretical predictions for SP. The susceptibility to different tunes
is also worth exploring. Getting a robust model for soft interactions will not only close the
gap between experimental and theoretical analysis but also provide a dynamical ”SP” that
may contribute towards obtaining better predictions.
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Appendix A

Useful Relations: 2 → 2 kinematics

Here we present some kinematical relations for 2 → 2 processes that may be of assistance
when studying them. For more detailed descriptions of these relations and how to derive
them we refer to [Ams+08].

Mandelstam variables:

a+ b → c+ d

s = (pa + pb)
2

t = (pa − pc)
2

u = (pa − pd)
2

a c

b d

Figure A.1: Mandelstam variables for 2 → 2 processes.

Rapidity and pseudorapidity:

rapidity y =
1

2
ln

E + pzc

E − pzc

pseudorapidity η = − ln

[
tan

θ

2

]
 m � E =⇒ y ' η

Bjorken-x:

x1 =
pT√
s
(ey3 + ey4) =

2pT√
s
eγcosh(η̂)

x2 =
pT√
s

(
e−y3 + e−y4

)
=

2pT√
s
e−γcosh(η̂)

x1 = e2γx2
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Partonic variables:
ŝ = x1x2s = 4p2T e

γ−γcosh2(η̂)

= 4p2T cosh
2(η̂)

= 2p2T (cosh(∆η) + 1)

= x2
1e

2γs

= x2
2e

−2γs

t̂ = (p1 − p3)
2 = −p2T (1 + e−2η̂)

= −p2T (1 + e−∆η)

= −2p2T e
−η̂cosh(η̂)

− ŝ

t̂
= 1 + e2η̂

Observable variables:

∆η = 2η̂, (only absolute value observable)

p2T =
−t̂

1 + e−2η̂
=

−t̂

ŝ
(ŝ+ t̂)

=
−t̂eη̂

2cosh(η̂)

∆φ = π, (at parton level)
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Appendix B

Additional Plots

This appendix contains plots and results that did not fit neatly in the main text for being
either redundant or because they complement only one or two sentences. Either way it can
be useful to have them here for future reference.

B.1 SpaceShower:rapidityOrder Influence

It was found that just applying the new tune for all parts of the simulation produced a value
of fCSE that was too low with respect to before the tune change, as can be seen in Fig. B.1.

The parameter SpaceShower:rapidityOrder is identified as the culprit for the excess of
charged particles in the gap, as can be seen in Fig. B.2. When it is turned on, the emissions
from ISR are forced to be ordered in rapidity, which reduces the phase space for additional
emissions. This was the reason given in [Col19] to turn it off. A secondary effect this has
is that now ISR emissions are more likely to enter the gap region, exacerbating the gap
destruction effect from ISR.

The HardQCD part of the simulation is left untouched since the tune was originally fit
to accurately describe those types of events in the first place.

The easiest solution is to just keep the CMS tune, but have SpaceShower:rapidityOrder
turned on for CSE events. However, another approach is also tested. Following the descrip-
tion of SP in Sec. 4.3, if one explicitly simulates all possible emissions in phase space the
survival probability has to be raised accordingly. A value of SP = 0.2 is found to give a
good fit, as can be seen in Fig. B.3. The main advantage of this approach is that the sim-
ulation parameters for both parts are more similar, although there is no strong theoretical
foundation for a value of SP = 0.2.

From these two approaches to recover the original predictions, keeping the parameter
SpaceShower:rapidityOrder turned on for CSE events is chosen since it does not have a
sizable impact on dynamical behaviour, which is our main concern, but it vastly improves
the statistics of predictions.
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Figure B.1: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj after applying
the new tune from [Col19]. Corresponds with Tables 2, 3 and 4/Figure 8 in [CT20].
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Figure B.2: Ntracks distribution for CSE events and how it is affected by the parameter
rapidityOrder. ”New tune” has rapidityOrder off, ”rapidityOrder=on” is the CP1 CMS
tune with rapidityOrder=on and ”Old tune” is the Monash tune, Tune:pp=14 in PYTHIA 8,
which also has rapidityOrder=on.

B.2 Influence from Kinematical Limits
In this section the possibility that the ∆ηjj trend is a selection effect of the kinematical
limits imposed is explored. For this reason, two PDFs are compared, a normal PDF and a
flat PDF, so that all events have equal probability. The distributions are at parton level to
eliminate additional effects.

First the kinematical limit for ∆ηjj are removed so the distributions run from 0 to 10.
Furthermore we also take away the imposed condition of having jets on opposite hemispheres
we obtain Fig. B.4, which still maintains the same fCSE distribution for both cases.

These results should not be considered physical, since they are well beyond the kine-
matical regime we require to make predictions. Nonetheless, they serve to illustrate the
mathematical property exposed in Sec. 4.4 as it relates to kinematical impositions. Just to
reiterate, changing PDF or kinematical limits has no impact on fCSE. at parton level, and
the changes they induce are heavily suppressed at hadron level.

B.3 NLO QCD Dynamics
The differential cross sections for QCD NLO and QCD LO with respect to Ntracks, pT,jet-2,
∆ηjj, ∆φjj and pT,jet-3 can be seen in Fig. B.5.

There is a slight shift in the ∆ηjj distribution, which is what we were looking for in the
first place. Although the shift was not enough to correct the predictions it can be useful to
take into account to compound with other similar effects.

Worth noting is that the total cross section seems to decrease for NLO and that the ∆φjj
distribution is more ”peaked” at ∆φjj ∼ π. The fact that there seem to be less third jets with
high pT, see Fig. B.6, point towards a selection effect. As the third jet carries momentum
away from the two leading ones, less pairs fulfil the condition that pT,jet > 40GeV.
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Figure B.3: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj after applying the
new tune from [Col19] but keeping the parameter rapidityOrder=off for CSE. The survival
probability has been raised to SP = 0.2. Corresponds with Tables 2, 3 and 4/Figure 8 in
[CT20].
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Figure B.4: Cross section and fCSE distributions with respect to ∆ηjj. At the top are the full
distributions, while the bottom plots have the differential fCSE obtained from the distribution
on top. On the left are the results using a normal PDF, while the results on the right were
obtained using a flat PDF. For these plots no limits on ηjet have been imposed, which includes
the condition ηjet-1ηjet-2 < 0..
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Figure B.5: Differential cross sections for LO and NLO QCD processes with respect to
Ntracks, pT,jet-2, ∆ηjj, ∆φjj. Kinematical limits are those of Sec. 4.1 and the CP3 [Col19] was
used.
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Figure B.6: Differential cross sections for LO and NLO QCD processes with respect to pT,jet-3.
Kinematical limits are those of Sec. 4.1 and the CP3 [Col19] was used.

This is also the reason why ∆φjj seems more ”peaked”. Only when there is no third jet
will ∆φjj = π. After that emissions carry more and more momentum, making the whole
distribution fall faster than the LO case.

B.4 ISR Impact on Factorization Scale Uncertainty
Since the increase in produced particles from changing the factorization scale is not enough
to account for the lack of cancellation. The reason why the explanation in Sec. 4.7 is based
on a selection effect is that the emissions were observed to have increased their average
energy by a factor roughly equal to the variation in the factorization scale. ISR looked like
the most probable reason, since FSR is nearly collinear with the jets, so it would have an
equal contribution for CSE and QCD, thus cancelling, and MPI has a small influence in this
case (remember that all secondary interactions are forced to be softer than the main one).

The final clue that pointed towards ISR is that the variation in the Ntracks distribu-
tion disproportionally affects events with a large number of charged particles in the gap
(see Fig. 4.13).

In order to verify whether our explanation for why factorization scale uncertainty do not
cancel, we will turn ISR off and see how it influences the factorization scale uncertainties
in Fig. B.7.

After turning ISR off the cancellation is nearly as good as with the renormalization scale
or independent variation PDFs, which seems to validate our reasoning.

B.5 Showering Effect on ∆ηjj Distributions
As mentioned before, in [aC98] they point to the showering of events as responsible for the
change in behaviour of the ∆ηjj distribution. In particular they are talking about the regular
QCD part of the simulation, which they did in HERWIG. However we have the ability to
shower both CSE and QCD, so next we will see if the same effect is observed. In order to
see it, in Fig. B.8, a comparison between parton level and after showering distributions is
presented.
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Figure B.7: Differential plots of fCSE with respect to pT,jet-2, ∆ηjj and ∆φjj displaying vari-
ations with respect to the renormalization and factorization scales, as well as PDF uncer-
tainties when ISR is turned off, displaying the ISR dependency of the factorization scale
uncertainty.
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Figure B.8: Differential cross sections with respect to ∆ηjj displaying both parton and shower
distributions. On the left are the CSE events, on the right QCD, on top Tevatron proton-
antiproton events, on the middle Tevatron proton-proton events and on the bottom CMS
proton-proton. All distributions have been normalized for ease of comparison of dynamical
behaviour.
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B.5. SHOWERING EFFECT ON ∆ηJJ DISTRIBUTIONS

Three settings will be considered: Tevatron [aC98], at 1.8 TeV with pp̄ and pp beams,
and LHC [CT20] at 13 TeV with pp beams. This way, if the effect were due to pp̄ or just a
peculiarity of events at 1.8 TeV we will be able to tell.

As it was said in [aC98], after showering the regular QCD processes see their distribu-
tion shifted towards smaller values of ∆ηjj, while CSE processes barely change (top row
of Fig. B.8). It is possible that this is an effect caused due to the events being pp̄. If we now
change the beams to proton-proton, as in [CT20], the effect is still there to pretty much the
same extent. However, after also altering the centre of mass energy to match [CT20], the
QCD distributions no longer move, and instead the CSE distribution changes, but to higher
values of ∆ηjj. For the purposes of calculating fCSE, QCD shifting to lower values is the
same as CSE shifting to higher ones.

Therefore, the effect noted by [aC98] has been also observed in our setup. However this
effect was not enough to reverse the behaviour in our simulations, unlike in their simulations.

The second important takeaway from these plots is that both the QCD and BFKL dis-
tributions are extremely similar in ∆ηjj, which means that looking for what causes the
downwards trend in this variable amounts to trying to find effects that may displace the
peak of the distributions by < 0.5 units of rapidity.
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Appendix C

SCI Implementation

The Soft Colour Interactions model [EIR95; Rat98] was implemented into PYTHIA 8. Two
versions are displayed here, one that is purely a code translation from the FORTRAN code
that implemented SCI into PYTHIA 6 provided by Ekstedt, Enberg, and Ingelman, and a
second implementation in the style of PYTHIA 8. The reason why two versions are provided
is that, while the do the same, it is much easier to spot mistakes in the FORTRAN one,
while it is easier to optimize the full C++ implementation.

The main challenge has to do with the changes in colour structures considered by each
iteration of PYTHIA. PYTHIA 6 works at leading colour, while PYTHIA 8 took it one
step further and works in next to leading colour, which means that it considers junction
structures(cf. Sec. 3.3).

Junctions have been dealt with by simply colour tracing the final configuration and
updating the endCol fields. There is also the possibility of completely integrating junctions
in the routine, since junctions are also colour-charge-sinks and colour-charge-emitters (much
like quarks are). It would just take a bit of care into how to deal with them.

C.1 Code Translation
Here is the first implementation, made just translating the original code from FORTRAN
into C++ and dealing with junctions at the end.

1

2 // Original SCI, i.e. replicating PYTHIA 6 PYFSCR routine. CC -> Carbon Copy
3

4 bool ColourReconnection::reconnectSCI_CC( Event& event, int iFirst){
5 double prob;
6 double tHat = infoPtr->tHat();
7 // Number of colour reconnections. Serves as indices in the arrays
8 // It's actually twice the number of dipoles
9 int nCR = 0; // So that we can work with 0-indexing

10 // Maximum number of particles that can take part in the reconnection
11 int oldSize = event.size();
12 // Minimum (first) colour tag used -> from html documentation
13 int ctmin = 100;
14 // Highest (last) colour tag used and copy for CR
15 int maxCT = event.lastColTag();
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C.1. CODE TRANSLATION

16 int nCT = maxCT;
17 // Vectors of indexes and partner indexes
18 vector<int> iCol(8000), jCol(8000);
19 // Vector for colour types (true, false) -> (colour, anti-colour)
20 vector<int> typeCol(8000);
21

22 // Temporary colour tag storage
23 int CTi, CTj;
24

25 // Dipole log in
26 for (int CT = ctmin; CT < maxCT; CT++){
27 // Loop over particles and find the "ends" of the colour line
28 int iC=0, iA=0;
29 // Make ind start from iFirst?
30 for (int ind=0; ind < oldSize; ind++){
31 if (!event[ind].isFinal()) continue; // Needed? Yes?
32 if (event[ind].col() == CT) iC = ind;
33 if (event[ind].acol() == CT) iA = ind;
34 } // End of finding ends of dipole
35

36 // Log the dipole into our vectors
37 if (iC != 0 && iA != 0){
38 // Add coloured parton
39 iCol[nCR] = iC;
40 jCol[nCR] = nCR+1;
41 typeCol[nCR] = 1;
42 nCR++;
43 // Add anticoloured partner
44 iCol[nCR] = iA;
45 jCol[nCR] = nCR-1;
46 typeCol[nCR] = 2;
47 nCR++;
48 } // End of logging in the dipole
49 } // End of Colour Tagging loop
50

51 // Dipole reconnection
52 int NCOLR = 0; // Counter
53 int jColI, jColJ; // Index holders for the reconnection
54 for (int i=0; i < nCR-1; i++){
55 for (int j=i+1; j < nCR; j++){
56 // Check type of colour is equal
57 if (typeCol[i] != typeCol[j]) continue;
58

59 // Don't allow gluons to reconnect to themselves
60 if (iCol[i] == iCol[ jCol[j] ]
61 || iCol[j] == iCol[ jCol[i] ]) continue;
62

63 // Perform probability check
64 // Probability is static -> Can be defined out of loops
65 prob = p0 * pow(log(1. - tHat/400.), 0.1);
66 if (rndmPtr->flat() < prob){
67

68 // typecol[i] has to be equal to typecol[j]
69 if (typeCol[i] == 1){

58



APPENDIX C. SCI IMPLEMENTATION

70 CTi = event[ iCol[i] ].col();
71 CTj = event[ iCol[j] ].col();
72

73 event[iCol[jCol[j]]].acol(CTi);
74 event[iCol[jCol[i]]].acol(CTj);
75 } else {
76 CTi = event[ iCol[i] ].acol();
77 CTj = event[ iCol[j] ].acol();
78

79 event[iCol[jCol[j]]].col(CTi);
80 event[iCol[jCol[i]]].col(CTj);
81 }
82

83 // Update partner arrays
84 // It affects subsequent reconnections
85 jColI = jCol[i];
86 jColJ = jCol[j];
87

88 jCol[i] = jColJ;
89 jCol[jColJ] = i;
90

91 jCol[j] = jColI;
92 jCol[jColI] = j;
93

94 // Update number of colour reconnections
95 NCOLR++;
96

97 } // End of probability check and reconnection
98 } // End internal particle loop
99 } // End loop over all pairs of particles

100

101 // Correct endCols in Junctions
102 int endCol;
103 for (int iJun=0; iJun < event.sizeJunction(); iJun++){
104 for (int leg=0; leg < 3; leg++){
105 endCol = event.colJunction(iJun, leg);
106 // Colour-Junctions output colours
107 if (event.kindJunction(iJun) % 2 == 0){
108 bool endReached = false;
109 while (!endReached){
110 for (int ind=0; ind < event.size(); ind++){
111 if (endCol == event[ind].acol()){
112 // Ignore colour-sextets (CT<0) for now
113 if (event[ind].col() > 0){
114 endCol = event[ind].col();
115 break;
116 } else {
117 // If "ind" does not link to another tag
118 endReached = true;
119 }
120 }
121 }
122 // If no further connections found
123 endReached = true;
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C.2. C++ IMPLEMENTATION

124 }
125 }
126

127 // AntiColour -Junctions output anticolours
128 if (event.kindJunction(iJun) % 2 == 1){
129 bool endReached = false;
130 while (!endReached){
131 for (int ind=0; ind < event.size(); ind++){
132 if (endCol == event[ind].col()){
133 // Ignore colour-sextets (CT<0) for now
134 if (event[ind].acol() > 0){
135 endCol = event[ind].acol();
136 break;
137 } else {
138 // If "ind" does not link to another tag
139 endReached = true;
140 }
141 }
142 }
143 // If no further connections found
144 endReached = true;
145 }
146 }
147

148 // Assign endCol to the leg
149 event.endColJunction(iJun, leg, endCol);
150 } // End of leg for-loop
151 } // End of Junction correction
152 return true;
153 }

Listing C.1: SCI model translation from FORTRAN to PYTHIA 8 C++. This code is meant
to be placed in the file ColourReconnection.cc

C.2 C++ Implementation
Here is the second implementation, made using PYTHIA 8’s structures and dealing with
junctions at the end.

1

2 // Do SCI with code in style of PYTHIA 8
3

4 bool ColourReconnection::reconnectSCI_v0( Event& event, int iFirst){
5 // Use BeamDipole simply because it has everything needed
6 vector<BeamDipole > Dips;
7

8 // Define parameters
9 double tHat, prob;

10 // Maximum number of particles that can take part in the reconnection
11 int oldSize = event.size();
12 // Highest (last) colour tag used and copy for CR
13 int maxCT = event.lastColTag();
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14 int nCT = maxCT;
15

16 // Build dipole vector
17 for (int ind1=0; ind1 < oldSize -1; ind1++){
18 // Only take into account particles that exists
19 if (!event[ind1].isFinal()) continue;
20 // Take colour end of the dipole as "anchor" for dipole build
21 int ColT = event[ind1].col();
22 if ( !(event[ind1].col() > 0) ) continue;
23 // Find partner
24 for (int ind2=0; ind2 < oldSize; ind2++){
25 // Check the particle exists and is not the same particle
26 if (!event[ind2].isFinal()) continue;
27 if (ind1 == ind2) continue;
28 // Find the acol end of the colour line (tag)
29 if (event[ind2].acol() == ColT){
30 Dips.push_back( BeamDipole (ColT, ind1, ind2) );
31 // Allow only one dipole creation (would exclude junctions)
32 break;
33 } // End of adding dipole
34 } // End of finding partner
35 } // End of building dipole vector
36

37 // Dipole reconnection
38 int coli, colj, acoli, acolj;
39 tHat = infoPtr->tHat();
40 for (int i=0; i < Dips.size(); i++){
41 for (int j=0; j < Dips.size(); j++){
42 coli = Dips[i].iCol;
43 acoli = Dips[i].iAcol;
44 colj = Dips[j].iCol;
45 acolj = Dips[j].iAcol;
46 // Check only colour type of one end of the dipole
47 if (event[coli].colType() != event[colj].colType()) continue;
48

49 // Check so gluons don't reconnect to themselves
50 if (coli == acolj || acoli == colj) continue;
51

52 // Perform probability check
53 prob = p0 * pow(log(1. - tHat/400.), 0.1);
54 if (rndmPtr->flat() < prob){
55 // Generate new colour tags. Other standard methods don't do this
56 // and reconnect to the existing colour lines
57 nCT = event.nextColTag();
58 // Reconnect on the event record
59 event[coli].col(nCT);
60 event[acolj].acol(nCT);
61 // Update dipole vector with the reconnection
62 // This may only matter for future reconnections
63 Dips[i].col = nCT;
64 Dips[i].iAcol = acolj;
65

66 // Same process for the other side
67 nCT = event.nextColTag();

61



C.2. C++ IMPLEMENTATION

68 event[colj].col(nCT);
69 event[acoli].acol(nCT);
70 Dips[j].col = nCT;
71 Dips[j].iAcol = acoli;
72 } // End of probability check and reconnection
73 } // End internal dipole loop
74 } // End external dipole loop
75

76 // Correct endCols in Junctions
77 int endCol;
78 for (int iJun=0; iJun < event.sizeJunction(); iJun++){
79 for (int leg=0; leg < 3; leg++){
80 endCol = event.colJunction(iJun, leg);
81 // Colour-Junctions output colours
82 if (event.kindJunction(iJun) % 2 == 0){
83 bool endReached = false;
84 while (!endReached){
85 for (int ind=0; ind < event.size(); ind++){
86 if (endCol == event[ind].acol()){
87 // Ignore colour-sextets (CT<0) for now
88 if (event[ind].col() > 0){
89 endCol = event[ind].col();
90 break;
91 } else {
92 // If "ind" does not link to another tag
93 endReached = true;
94 }
95 }
96 }
97 // If no further connections found
98 endReached = true;
99 }

100 }
101

102 // AntiColour -Junctions output anticolours
103 if (event.kindJunction(iJun) % 2 == 1){
104 bool endReached = false;
105 while (!endReached){
106 for (int ind=0; ind < event.size(); ind++){
107 if (endCol == event[ind].col()){
108 // Ignore colour-sextets (CT<0) for now
109 if (event[ind].acol() > 0){
110 endCol = event[ind].acol();
111 break;
112 } else {
113 // If "ind" does not link to another tag
114 endReached = true;
115 }
116 }
117 }
118 // If no further connections found
119 endReached = true;
120 }
121 }
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122

123 // Assign endCol to the leg
124 event.endColJunction(iJun, leg, endCol);
125 } // End of leg for-loop
126 } // End of Junction correction
127 } // End of reconnectSCI_v0
128 return true;

Listing C.2: SCI model implementation in PYTHIA 8 C++. This code is meant to be placed
in the file ColourReconnection.cc

C.3 Additional Changes
Just implementing one of the previous routines into ColourReconnection.cc is not enough,
as PYTHIA needs some additional setup before it can run the SCI model.

First of all, in ColourReconnection.h, p0 and the SCI methods need to be added as
private members of the ColourReconnection class.

1 // p0 member declaration
2 double p0;
3 // Do SCI reconnection scheme
4 bool reconnectSCI_v0(Event& event, int oldSize);
5 // "Modern" implementation of SCI
6 bool reconnectSCI_CC(Event& event, int oldSize);

Listing C.3: Modifications on ColourReconnection.h

Then in ColourReconnection.cc, p0 has to initialized in the constructor of the Colour-
Reconnection class. For this we will use one of the spare parameters included in PYTHIA 8.
PartonLevel.cc and BeamRemnants.cc need to be modified accordingly to ensure SCI gets
called only where it is supposed to.

1 // In ColourReconnection.init()
2 p0 = settings.parm("Main:spareParm1");
3

4 // In ColourReconnection.next()
5 // reconnectMode = 5 -> calls SCI only in PartonLevel.cc
6 // reconnectMode = 6 -> calls SCI in BeamRemnants.cc::addOld()
7 // to match the calls of default CR
8 else if (reconnectMode == 5 || reconnectMode == 6)
9 return reconnectSCI_XX(event, iFirst);

Listing C.4: Modifications on ColourReconnection.cc

Finally, when setting the program, the following settings need to be added so that
PYTHIA correctly sets up.

1 // Set parameter in program
2 pythia.settings.mode("ColourReconnection:mode", CRMode, true);
3 pythia.readString("Main:spareParm1 = "+to_string(p0Value));

Listing C.5: Setup in main program.
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