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Abstract
In this thesis two minimal models in the framework of Higgs portal dark matter are
presented. The fermionic dark matter model adds two new fields to the Standard
Model. One Majorana fermion, which is the stable dark matter, thanks to a new Z2

symmetry, and a real scalar. The allowed parameter space is identified and character-
ized by imposing the relic density constraint on the entire parameter range, the impact
of current and future direct detection experiments are incorporated as well as indirect
detection feasibility.

The two-component dark matter model can be seen as an extension of the singlet
fermionic dark matter model with a singlet scalar. As before an additional symmetry
stabilizes the lighter particle, while the heavier is stable by an accidental symmetry. So
within this model two dark matter species arise, one fermion and one scalar, enabling
one of the most important new features: dark matter conversion. The conversion from
one dark matter species to the other can have a large impact on the relic density. As a
last point the direct detection prospects in the two-component model are studied.
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1. Introduction

Curiosity accompanies every step of mankind from the beginning on, we never cease
to wonder and question the world around us. The desire to understand, the wish to
gain more information is crucial to our lives. Ever since, the puzzle, how to describe
the world attracted a lot of people. In a particle physics context, the Standard Model
is a rather good description up to some energy scale, even though it has shortcomings.
Cosmological and astrophysical observations convey the fact, that most of the Universe
is not made of ordinary visible matter, but of some new kind of matter, which is not
described in the Standard Model. As this new matter, which is only perceivable by its
gravitational effects, does not emit any light, it is called dark matter. If dark matter
is assumed to be a particle, it has to be neutral, colorless and stable compared to the
lifetime of the Universe in oder to be consistent with all current observations.
The Standard Model describes all known particles, the quarks, leptons and the Higgs
boson as well as the gauge bosons which are associated with the weak, strong and
electromagnetic force, but there is no suitable dark matter particle among them. A
well motivated class of models for dark matter focuses on weakly interacting particles
(WIMPs), which are then the dark matter. WIMPs are produced as a thermal relic in
the early Universe and with their weak scale interaction cross section they are very likely
to match the currently observed relic density of dark matter. The evolution of the WIMP
number density is described by the Boltzmann equation and enables a broad numerical
investigation of WIMP models. As there is no suitable WIMP in the Standard Model,
new theories are needed to explain dark matter. Some, like Supersymmetry, are complex
and contain a somewhat natural dark matter candidate, while they aim at alleviating
a shortcoming of the Standard Model other than dark matter. In other theories, the
Standard Model is only extended by few fields in order to provide dark matter. Two
such minimal extensions are presented and analyzed in this work, the fermionic singlet
model, in which dark matter is an additional fermion, and the two-component dark
matter model, in which a new scalar and a fermion act as dark matter, so somehow
it can be seen as the extension of the singlet fermionic model with singlet scalar dark
matter. To test these models there are in general three complementary types of dark
matter searches, direct detection, indirect detection and collider searches, which can put
constraints on the viable dark matter models. Hence the singlet fermionic model and
the two-component model are analyzed regarding relic density, direct detection cross
section and probable indirect detection bounds.
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The rest of this work organizes as follows, first dark matter is introduced in section 2,
evidence for dark matter and several WIMP models are described, as well as the WIMP
relic density and the different techniques for dark matter detection as direct detection,
indirect detection and collider searches. Then the main part of this work starts in
section 3. The fermionic singlet model is described in detail and important aspects of
its phenomenology are pointed out. Afterwards a numerical study is presented in which
the viable regions in the parameter space consistent with current bounds are determined,
followed by detection prospects regarding both direct and indirect detection. After that,
in section 4 the two-component dark matter model is presented and analyzed in detail.
Its phenomenology is investigated in numerical studies and conclusively a set of five
parameter space points is chosen to illustrate future detection prospects.
In collaboration with Carlos Yaguna and Michael Klasen the course of this work led

to the publication of two papers [1, 2], each paper is directed at the analysis of one of
the two dark matter models which are presented here.
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2. Dark Matter

Surprisingly, little is known about the different components of the Universe, yet its
composition is determined with high precision. Cosmological discoveries have revealed
approximately 5 % of the Universe’s energy content consists of visible matter, the rest
remains undetected yet. Precision measurements of the PLANCK [23] space-telescope
point to the fact that the remaining 95 % consist of basically two-components. One of
these two is matter, raising the matter content of the Universe to nearly 25%, the other
is dark energy.

This – since not observed – dark matter is supposed to be non-relativistic and to
interact only gravitationally or very weakly with ordinary matter. As dark matters
nature is not revealed yet, it has been the focus of many scientific works over the past
few years.

2.1. Evidence for Dark Matter

Evidence for dark matter is found on all scales by astrophysical and cosmological obser-
vations. One of the earliest observations was made by Fritz Zwicky in 1933 [17]. Zwicky
measured the velocity dispersion of galaxies in the Coma cluster. A comparison between
the velocities and the amount of luminous matter in the cluster gives a first clue that
there is more mass than visible. If the galaxies in the cluster are gravitationally bound,
the viral theorem should apply, which links the velocity of the bound galaxies to the
gravitational potential of the cluster. But the measured velocities were too high for
the galaxies to be bound by the potential. In order to fix that, the amount of mass in
the cluster has to be approximately 400 times higher than contained luminous mass [17].

Since there are plenty of indications for dark matter, only a short outline will be given
here. This comprises the observations that reveal most about this new type of matter
and its properties, as the observation of galactic rotation curves, gravitational lens-
ing, measurements of the Cosmic Microwave Background and the process of structure
formation.
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Galactic Rotation Curves

An impressive evidence for the presence of dark matter in our Universe comes from the
analysis of galactic rotation curves. In a galaxy most of the luminous mass is gathered
in the galactic center. According to Newtonian mechanics, for a star orbiting the center,
the centrifugal force equals gravitational force. Thus to keep the star in its orbit

v =

√
GM(r)

r
(2.1)

is required, where v is the star’s velocity, which could be measured by the redshift of
star spectra, G is the gravitational constant, r is the distance to the center and M(r)
is the mass enclosed from the center up to r. By assuming a spherical mass density
distribution ρ(r) for matter - as supposed for the distribution of luminous matter – the
enclosed mass is

M(r) = 4π

∫ r

0

r′2ρ(r′)dr′ . (2.2)

In regions far from the center most of the mass is already contained within the radius
r. This results in M(r) being nearly independent of r. Accordingly (2.1) simplifies to

v ∝ 1√
r
. (2.3)

One would expect that the rotation velocity drops in the far out regions, instead it is
found to be constant.

In the 1960’s and 1970’s Vera Rubin and Kent Ford Jr. measured the rotation ve-
locities of the Andromeda galaxy [15] by examining HII regions, consisting of ionized
hydrogen gas, which emit light. A lot of other works on galactic rotation curves followed
[16, 93, 94]. In 1985 the spiral galaxy NGC 3198 in the constellation Ursa Major was
observed by van Albada et al. [16]. As pointed out before, the circular velocities should
decrease when going to larger distances r, similar to the movement of planets in our
solar system. Instead there is a strong discrepancy between the expected 1√

r
behavior

and the actual measured rotation curve which is shown in figure (2.1).
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Figure 2.1.: Rotation curve of NGC 3198 indicating the presence of additional dark
matter. Taken from [16].

The observed curve remains flat, even far outside the galactic center. This behavior
can be modeled by adding a spherical halo of non-visible matter to the luminous mass
distribution. The halo is supposed to have a mass density scaling like r−2 to match the
experimental results. Another possible explanation for the deviation is an alteration of
Newton’s gravity laws at small accelerations, but other observations do not support this
theory.

Gravitational Lensing

Light from distant luminous objects can be deflected by strong gravitational fields of
matter distributions, for example galaxies or galaxy clusters. This deflection will cause
an observer to see multiple or distorted images of the source as shown in figure 2.2,
where the Abell cluster distorts the image of objects behind. Based on the observed
alteration of the images, the gravitational mass along the line of sight can be deduced.
The amount of visible matter in a given cluster can be determined by X-ray spec-

troscopy. Comparing the results from lensing and X-ray signals reveals that in most
cases the amount of gravitational mass is much larger than the visible mass. This
discrepancy is a strong hint to dark matter.
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Figure 2.2.: Distorted images due to gravitational lensing caused by the Abell galaxy
cluster [11].

Using both techniques for mass measurements can give even more insight to the
nature of dark matter. One famous example is the so called Bullet cluster [5]. The
Bullet cluster or technically 1E 0657-558 is an ongoing cluster merger consisting of
two smaller galaxy clusters which collided recently, which means on cosmological scales
approximately 100 million years ago. A galaxy cluster consists of stars and galaxies,
which are accumulated mainly at the cluster center. Intergalactic gas clouds fill up the
space in between. If a cluster contained visible matter only, most of its mass would be
comprised in interstellar gas. When two clusters collide, stars and galaxies are assumed
to behave like collisionless objects and cross one another unaffected. Whereas the hot
diffuse gas clouds interact electromagnetically. The clouds experience ram pressure and
are ripped away from the galactic center. In fact, this can be observed in the Bullet
cluster which is shown in figure 2.3. It incorporates a bigger main cluster, seen on the
left, which was recently crossed by a smaller subcluster, seen more to the right. The
image is overlaid with pink and blue colored regions, the pink regions are determined
by X-ray spectroscopy to hold most of the intergalactic gas, whereas the blue regions
contain the dominant matter contributions as determined by gravitational lensing. The
pink regions with the intergalactic gas do not longer coincide with the visible centers
of the clusters at which most stars and galaxies are gathered. The diffuse intergalactic
clouds interacting with each other are now in between the two former centers. The
smaller cluster to the left shows a bullet shaped region of gas, which is a shock front due
to the recent collision and gave the cluster its name. Contrary to the expectation, the
blue regions with the largest matter fraction still overlap strongly with the main amount
of galaxies and stars at the former cluster centers. Other than expected without dark
matter, most of the mass is not gathered in the gas clouds. The discrepancy points to
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Figure 2.3.: Picture of X-ray emission, gravitational lensing and visible spectrum for the
Bullet cluster [13].

dark matter being collisionless and mostly gravitationally interacting and also it makes
up for most of the mass in such a system.

Cosmic Microwave Background Measurements

The cosmic microwave background (CMB) is a relic from the early Universe ,when
photons and decoupled from baryons. Today it is a nearly uniform background of
photons with a black body spectrum at a temperature of 2.7 K (see figure 2.4).

At the time where the Universe is approximately 380 000 years old, its high temper-
ature around ≈ 3000 K causes all matter to be ionized. Therefore photons are not free
streaming, but interacting electromagnetically with the charged ions. As the Universe
expands and cools down, recombination starts, neutral elements form and the equilib-
rium interactions between photons and matter stop. After the photons experience the
freeze out from former equilibrium, the ongoing expansion of the Universe effectively
causes a red shift, thus the photon wavelength is nowadays on the microwave scale.
Measurements of the CMB with very high precision were done by the satellites Wilkin-
son Microwave Anisotropy Probe (WMAP)[8] and PLANCK [30]. The surveys revealed
a highly uniform distribution of photons, yet there are small fluctuations on a scale of
60µK as shown in figure 2.5.

7



Figure 2.4.: Spectrum of the CMB showing behavior like a black body radiator at 2.7
K. The image is taken from [7].

In the early Universe over and under dense regions were present, which are caused
by variations in energy density distribution. Photons leaving over dense regions get
red shifted due to the gravitational potential they have to overcome, whereas photons
in under dense regions undergo blue shifting. This effect of wavelength alterations by
the gravitational potentials is called Sachs-Wolfe effect [31]. So, the anisotropies in the
CMB directly link to density fluctuations in the early Universe [32].

The angular power spectrum of the temperature fluctuations in the PLANCK data
shown in figure 2.5 reveals more about the processes at the time of recombination. The
power spectrum shows a big peak around a multipole moment l of approximately 200
which is followed by two considerably smaller peaks. These peaks correspond to the
effects of baryon acoustic oscillations. In the time before freeze out the baryon-photon
plasma is in equilibrium. Over dense regions in the matter distribution start to attract
more mass due to the higher gravitational potential. Counteracting to this attractive
gravitational force is the radiation pressure of the photons which couple to the baryons
in the hot plasma. The two opposing forces result in density oscillating baryon clouds.
The first peak in the power spectrum corresponds to the largest matter cloud that
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Figure 2.5.: Anisotropies of the CMB measured by PLANCK taken from [30].

could oscillate once before the photons freeze out. The position of this first peak reveals
that the the Universe is flat. The smallness of the following peaks emanates from
Silk damping [76], as smaller objects have too little gravitational mass, so radiation
pressure drives these structures away. The fraction of peak heights with respect to
the first acoustic peak, especially for the third peak, contains information about the
ratio of baryons to the total amount of matter, as only baryons couple to photons.
The discrepancy between the two matter contributions constitutes of non-baryonic dark
matter. A fit containing all important cosmological parameters is applied to the power
spectrum in order to determine the quantities, see figure 2.6, while assuming a ΛCDM
model, a cosmological model with non-relativistic dark matter and dark energy[33].
The entire density Ωtot consists of the baryon density ΩB, the dark matter density

ΩDM and the amount of dark energy ΩDE,

Ωtot = ΩB + ΩDM + ΩDE. (2.4)

The results of the PLANCK measurements within a 1σ error are

ΩBh
2 = 0.02264 ± 0.00050 as well as ΩDMh

2 = 0.1138 ± 0.0045, (2.5)

which are given in units of the critical density

ρc =
3H2

8πG
(2.6)
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Figure 2.6.: Angular power spectrum of the CMB with best fit from ΛCDM model [33].

with the Hubble constant H. The relic density Ω in general is linked to the critical
density ρc by

Ω =
ρ

ρc
. (2.7)

The Hubble constant H is typically given by

H = h · 100
km

s Mpc
. (2.8)

The dependence of the PLANCK results on H is indicated by the h2 terms in (2.5).
This outcome emphasizes the presence of a non-baryonic dark matter component, which
mostly interacts gravitationally.
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Figure 2.7.: Large scale structures in the Universe measured by the Galaxy Redshift
Survey (blue) and simulated by the Millennium Simulation (red). Image
taken from [36]

Structure Formation

As explained in the previous paragraph, density fluctuations in the early Universe could
grow by attracting more and more mass due to gravitational effects. It is believed that
dark matter clumps first and then baryonic matter could accumulate in the dark matter
gravitational wells, small structures would grow ever larger over time attracting more
and more matter as their gravitational potential grows. Today’s large scale structures
formed from such small deviations and are observed by satellites as in the Galactic
Redshift Survey [34]. N-body simulations such as the Millennium simulation [35] emu-
late structure formation and compare the outcome to the survey observations with the
amount of dark matter, which has to be non-relativistic (cold) at the time before re-
combination, as an important input parameter to match both results. Figure 2.7 shows
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the structures measured by the Galaxy Redshift Survey (blue) and the outcome of the
Millennium simulation (red). Both show similar large structure filaments with a lot of
voids in between, the model of cold dark matter reproduces the observations rather well.

2.2. Dark Matter Candidates

The evidence reveals some properties of dark matter. It must be a non-baryonic particle
with a specific relic density, as seen from PLANCK and the baryon acoustic oscillation.
In order to be non-visible, it should be electrically neutral, colorless and collisionless.
And as it is still present today, dark matter is stable or has at least a lifetime larger than
the age of the Universe. Unfortunately it is not discovered yet, its nature is not revealed.

In the following, first different dark matter candidates are presented, then in the next
section the production of WIMPs in the early Universe is described. The first part of
this section deals with theories which are motivated by offsetting the Standard Model
shortcomings. The second part presents models which extend the Standard Model in a
minimal way.

There is a successful model describing the fundamental particles and their interac-
tions in a quantum field theory approach, the Standard Model. It includes three of the
four fundamental forces, the electromagnetic, the weak and the strong force, which are
mediated by the associated gauge bosons. As the Standard Model is a gauge theory,
its Lagrangian is invariant under the local gauge transformations. In this gauge invari-
ant Lagrangian the particle content is described, the gauge bosons, the three families
of quarks and leptons. In particular it contains a particle that is electrically neutral,
colorless and interacts weakly: the neutrino ν. It would make the perfect dark matter
candidate, but neutrinos were relativistic in the early Universe due to their small mass.
Structure formation however needs some cold, non-relativistic dark matter. Also the
neutrino abundance is way to little to account for the observed dark matter.

The Standard Model has more shortcomings than the explanation of dark matter[4].
There is a large variety of scales, as there is no explanation why the electroweak force
is so much stronger than gravity. This so called hierarchy problem results in having
a Higgs mass (≈ 126 GeV) much smaller than the Planck scale (≈ 1019 GeV). As the
bare Higgs mass receives large radiative corrections, quadratic divergences occur. In
principle it is possible to remove the divergences by renormalizing the masses, but this
would require an unnatural amount of fine tuning. Also the Standard Model does
neither contain gravity, nor does it give mass to neutrinos. There is no explanation in
the Standard Model for the matter-antimatter asymmetry in the Universe. In addition
to this, there is the strong CP problem: In principle the Standard Model Lagrangian
should contain terms which break CP symmetry in strong interactions, but no CP
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violation is experimentally observed. This non-observation would need a huge amount
of fine tuning which appears unnatural. The Standard Model probably can be seen as an
effective theory, which is a low energy approximation of a larger symmetry. In general
the Standard Model agrees well with most electroweak precision test. If new particles
are introduced, they should not interfere with these tests. Therefore new symmetries
are needed or the new particle is so heavy that tree level contributions are suppressed
and most contributions do not appear below loop level. New theories are built to handle
the shortcomings, some of them, like Supersymmetry, address problems of the Standard
Model and automatically contain a somewhat natural dark matter candidates. Others
are solely designed to solve the dark matter issue and extend the Standard Model by a
few particles only and eventually add new symmetries.
A lot of models feature a well motivated class of dark matter candidates, which are

weakly interacting massive particles (WIMPs). They have weak scale annihilation cross
sections around 3×10−26cm3s−1 and masses of order hundreds of GeV in order to lead
to the correct relic density, if thermally produced. This coincidence is often referred to
as the ’WIMP miracle’.

2.2.1. Dark Matter in Larger Theories

Supersymmetric Dark Matter

Supersymmetry [4, 37, 38, 39] is a widely favored theory not only for its explanation
of dark matter but also for its intrinsic elegance and the disposal of some Standard
Model problems. Supersymmetry (SUSY) extends the Standard Model by adding a
new symmetry between bosons and fermions in order to alleviate the hierarchy prob-
lem, as boson and fermion contributions enter the Higgs mass calculation with different
signs. SUSY leaves internal gauge symmetries unchanged, therefore no additional forces
appear. Additionally gauge coupling unification at high energies can be achieved with
SUSY. If SUSY were an exact symmetry, each particle and its superpartner would share
the same quantum numbers, except spin, and they would have the same mass. Since
there is no observation of light SUSY particles in collider experiments [77], [78], SUSY
itself cannot be exact, it is a broken symmetry.

In the MSSM [37, 4], the simples supersymmetric extension of the Standard Model,
every Standard Model fermion obtains one bosonic superpartner, every boson is en-
tangled with a SUSY fermion, at the minimum doubling the particle content of the
Standard Model. Additionally in SUSY at least one extra Higgs doublet is needed to
generate top and down quark masses and to avoid gauge anomalies [79].

As the same mechanism as in the Standard Model [80] accounts for spontaneous
electroweak symmetry breaking, both SUSY Higgs doublets acquire vacuum expectation
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values v1 and v2. Their initial eight degrees of freedom are reduced to five by unitary
gauge transformation. The three missing degrees of freedom are transformed to give
mass to the W and Z bosons. Each of the remaining degrees of freedom is manifest
as a physical particle: two charged Higgs bosons H±, one heavy and one light neutral
scalar h0, H0 and a neutral pseudoscalar A0.
To render the proton stable, a new discrete symmetry, R-parity, is needed. The R

quantum number is

R = (−1)3B+L+2S (2.9)

with the baryon and lepton numbers B and L and spin S. Thus Standard Model
particles, including all of the new Higgs sector, have R-parity 1 whereas SUSY partners
have R-parity -1. Since B and L are additively conserved, R parity is multiplicatively
conserved. This implies R-odd particles can only enter as pairs in production and
annihilation processes. Hence the lightest R-odd, supersymmetric particle (LSP) is
stable. The LSP then is a natural dark matter candidate and it is most common the
lightest neutralino χ. It is a linear combination of the wino W̃ 3 (the partner of the third
component of the SU(2)L triplet of weak gauge bosons), the U(1) bino B̃ and the two
Higgsinos H̃1, H̃2 (the SUSY partners of the neutral Higgs components). So

χ = αB̃ + βW̃ 3 + γH̃1 + δH̃2. (2.10)

Neutralino LSPs as dark matter has been investigated in a lot of different works [37,
38, 39, 4]. The LSP as dark matter has strong model dependent features regarding
its composition and therefore its interaction with other particles. This reflects in the
corresponding values of relic density and cross sections for direct and indirect detection.
The rich phenomenology of supersymmetric models is due to the large amount of free
parameters and the wide range of parameter space.

The LSP can also be the superpartner of a neutrino, a sneutrino, which is excluded by
direct detection experiments to be the dark matter candidate. The LSP could also be
a gravitino, the SUSY partner of a graviton, the hypothetical gauge bosons of gravity,
which is not a WIMP. Also electrically charged LSPs are experimentally excluded.

Kaluza-Klein Dark Matter

An attempt to unify electromagnetism, gravity and eventually strong and weak force
is done in Kaluza-Klein (KK) theories [4, 43, 44, 45]. In these theories the Standard
Model is related to a 3+1 dimensional surface embedded in a higher dimensional space.
This space can have either flat or warped geometry, which influences particle properties.
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The n extra dimensions of the higher space are compactified into a volume Rn.

The original theory by Kaluza and Klein [41, 42] proposes one extra spatial dimen-
sion. This fifth dimension is curled up in a small circle. It can be seen similar to a
straw. From a distance it looks like a one dimensional line, but coming close, the cir-
cular dimension becomes visible, revealing a cylindrical surface. Particles moving in
the direction of the curled up dimension will end after a short length at their start-
ing point. This length is classified as the size R of the extra dimension. At low
energies no extra dimension is visible. It will show up at an energy scale inversely
related to its size R. Also a new scalar degree of freedom along the new dimen-
sion shows up, the radion. It is as well related to the size of the extra dimension.
In principle it is possible to replace the circular U(1) symmetry by any Lie group. The
underlying space is not necessarily the four dimensional space time but can be any Rie-
mannian manifold or even a non-commutative space.

Naturally one expects standing waves along the extra dimensions with quantized in-
variant masses. The set of all possible excitations of one multidimensional field, which
can propagate through extra dimensions, is called a Kaluza-Klein tower. TheKK towers
are manifest as four dimensional particles with increasing masses. The mass spectrum
however is model dependent. At low energies only the corresponding massless, on the
scale 1/R, states are produced. The lightest Kaluza-Klein particle (LKP) corresponds
to the smallest excitation. The non-observation of KK excitations in collider experi-
ments sets upper limits on the scale R.

In order to provide a dark matter candidate among the KK excitations, a stabilizing
symmetry is needed. There is indeed a discrete symmetry, Kaluza-Klein parity. It
originates from conserved momenta along extra dimensions and is a remnant of a larger
symmetry coming from the geometry of the higher dimensional space. KK parity
remains unbroken in the case of universal extra dimensions, rendering the LKP stable.
If l is the quantum number of the extra dimension corresponding to the excitations,
l = 0 is for Standard Model particles and l = 1 characterizes the LKP. KK parity is
given by (-1)l, hence the LKP only enters in pairs to interactions with the Standard
Model particles. The nature of the LKP itself is model dependent. For example it can be
the lightest KK excitation of the hypercharge boson B1 or the excitation of Z or Higgs
bosons. If R is of order TeV−1 and the LKP is neutral with weak scale interactions, it
can be a WIMP.

2.2.2. Minimal Dark Matter

Minimal dark matter models extend the Standard Model by few additional fields and
probably a stabilizing symmetry. In the simplest model, dark matter is a real scalar
[6], but one can also add a fermion, as well as extending the Standard Model not only
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by one but by more new fields [2, 49, 50]. One example is the singlet fermionic model
analyzed in this thesis. Also, minimal models can contain symmetries like Z2 symmetries
or for example a Z3 symmetry or in general Zn symmetries [51] which leads to more
complicated models. As the singlet fermionic model and the two-component dark matter
model are analyzed in this thesis, detailed information on the specific models can be
found in the corresponding sections 3 and 4, so the following paragraphs only present a
short overview.

Singlet Scalar Dark Matter

A new scalar field S is introduced in the Standard Model in order to account for the
dark matter in the Universe. In the simplest of these models the scalar field is real
and a singlet under the gauge transformation, thus neutral. To make it stable dark
matter, a Z2 symmetry (φ → ±φ) is imposed, under which all Standard Model parti-
cles are even while S is odd. The only renormalizable interaction between S and the
Standard Model particles is mediated by the Higgs and due to the Z2 symmetry S
does not mix with the Higgs. As the hidden sector is only accessible by this Higgs por-
tal, dark matter interacts weakly as long as the Higgs-scalar couplings are small enough.

Adding only one scalar field and a new symmetry to the Standard Model already
creates a stable dark matter candidate within a framework which allows for easy analysis.
The phenomenology of singlet scalar dark matter with respect to relic density, detection
prospects and other aspects has been covered in great detail in some works [6, 47, 48,
66, 67, 68, 69, 70].

Fermionic Singlet Dark Matter

In the fermionic singlet model two fields are added to the Standard Model particle
content, a Majorana fermion χ and a real scalar φ, which are both singlets under the
SM gauge group. χ is odd under a new Z2 symmetry, while φ as well as all Standard
Model particles are even, hence χ is stable dark matter
The introduction of two new fields makes it possible to formulate renormalizable

interactions of the form χ̄χφ and χ̄γ5χ̄φ. Therefore this model can be see as a UV com-
pletion of the so called fermionic Higgs portal model, an effective field theory in which
the mediator φ is heavy and thus integrated out [10]. Since φ and the Standard Model
Higgs boson h are both even under the Z2 symmetry, mixing between the two occurs
after electroweak symmetry breaking. The extended Higgs sector opens a window from
the dark sector to the visible one.

Similarly to the singlet scalar model, this minimal extension of the Standard Model
is easy to handle, so it offers a rich phenomenology, which can be easily confronted with
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theoretical and experimental constraints, testing its feasibility. The model is investi-
gated in some previous works [10, 18, 19, 21, 22, 1].

2.3. The Dark Matter Relic Density

The Boltzmann equation – see [40] – describes the evolution of WIMP number density
with temperature in the early Universe.
For WIMPs with number density nχ the Boltzmann equation is

dnχ
dt

= −3Hnχ − 〈σannv〉
(
n2
χ − n2

χ,eq

)
(2.11)

where t is time and H is the Hubble parameter, angle brackets denote a thermal average,
which is explained in the appendix D. Normally one would expect statistical mechanical
factors, which differentiate between fermions and bosons, but for massive particles,
which decouple in the early Universe, these can be neglected – see [40]. The first term
in (2.11) accounts for the expansion of the Universe, the second expression describes
creation and annihilation of WIMP pairs in particle collisions. The next lines outline
how to derive an expression for the Boltzmann equation (2.11), which can be treated
numerically. As entropy is conserved,

ds
dt

= −3Hs (2.12)

is true for the entropy density s. Furthermore it is useful to introduce the abundance

Y :=
nχ
s

and a new variable x :=
Mχ

T
.

Here T is the photon temperature which can be used equally to t as a time measure in
the Universe. The Boltzmann equation (2.11) then is

dY
dx

= −〈σannv〉
(
Y 2 − Y 2

eq

)
+

1

3H

ds
dx
. (2.13)

To simplify further, the Friedmann equation

H2 =
8π

3M2
Pl
ρ (2.14)
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is used whereMPl = 1.22×1019 GeV is the Planck mass and ρ is the mass energy density
of the Universe. The relation of energy and entropy density to temperature is

ρ = π2

30
geff(T )T 4, (2.15)

s = 2π2

45
heff(T )T 3 (2.16)

with the effective degrees of freedom heff, geff of energy and entropy density. So ds
dx can

be calculated and the Boltzmann equation (2.13) leads to

dY
dx

= − 45

πMPl

−1/2 g
1/2
∗ Mχ

x2
〈σannv〉

(
Y 2 − Y 2

eq

)
(2.17)

where

g1/2
∗ :=

heff

g
1/2
eff

(
1 +

1

3

T

heff

dheff
dT

)
. (2.18)

as in [40].

Typically the Boltzmann equation (2.13) is treated numerically, since there is no
analytical solution.

micrOMEGAs[72] is a tool, which is well suited to compute relic densities. The code
utilizes a Runge-Kutta method to solve the Boltzmann equation (2.17), and provides
a high precision, even in the presence of thresholds and resonances, which are rather
important in some models. micrOMEGAs can also be used to calculate direct detection
and annihilation cross sections as well as the neutrino flux from dark matter annihila-
tion in the Sun.

For the numerical solution, one can chose the initial condition Y = Yeq at x ≈ 2 to
obtain the WIMP abundance today Y0. The relic density then is

Ωχh
2 =

Mχρ0Y0h
2

ρC
= 2.742× 108Y0Mχ

GeV
(2.19)

with the dark matter mass Mχ, the present entropy density ρ0 and the critical density
ρC .
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Figure 2.8.: Evolution of abundances Y and equilibrium abundance Yeq with respect to
x for increasing values of 〈σannv〉 from top to bottom.

Figure 2.8 shows the evolution of the WIMP abundance Y (colored solid lines) as a
function of x for different values of 〈σannv〉, which increases from top to bottom. The
equilibrium value Yeq is shown as a solid line .
In the early Universe, the WIMPs are in equilibrium with the hot plasma, thus

annihilation and creation processes equally take place in particle collisions. As a result
the WIMP abundance follows the equilibrium distribution. The Universe cools down and
the temperature decreases, so WIMP creation becomes suppressed by the Boltzmann
factor e−Mχ/T , hence the WIMP density is decreased as annihilation processes are more
abundant than WIMP creation. As the Universe not only cools but also expands, the
expansion rate 3H becomes larger than the common annihilation rate, thus the mean
free path of the WIMPs becomes larger than the size of the Universe. After this freeze-
out the WIMP number density per comoving volume element stays constant. The exact
freeze-out temperature depends on the WIMP annihilation cross section. The higher
the cross section is, the longer the particles annihilate and the smaller the relic density
Ωχh

2. If the WIMP relic density is smaller than the value measured by PLANCK [30],
the WIMP is not particularly excluded as dark matter, but however, it cannot account
for the entire dark matter, there has to be another contribution
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2.4. Dark Matter Searches

Figure 2.9.: Dark matter (DM) interaction with Standard Model (SM) particles provid-
ing different channels for searches, taken from [81].

Despite the huge variety of evidence and models for dark matter, it is not clear how
it is realized in nature, hence many experiments are set up to look for this new kind
of matter. Basically there are three kinds of experiments searching for dark matter
at the moment: direct, indirect and collider experiments. All focus on the small non-
gravitational interaction of dark matter with ordinary matter, as shown in figure 2.9.
Direct detection aims at the interaction between dark matter and a given detector
material. This field contains a huge variety of experimental techniques, setting strongest
limits on dark matter parameters. Indirect detection aims at observing signals from dark
matter annihilation. There are several annihilation products which might be more or
less suited to give rise to a noticeable signal. In particle colliders one can search for
the signature of pair production of dark matter when colliding two particles at high
energies. It is unlikely that collider experiments will claim a discovery of dark matter,
but they can put limits on the parameter space. All three kinds of experiments are
complementary, so a signal in one type can be confirmed or falsified by the others. The
different detection approaches are described in more detail in the following paragraphs.
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2.4.1. Direct Detection

Figure 2.10.: The three channels for dark matter nucleus interactions including specific
experiments which use the specific channels, taken from [82].

When the Sun orbits around the galactic center, it passes through the dark matter
distribution with a given velocity, hence there is always a dark matter flux through the
Earth. Direct detection experiments aim at this flux. When WIMPs hit the target
material, they can interact with its nuclei and produce a nuclear recoil. There are two
possible ways of WIMP-nucleon coupling, a spin-independent interaction, as WIMPs
couple to mass, and probably a spin-dependent interaction, as WIMPs could also couple
to spins. In a spin-independent collision, the WIMP couples coherently to the nucleus,
the A nucleons in the nucleus all contribute to the scattering process, thus the total
cross section is proportional to A2. In a spin-dependent event, paired nucleons do not
contribute to the scattering, only the spins of free unpaired nucleons add up. In order
to probe this, the target material has to contain odd isotopes.
There are three basic signals, as shown in figure 2.10, that can be induced by WIMP
nucleon scattering: charge, light and heat. The interaction can ionize the material and
therefore produce charges, light can be emitted in scintillation processes and heat can

21



originate from the deposited energy. If the material is a suitable solid state, this can give
rise to phonons. If an experiment uses two of the signatures, it is easier to differentiate
whether an event is a dark matter induced nuclear recoil or an electron recoil caused
by another interaction. Currently there are three main types of detectors: cryogenic
detectors, noble liquid detectors, and super heated bubble chambers.

Cryogenic Detectors

Experiments like CRESST [54] or CDMS [55] use ultra-cool germanium or silicon crys-
tals in the milli-Kelvin temperature range. When a WIMP hits these crystals, the
temperature change creates phonons, which propagate in the crystal. The rise time of
the phonons and the pulse shape allow to reconstruct the original event position within
the detector. This is a nice feature for background suppression, as it is possible that nu-
clear recoils occur due to neutrons. These events are most likely to happen close to the
detector surface, since neutrons cannot penetrate deep before being stopped. Another
accessible channel is ionization from the nuclear recoil, allowing a good discrimination
between nuclear and electronic recoils.

Noble Liquid Detectors

XENON [24], LUX[26] and other noble liquid detectors use a large volume of cooled
noble liquid or a dual phase approach with noble gas. A WIMP interacting with the
cooled liquid can lead to ionization and scintillation. This dual channel read out allows
for good event discrimination by the charge to light ratio, as the energy deposited per
photon differs for electronic and nuclear recoils. These kinds of detectors also allow for
good position reconstruction, thus the background can be reduced by looking at the
inner volume only, for the same reason as for cryogenic detectors.

Superheated Gas Detectors

Detectors like PICASSO[56] work in a similar way to bubble chambers. They are filled
with superheated gas, which undergoes a phase transition when a recoil deposits en-
ergy. The temperature and pressure variations give rise to bubbles and allow for event
discrimination.

All direct detection experiments have to deal with a large background which needs
to be reduced as much as possible, thus the detector material has to be non-radio
active. Also most detectors are surrounded by heavy shielding and located underground
to eradicate cosmic rays. Fiducializing the volume, as explained before, lowers the
background further. It is possible to avail an active veto to reject multiple scattering
events, which are most likely not caused by dark matter. If the sensitivity of future
experiments continues to increase, at some point the background neutrinos will be visible
in the detectors. This is a background which cannot be alleviated.
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Figure 2.11.: Exclusion curves from direct detection experiments, data taken from [90,
26].

Figure 2.11 shows the current bounds and the expected sensitivities on the spin-
independent cross section as a function of dark matter mass. The lines mark the sen-
sitivity of the labeled experiments. Currently leading on the field is LUX (green line).
XENON100 (red line) has the second best sensitivity. Since there has been no discov-
ery yet, all parameters above the curves are excluded. Future experiments are under
construction, as XENON1T[25] and LZ [91], which work with the same principle as
XENON100 but are scaled up to contain about 1 ton of Xenon ore more in an active
volume. The goal is to increase sensitivity in order to probe more and more of the pa-
rameter space. The expected reach of XENON1T (blue line) is also shown in figure 2.11.

2.4.2. Indirect Detection

Indirect detection experiments like FERMI-Lat[57], PAMELA[58] or IceCube[27] search
for the signature of dark matter annihilating in the Universe. In order to produce a
feasible signal, the annihilation products need to be detectable and stable enough to
reach the detector, such as photons, neutrinos and antimatter. Unstable particles as
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the W and Z bosons can produce stable detectable particles in subsequent decays. In
order to have an observable signature from dark matter annihilation, it is favored to
focus on regions with an enhanced dark matter density such as the Galactic center or
the Sun. In the following the main messengers for indirect detection are described.

Figure 2.12.: The plot shows the sensitivity of different experiments for the muon flux
from solar neutrinos [27].

Photons

For photons at such high energies, as expected for WIMP annihilation, there is only
little deflection by charged particles and scattering off of background photons. So they
propagate nearly free in the Universe. Unfortunately the coupling of dark matter to
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photons is highly suppressed, thus the expected signal is small. The methods for γ-ray
detection are well engineered, but there is a rich background for photons in the Universe,
which makes signal identification rather complicated. Even if a signal looks like dark
matter, the gamma-rays could come from a not yet understood astrophysical source.
Present experiments like Fermi-LAT [57] have made significant progress in this field
and have started to probe the parameter space consistent with WIMP dark matter.

Antimatter

Space based detectors are used to look for antimatter signals. WIMP annihilation often
favors the production of positrons and anti-protons. Since antiparticles are charged,
they undergo diffusion and scatter multiply while traveling through the intergalactic
medium. There is no back-tracing to a specific source, still it is possible to extract
antimatter signals from cosmic rays with spaceborn experiments such as PAMELA [58]
and AMS-02 [92].

Neutrinos

It is more difficult to detect neutrinos, but they travel straight from their origin nearly
unaffected by the medium in between, only the neutrino flavor can be affected by neu-
trino oscillation. Fortunately, most of the background neutrinos have energies way below
the expected signal from WIMP annihilation. This makes the searches with neutrino
telescopes as IceCube [27] promising, as well as the fact that a lot of Standard Model
particle decays feature neutrinos and subsequent decays are likely to produce a neu-
trino signal. Figure 2.12 combines the current sensitivity with respect to muon flux,
which comes from neutrinos from the Sun interacting with the target material, of the
IceCube[27, 29] neutrino telescope with the reach of other experiments.

2.4.3. Collider Searches

Particle colliders such as the LHC at CERN [4, 84, 85] may offer insight into the dark
matter nature. By not observing for example the Higgs decaying to dark matter as
favored in the Higgs portal dark matter models, bounds on the couplings and mass of
dark matter are obtained [59]. In addition one can also search for the direct production of
dark matter particles. Once produced in collision the dark matter particles simply travel
through the detector without interacting. Thus the typical signature accompanying dark
matter production is missing energy. To trigger the detector, however, another visible
particle must be present. Monojet searches, for example, analyze the pair production
of dark matter particles accompanied by a gluon, giving rise to a single jet. The limits
from monojet studies are included in figure 2.13.
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Figure 2.13.: Recent bounds on dark matter nucleon cross sections including collider
searches. Image taken from [60]
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3. Fermionic Singlet Dark Matter

The fermionic singlet model adds two new fields to the Standard Model particle con-
tent. One Majorana fermion χ, which is the dark matter, and one real scalar φ. The
Lagrangian for χ includes all renormalizable interactions between χ and φ. It is

L = −1

2
(Mχχχ+ gsφχχ+ gpφχγ5χ) (3.1)

whereMχ is the mass of the fermion, gs is the scalar coupling, providing parity conserv-
ing interactions, and gp is the pseudo-scalar coupling, giving rise to parity violation.
A new Z2 symmetry is introduced, which is similar to R-parity in SUSY, to render χ

stable, as it is odd under the Z2, whereas φ and all other Standard Model particles are
even. The scalar potential in this framework is

−V (φ,H) =µ2
H

(
H†H

)
+ λH

(
H†H

)2 −
µ2
ϕ

2
φ2 +

λϕ
4
φ4+

λ4

2
φ2
(
H†H

)
+ µ3

1φ+
µ3

3
φ3 + µφ

(
H†H

)
. (3.2)

and in the process of electroweak symmetry breaking the Higgs boson acquires a vacuum
expectation value v, analogous to the symmetry breaking mechanism in the Standard
Model [80]. In principle φ could obtain a vacuum expectation value as well, but it is
possible to shift the fields by an appropriate basis choice so that it vanishes [83]. All
transformations and derivations regarding the potential (3.2) are shown in the appendix
E. With the basis transformation only the µ term in the potential (3.2) contributes to the
mixing of φ and h, offering a simplified description of the phenomenology. Furthermore
the parameter µ1 is no longer free, but equal to µ3

1
µv2

2
. In order to bound the potential

from below, the conditions λH , λφ > 0 and λ4 > -2
√
λφλH are imposed. h and φ mix

with each other and give rise to the mass eigenstates H1 and H2 given by

H1 = h cosα + φ sinα,

H2 = φ cosα− h sinα (3.3)

where α is the mixing angle between h and φ, which is taken to be a free parameter of
the model. At the LHC a Standard Model-like Higgs was observed [86, 87, 88, 89], so
MH1 is set to 125 GeV. In order to maintain one Standard Model-like Higgs, α has to
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be small, then H1 corresponds mainly to h whereas H2 is mostly φ. To get a handle on
how well H1 fits the Standard Model expectation, the signal strength reduction factor
r1 is defined according to [10],

r1 =
σH1BrH1→X

σSMH1
BrSMH1→X

(3.4)

where σH1 is the H1 production cross section, BrH1→X is the branching ratio for H1

to any final state X and ΓH1 is the decay width of H1, all for the extended model.
A superscript SM denotes the same quantities for the Standard Model. r1 measures
the reduction in numbers of events for H1 decaying to final states X with respect to
the Standard Model. Throughout the whole analysis r1 > 0.9 is imposed. Moreover,
the focus is on the region of the parameter space where processes like H1 → χχ or
H1 → H2H2 are kinematically forbidden. In the framework of this model r1 can be
simplified to

r1 = cos4 α
ΓSM
H1

ΓH1

, (3.5)

in which ΓH1 is the total decay width of H1. So the constraints on r1 result directly in
constraints on α. Incorporating the non-observation of a second Higgs like H2 at the
LCH, the signal strength reduction factor r2 for H2, similarly defined, simplifies to

r2 = sin4 α
ΓSMH2

ΓH2

. (3.6)

It has to remain smaller than 0.1 to match the bounds. However, this constraint is
weaker than that obtained for r1.
One is left with eight free parameters in general:

Mχ,MH2 , gs, gp, α, λ4, µ3, λφ.

In the parity conversing case the requirement gp = 0 reduces the number to seven. The
parameters, except Mχ, gs and gp, are linked to the parameters in the scalar potential
as shown in the appendix E.

The fermionic singlet model was already investigated in some previous works [18, 19,
20, 21, 22]. Still this thesis features some new aspects of this model, while examining
the viable parameter regions and investigating detection prospects both for direct and
indirect detection.
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As the fermion χ is thermally produced, it achieves its relic density by a freeze-out
mechanism. In order to be a potential dark matter candidate, χ has not only have
to have the correct relic density, but its direct detection cross section has to be below
present bounds. To treat this properly, the Lagrangian is modeled in LanHep [71] and
then implemented in micrOMEGAs [72], which takes into account all resonance and
threshold effects and calculates relic density, direct detection cross sections and the
neutrino flux from dark matter annihilation in the Sun.

Regarding direct detection, the scattering of dark matter particles off nuclei is spin-
independent and takes place through the two t-channel diagrams in figure 3.1.

(a) (b)

Figure 3.1.: Feynman diagrams providing spin-independent elastic scattering of dark
matter particles off nuclei.

Thus it is mediated by the two scalars H1 and H2 and the elastic-scattering cross
section σSI for χ on a proton is given by (cf. appendix F)

σSI =
g2
s sin2 2α

4π
M2

r

(
1

M2
H1

− 1

M2
H2

)2

g2
HP, (3.7)

where Mr is the reduced mass of the dark matter proton system and

gHP =
Mp

v

[ ∑
q=u,d,s

fpq +
2

9

(
1−

∑
q=u,d,s

fpq

)]
≈ 10−3, (3.8)

where the micrOMEGAs default values have been used for the form factors fpq . As the
proton mass Mp is much larger than the dark matter mass Mχ,

Mr =
MχMp

Mχ +Mp

≈Mp. (3.9)
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is a valid approximation. Thus the cross section σSI is basically independent of Mχ and
proportional to g2

s sin2 α as sin2 2α ∝ sin2 α. Especially, the direct detection cross sec-
tion independent of gp. The annihilation rate, however, which is important for indirect
detection and the relic density, includes a term proportional to the dark matter velocity
and one term which is proportional to gp.

In a previous work [10] three options to be consistent with the latest experimental
limits for direct detection were identified. The pseudo scalar Higgs portal allows only
parity violating interactions, mediated by the term (φχ̄γ5χ) in the Lagrangian (3.1).
Hence dark matter annihilation receives a contribution which is not velocity suppressed.
So it is possible to evade direct detection, while still fulfilling the relic density constraint.
Another way is the enhancement of the annihilation cross section close to the Higgs
resonances, either for H1 or H2. This is called resonant Higgs portal. The last case is
the indirect Higgs portal, where the process χχ→ H2H2 is dominant. In this work a new
indirect Higgs portal via H1H2 is found which allows to find viable models above the
H2 resonance but below Mχ = MH2 . In addition, a detailed analysis of the parameter
space of the model and of the future prospects for detection is performed. Specifically,
the parameter space which is already excluded by XENON100 data [24] and the one
that will be probed by XENON1T [25] are identified. Finally the expected signal from
dark matter annihilation in the Sun is calculated and compared against the sensitivity
of IceCube [27]. It is found to be convenient to divide the analysis of this model into
two parts. First it starts with the parity conserving one and then one comes to the most
general case which allows for parity violation.

3.1. Parity Conserving Case gp = 0

Throughout this section only parity conserving interactions are treated, so the pseudo
scalar coupling gp is set to zero. First regions consistent with the relic density constraint
are identified, then direct detection bounds and prospects are analyzed, and finally, in-
direct detection is described.

In order to start with a short illustration, figure 3.2 shows the relic density Ωh2 (red
line) with respect to Mχ for a fixed set of parameters. The relic density constraint
Ωh2 ≈ 0.11 is shown as a black line. The relic density varies over a large spectrum from
10−3 up to 105 depending on Mχ, it is largest for small values of Mχ, at high values of
Mχ the relic density increases with mass. Starting from low masses, the relic density
decreases slightly until a large dip appears around 62.5 GeV. This corresponds to the
H1 resonance where 2Mχ = MH1 and thus the annihilation rate is enhance. Similarly
the dip at 100 GeV, which equals 1

2
MH2 , refers to the H2 resonance. The smallest

relic densities are obtained at this resonance due to a largely enhanced annihilation
rate. After the H2 resonance the relic density increases with Mχ until a steep drop
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Figure 3.2.: The relic density of χ for varying mass Mχ, while the mass of H2 is fixed
at 200 GeV, gs equals 0.1 and sinα equals 0.1. The black line is the relic
density constraint of Ωh2 ≈ 0.11.

at Mχ = 200GeV = MH2 , when the channel χχ → H2H2 opens up. In principle
the opening of the channel χχ → H1H1 could also be seen, but it is overlaid by the
resonances. For this set of parameters it is only possible to achieve the right relic density
at the resonances. This first example shows, that the relic density can vary over a large
range strongly depending on model parameters.

To investigate the viable parameter space further, a random scan was done allowing
the parameters of the model, except gp (= 0), to vary freely over the ranges given in
table 3.1. 105 models fulfilling the relic density constraint are obtained. In the following
this sample will be used to analyze in detail the phenomenology of this model.
Figure 3.3 shows all the viable models in the plane (Mχ,MH2). The figure also dis-

plays the four possible dominant annihilation final states, W+W− (blue squares), H1H1

(black stars), H1H2 (orange crosses) and H2H2 (green circles). The final states do not
necessarily feature Standard Model particles. The entire plane is filled with parameter
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Table 3.1.: Range of free parameter in the numerical investigation of the singlet
fermionic model.

Parameter Range
Mχ (50-1000) GeV
MH2 (150-1000) GeV
µ3 ±(10−4-104) GeV
gs ±π(10−4-1)
gp ±π(10−4-1)
λ4 ±π(10−4-1)
α π(10−5-1)

points, as the relic density constraint does not exclude any region of (Mχ,MH2). It is
always possible to choose the other parameters accordingly.
The red dashed line marks the H2 resonance around 2Mχ = MH2 . Below the H2

resonance, to the left of the dashed line, the annihilation channels featuring H2 are
closed and dark matter only annihilates to Standard Model particles, most common to
W+W−, but few feature H1H1 as the dominant final state. Above the H2 resonance
final states with H2 become accessible. Close to the resonance the final state H1H2

dominates, whereas for larger masses (Mχ > MH2) the major contribution is from
annihilation to H2H2. Final states featuring H2 receive contributions independent of
α, whereas all couplings of dark matter to the Standard Model particles depend on the
mixing angle α, for comparison the Feynman rules are given in the appendix C.1.
Regarding the phenomenology of the singlet fermionic model, the H2 resonance is

crucial, therefore it is called the resonance in the following sections. It is useful to clas-
sify parameter points with respect to the resonance, models with 2Mχ ≤ 0.9MH2 are
labeled below the resonance, models above the resonance are models with 2Mχ > 1.1MH2

and models featuring 0.9MH2 ≤ 2Mχ ≤ 1.1MH2 are considered on the resonance. Even
though the classification is somewhat arbitrary, it will be seen that it helps in under-
standing the phenomenology.

Figure 3.4 shows all viable models projected onto the (gs, sinα) plane. The models
are divided into three classes. Models below the resonance are displayed as blue squares,
models above the resonance as orange circles and models on the resonance are shown
as red crosses. Most models on the resonance feature sinα larger than 104 and can take
nearly any value of gs in the shown range. Notice that gs is never smaller than about
0.01. Non-resonant models mostly take values of gs smaller than 0.1, as the annihilation
cross section is proportional to g2

s , which should be around 3×10−6 cm3/s to produce
the right relic density. Most models above the resonance attribute gs larger than 0.1 and
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Figure 3.3.: Models which are conform with the relic density constraint projected on
the (Mχ,MH2) plane. The red dashed line shows the resonance condition
2Mχ = MH2 . Different symbols are used to indicate dominant annihilation
channels.

have no limit on sinα. Models below the resonance are concentrated in the upper right
corner of the plane and sinα is always larger than about 0.002. The triangular shape
of the distribution stems from the fact that the product of sinα and gs can not be very
small since the annihilation cross section into Standard Model particles is proportional
to g2

s sin2 α.
The link between the product |gs| sinα and dark matter mass is illustrated further in
figure 3.5, projecting all models onto the plane (Mχ, gs sinα) with different symbols to
mark the position of the models with respect to the resonance. The choice of symbols is
the same as in figure 3.4. Due to the chosen parameter range, models below and on the
resonance are restricted to the low mass area,Mχ cannot go above 450 GeV respectively
about 550 GeV. For models below the resonance the cross section is proportional to the
product of gs and sinα, so it cannot be smaller than about 0.001 and is largest for
small masses. For resonant models, unlike models below the resonance, the product
gs sinα can never be very large, having an upper limit of about 0.1. Otherwise, the relic
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Figure 3.4.: Models which are conform with the relic density constraint projected on the
(gs, sinα) plane. Different symbols are used to distinguish the models on,
below and above the resonance.

density would be too large because of the enhanced annihilation around the resonance
(cf. figure 3.2). Models above the resonance fill nearly the entire parameter space and
can take any value of |gs| sinα, since once the resonance is crossed, the annihilation
channels χχ→ H1H2 and χχ→ H2H2 become accessible.
The process χχ → H1H2 is particularly relevant, because it was not considered in

previous works. Three diagrams contribute to this process – see figure 3.6. In agreement
with the Feynman rules for this model (cf. appendix C.1) the first diagram (a) is
proportional to sinα, the second one (b) is suppressed by sin2 α, but the third diagram
(c) is independent of sinα and only set by the product gsλ4. Hence the independence
of α, the relic density constraint can be satisfied while still allowing small couplings.
This new kind of indirect Higgs portal with χχ→ H1H2 is presented in figure 3.7, as

all models featuring H1H2 as a dominant annihilation channel are projected onto the
plane (Mχ,|gsλ4|).
Two regions of sinα are chosen in order to highlight the dependence on the mixing

angle α. Models with a value of sinα smaller than 0.01 are marked with blue squares,
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Figure 3.5.: The regions of the plane (Mχ, gs sinα) which are conform with the relic
density are shown, with different symbols to distinguish the models on,
below and above the resonance.

models with larger values are displayed as orange crosses. For points with small values
of sinα, the contributions of the diagrams (a) and (b) shown in figure 3.6 are largely
suppressed. Hence the product of |gsλ4| is never very small, all points are concentrated
around a narrow band which covers the whole span of Mχ. As sinα takes larger values,
the suppression is relieved. The influence of the above diagrams becomes relevant,
allowing |gsλ4| to take much smaller values as indicated by the orange crosses filling the
whole plane.

3.1.1. Direct Detection Bounds and Prospects

After examining the parameter space compatible with the relic density constraint, it
is interesting to see how the viable regions are influenced by the current direct detec-
tion limits from XENON100 [24] and which parameter ranges will be probed by future
experiments like XENON1T[25].
The spin-independent direct detection cross section σSI is nearly independent of Mχ
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(a) (b) (c)

Figure 3.6.: Feynman diagrams contributing to χχ→ H1H2.

and proportional to g2
s sin2 α, see equation (3.7). Hence, direct detection constraints

can exclude extensive areas of the parameter space for this model as shown in [10, 22].
Similarly to their studies, figure 3.8 illustrates the dependence of the spin-independent
cross section σSI on the dark matter mass Mχ for two different fixed values of MH2 .

The green solid line represents the current XENON100 limit and the dashed line shows
the expected sensitivity of XENON1T. The current results from LUX would lie slightly
below the XENON100 curve. Blue squares are points for MH2 = 500 GeV whereas the
red crosses display the distribution for MH2 = 900 GeV. For both values of MH2 the
cross section clearly is suppressed at the resonance featuring a drop over six orders of
magnitude around 2Mχ = MH2 . Below the resonance all points are cumulated in a nar-
row band, since the cross section σS and the relic density both depend on sinα. Above
the resonance, the relic density receives a contribution independent of sinα originating
from the newly opened channels χχ → H1H2 and χχ → H2H2. Hence σSI can vary
over several orders of magnitude. Taking into account the bounds from the XENON100
experiment, viable models can be identified. Models above the XENON100 curve are
within the reach of the detector and thus excluded. Interestingly, non-excluded models
can even be found in regions below the resonance, for MH2 = 500 GeV they start to
occur at Mχ around 200 GeV, for MH2 = 900 GeV the first viable models are found
around 300 GeV.

A generalized version of figure 3.8 is shown in figure 3.9 where all of the 105 models
are displayed in the plane (Mχ, σSI) and different symbols are used to mark the position
of the models with respect to the resonance. Contrary to figure 3.8, MH2 is no longer
fixed but allowed to vary over the entire range given in table 3.1. The former stated
connection between the cross section σSI and the position of the model according to the
resonance made clear that there is no large suppression for models below the resonance
(blue squares). Hence all of these models are concentrated in the upper left corner, the
cross section hardly goes below 10−12 pb and the parameter range restricts Mχ to be
smaller than or equal to 450 GeV. Still some models feature cross sections small enough
to avoid the current bound (solid line), but a large part will be probed by the future
experiment XENON1T (dashed line). For models on the resonance (red crosses), the
cross section is rather suppressed as shown in the previous figures 3.8 and 3.2. Con-
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Figure 3.7.: Models featuring H1H2 as a dominant final state displayed in the plane
(Mχ, gsλ4) with different symbols to distinguish between models with sinα
smaller or lager than 0.01.

sequently, most of them are not detectable yet, but future experiments will be able to
exclude a huge portion of resonant models for the first time. Concerning models above
the resonance (orange circles), the manifestation of two new final states featuring H2

provides a contribution to the relic density which is independent of sinα. This weakens
the direct detection bound and enables values of σSI all over the plane for any given
mass Mχ. Despite this huge variety, lots of the models above the resonance will be
probed in the future.

It is useful to investigate the regions below and above the resonance separately, as
properties change drastically below or above the resonance. For example, the relic
density receives a contribution independent of sinα above the resonance, while the
cross section is determined by gs sinα for all models. So, figures 3.10 and 3.11 display
models either below or above the resonance projected onto the plane (Mχ, |gs sinα|). In
both figures blue squares mark all models currently excluded by XENON100, red crosses
denote models not yet probed but within reach of XENON1T, whereas models depicted
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Figure 3.8.: The spin-independent direct detection cross section with respect to the dark
matter mass is shown. Blue squares denoteMH2 = 500 GeV and red crosses
stand for MH2 = 900 GeV. The green solid line displays the current bound
from the XENON100 experiment, whereas the dashed line shows the ex-
pected sensitivity of XENON1T.

by green circles are able to evade future detection. All models below the resonance
are presented in figure 3.10. The three colored bands, indicating the direct detection
status, are clearly separated, there is only little overlap, as both the direct detection
cross section and the relic density are determined by gs and sinα. Models which are
already excluded by XENON100 feature the largest values of |gs sinα| down to about
0.1, while models within the reach of XENON1T have |gs sinα| ≥ 0.01. Only few
models with smallest values of |gs sinα| will not be probed in the future.
Once the resonance is crossed, the correlation between relic density and direct de-

tection is lost, new contributions independent of sinα to the annihilation cross section
appear. There is no longer a clear separation between the three detection status regions
between all models above the resonance as displayed in figure 3.11. Instead there is a
sizable overlap and a slight shift in |gs sinα| depending on the dark matter mass Mχ.
Excluded models feature |gs sinα| & 0.1 for Mχ around 100 GeV and |gs sinα| & 0.2
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Figure 3.9.: All 105 models shown in the plane (Mχ, σSI). Different symbols mark the
position with respect to the resonance, blue squares are models below the
resonance, red crosses are models on the resonance and orange crosses are
models above the resonance. The green solid line is the current bound from
XENON100 and the dashed line indicates the expected sensitivity from
XENON1T.

for Mχ at 1 TeV. XENON1T can probe models with |gs sinα| on order of magnitude
below this. Yet, a large amount of models, featuring the smallest values of |gs sinα|,
has direct detection cross sections below the expected sensitivity.

To summarize all preceding outcomes for direct detection, figure 3.12 depicts the
regions in the plane (Mχ,MH2) which are compatible with the relic density constraint,
similar to figure 3.3, including direct detection limits from XENON100.
The red shaded area displays the resonance region, models to the left are below the

resonance and models to the right are above the resonance. The different symbols
are used to distinguish dominant annihilation final states. A triangular region in the
upper left corner is completely excluded by the current limits, it features for instance
MH2 . 500 GeV for models with Mχ = 200 GeV and MH2 . 900 GeV for Mχ = 300
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Figure 3.10.: The correlation between Mχ and |gs sinα| with respect to direct detection
feasibility for models below the resonance is shown. Different symbols
mark regions within or beyond recent and future sensitivities.

GeV. Interestingly, viable models can be found even below the resonance. Starting at
Mχ about 350 GeV and higher, the non-excluded models can be found for any value
of MH2 . Still a lot of models with featuring W+W− (blue squares) as the dominant
annihilation channel are ruled out for larger masses, while only few models with H1H2

(orange crosses) and H2H2 (green circles) in the final state are excluded. Most of them
are unaffected, as processes featuring H2 receive contributions which are not suppressed
by the mixing angle α.

3.1.2. Indirect Detection

Since the parity conserving case (gp = 0) was considered, the dark matter annihilation
rate is proportional to the square of the dark matter velocity v. In the early Universe
around the freeze out v2 is approximately 1/20, so the suppression is not that strong.
Nowadays, in the galactic halo v2 is nearly 10−6 leading to a large suppression of the
annihilation cross section – see [4].
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Figure 3.11.: Models above the resonance in the plane (Mχ, |gs sinα|) classified by their
direct detection likeliness.

Figure 3.13 shows the dark matter annihilation rate nowadays σv versus the dark
matter mass Mχ while differentiating between the four main annihilation final states
identified in the previous paragraph. Since v ∝ 10−6, for WIMPs σv is naively expected
to be around 10−31 cm3s−1, which is only true for some models here, instead σv varies
over a range of about 10 orders of magnitude. Values up to 10−28cm3s−1 are reached for
models at lower masses, while much smaller values, down to 10−38cm3s−1, can be found
for arbitrary masses Mχ. In figure 3.14 all models with unexpected σv, either larger
than 10−30 cm3s−1 or smaller than 10−33 cm3s−1, are shown in order to explain these
deviations.
The dashed lines are the resonance and the thresholds involving H2: the red line is

for MH2 = 2Mχ, the purple line features MH2 = 2Mχ − MH1 and the yellow line is
MH2 = Mχ. All points on the right border of the figure are at the H1 resonance where
MH1 = 2Mχ. This includes a lot of the models with annihilation rates higher than 10−30

cm3s−1 (black stars). All other models of this type lie at the H2 resonance (red), where
MH2 = 2Mχ. This is as expected, at both resonances the dark matter can annihilate
very efficiently, enhancing the cross section. Models with σv smaller than 10−33 cm3s−1
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Figure 3.12.: The region of the plane (Mχ,MH2) which is compatible with the relic
density constraint and direct detection bounds from XENON 100 is shown.
The red shaded area displays the resonance and different symbols are used
to distinguish between the dominant final states.

(blue squares) lie either close to the resonances or the thresholds for H1H2 (purple)
and H2H2 (yellow) production. Their cross section is so suppressed, since in the early
Universe dark matter particles were energetic enough to pass the thresholds and also hit
the resonances, whereas nowadays these annihilation channels are kinematically closed.

This renders indirect detection rather unfeasible, as indirect detection with gamma
rays has just started to probe values around σv ≈ 3×10−26cm3/s for very light dark
matter [57],[61]. The expected gamma ray flux is proportional to σv, which can be
largely suppressed in this model, the same is true for antimatter annihilation signals
[62]. Thus the only chance for indirect detection in this framework is a high energetic
neutrino signal from dark matter annihilation in the Sun [63].
As the Sun moves through the galactic halo, it accumulates dark matter particles. The
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Figure 3.13.: The dark matter annihilation rate today σv is shown relative to the dark
matter mass Mχ. Different symbols distinguish between dominant annihi-
lation channels.

evolution of the number of captured particles N is described by

dN
dt

= CN − AN2 − EN (3.10)

where C is the capture rate, A describes annihilation and E takes into account the
evaporation. The capture rate C depends mostly on the nuclear recoil cross section,
whereas the annihilation rate A is proportional to the annihilation cross section. Evapo-
ration is the process of a particle acquiring enough kinetic energy in elastic recoils within
the massive object to overcome the gravitational potential, but this effect is neglected
since it requires rather large recoil cross sections. Thus the solution for the number of
captured particles with negligible evaporation is

N(t) =

√
C

A
tanh
√
CAt. (3.11)
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Figure 3.14.: Models with unusually large σv are depicted by black stars, models with
rather small σv are shown by blue squares forMχ versusMH2 . The dashed
lines are the resonance and the thresholds: red is MH2 = 2Mχ, purple
equals MH2 = 2Mχ −MH1 and yellow is MH2 = Mχ.

If the lifetime of the Sun t� ≈ 4.6×109 years is taken for t, equilibrium is reached for

√
CAt� � 1. (3.12)

With this requirement N is constant and the current annihilation rate of dark matter
in the Sun is

Γann =
1

2
AN2 =

1

2
Ctanh2

√
CAt ≈ 1

2
C. (3.13)

For a feasible neutrino signal from dark matter annihilation in the Sun it is crucial to
determine if equilibrium is reached. If that is the case, the suppression of σv becomes
irrelevant, as the annihilation rate in the Sun then only depends on the capture rate and
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thus on the direct detection cross section. Yet the accessibility of equilibrium depends
on σv.

Figure 3.15.: The equilibrium parameter is plotted versus dark matter mass. Blue
squares depict models excluded by XENON100, orange crosses are not
yet excluded models.

Whether neutrinos are produced in dark matter annihilation or not, depends on the
final states. If the main annihilation channel features H1 or H2, it is not very likely to
yield a large amount of neutrinos. TheW+

W− final state in contrast, which is dominant
mostly at lower dark matter masses, produces neutrinos in subsequent decays. For all
models, which feature the W+W− final state, the equilibrium parameter as a function
of Mχ is shown in figure 3.15. Models which are already excluded by XENON100 (blue
squares) mostly have an equilibrium parameter larger than 0.01. Models which are
beyond the reach of XENON100 (orange crosses) hardly have equilibrium parameters
larger than 0.1. Neither for excluded nor for non-excluded models is the equilibrium
parameter much larger than one. Hence equilibrium is never reached and the neutrino
flux is small as shown in figure 3.16.
Models, which are excluded by XENON100 (blue squares), feature largest fluxes up
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Figure 3.16.: The expected neutrino flux at the Earth versus dark matter mass is shown.
Blue squares are models which are already excluded by XENON100, orange
crosses are not yet probed.

to 10 neutrinos per km2 and year for small masses. All non-excluded models (orange
crosses) lie orders of magnitudes below this; at most at 10−4 neutrinos per km2 and
year. Overall the neutrino flux on Earth is small, since equilibrium is never reached in
the Sun due to the σv suppression, especially at thresholds and resonances. Thus there
is no enhanced neutrino signal from the Sun.
Regarding indirect detection in general, signals are way beyond detection feasibility.
This renders indirect detection hopeless in the parity conserving case. In the more
general case with gp 6= 0 this result changes drastically.

3.2. General Case gp 6= 0

The general case is achieved by allowing the parameter gp to be non-zero to enable
parity violating interactions as well. In this framework the dark matter annihilation
rate in the early Universe receives a new contribution which proportional to g2

p and not
velocity suppressed. In consequence indirect detection becomes more feasible. However,

46



the direct detection cross section is not altered, equation (3.7) is still valid, as all gp
contributions to it are suppressed by the square of the dark matter velocity. Thus it is
easier to achieve the correct relic density while evading direct detection.
For the following analysis a new scan was made where in addition gp was allowed to
vary freely in the same range as gs. All of the new 105 models fulfill the relic density
constraint.

3.2.1. Viable Parameter Space and Direct Detection

Figure 3.17.: The region of the parameter space (Mχ, MH2) which is compatible with
both relic density and direct detection constraints is shown. Different
symbols are used to distinguish between dominant annihilation channels
and the red hatched area depicts the resonance.

In order to identify the viable parameter space, the models are confronted with the
limits from XENON100. All consistent models are projected onto the plane (Mχ, MH2)
in figure 3.17. The red shaded area is the resonance and the different symbols are used
to distinguish between the dominant annihilation final states. Most of the models below
the resonance feature W+W− (blue squares) as the dominant annihilation channel and
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also on the resonance and above the resonance this final state is more common than in
the parity conversing case. Models, where the dark matter mainly annihilates to H1H2

(orange crosses), now spread over the whole region above the resonance extending into
the high mass region and hugely overlap with models with the final state H2H2 (green
circles). The entire plane is filled with parameter points, in contrast to the parity con-
serving case, there is no region entirely excluded.

Figure 3.18.: The viable models are projected onto the plane (Mχ, σSI). Different
symbols indicate whether a model is below (blue squares), above (or-
ange circles) or on (red crosses) the resonance. The solid line displays
the XENON100 limit and the dashed line is the expected sensitivity for
XENON1T.

To illustrate this attenuation of direct detection limits further, figure 3.18 displays
a scatter plot of the spin independent elastic scattering cross section σSI versus dark
matter mass Mχ. The green solid line shows the current bound from XENON100 and
the dashed line displays the expected cross section for XENON1T. Different symbols are
used to indicate the position of the model with respect to the resonance, blue squares
depict models lying below, orange circles models above and red crosses models on the
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resonance. For all three types of models it is possible to obtain small values of σSI orders
of magnitude below the reach of XENON1T. Especially models below the resonance are
not concentrated in the upper left any more but extend down to σSI ≈ 10−15 pb. Hence
it is neither possible to rule out an entire region in the parameter space now nor in the
future. Nevertheless future experiments such a XENON1T will be able to exclude a
huge number of models, even though it cannot probe the entire range of models below
the resonance.

Figure 3.19.: The models consistent with the relic density constraint are presented in
the plane (|gs|, |gp|). Different symbols display the reach of XENON100
and XENON1T.

In order to characterize the new viable regions further, figure 3.19 shows a scatter plot
of the parameter |gs| versus |gp|. The symbols are used to mark the detection status
regarding XENON100. If gs and gp are simultaneously small, it is not possible to satisfy
the relic density constraint, therefore no points are found in this region. So, models with
small values of gs have gp & 10−3 and models with small gp feature gs & 10−2. Regard-
ing direct detection, gs is the important parameter, as the direct detection cross section
does not depend on gp. Hence models which are already excluded by XENON100 (green
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circles) can have nearly any value for gp but gs is larger than about 0.4. As the direct
detection limits are softened in the presence of gp, models which are beyond the sensi-
tivity of 1ton-experiments (blue squares) can be found all over the plane. This implies,
that it is possible to find models which evade future detection for all values of gp and no
region of gp nor gs will be completely ruled out by direct detection experiments. Still
it is useful to analyze the models, which are consistent with the limits from XENON100.

Figure 3.20.: A scatter plot of |gs sinα| versus |gp sinα| including the model’s position
with respect to the resonance. Blue squares are below, red crosses on and
orange crosses above the resonance.

Figure 3.20 shows the distribution of |gs sinα| versus |gp sinα| for all these non-
excluded models. In the parity conserving case the resonance plays a crucial role,
the same is true in the general case as illustrated by figure 3.20. The symbols indicate
the model’s position with respect to the resonance. Models below the resonance (blue
squares) are concentrated in the upper right corner along a narrow band, as |gs sinα|
and |gp sinα| cannot be small for these at the same time due to the dark matter con-
straint. If |gs sinα| is small, |gp sinα| is larger than 0.001 and for small |gp sinα| the
value of |gs sinα| is mostly above 0.01. Once the resonance is crossed (orange circles),
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the relic density is no longer determined by sinα, therefore parameter points can be
found in a broad region. For models on the resonance (red crosses) however, |gs sinα|
and |gp sinα| cannot be very large, at most |gp sinα| is around 0.01 and |gs sinα| at
approximately 0.04.

3.2.2. Indirect Detection

Figure 3.21.: The distribution of σv versus dark matter massMχ is presented for models
below the resonance. The colors are used to separate three regions of
gp sinα: blue squares gp sinα〈0.001, red crosses 0.001〈gp sinα〈0.01 and
green circles gp〉0.01

In the general case (gp 6= 0) indirect detection prospects look more promising, due
to the new contribution to σv proportional to g2

p and independent of the dark matter
velocity.
Figure 3.21 and figure 3.22 show scatter plots of the dark matter annihilation rate σv
versus the dark matter mass Mχ for models below respectively above the resonance.
Since gp sinα is an important parameter for σv below the resonance, symbols are used
in figure 3.22 to differentiate between three ranges: blue squares for gp sinα smaller than
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0.001, red crosses for gp sinα between 0.001 and 0.01 and green circles for gp sinα above
0.01. For these models below the resonance largest annihilation rates are obtained
for smallest dark matter masses and the three regions of gp sinα overlap slightly. A
strong correlation between gp sinα and σv is visible, the higher gp sinα the higher the
annihilation rate σv and the thermal value of around 3×10−26 cm3/s is reached for
models with large gp sinα.

Figure 3.22.: Models above the resonance are displayed in the plane (Mχ, σv). Different
colors indicate the value of gp sinα.

Above the resonance, see figure 3.22, gp rather than gp sinα becomes the important
parameter, as the dependence on sinα is softened. Therefore three regions of gp are dis-
tinguished by different symbols: blue squares feature gp smaller than 0.001, red crosses
have gp between 0.001 and 0.01 and green circles have values larger than 0.01. In general
the largest annihilation rates σv are obtained for models with largest values for gp, but
also models with small σv can feature gp larger than 0.01. Still there is a visible separa-
tion between the three ranges for gP as the upper limit of σv gets smaller with smaller gP .

In the general case much larger values for σv are obtained compared to the parity
conserving case with gp = 0, both below and above the resonance. A lot of models fea-
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ture σv close to the thermal value, therefore indirect detection becomes more promising.
As FERMI-Lat [57, 61] has just started to probe thermal cross sections for very light
dark matter particles, antimatter and gamma ray searches are not expected to give
any substantial constraints. On account of this, only neutrino signals from dark mat-
ter annihilation in the Sun are considered. Fortunately, models featuring final states
producing neutrinos are much more common in all mass ranges. And as σv is larger,
it is easier to reach equilibrium between dark matter capture and annihilation. The
equilibrium parameter as a function of dark matter mass Mχ is shown in figure 3.23,
the colors indicate the models’ detection status.

Figure 3.23.: A scatter plot of the equilibrium parameter versus the dark matter mass
with different symbols to display the detection status of the models. Blue
squares are models which are within the reach of XENON100 and orange
crosses are not yet probable models.

Lots of models over the whole mass range feature equilibrium parameters larger than
one, so equilibrium is reached and the annihilation process is solely determined by the
capture rate.
Equilibrium is reached for models which are already excluded by XENON100 (blue

squares) as well as for models which lie below the current sensitivity (orange crosses).
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Most of the excluded models feature equilibrium parameters larger than 0.01. Non-
excluded models can have large or small values but tend to reach at max slightly smaller
equilibrium parameters than the excluded models.
In order to determine indirect detection capabilities, the expected neutrino flux on the
Earth against the dark matter massMχ is shown in figure 3.24. Again, symbols indicate
the direct detection feasibility.

Figure 3.24.: The expected neutrino flux at the Earth versus dark matter mass is shown.
Models are marked if they are already excluded by XENON100.

Since equilibrium is reached for a lot of models, high fluxes can be obtained, reaching
up to 1012 neutrinos per km2 and year for dark matter particles lighter than 300 GeV.
Unfortunately all models with lager fluxes are already excluded by XENON100 (blue
squares). Models which are not yet excluded (orange crosses) yield fluxes at least three
orders of magnitude smaller.

Neutrino telescopes, like IceCube, do not detect the neutrinos directly but muons
coming from interactions of neutrinos with the surrounding material. Hence, in order
to contrast these findings with recent bounds, the expected muon flux with respect to
the dark matter mass is shown in figure 3.25. The solid line is the current limit from
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Figure 3.25.: The muon flux with respect to dark matter mass Mχ is shown. The solid
line is the current IceCubeDeepCore detection limit.

IceCubeDeepCore [64, 65] and the same symbols as before are used regarding direct
detection. The highest fluxes are found for smallest values of Mχ, they can reach up
to nearly 1000 per km2 and year, but similarly high fluxes can even be found for dark
matter masses up to 800 GeV. There is no strict limitation to the low mass region. Yet,
only few models are ruled out by the IceCube limits. Unfortunately, all of these are also
excluded by XENON100 as indicated by the blue squares. Models which are not within
the sensitivity of XENON100 (orange crosses) feature muon fluxes at least a factor of
three below the current IceCubeDeepCore limit.

3.3. Summary

As it was shown, the singlet fermionic model provides a simple and interesting way of
explaining the dark matter. In it the Standard Model is extended by two new particles,
one Majorana fermion χ acting as dark matter and a real scalar φ, which mixes with
the Higgs. Within this framework the dark matter particle can couple to the new scalar
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via parity conserving and parity violating interactions.

To analyze this model, an extensive scan of the parameter space compatible with the
dark matter constraint is used. By projecting these parameter points onto different
planes the feasible parameter space is identified and characterized and then confronted
with current and future direct detection limits. For the parity conserving case a new
indirect Higgs portal is found to satisfy the dark matter constraint, it is shown that
direct detection allows to exclude a large part of the parameter region and that indirect
detection is always hopeless. In the general case the link between relic density and direct
detection is weakened. Still, it is possible to probe a large amount of the parameter space
with direct detection experiments. Indirect detection is more feasible for the general
case, as the annihilation cross section is large enough to achieve equilibrium for dark
matter annihilation in the Sun. Although this results in significantly larger neutrino
fluxes on Earth, it is shown that all high flux models are already excluded by direct
detection.
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4. Two Component Dark Matter
The two-component dark matter model can be seen as a union of the singlet scalar dark
matter [66, 67, 68, 69, 70, 6, 47, 48] and singlet fermionic dark matter[10, 18, 19, 21,
22, 1]. In addition to the Majorana fermion χ and the real scalar mediator φ another
real scalar field S is introduced. All three new fields are singlets under the gauge group.
Again the Z2 symmetry is imposed to render the lightest dark matter species stable,
hence S and χ are odd whereas all Standard Model particles and φ are even. The heav-
ier of the two dark matter species is stable due to an accidental symmetry, as it is not
possible to write terms involving both S and χ that are still invariant under the gauge
and Z2 symmetry. Thus there are two stable dark matte particles in this model.

In this extension the interactions between χ and the Standard Model are not altered,
the Lagrangian for χ still is the same as in equation (3.1):

L = −1

2
(Mχχχ+ gsφχχ+ gpφχγ5χ) .

And as in the singlet fermionic model, the electroweak symmetry breaking gives rise
to a mixing between H and φ with the mass eigenstates H1 and H2. S does not mix
with H and φ due to the Z2 symmetry, and it does not acquire any vacuum expectation
value, so the potential is

−V (φ,H, S) = µ2
h

(
H†H

)
+ λH

(
H†H

)2 −
µ2
φ

2
φ2 +

λφ
4
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3
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2
φ2
(
H†H

)
+µφ

(
H†H

)
+
λS
4
S4 +

λHSS
4

(
H†H

)
S2 +

λφSS
2

φS2 +
λφφSS

2
φ2S2.

(4.1)

The treatment to obtain masses and parameter relations stays the same as explained
in the appendix E. Also the constraints on α, due to LHC data and the requirement
µ3

1 = −µv2
2

, are the same as in the singlet model. From the interactions in the Lagrangian
and the scalar potential new properties arise in this model. On the one hand the cou-
pling of the scalar S to two Higgs bosons H1 and H2 instead of one, on the other hand
dark matter conversion, SS ↔ χχ, which can influence the relic density. The main
focus of this work is on the new features within this framework.
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In the two-component dark matter model thirteen parameters are free, but not all
are important for dark matter relic density and direct detection. λφ and λS and the
choices µ3=0 and λ4=0 do not have an impact on phenomenology. Hence, for further
investigation nine parameters are taken to be free:

Mχ, MS, MH2 , gs, gp, sinα, λφSS, µφSS, λφφSS (4.2)

The quantities Mχ, gs and gp are linked to the fermionic component only. MS, λφSS,
which will be called λ in the following, and λφφSS only determine properties of the scalar.
Both species are related to MH2 , sinα and µφSS.

4.1. Relic Density

The two dark matter species, the Majorana fermion χ and the real scalar S, require
the treatment of two coupled Boltzmann equations. This is described here in general,
borrowing from [51]. The Boltzmann equations for the two species with number densities
n1 and n2 are

dn1

dt
= −σ11→SM SM

v

(
n2

1 − n2
1,eq

)
− σ11→22

v

(
n2

1 − n2
1,eq

n2
2

n2
2,eq

)
− 3Hn1, (4.3)

dn2

dt
= −σ22→SM SM

v

(
n2

2 − n2
2,eq

)
− σ22→11

v

(
n2

2 − n2
2,eq

n2
1

n2
1,eq

)
− 3Hn1, (4.4)

with σv denoting the thermally averaged cross section times velocity. The superscript
specifies for which processes the cross section is taken, 1 and 2 stand for the two dark
matter species and SM denotes any Standard Model or rather non-dark matter particle
like H2. The first term describes annihilation into Standard Model particles, the second
term accounts for dark matter conversion. The process of conversion enables one dark
matter species to annihilate, creating a pair of particles of the other species, hence the
relic density of the annihilating species can be reduced while the relic density of the
produced species can be enhanced. The third term in the Boltzmann equation models
the expansion of the Universe, as in the one dimensional equation (2.17).

Analogous to the case with only one WIMP, the abundances of the WIMPs are
Yi := ni

s
for i = 1, 2, while Standard Model particles are assumed to be in equilib-

rium. Similarly to before x := m
T

with m = M1+M2

2
is introduced. This leads to the

evolution equations
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dY2
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(
45

πMPl
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v (Y 2

2 − Y 2
2,eq) + σ22→11

v (Y 2
2 − Y 2

2,eq
Y 2

1

Y 2
1,eq

)

)
.(4.6)

The fact that processes like 11 → 22 are described by the same matrix element as
22 → 11 is used in both set of coupled Boltzmann equations, as it provides a relation
between the annihilation cross sections

YA,eqYB,eqσ
ABCD
v = YC,eqYD,eqσ

CDAB
v (4.7)

where A,B,C,D are from {1, 2,SM}, as shown in the appendix D.

In order to treat the two coupled Boltzmann equations numerically, the Lagrangian
is modeled in LanHep [71] and then implemented in micrOMEGAs [72]. For the relic
density calculation two independent methods are applied to obtain reliable results. One
methods makes use of the built in Runge-Kutta routine in a new micrOMEGAs distribu-
tion (not yet public) as described in [51]. The second method follows the implicit trape-
zoidal strategy explained in the DarkSUSY manual [74] which is used in the DarkSUSY
code [73] in order to solve one Boltzmann equation. The adaption to two equations is
shown in the appendix H. The values for 〈σv〉 are computed by micrOMEGAs in both
cases, for the scalar some annihilation cross sections have been calculated analytically
–see section G.1 in the appendix.
The relic density constraint in this two-component model is

ΩDMh
2 = ΩSh

2 + Ωχh
2 = 0.1199± 0.0027 (4.8)

where ΩS and Ωχ are the relic densities of the single components. The fractions for S
and χ of the entire relic density are defined as

ζχ :=
Ωχ

ΩDM

and ζS :=
ΩS

ΩDM

with ζχ + ζS = 1 (4.9)

The influence of the model parameters on relic density and direct detection is first stud-
ied without this constraint. Later it is taken into account for detection prospects.

The Boltzmann equations (4.5) and (4.6) contain the annihilation of dark matter into
Standard Model particles as well as the conversion of one dark matter species into the
other. This process SS ↔ χχ is mediated by the scalars H1 and H2 as shown in figure
4.1.
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(a) (b)

Figure 4.1.: Feynman diagrams for the conversion χχ↔ SS.

According to the Feynman rules in this model (cf. appendix C.2) the H1χχ vertex is
suppressed by sinα, whereas the H2χχ vertex is not. Thus the second diagram is more
important given that µφSS, which sets the SSH2 vertex, is large enough. If both dark
matter species have similar mass, the conversion takes place in both ways, otherwise it
only converts the heavier particle into the lighter one.

To begin with, lets illustrate the relic densities in the absence of conversion processes
(they will be treated later).
Figure 4.2 shows the relic density Ωχh

2 of the fermion as function of the fermion
mass Mχ for different values of MH2 . By setting µφSS to zero, the process SS → χχ
is negligible since the H2 mediated diagram in figure 4.1 is largely suppressed. For all
four values of MH2 the lines have the same overall behavior, similar to figure 3.2 in the
singlet fermion model: The relic density varies over a large range, it can be as large
as 103 for low Mχ or largely suppressed down to 10−4 at the H2 resonance. Starting
from low masses, the relic density decreases slightly until a large suppression occurs at
2Mχ = MH1 and at 2Mχ = MH2 , which is shifted to the according value for each line.
The dips correspond to regions with enhanced annihilation cross sections at the Higgs
resonances. At Mχ = MH2 a steep decreases in relic density is observed, corresponding
to the process χχ → H2H2 becoming accessible. Afterwards all lines have an overall
increase with Mχ for larger dark matter masses and feature a general value for the relic
density independent of MH2 . For masses below MH2 the main annihilation channel are
χχ → W+W− and χχ → Z0Z0. Above this threshold, H2H2 becomes the dominant
final state, matching the results in the singlet fermion model.

Similarly, the scalar relic density ΩSh
2 is displayed in figure 4.3 featuring the same

four values of MH2 , while Mχ is equal to 800 GeV. Analogous to the fermion, the scalar
relic density is largest for small masses, increases withMS for large masses and can vary
over a many orders of magnitude. Smallest values are obtained on the H1 resonance
for MS around 62.5 GeV. All lines feature also a dip at the H2 resonance but compared
to H1 resonance the decrease is small, as the SSH2 vertex is suppressed by sinα (cf.
appendix section C.2). Common to all lines is also a decrease at MS = MH2 due to the
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Figure 4.2.: The plot shows the relic density of χ with respect to its mass for negligible
conversion and for different values ofMH2 : 150 GeV, 250 GeV, 350 GeV and
450 GeV. The other important parameters are set as gs = 0.5, sinα = 0.1
and MS = 800 GeV.

opening of the channel SS → H2H2. These two features are new with respect to the
singlet scalar model, where H2 and therefore neither the H2 resonance nor the opening
of the H2H2 final state are present. To enhance the new aspects λφφSS is set to 0.5,
which also influences the dominant final annihilation states at larger masses. If λφφSS is
large enough, the most common final state for largeMS is H2H2, for low masses anyway,
it is W+W−.
To illustrate the effect of conversion, µφSS is now allowed to be non-zero. For the

relic density calculation of χ it is set to 100 GeV. The result as a function of Mχ for
three different values of MS is shown in figure 4.4. The other parameters are taken as
MH2 = 700 GeV, sinα = 10−3 and gp = 0.5, while the rest is set to zero.

The line for MS = 60 GeV (green solid) features mostly relic densities smaller than
or equal to to the other lines. The reason is that the channel χχ → SS is open over
the entire mass range. Compared to this, the relic density for MS = 400 GeV (red
dash-dotted line) is larger for fermion masses smaller than MS. At MS = Mχ = 400
GeV a steep decrease of occurs as the new channel χχ→ SS opens up, afterwards the
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Figure 4.3.: The scalar relic density versus the scalar mass is shown for Mχ = 800 GeV
and various values of MH2 : 150 GeV, 250 GeV, 350 GeV and 450 GeV. The
other important parameters are λ = 0.1, λφφSS = 0.5 and sinα = 0.1.

line overlaps with the 60 GeV curve. Common to all three values of MS is also the relic
density suppression at the H2 resonance. Choosing MS = 800 GeV (black dashed line)
leads to the same relic density as for 400 GeV up to Mχ reaching the value of 400 GeV.
Until Mχ is larger than 600 GeV the relic density increases in this case. Then a soft
decrease occurs due to the channel χχ → H2H2 becoming accessible. Once the dark
matter mass reaches MS = 800 GeV all three lines coincide, as conversion is allowed.
This illustrates that conversion can decrease the relic density by more than two orders
of magnitude.
The impact of conversion on the S relic density shows a slightly different behavior as
presented in figure 4.5. The relic density of the scalar is shown as a function of MS

featuring differentMχ. Mostly, similar behavior to the fermion relic density is observed,
the dip at the H2 resonance and the decrease in relic density as new channels become
accessible, but there is a difference between Mχ = 400 GeV and 800 GeV for small val-
ues of MS. This feature can be explained by residual conversions of the heavier fermion
into the scalar. Figure 4.6 shows the evolution of fermion and scalar abundances for
two different values of Mχ while MS is equal to 200 GeV and all other parameters are
the same as in figure 4.5. The equilibrium distributions are shown as dashed lines with
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Figure 4.4.: The relic density of the fermion is plotted as a function of fermion mass for
three values of MS: 60 GeV, 400 GeV and 800 GeV. The other parameters
are set to MH2 = 700 GeV, µφSS = 100 GeV, gp = 0.5, gs = 0, sinα = 0.001
and λ = 0.1.

colors corresponding to the abundances displayed as solid lines. First the abundances
track the equilibrium values, which are suppressed by the Boltzmann factor, until the
individual freeze-out temperature is reached. Then the abundances refrain to a constant
value. As expected, for Mχ at 800 GeV the χ abundance (blue solid line) is larger than
the abundance for 400 GeV (green solid line). Interestingly, the same is true for the
abundance of the scalar, it is larger for Mχ = 800 GeV (yellow solid line) than for 400
GeV (red solid line). In both cases Mχ is larger than MS, hence conversion of χ into S
is allowed. After the freeze-out the interaction rate of χ becomes small and only little
residual conversion processes happen, as χ freezes out at higher temperatures than S.
For Mχ = 400 GeV, Yχ is about one order of magnitude smaller than YS, thus residual
conversion does not have a large impact on the S abundance. But for Mχ at 800 GeV
the final abundance Yχ is around one order of magnitude larger than YS, so there is an
influence from residual annihilation. The large abundance of χ leads to a noticeable
amount of conversion processes after freeze-out, enhancing the abundance of S. Hence
conversion and the parameter controlling it, µφSS, can have an impact on relic density in
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Figure 4.5.: The relic density of the scalar is plotted against its mass for three values of
Mχ: 60 GeV, 400 GeV and 800 GeV. The other parameters are MH2 = 700
GeV, µφSS = 100 GeV, gp = 0.5, gs = 0, sinα = 0.002 and λ = 0.1.

a non-expected way. The relic density of the fermion is shown in figure 4.7 with respect
to its mass Mχ for different values of µφSS. The other important input parameters are
fixed as stated in the figure, parameters that are not listed are set to zero. Overall,
for larger µφSS the relic density becomes smaller, as a larger amount of χ annihilates
to S for larger µφSS reducing the relic density. For masses larger than 700 GeV the
influence of µφSS is less distinct and all four lines lie closer together. For µφSS = 100
GeV (green solid line) the process SS → χχ is dominant over the whole mass range,
so no decrease in relic density is observed when the channel χχ → H2H2 opens at Mχ

around MH2=700 GeV. For µφSS at 1 GeV (black dotted line) and 10 GeV (blue dashed
line) conversion is less present and the threshold for H2 production is important, clearly
reducing the relic density once the new final state is available.

As we have seen, the behavior of the relic density in this model presents new features
with respect to the singlet scalar and singlet fermion model: The interplay between
S and the second Higgs boson H2, the resonance at 2MS = MH2 as well as the new
final states H1H2 and H2H2 for S annihilation, and dark matter conversion processes

64



Figure 4.6.: The evolution of relic abundances for S and χ with temperature are shown
for two different values of Mχ, 400 GeV and 800 GeV, while MS is fixed at
200 GeV and the other important parameters are the same as in figure 4.5.

SS → χχ which can decrease the relic density of the heavier component while increasing
the one of the lighter particle. Hence the viable parameter regions in this model are not
the same as in the singlet scalar and singlet fermionic models.

4.2. Direct Detection

Direct detection experiments impose strict bounds on dark matter models as stated in
previous sections. In the singlet scalar and singlet fermion model large regions of the
parameter space are already excluded.
In this two-component model both spin-independent direct detection cross sections

are large and it is expected that most bounds change little with respect to the singlet
models. As χ and S contribute only by a fraction ζχ and ζS to the relic density,
direct detection experiments do not constrain the spin-independent direct detection
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Figure 4.7.: The relic density of χ is plotted as a function of its mass for four different
values of µφSS: 1 GeV, 10 GeV, 50 GeV and 100 GeV. The other parameters
are chosen asMH2 = 700 GeV,MS = 60 GV, gp = 0.5, gs = 0, sinα = 0.001
and λ = 0.1.

cross sections σχ,SI and σS,SI but the quantities ζχσχ,SI and ζSσS,SI. Yet the direct
detection rate has no strong dependence on ζ [75]. The ζ suppression is alleviated, as
smaller values of ζ require larger couplings like λ or gs to achieve the correct relic density.
Larger couplings however result in larger direct detection cross sections, reversing the
effect of small ζ, thus there is no suppression. For indirect detection ζ is important,
as the detection rate σv has to be multiplied by ζ2. This leaves a ζ suppression after
taking into account the influence of larger couplings to achieve the right relic density.
So in general direct detection is more feasible for multi-component dark matter models
than indirect detection.

As the vertices for the fermion interacting with Standard Model particles are not
altered with respect to the singlet fermionic model, the direct detection cross section
stays the same as equation (3.7) and the important model parameters are still α, gs,
Mχ and MH2 . Regarding the scalar, a new H2 contribution appears. The interaction
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between S and nucleons is mediated by t-channel exchange of the two scalars H1 and
H2, as shown in figure 4.8.

(a) (b)

Figure 4.8.: Feynman diagrams for the direct detection of S.

The spin independent direct detection cross section is

σS,SI =
M2

r

8πM4
H1
M4

H2
M2

S

(
λHSSv

2

(
cos2 αM2

H2
+ sin2 αM2

H1

)
+ λ cosα sinα

(
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−M2

H2

))2

g2
Hp

(4.10)

where gHp is the same as given in equation (3.8).The derivation is summarized explicitly
in section G.2 in the appendix. The cross section is determined byMS, λ, sinα,MH2 and
µφSS. Interestingly, the second term, which is proportional to the conversion parameter
µφSS, may cancel with the first term, suppressing the cross section. The cancellation
happens for

λcanc =
λHSSv

2

(
cosα

sinα
+

M2
H1(

M2
H2
−M2

H1

)
cosα sinα

)
(4.11)

which is independent of the dark matter masses. This cancellation effect is illustrated
in figure 4.9, which shows the direct detection cross section σS;SI as a function of MH2

for different values of µφSS. For a vanishing value of µφSS (solid red line), there is no
cancellation. The cross section does not depend on MH2 , therefore it is constant over
the whole mass range. This line acts as a reference for the four non-zero values of
µφSS. Setting µφSS to 50 GeV (blue dash-dotted line) decreases the direct detection
cross section over the entire shown mass range. It is nearly two orders of magnitude
below the reference value. For µφSS = 100 GeV (dotted black line) a large dip is visible
around MH2 ≈ 200 GeV corresponding to a cancellation. This decrease of almost six
orders of magnitude is the largest suppression achieved within this set of parameters.
Allowing µφSS to take higher values, like 200 GeV (green dashed line) and 300 GeV
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Figure 4.9.: The scalar spin-independent cross section as a function of MH2 is shown
for different values of µφSS: 0 GeV, 50 GeV, 100 GeV, 200 GeV and 300
GeV. The other important parameters are MS = 350 GeV, λ = 0.05 and
sinα = 0.1.

(yellow dash-dotted line), moves the cancellation dips towards smaller MH2 around 150
GeV. The decrease in the cross section is not as drastic as for µφSS = 100 GeV and there
is also an enhancement of the cross section at larger masses.
To illustrate this further, figure 4.10 displays the scalar direct detection cross section

as a function of MS for a fixed value of µφSS = 100 GeV while various values of MH2

are considered. According to equation (4.10), all lines decrease with increasing values
of MS. The dependence of σSI on MH2 is clearly non-trivial as seen in equation (4.11).
At MH2 = 200 GeV (blue dash-dotted line) the suppression is largest, hence smallest
values of σS,SI are achieved. They lie up to four order of magnitude lower than all other
lines. Largest cross sections are obtained for MH2 at 150 GeV (red solid line) and 500
GeV (orange dash-double dotted line). Both feature nearly the same cross section.

To summarize, while the behavior of the spin independent cross section for χ is the
same as in the fermionic singlet model, the scalar one receives a new contribution medi-
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Figure 4.10.: For five different values of MH2 , 150 GeV, 200 GeV, 250 GeV, 300 GeV
and 500 GeV, the scalar direct detection cross section is plotted against
the scalar mass MS. And µφSS equals 100 GeV, λ is 0.5, gs is 0.5 and sinα
equals 0.1.

ated by H2. This new contribution may either lead to an enhancement or a suppression
of the spin-independent direct detection cross section for S.

4.3. Detection Prospects

To illustrate the dark matter detection prospects in this model, five benchmark points
compatible with all current bounds have been selected. For all points gp and λφφSS are
set to zero. The other parameters are shown in table 4.1 along with the calculated relic
density, the spin-independent direct detection cross section and the indirect detection
rate σv. Figure 4.11 displays the direct detection cross sections of all five benchmark
models with respect to the dark matter masses, an index S respectively χ denotes the
quantities regarding the scalar or fermionic component. The current bound by LUX
[26] (red solid line) and the expected sensitivity of XENON1T [25] (blue dash-dotted
line) are also implemented.
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Table 4.1.: The parameters of the five benchmark models along with the computed relic
density, direct detection cross section and annihilation rates are shown.

Parameters / Model I II III IV V

MS [GeV] 52 200 300 120 220

Mχ [GeV] 70 180 400 165 280

MH2 [GeV] 200 150 200 360 250

λφSS [GeV] 400 0 0 0 0

gs 0.45 0.58 0.9 0.65 0.6

sinα 0.1 0.1 0.07 0.08 0.05

λ 0.25 0.175 0.25 0.09 0.5

ΩS/ΩDM [%] 52 51 49 97 8

Ωχ/ΩDM [%] 48 49 51 3 92

σSI,S [pb] 2.9×10−12 1.7×10−9 1.5×10−9 1.2×10−9 1.1×10−8

σSI,χ [pb] 6.6×10−10 1.8×10−10 8.7×10−10 1.2×10−9 3.0×10−10

〈σv〉S [10−26cm3/s] 7.2 4.7 4.5 2.2 30

〈σv〉χ [10−26cm3/s] 1.6×10−8 4.5×10−5 4.2×10−5 2.7 2.1×10−5

Model I:

The two dark matter species are rather light with MS = 65GeV and Mχ = 75GeV
and both give about 50 % of the relic density. Usually such low mass models are
highly constrained by direct detection (cf. figure 2.11). Yet, this specific model is not
within the sensitivity of current experiments due to the large value of µφSS. It enhances
conversion of χ to S and still allows small values for gs while achieving the correct relic
density. The cancellation effect mentioned before (cf. equation (4.11)) suppresses the
cross section σS,SI of the scalar. Thus it is even below the expected XENO1T sensitivity,
but the fermion is within the reach of future experiments.

Model II:

The dark matter masses are intermediate with MS = 200GeV and Mχ = 180GeV
and the two components contribute the same amount to the relic density. The main
annihilation channel determining the relic density of the fermion is χχ → H2H2 as
MH2 = 150GeV is below Mχ. Since MH2 is also close to MH1 = 125GeV, the fermionic
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direct detection cross section is slightly suppressed according to equation (3.7). It is
one order of magnitude below the scalar one, even though both species are detectable
by future experiments.

Model III:

The two heavy dark matter species, with MS = 300GeV and Mχ = 400GeV, convey 50
% of the total relic density each. The important annihilation channels are χχ→ H2H2

and SS → W+W−, while µphiSS is zero and conversion does not occur. The cross
sections obtained with this set of parameters are both within the reach of XENON1T,
although σS,SI is a bit larger than σχ,SI.

Model IV:

The dark matter masses are intermediate with MS = 120GeV and Mχ = 165GeV, but
the scalar contributes around 97 % to the relic density and its direct detection cross
section is close to the bound from LUX. The fermionic relic density is only about 3 % ,as
2Mχ ≈MH2 is close to theH2 resonance and so annihilation on the early Universe is very
efficient. Despite this, the fermion is detectable by future experiments. So, experiments
can probe dark matter contributions of both species, even if one is subdominant at the
percent level.

Model V:

The scalar in this model with intermediate masses, MS = 220GeV and Mχ = 280GeV,
provides only 8% of the total relic density, due to a large value of λ. Yet, both species
are within the reach of XENON1T. This illustrates further the accessibility of subdom-
inant dark matter species in direct detection experiments.

Regarding indirect detection the annihilation rates σv are rather small and there is an
additional suppression by ζ. For the fermion σχvχ is already very small in all five models
without ζχ, as in the singlet fermionic model. The fermion annihilation cross section
is velocity dependent, hence the annihilation rate σχvχ is proportional to v2

χ, which is
small considering the dark mater velocities in the Galactic halo. For the scalar there is
no high suppression of the annihilation rate, but the values fall below the thermal value
of 3×10−26 cm3/s when taking the ζs suppression into account.
Overall indirect detection prospects for the fermion are rather unpromising for this

multi component dark matter model, whereas the annihilation cross sections of the
scalar can be close to the thermal value.
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Figure 4.11.: The five benchmark models are shown in the plane (Mass,ζσSI). The curves
are current (LUX) and future (XENON1T) direct detection limits.

4.4. Summary

A new minimal two dark matter component model, which can be seen as a fusion of
the singlet scalar and the singlet fermionic dark matter model, has been presented and
analyzed. Three new fields, two scalars and one fermion, are added to the Standard
Model, all singlets under the gauge group. The fermion as well as one of the scalars
are odd under a newly introduced symmetry, thus the lightest odd particle is stable.
Nicely, an accidental symmetry stabilizes the heavier particle also. Hence, two dark
matter species are present and both contribute to the entire dark matter relic density.
Even though this model can be seen as union of the singlet models, it has some new
features on its own: The process of dark matter conversion can have a non-negligible
effect on the relic density. It can either increase or lower the value with respect to
the computation without conversion. Another novel feature concerns the dark matter
scalar. Its direct detection cross section receives new contributions, which can either
enhance or reduce the cross section.
Regarding direct detection, the scalar and fermionic component mostly feature direct
detection cross sections within the reach of future one ton experiments as XENON1T.
Interestingly, it is possible to detect both species, even if one provides only a few percent
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of the entire relic density. As the annihilation rate for the fermion can be largely
suppressed, indirect detection of it is rather unfeasible. In general this two-component
model is better probable by direct detection than indirect detection.
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5. Conclusion

Astrophysical and cosmological observations based on gravitational effects supply evi-
dence for dark matter on all scales. To name a few: small temperature fluctuations in the
CMB, the process of structure formation or the rotation curves of galaxies hint towards
dark matter. According to recent measurements about 25% of the Universe’s energy
content is matter, but only 5% consists of known baryonic matter. The rest is dark
matter. This new kind of matter is colorless, electrically neutral and stable compared
to the lifetime of the Universe. It is hoped to detect and identify dark matter in many
experiments, observing interactions between dark matter particles and the Standard
Model ones. The nature of the interactions involving the hidden sector are described
by many theories. Some are complex and yield a broad variety of different parameters
while containing a natural dark matter candidate, like the LSP in SUSY, others are
minimalistic and very plain. Such minimal models are rather simple by construction
and allow for an easy confrontation with current experimental bounds.
In this thesis two minimal models for weakly interacting massive particles (WIMPs)

were presented and analyzed in detail: The fermionic singlet dark matter model is re-
visited, revealing new aspects of its phenomenology, additionally a novel model for two-
component dark matter was proposed. Both confirm that there is a rich phenomenology
to these minimal models, which allows to make predictions regarding feasibility, direct
and indirect detection.

The fermionic singlet dark matter model adds two new particles to the Standard
Model, one Majorana fermion χ and a real scalar φ, both are singlets under the gauge
group. In order to make χ stable dark matter an additional Z2 symmetry is imposed.
Under this new symmetry all Standard Model particles and φ are even, while χ is odd.
As φ is evenly charged under the new Z2, it mixes with the Higgs boson, giving rise to
two mass eigenstates H1 and H2. The extended Higgs sector mediates all interactions
of φ and the Standard Model, linking the visible sector to the dark sector. The allowed
interactions, as they are renormalizable, are either parity conserving or parity violating
denoted by the scalar coupling gs and the pseudoscalar coupling gp.
An extensive random scan of the entire parameter space in this framework was done

for the parity conserving case with gp = 0 and for the general case with gp 6= 0. For
each case 105 models were generated which fulfill current experimental and theoretical
bound, except for direct and indirect detection. First the viable parameter regions were
identified and characterized by projecting the models onto different planes, confirming
that models compatible with the relic density constraint are present in a large region of
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the parameter space. Special attention is paid to resonances and thresholds, as it was
shown, that they can have a large impact on direct detection bounds. One way to evade
direct detection while still obtaining the right relic density is the indirect Higgs portal,
χχ→ H1H2, which has not been considered in previous works. It offers viable models at
lower dark matter masses than the process χχ → H2H2, which was mentioned before,
and also the feasibility of resonant models is confirmed. In general, direct detection
limits from XENON100 were found to exclude a large region of the parameter space in
the parity conserving case, yet there are feasible models. Future experiments will be
able to probe most of the region below the H2 resonance, excluding even larger regions
of the parameter space.

Similarly, the general case was investigated, the viable parameter regions are identi-
fied and confronted with current direct detection bounds. As new contribution to the
annihilation rate originate from gp, the relic density constraint is easier fulfilled while
the direct detection cross sections can still be small. On account of this, the direct de-
tection bounds become weaker, consequently no entire region in the plane (MH2 ,Mχ) is
excluded. And due to the weaker constraints, indirect detection becomes more promis-
ing. Hence it is possible to achieve equilibrium for dark matter annihilation in the Sun,
resulting in large neutrino and muon fluxes within the reach of current experiments.
It is found, however, that all models with high fluxes were already excluded by direct
detection bounds, so no new constraints were obtained.

The two-component dark matter model extends the framework of the fermionic singlet
dark matter by another scalar field S, which is also odd under the Z2 symmetry. The
lighter of the two odd particles is stabilized by the Z2 symmetry, while the heavier is
stable by an accidental symmetry. Thus two dark matter candidates are present in
this model, which requires the treatment of two coupled Boltzmann equations. A novel
feature in the two-component model is the process of dark matter conversion χχ→ SS,
which can either increase or decrease the relic density of a species. Interestingly, residual
annihilations of the heavier species after the freeze-out can raise the relic density of the
lighter particle, which has not been expected.
The spin independent cross section of the fermion is the same as in the fermionic

singlet model, while the scalar-nucleon interaction receives a new contribution due to
H2, which may suppress or increase the scalar cross section. In order to confront the two-
component model with current direct detection limits, a set of five benchmark models
was generated, which fulfill the usual phenomenological and cosmological bounds. Their
relic densities were computed along with the spin-independent direct detection cross
sections and the annihilation rates today. It was demonstrated that the benchmark
models mostly lie within the reach of future 1-ton experiments and interestingly, in
nearly all models it is possible to probe both dark matter contributions, even when one
component may only convey a small percentage of the total relic density.
Indirect detection of the fermion, as in the fermionic singlet model, is not feasible.
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Particularly, as there is a further suppression of the detection rate by the dark matter
fraction. For the scalar, it is possible to reach annihilation rates around the thermal
value even when taking the suppression by the dark matter fraction into account.

Both, the fermionic singlet and the two-component model, extend the Standard Model
in a minimal way. Only few particles are added, yet there is a rich phenomenology, with
manageable calculations which allow for an easy confrontation with current experimental
limits. In both models it is possible to find regions in the parameter space which are
consistent with the relic density bound and are not yet excluded by direct detection.
Also there are parameter points which will be probed by future one-ton experiments,
restricting the parameter space more. It is found that both models are better probable
via direct detection than indirect observations.
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A. Conventions, γ Matrices and
Trace Theorems

All parts regarding Dirac algebra, γ-matrices, trace theorems and the general calcula-
tion of scattering amplitudes and cross sections and kinematics are based on [3]. This
comprises only a short overview and few detailed derivations.

Units

Throughout the whole thesis natural units

~ = c = kb = 1 (A.1)

are used, unless it is stated differently. For example, masses in natural units are given
in eV which is eV/c2 in real units.

Completeness Relation

The completeness relation for Dirac spinors u and v is∑
s

u(p, s)u(p, s) = (/p+M2),∑
s

v(p, s)v(p, s) = (/p−M2) (A.2)

for particles with four-momentum p, which obeys p2 = M .

γ Matrices

The Dirac or γ matrices algebra is defined by the anticommutator relation

{γµ, γν} = γµγν + γνγµ = 2gµν . (A.3)

Throughout this work, the short notation /p = γµp
µ is used, for four-vectors p.
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γ5 Identities

Based on the four γ-matrices, a fifth matrix is defined as

γ5 := iγ0γ1γ2γ3 (A.4)

which obeys

γ2
5 = 1, (A.5)

{γ5, γ
ν} = 0 (A.6)

Tr(γ5) = 0, (A.7)

where Tr() denotes the trace.

Hermitian Conjugates

Hermitian conjugates for γ matrices are as follows

γ0† = γ0, (A.8)
γi† = −γi, (A.9)
γ5† = γ5 (A.10)

with i running from one to three. For a spinor matrix element including any collection
of γ-matrices Γ the Hermitian conjugate is given by

[u(p′, s′)Γu(p, s)]† = u(p, s)Γu(p′, s′) (A.11)

where

Γ := γ0Γ†γ0 . (A.12)

Especially for Dirac matrices:

γ0 = γ0, (A.13)

γi = γi, (A.14)

γ5 = −γ5. (A.15)
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Trace Theorems

Using the Dirac algebra, the following trace theorems can be proven:

Tr(/a/b) = 4ab,

Tr(/a/b/c/d) = 4[(ab)(cd) + (ad)(bc)− (ac)(bd)],

T r(/aγ5) = 0,

T r(/a/bγ5) = 0 . (A.16)
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B. Relativistic Kinematics and
Cross Sections

Considering two body processes, it is comfortable to fix conventions for kinematics in
the center of mass system.

Figure B.1.: Kinematics

Figure B.1 shows a 2 to 2 body scattering process. If not stated differently, throughout
this work, the two incoming particles have momenta ~p1 and ~p2 and energies E1, E2, the
assigned 4-momenta are p1,2 = (E1,2, ~p1,2). θ denotes the center of mass scattering angle
as marked in the figure. The outgoing particles are associated with four-momenta p3

and p4 and energies E3 and E4. The relativistic energy-momentum relation is obtained
by calculating the Lorentz invariant of four-momentum p,

p2 = E2 − ~p 2 (B.1)

while making use of the mass-shell condition

p2 = M2. (B.2)

The particles have masses Mi with i ∈ [1, 2, 3, 4].
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B.1. Mandelstam Variables

Once the conventions in kinematics are fixed, a set of variables can be defined as

s = (p1 + p2)2 = (p3 + p4)2,

t = (p1 − p3)2 = (p2 − p4)2,

u = (p1 − p4)2 = (p2 − p3)2. (B.3)

These are called Mandelstam variables. s is the total center of mass energy squared and
t is the negative of the transferred four-momentum squared. The advantage of these
variables is their Lorentz invariance. As the energy momentum relation (B.1) and the
mass-shell condition (B.2) hold,

s+ t+ u = M2
1 +M2

2 +M2
3 +M2

4 (B.4)

is true. To examine this further, two particle scattering is considered in the center of
mass frame. The frame is defined by

~p1 + ~p2 = 0 = ~p3 + ~p4. (B.5)

Corresponding variables within this frame are marked with a star, e.g. pi = p∗i . Through
equation (B.5) the center of mass variables are

~p1
∗ = −~p2

∗ =: ~p,

~p3
∗ = −~p4

∗ =: ~p′,
p∗1,2 = (E∗1,2, ±~p),
p∗3,4 = (E∗3,4, ±~p′). (B.6)

It is useful to express energy and momentum in Lorentz invariant quantities, using (B.1)
and the Mandelstam variables. So

E∗1,3 =
1√
s

(
s+M2

1,3 −M2
2,4

)
, (B.7)

~p 2 =
1

4s

(
s2 − 2s

(
M2

1 +M2
2

)
+
(
M2

1 −M2
2

)2
)
. (B.8)

The scattering angle θ is obtained by inserting

~p · ~p′ = |~p||~p′| cos θ (B.9)

to

p∗1p
∗
3 = E∗1E

∗
3 − |~p1

∗||~p3
∗| cos θ (B.10)
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and using the definition of the Mandelstam variables. The outcome is

cosθ =
(
s(t− u) + (M2

1 −M2
2 )(M2

3 −M2
4 )
) (
s2 − 2s(M2

1 +M2
2 (+(M2

1 −M2
2 )
)−1/2(

s2 − 2s(M2
3 +M2

4 ) + (M2
3 −M2

4 )2
)−1/2

. (B.11)

This leaves two independent variables to describe a two body process:

s and θ or s and t

B.2. Elastic Scattering Cross Sections and Direct
Detection Cross Sections

Regarding elastic scattering, which is important in direct detection, the results from the
previous section can be simplified. Elastic scattering implies

M1 = M3,

M2 = M4 (B.12)

as the initial and final state particles are the same. This constraint leads to

E∗1 =E∗3 , (B.13)
E∗2 =E∗4 , (B.14)

|~p|2 =|~p′|2 =
1

4s

(
s− (M1 +M2)2

) (
s− (M1 −M2)2

)
. (B.15)

Thus the expression for the scattering angle θ simplifies to

cos θ = 1 +
t

2|~p|2
. (B.16)

For a lot of processes, the relative velocity vrel between two interacting particles is
important. It can be written as

vrel = |~v1 − ~v2| =|
~p1

E1

− ~p2

E2

=|~p1
∗

E∗1
− ~p2

∗

E∗2
|

=
|~p1
∗|

E∗1E
∗
2

√
s, (B.17)

where E∗1 + E∗2 =
√
s is used.
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So

vrelE
∗
1E
∗
2 =|~p1

∗|
√
s

(B.1)
=
√
s
√
E∗1 −M2

1

(B.3),(B.2)
=

√
(p∗1p

∗
2)2 −M2

1M
2
2 . (B.18)

is true. This factor is independent of the frame. In case of annihilation, where the
incoming particles are identical,

E∗1 =E∗2 and E∗21 =
1

4
s (B.19)

holds. Thus

vrelE
∗
1E
∗
2 = |~p∗|

√
s =

1

2

√
s(s− 4M2

1 ). (B.20)

For 2 → 2 processes with identical final state particles, the cross section is given by

dσ =
1

E1E2

1

|vrel|
dΩ

8π
|F |2 2|~pfin|√

s

1

4π

(B.20)
=

1

s

dΩ

8π
|F |2 1

4π

(
1− 4M2

fin

s

)1/2

. (B.21)

where ~pfin is the momentum of one final state particle with mass Mfin and energy Efin

in the center of mass frame and |F |2 is the spin averaged squared matrix element de-
scribing the process. If the scattering amplitude |F |2 depends on t, the integration has
to be done explicitly, but it can be simplified by using equation (B.16). Otherwise, the
integration over the solid angle yields a factor of 4π.

Direct detection can be treated as elastic dark matter-quark scattering at zero mo-
mentum transfer, hence s goes to zero. The general cross section in this case is given
by

dσ|vrel| =
1

s

dΩ

8π
|F |2 1

4π

(
1− 4M2

fin

s

)1/2

(B.22)

where |F |2 is the scattering amplitude for dark matter off quarks. To obtain the spin
independent direct detection cross section, the form factors fp,n account for the distri-
bution of quarks in the nucleons. In the case of a t-independent scattering amplitude,
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the cross section is

σSIn,p =
|M |2

32π

f 2
n,p

(MS +Mn,p)2
. (B.23)
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C. Feynman Rules

C.1. Singlet Fermionic Dark Matter - Feynman Rules

External fermions: u incoming, u outgoing
External antifermions: v incoming, v outgo-
ing

External gauge boson: εαµ

H1 propagator: i
s−M2

H1
H2 propagator: i

s−M2
H2

i · sinα (gs + igpγ5) i · cosα (gs + igpγ5)
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−i · (6 cos3 αλHv − 3 cos2 α sinαµ
+3 cosα sin3 αλ4v − 2 sin3 αµ3

) −i·(cos3 αµ+ 2 cos2 α sinα(3λH − λ4)v
+2 cosα sin2 α (µ3 − µ) + sin3 αλ4v

)

−i·(cos3 αλ4v + 2 cos2 α sinα (−µ3 + µ)
+2 cosα sin2 α (3λH − lv) v − sin3 αµ

) −i·
(
cos3 αµ3 + 3 cos2 α sinαλ4v + 3 cosα sin2 αµ

+8 sin3 αλHv
)

C.2. Two-Component Dark Matter - Feynman Rules

In the two-component dark matter model, all Feynman rules from the previous section
apply. Additionally new vertices appear, which are listed here.

−i ·
(

1
2

cosαλHSSv − sinαλ
)

−i ·
(

1
2

sinαλHSSv + cosαλ
)
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−i · 6λS − i
2
·
(
cos2 αλHSS + 4 sin2 αλφφSS

)

− i
2

cosα sinα · (λHSS − 4λφφSS) − i
2
·
(
λHSS sin2 α + 4 cos2 αλφφSS

)

−1
2
iλHSS −1

2
iλHSS
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D. Thermal Average

This section shows a short sketch on thermally averaged cross sections times velocity.
It is based on the work by Gelmini and Gondolo [40]. Consider a particle species
with equilibrium density distribution f(E) for energy E. At a given temperature T
the distribution f(E) follows a Maxwell-Boltzmann distribution, it is proportional to
exp−E/T . Thus the thermally averaged cross section times velocity is

〈σv〉 =

∫
σv e−E1/T e−E2/T d3p1 d

3p2∫
e−E1/T e−E2/T d3p1 d3p2

. (D.1)

v is the velocity between two incoming particles, ~p1,2 are the three-momenta and E1,2

the corresponding particle energies.
The relativistic energy-momentum relation (B.1) allows to transform the volume element
in momentum space,

d3p1d3p2 = 4πp1dE1 4πp2dE2
1

2
d cos θ. (D.2)

θ is the angle between ~p1 and ~p2, and p1,2 = |~p1,2|. Introducing the new variables

E+ = E1 + E2,

E− = E1 − E2,

s = 2m2 + 2E1E2 − 2p1p2 cos θ (D.3)

transforms the volume element to

d3p1d
3p2 = 2π2E1E2dE+dE−ds. (D.4)

The previous limits E1,2 > m and | cos θ| ≤ 1 translate to

E+ ≥
√
s =: E+,min, (D.5)
s ≥ 4m2, (D.6)

|E−| ≤
√

1− 4m2

s

√
E2

+ − s =: E−,max. (D.7)
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These transformation of integration variables is applied to the the numerator of (D.1):∫
σve−E1/T e−E2/Td3p1d3p2 =2π2

∫ ∞
4m2

∫ ∞
E+,min

∫ +E−,max

−E−,max

σvE1E2e
−E+/TdE−dE+ds

=4π2

∫ ∞
4m2

∫ ∞
E+,min

σvE1E2

√
1− 4m2

s

√
E2

+ − se−E+/TdE+ds

(B.20)
= 2π2T

∫ ∞
4m2

σ(s− 4m2)
√
sK1(

√
s

T
)ds, (D.8)

in the last step, the properties of s were used and the integration over E+ is carried out
as σ depends on s only. K1 is the second kind of modified Bessel function of order one.
The denominator is treated similarly:∫

e−E1/T e−E2/T =2π2

∫ ∞
4m2

∫ ∞
E+,min

∫ +E−,max

−E−,max

E1E2e
−E+/TdE−dE+ds

=4π2

∫ ∞
4m2

∫ ∞
E+,min

E1E2

√
1− 4m2

s

√
E2

+ − se−E+/TdE+ds

=2π2

∫ ∞
4m2

√
1− 4m2

s

√
sE1E2K1(

√
s

T
)ds

=
(

4πm2TK2(
m

T
)
)2

(D.9)

with the modified Bessel function K2 of second kind of the order 2. Combining equation
(D.8) and (D.9) the thermally averaged cross section times velocity is

〈σv〉 =
1

8m4TK2
2(m

T
)

∫ ∞
4m2

σ(s− 4m2)
√
sK1(

s

T
)ds. (D.10)

The next part is based on [51]. It is important for the handling of the two Boltzmann
equations in H, as the thermally averaged cross section for the process AB → CD can
be linked to the process CD → AB. The cross section can be written as

σABCDv =
T

64π2s2YA,eq(T )YB,eq(T )

∫
ds√
s
K1

(√
s

T

)
pinpout∑

a∈A b∈B
c∈C d∈D

∫ 1

−1

|Mab→cd(
√
s, cos θ)|2d cos θ, (D.11)
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whereMab→cd is the 2 to 2 matrix element. The equilibrium value is given by

YA,eq =
T

2π2s

∑
a∈A

gaM
2
aK2

(
Ma

T

)
. (D.12)

In this equation ga is the coupling, Ma the mass of particle a which is of type A. As the
process AB → CD is described by the same matrix element as CD → AB, the relation

YA,eqYB,eqσ
ABCD
v = YC,eqYD,eqσ

CDAB
v (D.13)

is true. It is used in equations (4.5) and (4.6) to simplify the expressions.
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E. Scalar potential in the fermionic
singlet model

The scalar potential in the fermionic singlet model in section 3 is

−V (φ,H) =− µ2
HH

†H + λH(H†H)2 + µφH†H +
λ4

2
φ2H†H

+ µ3
1φ−

µ2
φ

2
φ2 +

µ3

3
φ3 +

λφ
4
φ4. (E.1)

It includes the Standard Model Higgs doublet H and the scalar mediator φ.

Actuating the minimum of this potential yields the vacuum expectation values 〈H〉 =
246 GeV and 〈φ〉. Without loss of generality, it is possible to find a basis in which φ
has a vanishing vacuum expectation value.
The minimum is determined by

∂V

∂xi
|xi=〈xi〉 = 0; (E.2)

where xi stands for the arguments of V and their conjugates. Taking all derivatives
leads to the expressions

∂V

∂φ
= −µ2

φφ+ λφφ
3 + λφφH

†H + µ3
1 + µ3φ

2 + µH†H, (E.3)

∂V

∂H† = −µ2
HH + 2λHH

(
H†H

)
+
λφ
2
φ2H + µ φH, (E.4)

∂V

∂H
= −µ2

HH
† + 2λHH

† (H†H
)

+
λφ
2
φ2H† + µ φH†. (E.5)

At the minimum, the expressions

µ3
1 +

1

2
µv2 = 0, (E.6)

−µ2
H + λHv

2 = 0 (E.7)

are obtained. An expansion around the vacuum expectation values for H in unitary
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gauge is

H =
1√
2

(
0

h+ v

)
. (E.8)

It expands the potential to

V (φ, h) =(−µ2
Hv + λHv

3)h+ (−µ
2
H

2
+

3λHv
2

2
)h2 + λHvh

3 +
λH
4
h4

+ (µ3
1 +

µv2

2
)φ+ (−

µ2
ϕ

2
+
λ4v

2

4
)φ2 +

µ3

3
φ3 +

λϕ
4
φ4

+ µvφh+
λ4v

2
φ2h+

µ

2
φh2 +

lv

4
φ2h2. (E.9)

The mass terms are identified by

M2
xi

=
∂V

∂x2
i

(E.10)

which yields

M2
h = −µ2

H + 3λHv
2, (E.11)

M2
φ = −µ2

ϕ +
λ4v

2

2
(E.12)

With respect to equations (E.6) to (E.12), further information about parameters of this
model is gained:

µ3
1 =
−µv2

2
, (E.13)

µ2
H =

M2
h

2
, (E.14)

λH =
M2

h

2v2
, (E.15)

µ2
ϕ =

λ4v
2

2
−M2

φ. (E.16)

The terms involving the two interaction eigenstates φ and h are

(
ϕ h

)
A
(
φ
h

)
(E.17)
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where

A =

(
1
2
M2

φ
1
2
µv

1
2
µv 1

2
M2

h

)
. (E.18)

A transformation to diagonalize A is performed:

D = U−1AU (E.19)

with

U =

(
cosα − sinα
sinα cosα

)
. (E.20)

This corresponds to a basis transformation from interaction eigenstate basis (φ, h) to
mass eigenstate basis (H1, H2). (

H2

H1

)
= U−1

(
ϕ
h

)
(E.21)

which is equal to

φ = − sinαH1 + cosαH2, (E.22)
h = cosαH1 + sinαH2. (E.23)

The back transformation gives the result from equation (3.3) from section 3.

In consequence, the relations between the masses for the different states are

M2
h = M2

H1
cos2 α +M2

H2
sin2 α, (E.24)

M2
φ = M2

H1
sin2 α +M2

H2
cos2 α. (E.25)

This provides also an expression for µ

µv = (M2
H2
−M2

H1
) sinα cosα. (E.26)

Hence the free parameters of the model which are chosen for its analysis can be linked
to the parameters in the potential.
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F. Direct Detection Cross Section
for the Fermion

The direct detection of the fermion χ takes places via t-channel exchange of the two
scalars H1 and H2 as it is shown in figure F.1. The derivation of the corresponding cross
section is shown in short steps in the following.

(a) (b)

Figure F.1.: Feynman diagrams providing spin-independent elastic scattering of dark
matter particles off nuclei.

The scattering amplitude for the fermion-quark interaction is

F = i sinα cosα

(
1

M2
H1

− 1

M2
H2

)
u(p3, s3) (gs + igpγ5)u(p1, s1)u(p4, s4)u(p2, s2) (F.1)

where the fermion is assigned with momentum p1 = p3 and spin s1 = s3, the quark
momentum is equal to p2 = p4 and the quark spin is s2 = s4 and the quark mass is Mq.
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The average and sum over spins in the squared amplitude reads as follows:

|F |2 =K

(∑
s3

u(p3, s3)(gs + igpγ5)

(∑
s1

u(p1, s1)u(p1, s1)

)
(gs + igpγ5)u(p3, s3)

)
(∑
s2,s4

u(p4, s4)u(p2, s2)u(p2, s2)u(p4, s4)

)
∗
=KTr

(
(/p1

+Mχ)(gs + igpγ5)(/p1
+Mχ)

)
Tr
(
( /p2 +Mq)( /p2 +Mq)

)
∗∗
=

16

v2
M2

χM
2
q g

2
s sin2 2αg2

s

(
1

M2
H1

− 1

M2
H2

)2

(F.2)

* denotes that the completeness relation (A.2), p1 = p3 and p2 = p4 are used. The
abbreviation K is introduced as

K := sin2 α cos2 α
M2

q

v2

(
1

M2
H1

− 1

M2
H2

)2

. (F.3)

Plugging the amplitude into the general direct detection cross section B.22 yields

σSI =
g2
s sin2 2α

4π
M2

r

(
1

M2
H1

− 1

M2
H2

)2

g2
HP, (F.4)

where Mr is the reduced mass of the dark matter proton system and

gHP =
Mp

v

[ ∑
q=u,d,s

fpq +
2

9

(
1−

∑
q=u,d,s

fpq

)]
≈ 10−3, (F.5)

where Mp is the proton mass.
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G. Calculations for the Scalar S in
the Two-Component Dark
Matter Model

G.1. Annihilation Cross Sections

Process : SS → ff

:

The two diagrams shown in figure G.1 contribute to the scalar S annihilating to
fermions of the mass Mf .

(a) (b)

Figure G.1.: Feynman diagram for SS → ff .

The scattering amplitude is given by the matrix element

F =− i
(
Mf

v
cosα(

1

2
cosαλHSSv − sinαλ)

1

s−M2
H1

+
Mf

v
sinα(

1

2
sinαλHSSv + cosαλ)

1

s−M2
H2

)
ū(p3)v(p4) (G.1)

according to the Feynman rules in the two-component dark matter model. The squared
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matrix element is

|F |2 =
M2

f

v2

(
a

s−M2
H1

+
b

s−M2
H2

)2

ū(p3)v(p4)v̄(p4)u(p3) (G.2)

with

a := cosα(
1

2
cosαλHSSv − sinαλ), (G.3)

b := sinα(
1

2
sinαλHSSv + cosαλ). (G.4)

Carrying out the average over initial spins and the sum over final spins leads to

|F |2 = KNCTr((/p3
+Mf )(/p4

−Mf )) (G.5)

= KNC2s

(
1−

4M2
f

s

)
(G.6)

with the abbreviation

K :=
M2

f

v2

(
a

s−M2
H1

+
b

s−M2
H2

)2

. (G.7)

and the symmetry factor NC taking into account the color of the final state, NC is 1 for
leptons and 3 for quarks. The second line is obtained when applying the completeness
relation (A.2) and the last line results when trace theorems (A.16) are applied. The
differential cross section, according to (B.21, is

dσSS→ff̄ |vrel| =
dΩ

16π2
NCK

(
1−

4M2
f

s

)3/2

, (G.8)

where the integration can be taken out:

σSS→ff̄ |vrel| =
1

4π
NCK

(
1−

4M2
f

s

)3/2

. (G.9)

Process: SS → V V̄

Vector boson production from S annihilation takes place in a similar way as fermion
production. It is either mediated by H1 and H2 or takes place directly, as shown in
figure G.2.
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Figure G.2.: Feynman diagrams for SS → V V .

The corresponding amplitude is

F = −iεαµεβν
(

2M2
V

v

(
a

s−M2
H1

+
b

s−M2
H2

)
+
λHSS

2

)
(G.10)

where MV is the vector boson mass, ε is a polarization vector and a as well as b are the
same as before. These two factors originate from the coupling of the scalar to the two
Higgs bosons. Averaging over initial spins and summing over final spins in the squared
amplitude leads to

|F |2 =NV

∑
spins

(
εαµε

β
νg

µν
)2
(

2M2
V

v

(
a

s−M2
H1

+
b

s−M2
H2

)
+
λHSS

2

)2

(G.11)

(G.14)(G.16)
= C

(
2 +

(p3p4)2

M4
V

)
(G.12)

=C
s

4M4
V

(
1− 4M2

V

s
+

8M4
V

s2
)

)
(G.13)

where NV is the symmetry factor, which is 1 for W bosons and 1/2 for Z bosons, as
they are their own antiparticle, and the abbreviation

C := NV

(
2M2

V

v

(
a

s−M2
H1

+
b

s−M2
H2

)
+
λHSS

2

)2

(G.14)

and the identity ∑
spins

(εαµε
β
νg

µν)2 = (gµν) +
pµ3p

ν
3

M2
V

)(gµν] +
p4νp4µ

M2
V

) (G.15)

= 2 +
(p3p4)2

M4
V

(G.16)

are used in the steps according to the labels above the equal signs. The last line in
(G.13) is obtained while using the equations for the Mandelstam variables in the center

105



of mass frame. Accordingly the cross section is

σvrel =
C

32πM4
V

(
1− 4MV

2

s

)1/2(
1− 4M2

V

s
+

8M4
V

s2
)

)
(G.17)

as the integration over the solid angle just gives 4π.

Process: SS → HH

The annihilation SS → H1,2H1,2 is mediated by the five diagrams shown in figure G.3.

Figure G.3.: Feynman diagrams for the process SS → H1,2H1,2.

The corresponding amplitude for either SS → H1H1 and SS → H2H2 is given by

F =
−i
2

(
a− b

s−MH2
1,2

− c

s−M2
H1,2

+ d

(
1

t−M2
S

− 1

u−M2
S

))
(G.18)
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where the coefficients for the process SS → H1H1 are

a = cos2 αλHSS + 4 sin2 αλφφSS,

b = (cosαλHSSv − 2 sinαλ)(
6 cos3 αλHv − 3 cos2 α sinαµ+ 3 cosα sin3 αλ4v − 2 sin3 αµ3

)
,

c = (sinαλHSSv + 2 cosαλφSS)(
cos3 αµ+ 2 cos2 α sinα(3λH − λ4)v + 2 cosα sin2 α (µ3 − µ) + sin3 αλ4v

)
,

d = (cosαλHSSv − 2 sinαλ)2 ,

and or SS → H2H2 the coefficients are

a2 = cosα sinα · (λHSS − 4λφφSS) ,

b2 = (cosαλHSSv − 2 sinαλ)(
cos3 αλ4v + 2 cos2 α sinα (−µ3 + µ) + 2 cosα sin2 α (3λH − lv) v − sin3 αµ

)
,

c2 = (sinαλHSSv + 2 cosαλφSS)(
cos3 αµ3 + 3 cos2 α sinαλ4v + 3 cosα sin2 αµ+ 8 sin3 αλHv

)
,

d2 = (sinαλHSSv + 2 cosαλφSS)2 .

As there are no spins involved, the averaged squared amplitude is directly introduced
to the cross section formula (B.21):

dσvrel =
1

s

1

32π

(
1−

4M2
H1,2

s

)1/2
1

4
·(

a− b

s−MH2
1,2

− c

s−M2
H1,2

+ d

(
1

t−M2
S

− 1

u−M2
S

))2

dΩ (G.19)

In order to integrate the differential cross section, first all parts independent of t and u
are treated, then the integration over the t and u dependent parts is done, which has a
vanishing result.

σvrel =
1

64πs

(
1−

4M2
H1,2

s

)2(
a− b

s−MH2
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1
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) 3
2 (∫ (
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(G.20)
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With the abbreviation

f(t) :=

(
1

t−M2
S

− 1

u−M2
S

)
. (G.21)

G.2. Direct Detection Cross Section

The direct detection cross section is obtained when calculating the elastic scattering
of dark matter particles off quarks at zero momentum transfer. In the two-component
model the scattering of the scalar S off nucleons takes place via a t-channel exchange
of Higgs bosons H1 and H2. The corresponding diagrams are shown in figure G.4.

(a) (b)

Figure G.4.: Feynman diagrams providing spin-independent elastic scattering of dark
matter particles S off quarks.

Thus it is sufficient to take the spin averaged squared amplitude for the process
SS → ff̄ (G.22) with s = 0, which then is

|F |2 = K02s

(
1−

4M2
f

s

)
(G.22)

with the abbreviation

K0 :=
M2

f

v2

(
a

M2
H1

+
b

M2
H2

)2

. (G.23)

Since this is independent of Mandelstam variable t, equation (B.23) can be applied and
the resulting spin-independent cross section is

σS,SI =
M2

r

4πM4
H1
M4

H2
M2

s

(v
2
λHSS

(
cos2 αM2

H2
+ sin2 αM2

H1

)
+ λ cosα sinα

(
M2

H1
−M2

H2

))2
g2
HP . (G.24)
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where gHP is the same as for the fermion.
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H. Trapezoidal-Euler routine

In order to solve two coupled Boltzmann equations, an implicit Euler and trapezoidal
routine with an adaptive step width is used. It is adapted from the DarkSUSY code
[73] as described in the manual [74]. This section is loosely based on this description.
First a trapezoidal method is used, then the Euler discretization. The stepwidth is
adapted according to the difference between the two discretization values. One starts
with a set of two coupled Boltzmann equations, similar to (4.5) and (4.6):

dY1

dx
= −a

(
b
(
Y 2

1 − Y 2
1,eq

)
+ c

(
Y 2

1 − Y 2
1,eq

Y 2
2

Y 2
2,eq

))
, (H.1)

dY2

dx
= −a

(
d
(
Y 2

2 − Y 2
2,eq

)
+ e

(
Y 2

2 − Y 2
2,eq

Y 2
1

Y 2
1,eq

))
. (H.2)

The variables a, b, c, d and e contain all annihilation cross sections and prefactors which
can depend on x. A simplified from is

dY1

dx
= f1(x), (H.3)

dY2

dx
= f2(x) (H.4)

with f1,2 presenting the right hand side of the coupled equations (H.1) and (H.2). In
order to discretize the equation, one starts at a point xi and goes to xi+1 := xi + h
with the stepwidth h. For simplicity the notation fi,1,2 is adapted for f1,2(xi), analogous
a(xi) =: ai and so on.
To find Yi+1,1,2 and describe the evolution of Y in x, first a trapezoidal method is used:

Yi+1,1 − Yi,1 = h
fi+1,1 + fi,1

2
, (H.5)

Yi+1,2 − Yi,2 = h
fi+1,2 + fi,2

2
. (H.6)

Inserting the corresponding expressions for fi+1,1,2 and fi,1,2 from (H.1) and (H.2) leads
to two coupled quadratic expressions for Yi+1,1 and Yi+1,2. When the quadratic equations
are solved, a result for Yi+1,1,2 is obtained. It only depends on quantities from the step
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i and the equilibrium values for xi+1. So

Yi+1,1 = F1(xi, Yi+1,1,eq, Yi+1,2,eq)

Yi+1,2 = F2(xi, Yi+1,1,eq, Yi+1,2,eq) (H.7)

is obtained. If F1,2 is not defined, or negative for a certain xi+1 the step width h is
reduced to h

2
and the step is repeated.

In order to have a handle on the step width, equation (H.1) and (H.2) are also discretized
according to an Euler method;

Yi+1,1 − Yi,1 = hfi+1,1, (H.8)
Yi+1,2 − Yi,2 = hfi+1,2. (H.9)

The expressions for f1,2 are inserted, which leads to another set of quadratic equations.
Their solution is

Y ′i+1,1 = G1(xi, Yi+1,1,eq, Yi+1,2,eq)

Y ′i+1,2 = G2(xi, Yi+1,1,eq, Yi+1,2,eq) (H.10)

If G1,2 is not defined or if it is negative, the step is repeated with half of the stepwidth
h. The two discretization results are used to evaluate, whether a step is valid or not.
The difference d is defined as

d := min
(∣∣∣∣Yi+1,1 − Y ′i+1,1

Yi+1,1

∣∣∣∣ , ∣∣∣∣Yi+1,2 − Y ′i+1,2

Yi+1,2

∣∣∣∣) . (H.11)

If d is smaller than the precision ε = 0.01 the step size is reduced to hs
d/ε

with the safety
factor s = 0.9 and the step is repeated. If d is larger than or equal to the precision, the
step is accepted, Yi+1,1,2 is taken as the next value for the abundance. The stepwidth is
increased to hs

d/ε
in this case. If the stepwidth falls below a given limit like 1/10 of the

initial step width, the recursion is aborted. The same is true if a maximum number of
steps is reached.
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