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1 Introduction

1 Introduction
The field of particle physics strives for the relevation of the most fundamental laws of nature. Its
most successful theory, the Standard Model (SM), allowed an outstandingly accurate prediction of
several phenomena at the smallest scales of physics. The Standard Model describes fermions, the
generators of matter, and bosons, the mediators of interactions between fermions. The latest great
triumph of the standard model was the correct prediction of the Higgs boson that was detected
in 2012 [1]. Despite the great success of this theory, there is a broad consensus that the Standard
Model is still incomplete. Several phenoma can not be explained with the current capabilities of
the SM, one of which is the muon (g − 2) anomaly, referring to the anomalous magnetic moment
(AMM) of the muon. The spin magnetic moment µs of the muon is given as:

µs = −g e

2mS.

The Landé g-factor describes the proportionality between the magnetic moment and the spin S.
The AMM refers to deviations of the g-factor from being precisely two and is defined as:

aµ = g − 2
2 .

The connection to particle physics is made with the description of the AMM in the context of
quantum field theory. Within this theory, the AMM is caused by loop corrections to the tree
level Feynman diagram. Consequently, the AMM is characterized by the interactions with virtual
particles within the loop, therefore marking a touchstone for the current state of the SM. The value
of the AMM was both experimentally measured and theoretically calculated. The most recent
experimental value from Fermi National Laboratory (Fermilab) leads to a current experimental
average of aµ(Exp) = 116592059(22) · 10−11 [2] (August 2023). The current SM prediction states
a value of aµ(SM) = 116591810(43) · 10−11 [3] (December 2020). This leads to a discrepancy of [4]

∆aµ = aµ(Exp) − aµ(SM) = (2.49 ± 0.483) · 10−9,

which turns out to be a deviation of 5.1σ. By convention, a deviation of more than 5σ is regarded
as a new discovery in particle physics. This difference between the theoretical and the experi-
mental value opens up room for theories of new physics beyond the SM that explain the missing
contribution.
A promising theory to resolve this anomaly is the two-Higgs-doublet model (2HDM), which is mo-
tivated by the concept of the Minimal Supersymmetric Standard Model (MSSM) [5]. The 2HDM
extends the scalar sector of the SM and predicts the existence of a second SU(2) Higgs doublet. The
new doublet generates a total of three additional scalar contributions. Including the electroweak
interactions of these particles with the muon at one-loop level allows an explanation of the missing
contribution for an agreement with ∆aµ.
After a brief summary of the experimental measurement of the AMM, the calculations that lead
to a value of g = 2 are retraced. First, the Dirac equation is transformed into the Pauli equation
which allows a direct derivation of the Landé factor. Second, the contribution of g = 2 is obtained
in the framework of quantum field theory by extracting the g-factor from the transition amplitude
at tree level. Subsequently, the one-loop contribution from quantum electrodynamics (QED) is
calculated, resulting in the largest contribution to the AMM of aµ = α/2π that was famously
calculated by Julian Schwinger [6].
In the next step, a generalized electroweak one-loop calculation is performed which allows the
application of arbitrary scalar-fermion interaction models. For this, two scalar-fermion interaction
topologies are considered. In the first scenario, the photon from the external electromagnetic field
is absorbed by an internal charged scalar in the loop. In the second scenario, the photon is ab-
sorbed by a internal charged fermion in the loop. The first scenario is calculated in detail whereas
the second calculation is reproduced with package-X in Mathematica [7].
The last chapter adapts the obtained results to the 2HDM. In total, four different Yukawa cou-
pling textures are analyzed. For each case, a parameter space scan is conducted to find parameter
combinations for the Yukawa coupling and the scalar mass that can resolve the muon (g − 2)
anomaly. Moreover, experimentally excluded regions are embedded into the parameter space to
indicate further constraints on the properties of the scalars, which subsequently allows a more
targeted experimental search after the new scalar particles.
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2 The Anomalous Magnetic Moment in the Standard Model
The first part of this work retraces the steps that lead up to the one-loop QED contribution to
the AMM. Throughout all calculations, we use the natural unit system in which c = ℏ = 1 holds.
Three-component vectors are printed in bold.

2.1 The Landé g-Factor
The magnetic moment µ is classically given as

µ = I · A = I ·A · n, (2.1)

where A is the area which is enclosed by a charge current I. The vector n points in the normal
direction of the area. Considering a charged rotating particle with charge q and a rotatory frequency
f we can rewrite the charge current as

I = q

T
= q · f with f = v

2πr , (2.2)

with the tangent velocity v and the radius r. The magnetic moment can thus be specified with
the area of a circle as

µ = q · v

2πr · πr2n · m
m

= q

2mL (2.3)

which allows us to identify the classical angular momentum L = m · r · v · n.
In quantum mechanics, the total angular momentum J is given as a sum of the orbital angular
momentum L and the spin S leading to

µ = q

2m (L + gS). (2.4)

The g-factor is introduced (also called the Landé g-factor) to account for possible deviations due
to the transition from classical mechanics to the quantum domain since S does not have a classical
analogue.

2.2 Measurement of the Anomalous Magnetic Moment of the Muon
The following section provides an overview of the experimental determination of aµ highlighting the
physical principles that allow the precise measurement at Fermilab [2]. The following explanations
are based on [8] and describe the experimental setup that was originally used at the Brookhaven
National Laboratory (BNL). The BNL storage ring was relocated to Fermilab in 2013 so the
fundamental principles remain valid.
In the BNL experiment, the AMM of positive muons was determined (Fig. 1). The positively
charged muons are produced as a result of the pion decay π+ → µ+νµ. The pions in turn are
produced by high energetic protons from the Alternating Gradient Synchrotron (AGS) that hit a
target. The muons emitted are polarized, meaning that the spins point in the same direction as
the momenta. The muons are then injected into the storage ring in which a uniform magnetic field
B is applied. Due to the Lorentz force, the muons move in a circular orbit around the ring and
are accelerated to relativistic velocities. They orbit the ring with a cyclotron frequency ωc of

ωc = eB

mγ
(2.5)

where γ =
√

1 − v2/c2 is the relativistic Lorentz factor. Moreover, the spin axis of the muon
precesses around the axis of the magnetic field known as Lamor precession. The Lamor frequency
of this precession ωc is given as [9]

ωs = g
eB

2m + (1 − γ) eB
mγ

. (2.6)
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2 The Anomalous Magnetic Moment in the Standard Model

Figure 1: Simplified schematic illustration of the experimental setup originally used at the
Brookhaven National Laboratory (BNL) as well a visualization of the parity violating pion de-
cay. Taken from [8].

The second term emerges from the Thomas precession, a relativistic correction to the Lamor
precession. The AMM can be obtained from the difference frequency ωa of the Lamor and cyclotron
frequency:

ωa = ωs − ωc

= g
eB

2m + (1 − γ) eB
mγ

− eB

mγ

= eB

m

(
g − 2

2

)
= aµ

eB

m
. (2.7)

Here, it becomes also evident why the factor of 1/2 appears in the definition of aµ. The magnetic
field B is also measured in this experiment, while e and m are determined in independent experi-
ments. If g was exactly equal to two, the cyclotron frequency and the Lamor frequency would be
equal. In conclusion, the AMM causes a misalignment between the direction of motion and the
spin axis, as can be seen in Fig. 2.

Figure 2: Schematic illustration of the spin and momentum orientation during one circulation in
the cyclotron. Taken from [10].

The remaining challenge is to determine the spin direction. For that, the parity violating decay of
the muon into a positron of µ+ → e+ +νe + ν̄µ is analyzed. The parity violation causes the emission
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2 The Anomalous Magnetic Moment in the Standard Model

Figure 3: Time distribution of the detected positrons with E > Eth for different Eth. The frequency
of the signal matches ωa. Retrieved from [8].

direction of the positron to be highly correlated to the spin axis. The positrons are detected by
24 equidistant calorimeters, which measure the positrons energy and therefore reveal information
about the spin orientation. The number N(t) of detected positrons above a threshold energy Eth
is given as:

N(t) = N0(Eth) exp
(

−t
γτµ

)
(1 +A(Eth) sin (ωat+ ϕ(Eth)) (2.8)

with the muon-lifespan τµ, the asymmetry factor of the decay A and the phase factor ϕ. The
quintessence to conclude from this expression is that the decay of the muons is modulated with
the frequency ωa from which aµ can be determined. The detected signal takes a form as it is is
depicted in Fig. 3.

2.3 From the Dirac Equation to the Pauli Equation
Now, the g-factor is derived in the framework of relativistic quantum mechanics (based on [11],
P.59-73). In order to describe relativistic particles, a generalization of the Schrödinger equation
has to be found in which Lorentz invariance is preserved. In order to do so, the Lorentz invariant
energy-momentum relation has to be taken into account:

E2 = m2 + p2. (2.9)

Following the correspondence principle of quantum mechanics, we can insert the operator repre-
sentations of E = i∂t and p = −i∇ (under the assumption that they act on a wavefunction ψ(r, t))
to arrive at the Klein-Gordon equation:

(∂2
t − ∇2 −m)ψ(r, t) = 0. (2.10)

One can observe that this second-order differential equation requires two initial conditions. By
a linearization, the Klein-Gordon equation can be reduced to a first order differential equation
leading to the Dirac equation of a free particle:

(i∂t + iα∇ − βm︸ ︷︷ ︸
HD

)ψ(r, t) = 0 (2.11)

HD is our identified time-independent Dirac-Hamiltonian. The parameters α and β are assumed
to take the shape of a squared matrix for reasons that become evident in a moment. To incorporate
spin into this formalism, the wave functions are promoted to spinors of the form:

|ψ⟩ =


ψ1
ψ2
ψ3
ψ4

 =
(
ψA

0

)
+
(

0
ψB

)
with ψA =

(
ψ1
ψ2

)
, ψB =

(
ψ3
ψ4

)
. (2.12)

5



2 The Anomalous Magnetic Moment in the Standard Model

In the non-relativistic limit p ≪ m, ψA is much larger than ψB . This is because ψB can be replaced
by

|ψ⟩ =
(
ψA

ψB

)
=
(

ψA
σ·p

E+mψA

)
(2.13)

for a free particle. In this limit, the lower component vanishes and we arrive at an effective two-
component theory. The upper components ψA are often denoted as the large components whereas
ψB refers to the small components.

|ψ⟩ = |ψA⟩ (2.14)
Up to this point, the Dirac-equation of a free particle was discussed. When it comes to the
extraction of the magnetic moment, the Dirac-Hamiltonian subsequently has to be modified. In
general, the Hamiltonian arising from a magnetic interaction is given as:

HB = −µ · B = g
e

4m (σ · B). (2.15)

This result was gained from the fact that the spin operator from Eq. 2.4 is directly proportional
to the Pauli-matrices via:

S = 1
2σ. (2.16)

The goal is now to find the Dirac Hamiltonian for a charged particle in an electromagnetic field,
in which we can identify the magnetic interaction Hamiltonian and therefore determine the re-
quired g-factor. In order to account for the interaction with an electromagnetic field we apply the
substitutions of

p −→ p + eA and E → E + eϕ, (2.17)
to Eq. 2.11 with the scalar electric potential ϕ and the magnetic vector potential A. These
substitutions result in the Dirac Hamiltonian HD for a charged particle in an electromagnetic
field:

HD = α(p + eA) + βm− eϕ. (2.18)
The requirements for α and β are that:

{αi, αj} = 2δij1, {αi, β} = 0, β2 = 1. (2.19)

These conditions are satisfied by the γ-matrices (Appendix A.1). HD therefore becomes

HD = γ(p + eA) + γ0m+ eϕ1. (2.20)

We will now act this Hamiltonian on a Dirac spinor:

HD

(
ψA

ψB

)
= (p + eA)

(
0 σ
σ 0

)(
ψA

ψB

)
+m

(
1 0
0 −1

)(
ψA

ψB

)
− eϕ

(
ψA

ψB

)
= (p + eA)

(
σψB

σψA

)
+m

(
ψA

−ψB

)
− eϕ

(
ψA

ψB

)
!= E

(
ψA

ψB

)
. (2.21)

Expanding this leads to the following system of equations:

(p + eA) · σψB = (E −m+ eϕ)ψA (2.22)
(p + eA) · σψA = (E +m+ eϕ)ψB . (2.23)

For ψB we can rearrange the expression to:

ψB = (p + eA) · σψA

(E +m+ eϕ) . (2.24)

Under the assumption that the influence of the electric field to the total energy is sufficiently small
(eϕ ≪ m), we gain the following simplification:

ψB = 1
2m (p + eA) · σψA. (2.25)
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2 The Anomalous Magnetic Moment in the Standard Model

As already discussed, we are interested in the non-relativistic limit of the Dirac-theory known as
the Pauli-theory. For that reason, it is sufficient to only consider the large component ψA of Eq.
2.23. Plugging in Eq. 2.25 yields:

( 1
2m ((p + eA) · σ)((p + eA) · σ) − eϕ)︸ ︷︷ ︸

Hp

ψA = (E −m)ψA, (2.26)

where we defined Hp as the Pauli Hamiltonian. The Pauli Hamiltonian can be rearranged in order
to extract the magnetic moment to

Hp = 1
2m ((p + eA)2 + iσ · ((p + eA) × (p + eA))) − eϕ. (2.27)

Here, the following identity was used (proof in Appendix A.1):

(a · σ)(b · σ) = a · b + iσ(a × b). (2.28)

The underlined term can be reduced in the following way:

((p + eA))ψA × (p + eA) = 1
2εijk[pj + eAj , pk + eAk]ψA

= −ie
2 εijk([∂j , Ak] + [∂k, Aj ])ψA

= −ie
2 εijk(∂jAk −Ak∂j +Aj∂k − ∂kAj)ψA

= −ie
2 εijk[(∂jAk)ψA +Ak(∂jψA) −Ak(∂jψA)

+Aj(∂kψA) − (∂kAj)ψA −Aj(∂kψA)]ψA

= −ie
2 εijk(∂jAk − ∂kAj)ψA

= −ie
2 2εijk(∂jAk)ψA

= −ieBψA (2.29)

In the first line we utilized that

π × π = εijkπjπk = 1
2εijk[πj , πk]

since εijk[πj , πk] = εijkπjπk − εijkπkπj = εijkπjπk + εijkπjπk = 2εijkπjπk. (2.30)

Merging everything together ends up in the following expression for the Pauli-Hamiltonian

Hp = 1
2m (p + eA)21 + e

2m (σ · B) − eϕ1 (2.31)

A direct comparison with the Hamiltonian of a magnetic interaction in Eq. 2.15 illustrates g = 2
in the relativistic formulation of quantum mechanics.

2.4 Tree-Level Contribution
The subsequent section focuses on the extraction of the g value from a tree-level scattering process
using perturbation theory to verify the consistency with the results discussed in the previous
chapter. This section is based on [12], P.117-119. The tree-level diagram takes the following form:
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2 The Anomalous Magnetic Moment in the Standard Model

µ− µ−

γ

q1 q2

p

Figure 4: Topology of the tree-level Feynman diagram.

The application of the Feynman rules (Appendix A.2) for a simple fermion-photon vertex results
in the expression of

iMµ = −ieū(q2)γµu(q1). (2.32)

Here, ū(q2) and u(q1) are the momentum dependent factors of a plain wave solution of a Dirac
spinor ψ(x) given as:

ψ(x) = u(q)e−iqx ψ̄(x) = ū(q)eiqx. (2.33)

With the Gordon identity (proof in Appendix A.3), this expression can be extended to

iMµ = −ie
2m ū(q2)((q2 + q1)µ + iσµν(q2 − q1)ν)u(q1). (2.34)

In the following steps, the interest lies on the transition amplitude between the initial state ψ1 and
the final state ψ2 which can be derived from perturbative considerations. Starting with the Dirac
equation of a free particle

(/p−m)ψ = 0, (2.35)

the inclusion of the interaction with the electromagnetic (EM) four-vector potential Aµ = (ϕ,A)T

is realized by applying the substitution of pµ → pµ + eAµ:

(γµp
µ −m)ψ = −eγµA

µψ ≡ γ0V ψ. (2.36)

The interaction with the EM potential is defined as a perturbation V . The γ0 guarantees the
correct matrix dimension of the perturbation. One can derive the amplitude for the scattering
process T21 of the muon, using first-order time dependent perturbation theory

T2,1 = −i
∫

R4

dx4ψ†(x)V (x)ψ(x)

= ie

∫
R4

dx4ψ†γµA
µψ

= −i
∫

R4

dx4j2,1
µ Aµ. (2.37)

Here, the transition current was j2,1
µ was introduced as

j2,1
µ = −eψ†

2(x)γµψ1(x) = −eū(q2)γµu(q1) · ei(q2−q1)·x = Mµ · ei(q2−q1)x. (2.38)

This connects the transition amplitude and the the invariant amplitude via:

T2,1 = −i
∫

R4

dx4MµA
µei(q2−q1)x (2.39)

Under the assumption that Aµ is time-independent the integration of the 0th component can be
carried out:

T2,1 = −2πδ(E2 − E1)
∫

R3

d3xj2,1
µ Aµ. (2.40)

8



2 The Anomalous Magnetic Moment in the Standard Model

Inserting the transition current and the Gordon identity results in

T2,1 = −i2πδ(E2 − E1)

∫ d3xψ̄2
−e
2m (q2 + q1)µψ1A

µ︸ ︷︷ ︸
I1

+
∫
d3xψ̄2

−e
2miσµν(q2 − q1)νψ1A

µ︸ ︷︷ ︸
I2

 .

(2.41)

I1 and I2 are now treated separately. For I1 we have

I1 = −e
2m

∫
d3xū(q2)(q2 + q1)µe

i(q1−q2)xu(q1)Aµ. (2.42)

Regarding µ = 0, the δ-function guarantees the energy conservation and sets E2 = E1. Therefore,
the µ = 0 components of the four-momenta q2 and q1 are equal and everything can be summarized
as

I0
1 = −e

2m

∫
d3xū(q2)(2E2)A0u(q1)ei(q2−q1)x. (2.43)

In the non-relativistic limit of p → 0, E = m holds in the energy-momentum relation (Eq. 2.9)
which allows us to cancel out the 2m in the denominator such that I0

1 takes the form of

I0
1 = −e ·

∫
d3xψ̄A

2 ϕ1ψA
1 . (2.44)

As another consequence of the non-relativistic limit, the lower components of the Dirac spinors
(see Eq. 2.13) are neglected such that only the upper components ψA remain.
Now the spatial components µ = 1, 2, 3 are examined (the index µ is labeled to euclidean indices i
by the cost of an extra minus sign due to the Minkowski metric).

I1,2,3
1 = ie

2m

∫
d3x ū(q2)(∂2 + ∂1)ie

i(q2−q1)xu(q1)Ai

PR= ie

2m

∫
d3x ū(q2)((∂2 + ∂1)i(ei(q2−q1)xAi))u(q1)︸ ︷︷ ︸

I1,1

− ū(q2)ei(q2−q1)x((∂2 + ∂1)iAi)u(q1)︸ ︷︷ ︸
I1,2

(2.45)

In the second line, a rearranged form of the product rule was used. Under the establishment of
the Coulomb gauge

∂i ·Ai = 0 (2.46)

I1,2 vanishes. For I1,1 we can make use of the Gauss‘ law to transform a volume integral over a
divergence of a vector field to an surface integral:

I1,2 =
∫
d3x ū(q2)((∂2 + ∂1)i(ei(q2−q1)xAi))u(q1)

=
∫
dS ū(q2)(ei(q2−q1)xA)u(q1). (2.47)

The oscillating functions are bounded. Assuming that A is finite and vanishes as x → ∞, the
surface integral of I1,2 equals zero because the integration is performed over the whole R3 which
means that the surface is located at infinity.
Now, the examination of I2 is carried out.

I2 =
∫
d3xψ̄2

−e
2miσµν(q2 − q1)νψ1A

µ (2.48)

The time-like component vanishes since E2 = E1, so only the space-like components survive. With

9



2 The Anomalous Magnetic Moment in the Standard Model

p = q2 − q1 and the euclidean indices i, j, k it follows that

I1,2,3
2 = e

2m

∫
d3x ū(q2)σij∂je

ipxu(q1)Ai

PR= e

2m

∫
d3x ū(q2)σij∂j(eipxAi) − ū(q2)σije

ipx(∂jAi)u(q1)

2.50= e

2m

∫
d3x ū(q2)εijkσk∂j(eipxAi)︸ ︷︷ ︸

I2,1

− ū(q2)εijkσke
ipx(∂jAi)u(q1)︸ ︷︷ ︸

I2,2

, (2.49)

where in the third line we used the following relation (proof in Appendix A.1) :

σij = εijkσk1. (2.50)

For I2,1 we obtain:

I2,1 = e

2m

∫
d3x ū(q2)σρ · (∇ × (eipxA))u(q1)

2.51= e

2m

∫
d3x ū(q2)∇ · ((eipxA) × σ)u(q1)

= e

2m

∫
dS ū(q2)(eipxA) × σ)u(q1)

where the following identity was used with ∇ × σ = 0:

∇ · (A × B) = B · (∇ × A) − A · (∇ × B). (2.51)

Making the same assumption as for I1,2, A vanishes at infinity which causes this integral to be
zero.
A separate treatment of I2,2 results in

I2,2 = −e
2m

∫
d3x ψ̄2(σkεijk∂jAi)ψ1

= e

2m

∫
d3x ψ̄2(σkεkji∂jAi)ψ1

= e

2m

∫
d3x ψ̄A

2 (σkBk)ψA
1

= e

2m

∫
d3x ψ̄A

2 (σ · B)ψA
1 (2.52)

Here we also applied the non-relativistic limit which eliminates the small components of ψ. Col-
lecting all remaining terms merges in the final expression for the transition rate of:

T2,1 = −i2π
∫
d3x ψ̄A

2

(
−eφ1 + e

2mσ · B
)
ψA

1 (2.53)

In total, the direct comparison of Eq. 2.53 with the Hamiltonian in Eq. 2.31 shows that g = 2
follows also from the tree level diagram.

2.5 Electromagnetic Form Factors
This section is based on [13], P.315-318. The most general form of an interaction between a particle
and an external electromagnetic field can be visualized by the following Feynman diagram where
the central circle represents a placeholder for arbitrary loop-orders.

10



2 The Anomalous Magnetic Moment in the Standard Model

µ− µ−

γ

q1 q2

p

Figure 5: Generalized form of a Feynman diagram visualizing an electromagnetic interaction.

The generalized Feynman amplitude takes the form of

iMµ = ū(q2)Γµu(q1) (2.54)

where Γµ is the vertex function and also acts as a placeholder for arbitrary loop levels. Γµ trans-
forms like a four-vector and can be decomposed as a linear combination of all occurring Lorentz
vectors. Hence, the vertex function can be expressed in its most general form as

iMµ = ū(q2)(f1γ
µ + f2p

µ + f3q
µ
1 + f4q

µ
2 )u(q1). (2.55)

Hypothetically, this parameterization could also contain terms proportional to γ5. Those terms are
especially taken into account in beyond QED theories. Due to the parity symmetry present in QED,
these γ5 terms do not contribute. Every possible occurrence of a Lorentz vector is weighted by the
functions fi. In general, they can also depend on products or contractions of different momenta
namely /p, /q1, /q2, p2, q2

1 , q2
2 , pµ · qµ

1 , pµ · qµ
2 , qµ

1 · qµ
2 and m. The set of possible dependencies can be

reduced by employing the following considerations. The first constraint is momentum conservation
which also holds for contractions with γ-matrices

pµ = qµ
2 − qµ

1 . (2.56)

The dependency on the slashed momenta can be resolved by the application of the Dirac equation
(Eq. 2.35), reducing the dependency purely on m. Furthermore, the muons are on their mass
shells, which means that they fulfill the relativistic energy-mass relation:

q2
1,2 = m2. (2.57)

The pµ dependence can be resolved by inserting Eq. 2.56

iMµ = ū(q2)(f1γ
µ + (f3 − f2)qµ

1 + (f4 + f2)qµ
2 )u(q1) (2.58)

which forces f2 = 0 in order to match Eq. 2.55. For a further reduction, we can make use of the
Ward-identity which states that

pµM
µ = 0. (2.59)

Expanding gives us

0 = pµū(q2)(f1γ
µ + f3q

µ
1 + f4q

µ
2 )u(q1)

= f1ū(q2)/pu(q1) + f3(pµq
µ
1 )ū(q2)u(q1) + f4(pµq

µ
2 )ū(q2)u(q1)

2.56= f1ū(q2)( /q2 − /q1)u(q1) + f3(pµq
µ
1 )ū(q2)u(q1) + f4(pµq

µ
2 )ū(q2)u(q1)

2.35= f3(pµq
µ
1 )ū(q2)u(q1) + f4(pµq

µ
2 )ū(q2)u(q1)

2.61= f3(pµq
µ
1 )ū(q2)u(q1) − f4(pµq

µ
1 )ū(q2)u(q1)

f3 = f4. (2.60)

11



2 The Anomalous Magnetic Moment in the Standard Model

In the fifth line we used
pµq

µ
1

2.56= q2 · q1 − q2
1

2.57= q2 · q1 −m2 2.56= q2
2 − p · q2 −m2 2.57= −p · q2. (2.61)

The yield of Eq. 2.60 is that only two independent factors f1 and f3 remain. The resulting invariant
amplitude can be further expanded with the use of the Gordon identity.

iMµ = ū(q2)(f1γ
µ + f3(q1 + q2))u

A.13= ū(q2)(f1γ
µ + f3(2mγµ − iσµν(q2 − q1)ν))u

2.56= ū(q2)((f1 + 2mf3)γµ − f3iσ
µνpν)u(q1) (2.62)

The prefactors are now accommodated in the form factors F1 and F2 defined as

F1

(
p2

m2

)
= i

e
(f1 + 2mf3) and F2

(
p2

m2

)
= − i

e
(2mf3). (2.63)

Inserting the form factors into Eq. 2.62 finalizes the structure of the invariant amplitude to

iMµ = (−ie)ū(q2)
[
F1(p2)γµ + F2(p2) i

2mσµνpν

]
u(q1). (2.64)

For the considered scenario, m is fixed which reduces the dependency only to p2. The comparison
of this expression with the tree-level diagram from Eq. 2.32 suggests the following choice for the
form factors, since there was no occurrence of σµνpν :

F1 = 1 and F2 = 0. (2.65)
In the tree-level calculation, we showed that the Landé factor arising from this diagram satisfies
precisely g = 2 (Eq. 2.53). This contribution is therefore covered by the form factor F1. In
conclusion, any deviations from g = 2 will originate from F2. When considering the non-relativistic
limit p → 0, F2 modifies the g-factor in the following way:

g = 2 + 2F2(0). (2.66)
The anomalous magnetic moment is for that reason defined as the deviation from g = 2

aµ = g − 2
2 = F2(0). (2.67)

In the calculations at higher loop orders, the anomalous magnetic moment can therefore be iden-
tified as the coefficient of the operator σµνpν normalized by 2m

e .

2.6 One-Loop QED Contribution
The goal is now to extract and identify the magnetic form factor F2(p2) as a component of the
invariant amplitude arising from the associated Feynman diagram. The calculation is retraced
from [13], P.318-320.

γ

µ− µ−

q1

k

µ−

p+ k

µ−

q2

p

k − q1

γ’

Figure 6: Topology of the one-loop QED diagram.
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2 The Anomalous Magnetic Moment in the Standard Model

The application of the Feynman rules yields

iMµ =
∫

R4

d4k

(2π)4 ū(q2) −gρν

(k − q1)2 + iε
(−ieγρ)

i(/p+ /k +m)
(p+ k)2 −m2 + iε

(−ieγµ)

× i(/k +m)
k2 −m2 + iε

(−ieγν)u(q1)

for the invariant amplitude, which can be simplified into

iMµ = −e3ū(q2)
∫

R4

d4k

(2π)4
γν(/p+ /k +m)γµ(/k +m)γν

[(k − q1)2 + iε][(p+ k)2 −m2 + iε][k2 −m2 + iε]u(q1) (2.68)

Since all arbitrary virtual momenta k are possible, an integral over the four-dimensional momentum
space is necessary. One can identify this integral to be of the form of

iMµ = −e3
∫

R4

d4k

(2π)4
Nµ

ABC
, (2.69)

where

Nµ = γν(/p+ /k +m)γµ(/k +m)γν

A = k2 −m2 + iε

B = (p+ k)2 −m2 + iε

C = (k − q1)2 + iε. (2.70)

In order to decompose the integral, we make use of the Feynman parameterization that is discussed
in Appendix A.4. For the case with three propagators in the denominator, it can be expanded via

1
ABC

= 2
∫ 1

0
dxdydz δ(x+ y + z − 1) 1

(Ax+By + Cz)3 . (2.71)

For x, y and z the relation
x+ y + z = 1 (2.72)

holds. In the following steps, the nominator and the denominator will be treated separately. We
start with a simplification of the innermost part of the denominator

Ax+By + Cz = (k2 −m2 + iε)x+ ((p+ k)2 −m2 + iε)y + ((k − q1)2 + iε)
= (k2 −m2 + iε)x+ (p2 + 2pk + k2 −m2 + iε)y + (k2 − 2kq1 + q2

1 + iε)z
= (k2 −m2 + iε)(1 − y − z) + yp2 + 2ypk + yk2 − ym2 + yiε+ zk2 − 2zkq1 + zq2

1 + ziε

= k2 −m2 + iε− yk2 + ym2 − yiε− zk2 + zm2 − ziε

+ yp2 + 2ypk + yk2 − ym2 + yiε+ zk2 − 2zkq1 + zq2
1 + ziε

= k2 −m2 + iε+ zm2 + yp2 + 2ypk − 2zkq1 + zq2
1

= k2 − (1 − z)m2 + yp2 + 2k(yp− zq1) + zq2
1 + iε ≡ D. (2.73)

In order to prepare an upcoming substitution, we will work out

(kµ + ypµ − zqµ
1 )2 = k2 + 2k(yp− zq1) + y2p2 − 2zypq1 + z2q2

1

⇔ k2 + 2k(yp− zq1) = (k + yp− zq1)2 − y2p2 + 2zypq1 − z2q2
1

so we can incorporate this new expression for the two terms in Eq. 2.73, resulting in

D = (kµ + ypµ − zqµ
1 )2 −y2p2 + 2zypq1 − z2q2

1 + yp2 + zq2
1 − (1 − z)m2︸ ︷︷ ︸

≡ −∆

+iε (2.74)

13



2 The Anomalous Magnetic Moment in the Standard Model

We can now simplify ∆:

∆ = y2p2 − 2zypq1 + z2q2
1 − yp2 − zq2

1 + (1 − z)m2

= −(1 − y)yp2 − 2zypq1 − z(1 − z)q2
1 + (1 − z)m2

= −(x+ z)yp2 − 2zypq1 − z(1 − z)m2 + (1 − z)m2

= −xyp2 − zyp2 − 2zypq1 + (1 − z)2m2

= −xyp2 − yz(p2 + 2pq1 + q2
1 − q2

1) + (1 − z)2m2

= −xyp2 − yz((p+ q1)2 − q2
1) + (1 − z)2m2

= −xyp2 + (1 − z)2m2. (2.75)

This leaves us with a compact version of the denominator

D = (kµ + ypµ − zqµ
1 )2 − ∆ + iε (2.76)

Introducing the substitution kµ −→ kµ − ypµ + zqµ
1 yields

iMµ = −2e3
∫

R4

d4k

(2π)4

∫ 1

0
dxdydz δ(x+ y + z − 1) Nµ

(k2 − ∆ + iε)3 (2.77)

for the amplitude. We will now further examine the numerator Nµ with the identities from
Appendix A.1

Nµ = γν(/p+ /k +m)γµ(/k +m)γν (2.78)
= γν/pγ

µ/kγν︸ ︷︷ ︸
1

+mγν/pγ
µγν︸ ︷︷ ︸

2

+ γν/kγ
µ/kγν︸ ︷︷ ︸
3

+mγν/kγ
µγν︸ ︷︷ ︸

4

+mγνγ
µ/kγν︸ ︷︷ ︸

5

+m2γνγ
µγν︸ ︷︷ ︸

6

. (2.79)

We can simplify the individual terms in the following by working with the Dirac matrix identities.
For term 1 and for term 3 analogously:

γνγ
ρpργ

µγσkσγ
ν = pρkσγνγ

ργµγσγν A.9= pρkσ(−2γσγµγρ) = −2/kγµ
/p. (2.80)

For term 2,4 and 5:

mγνγ
ρpργ

µγν = mpργνγ
ργµγν A.9= 4mpρg

ρµ = 4mpµ. (2.81)

For term 6:
m2γνγ

µγν A.9= −2m2γµ. (2.82)
Merging everything together results in

Nµ = −2(/kγµ
/p+ /kγµ/k − 2m(pµ + 2kµ) +m2γµ). (2.83)

Applying the substitution kµ −→ kµ − ypµ + zqµ
1 transforms this into

−1
2N

µ = (/k − y/p+ z /q1)γµ
/p+ (/k − y/p+ z /q1)γµ(/k − y/p+ z /q1) − 2m(pµ + 2(kµ − ypµ + zqµ

1 )) +m2γµ

=���/kγµ
/p− y/pγ

µ
/p+ z /q1γ

µ
/p+ /kγµ/k −

���y/kγµ
/p+����z/kγµ

/q1 −
���y/pγ

µ/k + y2
/pγ

µ
/p− yz/pγ

µ
/q1

+����z /q1γ
µ/k − yz /q1γ

µ
/p+ z2

/q1γ
µ
/q1 − 2mpµ −���4mkµ + 4mypµ − 4mzqµ

1 +m2γµ. (2.84)

All terms that are linear in k or /k vanish because of the symmetric integral bounds. The remaining
terms give us

−1
2N

µ = (−y/p+ z /q1)γµ
/p+ /kγµ/k + /pγ

µ(y2
/p− yz /q1) − /q1γ

µ(zy/p− z2
/q1)

+ 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ. (2.85)

The next goal is to evaluate all contracted momenta. We can identify the following four types
of combinations of γ-matrices which can be simplified. It is important to note that the vertex
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2 The Anomalous Magnetic Moment in the Standard Model

function is still enclosed by the spinors ū(q2) and u(q1) and thus enables the application of the
Dirac equation.

1) /pγ
µ
/p = pνpσγ

νγµγσ A.6= pνpσγ
ν(2gµσ − γσγµ) = 2/ppµ − /p/pγ

µ = 2( /q2 − /q1)pµ − p2γµ = −p2γµ

2) /kγµ/k = kνkσγ
νγµγσ 2.88= 1

4k
2gνσγ

νγµγσ = 1
4k

2γνγµγν
A.9= −1

2k
2γµ

3) γµ
/p = γµ( /q2 − /q1) = γµ( /q2 −m) = γµγνq2ν

−mγµ A.6= 2gµνq2ν
− /q2γ

µ −mγµ = 2(qµ
2 −mγµ)

4) /pγ
µ = ( /q2 − /q1)γµ = mγµ − /q1γ

µ = mγµ − q1ν
γµγν) = mγµ − 2qµ

1 + γµ
/q1 = 2(mγµ − qµ

1 ).
(2.86)

In the first calculation, we utilized that:

/p/p = pµpνγ
µγν A.6= pµpν(2gµν − γνγµ) = 2p2 − /p/p. (2.87)

For the second calculation,
kµkν = 1

4g
µνk2 (2.88)

was used. We can further examine the numerator Eq. 2.85 and want to sort everything the
following way:

−1
2N

µ = (−y/p+ z /q1)γµ
/p+ +/kγµ/k + /pγ

µ(y2
/p− yz /q1) − /q1γ

µ(zy/p− z2
/q1)

+ 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ

= −y/pγµ
/p+ z /q1γ

µ
/p+ y2

/pγ
µ
/p− yz/pγ

µ
/q1 − zy /q1γ

µ
/p+ z2

/q1γ
µ
/q1

+ /kγµ/k + 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ

= (y2 − y)/pγµ
/p+ z(1 − y) /q1γ

µ
/p− yz/pγ

µ
/q1 + z2

/q1γ
µ
/q1

+ /kγµ/k + 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ

2.56= (y2 − y)/pγµ
/p+ z(1 − y)( /q2 − /p)γµ

/p− yz/pγ
µ
/q1 + z2

/q2γ
µ
/q1 − z2

/pγ
µ
/q1

+ /kγµ/k + 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ

2.35= (y2 − y − z(1 − y))/pγµ
/p− z(y + z)m/pγµ + z(1 − y)mγµ

/p+ z2m2γµ

+ /kγµ/k + 2m(2y − 1)pµ − 4mzqµ
1 +m2γµ. (2.89)

We can now insert the expressions from Eq. 2.86 which results in

−1
2N

µ 2.86= −(y2 − (y + z) + yz)p2γµ − 2z(y + z)m(mγµ − qµ
1 ) + 2z(1 − y)m(qµ

2 −mγµ)

− 1
2k

2γµ + 2m(2y − 1)pµ − 4mzqµ
1 + (1 + z2)m2γµ

2.72= (−1
2k

2 − (y2 − (1 − x) + y(1 − x− y))p2 − 2z(1 − x)m2 − 2z(1 − y)m2 + (1 + z2)m2))γµ

+ (2z(1 − x)m− 4mz)qµ
1 + 2z(1 − y)mqµ

2 + 2m(2y − 1)pµ

=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z(1 − x+ 1 − y) + 1 + z2)m2
)
γµ

+ (2z(1 − x)m− 4mz)qµ
1 + 2z(1 − y)mqµ

2 + 2m(2y − 1)pµ︸ ︷︷ ︸
Ñµ

. (2.90)

From the underlined terms in Eq. 2.90 we want to construct a qµ
1 +qµ

2 occurrence in order to apply
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the Gordon identity. Ñµ is rearranged to:

Ñµ = (2(1 − x)zm− 4mz)qµ
1 + 2zm(1 − y)qµ

2 − 2m(1 − 2y)pµ

2.56= (2(1 − x)zm− 4zm+ 2zm(1 − y))qµ
2 − (2(1 − x)zm− 4zm+ 2m(1 − 2y))pµ

= −2zm(x+ y)qµ
2 − 2m((1 − x)z − 2z + 1 − 2y)pµ

2.72= −mz(1 − z)(qµ
2 + qµ

2 ) −m(2(1 − x)z − 4z + 2 − 4y)pµ

2.56= −mz(1 − z)(qµ
2 + qµ

1 + pµ) −m(2(1 − x)z − 4z + 2 − 4y)pµ

= −mz(1 − z)(qµ
2 + qµ

1 ) +m(−2(1 − x) + 4z − 2 + 4y − z(1 − z))pµ

= −mz(1 − x)(qµ
1 + qµ

2 ) +m(−2z + 2xz + 4z − 2 + 4y − z + z2)pµ

2.72= −mz(1 − x)(qµ
1 + qµ

2 ) +m(2(1 − x− y) + 2xz − 2 + 4y − z + z(1 − x− y))pµ

= −mz(1 − x)(qµ
1 + qµ

2 ) +m(xz − 2x+ 2y − yz)pµ

= −mz(1 − x)(qµ
1 + qµ

2 ) +m(z − 2)(x− y)pµ. (2.91)

Now the Gordon identity (Appendix A.13) can be use to replace qµ
1 + qµ

2 in the total numerator:

−1
2N

µ =
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z(2 − x− y) + 1 + z2)m2
)
γµ

−mz(1 − z)(qµ
1 + qµ

2 ) +m(z − 2)(x− y)pµ

A.13=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z(2 − x− y) + 1 + z2)m2
)
γµ

−mz(1 − z)(2mγµ − iσµνpν) +m(z − 2)(x− y)pµ

=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z(2 − x− y) + 1 + z2 − 2z(1 − z))m2
)
γµ

+ imz(1 − z)σµνpν +m(z − 2)(x− y)pµ

2.72=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z(1 + z) + 1 + z2 − 2z(1 − z))m2
)
γµ

+ imz(1 − z)σµνpν +m(z − 2)(x− y)pµ

=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (−2z − 2z2 + 1 + z2 − 2z + 2z2))m2
)
γµ

+ imz(1 − z)σµνpν +m(z − 2)(x− y)pµ

=
(

−1
2k

2 + (1 − x)(1 − y)p2 + (1 − 4z + z2))m2
)
γµ

+ imz(1 − z)σµνpν +m(z − 2)(x− y)pµ. (2.92)

The reduction of the numerator to this compact form allows us to extract the magnetic contribution
via the magnetic formfactor F2(p2), which accommodates everything that is proportional to σµνpν .
The relevant part of the numerator labeled as Nµ

m then becomes

Nµ
m = −2imz(1 − z)σµνpν . (2.93)

Recalling from Eq. 2.64 that the formfactor F2(p2) was defined as the coefficient of pν ū(q2)σµνu(q1)
normalized by a factor of 2m/e yields the following expression for the formfactor:

F2(p2) = 2m
e

(
4ie3m

∫ 1

0
dxdydz δ(x+ y + z − 1)

∫
R4

d4k
z(1 − z)

(k2 − ∆ + iε)3

)
. (2.94)

Utilizing ∫
R4

d4k
1

(k2 − ∆ + iε)3 = −i
32π2∆ (2.95)

(proven in Appendix A.5) simplifies the formfactor with the denominator from Eq. 2.75 to

F2(p2) = 8m2e2

32π2

∫ 1

0
dxdydz δ(x+ y + z − 1) z(1 − z)

−xyp2 + (1 − z)2m2 . (2.96)
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In the non-relativistic limit of p2 −→ 0 this aggregates in

F2(0) = 8e2

32π2

∫ 1

0
dxdydz δ(x+ y + z − 1) z

(1 − z) . (2.97)

Performing the integration finalizes the calculation under the introduction of the fine-structure
constant α = e2/4π

F2(0) = α

π
=
∫ 1

0
dz

∫ 1−z

0
dy

z

1 − z

= α

π

∫ 1

0
dz

(
zy

1 − z

∣∣∣∣1−z

0

)
= α

π

∫ 1

0
dz z (2.98)

into the result of
F2(0) = α

2π (2.99)

which is the one-loop contribution to the anomalous magnetic moment of the muon. This result was
first calculated by Julian Schwinger in 1948 [6]. Together with Eq. 2.66 we obtain the numerical
value of:

aµ = α

2π ≈ 0.00116 and g =
(

2 + α

π

)
≈ 2.00232. (2.100)

One can notice that this result is independent of the fermion mass and is therefore the same for
all leptons. For the current theoretical value of aµ(SM) [3], QED diagrams up to the fifth loop
order O(α5) have been numerically evaluated, making it the most precise calculated quantity in
particle physics. Besides the QED diagrams, there are also contributions from electroweak and
hadronic loop diagrams. The hadronic contributions are the biggest source of uncertainty, since
non-perturbative methods from lattice QCD have to be used.

3 Electroweak One-Loop Contributions for Scalar-Fermion
Interactions

The discrepancy between the theoretical and experimental value of aµ raises the assumption that
there are missing contributions within the SM prediction. For that reason, a general approach of
describing one-loop electroweak interactions of fermions and scalars is presented, which can then
be adjusted for possible beyond Standard Model (BSM) models.

3.1 The Anomalous Magnetic Moment in Arbitrary Scalar-Fermion In-
teraction Models

The goal is now to obtain general formulae for the relevant contribution to the AMM arising from
electroweak interactions. As a preparation for the upcoming calculation, the interaction vertices
between scalars and fermions have to be analyzed with the aim to extract the associated Feynman
rules. Interactions between scalars and fermions are in general mediated by Yukawa interactions.
The Yukawa interaction Lagrangian [14] is given by as:

LYukawa =
∑
F,H

µ−(cs + cpγ
5)FH + h.c.

=
∑
F,H

µ−(cs + cpγ
5)FH +H∗ · F̄ (c∗

s − c∗
pγ

5)µ− (3.1)

where µ, F , and H are the gauge fields and cs and cp are the model dependent scalar and pseu-
doscalar complex coupling constants. The summation is performed over all fermions and Higgs
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scalars of the corresponding model. The relative minus sign is the result of the anti-commutative
nature of the γ5 matrix (Eq. A.11):(

µ−(cs + cpγ
5)FH

)†
=
(
H∗F †(c∗

s + c∗
pγ

5) · µ−†)
=
(
H∗F †(c∗

s + c∗
pγ

5) · γ0µ−)
A.11=

(
H∗F̄ (c∗

s − c∗
pγ

5) · µ−) . (3.2)

From this Lagrangian, the vertex rules can be read off by removing the fields and including a factor
of −i:

H

F

µ

= −i(cs + cpγ
5)

µ

F

H

= −i(c∗
s − c∗

pγ
5)

3.2 Photon Absorption from the Internal Scalar Line
The first scenario under investigation is depicted in the Feynman-diagram in Fig. 7. The incoming
muon splits up into virtual fermion F and a virtual scalar H. The scalar then interacts with the
photon from the electromagnetic field. For this interaction, the scalar has to be at least singly
charged.

γ

µ− µ−

q1

k

H

p+ k

H

q2

p

q1 − k

F

Figure 7: Topology of the electroweak one-loop diagram with an electromagnetic interaction me-
diated from a scalar.

The application of the Feynman-rules from Appendix A.2 leads to the following form of the invari-
ant amplitude:

iMµ =
∫

R4

d4k

(2π)4 ū(q2)(−i(cs + cpγ
5))

i( /q1 − /k +mF )
(q1 − k)2 −m2

F + iε

i

(p+ k)2 −m2
H + iε

(−iqHe(2k + p))

× i

k2 −m2
H + iε

(−i(c∗
s − c∗

pγ
5))u(q1).
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This can be simplified into

iMµ = qH · e
∫

R4

d4k

(2π)4 ū(q2)
(cs + cpγ

5)( /q1 − /k +mF )(2k + p)(c∗
s − c∗

pγ
5)

((q1 − k)2 −m2
F + iε)((p+ k)2 −m2

H + iε)(k2 −m2
H + iε)u(q1).

(3.3)
Just as for the QED calculation one can identify the following structure of the integral:

iMµ = qH · e
∫

R4

d4k

(2π)4
Nµ

ABC
(3.4)

where

Nµ = (cs + cpγ
5)( /q1 − /k +mF )(2k + p)(c∗

s − c∗
pγ

5)
A = k2 −m2

H + iε

B = (p+ k)2 −m2
H + iε

C = (q1 − k)2 −m2
F + iε. (3.5)

In order to decompose this integral, the Feynman parameterization is introduced. In the case of
n = 3 factors in the denominator, it can be expanded via

1
ABC

= 2
∫ 1

0
dxdydz δ(x+ y + z − 1) 1

(Ax+By + Cz)3 (3.6)

In the following steps, the nominator and the denominator will be treated separately. We start
with a simplification of the innermost part of the denominator.

Ax+By + Cz = x(k2 −m2
H + iε) + y((p+ k)2 −m2

H + iε) + z((q1 − k)2 −m2
F + iε)

= (1 − y − z)(k2 −m2
H + iε) + y(p2 + 2pk + k2 −m2

H + iε) + z(q2
1 − 2q1k + k2 −m2

F + iε)
= k2 − (1 − z)m2

H + yp2 + 2ypk + zq2
1 − 2zq1k − zm2

F + iε

= k2 − (1 − z)m2
H + yp2 + 2k(yp− zq1) + zq2

1 − zm2
F + iε (3.7)

In order to prepare the k substitution we expand

(kµ + ypµ − zqµ
1 )2 = k2 + 2k(yp− zq1) + y2p2 − 2zypq1 + z2q2

1

⇔ k2 + 2k(yp− zq1) = (k + yp− zq1)2 − y2p2 + 2zypq1 − z2q2
1 (3.8)

so that the denominator D becomes

D = (k + yp− zq1)2 −y2p2 + 2zypq1 − z2q2
1 − (1 − z)m2

H + yp2 + zq2
1 − zm2

F︸ ︷︷ ︸
≡ −∆‘

+iε. (3.9)

The auxiliary variable ∆‘ is used to store all non k-dependent terms

∆‘ = y2p2 − 2zypq1 + z2q2
1 + (1 − z)m2

H − yp2 − zq2
1 + zm2

F

= −y(1 − y)p2 − 2zypq1 − z(1 − z)q2
1 + (1 − z)m2

H + zm2
F

= −y(x+ z)p2 − 2zypq1 − z(x+ y)q2
1 + (1 − z)m2

H + zm2
F

= −xyp2 − yzp2 − 2zypq1 − zxq2
1 − zyq2

1 + (1 − z)m2
H + zm2

F

= −xyp2 − yz(p+ q1)2 − zxq2
1 + (1 − z)m2

H + zm2
F

= −xyp2 − yzq2
2 − zxq2

1 + (1 − z)m2
H + zm2

F

= −xyp2 − z(x+ y)m2
µ + (1 − z)m2

H + zm2
F

= −xyp2 − z(1 − z)m2
µ + (1 − z)m2

H + zm2
F

= −xyp2 +m2
µz

2 +m2
H(1 − z) + (m2

F −m2
µ)z. (3.10)

The denominator can now be expressed as

D = (kµ + ypµ − zqµ
1 )2 − ∆‘ + iε (3.11)
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where the substitution kµ −→ kµ − ypµ + zqµ
1 yields

D = k2 − ∆‘ + iε. (3.12)

We can now examine the numerator

Nµ = ū(q2)(cs + cpγ
5) ( /q1 − /k +mF )(2k + p)︸ ︷︷ ︸

≡ ζµ

(c∗
s − c∗

pγ
5)u(q1). (3.13)

The innermost part defined as ζµ will be evaluated by starting off with the substitution
kµ → kµ − ypµ + zqµ

1 :

ζµ = 2 /q1k + /q1p− 2/kk − /kp+ 2mF k
µ +mF p

µ

sub= 2 /q1(kµ − ypµ + zqµ
1 ) + /q1p− 2(/k − y/p+ z /q1)(kµ − ypµ + zqµ

1 ) − (/k − y/p+ z /q1)pµ

+ 2mF (kµ − ypµ + zqµ
1 ) +mF p

µ

lin=
�
��2 /q1k

µ − 2y /q1p
µ + 2z /q1q

µ
1 + /q1p

µ − 2/kkµ +���2y/kpµ −���2z/kqµ
1 +

���2y/pkµ − 2y2
/pp

µ + 2yz/pqµ
1

−����2z /q1k
µ + 2yz /q1p

µ − 2z2
/q1q

µ
1 −�

�/kpµ + y/pp
µ − z /q1p

µ +����2mF k
µ − 2mF yp

µ + 2mF zq
µ
1 +mF p

µ

= −2/kkµ + (−2ypµ + 2zqµ
1 + pµ + 2yzpµ − 2z2qµ

1 − zpµ) /q1 + (−2y2pµ + 2yzqµ
1 + ypµ)/p

+ (−2ypµ + 2zqµ
1 + pµ)mF

= −2/kk + (2z(1 − z)qµ
1 + (1 − z)pµ + 2yzpµ − 2ypµ) /q1 + (−y(2y − 1)pµ + 2yzqµ

1 )( /q2 − /q1)
+mF (2zqµ

1 − (2y − 1)pµ)

= −1
2k

2γµ + ((2zqµ
1 + pµ)(1 − z) − 2y(1 − z)pµ + y(2y − 1)pµ − 2yzqµ

1 ) /q1

+ y(2zqµ
1 − (2y − 1)pµ) /q2 + (2zqµ

1 − (2y − 1)pµ)mF

2.72= −1
2k

2γµ + (2zqµ
1 + pµ)(x+ y) − 2(x+ y) + y(2y − 1)pµ − 2yzqµ

1 ) /q1

+ y(2zqµ
1 − (2y − 1)pµ) /q2 + (2zqµ

1 − (2y − 1)pµ)mF

= −1
2k

2γµ + x(2zqµ
1 − (2y − 1)pµ) /q1 + y(2zqµ

1 − (2y − 1)pµ) /q2 + (2zqµ
1 − (2y − 1)pµ)mF

= −1
2k

2γµ + (2zqµ
1 − (2y − 1)pµ)(x /q1 + y /q2 +mF ). (3.14)

Reconstructing Nµ yields

Nµ = (cs + cpγ
5)(−1

2k
2γµ + (2zqµ

1 − (2y − 1)pµ)(x /q1 + y /q2 +mF )(c∗
s − c∗

pγ
5). (3.15)

In order to apply the Dirac equation we have to commute c∗
s + c∗

pγ
5. Since the γ5 matrix anticom-

mutes with all other γ matrices, we will get a relative minus sign from the commutation with /q1
and /q2

Nµ = (cs + cpγ
5)(c∗

s (−1
2k

2γµ + (2zqµ
1 − (2y − 1)pµ)(x /q1 + y /q2 +mF )︸ ︷︷ ︸

≡ ζµ
+

)

+ c∗
pγ

5(−1
2k

2γµ + (2zqµ
1 − (2y − 1)pµ)(x /q1 + y /q2 −mF )︸ ︷︷ ︸

≡ ζµ
−

)

= |cs|2ζµ
+ + |cp|2ζµ

− + γ5(csc
∗
pζ

µ
− + c∗

scpζ
µ
+). (3.16)

We can now apply the Dirac equation to transform /q1 and /q2 both into mµ such that

ζµ
± = −1

2k
2γµ + (2zqµ

1 − (2y − 1)pµ)((1 − z)mµ ±mF ) (3.17)
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where Eq. 2.72 is used again. Now we incorporate 2q1 = q1 + q2 − p resulting in

ζµ
± = −1

2k
2γµ + (z(qµ

1 + qµ
2 ) − (z − (2y − 1))pµ)((1 − z)mµ ±mF )

A.13= −1
2k

2γµ + (z(2mγµ − iσµνpν) − (z − (2y − 1))p) ((1 − z)mµ ±mF ). (3.18)

Since only the terms proportional to σµνpν contribute a to the AMM all other terms are neglected
such that

ζµ
± = −iz((1 − z)mµ ±mF )σµνpν . (3.19)

By examining the structure of Eq. 3.16 it becomes evident that only the terms proportional to
|cs|2 and |cp|2 contribute, since the crossing terms are multiplied with γ5. Nµ takes now the form
of

Nµ = (−iz)(|cs|2((1 − z)mµ +mF ) + |cp|2((1 − z)mµ −mF )︸ ︷︷ ︸
e

2m F2(p2)

σµνpν (3.20)

where we identify the formfactor F2(p2). Bringing together the expressions for the nominator and
the denominator gives us

F2(p2) = −qHe · 2m
e

· 2
∫

R4

d4k

(2π)4

∫ 1

0
dxdydz δ(x+ y + z − 1)

× iz|cs|2((1 − z)mµ +mF ) + |cp|2((1 − z)mµ −mF )
(k2 − ∆‘ + iε)3 . (3.21)

The numerator is independent of k. This enables us to evaluate the k integration immediately
using again (Appendix A.5) ∫

R4

d4k

(2π)4
1

(k2 − ∆‘ + iε)3 = −i
32π2∆‘ . (3.22)

This leads to

F2(p2) = −
qHm

2
µ

8π2

∫ 1

0
dxdydz δ(x+ y + z − 1)

×
|cs|2(z(1 − z) + mF

mµ
) + |cp|2(z(1 − z) − mF

mµ
)

−xyp2 +m2
µz

2 +m2
H(1 − z) + (m2

F −m2
µ)z . (3.23)

Applying the non-relativistic limit (p2 → 0) and performing the x-integration yields

F2(0) = −
qHm

2
µ

8π2

∫ 1

0
dz

∫ 1−z

0
dy

×
|cs|2(z(1 − z) + mF

mµ
) + |cp|2(z(1 − z) − mF

mµ
)

m2
µz

2 +m2
H(1 − z) + (m2

F −m2
µ)z . (3.24)

We can now evaluate the y-Integration:

F2(0) = −
qHm

2
µ

8π2

∫ 1

0
dz

(|cs|2(z(1 − z) + mF

mµ
) + |cp|2(z(1 − z) − mF

mµ
))(1 − z)

m2
µz

2 +m2
H(1 − z) + (m2

F −m2
µ)z . (3.25)

In the final step we apply the substitution z‘ = 1 − z:

F2(0) = −
qHm

2
µ

8π2

∫ 1

0
dz‘

(|cs|2((z‘ − 1)(z‘) + mF

mµ
) + |cp|2((z‘ − 1)(z‘) − mF

mµ
))(z‘)

m2
µ(1 − z‘)2 +m2

Hz‘ + (m2
F −m2

µ)(1 − z‘) . (3.26)

Expanding the terms gives us the final expression for the electroweak one-loop contribution to the
AMM.

as
µ = −

qHm
2
µ

8π2

∫ 1

0
dz‘

|cs|2(z‘3 − z‘2 + mF

mµ
(z‘2 − z‘)) + |cp|2(z‘3 − z‘2 − mF

mµ
(z‘2 − z‘))

m2
µz‘2 +m2

F (1 − z‘) + (m2
H −m2

µ)z‘ (3.27)

which is in accordance with the expression for [aµ]c in [14] and was also cross-checked with the
extension package-X [7] in Mathematica (Appendix A.6).
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3.3 Photon Absorption from the Internal Fermion Line
In this topology, the internal charged fermion interacts with a photon of the electromagnetic field.

γ

µ− µ−

q1

k

F

p+ k

F

q2

p

q1 − k

H

Figure 8: Topology of the Feynman diagram corresponding to the absorption of a photon via the
internal fermion line.

The application of the Feynman rules results in the following invariant amplitude:

iMµ =
∫

R4

d4k

(2π)4 ū(q2)(−i(cs + cpγ
5) i

(q1 − k)2 −m2
H + iε

i(/p+ /k +mF )
(p+ k)2 −m2

F + iε

× (iqF eγ
µ) i(/k +mF )
k2 −m2

F + ie
(−i(c∗

s − c∗
pγ

5)u(q1) (3.28)

which can be simplified to

iMµ = −qF e

∫
R4

d4k

(2π)4 ū(q2)
(cs + cpγ

5)(/p+ /k +mF )γµ(/k +mF )(c∗
s − c∗

pγ
5)

((p+ k)2 −m2
F + iε)((q1 − k)2 −m2

H + iε)(k2 −m2
F + iε) (3.29)

The contribution to the AMM is given as

FF
2 (q2) = −

qFm
2
µ

8π2

∫ 1

0
dz‘

|cs|2(−z‘3 + z‘2 + mF

mµ
z‘2) + |cp|2(−z‘3 + z‘2 − mF

mµ
z‘2)

m2
µz‘2 +m2

H(1 − z‘) + (m2
F −m2

µ)z‘ (3.30)

This result can also be reproduced with package-X [7] in Mathematica (see. Appendix A.6).

4 The Two-Higgs-Doublet Model
The 2HDM extends the scalar sector of the SM and is mostly motivated by the concept of super-
symmetry [15]. The 2HDM provides a rich phenomenology enabling the explanation of various
unsolved phenomena in the Standard Model eg. dark matter and neutrino mass [16], the baryoge-
nesis [17] and -out of particular interest for this work- the muon g − 2 anomaly. In the following
section, the muon (g − 2) anomaly is resolved within the 2HDM, resulting in constraints on the
properties of the new BSM particles in question. The following description of the 2HDM is based
on [5],[18],[19].

4.1 Introduction to the Two-Higgs-Doublet Model
The 2HDM proposes the existence of a second SU(2) Higgs doublet Φ2 alongside the SM doublet
Φ1, each carrying hypercharge of Y = 1/2:

Φi =
(

ϕ+
i

1√
2 (vi + ρi + iηi)

)
i = 1, 2 (4.1)
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4 The Two-Higgs-Doublet Model

Both doublets acquire vacuum expectation values (VEV) of ⟨Φi⟩ = vi/
√

2. Complying with the
conservation of the hypercharge, it turns out to be convenient to represent the doublets in a rotated
basis given as (

H1
H2

)
=
(

cosβ sin β
− sin β cosβ

)(
Φ1
Φ2

)
. (4.2)

Here, β is the defined as β = arctan (v2/v1) where vi is the VEV of the corresponding doublet. In
this specific basis, only the H1 doublet acquires a non-vanishing VEV:

⟨H1⟩ = v√
2

and ⟨H2⟩ = 0. (4.3)

The rotated doublets can be parameterized as:

H1 =
(

G+
1√
2 (v +H0

1 + iG0)

)
, H2 =

(
H+

1√
2 (H0

2 + iA0)

)
. (4.4)

In this form, G+ and G0 are the Goldstone Bosons, that get eaten up by the W - and Z-Bosons
in the process of electroweak symmetry breaking. The remaining particles are two neutral CP-
even scalars H0

1,2, a CP-odd scalar A and a charged scalar H+. The VEV is now given as v =√
v2

1 + v2
2 ≈ 246 GeV. The potential in the rotated basis takes the form of:

V = m2
11H

†
1H1 +m2

22H
†
2H2 − {m2

12(H†
1H2 +H†

2H1)}

+ λ1

2 (H†
1H1)2 + λ2

2 (H†
2H2)2 + λ3(H†

1H1)(H†
2H2)

+ λ4(H†
1H2)(H†

2H1) + λ5

2 (H†
1H2)2 + λ∗

5
2 (H†

2H1)2

+ λ6(H†
1H1)(H†

1H2) + λ∗
6(H†

2H1)(H†
1H1)

+ λ7(H†
2H2)(H†

1H2) + λ∗
7(H†

2H1)(H†
2H2) (4.5)

where m2
12 and λ5,6,7 can be complex in general and the rest of the parameters are real. The

masses of these particle can be obtained by finding the eigenvalues to the mass eigenstates of the
the squared mass matrix given as:

M2
ij = ∂2V

∂ϕ†
i∂ϕj

(4.6)

where ϕi is the corresponding particle. The explicit calculation of the diagonal elements can be
found in Appendix A.7. The mass matrix for the charged scalars is already diagonalized. For the
neutral scalars M2 reads in the basis {H0

1 , H
0
2 , A

0} [18]:

M2 =

 λ1v
2 λ6v

2 −Im(λ6)v2

λ6v
2 M2

22 + 1
2v

2(λ3 + λ4 + λ5) − 1
2 Im(λ5)v2

−Im(λ6)v2 − 1
2 Im(λ5)v2 M2

22 + 1
2v

2(λ3 + λ4 − λ5)

 . (4.7)

In the CP-conserving limit, all parameters are real. The CP-odd scalar therefore decouples from
the CP-even scalars. The physical scalars h (SM Higgs) and H (BSM scalar) are connected to H0

1
and H0

2 via the relation (
h
H

)
=
(

cos (α− β) sin (α− β)
− sin (α− β) cos (α− β)

)(
H0

1
H0

2

)
, (4.8)

where the mixing angle is given as

sin (2(α− β)) = 2v2λ6

m2
H −m2

h

. (4.9)
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In the alignment limit, α ≈ β holds. In this case, H0
1 becomes the SM Higgs h and H0

2 is the new
BSM CP-even scalar. The alignment limit also requires λ6 to be zero and diagonalizes the mass
matrix. The mass expressions for the scalars can therefore directly be read off from Eqs. 4.7 and
A.42 to be:

m2
h = λ1v

2

m2
H = m2

22 + v2

2 (λ3 + λ4 + λ5)

m2
A = m2

22 + v2

2 (λ3 + λ4 − λ5)

m2
H+ = m2

22 + v2

2 λ3 (4.10)

Now, the restrictions on the masses of the individual scalars can be discussed with respect to
experimental data. Regarding a lower mass bound for the charged scalar, there are experimental
constraints from collision experiments at the Large Electron-Positron Collider (LEP) [20] that
require mH+ ≥ 110 GeV. Experiments that searched for a charged scalar with a mass below this
threshold could not prove the existence. A detailed explanation of the derivation of this lower
bound can be found in [19].
Further restrictions come from the extensively investigated decay of the Z-Boson Z → AH [21],[22].
The fact that this decay could not be detected suggests that both scalars can not be simultaneously
lighter than the Z-boson withmZ ≈ 91 GeV. Further restrictions that have to be taken into account
regarding the T-parameter, that plays a role in electroweak precision measurements. In order to
favour these constraints, the choice of mA0 = mH+ turns out to be convenient. Details on the
T-parameter constraint are presented in [19].
Based on these restrictions, we assume the CP-even scalar to be in the light state. To give an
outlook, this assumption will be further justified in the subsequent sections.
Besides the discussed lower bounds that are mostly motivated by experimental data, there are also
perturbative restrictions arising from the coupling parameters from Eq. 4.10. From now on, we
choose the CP-even scalar to be in the light state which allows the choice of mH = m22. This
caused λ3 + λ4 = −λ5 and consequently results in the following expressions:

m2
H = m2

22

m2
A = m2

H − v2λ5

m2
H+ = m2

H − v2

2 (λ4 + λ5) (4.11)

The assumption that mA0 = mH+ forces λ4 = λ5 ≡ λ to hold. If the mass of the light CP-even
state is neglected, we obtain

m2
H+ = m2

A = −v2λ (4.12)
which puts an upper bound on the masses of the charged and the CP-odd scalar. This is due
to perturbative conditions that require λ to be sufficiently small for convergence. Given mH+ =
110 GeV, this leads to λ = −0.2. To avoid the risk of divergence, |λ| ≤ 2 provides an suitable
upper bound for perturbative convergence. Higher mass splittings would lead to larger values of
λ. In order to avoid possible perturbative divergences for higher masses of the CP-odd scalar, it
turns out to be convenient to use the lowest possible bound for the heavy states. In total, the mass
hierarchy reads

mH+ = mA = mH + 110 GeV. (4.13)

4.2 The Anomalous Magnetic Moment for Different Textures of Yukawa
Couplings

Interactions between fermions and scalars are mediated via Yukawa couplings. The interaction
Lagrangian in the 2HDM [23] is given as

−L = Ỹ ℓ̄LH1ℓR + Y ℓ̄LH2ℓR + h.c., (4.14)
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where ℓL is a left handed doublet and ℓR is a right handed singlet. Ỹ and Y are independent 3x3
matrices, containing the possible Yukawa couplings. All new scalars are contained in the second
doublet H2. In conclusion, the first doublet and Ỹ are responsible for giving mass to the SM
leptons. The effective Lagrangian for the study of ∆aµ is then given by the terms arising from the
second doublet as

−Ly ⊃ 1√
2

(
[Y H0

ij H0 + iY A0

ij A0]ℓ̄LiℓRj + ℓ̄RjℓLi[Y H0

ji H0 − iY A0

ji A0]
)

+ Y H+

ij ν̄LiℓRjH
+ +H− ¯ℓRjνLiY

H−

ji , (4.15)

There are a total of four different Yukawa textures that are examined in the upcoming sections. In
order to analyze different scenarios of interactions of the predicted BSM scalars with the leptons
from the SM, different textures of the Yukawa coupling matrix are examined. Each scenario
corresponds to different fermiotic lines in the diagrams from Figs. 7 and 8. The form of the
Yukawa matrix in the lepton sector takes the form of

Yij =

Yee Yeµ Yeτ

Yµe Yµµ Yµτ

Yτe Yτµ Yττ

 , (4.16)

where the first index refers to the virtual fermion in the loop and the second index to the incoming
and outgoing fermion. The entries are taken to be real.

4.2.1 Texture 1: Muon-Muon Yukawa Coupling Matrix

The first case to be analysed contains a Yukawa matrix texture as follows:

Yij =

0 0 0
0 Yµµ 0
0 0 0

 . (4.17)

This Yukawa interaction corresponds to the scenario in which the internal fermion line in Figs. 7
and 8 is represented by a muon. The goal is now to find expressions for the scalar and pseudoscalar
couplings cs and cp by comparing the coefficients from the generalized Lagrangian in Eq. 3.1. This
allows us to incorporate these expressions to the results for arbitrary models from Eqs. 3.27 and
3.30. We can incorporate the Yukawa texture in Eq. 4.15 and group everything together:

−Ly ⊃ 1√
2
(
[YµµH

0 + iYµµA
0]µ̄LµR + µ̄RµL[H0Yµµ − iA0Yµµ]

)
+ Yµµν̄LµRH

+ +H−µ̄RνLYµµ. (4.18)

The charge of H+ need to obey the charge conservation in the Feynman diagram in Fig. 7. Since
the muon carries a charge of qµ = −1 and the charged scalar is singly charged, the fermion has
to be neutral qF = 0. This can either be realized by qH+ = −1 and the momentum direction in
clockwise direction or qH+ = +1 and the momentum direction in the counterclockwise direction
in the loop. The choice of qH+ = −1 is made from now on. For that reason, the term associated
with the H− scalar will be omitted from this point because H− would not add new contributions.
With this considerations, the Lagrangian reduces to:

−L ⊃ 1√
2
(
Yµµ(µ̄LµR + µ̄RµL)H0 + iYµ(µ̄LµR − µ̄RµL)A0)+ Yµµν̄LµRH

+. (4.19)

Inserting the projection operators (Appendix A.8) results in

−L ⊃ 1
2
√

2
Yµµµ̄((1 + γ5) + (1 − γ5))µH0

+ 1
2
√

2
iYµµµ̄((1 + γ5) − (1 − γ5))µA0

+ 1
2Yµµν̄Li(1 + γ5)µH+, (4.20)
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4 The Two-Higgs-Doublet Model

which can be simplified into

L ⊃ − 1√
2
Yµµµ̄µH

0 − 1√
2
iYµµµ̄ · γ5µ ·A0 − Yµµν̄Li(1 + γ5)µH+. (4.21)

From this reduced Lagrangian, explicit expressions for cs and cp can be obtained by comparing
the coefficients with Eq. 3.1 after removing the fields:

For H0 : cs = − 1√
2
Yµµ, cp = 0

For A0 : cs = 0, cp = − i√
2
Yµµ

For H+ : cs = −1
2Yµµ, cp = −1

2Yµµ. (4.22)

This results can now be incorporated into the general equations Eqs. 3.27 and 3.30 to concretize
for the individual contributions.
The contributions of the H+ scalar will be embedded in the expression arising from Eq. 3.27.
From now on, the variable z′ is renamed as x.

∆aH+

µ = −
qHm

2
µ

8π2

∫ 1

0
dx

|cs|2(x3 − x2 + mF

mµ
(x2 − x)) + |cp|2(x3 − x2 − mF

mµ
(x2 − x))

m2
µx

2 +m2
F (1 − x) + (m2

H −m2
µ)x

4.22=
Y 2

µµ

16π2

∫ 1

0
dx

x3 − x2

x2 + ( mF

mµ
)2(1 − x) + (( mH

mµ
)2 − 1)x

=
Y 2

µµ

16π2

∫ 1

0
dx

x3 − x2

x2 + (z2
H+ − 1)x with zH+ = mH+

mµ
. (4.23)

In the last step, the term proportional to (mF /mµ)2 was left out in the denominator. Under the
constraint of charge conservation, the Feynman diagram from Fig. 7 allows in general multiply
charged scalars and fermions. In the specific case of the 2HDM, the charged scalar is singly charged
which requires the internal fermion to be neutral. Since the 2HDM only extends the scalar sector
of the SM, the internal fermion line must be represented by a SM fermion with charge zero. The
only particles with this property that come into question are neutrinos, which masses are negligible
compared to the other leptons. Therefore, the contribution to the AMM from the charged scalar
is independent of the fermion mass and conclusively remains the same for all discussed scenarios.
The AMM contributions for the CP-even and CP-odd scalar are determined in a similar way by
incorporating the expressions from Eq. 4.22 into Eq. 3.30. For H0 we obtain

∆aH0

µ = −
qFm

2
µ

16π2

∫ 1

0
dx

|cs|2(−x3 + x2 + mF

mµ
x2) + |cp|2(x3 + x2 − mF

mµ
x2)

m2
µx

2 +m2
H0(1 − x) + (m2

F −m2
µ)x

=
Y 2

µµ

16π2

∫ 1

0
dx

2x2 − x3

x2 + z2
H(1 − x) with zH0 = mH

mµ
. (4.24)

We set mF = mµ in accordance with the selected Yukawa texture as stated in Eq. 4.57. With the
same considerations, one can obtain the form of ∆aA0

µ :

∆aA0

µ =
Y 2

µµ

16π2

∫ 1

0
dx

−x3

x2 + z2
A0(1 − x) with zA = mA

mµ
. (4.25)

The total contribution to the muon (g − 2) anomaly then arises as a sum of all individual terms
as:

∆aµ = ∆aH+

µ + ∆aA0

µ + ∆aH0

µ . (4.26)
At this point we steer the focus back on the chosen mass hierarchy from Eq. 4.13 to examine the
effect it has on the individual contributions to the AMM. We will now first examine the case in
which all masses of the scalars labeled as mS are equal:

mS ≡ mH0 = mA0 = mH+ . (4.27)
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By incorporating this assumption, the individual contributions from Eqs. 4.23-4.25 are visualized
in Fig. 9 a). One can observe that the CP-even scalar is the only one that shows a global positive
behaviour whereas the share from the CP-odd scalar is strictly negative. The charged scalar
contributions shows an oscillatory behaviour in the range below mµ. This is caused by the sign flip
that occurs in the denominator in the lower proximity of mµ. The important fact to recall is, that
∆aµ is in the positive direction. This observation raises the necessity to suppress the influence
of the CP-odd and charged scalar. A suppression can be achieved by assuming the masses of the
charged and CP-odd scalar to be larger than the CP-even scalar so that the denominator increases
in the respective equations.
Embedding the mass hierarchy into the individual contributions obtains the result presented in Fig.
9 a). One can observe that the contributions of the CP-odd and charged scalar are significantly
suppressed compared to the CP-even scalar. When a higher mass splitting of ∆m = 200 GeV
is applied, influence of the heavy states is even further degraded. The effect of different mass
splittings on the total contribution only shows a diminished effect in the high mass domain. Since
this does not notably change the total contribution, the choice of ∆m = 110 GeV is suitable. The
Z → AH condition gave us the freedom to choose, whether the CP-even or the CP-odd scalar
occupies a heavy state. By choosing the CP-odd scalar to be heavy, the negative contribution is
automatically suppressed. Hence, the chosen mass split from Eq. 4.13 turns out to be a good
choice for this scenario.
At this point, it is possible make a statement on the role of the charged scalar. We showed that the
contribution from the charged scalar is independent of the internal fermion in the loop of Fig 7.
Due to the LEP constraint, the charged scalar is forced to occupy a heavy state which suppresses
the contribution to the AMM. For that reason, the contribution from the charged scalar can be
neglected for all the other cases that are about to be discussed.
The next step of the analysis includes a parameter space scan, in which different combinations of
Yµµ and mH are tested for an agreement with ∆aµ in the 1σ and 2σ allowed region. The allowed
Pairs are plotted in Fig. 10. The intervals for the parameters were chosen to be in the ranges of
Yµµ ∈ [10−4, 1] andmH ∈ [10−2, 103] GeV. A total of 20000 pairs of randomly selected values within
the given ranges are tested. The integrals are numerically evaluated with the scipy.integrate-library
in Python.

a) mS = mH = mA = mH+ b) mH = mA,H+ − ∆m

Figure 9: Individual contributions to ∆aµ from the charged scalar (continuous), the CP-even scalar
(dashed) and the the CP-odd scalar (dotted) from Eqs. 4.23-4.25. The sum of all contribution is
marked with a dotted-dashed line in b). The oscillations belong exclusively to the charged scalar.
In a), all masses of the scalars are equal. In b), two different mass splittings ∆m are applied to
the mass hierarchy. The Yukawa coupling was fixed to Yµµ = 0.1 in b). The gray shaded band
indicates the 2σ region of ∆aµ.
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Figure 10: Parameter Space indicating the allowed combinations of the Yukawa coupling Yµµ and
mH that are consistent with the 1σ and 2σ region of ∆aµ using Eq. 4.26 with the mass hierarchy
from Eq. 4.13. Furthermore, the experimentally excluded regions from SLAC beam dump E137
(blue shaded) [24], BaBar (gray shaded) [25] and CMS (green shaded) [26] are visualized. Also
shown is the projected sensitivity from Belle-II [27] (gray dotted line) and from CMS (green dotted
line) that indicate a potentially excluded region by future experiments. The experimental data
extracted from [28].

The shape of the graph can be substantiated by examining different cases in which the mass of
the CP-even scalar is significantly smaller or larger than the muon mass. Considering the case
in which mH ≪ mµ holds, the term proportional to z2

b in the denominator of Eq. 4.24 can be
neglected. This allows a simplification to:

∆aH0

µ

mH ≪mµ=
Y 2

µµ

16π2

∫ 1

0
dx (2 − x) =

3Y 2
µµ

32π2 (4.28)

which is a constant with respect to mH and explains the flattening tendency in the lower mass
region of Fig. 10. The case in which mH ≫ mµ holds suggests a neglection of the x2 term in the
denominator. However, this neglection would lead to a divergence of the integral and necessitate
the inclusion of a tiny parameter in the denominator. For that reason, we make the assumption,
that for high masses, the effect of mH on the integral becomes so negligible, that we can extract
the factor of zH and the integral becomes a constant I such that:

∆aH0

µ

mH ≫mµ=
Y 2

µµ

16π2

(
mµ

mH

)2
· I. (4.29)

This approach explains the observed linear behaviour in the higher mass regions.

4.2.2 Texture 2: Tau-Muon Yukawa Coupling Matrix

The second scenario to be examined contains a flavor change in the internal line of the Feynman
diagrams in Fig. 8. In this case, the incoming muon splits into a virtual τ and a neutral scalar
from which the τ interacts with the photon from the electromagnetic field. As already discussed in
the previous chapter, the contribution from the charged scalar is neglected. The Yukawa matrix
texture takes the form of:

Yij =

0 0 0
0 0 0
0 Yτµ 0

 . (4.30)
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Incorporating this texture into the general Lagrangian from Eq. 4.15 and neglecting the terms
arising from the charged scalar results in the following interaction Lagrangian:

−Ly ⊃ 1√
2
(
τ̄RµL[YτµH

0 − iYτµA
0]
)
. (4.31)

Inserting the projection operators turns this into

−Ly ⊃ 1
2
√

2
(
τ [YµτH

0 − iYµτA
0](1 − γ5)µ̄

)
. (4.32)

Reading off the coefficients yields the following expressions for cs and cp:

For H0 : cs = − 1
2
√

2
Yµτ , cp = 1

2
√

2
Yµτ

For A0 : cs = i

2
√

2
Yµτ , cp = − i

2
√

2
Yµτ (4.33)

These can now be incorporated into the general expression from Eq. 3.30:

∆aµ(H0, A0) = 1
8π2

∫ 1

0
dx

|cs|2(x2 − x3 + mτ

mµ
x2) + |cp|2(x2 − x3 − mτ

mµ
x2)

x2 + z2
b (1 − x) + (z2

a − 1)x
4.33=

Y 2
τµ

32π2

∫ 1

0
dx

x2 − x3

x2 + z2
b (1 − x) + (z2

a − 1)x, (4.34)

where

za = mτ

mµ
and zb = mϕ

mµ
with ϕ = H0, A0. (4.35)

Combining the contributions from all scalars aggregates in

∆aµ =
Y 2

τµ

32π2

[
G

(
mτ

mµ
,
mH

mµ

)
+G

(
mτ

mµ
,
mA

mµ

)]
(4.36)

with
G(za, zb) =

∫ 1

0
dx

x2 − x3

x2 + (z2
a − 1)x+ z2

b (1 − x) . (4.37)

First, it is important to clarify the choice of mass hierarchy. In this scenario, both contributions
from the scalars are positive. For that reason, the constraint from the Z-decay leaves a free choice
which of both scalars is taken to be light. However, in order to stay consistent with the Yµµ-case,
the same mass split as in Eq. 4.13 is incorporated and therefore degrades the share of the CP-odd
scalar (Fig. 11 (right)). The effect of this mass splitting is visualized in Fig. 11.
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a) mS = mH = mA b) mH = mA − 110 GeV

Figure 11: Individual contributions from Eq. 4.36 with equal masses for each scalar in a) and with
the mass splitting from Eq. 4.13 in b). The dotted-dashed line refers to the sum of all terms in Eq.
4.36, the dotted line indicates the term from the CP-odd scalar and the dashed line visualizes the
share from the CP-even scalar. The contributions are displayed for two different Yukawa couplings
Yτµ. In the left figure, the contributions from the CP-even and CP-odd scalar overlap.

Figure 12: Parameter Space indicating the allowed combinations of the Yukawa coupling Yτµ and
mH that are consistent with the 1σ and 2σ region of ∆aµ, using Eq. 4.36 with the mass hierarchy
from Eq. 4.13. Furthermore, the experimentally excluded region from ARGUS [29] is shaded in
orange. The ARGUS data are extracted from [30]. The dashed line marks the mass difference of
the muon mass mµ and the tau mass mτ .

.

Based on Eq. 4.36 and the discussed mass hierarchy, a parameter scan is conducted in order to find
combinations of mH and Yτµ that are in agreement with the value of ∆aµ (Fig. 12). Experiments
from the ARGUS cooperation [29] could not verify the existence of the decay τ → µH. As a
consequence, the mass of the CP-even scalar must have a larger mass than the difference of mτ

and mµ since it seemingly does not participate in the decay of the tau. This result reduces the
search area for the CP-odd scalar to the mass range above mτ −mµ.
In order to justify the shape of Fig. 12, we will examine different cases of the share from the
CP-even scalar in Eq. 4.36. At first, we consider the case of mH ≪ mτ . Under this assumption we
can disregard the term proportional to z2

b in the denominator because it is much smaller compared
to z2

a. The comparably large value of z2
a also allows the neglection the x2 term as well as the
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subtraction of -1. This allows

∆aµ =
Y 2

µτ

32π2
1
z2

a

∫ 1

0
dxx− x2

=
Y 2

µτ

192π2

(
mµ

mτ

)2
(4.38)

as a simplification of the integral. The constant behaviour of the Yukawa coupling for masses mH

that are sufficiently smaller than mτ becomes evident from this simplification. In the proximity of
mτ , Yµτ shows a growing behaviour that persists in the higher mass regions. This can be reasoned
by the inspection of the case mH ≫ mτ . In doing so, the z2

b (1 − x) terms becomes increasingly
larger than the (z2

a − 1)x and the x2 term in the denominator. We can therefore reduce Eq. 4.36
to

∆aµ =
Y 2

µτ

32π2
1
z2

b

∫ 1

0
dx

x2 − x3

1 − x

=
Y 2

µτ

32π2

(
mµ

mH

)2 ∫ 1

0
dx

x2(1 − x)
(1 − x)

=
Y 2

µτ

96π2

(
mµ

mH

)2
. (4.39)

As seen in Fig. 12, this results in a linear relation between Yτµ and mH .

4.2.3 Texture 3: Muon-Tau and Tau-Muon Yukawa Coupling Matrix

In the third case, the Yukawa matrix takes the form of

Yij =

0 0 0
0 0 Yµτ

0 Yτµ 0

 . (4.40)

This texture includes both the previously discussed case of an incident muon which transits into
a virtual tau (Yτµ) in the loop as well as the scenario of an incident tau which transits to a muon
in the loop in Fig. 8. The Lagrangian hence reads

−Ly ⊃ 1√
2
(
[YµτH

0 + iYµτA
0]µ̄LτR + τ̄RµL[YτµH

0 − iYτµA
0]
)

(4.41)

This can be expanded to

−Ly ⊃ 1
2
√

2
(
(YµτH

0µ̄(1 + γ5)τ + Yτµτ̄(1 − γ5)µH0) + i(YµτA
0µ̄(1 + γ5)τ − Yτµτ̄(1 − γ5)µA0)

)
.

(4.42)

Comparing the coefficients results in the successive expressions:

For H0 : cs = − 1
2
√

2
(Yµτ + Yτµ) , cp = − 1

2
√

2
(Yµτ − Yτµ)

For A0 : cs = − i

2
√

2
(Yµτ − Yτµ) , cp = − i

2
√

2
(Yµτ + Yτµ) . (4.43)

These can now be embedded in the expression of Eq. 3.30:

∆aµ = −
qFm

2
µ

8π2

∫ 1

0
dx

|cs|2(x2 − x3 + mτ

mµ
x2) + |cp|2(x2 − x3 − mτ

mµ
x2)

m2
µx

2 +m2
H(1 − x) + (m2

F −m2
µ)x

mτ ≫mµ= 1
8π2

(
mτ

mµ

)∫ 1

0
dx

(|cs|2 − |cp|2)x2

x2 + z2
b (1 − x) + (z2

a − 1)x (4.44)
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with
za = mτ

mµ
and zb = mϕ

mµ
with ϕ = H0, A0. (4.45)

In the second line of Eq. 4.44, we utilized the significantly larger mass ratio between the tau
and muon allowing it to overshadow the terms x2 − x3 in nominator. We can now simplify the
numerators for the individual particles with the expressions from eq. 4.43. For H0 we have:

(|cs|2 − |cp|2)x2 = 1
8
(
(Y 2

µτ + 2YµτYτµ + Y 2
τµ) − (Y 2

µτ − 2YµτYτµ + Y 2
τµ)
)
x2

= 1
2YµτYτµx

2. (4.46)

For A0 we receive analogously:

(|cA
s |2 + |cA

p |2)x2 = −1
2YµτYτµx

2. (4.47)

Merging everything together results in

∆aµ = YµτYτµ

16π2

(
mτ

mµ

)[
G

(
mτ

mµ
,
mH

mµ

)
−G

(
mτ

mµ
,
mA

mµ

)]
, (4.48)

where
G(za, zb) =

∫ 1

0
dx

x2

x2 + (z2
a − 1)x+ z2

b (1 − x) . (4.49)

In Eq. 4.48, one observes that the term from the CP-odd scalar is negative. If both the mass of
the CP-odd and CP-even scalar were equal, the terms would cancel out (Fig. 13 left). Referring
to the condition from the Z-decay, this motivates the choice of the CP-odd scalar to occupy the
heavy state and thus being consistent with the convention from Eq. 4.13. The effects of this mass
splitting are depicted in Fig. 13. With our choice of hierarchy, the term from the CP-even scalar
clearly dominates in the total contribution, whereas the CP-odd contribution is suppressed.

a) mS = mH = mA b) mH = mA − 110 GeV

Figure 13: Individual contributions from Eq. 4.48 with equal masses for each scalar in a) and
with the mass splitting from 4.13 in b). The dotted-dashed line refers to the sum of all terms in
Eq. 4.36, the dotted line indicates the term from the CP-odd scalar and the dashed line visualizes
the share from the CP-even scalar. The contributions are displayed for two different Yukawa
couplings

√
YµτYτµ. In b), the graphs from the CP-even scalar and the total contribution overlap

but separate in the mass region above approximately 100 GeV. The gray shaded band indicates the
2σ region ∆aµ.

The scan of the associated parameter space is depicted in Fig. 14, which is based on Eq. 4.48.
The two different Yukawa couplings are then combined to the geometric mean of

√
YµτYτµ for

better comparability with the other scenarios. Moreover, the data from the ARGUS cooperation
[29] exclude all masses below mτ −mµ due to the undetected τ → µH decay.
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Figure 14: Parameter Space indicating the allowed combinations of the Yukawa coupling
√
YµτYτµ

and mH that are consistent with the 1σ and 2σ region of ∆aµ using Eq. 4.48 with the mass
hierarchy from Eq. 4.13. The orange shaded region shows all masses that are excluded by the
experimental data from the ARGUS cooperation [29]. The ARGUS data are extracted from [30].
The dashed line marks the mass difference of the muon mass mµ and the tau mass mτ .

For the discussion of the shape of the graph, only the CP-even scalar contribution is taken into
account, as justified in Fig. 13 (right). Following the same argumentation as in Eq. 4.39 (neglecting
x2, z2

b (1 − x) and the subtraction of -1 in (z2
a − 1)x), the consideration of mH ≪ mτ allows a

reduction of the AMM contribution from the CP-even scalar to

∆aµ = YµτYτµ

16π2

(
mµ

mτ

)∫ 1

0
dxx

= YµτYτµ

32π2

(
mµ

mτ

)
(4.50)

which explains the observed constant behaviour in the low mass region. The attempt to find an
analytical expression for the case of mH ≫ mτ tempts the neglection of the term x2 and (z2

a − 1)x
in the denominator. This assumptions would lead to a divergence at x = 1. Following a similar
argumentation as for the Yµµ texture, we assume that for sufficiently large masses, the integral I
becomes independent of mH and allows a simplification to:

∆aµ = YµτYτµ

16π2

(
mµ

mτ

)(
mH

mµ

)2
· I (4.51)

This approximation can be justified by the shape of the graph in the higher mass regions.

4.2.4 Texture 4: Muon-Electron Yukawa Coupling Matrix

In last considered scenario, the internal loop line in Fig. 8 is represented by an electron. The
corresponding Yukawa matrix texture reads

Yij =

0 Yeµ 0
0 0 0
0 0 0

 . (4.52)

The derivation of the contribution to the AMM follows the exact same scheme as for the Yτµ case
in chapter 4.2.2. The only distinguishing property is now the mass of the electron me replacing
mτ in Eq. 4.36.
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Conclusively, the total contribution to the AMM for this scenario is given as:

∆aµ =
Y 2

µe

32π2

[
G

(
me

mµ
,
mH

mµ

)
+G

(
me

mµ
,
mA

mµ

)]
(4.53)

with
G(za, zb) =

∫ 1

0
dx

x2 − x3

x2 + (z2
a − 1)x+ z2

b (1 − x) . (4.54)

Both contributions to the AMM are positive. Hence, the Z-decay condition would leave a choice
for the heavy state between the CP-even and CP-odd scalar (see Fig. 15 (left)). To preserve
consistency through all scenarios, once again the same mass hierarchy is chosen as introduced in
Eq. 4.13 (see Fig. 15 (right)). One can observe that the contribution to the AMM is negative
for scalar masses below the muon mass. The graphs show an oscillating behavior in the lower
proximity of mµ and becomes positive for higher masses. This observation becomes also notable
in the corresponding parameter space depicted in Fig. 16.
The parameter space scan reveals a cut-off for masses below mµ. To explain this, we can examine
the case of mH ≪ mµ in Eq. 4.53. In this context, we can disregard the z2

b (1 − x) and the z2
ax in

the denominator which then gives

∆aµ =
Y 2

eµ

32π2

∫ 1

0
dx

x2 − x3

x2 − x

=
Y 2

eµ

32π2

∫ 1

0
dx

−x(x− 1)
x− 1

= −
Y 2

eµ

64π2 . (4.55)

In the lower mass region of mH , the contribution therefore becomes negative and therefore explains
the observed cut-off in the parameter space as well as the oscillations in Fig. 15 which occur owing
to the sign flip in denominator. On the other hand, the consideration of mH ≫ mµ allows the
construction of the following expression:

∆aµ =
Y 2

eµ

32π2

∫ 1

0
dx

x2 − x3

z2
b (1 − x)

=
Y 2

eµ

32π2

(
mµ

mH

)2 ∫ 1

0
dx

x2(1 − x)
1 − x

=
Y 2

eµ

96π2

(
mµ

mH

)2
. (4.56)

This result agrees exactly with the high mass approximation from the Yτµ scenario in Eq. 4.38.
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a) mS = mH = mA b) mH = mA − 110 GeV

Figure 15: Individual contributions to ∆aµ from the CP-even scalar (dashed) and the CP-odd
scalar (dotted) as well as the sum of both contributions (dotted-dashed) from Eq. 4.53 for two
different Yukawa couplings Yeµ. The graphs from the CP-even scalar and the CP-odd scalar overlap
in a). In b), the graphs from the total contribution and the CP-even scalar overlap and separate
only slightly in the high mass region. The gray shaded band indicates the 2σ region of ∆aµ.

Figure 16: Parameter scan of texture 4 based on Eq. 4.53 with the mass hierarchy from Eq.4.13
indicating the allowed parameter combinations of Yeµ and mH for an agreement with 1σ and 2σ
region of ∆aµ. The experimentally excluded regions from LEP (dark cyan) [31], Z → 4l (yellow)
[32] and CMS (magenta) [33] are also displayed. The experimental data are extracted from [34].

4.2.5 Direct Comparison of the Parameter Spaces

To sum up the results of the individual scenarios, all parameter spaces are directly compared to
each other in Fig. 17. The experimental constraints are not included, as they are only valid for
the respective scenario in which they have been introduced.
In the mass region of mH < mµ, texture 4 is the only one that shows no allowed parameter
combinations due do the discussed negative share to the AMM (Eq. 4.55). The direct comparison
of the second and third case shows, that two non-vanishing matrix entries allow lower Yukawa
couplings by approximately one order of magnitude which becomes clear from the direct comparison
of the low mass approximations (Eqs. 4.39, 4.50). The first texture allows the weakest Yukawa
coupling compared to textures 2 and 3 since mτ leads to increased denominators which reduce the
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contribution.
In the range of mµ < mH < mτ , the graphs for texture 2 and 3 remain constant up to mτ (Eqs.
4.39, 4.50). The Yukawa coupling for texture 4 starts to grow proportional to mH (Eq. 4.56). The
graph of texture 1 also shows a growing trend that is modulated by the integral expression (Eq.
4.29).
In the higher mass range of mH > mτ , the graphs from texture 2 and 4 overlap as the high mass
approximations suggest (Eqs. 4.38, 4.56). The graphs from texture 1 and 3 strive to a linear trend
as the graphs from textures 2 and 4. This reveals that the high mass approximations for texture
1 and texture 3 (Eqs. 4.29, 4.51) are valid in the high mass range.

Figure 17: Combined parameter scans from Figs. 10, 12, 14 and 16. Yeff is a placeholder for the
specific Yukawa couplings listed in the legend. All scans refer to the allowed 1σ and 2σ region of
∆aµ. The dashed lines indicate the masses of the muon mµ and the tau mτ .

The texture of

Yij =

 0 Yeµ 0
Yµe 0 0
0 0 0

 . (4.57)

has not been included in the analysis. We would expect the same expression as for the µτ −
τµ−interaction (Eq. 4.48) with me replacing mτ . Since the mass of the electron is much lower
than mµ, the term me

mµ
x2 would become insignificant in the nominator, leading to the nominator

of x2 − x3. This would give us the same result as for the Yeµ texture besides the replacement
of Yeµ →

√
Y 2

eµ + Y 2
µe since the crossing terms would vanish. Hence this case would add no new

results.
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5 Conclusion
In this thesis, the muon g− 2 anomaly was studied in the 2HDM, one of the simplest extensions to
the Standard Model. After a brief introduction on the basics of the experimental determination of
aµ, the g-factor was calculated both in the context of the Dirac equation and the transition ampli-
tude arising from a tree level Feynman diagram. The parameterization of the Feynman amplitude
could be generalized by the introduction of form factors. Here we could show that the AMM is
proportional to the magnetic form factor. With the goal of extracting this magnetic form factor,
the one-loop QED contribution was calculated, yielding the largest contribution to the AMM. The
subsequent step involved a generalized calculation for a one-loop electroweak contribution, which
enables the application of arbitrary models. The results have been cross-checked with the literature
and have been reproduced with package-X in Mathematica.

The model of choice was the 2HDM. In the CP-conserving scenario and the alignment limit,
we obtained three new scalar particles: a CP-even scalar H0, a CP-odd scalar A0, and a charged
scalar H+. The interactions of these particles with the fermions from the SM have been studied in
detail by analyzing a total of four different possible Yukawa textures. For each scenario, the gen-
eral results from the electroweak one-loop calculation have been adjusted by determining the scalar
and pseudoscalar coefficients from a direct comparison with the associated interaction Lagrangian.
Throughout all scenarios, a mass hierarchy between the particles of mH+ = mA0 = mH0 +110 GeV
was chosen which was motivated by experimental constraints and mathematical conditions. With
the applied mass split, the contribution arising from the light CP-even state turned out to be
most dominant one for each Yukawa matrix texture. For each scenario, a parameter scan was
conducted in order to filter for combinations of parameters that add the missing contribution of
∆aµ. The parameter scans have been supplemented with experimental data that excluded parts
of the theoretically predicted regions, hence allowing a more targeted experimental search.

Overall, the numerical analysis emphasized the importance of close cooperation between theoreti-
cal and experimental physics. It became clear how a theoretical prediction can steer the direction
of experimental research and vice versa. Moreover, the work revealed how seemingly insignificant
properties in nature can contribute to revealing the most fundamental secrets of physics. A devia-
tion of 5σ between theory and experiment is regarded as a new discovery in particle physics. The
muon g−2 anomaly already exceeds this benchmark and therefore presents tantalizing evidence for
potential new physics beyond the standard model. It remains to be seen how future experiments
will be able to directly detect the new particles. On the other side, theoretical prediction can
be further precised by focusing on lattice QCD contributions, which are at the center of recent
research.
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A Appendix
A.1 Gamma Matrices
The 4x4 gamma matrices in Dirac representation are given as [13]:

γ0 =
(

12x2 0
0 −12x2

)
, γi =

(
0 σi

−σi 0

)
(A.1)

where σi are the Pauli-matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

The Pauli matrices fulfill the relation that

σiσj = δij + iεijkσk (A.3)

such as the identity
(a · σ)(b · σ) = a · b + iσ(a × b) (A.4)

which can be directly proven:

(a · σ)(b · σ) = (aiσi)(bjσj) = aibjσiσj
A.3= aibj(δij + iεijkσk)

= a · b + iσkεkijaibj = a · b + iσ(a × b). (A.5)

The γ-matrices obey the Clifford-Algebra

{γµ, γν} = 2gµν = 2 diag(1,−1,−1,−1). (A.6)

The commutator is defined as

σµν = i

2 [γµ, γν ]. (A.7)

An useful identity can be derived for the components µ = 1, 2, 3. Starting with explicit matrix
multiplication, one can find that

σij = i

2

(
−σiσj + σjσi 0

0 −σiσj + σjσi

)
= −i

2 [σi, σj ]1

= −i
2 (δij + iεijkσk − δji − iεjikσk)1

= εijkσk1. (A.8)

Important properties of the γ-matrices include [13],P.820:

γµγµ = 4
γµγνγµ = −2γν

γµγνγργµ = 4gνρ

γµγνγργσγµ = −2γσγργν . (A.9)

The γ5 matrix is introduced as
γ5 = iγ0γ1γ2γ3 (A.10)

which anticommutes with all other γ matrices

{γ5, γµ} = 0 for µ = 0, 1, 2, 3. (A.11)

Furthermore, γ5 satisfies
(γ5)2 = 1. (A.12)
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A.2 Feynman Rules
In this chapter, the Feynman rules that are used in the calculations are listed. The rules are taken
from [12], P.149.

For external lines:
p

= u(p)Incoming Fermion:

p

= ū(p)Outgoing Fermion:

For internal lines:
p

= i
p2−m2Spin 0 Boson:

p

= i(/p+m)
p2−m2

Spin 1
2 Fermion:

p

= −igµν

p2Spin 1 Photon:

Vertex factors:

= −ieγµPhoton, Spin 1
2 fermion:

p p′
= −iqHe(p+ p′)Photon, Spin 0 boson:

A.3 Gordon Identity
The Gordon Identity is used in various calculations throughout this thesis. The identity to proof
is given as

ū(q2)γµu(q1) = 1
2mūf ((pf + pi)µ + iσµν(pf − pi)ν)ui. (A.13)

In doing so, we first have a look at the commutator and the anti-commutator relations of the
Gamma-Matrices (see Appendix A.1 ):

i

2 [γµ, γν ] = σµν and {γµ, γν} = 2gµν (A.14)

By utilizing the commutator and anti-commutator relation we can derive two expressions for iσµν :

iσµν = −1
2 [γµ, γν ]

= −1
2(γµγν − γνγµ)

A.6= −1
2(γµγν − (2gµν − γµγν))

= −1
2(2(γµγν − gµν))

= gµν − γµγν . (A.15)
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Similarly,

iσµν = gµν − γµγν

A.6= gµν − (2gµν − γµγν)
= γνγµ − gµν . (A.16)

The reason why why need two representations of the same iσµν term will become evident in a
moment. We will now exclusively look at the iσµν(pf − pi)ν term surrounded by the spinors ūf

and ui.

ūf (iσµν(pf − pi)ν)ui
A.15,A.16= ūf ((γνγµ − gµν)pf,ν − (gµν − γµγν)pi,ν)ui

= ūf (/pf
γµ − pµ

f ) − (pµ
i − γµ

/pi
)ui

2.35= ūf (2mγµ − (pf + pi)µ)ui (A.17)

The two representations of iσµν were necessary in order to apply both the Dirac and the adjoint
Dirac-Equation. Rearranging the terms yields the well known form of

ū(q2)γµu(q1) = 1
2mūf ((pf + pi)µ + iσµν(pf − pi)ν)ui. (A.18)

A.4 Feynman Parametrization
The Feynman parametrization is a useful tool to simplify denominators consisting of products by
introducing an additional integral. The most general form of the is parametrization is [[35],P.497]

1∏n
i=1 Ai

= (n− 1)!
∫ 1

0
du1...

∫ 1

0
duk

δ(1 −
∑n

k=1 uk)
(
∑n

k=1 ukAk)n
. (A.19)

The delta-function always constraints the Feynman parameters to obey:
n∑

k=1
uk = 1 (A.20)

The n = 3 case is particularly significant for the computations in this thesis, as the one-loop
diagrams contain a total of three propagators. Therefore, the proof of the n = 3 case is portrayed
in the following way:

1
ABC

!= 2
∫ 1

0
dxdydz δ(x+ y + z − 1) 1

(xA+ yB + zC)3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

1
(xA+ yB + (1 − x− y)C)3

= 2
∫ 1

0
dx

∫ 1−x

0
dy

1
((A− C)x+ (B − C)y + C)3

∣∣∣u = (A− C)x+ (B − C)y + C

= 2
B − C

∫ 1

0
dx

∫ (A−B)x+B

(A−C)x+C

du
1
u3

= 1
B − C

∫ 1

0
dx

(
1

((A− C)x+ C)2 − 1
((A−B)x+B)2

) ∣∣∣sub

= 1
(B − C)(A− C)

∫ A

C

dt1
1
t21

− 1
(B − C)(A−B)

∫ A

B

dt2
1
t22

= 1
(B − C)(A− C)

(
A− C

AC

)
− 1

(B − C)(A−B)

(
A−B

AB

)
= 1
A(B − C)

(
1
C

− 1
B

)
= 1
ABC

. (A.21)
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A.5 Dimensional Regularization and Wick rotations
In particle physics, the computation of loop diagrams involves integrals of the form

In(∆) =
∫
dDp

1
(pµpµ −A+ iε)n

=
∫
dDp

1
(p2

0 − p⃗2 −A+ iε)n
. (A.22)

Integrals of this kind face the risk of becoming divergent in four dimensions. The tool of dimen-
sional regularization [36] addresses these possible divergences by the introduction of continuous
dimensions D. In order to so, an infinitesimal parameter ε > 0 is introduced. At the end of the
calculation, we can perform the limit D = (4 − ε)ε−→0 in order to obtain the result for the four-
dimensional space-time of our universe. The following proof only covers the superficial aspects of
complex analysis. Considering eq. A.22, there are two poles at p0 = ±

√
p⃗2 −A+ iε. The +iε

shifts the poles in the complex plane as seen in fig. 18. The Cauchy integral theorem, states, the
the closed contour integral over a holomorphic function f(z) vanishes :∮

C

f(z) dz = 0 (A.23)

A possible contour is depicted in Fig. 18. The integration path can be split up into four segments:
two segments along the real and imaginary axis and two bow segments. The bow segments van-
ish since they are streched to infinity when we integrate over the whole momentum space. The
remaining segments are along the real and the imaginary axis.∫ +∞

−∞
f(k0,k)dk0 +

∫ −i∞

+i∞
f(k0,k)dk0 = 0 (A.24)

Figure 18: Schematic visualization of the integration path over k0 in the complex plane. Taken
from [13], P.824.

Hence, we showed the equivalence of both integration paths which allows us to perform a Wick
rotation. A Wick rotation allows an transition from a Minkowski metric to a euclidean metric by
introducing a complex 0th component in the four-vector. The calculation of the integral from Eq.
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A.22 can now be performed:

In(A) =
∫
dDp

1
(p2

0 − p2 −A+ iε)n

∣∣∣p0 = ipE,0, p2
E = p2

E,0 + p2
E

= i(−1)n

∫
dDp

1
(p2

E +A− iε)n

∣∣∣use spherical coordinates

= i(−1)n

∫
dΩD

∫ ∞

0
dpE

pD−1
E

(p2
E +A− iε)n

∣∣∣x = p2
E

= i

2(−1)n

∫
dΩD

∫ ∞

0
dx

1√
x

x
1
2 (D−1)

(x+A− iε)n

= i

2(−1)n

∫
dΩD

∫ ∞

0
dx

x
D
2 −1

(x+A− iε)n

∣∣∣y = A− iε

x+A− iε

= i

2(−1)n

∫
dΩD

∫ 0

1
dy − (A− iε) 1

y2

((A− iε)( 1
y − 1)) D

2 −1

( 1
y (A− iε))n

= i

2(−1)n(A− iε) D
2 −n

∫
dΩD

∫ 1

0
dy yn− D

2 −1(1 − y) D
2 −1. (A.25)

At this point, we use that the angular component of this integral is∫
dΩD = 2πD

2

Γ(D) (A.26)

with the Γ-function. Furthermore, we can identify the Beta- Function that is given as:

B(z1, z2) =
∫ 1

0
yz1−1(1 − y)z2−1. (A.27)

The Beta function fulfills the relation:

B(z1, z2) = Γ(z1)Γ(z2)
Γ(z1 + z2) . (A.28)

Thus, we can express Eq. A.25 as

In(A) = i(−1)n(A− iε) D
2 −n π

D
2

Γ( D
2 )

Γ(n− D
2 )Γ( D

2 )
Γ(n) = i(−1)n(A− iε) D

2 −nπ
D
2

Γ(n− D
2 )

Γ(n) . (A.29)

When considering the case of our four-dimensional space-time, we can set D = 4 − ε and take the
limit of ε −→ 0, resulting in

lim
ε−→0

In(A) = i(−1)nA2−nπ2 Γ(n− 2)
Γ(n) (A.30)

For the case of n = 3 which is of particular interest for the calculations, we have

I3(A) = −iπ2

2A . (A.31)

A.6 Reproduction of the Electroweak Contributions Using package-X
The calculation of the electroweak contributions from sections 3.2 and 3.3 can be reproduced with
the open source Mathematica extension Package-X [7]. After the installation, the package is
initialized with the command:

In[1]:= <<X‘

Now, we have to declare the Feynman parameters x, y and z to be Lorentz scalars so that they are
not interpreted as four-vectors:
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In[2]:= LScalarQ[x]=True;
LScalarQ[y]=True;
LScalarQ[z]=True;

Furthermore, we need to define the kinematic arguments by making use of the on-shell conditions:

p2 = (q2 − q1)2 = q2
2 + q2

1 − 2q2q1 = 2m2 − 2q2q1 ⇒ q2q1 = m2 − p2

2

q2
1 = (q2 − p)2 = q2

2 + p2 − 2q2p ⇒ q2p = p2

2

q2
2 = (p+ q1)2 = p2 + q2

1 + 2pq2
1 ⇒ q1p = −p2

2 (A.32)

Implementing these relations in the code can be realized with:

In[3]:= kinematics={q1.q1→→→m2,q2.q2→→→m2,q2.q1→→→m2-p.p/2

,q_2.p→→→p.p/2,q1.p→→→-p.p/2};

With this setup, we can now start the computation of the nominators and denominators of Eqs.
3.3 and 3.29.

Photon Absorption from the Internal Scalar Line
The equation in question from Eq. 3.3 reads:

iMµ = qH · e
∫

R4

d4k

(2π)4 ū(q2)
(cs + cpγ

5)( /q1 − /k +mF )(2k + p)(c∗
s − c∗

pγ
5)

((q1 − k)2 −m2
F + iε)((p+ k)2 −m2

H + iε)(k2 −m2
H + iε)u(q1)

We start with the evaluation of the nominator. Here, we directly apply the substitution of k →
k − yp + zq1. The function FermionLineExpand expands the products of Dirac matrices and
automatically applies the Dirac equation and the Gordon identity.

In[4]:= Num1 = Simplify[FermionLineExpand[
⟨⟨⟨u[q2,m], Cs 1+Cp γγγ5,
γγγ.q1-γγγ.(k-yp+zq1)+ mF 1), 2(k-yp+zq1)µµµ+pµµµ,
Conjugate[Cs] 1- Conjugate[Cp] γγγ5, u[q2,m]⟩⟩⟩
/.p→→→q2-q1/.kinematics]]

As an output, we obtain a linear combination of all possible occurrences of Lorentz vectors. Since
we are only interested in the extraction of the magnetic form factor that is proportional to σµνpν .
The relevant part from the output is:

Out[4]= iz(Cp(mF+m(-1+z))Conjugate[Cp] - Cs(m+mF-mz) Conjugate[Cs])
⟨u[q2,m],σµ,{-q1+q2},u[q1,m]⟩

Some rearranging allows us to obtain:

−iz(|Cp|2(((1 − z)mµ −mF )︸ ︷︷ ︸
ζµ

−

+|Cs|2((1 − z)mµ +mF )︸ ︷︷ ︸
ζµ

+

)σµνpν

where we can identify ζµ
+ and ζµ

− as they were defined in Eq. 3.19. The denominator can be worked
out as follows:

In[5]:= a=k.k-mH2

b=(p+k).(p+k)-mH2

c=(q1-k).(q1-k)-mF2

Den1=Simplify[Expand[x a+ y b+ c z+ iεεε/.x+y+z→→→1/./.kin]]

Out[5]= iε - mH2x - mH2y + m2z - mF2z + (x+y+z)k.k + 2y k.p-2z k.q1 + yp.p
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This results agrees exactly with the preliminary expression from Eq. 3.7. For the determination
of ∆‘ (see calculation 3.10), we have:

In[6]:= Delta=Simplify[Expand[y2p.p-2yz p.q1+z2m2+ mH2(1-z)-y p.p-z m2+z mF2^2
/.kinematics/.x+y→→→1-z]]

Out[6]= - mH2(-1+z) + (mF2+m2(-1+z))z + y(-1+y+z)p.p

which can be rearranged to

m2
H(1 − z) + (m2

F −m2
µ)z +m2

µz − xyp2

and confirms the result from Eq. 3.10.

Photon Absorption from the Internal Fermion Line

We can recall the invariant amplitude from Eq. 3.29

iMµ = −qF e

∫
R4

d4k

(2π)4 ū(q2)
(cs + cpγ

5)(/p+ /k +mF )γµ(/k +mF )(c∗
s − c∗

pγ
5)

((p+ k)2 −m2
F + iε)((q1 − k)2 −m2

H + iε)(k2 −m2
F + iε) .

With the aforementioned substitution of kµ → kµ − ypµ + zq1µ, a simplification of the nominator
can be obtained from:

In[7]:= Num2 = Simplify[FermionLineExpand[
⟨⟨⟨u[q2,m], Cs 1+Cp γγγ5,
γγγ.p+γγγ.(k-y p+z q1)+mF 1,γγγµµµ,γγγ.(k-y p+z q1)+m_F 1,
Conjugate[Cs] 1- Conjugate[Cp] γγγ5, u[q2,m]⟩⟩⟩

Extracting the relevant term results in:

Out[7]= -i(-1+z)(Cp(-mF+m z)Conjugate[Cp]+Cs(mF+ m z) Conjugate[Cs])
⟨u[q2,m],σµ,{-q1+q2},u[q1,m]⟩.

These terms can be rearranged to:

i(1 − z)(mµz +mF )|Cs|2 + i(1 − z)(mµz −mF )|Cp|2 (A.33)

By taking a close look at the denominator by comparing Eqs. 3.29 and 3.3, we can see that we can
swap mH ↔ mF to obtain the result for the denominator in calculation. The required ∆2 (index
for the second scenario) is therefore given as:

∆2 = −xyp2 +m2
µz

2 +m2
F (1 − z) + (m2

H −m2
µ)z

We can now finalize the calculation in the same way as for the scalar interaction scenario, starting
from Eq. 3.23, where the k integration is already carried out:

FF
2 (p2) = −

qHm
2
µ

8π2

∫ 1

0
dxdydz δ(x+ y + z − 1)

×
(1 − z)(|cs|2(z + mF

mµ
) + |cp|2(z − mF

mµ
))

−xyp2 +m2
µz

2 +m2
F (1 − z) + (m2

H −m2
µ)z .

From here we evaluate the integration over the Feynman parameters, apply the substitution z′ =
1 − z and set p2 → 0 following the same procedure as for the other topology to arrive at the
expression:

FF
2 (0) = −

qFm
2
µ

8π2

∫ 1

0
dz‘

|cs|2(−z‘3 + z‘2 + mF

mµ
z‘2) + |cp|2(−z‘3 + z‘2 − mF

mµ
z‘2)

m2
µz‘2 +m2

H(1 − z‘) + (m2
F −m2

µ)z‘
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A.7 Explicit Calculation of the Mass Matrix
The masses of the individual particles can be obtained from the potential of Eq. A.35 by calculating
the squared mass matrix given as:

M2
ij = ∂2V

∂ϕ†
i∂ϕj

(A.34)

The potential is given as:

V = m2
11H

†
1H1 +m2

22H
†
2H2 − {m2

12(H†
1H2 +H†

2H1)}

+ λ1

2 (H†
1H1)2 + λ2

2 (H†
2H2)2 + λ3(H†

1H1)(H†
2H2)

+ λ4(H†
1H2)(H†

2H1) + λ5

2 (H†
1H2)2 + λ∗

5
2 (H†

2H1)2

+ λ6(H†
1H1)(H†

1H2) + λ∗
6(H†

2H1)(H†
1H1)

+ λ7(H†
2H2)(H†

1H2) + λ∗
7(H†

2H1)(H†
2H2) (A.35)

The eigenvalues of this matrix are then the masses of the the corresponding eigenstates. Hence
we begin by utilizing the minimization conditions of the potential at which the doublet takes the
VEV:

∂V

∂Hi

∣∣∣
⟨Hi⟩=vi

= 0 (A.36)

The explicit calculation yields for the first condition:

∂V

∂H1
= M2

11H
†
1 + ...+ 1

2λ1H
†
1H

†
1H1 + ...

!= 0

=> M2
11 = −λ1

2 v2 (A.37)

and for the second condition:
∂V

∂H2
= ...−M2

12H
†
1 + ...+ λ6H

†
1H

†
1H1...

!= 0

=> M2
11 = 1

2λ6v
2 (A.38)

All terms that remain proportional to H2 or H†
2 after the first derivative is taken are directly

omitted as they equal zero because of the vanishing VEV of H2 and H†
2 . The minimization

conditions can now be incorporated in A.35, from which the matrix elements are computed. The
calculation is split up for the charged scalars and the neutral scalars. The matrix for the charged
scalars has a 2x2 structure given as

M2
i,j = ∂2V

∂ϕ̄i∂ϕj

with ϕi = G+, H+. (A.39)

Since Goldstone bosons get eaten up in the process of symmetry breaking, they do not acquire
VEVs. For that reason, all matrix elements related to the Goldstone bosons become zero. The
only non-vanishing matrix element will therefore be the M2

22 element in the basis of {G+, H+}.
Keeping in mind that all terms that remain proportional to H2 and H†

2 will vanish after taking the
double derivative, we can only consider an effective potential V ′ for the purpose of this calculation.

V ′ = M2
22(H†

2H2) + λ3(H†
1H1)(H†

2H2)
= M2

22(H+H−) + λ3(H†
1H1)(H+H−) (A.40)

Evaluating the derivative results in

M2
2,2 = ∂2V

∂H+∂H− = M2
22 + λ3

2 v2 (A.41)
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turning the mass matrix in the basis {G+, H+} into:

M2 =
(

0 0
0 M2

22 + λ3
2 v

2

)
. (A.42)

Since the matrix is already diagonalized, the condition for the mass of the charged scalar therefore
reads

mH+ = M2
22 + λ3

2 v2. (A.43)

We can now examine the mass matrix for the neutral scalars. Leaving out the cross terms, we can
evaluate the upcoming dot products in the potential:

H†
1H1 = 1

2

(
v2 +H02

1

)
H†

2H2 = 1
2
(
(H0

2 )2 + (A0)2)
H†

1H2 = 1
2
(
H0

2 (v +H0
1 ) + iA0(v +H0

1 )
)

H†
2H1 = 1

2
(
H0

2 (v +H0
1 ) − iA0(v +H0

1 )
)
. (A.44)

For the calculation of each matrix element, only the corresponding effective potential V ′ is consid-
ered. For M2

11 we have:

V ′
11 = M2

11(H†
1H1) + 1

2λ1(H†
1H1)2

A.37,A.44= −1
4λ1v

2(v2 + (H0
1 )2) + 1

8λ1(v4 + (H0
1 )4). (A.45)

Taking the derivative generates the following matrix entry:

∂2V ′
11

∂H0
1∂H

0
1

∣∣∣∣∣
⟨H0

1 ⟩=v

= −1
2λ1v

2 + 3
2λ1v

2 = λ1v
2. (A.46)

The same procedure is then applied for M2
22:

V ′
22 = 1

2M
2
22((H0

2 )2 + (A0)2) + 1
2λ3(H†

1H1)((H0
2 )2 + (A0)2)

+ 1
4λ4((H0

2 )2(v +H0
1 )2 + (A0)2(v +H0

1 )2)

+ 1
4λ5((H0

2 )2(v +H0
1 )2 − (A0)2(v +H0

1 )2) (A.47)

from which the matrix element can be calculated as:

∂2V ′
22

∂H0
2∂H

0
2

∣∣∣∣∣
⟨H0

1 ⟩=0

4.3= M2
22 + v2

2 (λ3 + λ4 + λ5). (A.48)

The matrix element for M2
33 can be calculated almost the same as for M2

22. The only difference is
a minus sign in front of λ5 which follows from taking the double derivative with respect to A0. All
entries related to G0 will vanish. In the basis of {H0

1 , H
0
2 , A

0, G0} the squared mass matrix reads
where the CP-conserving limit and the alignment limit have been utilized.

M2 =


λ1v

2 0 0 0
0 M2

22 + 1
2v

2(λ3 + λ4 + λ5) 0 0
0 0 M2

22 + 1
2v

2(λ3 + λ4 − λ5) 0
0 0 0 0

 . (A.49)
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A.8 Left- and Right Handed Projection Operators
The idempotent left- and right handed operators are defined as [13]:

PR = 1
2
(
1 + γ5) and PL = 1

2
(
1 − γ5) (A.50)

with γ5 given as:
γ5 =

(
−1 0
0 1

)
. (A.51)

They play an important role when it comes to the extraction of the left- or right-handed Weyl
spinors (ψL or ψR) of a Dirac spinor ψ:

ψ =
(
ψL

ψR

)
. (A.52)

Acting the projection operators on the Dirac spinor in the Weyl-basis obtains

PLψ = ψL and PRψ = ψR. (A.53)
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