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Abstract

The main part of the community of physicists assumes today that the so-called dark
matter is essentially responsible for the mass in our Universe. Currently, its nature
and properties are in fact entirely unkown - several different theories compete against
each other. Supersymmetry yields a potential candidate, the lightest neutralino; this
assumption is the basis of our work. This thesis deals with annihilation processes of
supersymmetric particles that had an impact on the dark matter relic density by neu-
tralino coannihilations. The underlying project is hereby the DM@NLO collaboration
having the goal to calculate a hopefully complete set of such SUSY processes at next-
to-leading order in QCD. The thesis contains first the Born cross section calculation.
Afterwards, the virtual corrections are discussed - they are UV finite after successful
renormalisation. It remains the treatment of real corrections. For these calculations,
a formalism is developed that is based on the dipol subtraction method. Additionally,
the project of stau annihilation (a previous thesis) comes to an end via Sommerfeld
corrections (resummation) for the ingoing scalar taus. We perform a detailed numerical
analysis, apply our corrected cross section results to gravitino physics and investigate
theoretical uncertainties arising from a variation of the renormalisation scheme and scale.

Kurzfassung

Vom größten Teil der Wissenschaftsgemeinde wird heute angenommen, dass die soge-
nannte Dunkle Materie einen wesentlichen Anteil der Masse des Universums ausmacht.
Deren tatsächliche Natur ist jedoch derzeit noch gänzlich unbekannt - verschieden-
ste Theorien konkurrieren miteinander. Die Supersymmetrie liefert einen potenziellen
Kandidaten, das leichteste Neutralino; eine Annahme, die die Grundlage dieser Arbeit
ist. Sie befasst sich mit Annihilationsprozessen supersymmetrischer Teilchen, welche
durch Neutralino-Koannihilation im sehr frühen Universum die Reliktdichte Dunkler
Materie beeinflusst haben können. Übergeordnetes Projekt ist hierbei die DM@NLO-
Kollaboration, welche das Ziel hat, einen möglichst vollständigen Satz solcher SUSY-
Prozesse auf NLO-Level in der QCD zu berechnen. In der Arbeit wird zunächst die Stop-
Annihilation auf Born-Niveau berechnet, anschließend die virtuellen Korrekturen, sodass
nach Renormierung ein UV-konvergentes Ergebnis vorliegt. Es verbleiben reelle Ab-
strahlungen. Hierfür wird ein Formalismus entwickelt (auf Dipol-Subtraktion basierend),
welcher bislang bei NLO-Rechnungen noch nicht aufgetreten ist. Außerdem wird das
Projekt der Stau-Annihilation aus einer vorangegangenen Arbeit beendet durch Sommerfeld-
Korrekturen (Resummation) auf Seite der eingehenden skalaren Taus. Die Ergebnisse
werden detailliert numerisch ausgewertet, ferner wird der korrigierte Wirkungsquer-
schnitt auf Gravitino-Physik angewandt. Wir gehen der theoretischen Unsicherheit
der Ergebnisse nach, welche aus der Variation von Renormierungsschema und -skala
erwächst.



Contents
1. Introduction 7

2. The Dark Universe 9
2.1. The Hidden Nature of Dark Matter . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3. Experimental Search for Dark Matter Particles . . . . . . . . . . . 13

2.2. The DM@NLO Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Selected Topics in Quantum Chromodynamics 20
3.1. Group Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . 20
3.2. Colour Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Ghosts: A Relic of Quantisation . . . . . . . . . . . . . . . . . . . . . . . 26

4. An Approach Towards Supersymmetry 29
4.1. Underlying Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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1. Introduction
The coexistence of astonishingly precise predictions - in remarkable accordance with
the experiments - of the Standard Model of particle physics and its inadequacies con-
cerning meaningful questions in modern physics is surely a peculiar fact. It describes
three fundamental forces with great exactness and is still unable to give answers e.g. to
gravity at microscopic scales, to baryon asymmetry and the nature of dark matter. Due
to these riddles, theorists tried to expand the Standard Model in several ways within
the last decades. The modifications start with minimal extensions and end in the highly
speculative world of strings.

This thesis will deal with supersymmetry (SUSY) yielding us a promising candidate
- the neutralino - which has exactly those properties we expect from our current pic-
ture of dark matter. Its big mass and insensitivity to electromagnetic interaction gave
birth to several projects assuming that at least a main part of dark matter is made of
neutralinos. We will start with a brief summary about dark matter: evidence, possible
candidates and other theories explaining the observations as well as the present state of
research. Furthermore, we present the DM@NLO (dark matter at next-to-leading order)
collaboration - the underlying project of this thesis - in Chapter 2. We explain how our
processes can be integrated in the whole picture of this kind of research.

The following chapter deals with some theoretical introductions. For the discussion
of supersymmetry, but also for the treatment of colours and the colour decomposition, a
group theoretical overview is inevitable. Our process also requires an understanding of
Faddeev-Popov ghosts, so we give short remarks regarding the quantisation procedure
in QCD.

Diverse contents of Chapter 3 find an application in Chapter 4, dedicated to super-
symmetry. Although the theory cannot be explained in all its facets, we will have a
look at the gradation of the Poincaré algebra and how to break SUSY, too. The chapter
also provides some quantitative information about the new particle zoo arising from the
minimal SUSY extension of the SM. With all this background knowledge, we are pre-
pared to perform the calculation of the Born cross section and virtual NLO corrections
of stop annihilation (Chapter 5) under the assumption that the technical details (regu-
larisation, tensor reduction, ...) are already known (to be found in the appendix). The
next chapter will deal with the development of a dipole subtraction formalism for initial
massive scalar bosons. We give a suggestion how to perform the calculations explicitly.

The second big process - stau-antistau annihilation into top quarks - comes to an end in

9



1. Introduction

Chapter 7. We introduce the concept of Sommerfeld enhancement and comment on the
remaining QCD-corrections. A detailed numerical analysis of this process follows: Chap-
ter 8 discusses the annihilation cross section with respect to neutralino and gravitino
physics and theoretical uncertainties from renormalisation scale and scheme variation.
Finally, we conclude and leave some remarks on future projects of the collaboration.

For a transfer of knowledge, a detailed appendix had to be written. We give results
of virtual corrections and the used algebraic techniques.
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2. The Dark Universe
Several convincing observations suggest that we actually know only five percent of the
components our Universe is made of. Even after several decades of research in cosmology
and particle physics, we have no concrete idea what the unknown 95 percent could be.
There is, on the one hand, the strange nature of dark energy being responsible for an
accelerated expansion of the Universe. On the other hand, we have to solve the problem
of dark matter giving stability to galaxies and galaxy clusters (23 percent). The concept
of supersymmetry gives birth to a candidate the dark matter could possibly made of. In
this section we will give a short overview of the current level of research in the area of
dark matter and show in which way SUSY could give an answer to its nature and how
the DM@NLO project, especially the content of this thesis, is connected to that field of
research.

2.1. The Hidden Nature of Dark Matter
2.1.1. Evidence
Probably, Fritz Zwicky was rather surprised that rotational curves of galaxies do not
obey the irrefutable law describing the centripetal force, under the assumption that only
visible matter contributes to the gravitational potential [1]. And perhaps, he would be
even more astounded that almost ninety years later physicists could not find a convinc-
ing answer to the composition of the so-called dark matter which presumably holds the
galaxies together. After observing the Coma cluster and determining the mass of its
luminous matter, he used the virial theorem to obtain an averaged velocity of the rotat-
ing stars. The great disagreement with his redshift measurements led to the conclusion
that dark matter has to be much heavier than the luminous one - a conclusion that was
also found by V. Rubin and W. Kent Ford [2]: By observing the rotation velocities of
stars around the galactic centers, these astronomers wanted to reproduce the behaviour
we know from the planets rotating around the sun (proportional to 1√

R
, distance R).

However, a constant rotation velocity, independent of the distance to the galaxy center,
was observed. In their opinion, this discrepancy is naturally explainable by assuming
a dark matter halo surrounding every galaxy and being responsible for their structure.
The most doubts regarding the presence of dark matter in the Universe vanished after
observing the bullet cluster (1E 0657-558) shown in the Fig. 2.1. The picture shows two
galaxies that collided 100 million years ago, now diverging from each other. During this
collision, the intergalactic medium (the major baryonic matter component) interacted,
so it slowed down, whereas the galaxies itself moved further. The astonishing conse-
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2. The Dark Universe

Figure 2.1.: Superposition of the visible spectrum of the bullet cluster together with
the pink-coloured X-ray emission of the intergalactic plasma and the blue
gravitational potential arising from lens effects [3].

quence of the picture is that the lens effects occur mostly at the galaxies and, therefore,
they have to contain a huge amount of dark matter to explain the big curvature. Dark
matter would not interact during a collision, so the halos around the galaxies would be
left untouched. Other theories that deny the existence of dark matter cannot explain
this phenomenon. Thus, the bullet cluster is seen by many astrophysicists as an experi-
mental proof of dark matter.

The evaluation of the WMAP and Planck satellite measurements made it furthermore
possible to go beyond qualitative statements about dark matter since the actual density
of dark matter would be hard to determine only by observing galaxies. Today, we are
indeed capable to perform quantitative analyses - we will encounter the dark matter
relic density later.

2.1.2. Candidates
The natural approach to possible dark matter candidates is, of course, to demand that
they must not interact electromagnetically as the definition tells us. Jocularly, one di-
vides them up into MACHOs and WIMPs (massive astrophysical compact halo objects
and weakly interacting massive particles). The first category, consisting only of baryonic
matter, was excluded to be a relevant in percentage terms quite early, these objects like
e.g. brown dwarfs (not luminous at visible wavelength since no fusion occurs) are
rare and do not coincide with observations.

12



2. The Dark Universe

More interesting is the list of possible WIMPs, often starting with neutrinos. However,
making neutrinos responsible for the aforementioned observations is rather contradictory
if one has a look upon the evolution of the large structures in the cosmos: In fact, this
development happened hierarchically meaning that single stars came into being before
galaxies and galaxy clusters were formed (bottom-up scenario). But the influence of dark
matter on these structures would cause the complete opposite in the case of fast hot dark
matter particles like neutrinos (top-down scenario). The so-called axion might be an
interesting candidate as field theorists would expect an additional symmetry explaining
that no CP violation was observed in QCD processes, although the current theory would
not forbid such a violation. This globally broken symmetry (Peccei-Quinn mechanism,
see [4]) causes the appearance of pseudo-Goldstone bosons, the axions. They could be
proper dark matter particles [5], but an observation was not possible until now.

A contemporary and fruitful area of research is the construction and analysis of Mini-
mal Models. Extending the Standard Model as little as possible is often assessed to be a
natural approach. Today, a wide spectrum of Minimal Models exists, containing diverse
strategies to enlarge the particle content with modified gauge groups, additional Higgs
doublets, further Higgs couplings etc. They often try to solve the dark matter problem
and a second simultaneously: Radiative see-saw models [6] shall explain non-vanishing
neutrino masses, too, whereas a new Higgs coupling aims to explain the (g−2)µ anomaly
[7]. We do the opposite and postulate a veritable zoo of new particles.

Around 1970, the theory of supersymmetry was born with the ability to solve several
(even today) actual problems of particle physics and cosmology (detailed in Chapter 4)
yielding us the neutralino that we want to discuss now. At first sight, the basic idea
of SUSY seems quite easy. The crucial component of this SM-extension is an operator
Q̂ transforming a boson to a fermion and vice versa:

Q̂|B〉 = |F 〉 Q̂|F 〉 = |B〉 (2.1)

As we will see in Chapter 4, there is a highly complicated mathematical structure behind
this idea which of course can only be outlined in an abridged way. At this point, we
just need to know that there is a rather promising candidate within the SM-extension
using the concept of SUSY. Working out the SUSY algebra in order to obtain the
smallest consistent model (the MSSM, the Minimal Supersymmetric Standard Model),
a whole catalogue of particles is the outflow of this procedure (Fig. 2.2). What made
the neutralino (there are obviously four of them, the object of interest is the lightest
- the χ0

1 or Ñ1) that promising is the introduction of an additional quantum number
called R-parity. It is necessary as SUSY sometimes allows the proton decay, seeming
quite unlikely after the measurements at Kamiokande (lifetime bigger than 1035 years
[8]). The R-parity is defined via

PR = (−1)3B+L+2s (2.2)

where B and L are baryon and lepton number and s the spin of the respective par-
ticle. It leads to the value 1 (SM) or -1 (SUSY). This quantum number implies the

13



2. The Dark Universe

Figure 2.2.: The MSSM contains a wide range of new particles, the superpartners of
known SM-particles [3].

existence of a lightest supersymmetric particle (LSP) that cannot decay in further steps.
R-parity is currently hard to motivate - there is simply no doubt that a conserved quan-
tum number has to exist. An underlying symmetry is not known, yet. In many models
the lightest neutralino (Ñ1 or χ̃1

0) is the LSP. Due to its big mass in several scenarios
and its property not to interact electromagnetically, the research in this area is an ac-
tual, hot topic and, moreover, the underlying assumption of the DM@NLO project - the
subject of this thesis - claims the neutralino to be the (or at least a) dark matter particle.

As a side-project, DM@NLO included also the gravitino as LSP and possible dark
matter candidate - the superpartner of the spin-2 tensor boson mediating a quantised
gravitational interaction, namely the graviton. Section 8.1.4 is completely dedicated
to this spin-3/2 Rarita-Schwinger fermion. Viable, but not treated in this thesis, is
the superpartner of the right-handed neutrino, called sneutrino. After measuring the Z
boson decay width at the LEP, the lighter left-handed brother could be excluded [9].
According to the sterile/right-handed neutrino (with its high mass due to e.g. the
see-saw mechanism, it is also a candidate for at least warm dark matter, therefore highly
restricted - see [10]), this particles are often called sterile sneutrinos.

Before this section comes to an end, we want to discuss briefly the remainder of rel-
evant ideas in the history of dark matter. In 1983, M. Milgrom decided to follow a
completely different path to solve the dark matter problem - that there is no additional
matter we have to search for. Instead, our understanding of gravity is no sufficient
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2. The Dark Universe

theory on cosmological scales. Therefore, he introduced the hypothesis of MOND [11],
standing for Modified Newtonian Dynamics, which modifies the Newtonian equation of
motion with a multiplicative function µ(x)

F = maµ

(
a

a0

)
µ(x) = x√

1 + x2
(2.3)

leading to another understanding of velocity (here, a0 has to be seen as a new constant
of Nature):

GmM

r2 = m2a
2

a0
⇔ v = (a0GM)1/4 (2.4)

In the limit of large accelerations, the Newtonian dynamics as we know them can be
reproduced. Over and above, the constant rotation velocity for stars in outer regions are
congruent with the observed rotation curves. This theory was expanded to a relativistic
one as an improvement of general relativity, but the Bullet cluster results are interpreted
as a convincing counter-argument. In the scientific community, these theories are often
excluded from the current area of research.

Last, but not least, we keep in mind that the assumption that dark matter does not
interact electromagnetically, but at least weakly, might be a wrong one: There is no rea-
son to exclude that dark matter could interact just gravitationally as it was explained
in [12]. In this case, direct detection efforts would be in vain.

2.1.3. Experimental Search for Dark Matter Particles
Within the last decades, several techniques were invented to verify the existence of dark
matter experimentally. In general, one can divide these techniques into three types of re-
search that can be drawn schematically (Fig. 2.3). At this point, we should mention that
only a handful of experiments can be treated in this section whose detailed background
is explained in the references. The dark matter chapter does not demand completeness.
Maybe the most natural way to find dark matter (in the following, we concentrate on
finding WIMPs) is to assume that these unknown particles are somehow able to in-
teract with SM particles on Earth. This of course requires that the Earth is passing
through a dark matter halo in order to detect a measurable flux. The detection can
be performed by e.g. a cooled germanium crystal having an excellent radio purity (like
the CoGeNT project, US [13]). Another project is the detection with xenon as target
material. Well-known experiments are, for instance, the XENON Dark Matter Project
in the Gran Sasso underground laboratories, Italy [14], or PandaX in Sichuan, China [15].

The great colliders in the world may also enlighten the field of dark matter: Dark mat-
ter signatures in collision experiments could occur, if particle collisions produce dark
matter particles directly and also if heavy SM particles created by collisions decay into
dark matter particles. Since 2015, proton collisions at energies of 13 TeV are technically
possible at the LHC. Although two LHC experiments, namely CMS and ATLAS [16,17],
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2. The Dark Universe

Figure 2.3.: Three types of experimental dark matter research dominate the current work
on this topic [31].

include the searches for particles beyond the SM and, therefore, the search for dark
matter, there is still no data containing evidence. Furthermore, the detection of SUSY
particles does not automatically imply that neutralinos are really the main component
dark matter consists of. Some particle physicists criticise the principle of collider physics
to enlarge the collision energies further and further. Shifting the SUSY mass spectrum
ever higher to explain why no superpartners were found leads to a theory, that cannot
be falsified (an unscientific theory, [18]). One should also take into consideration that
the dark matter problem might be a misunderstanding and a wrong interpretation of
measurements at a deeper level.

It remains a third way of investigating the strange nature of dark matter - the indi-
rect one, that we do not treat in detail. Our strategy is independent of the diagram in
Fig. 2.3. To scrutinise dark matter with its relic density is the experimental background
of this thesis and, furthermore, the foundation of a wide range of publications arising
from the DM@NLO collaboration and other projects.

2.2. The DM@NLO Project
Let us now assume that the WIMPs are indeed the main constituent of dark matter.
Fig. 2.3 shows us that this kind of research is just the opposite of collider experiments
- the object of desire hereby is the (thermally averaged) annihilation cross section of
dark matter or rather the resulting relic density. We need to find a way to calculate the
remaining dark matter after annihilation processes to obtain theoretical results that can
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2. The Dark Universe

be compared with the actual, remarkably precise measurement (1σ interval)

ΩCDMh
2 = 0.1200± 0.0012 (2.5)

from the Planck collaboration [19] (see Fig. 2.4). The determination of this value was
supported with polarisation data from the WMAP project. h represents the current
Hubble expansion rate described as H0 67,8 km/(s MPc) in units of 100 km/(s MPc).
Statistical physics gives us a suitable model to perform the theoretical prediction: The
Boltzmann equation describing in this case the time evolution of the neutralino number
density nχ (neqχ denotes the number density in equilibrium)

dnχ
dt

= −3Hnχ − 〈σannv〉[n2
χ − (neqχ )2] . (2.6)

The term proportional to the (time-dependent) Hubble rate H is just a cosmological
one respecting the expansion of our cosmos and therefore the dilution of matter. Par-
ticle physics enters the stage through the thermally averaged annihilation cross section
〈σannv〉 that contains how many neutralinos are created and annihilated. The chal-
lenging task to calculate every process including neutralinos (and other sparticles that
coannihilate with neutralinos, details in Chapter 8) to SM particles with an acceptable
precision was created. In the very early Universe a thermal equilibrium of the number

Figure 2.4.: Today, the Planck satellite measurements provide the best investigation of
the cosmic microwave background (CMB). Using the results, several quanti-
ties appearing in cosmology and astroparticle physics were determined quite
precisely [20].

density is assumed; however, this equilibrium is shifted by the cooling of the Universe
since it expands: More neutralinos are annihilated than generated. After a certain time,
the moment comes where the expansion rate triumphs over the annihilation rate. The
particles leave each other so fast that the possibility to annihilate is suppressed. The
relic density becomes constant (value of Eq. 2.6), there are no appreciable annihilation
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2. The Dark Universe

processes in the present Universe. This value is reached with the so-called freeze-out
mechanism, shown in the Fig. 2.5 below. Apparently, a high cross section value causes a
lower level of the final number density. Also notice that the x-axis includes the particle
mass. Applying SUSY to dark matter physics is therefore practicable due to the high
masses of the new particles. There are naturally three scenarios that can happen after

Figure 2.5.: The freeze-out mechanism of the neutralino number density depending on
the thermally averaged cross section of annihilation processes [21].

the neutralino relic density was obtained via

Ωχ = nχmχ

ρc
(2.7)

with the critical density ρc of the Universe and the particle’s mass mχ. The result may
exceed the value from measurements which is, of course, an incompatiblity of super-
symmetric WIMPs as our underlying assumption. But the calculations would not have
been worthless since we would have falsified our model; and falsification is the way how
modern science works. We could have more luck - the value totally agrees with the ex-
perimental research. If our calculations instead fall below these measurements we had at
least the possibility that SUSY explains dark matter partially, but no evidence. This is
the scientifically unsatisfactory scenario. In order to get these theoretical results, Björn
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2. The Dark Universe

Herrmann, Michael Klasen and Karol Kovař́ık initiated the DM@NLO project around
2006, with the goal to implement every relevant process for the neutralino relic density
calculations (solving the Boltzmann equation) respectively to get a value of all cross
sections at NLO. Further NLO corrections are suppressed because of smaller coupling
constants. Currently, there exist public packages calculating Born cross sections in the
MSSM with some effective couplings (e.g. DarkSusy [22]) - however: The QCD correc-
tions are necessary for reliable values as they occasionally shift them up to 40 percent.
With these precise predictions one can perform meaningful comparisons with experi-
mental results. Hence, several subprojects were started and the DM@NLO collaboration
increased. They can be divided up into the following subunits:

• gaugino pair-annihilation into quark pairs

At the beginning, there were just the SUSY-QCD corrections at one-loop level
for the neutralino annihilation into quarks, exchanging an A0. Within the follow-
ing years, the generalisation was worked out, namely the neutralino and chargino
annihilations for every single possible combination - a quite extensive calculation
[23,24,25,26].

• gaugino-squark coannihilation into a quark and a gauge/Higgs boson

As described before, also the coannihilation processes obviously reduce the amount
of neutralinos as dark matter in the Universe. Their impact was calculated in sev-
eral processes including the most important stop coannihilations with every Higgs
boson, the electroweak bosons and gluons in the final state as well as a quark
[27,28].

• squark-antisquark annihilation into electroweak final states

The smaller the mass difference between squarks (especially the scalar top) and the
dark matter particle, the more likely is the relevance of pure squark annihilation
for the relic density. This contains Higgs and electroweak bosons in the final state
and, furthermore, combinations of them [29].

• squark-antisquark annihilation into coloured final states

Perhaps the most time-consuming NLO calculations in SUSY-QCD occur in the
case of coloured final states. Again, we have just pure squark annihilations, now
with quarks in the final state, performed by S. Schmiemann, or gluons treated by
the author of this thesis.

• stau annihilation into coloured final states

Note that there are also other coannihilations with relevance like a heavy slep-
ton annihilation. For stau masses in the near of the neutralino mass, they also
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2. The Dark Universe

could have an impact on the dark matter density [30]. The staus also give rise to
an application of the cross section for gravitino dark matter physics [31].

We mentioned that one goal of DM@NLO is calculating cross sections for indirect detec-
tion of dark matter particles. We emphasize, however, that the code can also be used for
direct detection precision predictions: These processes are obtained diagrammatically
by rotating the scheme in Fig. 2.3. But also mathematically, we do not need much effort
to apply the existent code to direct detection processes. So how does the DM@NLO code
actually work? It can be divided into several parts, also containing free, already existing
programs (Fig. 2.6). Basic requirement for fruitful calculations is the choice of scenarios

Figure 2.6.: The flow chart illustrates the computation of the neutralino relic density
enhanced by DM@NLO results [32].

having SUSY particle mass spectra where the investigated (co-)annihilation processes
are relevant for the entire relic density. By giving an input file, provided by an SLHA
(SUSY Les Houches Accord) file [33,34], to a spectrum calculator like SPheno [35,36]
or SoftSUSY, we can extract a quantitative background of our calculations (the SUSY
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particle masses are not known yet. Instead, they highly depend on the chosen scenario,
see Chapter 4.). We will come back to details when specific scenarios for the processes of
this thesis have to be found. Based on these spectra as well as mixing angles and further
quantities, MicrOMEGAs is able to perform the Boltzmann integration after the NLO
corrections were implemented and the tree level cross section calculated by CalcHep. It
was written by A. Pukhkov et al. in order to obtain cross section at LO directly from
the Lagrangian [37].

The DM@NLO package appears at the next-highest level - its goal is to yield NLO
corrections to the value given by CalcHep. Due to its low level of automatisation, this
can be a quite involving challenge. SUSY leads to an abundance of possible corrections
that have to be treated analytically. MicrOMEGAs, written by G. Bélanger et al. [38], is
a rather general code for the investigation of dark matter properties and can be applied
to many SUSY models and other models of new physics, too. Its calculations include
both relic densities, indirect detection rates and direct ones. Hence, we end up with
predictions of the neutralino relic density at NLO. If one is not interested in calcula-
tional details, one might jump to Chapter 8, where the predictions for our processes are
presented and analysed graphically.
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3. Selected Topics in Quantum
Chromodynamics

Although we have already discussed the general background of this thesis, some specific
theoretical tools beyond the scope of the common lectures in quantum field theory have to
be introduced. Assuming that the reader is already familiar with the way of calculating
cross sections in leading and next-to-leading order (otherwise an introduction can be
found in [30]), we will rather concentrate on QCD-related techniques arising from group
theory and simplifying the coming calculations.

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark

And sure any he has it’s all beside the mark.

- James Joyce, Finnegan’s Wake [39]

The theory of quantum chromodynamics provided an important component of the Stan-
dard Model, namely a precise description of the strong interaction. Deep insights into
the structure of nuclei led to a couple of Nobel prizes. Today, QED is understood quite
well, whereas there are still some meaningful open questions in the QCD. Its complicated
mathematical structure arises from its non-Abelian nature - the elements of the SU(3)C
Lie group do not commute. This is a keyword leading us to a group theoretical access
to the QCD that will be presented in the following section. It is not only written as
an intermezzo before the practical calculations start, and not only to enjoy the beauty
of the connections of group theory and physics, but for real applications in the calcula-
tions of our processes. Over and above that, we need the group theoretical overview to
understand the key idea of SUSY.

3.1. Group Theoretical Foundations
We will start with highly abstract thoughts about group theory, then state them more
precisely within their occurrence in QCD until we end up with our explicit process.
Especially regarding the SM, the concept of Lie groups is the starting point for further
discussions.

Definition 1 (Lie group): A Lie group G is a differentiable smooth manifold with
a group structure.
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3. Selected Topics in Quantum Chromodynamics

Using those groups is a way to describe continuous symmetries. The Lie algebra be-
longing to G is defined as follows:

Definition 2 (Lie algebra): A Lie algebra is a vector space g for which an antisym-
metric bilinear form [, ] : g × g → g (the Lie bracket), satisfying the Jacobi identity, is
defined. (Jacobi identity: [[A,B], C] + [[B,C], A] + [[C,A], B] = 0).

Without a suitable representation, the Lie algebra would be worthless for any applied
calculation. For a general group, we define:

Definition 3 (representation): A n-dimensional representation of G is an homomor-
phism D : G→ GL(n,C).

In other words, we take an abstract group element g and give an explicit appearance
to it by representing the element via a matrix of the general linear group GL(n,C) of
dimension n and with complex entries. Under this mapping (homomorphism, to be pre-
cise), the group structure D(g1g2) = D(g1)D(g2) is preserved. Perhaps one of the most
important ingredients of group theory in physics is the concept of

Definition 4 (reducibility): Let P{m×m}, Q{n×n} and R{m×n} be submatrices of a
n+m-dimensional representation D(g). If D takes the form

D(g) =
(
P (g) R(g)

0 Q(g)

)
(3.1)

∀g ∈ G the representation is called reducible.

Under certain circumstances, this process of reduction can be continued in the way that
R(g) is taken to be a null matrix. Hence, D(g) takes now a block-diagonal form and
a complete reduction was performed (it remains an irreducible representation). There
exists a famous group theoretical theorem by Heinrich Maschke concerning finite groups
that guarantees a successful decomposition into irreducible pieces:

Theorem (Maschke) : Every reducible representation of a finite group is completely
decomposable into irreducible representations.

Keeping in mind the concept of reducibility, let us have a look at

Schur's Lemma: Any matrix commuting with those of an irreducible representation
D(g) is a multiple of the unitary matrix ∀g.

Note, that this Lemma can be expressed in the language of linear operators on Hilbert
spaces, too. During the application of group theory on QCD, the deeper meaning will
become clear. At this point, we are ready to deal with objects consisting of combinations
of elements from more vector spaces than one, for instance a product function of v and
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w, with the notation Γac(x) = va(x)wc(x) transforming under the irreducible represen-
tations D(µ) and D(ν). The transformation of Γ is under matrices of the tensor product
D(µ) ⊗D(ν) of the single representations, which means concretely:

Γ′ac(x) = D
(µ)
ba (g)D(ν)

dc (g)Γbd(x) = D
(µ×ν)
bd;ac (g)Γbd(x) (3.2)

The tensor product can be decomposed into irreducible components in analogy to a single
representation: We obtain a direct sum of completely decomposed representations, called
Clebsch-Gordan series:

D(µ) ⊗D(ν) =
⊕

aσD
(σ) (3.3)

It remains the question regarding an elegant way to determine the Clebsch-Gordan se-
ries for non-trivial tensor products. In group theory one often uses the well-established
method of the Young tableau (plural: tableaux). Such a tableau represents (at least for
our usage) the (anti-)symmetrisation of a tensor with n indices.
To apply the method, we briefly comment on the evaluation of dimensionality as well as
of tensor products leading to a direct sum. Finding the dimension is a simple procedure:
Fill the boxes with numbers like it was done in the tableau below (later in QCD: N=3)
[40]:

N N+1 N+2 N+3 N+4

N−1 N N+1 N+2

N−2 N−1 N

N−3 N−2

N−4

Afterwards, take a copy of the tableau and enter the number of boxes to the right
of it in its row for every box, add one for itself as well as the number of boxes below it
in the same column. Finally, take the product of all entries for each tableau and take
the quotient of the first with the second tableau. For a Clebsch-Gordan series, follow
the below-mentioned rules:

(I): Fill the boxes of the second tableau in the tensor product T1 ⊗ T2 with a in the
first row, b in the second and so on.
(II): Add the boxes with a, b, ... to T1 that every augmented tableau is still a Young
tableau. If boxes have the same label, they must not appear twice or more in the same
column. Furthermore, for any given box position the equation na ≥ nb ≥ ... is valid
(with n as the number of same labels to the right and above).
(III): Cross diagrams with the same shape off the tableaux except of one.
(IV): Cancel columns with N boxes.
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After these steps, the direct sum of irreducible representations is the output of the
process. Dependent on the tableau, it is occasionally a quite time-consuming procedure.
Altogether, it initially seems a bit vague, but we will make use of the advantages in the
future cross section calculations. Next, we will concretize the vague concepts by keeping
our eyes on QCD.

3.2. Colour Decomposition
With our knowledge about group theory, let us have a look at the QCD as an application
of the general concepts of the previous section. The group theoretical point of view on
the QCD starts with the SU(3)C gauge invariance of this theory. Aforesaid SU(3) group
is the N=3 case of the special unitary group SU(N) fulfilling the properties (for a group
element U):

1. Determinant: det U =1
2. Unitarity: U †U = UU † = 1

In terms of Lie groups, we deal with a (N2 − 1)-dimensional differentiable manifold,
in QCD we have N = 3 (for each colour). This colour group is generated by the her-
mitian and traceless generators T a which are also the generators of the fundamental
representation as N × N matrices. For the case of N = 3, there is the following corre-
spondence to the Gell-Mann matrices: T a = λa

2 . With the commutator as a Lie bracket,
we can construct a Lie algebra:

[T a, T b] = ifabcT c (3.4)

The structure constants fabc generate the adjoint representation since we can write
fabc = i(T a)bc. One can derive a multitude of useful identities in order to calculate
colour factors for Feynman diagrams. A few of them are given in App. A, their compo-
nents will also appear in the vertex factors. Now, we should say a word about Schur’s
Lemma. The often quadratic Casimir called term T 2 = ∑N2−1

a=1 T aT a = C2(T )EN is ex-
actly a simple example of the Lemma from above where the coefficients depend on the
representation. In SU(3) symmetry, we have C2(T ) = 4/3; a value we will need a couple
of times in the calculations.

How can we interpret the aforementioned facts from a physical point of view? The
structure constants do not vanish in general, so we have a non-Abelian group. There-
fore, the (N2 − 1)→ 8 generators, the gluons, can interact with themselves in contrast
to the photons in the Abelian QED. The generators of SU(3)C can furthermore be seen
as rotation matrices in colour space. For an illustration, we define the wave functionψrψg

ψb

 = ψ invariance : ψ′ = Ûψ (3.5)
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The whole QCD-Lagrangian (3.6) is invariant under local rotations in colour space.

LQCD = −1
4(F a

µν)2 − 1
2ξ (∂µAaµ)2 + ψ̄(i /D −m)ψ + c̄a(−∂µDac

µ )cc (3.6)

The formulae contains the gauge covariant derivative Dµ = ∂µ − igs
∑
aAµ,aT

a and
the field strength tensor F a

µν = ∂µA
a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν . Perhaps, the ghost term

ca(−∂µDac
µ )cc catches someone’s eye - ghosts will be a later topic of this chapter.

The Clebsch-Gordan decomposition was formally introduced before - this technique
might be well-known from the addition of angular momenta in quantum mechanics.
However, we are dealing with colour, not with spin, so we have to decompose tensor
products of colours of (s)quarks (3) and gluons (8). Thanks to H. Maschke - or rather to
the fact that the object of desire is a finite subgroup of SU(N) - we have the certainty
to carry out the decomposition into irreducible representations successfully. In order to
use the results later, we work it out with two squarks as well as with two gluons. We
follow the general procedure from the previous section using the Young tableaux. For a
general process in QCD, one performs the decomposition into irreducible representations
of the tensor product of our initial (r) and final state (R):

r ⊗ r̄ =
⊕
α

rα R⊗ R̄ =
⊕
α

Rα (3.7)

The Clebsch-Gordan coefficients appear within the unitary basis transformation from
the tensor product space R⊗ R̄ to the vector space (direct sums of single vector spaces,
respectively) of the irreducible representation:

~ea1a2 =
∑
Rα

CRα
αa1a2~e

Rα
α (3.8)

Therefore, we can write a vector like ~V = Va1a2~ea1a2 = ∑
Rα Vα~eα. The main step is just

to form pairs Pi = (rα, Rβ) of equivalent representations from the initial and the final
states which means the subset of irreducible representations occurring in both the direct
sums ⊕α rα and ⊕β Rβ. We are now able to rewrite the scattering amplitude via

Ma1a2a3a4 =
∑
i

c(i)
a1...a4M

(i) c(i)
a1a2a3a4 = 1√

dim(rα)
Crα
αa1a2(CRβ

βa3a4)∗ . (3.9)

The remaining task is only to carry out the decomposition with the usage of the
Young tableaux. We retrace the application of this method for the explicit initial state
r ⊗ r̄ = 3 ⊗ 3̄ (here: squarks, but also valid for quarks, of course) and the final state
R ⊗ R̄ = 8 ⊗ 8. Obviously, the initial state is much easier, so that we start with
r ⊗ r̄ = 3⊗ 3̄, expressed as:

⊗ = ⊕
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Our Clebsch-Gordan series of q̃q̃∗ can be written as 8 ⊕ 1. Furthermore, if we express
the wave function like ψ = (u, d, s) - at the moment the colour is not important, but
the quark types - the direct sum gives the observed meson multiplets, by the way. For
the tensor product 8⊗ 8, the decomposition starts with the two Young tableaux and we
label the second like in (I).

⊗ a a
b

We repeat step (II) thrice for every box at the right:

=
(

a ⊕ a ⊕
a

)
⊗ a

b

=
(

a a ⊕ a
a ⊕

a

a

)
⊗ b

⊕
(

a
a ⊕ a

a

)
⊗ b ⊕

(
a

a
⊕ a

a

)
⊗ b

In between, we cross off some diagrams according to (III).

=
(

a a ⊕ a
a ⊕

a

a
⊕ a

a

)
⊗ b

=
(

a a
b ⊕

a a

b

)
⊕

(
a

a b

⊕
a

a
b

)
⊕

a
b

a
⊕ a

a b

Now, the procedure gradually comes to an end: We do only step (IV)

= a a
b ⊕ a a ⊕ a

a b ⊕ a
a ⊕ a

b ⊕ 1

This result can be seen as the irreducible representation of the tensor product of our
two gluons after using the rules for the dimensionality of Young tableaux:

8⊗ 8 = 27⊕ 10⊕ 1̄0⊕ 8A ⊕ 8S ⊕ 1 (3.10)
Hence, we end up with the pairs (due to colour conservation)

Pi ∈ {(1, 1), (8, 8S), (8, 8A)} (3.11)
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so we can perform the decomposition in Chapter 5 by using the colour structures c(i)

taken as an orthonormal basis satisfying

c(i)(c(j))∗ = δij . (3.12)

We can give the colour basis explicitly - having in mind that there are other suitable
sets of basis vectors:

c
(1)
ijbc = 1√

N3 −N
δijδbc (3.13)

c
(2)
ijbc =

√
2N

(N2 − 1)(N2 − 4)T
a
jid

abc (3.14)

c
(3)
ijbc =

√
2

N3 −N
T ajiif

abc (3.15)

Here, we see several elements of the above-mentioned colour algebra in different repre-
sentations. With this knowledge and the relations in App. A, we are able to calculate
the colour factors later. Hence, we just ended with easily applicable tools for cross
section calculations in QCD starting from abstract concepts and definitions. The only
open question is the advantage of the procedure of decomposition: After a successful
decomposition, every interference containing an impossible colour flow is automatically
excluded from the whole squared amplitude - one directly sees which diagrams do not
have to be calculated. For NLO corrections, a more important feature of this technique
is the fact that the irreducible parts of the decomposed amplitude are convergent on
their own. Especially for a multitude of vertex corrections and/or real emissions, it is
convenient to divide the process into smaller parts to check the ultraviolet or infrared
convergence.

3.3. Ghosts: A Relic of Quantisation
Two vector bosons in the final state of our t̃1t̃∗1 → gg process lead us to an obstacle
within the quantisation of non-Abelian gauge theories. Initially, we should have a look
at the permitted polarisations εTiµ (i = 1, 2, transversely polarised) of the two gluons.
In QED, there is nothing to fear since the on-shell Ward identity Mµkµ = 0 forbids
unphysical polarisation states of the photon. Unfortunately, in some cases this does not
hold in the non-Abelian QCD anymore. By evaluating the amplitudes at tree level and
later applying the Ward identity, we are able to set a precedent for the ostensibly allowed
production of longitudinal polarisations (we call them here ε+/−µ (k) for the forward and
backward lightlike polarisation vectors) - this unphysical phenomenon that we will easily
see cannot just be ignored. Furthermore, the violation of the optical theorem is as
unattractive as ignoring the appearance of ε+/−µ (k). Where does this violation come
from? In the figure below we see the imaginary part of an internal loop related to the
tree level process that can be constructed by cutting the loop diagram. A look at the
completeness relation

gµν = ε+µ ε
∗−
ν + ε−µ ε

∗+
ν +

∑
i

εTiµε
∗T
iν (3.16)
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betrays that the optical theorem claims to take every polarisation state (even the un-
physical) into consideration for the outgoing gluons, as the metric tensors appears within
the gluon loop (vector propagator). Apparently, there is something missing before a

dPS
2Im

=

?

2

Figure 3.1.: The optical theorem seems to be contradictory in non-Abelian gauge
theories.

non-Abelian gauge theory works consistently. The most elegant way of deriving the
additional Lagrangian to make the unphysical degrees of freedom disappear is, perhaps,
the method of path integrals. To do this, we must require the background knowledge
in the field quantisation procedure with the help of functional methods (introduction
in [41]). We simplify the QCD to a pure gauge theory (no fermions) leading us to the
easier functional integral

∫
DA exp

[
i
∫
d4x

(
−1

4(F a
µν)2

)]
(3.17)

for the gauge field A that can be transformed like (Aα)aµ = Aaµ+ 1
g
Dµα

a with the covariant
derivative Dµ. The path integral measure hereby does not change, the integration over
gauge motions α can be factored out. We follow the procedure of Fadeev and Popov
[42] who inserted an effective 1 into (3.17):

1 =
∫
Dα(x)δ(G(Aα)) det

(
δG(Aα)
δα

)
(3.18)

Within the determinant, we find a functional derivative. The idea behind this identity
is to bring the gauge fixing condition G(A) = ∂µAaµ(x)− ωa(x) = 0 (generalised Lorenz
gauge condition) into the field theory - the evaluation of the functional determinant can
be done, if one remembers the quantisation of spinor fields θi where a helpful identity
appeared: (∏

i

∫
dθ∗i dθi

)
exp(−θiBijθ

∗
j ) = detB (3.19)

This identity gave birth to the idea to express the determinant from above as a functional
integral over anticommuting fields c, later called FP ghosts (where the equation can only
be fulfilled if they are scalars under Lorentz transformation - they cannot be physical
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particles due to spin statistics):

det
(

1
g
∂µDµ

)
=
∫
DcDc̄ exp

[
i
∫
d4xc̄(−∂µDµ)c

]
(3.20)

The optical theorem is preserved by adding this ghost contribution to processes with to
non-Abelian gauge bosons in the final state (Fig. 3.2)

+

Figure 3.2.: The additional ghost contribution causes that the optical theorem holds
again.
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4. An Approach Towards
Supersymmetry

Based only on a proper respect for the power of Nature
to surprise us, it seems nearly as obvious that new

physics exists in the 16 orders of magnitude in energy
between the presently explored territory near the

electroweak scale and the Planck scale

-Stephen P. Martin, A Supersymmetry Primer [43]

4.1. Underlying Ideas
To get a sense what SUSY is about, let us start with a quite simple model in Fock
space (generally following [44]). We only place the demand on this model that it should
contain bosons as well as fermions (more precise: nB bosons and nF fermions). Consider
two operators Q± that we want to call SUSY operators, with the following impact on
states in our Fock space:

Q+|nB, nF 〉 ∝ |nB − 1, nF + 1〉 Q−|nB, nF 〉 ∝ |nB + 1, nF − 1〉 (4.1)

They obviously create a fermion/boson and destroy a boson/fermion simultaneously -
what we can interpret as a transformation of fermions into bosons and v.v. We would like
to demand energy conservation, as known expressed via [HS, Q±] = 0 for an arbitrary
SUSY-Hamiltonian HS. It is helpful to construct the hermitian operators Q1 = Q+ +Q−
and Q2 = −i(Q+ − Q−) because the ansatz HS = Q2

i fulfils the energy conservation.
Hence, we end up with a quite easy SUSY algebra:

[HS, Qi] = 0 {Qi, Qj} = 2HSδij (4.2)

Luckily, we encounter the mathematical definitions of the previous chapter in SUSY - we
see that Lie algebras and representation theory occur in a multitude of theories. With
our background knowledge, we see that this simple SUSY algebra is no Lie algebra as
we know it from quantum field theories within the SM since an anticommutator rela-
tion appears. The usage of an anticommutator in the new algebra extending the prior
QFT is exactly the way to maximise the symmetry of a QFT. It was proven by Haag,
 Lopuszański and Sohnius [45]:
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Theorem (1975): The possible symmetry of a consistent four-dimensional quantum
field theory becomes maximal, if it contains a supersymmetry as a non-trivial extension
of the Poincaré symmetry.

We will come later to details about the Poincaré algebra. Thanks to this proof, the
correctness of a SUSY algebra as a generator of physically existent symmetries in a QFT
was mathematically well-defined. Only eight years earlier, Coleman and Mandula pre-
sented a proof that every generator of relevant symmetries should be Poincaré-invariant
(so every bigger symmetry is a product group of the Poincaré group and a group which
has nothing to do with spacetime.) [46]. The conditions of this work seemed to be gen-
eral enough, but one realised that also fermionic generators (see anticommutator from
above) of symmetries exist. The aforementioned SUSY algebra was just an introductory
one and should not be seen as a supersymmetric extension of the Poincaré group. The
simplest extension was constructed by Wess and Zumino [47] in 1974. We will now study
more in detail how an extension of an algebra could work.

4.2. Mathematical Background
4.2.1. Gradation: The Poincaré Superalgebra
While looking upon Figure 2.2 one probably asks where all these new particles shall come
from. What is the origin of this highly keen conjecture that every elementary particle
should have a (currently undetected) superpartner? As one perhaps knows, elementary
particles in Nature can be described as irreducible representations of the Poincaré group
including the Lorentz transformation as well as translations in the Minkowski space.
Group elements therefore perform a transformation of coordinates like xµ → x̃µ =
Λµ
νx

ν + aµ. The algebra behind the Lorentz transformations is generated by the tensors
Mµν = Lµν + Σµν , where Mµν as a generator of rotations in the Minkowski space is
decomposed into inner and external rotations like angular momenta in quantum theory
(Ĵ = L̂+ Ŝ). We can write the them like

Mµν = xµP ν − xνP µ + i

4

(
σµσ̃ν − σ̃µσν 0

0 σ̃µσν − σµσ̃ν
)

σ̃µ = (E2,−~σ) (4.3)

or in the short-hand notation Σµν = diag(σµν , σ̃µν) with the Pauli matrices σµ = (E2, ~σ)
and the four-momentum P µ which also stands for the four generators of translations.
Altogether, the Poincaré group underlies a 10-dimensional Lie algebra with the following
commutator relations:

[P µ, P ν ] = 0 [P ν ,Mρσ] = i(gµρP σ − gµσP ρ)
[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ)

By finding the Casimir operators P 2 = PµP
µ and W 2 with the Pauli-Lubański vector

W µ = 1
2ε
µνρσPνMρσ (relativistic description of the spin vector) - commuting with all 10
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generators -, we get our irreducible representations, characterised by (m, s) being the
fundamental properties of elementary particles: mass and spin. Back to our question
from the beginning: The enlarged particle zoo (augmented by taking SUSY into con-
sideration) can be obtained by evaluating a suitable Poincaré superalgebra and finding
the accompanying Casimir operators, too. The proceeding to widen a given algebra is a
well-defined concept in mathematics. The construction of a SUSY algebra from which
the supermultiplets result as a new sort of elementary particles, a mathematician would
call a gradation of the Poincaré algebra. Grading an algebra works as follows:

Definition 5 (graded algebra): A Zn-graded algebra is a direct sum of vector spaces
L = ⊕n−1

i=0 Li with a product ◦ defined as uj ◦ uk ∈ Lj+k mod n, ui ∈ Li.

Our next step is to construct a graded Lie algebra for the case n = 2 made of the
Poincaré algebra and the above-introduced generators of SUSY transformations Qa. It
has a deviant quality in comparison to a normal Lie algebra:

Definition 6 (graded Lie algebra): A Z2-graded Lie algebra is defined by the fol-
lowing three properties:

1. Gradation: xi ◦ xj ∈ Li+j mod 2
2. Supersymmetry: xi ◦ xj = −(−1)i·jxj ◦ xi
3. Expanded Jacobi identity: xk ◦ (xl ◦xm)(−1)k·m+xm ◦ (xk ◦xl)(−1)m·l +xl ◦ (xm ◦
xk)(−1)l·k

For the product L0 × L0 → L0, we still have the Poincaré algebra since the SUSY gen-
erators do not appear in this map. A bit more challenging is the case of L0 × L1 → L1.
Of course, we should have a result factorised with Qa - the SUSY generators define
the L1-space. For generic generators Zi of a Lie algebra, we expect the structure
[Zi, Qa] ∝ ziabQb. The new Jacobi identity from above should of course be fulfilled -
inserting this ansatz yields directly that ziab has to be a N × N -representation of our
L0-generators. We see that we are dealing with four SUSY generators, for the Lorentz
group we choose the inner rotations in Minkowski space, for translation we use the trivial
transformation, so we obtain the Lie brackets

[P µ, Qa] = 0 [Mµν , Qa] = −Σµν
abQb . (4.4)

It remains the map L1×L1 → L0 for which one often uses the ansatz {Qa, Qb} ∝ (γµC)ab
with the charge conjugation operator C. The calculation is too time-consuming to work
it out here (see [44]). What remains is, together with the recently derived properties, a
Latin index-free version of the SUSY algebra:

[Q,P µ] = [Q̄, P µ] = {Q,Q} = {Q̄, Q̄} = 0
[Q,Mµν ] = σµνQ [Q̄,Mµν ] = σ̃µνQ̄

{Q, Q̄} = 2σµP µ {Q̄, Q} = 2σ̃µP µ

(4.5)
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4.2.2. Irreducible Representations of the SUSY Algebra
In order to obtain our new particles, we follow the same procedure as mentioned in
the former section - with the only difference that we have to construct another Casimir
operator representing the superspin, whereas P 2 still stands for the particle mass. The
operator C2, defined by Cµν = Y µP ν − Y νP µ, commutes with all 14 generators of our
superalgebra where Y µ is an SUSY-extension of the Pauli-Lubański vector - namely
W µ − 1

4Qσ
µQ̄. This vector fulfils the well-known angular momentum algebra. First of

all, we are interested in the massive representation, so we can write:

C2 = 2m2Y 2 − 2(YµP µ)2 = −2m2~Y 2 = −2m4y(y + 1) (4.6)

In the last steps, we worked in the rest system of the particle and wrote its eigenvalues
with y = (0, 1/2, 1, ...), not containing the mass as a prefactor anymore. Therefore, a
massive representation is characterised by (m, y) in analogy to our irreducible represen-
tations of the Poincaré group. Let us now create generation and annihilation operators
acting on a so-called Clifford vacuum |Ω〉 in order to see the action of the SUSY gener-
ators Q on a state |Z〉:

f−A := 1√
2m

QA f+
A := 1√

2m
Q̄Ȧ (4.7)

These operators act on |Ω〉 := (f−1 )n1(f−2 )n2)|Z〉 with n1, n2 = 0, 1 (we let the annihila-
tion operator act on a state until no particle is in it - a vacuum) since it is natural to
assume the properties

f−1 |Ω〉 = 0 f−2 |Ω〉 = 0 . (4.8)
Obviously, we can construct four states with the operators {1, f+

1 , f
+
2 ,

1√
2f

+
1 f

+
2 }. Using

the definitions from above, one directly finds ~Y |Ω〉 = ~W |Ω〉 having the interesting conse-
quence: spin = superspin (also valid for the component s3). Just the other three actions
on the Clifford vacuum are remaining questions to achieve a complete supermultiplet.
With some spinor algebra (which we cannot perform in detail; we refer to [44] where a
big part of this chapter is explained more precisely), one gets the following eigenvalue
equations:

W 3f+
1 |Ω〉 = m(y3 + 1

2)f+
1 |Ω〉 (4.9)

W 3f+
2 |Ω〉 = m(y3 − 1

2)f+
2 |Ω〉 (4.10)

W 3 1√
2
f+

1 f
+
2 |Ω〉 = my3 1√

2
f+

1 f
+
2 |Ω〉 (4.11)

These equations are crucial to read off the important supermultiplets for y = 0, 1/2.
The chiral supermultiplet (m, 0) describes matter - the quarks and leptons belong to
this multiplet as well as their superpartners we know from Chapter 2, Table 2.2. Ad-
ditionally, one also includes the Higgs particles and their superpartners (we will discuss
later why there is more than one Higgs boson). The chiral supermultiplet consists of
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fermions (s3 = ±1
2), of scalars (no SUSY operator acting on |Ω〉) and pseudoscalar parti-

cles, when we construct the fourth state. The next-complicated representation is used to
describe interaction - we start with y = 1/2 and therefore a fermionic Clifford vacuum
and end up with a vector supermultiplet with the gauge bosons and their superpart-
ners (photino, wino, zino/bino before electroweak symmetry breaking, gluino). The pair
(m, 1/2) leads to particles with spin 1/2 (2x), 1 (2x) and 0 (1x) by using the f± for both
superspins y3 = ±1/2.

We see that we reached our goal to understand why an extended algebra produces a
huge number of new particles only using algebraic techniques. Again, we have an as-
tonishing example that in particle physics the theoretical prediction comes before the
experimental detection in the most cases, and not vice versa as it happens in several dis-
ciplines of science. It is not surprising that SUSY does not exist nowadays, it is no exact
symmetry in our Universe. We therefore have the necessity to construct a symmetry
breaking mechanism.

4.2.3. Breaking the Symmetry
So far, we have only seen how particles appear by constructing a new algebra. This
overview was quite general and we have not talked about the expected ingredients of
a quantum field theory, e.g. Lagrangians, yet. We will now become more precise and
present briefly the way how the broken SUSY is currently understood. Apparently, we
are not able to equate the masses of the superpartners with the SM particle masses
since we would have detected them otherwise decades ago. During introducing a SUSY
Lagrangian (an elaborate procedure with several new elements that cannot be presented
here, we refer to [43]) for the easiest supersymmetric model, the MSSM with the number
N = 1 of SUSY generators Q, symmetry breaking terms are needed to explain the
observed situation in a suitable way:

LMSSM = LSUSY + Lsoft (4.12)

The SUSY-conserving part is responsible for gauge and Yukawa interactions. Since we
have no concrete idea how the symmetry breaking mechanism works in detail, one intro-
duced an approach called soft SUSY breaking - the additional terms in the Lagrangian
include SUSY-violating mass terms and trilinear couplings. The mass hierarchy can
only be maintained for a positive mass dimension. These terms can be expressed in the
following way:
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Lsoft = −1
2(M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.)

− (M2
Q̃)ijQ̃†iQ̃j − (M2

ũ)ij ¯̃u†i ¯̃uj − (M2
d̃ )ij ¯̃d†i ¯̃dj

− (M2
L̃)ijL̃†i L̃j − (M2

ẽ )ij ¯̃e†i ¯̃ej
−m2

HuH
†
uHu −m2

Hd
H†dHd − (bµH†dHu + h.c.)

+ (Au)ijHuQ̃i
¯̃uj + (Ad)ijHdQ̃i

¯̃dj + (Ae)ijHdL̃i ¯̃ej + h.c.

(4.13)

A multitude of new elements to be determined appear within this expression, which
makes this model problematic seen from the philosophy of science and also in general,
as we will see. The Mi are mass parameters of wino, bino and gluino, whereas the M2

...

terms are hermitian 3× 3 matrices of the soft SUSY breaking mass terms of sfermions.
We will discuss the Higgs sector, including Hu/d, whose mass terms after soft symmetry
breaking are given in the third line. bµ is hereby defined via the off-diagonal squared
Higgs mass term m2

12. At last, we encounter the aforementioned trilinear couplings in
every possible way. Hence, we end up with 105 new parameters by the mechanism of
soft SUSY breaking - an unsatisfactory, however essential and necessary part of SUSY.
Fortunately, one can immensely reduce the number of parameters by using phenomeno-
logical models. For instance, the constrained MSSM (cMSSM) assumes squared scalar
masses and trilinear couplings to be flavour diagonal and universal - shrinking the pa-
rameter space to five dimensions. But normally, one wishes a model with not too many
constraints - the pMSSM (phenomenological) with 19 parameters is often used [48].

This section shall come to an end with mentioning more detailed approaches to the sym-
metry breaking that have been worked out in the last decades. The underlying principle
is the idea of a hidden sector where the origin of spontaneously broken SUSY is conjec-
tured. It should be transferred by so-called messenger interaction to the visible (measur-
able) sector. The hidden sector acts at incredibly high energies λsoft � λelectroweak, so no
particles from this sector appear in the visible sector. Nonetheless, they have effects on
this scale by the messenger sector expressed via the soft breaking terms from the upper
Lagrangian, that transfer the breaking to the visible sector. This messenger interaction
might be gravity (gravity-mediated SUSY breaking) or gauge forces/gaugino mediation.
[49,50].

4.3. Motivation
The beauty of SUSY is for many physicists a handwavy argument for the truth of the
theory. Although there were several convincing cases in history of science, where a great
new model had got a ravishing shortness, this cannot be the main reason to believe in
SUSY. Nevertheless, there are other reasons making this theory promising and making
shortcomings of the SM disappear. Although we have already encountered the neutralino

36



4. An Approach Towards Supersymmetry

as a candidate for dark matter, two other interesting problems and how to solve them
with SUSY shall be explained.

4.3.1. Hierarchy Problem
The SM is just an effective theory, valid up to a certain mass scale Λ that is entered e.g.
for the Higgs mass corrections in NLO. The fermionic contribution carries a quadratic
divergence with a cutoff scale lying immensely higher than the electroweak scale. It
seems unnatural to cancel this divergence by a fine-tuned procedure due to the fact
that the gauge boson masses are protected by symmetries. The symmetry protecting
mh might be SUSY as the scalar loop correction arising from sfermions of the MSSM
(Fig. 4.1) cancels the quadractic divergence in the following illustrative way (under the

Figure 4.1.: The cutoff parameter Λ might disappear, if the NLO contributions to the
Higgs mass consist of fermionic (left) and sfermionic (right) loops.

assumption of equal couplings λf̃ = λf ):

δm2
h(f) + δm2

h(f̃) = 1
8π2

(
−λ2

fΛ2 +m2
f ln

(
Λ2

m2
f

)
+λf̃Λ2 −m2

f̃ ln
(

Λ2

m2
f̃

))
(4.14)

This is a purely statistical result, as the negative sign has its origin in Fermi-Dirac
statistics of closed fermion loops. The hierarchy problem could be solved in a natural
way. Note, that logarithmic divergences ln(Λ2) are still existent but weaker. One should
be aware of the fact that this cancellation seems only that stunning using the cut-off
method to regularise the divergence with the parameter Λ. In other frameworks for the
evaluation of loops the effect of including additional scalars is less obvious.

4.3.2. Grand Unified Theories
Unifying every fundamental gauge interaction is the big dream of many physicists be-
lieving that in the beginning the Universe was ruled just by a single force. This dream
may be supported by the unification of electro- and magnetostatics in the 19th century
as well as by the theory of the electroweak force around 1970. The symmetry breaking
mechanism of the latter one acts at the electroweak scale. One assumes the energy of
the unification SU(3)C×SU(2)L×U(1)Y of all gauge forces to be around 1016 GeV, but
unfortunately the coupling constants do not meet at a single point within the SM. As
we can see in Fig. 4.2, SUSY cancels also this problem, so a grand unified theory (GUT)
is allowed: Additional contributions to the running of the coupling constants allows for
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Figure 4.2.: A grand unification at a single point should be possible using SUSY [51].

their meeting at the GUT scale. We keep in mind that gravity is totally excluded from
these thoughts; a QFT of gravity is a problem of a frightening size. Nevertheless, SUSY
enters again the stage: Including gravity in string theories demands SUSY as well. Such
a theory can only be defined using supergravity. The assumption of a GUT yields a
pMSSM - rather a toy model -, by the way. We hereby equate the soft SUSY breaking
mass terms: Mi(QGUT ) = m1/2.

4.4. Specific Aspects
After this overview giving us an understanding of SUSY to a certain degree, we can
concentrate on specific components of the Minimal Supersymmetric Standard Model
that we will explicitly need in future calculations.

4.4.1. Ingredients: The New Particle Zoo
Despite having discussed a lot of aspects of SUSY, we are still unsuspecting regarding
the properties of our new particles within the MSSM, shown in Fig. 2.2. Apparently, the
MSSM yields 12 squarks arising from 6 left- and right-handed superpartners, the same
holds for the selectron, the smuon and the stau (the explicitly needed particles will be
treated in the coming subsection). One should note that these left- and right-handed
superpartners could mix non-trivially. More interesting, however, are the Higgs, the
neutralino and chargino sectors. Hereby, we have to distinguish carefully between the
(measurable) mass eigenstates of this sector and the gauge eigenstates. The Higgs sector
comes into being since the electroweak symmetry breaking absorbs only three degrees
of freedom, but the MSSM extension enlarges the number of degrees up to eight by an
additional Higgs doublet. Today, we therefore should find five Higgs bosons, namely
the neutral SM-like boson h0, a much heavier H0, a pseudoscalar, CP-odd A0 and two
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charged Higgses H± (obtained by mixing the gauge eigenstates (H̃+
u , H̃

0
u) and (H̃0

d , H̃
−
d )).

Their fermionic partners are called Higgsinos. During symmetry breaking, Goldstone
bosons appear - they have the Goldstinos as superpartners.

The gauge symmetries in the MSSM are the same like in the SM (SU(3)C × SU(2)L ×
U(1)Y ), so it is unsurprising to find gluinos, winos (W̃ 0, W̃±) and a bino B̃0 forming
a photino, zino and charged winos via the Weinberg angle θW as it happens in the SM
after symmetry breaking at the electroweak scale:

|γ〉 = cos θW |B0〉+ sin θW |W 0〉 |Z0〉 = − sin θW |B0〉+ cos θW |W 0〉 (4.15)

|W±〉 = 1√
2

(|W 1〉 ∓ i|W 2〉 (4.16)

The uncharged particles we recently explained are the ingredients of the neutralino
sector, responsible for four neutralinos χ̃i (Majorana fermions) with different masses.
They are obtained from the Lagrangian below:

L = −1
2(Ψ0)TMχ̃Ψ0 + h.c. Ψ0 = (B̃0, W̃ 0, H̃0

d , H̃
0
u) (4.17)

Mχ̃ =


M1 0 − cos β sin θWmZ sin β sin θWmZ

0 M2 cos β cos θWmZ − sin β cos θWmZ

− cos β sin θWmZ cos β cos θWmZ 0 −µ
sin β sin θWmZ − sin β cos θWmZ −µ 0


β is given by arctan(vu

vd
) with the VEVs vu,d = 〈H0

u,d〉. M1,2, the soft parameters, arise
from the electroweak sector in the SUSY breaking Lagrangian (4.13), µ from the Hig-
gsino mass Lagrangian, see also [3]. In a similar way, the so-called charginos C̃±1,2 (mass
eigenstates) consist of the charged gauge eigenstates, constructed with the Lagrangian

L = −1
2(Ψ+,Ψ−)TMC̃(Ψ+,Ψ−) + h.c. Ψ± = (W̃+, H̃+

u , W̃
−, H̃−d ) (4.18)

MC̃ =


0 0 M2

√
2 cos βmW

0 0
√

2 sin βmW µ

M2
√

2 sin βmW 0 0√
2 cos βmW µ 0 0


4.4.2. Special SUSY Particles: Staus and Stops
Now, we comment more precisely on the SUSY particles of which the coannihilation
processes are calculated within this thesis. The left- and right-handed gauge eigenstates
of the staus and stops mix in a non-trivial way to mass eigenstates with indices 1,2. The
Lagrangian is constructed by mixing the sfermion sector via a mass matrix M2

f̃ :

Lm(f̃) =
∑
f̃

f̃ †M2
f̃ f̃ M2

f̃ =
(
M2

f̃LL
M2

f̃LR

M2
f̃LR

M2
f̃RR

)
(4.19)
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We specify the ingredients of the mass matrix:

M2
f̃LL

= M2
{Q̃,L̃} + (I3L

f − ef sin2(θW )) cos(2β)m2
Z +m2

f (4.20)

M2
f̃LR

= mf (Af − µ(tan β)−2I3L
f ) (4.21)

M2
f̃RR

= M2
{Ũ ,D̃,Ẽ} + ef sin2(θW ) cos(2β)m2

Z +m2
f (4.22)

Again, we encounter the soft SUSY-breaking masses M2
{...} and the trilinear couplings

Af . Over and above, the third component of the weak isospin, I3L
f , appears. ef denotes

the electric charge of the fermion, expressed in the quantity of the elementary charge e.
Our off-diagonal mass matrix becomes important in the third generation. In lower gen-
erations the mass eigenstates can be neglected without any problems. But having a look
at the off-diagonal entries, we find the fermion mass (increasing with the generation).
With the top quark mass in the off-diagonal entry, a considerable mixing is expectable.
The actual value is determined by the chosen scenario - we still have free parameters.

Diagonalising yields mixing matrices. For staus, we find the following rotation in the
vector space of gauge eigenstates:

M2
τ̃ =

(
m2
τ̃LL

m2
τ̃LR

m2
τ̃LR

m2
τ̃RR

)
= (Dτ̃ )†

(
m2
τ̃1 0

0 m2
τ̃2

)
Dτ̃ (4.23)

M2
τ̃ =

(
m2
l̃3
− (1

2 − sin2 θW )M2
Z cos 2β +m2

τ −mτ (Aτ
∗ + µ tan β)

−mτ (Aτ + µ∗ tan β) m2
τ̃ −M2

Z cos 2β sin2 θW ) +m2
τ

)
(4.24)

The rotation operator is called mixing matrix, Dτ̃ , and contains a mixing angle. In a
later scenario the mixing is almost maximal and should never be forgotten.(

τ̃1
τ̃2

)
= Dτ̃

(
τ̃L
τ̃R

)
=
(

cos θτ̃ sin θτ̃
− sin θτ̃ cos θτ̃

)(
τ̃L
τ̃R

)
(4.25)

From the diagonalisation process, we obtain:

m2
τ̃1,2 = 1

2

(
m2
τ̃LL

+m2
τ̃RR
∓
√

(m2
τ̃LL −m2

τ̃RR)2 + 4m4
τ̃LR

)
(4.26)

Moreover, we can express the mixing angle as follows:

cos θτ̃ =
−m2

τ̃LR√
m4
τ̃LR + (m2

τ̃2 −m2
τ̃1)2

(0 ≤ θτ̃ < π) (4.27)

The same holds for the heavy squark sector. For brevity, we simply give the mass matrix
from which everything earls can be derived.
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M2
t̃ =

(
m2
q̃3 + (1

2 −
2
3 sin2 θW )M2

Z cos 2β +m2
t −mt(At

∗ + µ cot β)
−mt(At + µ∗ cot β) m2

t̃ −
2
3M

2
Z cos 2β sin2 θW ) +m2

t

)
(4.28)

M2
b̃ =

(
m2
q̃3 − (1

2 −
1
3 sin2 θW )M2

Z cos 2β +m2
b −mb(Ab

∗ + µ tan β)
−mb(Ab + µ∗ tan β) m2

b̃
− 1

3M
2
Z cos 2β sin2 θW ) +m2

b

)
(4.29)

The bottom mixing is given since it occurs in virtual corrections in the stau annihilation
process on the side of outgoing heavy quarks (generically implemented).
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Annihilation

Stop-antistop annihilation into gluon pairs gives birth to uncountable Feynman diagrams
at next-to-leading order. We introduce the process by evaluating the colour decompo-
sition and calculation at Born level and continue with self-energies of the propagators.
These are also needed for the renormalisation procedure of propagator and vertex dia-
grams. We leave comments on special difficulties like non-trivial symmetry factors and
give at least an overview of the real gluon emissions. Finally, a description of interference
terms with the virtual diagrams is given.

t̃1

t̃∗1

t̃1

t̃1

t̃1t̃1

t̃∗1

t̃1

t̃∗1

t̃∗1

g

g

g

Figure 5.1.: The process t̃1t̃∗1 → gg contains s-, t- and u-channel. Due to indistinguish-
able final states, the t- and u-channel are strongly related. A trivial channel
is given by the 2-squark-2-gluon vertex that does not include a propagator.
All dashed lines indicate the lighter stop.

5.1. Calculation at Tree Level
The process of annihilating stop-antistop pairs into gluon pairs allows for several ampli-
tudes. By taking every possible MSSM interaction into consideration, we end up with
the Feynman diagrams in Fig. 5.1. As we know from previous discussions, we are not
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allowed to ignore the ghost contribution in Figure 5.2 coming from the final state of two
gluons in the s-channel (same indices). It was shown by S. Schmiemann that the light-

t̃1

t̃∗1

g

η

η̄

Figure 5.2.: As described in Section 3.3, gauge fixing requires Fadeev-Popov ghosts. Al-
ternatively, the light-cone gauge can be taken into consideration. The in-
verted flow of the final ghost is a different diagram and has to be calculated
separately.

cone gauge leads to the same numerical results. Later on, we naturally have to correct
also the ghost vertices that would not appear in a different gauge. But first things first.

5.1.1. Decomposing the Amplitude
Before we calculate the amplitudes explicitly, we should use the technique of colour
decomposition to split the total amplitude into the direct sum arising from the Clebsch-
Gordan decomposition. In order to conserve the colour, the following pairs from the
direct sum in Section 3.2 are allowed: (1, 1), (8, 8S), (8, 8A). A short look at the colour
structure of the s-channel diagram tells us the direct proportionality to (3.15), so this
channel (also including the same colour factor of the ghost contribution) only appears
in the antisymmetric octet. For the remaining channels we have to work a bit more
and make use of the relations of the colour algebra in App. A.3. We extract the parts
of the amplitude equation contributing to the singlet and the octets by multiplying
the c

(i)
ijbc with the colour factors. We obtain (after some steps of colour algebra) the

irreducible representations of our amplitude. Luckily, the squared total amplitude fulfils
the following relation (orthonormality basis):

Mtotal =M1 +M8S +M8A → |Mtotal|2 = |M1|2 + |M8S|2 + |M8A|2 (5.1)

We present the final result - the colour decomposition of our squared scattering ampli-
tude:

|M1|2 = N2 − 1
4N (|Mt|2 + |Mu|2 + 2|MtMu|+ 4|M4|2 + 4|M4Mt|+ 4|M4Mu|) (5.2)

|M8S|2 = CF (N3 − 4N)
4 (|Mt|2 + |Mu|2 + 2|MtMu|+ 4|M4|2 + 4|M4Mt|+ 4|M4Mu|)

(5.3)
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|M8A|2 = (N3 −N)
8 (|Mt|2+|Mu|2−2|MtMu|+4|Ms|2+4|MsMt|−4|MsMu|) (5.4)

This technique shows us directly the allowed interferences and gives colour factors for
every cross section automatically. Next, one has to calculate the squared amplitudes
explicitly.

5.1.2. Evaluating the Possible Feynman Diagrams
In this subsection we will give the amplitudes of our five Feynman diagrams, whereas
the Born cross section expressed in Mandelstam variables for all squared amplitudes is
given in Appendix C. The procedure of calculating cross sections might be well-known
- it follows always the same easy steps of writing down the amplitude M, squaring and
contracting it and expressing it via s, t and u. At this moment we just obtain the
differential cross section dσ

dΩ - conventionally in a spherical coordinate system to tell us
the distribution of the final particles, dependent on the space angle element dΩ. The
procedure of integration works as follows:∫

dσ = 1
F

∫
|M̄|2dPS(n) (5.5)

Here we find the flux factor F , given by

F = 4
√

(p1p2)2 − (m1m2)2 = sv (5.6)

with the relative velocity v of the incoming particles with masses and momenta mi and
pi as well as the phase space element dPS(n) for n outgoing particles (here: 2, for real
emissions 3):

dPS(n) =
 n∏
j=1

d3~kj
2Ej(2π)3

 (2π)4δ(4)

p1 + p2 −
n∑
j=1

kj

 (5.7)

The Dirac distribution guarantees the conservation of momenta and contains the mo-
menta kj of outgoing particles, too. With this knowledge we are prepared for the cross
section at leading order.

s-channel: This is perhaps the most cumbersome calculation due to the three interact-
ing gluons. All following vertex factors as well as propagators can be found in Appendix
C. The choice of the momenta is the intuitive one, which means that the momenta go in
the direction of time (p1 and p2 in the initial state, k1 and k2 in the final state). Taking
into account every needed factor except of the colour structure of the s-channel yields:

Ms = −ig
2
s

s
(p2 − p1)αgαρ[gρν(k1 + 2k2)µ + gµν(k1 − k2)ρ − gµρ(2k1 + k2)ν ]ε∗µ(k1)ε∗ν(k2)

(5.8)
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s is the Mandelstam variable (see C.1 kinematics), gs is the coupling strength of strong
interactions, furthermore the outgoing gluons are described with polarisation vectors ε∗.
For the squared amplitude, one just has to rename the indices and to conjugate ε∗(ki),
the contraction will be done via the relation ∑

εα(pi)ε∗β(pi) = −gαβ appearing within
the summation over all possible polarisations of a vector-like particle in the final state.
Hence, we easily obtain:

|Ms|2 = g4
s

s2 (p2 − p1)ρ(p2 − p1)β[gρν(k1 + 2k2)µ + gµν(k1 − k2)ρ − gµρ(2k1 + k2)ν ] ×

[gβδ(k1 + 2k2)γ + gγδ(k1 − k2)β − gγβ(2k1 + k2)δ]gµγgνδ
(5.9)

But with the knowledge about ghosts, we are aware of the incompleteness of the s-
channel calculation: The outgoing Fadeev-Popov ghosts split up into two diagrams since
the particle with momentum k1 can be a ghost or an anti-ghost and vice versa for k2.
As the vertex factor carries only the momentum of the particle, we add two similar, but
not equal diagrams:

Msgh = −ig
2
s

s
(p2 − p1)αgαρ(k1)ρ −

ig2
s

s
(p2 − p1)αgαρ(k2)ρ (5.10)

Squaring the amplitude is in this case a trivial procedure. Immensely easier is the treat-
ment of the...

...four-vertex:. Without colours we merely get:

M4 = ig2
sg

µνε∗µ(k1)ε∗ν(k2)→ |M4|2 = 4g4
s (5.11)

t- and u-channel: Finally, we can calculate the remaining diagrams simultaneously by
interchanging k1 and k2.

Mt = (2p1 − k1)µ ig2
s

t−m2
t̃1

(2p2 − k2)νε∗µ(k1)ε∗ν(k2) (5.12)

Mu = (2p1 − k2)µ ig2
s

u−m2
t̃1

(2p2 − k1)νε∗µ(k2)ε∗ν(k1) (5.13)

After the integration, the whole Born cross section is already calculated. This is of
course not sufficient for a convincing result - it follows a much more time-consuming
part of the next order in the perturbative series.

5.2. NLO Corrections
In this section we assume that the reader is familiar with the technical procedure of
loop calculations and give just a quick overview of the coming calculations. Techniques
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5. Cross Section of the Stop Annihilation

used in this chapter are explained in App. D in detail. Let us first recapitulate the
basic ingredients of a full calculation beyond the Born cross section: For an acceptable
precision, one normally has to work out the perturbative series up to the second order.
At next-to-leading order (NLO), the one-loop corrections appear in the Feynman dia-
grams. The loop integrals over the internal momenta have the inconvenient property of
being divergent in several cases. These divergences turned out to arise from ill-defined
Lagrangians (see the coming subsection) that can be made calculable with the procedure
of dimensional regularisation/reduction. To eliminate the poles, one must include the
counterterms obtained from the self-energy of the particles (renormalisation), subtract-
ing the UV divergences, and in the same way real corrections (e.g. gluon emission),
responsible for the IR divergences. Due to the famous theorem of Kinoshita, Lee and
Nauenberg [52], the whole Standard Model has IR-convergent cross sections by taking
into consideration every integrated real emission process (which can be expanded to
supersymmetric models):

σNLO =
∫

2→2
dσvirtual +

∫
2→3

dσreal (5.14)

Now, we will retrace the full NLO calculation step by step.

It should be self-explanatory that the description of all NLO calculations would blow up
the main part in an irresponsible way. We give the results in the appendix instead, the
coming subsections are in fact rather a summary of and a commentary on all permitted
diagrams.

5.2.1. Self-Energies and Counterterms
In order to make the loop integrals calculable, we use the common method of dimen-
sional regularisation. Their evaluation is done with Passarino-Veltman integrals, whose
theoretical background is described in Appendix D. The following figure gives the set of
the four possible squark self-energy diagrams. Treating the gluon is a bit more extensive

x

+ + +

+ =

Figure 5.3.: Four loops added to the counterterm yield a UV-convergent squark self-
energy.

(seven diagrams, Fig. 5.4). With these diagrams, the propagator corrections are com-
plete. This point is appropriate to mention a handful of facts concerning counterterms
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+ + +

+ +

+

+

=x

Figure 5.4.: The gluon self-energy known from the Standard Model is extended by squark
and gluino loops. Combinatorics with gluino loops is dangerous as they are
Majorana fermions. The counterterm can be separated into SM and SUSY.

as the self-energies have to be known to calculate them explicitly. So what is the basic
idea behind the procedure of renormalisation? After having identified the inconvenient
divergences, the challenging task of absorbing them is still remaining. This problem was
solved by the insight that the (so-called bare) Lagrangian we used for calculating the
tree level is ill-defined and the bare elements (mass m0, field φ0 and coupling strength
λ0) have to be rescaled, what is commonly performed by multiplicative renormalisation:

φ0 =
√
ZφφR =

(
1 + 1

2δZφ
)
φR (5.15)

λ0 = ZλλR = (1 + δZλ)λR (5.16)
m0 = ZmmR = (1 + δZm)mR (5.17)

where the NLO expansion Zi = 1 + δZi + O(λ2) was performed. The redefinition
yields the renormalised Lagrangian with the structure of our bare one, just with rescaled
ingredients, and additional counterterms (drawn with a crossed propagator in the figures
from above) containing the δ-terms with a new set of Feynman rules. The occurring
diagrams will absorb the UV divergences. Let us have a look at the squarks or rather
their bare Lagrangian

Lq̃0 = ∂µq̃
∗
0,i∂

µq̃0,i −m2
q̃0q̃
∗
0,iq̃0,i (5.18)

that shall be replaced (via rescaling the wave function q̃0,i and the bare mass m2
q̃0,i

like
above) to

Lq̃0 = ∂µq̃
∗
i ∂

µq̃i −m2
q̃ q̃
∗
i q̃i + 1

2δZ
q̃
ij(∂µq̃∗i ∂µq̃j −m2

q̃ q̃
∗
i q̃j)

+ 1
2(δZ q̃

ij)∗(∂µq̃∗i ∂µq̃j −m2
q̃ q̃
∗
i q̃j)

− δm2
q̃i
q̃∗i q̃i

47



5. Cross Section of the Stop Annihilation

→ Lq̃0 = Lq̃ren + δLq̃ (5.19)
where the δ-terms side absorbs every UV divergence appearing within the squark sector.
The indices ij represent the mixing of the squarks which later makes the renormalisa-
tion procedure more laborious in contrast to the quarks. In general, one extracts the
counterterms from the self-energies Π(p2), what can be carried out in different renor-
malisation schemes. Probably, the MS scheme (minimal subtraction) is the canonical
way to get rid of the divergences, since the counterterm subtracts simply the pure pole
without additional terms, so it can be directly read off from the self-energy terms. In
the MS scheme also the finite term −γE + ln 4π is subtracted as it appears in every
tensor integral (see App. D). This procedure is used for dimensional regularisation with-
out supersymmetry. Its SUSY equivalent is the DR scheme - the dimensional reduction
namely preserves the supersymmetry (main difference: vector bosons are D-dimensional,
not four-dimensional). For directly measurable particles, one introduced the on-shell
scheme with the simple idea that the renormalised mass must be equal to the physical
one. The counterterms are derived from two renormalisation conditions, setting on the
one hand the masses equal and on the other hand asking the residue to be 1:

Re Π(p2)|p2=m2 = 0 lim
p2→m2

1
p2 −m2 Π(p2) = 1 (5.20)

If one wishes to derive a vertex counterterm, one simply has to sum over the coun-
terterm components of the vertex, i.e. all appearing wave function counterterms and
the renormalised coupling. The propagator counterterm is obtained in the same way:
i[(p2 −m2)δZφ −m2

RδZm]. The gluon and squark renormalisation is explained in detail
in App. D. Within our collaboration, a hybrid-scheme consisting of the on-shell and the
DR scheme is used. Dependent on how many parameters are renormalised on-shell, one
may obtain fairly different cross sections that we will analyse in Chapter 8.

5.2.2. Vertex Corrections and Boxes
We consider the vertex corrections for the incoming squarks, the outgoing gluons (not to
forget the ghosts) and the 2-quark-2-gluon-vertex: By taking into account every allowed
coupling of particles given in App. B, one finds a multitude of corrections presented in
the following figures. This set of diagrams has been supported by the FeynArts output
for our process. Its algorithms yield the wide range of corrections automatically, but in
a possibly confusing notation, especially in complex processes. The longest calculation
within the vertex corrections affects the 3-vector topology (Fig. 5.5).
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+ + +

+ + +

=

+ + +

+

Figure 5.5.: The three-gluon corrections produce thousands of lines of code. However,
they build a direct sum of Standard Model and SUSY diagrams that must
be separately convergent. The pure gluon loops cancel with the ghost-loop
- they are untouched from the counterterm. Some rotational invariances
simplify the abundance of diagrams.

We encounter gauge fixing again at next-to-leading order (Fig. 5.6).

+ + =

Figure 5.6.: Gauge invariance demands ghost in the final state, exchanging a gluon as
well as two virtual gluons decaying into ghosts.

In analogy to the tree level, we have to consider both possibilities of the ghost-anti-
ghost creation (antiparticle can be created above and below the virtual gluon). This
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enlarges the number of diagrams by a factor two. The scalar topology of our incom-
ing squarks is a bit easier to handle. Nonetheless, there is a considerable amount of
corrections, shown in Fig. 5.7.

Figure 5.7.: These vertex corrections are of paramount importance as they appear in
a fivefold manner within the tree level diagrams. They also appear in the
process in [92], the results can be used for a cross-check.

One can easily check that every conceivable correction of the t- and u-channel can be
extracted from the above-mentioned ones, where only the momenta and their direction
as well as the particle masses have to be adapted. Additionally, the four-vertex involves
diverse NLO contributions (Fig. 5.8)
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+ + + +

+ +

=

+ +

+ +

+ + +

+ +

Figure 5.8.: The kinematical structure of all these diagrams is more or less simple. How-
ever, combinatorics and colour factors make life harder. Only a handful of
diagrams are renormalised by the counterterm. One observes, for instance,
that every loop containing two particles of the same kind are cancelled by
those that have three particles of this kind (only concerning the poles).

Last, but not least: Box diagrams entail longer calculations due to the four internal
particles and vertices. Therefore, every result is given in the appendix in order to keep
the main part of the thesis in a limited scale.
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Figure 5.9.: The boxes do not need any counterterm. Power-counting theorems tell us
that no pole survives.

The u-channel-like boxes can be evaluated via the simple interchange k1 ↔ k2. Luckily,
box diagrams are convergent as a whole. There remain two additional NLO corrections
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due to the Fadeev-Popov ghosts in Fig. 5.10 (of course again containing both flows of
the outgoing ghosts, so in fact four boxes):

Figure 5.10.: The last virtual corrections are box diagrams with ghosts in the final stat.
Both directions have to be calculated.

We will construct the explicit counterterms to renormalise the vertex corrections in the
appendix. This subsection needs a further remark as this process contains the following
danger: To forget taking into account non-trivial symmetry factors of our NLO diagrams.
In a perturbative expansion of correlation functions, one performs in fact a camouflaged
evaluation of expressions like

T

{
exp

[∫ t

t̃
HI(s)ds

]}
(5.21)

by Wick contractions. T stands for a time-ordered product of field operators, HI means
the interaction Hamiltonian derived from the Lagrangian of the field theory. Expand-
ing (5.22) explicitly is a quite lengthy and, in the most cases, unnecessary work as the
construction of Feynman diagrams like above perfectly works only using Feynman rules.
These rules are constructed in a way that, hopefully, no symmetry factor unequal to 1
occurs. This probably holds for 95 percent of cross section calculations. However, this
is not the case for the current process, so we have to make use of [53]

Wick's Theorem (1950): The time-ordered product of arbitrarily many field oper-
ators can be expressed as their normal ordering added to all possible contractions of the
field operators.

Normally, this theorem is introduced for scalar field theories and, possibly, fermions.
In [54], a way is developed to determine symmetry factors also in QCD and other com-
plicated field theories (the results can be extended to SUSY-QCD). We will now briefly
carry out such a procedure for one diagram. All symmetry factors will be given directly
in the loop amplitudes in Appendix D. Exemplary, we investigate the gluon loop from
the 3-gluon topology:
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In this case we have to expand L3g +L4g up to order O(g3
s) and take the mixing term

of the binomial in the second order of the Taylor series:

〈0|2 · A(x)A(y)A(z) i2

2! · 3! · 4!

∫
d4wA4(w)

∫
d4vA3(v)|0〉 (5.22)

x, y, z denote the on-shell gluons, we integrate over the two gluon fields in the loop. In
this equation we used that the Lagrangian densities can be written in such a way, that
the vector fields are treated as scalars:

L3g = fabc × [kinematics]× gs
3! [AaµAbνAcσ] (5.23)

L4g = [kinematics, colour]× g2
s

4! [AaµAbνAcσAdτ ] (5.24)

It solely remains to perform the contraction of the gluon fields and to count every
combinatorial factor for the contraction of indistinguishable virtual fields. With three
ways to contract A(x) and A(v) (two remaining A(v)) and four to contract A(y) and
A(w), therefore three to contract A(z) and A(w), we end up with the loop contraction
of A2(v) and A2(w) leading to another factor of 2. Thus, we have 72/144 = 1/2 as
our combinatorial factor. Including (Majorana) fermions is a bit more involved, but the
techniques are the same.

5.2.3. Real Emissions
Already at first sight, the structure of our LO diagrams provides an insight into the
numerous possibilities of emitting a gluon or gluons decaying into quark pairs. Applying
SUSY Feynman rules shows the number of additional diagrams that all have to be
interfered with each other:
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Figure 5.11.: Real corrections to the s-channel (we ignore gauge fixing diagrams).

Figure 5.12.: Real corrections to the t-channel, the same structures naturally occur
within the u-channel.
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Figure 5.13.: Real corrections to the four vertex.

Once again, we encounter ghosts for gauge fixing reasons. The multitude of additional
diagrams is omitted in this section. There are two main difficulties being a hindrance
to complete the entire NLO calculation within this thesis. The first one is simply the
fact that treating every diagram is too time-consuming for this work. To work out
every interference properly, a huge effort of automatisation is needed. The second is
more problematic: In general, there exist two ways of performing 2 → 3 phase space
integrations in order to get an infrared finite result: The phase space slicing method as
well as the dipole subtraction method (s.a. Chapter 6). We will explain, why the latter
one is favourable. But currently, the framework for processes with initial scalars is not
developed.

5.2.4. Constructing the Total Cross Section
At the moment we just have shown the corrections to the tree level themselves, but not
how to deal with them in order to get our object of desire: An UV- and IR-convergent
cross section at next-to-leading order. Adding the virtual corrections we showed before
means effectively nothing than changing the coupling constants of the vertices: Having
in mind the Born cross section contributions

|Ms+gh +Mt +Mu +M4|2 (5.25)

it becomes clear what has to be done at NLO: Every vertex correction carries, in com-
parison to the tree level vertex factor, an additional factor of g2

s or rather αs, so we get
the next contribution of the perturbative series going with αns . To stay at this order -
one order higher than the Born cross section - we cannot simply plug in every corrected
vertex into the tree level expressions, but for every squared amplitude just one correc-
tion. Consider for instance the term |MLO

s |2: We have now the possibilities of inserting
the corrected left or right vertex (2-squark-gluon or 3-gluon vertex) for one of the am-
plitudes. The UV-divergent parts are always proportional to the tree level amplitude,
so we are able to use the factorisation |MLO

s |2 × (AUV−div2q̃g + δ2q̃g +AUV−div3g + δ3g). We
add the counterterms arising from the propagator corrections for the respective vertex
that should cancel every divergent ∆-term in the Passarino-Veltman integrals (see App.
D). One might ask what happened to the rest of the vertex corrections being ultravi-
olet safe: Unfortunately, these contributions to the complete NLO calculation have a
different kinematical structure compared to the tree level amplitudes. Therefore, every
possible structure has to be treated in a separately calculated amplitude.
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To get an overview of all vertex corrections inserted into the amplitudes, we first consider
the s-channel (the indices l, r denote the corrected left and right vertex):

|Ml,r
s Ms|+ |Ml,r

s Mt|+ |Ml,r
s Mu| (5.26)

|Ml,r
gh1Mgh1|+ |Ml,r

gh2Mgh2| (5.27)
Naturally, the 4-vertex has only one possible correction:

|Mcorr.
4 M4|+ |Mcorr.

4 Mt|+ |Mcorr.
4 Mu| (5.28)

We found during the colour decomposition that no interference with the s-channel is
allowed. It becomes more complicated in case of the t- and u-channel (the indices a, b
stand for the above and below corrected vertex):

|Ma,b
t Mt|+ |Ma,b

t Mu|+ |Ma,b
t M4|+ |Ma,b

t Ms| (5.29)

|Ma,b
u Mu|+ |Ma,b

u Mt|+ |Ma,b
u M4|+ |Ma,b

u Ms| (5.30)
One should keep in mind that these contributions only contain the virtual corrections
at the vertices. Additionally, the propagator corrections have to be filled in, performing
the same procedure. The gluon propagator from the s-channel also has factorisable
corrections; its divergences are absorbed by the counterterm δZg: |MLO

s |2× (Πg + δZg).
The same has to be done for every possible interference. Furthermore, every box Bi can
be interfered with every leading order diagram:

|
( 6∑
i=1

Bi

)
·Ms,t,u,4| (5.31)

Ghosts are interfered separately: |(B7 +B8) · Mgh|.

Be aware of a global factor 2 in front of the interferences. It remains the treatment
of the infrared divergences, absorbed by the real emissions. The Cutcosky rules for cut-
ting Feynman diagrams show the effect of adding the real corrections diagrammatically
(s.a. [41]). Afterwards, the whole process is free of divergences, a goal that cannot be
achieved within this thesis. To get a sense what the treatment of the real emissions will
be about and to describe first results in developing a formalism to treat massive initial
scalars, we wrote Chapter 6.

Although conventions and notations are completely different, we emphasize the exis-
tence of [55]. Martin and Younkin describe the SUSY-QCD corrections to the stoponium
decay into hadrons and photons precisely since they explicitly give every appearing ul-
traviolet and infrared pole. The corrections to the incoming stops should be comparable
and useful for further calculations and checks. This recommendation brings this chapter
to an end.
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Formalism

After having spent much time in the infinite-momentum regime, we now turn to the low
energy (soft singularities) and small-angle (collinear singularities) regions in phase space.
To get rid of these infrared poles (occurring in both the virtual and real corrections),
two main methods have been developed over the last decades - phase space slicing and
dipole subtraction. They have in common that the analytical calculations are solely
performed in a minimal region in phase space, namely in the vicinity of the IR poles.
As these calculations are separated from the whole process, they can be worked out
in a generic, process-independent form. Roughly speaking, one carries out the phase
space integration once and for all. Phase space slicing is indeed a suitable name for the
procedure - one simply truncates the phase space in such a way that all soft regions can
be reduced to an integral of the form (consider 2→ 3 processes with involved particles
a and b and the radiated one carrying the momentum k)

Iab =
∫
|~k|<∆E

d3k

2k0
2(a.b)

(k.a)(k.b) (6.1)

with a small cutoff energy of the radiated particle ∆E. The numerical integration is car-
ried out down to the cutoff value needing much CPU time in the singular limit ∆E → 0.
Subsequently, one has to check the global independence of the result from the arbitrarily
chosen cutoff value. To avoid such singular numerical integrations, the dipole subtraction
formalism seems favourable. The long-standing experience with the implementation of
other processes of DM@NLO supports this assumption. There exist different formalisms
by Catani and Seymour [56,57] for NLO-QCD and for massive fermions by Dittmaier
[58] (we follow the latter one). Unfortunately, NLO corrections have been interesting up
to now mostly in collider calculations. Initial scalar (massive) particles have not been
considered yet as they naturally do not occur in these experiments. We introduce the
general approach to eliminate the poles and translate the methods for massive fermions
to massive initial scalars afterwards.

6.1. On the General Concept of Dipole Subtraction
Following the notations in [58], we introduce M1 as the transition matrix element of
a process involving a radiated photon/gluon. Without radiation, it is reduced to M0.
They have the corresponding phase space measures dΦ1,0. Due to finite, non-zero masses
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of the initial squarks, we focus on the soft region (k → 0), where logarithmic IR singu-
larities appear. We obtain an asymptotic proportionality of the upper squared matrix
element allowing for a factorisation. The additional prefactor of |M0|2 is an auxiliary
function that we will call g(sub)

αβ , containing the belonging splitting function. The first
Greek index denotes the particle that will give birth to infrared singularities (emitter,
initial or final), the second denotes the uninvolved spectator (initial or final). The four
combinations cover every thinkable emission process. In Fig. 6.1 the processes of interest
are shown diagrammatically. The crucial step is now to add a cumbersome zero, called

pa

k

g

t̃1

t̃∗1

t̃1

pa

k

g

pi

pb

Figure 6.1.: The real corrections to t̃1t̃∗1 → gg contain initial scalar gluon emitters with
initial (left, g(sub)

ab ) and final (right, g(sub)
ai ) spectators. All momenta go from

left to the right.

the subtraction function Msub:∫
dΦ1

∑
λg

|M1|2 =
∫
dΦ1

(∑
λg

|M1|2 − |Msub|2
)

+|Msub|2 (6.2)

It is parametrised by Φ1 and has the same asymptotic behaviour of the squared 2 → 3
matrix, meaning |Msub|2 ∝

∑
λg |M1|2 for limk→0 or limpak→0 (the sum over λg denotes

the summation over the gluon’s polarisation states). Thus, the non-singular difference in
the equation from above can be handled numerically. The singular limit, instead, can be
integrated analytically, if Msub is appropriately chosen. We note that the factorisation∫

dΦ1 =
∫
dΦ̃0 ⊗

∫
[dk] (6.3)

with the photon/gluon phase space
∫

[dk] is valid, where ⊗ may indicate a non-trivial
product (e.g. convolution). As mentioned before,

∫
[dk]|Msub|2 can now be calculated

generically and is applicable to every process of this kind. Altogether, the expression∫
dΦ1

∑
λg

|M1|2 =
∫
dΦ1

(∑
λg

|M1|2 − |Msub|2
)

+
∫
dΦ̃0 ⊗

(∫
[dk]|Msub|2

)
(6.4)

contains a non-singular Φ1 space and a single-gluon/photon phase space integration,
somehow entangled with the space Φ̃0 of the non-radiative process - responsible for the
remaining poles within the virtual corrections.
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6.2. Real Emissions of Massive Initial Scalars
[57] provides a suitable framework to work out the dipole formulae for massive initial
scalars in analogy to the fermionic case. Naturally, a couple of changes have to be
considered - we exclude any spin flips, the splitting function differs for scalar emitters,
the colour flow must be adapted. The latter one can be factorised from all operations in
phase space. Luckily, the convenient phase space parametrisation of [57] does not lose
its validity. For completeness, the calculation of the single-gluon and 2→ 3 phase space
integrals has to be performed for both initial and final spectators leading to lengthy
expressions comparable with gluon radiation off fermions. We are convinced that our
dipole formulae for the 2→ 3 phase space have equivalent, but shorter brothers, but in
principal, we present a possible technique how to solve the non-trivial integrals. In case
of final spectators, perhaps another strategy has to be developed. We give a warning
that this part of the thesis shall rather yield inspirations and hints. It does not contain
reliable, checked results - a complete derivation of the dipole formulae is beyond the
scope of this work. But the following insights may support the final steps.

6.2.1. Initial Emitter and Spectator
We begin with the left process of Fig. 6.1 by giving the proportionality factor of the
matrix elements in the asymptotic limits, namely the auxiliary function

g
(sub)
ab = 1

(pak)xab

[
2

1− xab
− 2− xabm

2
a

pak

]
= 1

(pak)xab

[
Pqq̃(xab)−

xabm
2
a

pak

]
(6.5)

with the splitting function Pqq̃(xab). We abbreviate

xab = papb − pak − pbk
papb

yab = pak

papb
(6.6)

and
Pab = pa + pb − k s = (pa + pb)2 s̄ = s−m2

a −m2
b (6.7)

The asymptotic behaviour can be characterised via the following limits:

lim
pak→0

xab = p0
a − k0

p0
a

lim
k→0

xab = 1 lim
pak→0

yab = 0 lim
k→0

yab = 0 (6.8)

The integrand is therefore determined, we are now interested in the parametrised phase
space (derivation: see [58]). With an auxiliary parameter x, we define the convolution
with the single-gluon phase space as follows:∫ x1

x0
dx
∫
dφ(P̃ab(x); p̃a(x) + pb)×

(
1

4(2π)3
s̄2
√
λab

∫ y2(x)

y1(x)
dyab

∫ 2π

0
dϕ

)
(6.9)

λab denotes the Källen function with the arguments

λ(s,m2
a,m

2
b) = s2 +m4

a +m4
b − 2m2

am
2
b − 2m2

as− 2m2
bs . (6.10)
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After parametrisation, the original momenta are mapped to p̃µa(x) and P̃ µ
ab(x) still ful-

filling the mass-shell relations:

p̃µa(x) = Rab(x)
(
pµa −

s̄

2m2
b

pµb

)
+
s̄x+m2

g

2m2
b

pµb P̃ µ
ab(x) = p̃µa(x) + pµb (6.11)

with, for the sake of brevity:

Rab(x) =

√√√√(s̄x+m2
g)2 − 4m2

am
2
b

λab
(6.12)

Using the definition below, we can perform the first y-integration over the auxiliary
function g(sub)

ab leading in the end to elementary integrals (the previous angle integration
leads to a trivial prefactor of 2π).

G(sub)
ab (s, x) = xs̄2

2
√
λab

∫ y2(x)

y1(x)
g

(sub)
ab (pa, pb, k)dyab (6.13)

y1,2(x) = s̄+ 2m2
a

2s (1− x)∓
√
λab
2s

√
(1− x)2 −

4m2
gs

s̄2 (6.14)

We multiply the splitting function with 2papb
s̄

(first and second term) and with s̄2

s̄2 for the
last and obtain

G(sub)
ab (s, x) = s̄√

λab

[
2x

1− x ln
(
y2(x)
y1(x)

)
+2m2

ax

s̄

(
1

y2(x) −
1

y1(x)

)]
. (6.15)

We completed a main step - the single-gluon phase space integration is already done.
G(sub)
ab (s, x) will occur in the treatment of infrared poles in virtual corrections. The

+-distribution allows for a harmless treatment of x→ 1:∫ 1

0

f(x)
[1− x]+

dx =
∫ 1

0

f(x)− f(1)
(1− x) dx (6.16)

The y-integration boundaries yield the maximal value of x:

x0 ≥
2mamb −m2

g

s̄
x1 = 1− 2mg

√
s

s̄
(6.17)

The kinematical lower bound x0 is explained in [58]. An artificial gluon mass mg was
introduced in order to regularise the singularities analogously to dimensional regularisa-
tion. Under certain circumstances, this regulator is not needed any more: We split the
x-integration as presented in [58]∫ 1−ε

x0
dxG(sub)

ab (s, x) +
∫ x1

1−ε
dxG(sub)

ab (s, x) (6.18)
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6. Developing the Dipole Subtraction Formalism

with an infinitesimal ε. This trick simplifies the integration enormously: In the vicinity
of x1 we can set every x in non-singular terms to 1, whereas, in the remaining region,
mg = 0 is possible without producing singularities. This provides

ln
(
y2(x)
y1(x)

)
= ln

(
s̄+ 2m2

a +
√
λab

s̄+ 2m2
a −
√
λab

)
=: ln(d1) . (6.19)

One can furthermore show that

m2
a√
λab

(
2s

s̄+ 2m2
a +
√
λab
− 2s
s̄+ 2m2

a −
√
λab

)
= 1 (6.20)

holds. Therefore, some easy substitutions lead to:
∫ 1−ε

x0
dxG(sub)

ab (s, x) = 2 ·
(
s̄ ln(d1)√

λab
+ 1

)
[ln(ε)− ln(1− x0)− ε+ (1− x0)] (6.21)

We are now interested in the vicinity of x1: Inserting this upper boundary will lead
to logarithmic mass singularities. Cancelling the roots in y1,2(x) is not self-explanatory
any more - the integration becomes fairly non-trivial. We follow another path than in
[58] - for the scalar splitting function this ansatz seems reasonable. Nevertheless, the
mathematical structure can be reproduced - we obtain polylogarithms, too. The desired
transformation of the y boundaries in the logarithm ln(au± b

√
u2 − c2), u = 1−x, shall

lead to one generic integral ∫
xm ln(αx+ β)dx (6.22)

with m ∈ R. We found that

u = cη√
2η − 1

du

dη
= c

η − 1
(2η − 1) 3

2
(6.23)

cancels the roots within the logarithm after a few steps. We work out the transformation
to (6.22) explicitly (using η = (z + 1)/2):

s̄

2
√
λab

∫
dz ln

(
a± b

2 z + a∓ b
2

)
·
(
− c√

z
+ c
√
z

3 −
4

z + 1 + 2
z

)
(6.24)

We solve these four terms with generalised hypergeometric functions

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
k=0

p∏
i=1

Γ(k + ai)
Γ(ai)

q∏
j=1

Γ(bj)
Γ(k + bj)

zk

k! (6.25)

and Eulerian dilogarithms Li2(z) (definition to be found in App. D) [59]:
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6. Developing the Dipole Subtraction Formalism

s̄

2
√
λab

2∑
i=1

(−1)i×
[
2c
√
z ln(ξiz + γi) + 4

3
z3/2ξi
γi

c2F1

(
1, 1

2; 3
2;−ξiz

γi

)

+ 2c√
z

ln(ξiz + γi) + 4z1/2ξi
γi

c2F1

(
1,−1

2; 1
2;−ξiz

γi

)

+ 4 ln(γi − ξi) ln(z + 1) + 4Li2
(
ξi(z + 1)
ξi − γi

)
+4Li2

(
ξi

ξi − γi

)

− 2 ln |γi| ln |z|+ 2Li2
(
ξiz

γi

)]

ξ1,2 = s̄+ 2m2
a ±
√
λab

4s γ1,2 = s̄+ 2m2
a ∓
√
λab

4s (6.26)

Their quotients (in the logarithms, induced by the upper sum) yield, by the way, d1 or
1/d1. Plugging in the boundaries 2y(x1−1)−1 and 2y(−ε)−1 simplifies this expression
by setting the gluon mass to zero, mg = 0, in non-singular terms - a procedure that
should be performed carefully. The mathematical structure of the results in [58] can be
rediscovered using

Li2(1− z) + Li2
(

1− 1
z

)
= −ζ(2)− ln2(−z)

2 . (6.27)

Like in [58], our mass-regularised subtraction formulae shall contain only logarithmic
singularities. The translation into dimensional regularisation is performed with (s.a.:
App. D)

∆IR = ln
(
µ2

m2
g

)
(6.28)

A few words dedicated to a simple implementation of special functions: With a lot of
algebraic effort, one could transform the hypergeometric functions to dilogarithms in
order to obtain a comparable result to [58] for fermions using

Li2(z) = z3F2(1, 1, 1; 2, 2; z) (6.29)

Instead, we rather recommend an easy, quickly converging implementation of both 2F1
functions the series, if needed:

∞∑
k=0

1
2k + 1

(
−ξiz
γi

)k ∞∑
k=−1

1
2k + 1

(
−ξiz
γi

)k+1

(6.30)

by exploiting several relations of the Γ function. It interpolates the factorial, implying
Γ(z + 1) = zΓ(z), and has the special values

Γ
(
n+ 1

2

)
= (2n− 1)!!

2n
√
π = (2n)!

4nn!
√
π Γ

(
1
2

)
=
√
π Γ

(
−1

2

)
= −2

√
π (6.31)

63



6. Developing the Dipole Subtraction Formalism

Due to different prefactors, the hypergeometric functions unfortunately do not cancel
at all, but the series simplifies the upper expression. In App. E we comment on the
convergence behaviour as it is of own interest (see coming chapter). The second part
of the y-integrated splitting function (6.15), containing the boundaries au± b

√
u2 − c2,

again with 1− x =: u, disappears after lengthy, but simple algebra. We make use of

∫
dx

√
x2 −m
x2 − n

· x =
√
x2 −m+

(n−m) arctan
(
√
x2−m√
m−n

)
√
m− n

(6.32)

∫
dx

√
x2 −m
x2 − n

=
(n−m) arctan

(
√
nx2−mn
x
√
m−n

)
√
mn− n2

+ ln(|
√
x2 −m+ x|)− ln(|

√
x2 −m− x|)

2 .

(6.33)
Inserting the substituted boundaries reduces the integration to

s̄√
λab

∫ x1

1−ε

2m2
ax

s̄

(
1

y2(x) −
1

y1(x)

)
= m2

a

(s+ 2ma)2 − λab
ln(| − 1|) = 0 . (6.34)

We refer to [58] how to achieve a numerically accessible form of the convoluted phase
space integrals.

6.2.2. Initial Emitter and Final Spectator
Compared to this case, the dipole formulae of the previous section were of dreamlike
shortness. Welcome to the jungle of abbreviations - we start with kinematics:

Pia = pi + k − pa P̄ 2
ia = P 2

ia −m2
a −m2

i −m2
g λia = λ(P 2

ia,m
2
a,m

2
i ) (6.35)

Ria(x) =

√
(P̄ 2

ia + 2m2
ax)2 − 4m2

aP
2
iax

2
√
λia

(6.36)

ria(x) = 1 + P̄ 2
ia(P̄ 2

ia + 2m2
a)

λia

1− x
x

(6.37)

The momenta in the case of final spectators (or vice versa) shall be expressed as

xia = papi + pak − pik
papi + pak

zia = papi
papi + pak

. (6.38)

Again, we can give the asymptotic behaviour:

lim
k→0

xia = 1 lim
pak→0

xia = p0
a − k0

p0
a

lim
pik→0

xia = 1 (6.39)

lim
k→0

zia = 1 lim
pak→0

zia = 1 lim
pik→0

zia = p0
i

p0
i + k0 (6.40)
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6. Developing the Dipole Subtraction Formalism

The structure of phase space parametrisation is fairly similar to the previous case. The
following convolution
∫ x1

x0
dx
∫
dφ(p̃i(x), pb − Pia; p̃a(x) + pb)

1
4(2π)3

P̄ 4
iaρia(s̄)√

λiaRia(x)x2

∫ z2(x)

z1(x)
dzia

∫ 2π

0
dϕg (6.41)

together with redefined momenta

p̃µa(x) = 1
Ria(x)

(
xpµa + P̄ 2

ia + 2m2
ax

2P 2
ia

P µ
ia

)
−P

2
ia +m2

a −m2
i

2P 2
ia

P µ
ia (6.42)

p̃µi (x) = p̃µa(x) + P µ
ia (6.43)

and

ρia =

√√√√λ(s̃, m2
a,m

2
b)

λ(s,m2
a,m

2
b)

s̃ = (p̃a + pb)2 (6.44)

is the basis of the coming integration procedure. A suitable definition for the single-gluon
phase space integrated result is, for later purposes:

G(sub)
ai (P 2

ia, xia) = P̄ 4
ia

2
√
λiaRia(xia)

∫ z2(xia)

z1(xia)
g

(sub)
ai (pa, pi, k)dzai (6.45)

The integration boundaries, however, are this time quite lengthy.

z1,2(x) =
P̄ 2
ia[P̄ 2

ia − x(P̄ 2
ia + 2m2

i )]∓
√
P̄ 4
ia(1− x)2 − 4m2

im
2
gx

2
√
λiaRia(x)

2P̄ 2
ia[P̄ 2

ia − x(P̄ 2
ia −m2

a)]
(6.46)

Our last ingredient is of course again the auxiliary function in analogy to 6.5. We
inserted the SUSY splitting function and obtained the expression

g
(sub)
ai (pa, pi, k) = 1

(pak)xia

[
2

2− xia − zia
− 2Ria(xia)−

xiam
2
a

pak

]
(6.47)

which provides after several elementary integrals:

G(sub)
ai (P 2

ia, x) =− P̄ 2
ia√

λiaRia(x)

{
2

1− x ln
(

[1− z2(x)][2− x− z2(x)]
[1− z1(x)][2− x− z1(x)]

)

+ 2Ria(x) ln
(

[1− z1(x)]
[1− z2(x)]

)
+2m2

ax
2

P̄ 2
ia

[
1

1− z2(x) −
1

1− z1(x)

]} (6.48)

The convolution, namely the x integration with the boundaries

x0 >
−P̄ 2

ia

2ma(ma −
√
P 2
ia)

0 <
√
P 2
ia < ma −mi (6.49)
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x1 = P̄ 2
ia

P̄ 2
ia − 2mimg

= 1− 2mimg

|P̄ 2
ia|

+O(m2
g) (6.50)

is performed with the same separation technique as in 6.2.1. Applying the methods from
this subsection is possible, but would lead to an irresponsibly complicated term. Under-
standing the calculations of [58] (nonetheless, the fermionic result fills roughly one page)
would at least shrink the result a bit. Thus, we cannot recommend using our methods
for this case, so we only give the single-gluon phase space integrated dipole formula. A
time-consuming retracing of S. Dittmaiers approach seems to be a reasonable way to
obtain also a useful expression for scalars.

For the attentive reader, it did not remain a secret that also a gluon radiation directly
from the squark-gluon vertex can occur. In this case, the determination of emitter and
spectator is in vain. However, such an amplitude cannot produce both soft and collinear
divergences - these finite terms will be added without having developed a dipole formula.
Colour was a dominating topic during within the thesis. For the dipole formulae, we
should not forget the colour flow as well.

6.2.3. On the Colour Flow
The previous subsections dealt with uncoloured initial scalars. In the underlying work,
[58], the colour flow is not implemented (QED), but the author recommends the formal-
ism of [56], explicitly worked out for a handful of cases, to formulate the colour flow for
further cases analogously. We consider a (SUSY-)QCD process with m = 1, 2, 3, ... final
and additional initial (a, b,...) partons, described by an amplitude

Mc1,...,cm,ca,...;s1,...,sm,sa...
m,a... (p1, ..., pm, pa, ....) . (6.51)

To explain the indices, let us construct a vector in colour and helicity space

|1, ...,m; a, ... >m,a,...:=
1√

nc(a)...
(|c1, ..., cm; ca, ... > ⊗|s1, ..., sm; sa, ... >)

× Mc1,...,cm,ca,...;s1,...,sm,sa...
m,a... (p1, ..., pm, pa, ....)

(6.52)

with
|Mm,a...|2 =m,a,...< 1, ...,m; a, ...||1, ...,m; a, ... >m,a,... . (6.53)

The helicity space is spanned by the particle’s spin index s, whereas c denotes the colour
index of every parton (1...3 for squarks, 1...8 for gluons). Initial coloured particles
demand the normalisation factor 1√

nc(a)...
that we already included in the tree-level

calculation. It is now important to see, how the colour-charge operator Ti acts on these
vectors and which properties are needed for the coming evaluation of the colour flow.

Ti = tci |c > [Ti, Tj]− = 0 T 2
i = Ci (6.54)

66



6. Developing the Dipole Subtraction Formalism

The squared operator becomes a Casimir operator Ci = CF for (s)quarks and Ci = CA
for gluons. In our terminology, we can write the concept of colour conservation in the
following way: (

m∑
i=1
Ti + Ta + ...

)
|1, ...,m; a, ... >m,a...= 0 (6.55)

In order to understand the later calculation, we take a look on operators acting on a
squared matrix element:

|MI,J
m,a...|2 =m,a,... < 1, ...,m; a, ...|Ti · Tj|1, ...,m; a, ... >m,a,...

= 1
nc(a)...

[
Ma1...bI ...bJ ...

m,a...

]∗
tcbIaI t

c
bJaJ
Ma1...aI ...aJ ...

m,a...

(6.56)

The colour-charge operator of an initial parton a becomes the colour matrix in the adjoint
representation in case of gluons, (Ta)cbd = ifbcd, and in the fundamental representation
in case of (s)quarks, (Ta)cαβ = −T cβα (for antiparticles, change sign and Greek indices).
Catani and Seymour give the following dipole formula for initial spectator and emitter
(notation explained in 7.1 and in [85]):

Dai,b = − 1
2xabpak 3,ab < 1, 2, 3; ai, b|

(
Tb · Tai
T 2
ai

Vai,b

)
|1, 2, 3; ai, b >3,ab (6.57)

using definitions of 6.2.1. The splitting function g
(sub)
ab is a matrix Vai,b in the helicity

space. One can show that the colour structure cancels exactly to 1. We take a last look
at the case of final spectators:

Daik = − 1
2xiapak 3,ab < 1, 2, 3; ai, b|

(
Tk · Tai
T 2
ai

Vai
k

)
|1, 2, 3; ai, b >3,ab (6.58)

In this case, a small calculation yields a factorised colour structure fabcT c.
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7. Sommerfeld Enhancement of the
Annihilation of Staus

In the author’s Bachelor thesis [30] the much smaller process of annihilating staus into
top quarks was calculated up to NLO corrections (for the Higgs propagator). An addi-
tional calculation, often having even greater impact on cross sections than NLO correc-
tions), is the procedure of resummation.

7.1. General Remarks on Previous Work
For any details, we refer to [30], but at least a brief overview of the stau annihilation
processes is adequate to mention, before the resummation is performed. The Born cross
section contains several propagators, but only in the s-channel (Fig. 7.1). The staus and,

τ̃1

τ̃ ∗1

h0, H0

t

t̄

γ, Z0

t

t̄

τ̃1

τ̃ ∗1

Figure 7.1.: Tree level diagrams of stau-antistau annihilation into top-antitop pairs: Pos-
sible propagators are CP-even Higgs bosons h0, H0 and photons/Z-bosons.

simultaneously, the final quarks, couple to the CP-even Higgs bosons (to the pseudoscalar
only in case of mixing τ̃1,2) as well as to the uncharged electroweak bosons. The Higgs-
vector-interference is extremely small - compared with the other interferences by a factor
of 10−6. Some kind of symmetry we do not understand yet suppresses this contribution.
As it is valid also for squarks, one QCD (gluon exchange) and one SUSY-QCD (gluino
exchange) correction occur on the right hand side of the s-channel diagrams:
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h0, H0
t

t̄

g

g

g̃

g̃
γ, Z0

t

t̄ t̄

t

t̄

t̄

t

t

t̄

t

t̃

t̃∗

t̃∗

t̃

γ, Z0

h0, H0

Figure 7.2.: Only the Higgs-top-top/vector-top-top vertices are corrected by SUSY-
QCD.

Since we only have coloured final states, the number of gluon emission diagrams is
quite small, never containing collinear divergences, by the way.

h0, H0

g

g

g

g

h0, H0

γ, Z0 γ, Z0

Figure 7.3.: Four possible gluon emissions from the final quark states.

These real corrections only regard the virtual gluon exchange as the exchange of
massive gluinos is infrared convergent. The phase space integration is, in the most
cases, quite far from trivial and only possible with the help of numerical integration.
This rather convenient process, instead, allows for an analytical treatment of the final
state phase space since it can be factorised and treated independently from the initial
state. In analogy to the aforementioned tensor integrals, a couple of basis phase space
integrals were developed by A. Denner [60], containing an artificial gluon mass λ (in the
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7. Sommerfeld Enhancement of the Annihilation of Staus

denominator) that gives birth to the infrared divergences:

Ij1,...,jmi1,..,in (m0,m1,m2) = 1
π2

∫ d3p1

2E1

d3p2

2E2

d3q

2Eq

× δ(p0 − p1 − p2 − q)
(±2qpj1)...(±2qpjm)
(±2qpi1)...(±2qpin)

(7.1)

In this notation a particle with four-momentum p0 decays into two particles with mo-
menta p1 and p2; one radiates off a gluon with momentum q. For the scalar products
with q, one has to choose the negative sign for the index 1,2. The explicit expressions
of these integrals are given in App. D. In analogy to the counterterms, the singularities
are matched subtractively as it can be seen in the following exemplary expression:

I00 = 1
4m4

0

[
κ

2 ln
(

κ2

λ2m0m1m2

)
− κ− (m2

1 −m2
2) ln

(
β1

β2

)
−m2

0 ln β0

]
(7.2)

The divergence is contained in the pole ln(λ2), obviously diverging for a vanishing pho-
ton mass.

An essential requirement for the application of this method is, of course, the factoris-
ability of the left and the right vertex, as the phase space integrals only contain the
momenta of the final states. Since a factorisation could not be find for the vector-Higgs
interference, the dipole subtraction method was chosen to treat these real corrections
numerically. Furthermore, it gave us the chance to compare the absorption of infrared
divergences by the analytical and the numerical method. Unfortunately, the calculation
of the cross section is more time-consuming due to the numerical integration of the 2→ 3
phase space. One integration has to be carried out over the whole 2 → 3 phase space
(counterterm for the real emissions), the other one goes simply over the single phase
space of the gluon. This integral, occurring in∫

2→2
(dσvirt|ε=0 + dσtree ⊗ I|ε=0) (7.3)

is quite lengthy and shall be written with some abbreviations [86]:

I = −CFg
2
s

8π2
(4π)ε

Γ(1− ε) ·
[(

µ2

s12

)ε(
Vq(s12,mq,mq; ε)−

π2

3

)

+Γq(mq, ε)
CF

+ 3
2 ln

(
µ2

s12

)
+5− ζ(2)

] (7.4)

We will give details on the dipole formulae in App. F. Following again [57], we can
also use an analytic expression for the squared auxiliary matrix element for the 2 → 3
process:

|M2→3|2 = D31,2 +D32,1 (7.5)
The dipole contributions Dij,k are functions of k1, k2 and k3 where the index structure
denotes the emitter pair ij (i=3) according to the momenta ki, kj and the untouched
spectator k (App. F). Naturally, these expressions can also be factorised with the tree
level contribution.
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7.2. Sommerfeld Corrections
After having performed precision calculations in relativistic quantum field theory, we
will now follow a completely different path of stating cross section results more precisely:
The low-energy regime of small relative velocities of our incoming staus leading us to
Schrödinger equations of two-body wave functions Ψij. The coannihilation region in the
MSSM is probably the most relevant case where these additional corrections are needed.
A suitable ansatz to describe this system is the theory of bound states in a quantum
field theoretical version. In our case, one may call this state a stauonium, structurally
equivalent to e.g. a positronium or exciton state. A general theoretical framework is
provided by the Bethe-Salpeter equation [61] that has to be specified for our purposes.
It has the generic form of a recursion relation (Dyson equation) G = S1S2 + S1S2K12G
including a two-particle Green’s function G = 〈Ω|φ1...φ4|Ω〉. The Si stand for the
free propagators and K for the interaction kernel. The recursion may become clearer
by drawing its diagrammatical interpretation in Fig. 7.4. Repeating this recursion step

φi

φj

= +
∑
ĩ,j̃,ϕ

i

j

ϕ

ĩ

j̃

Figure 7.4.: Applying the Dyson equation iteratively, a ladder-like diagram comes into
being. Each step adds one exchanged photon.

yields an infinite sum of exchanged virtual particles standing for an arbitrary interaction
between the constituents forming the bound state. Apparently, we obtain a corrected
vertex up to all orders of the interaction of interest - one chose the name resummation to
describe it (this word should be handled carefully as it appears in several contexts). This
special kind of resummation was named Sommerfeld or Coulomb enhancement. Such
calculations have been performed in various ways - we cite the for our purposes most
important work [62]. The diagram from above belongs to the two-body Schrödinger
equation (with reduced masses mij and decay width Γ):(

− ∆
mij

+
∑
ĩ,j̃,ϕ

V ϕ

i,j,̃i,j̃

)
Ψij(~r) = (E + iΓij)Ψij(~r) (7.6)

The potential of course depends on the current interaction (QED: Coulomb potential,
QCD colour-dependent Coulomb-like potential, multiplicative Yukawa term exp(−mϕr)
for massive bosons,...) and can be expanded via the β-function of its quantum field the-
ory. Now it remains to find a Green’s function describing the dynamics of the stauonium-
like state with the help of the Bethe-Salpeter equation. With this expression, we end
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up, in our special case, with the ladder approximation of the Bethe-Salpeter amplitude
Γ̃ including an exchange of infinitely many photons (Fig. 7.5). Let the staus exchange a

...

τ̃1

τ̃ ∗1

q

q̄

Figure 7.5.: A multiple photon exchange between the initial staus is the key element of
the Sommerfeld enhancement in QED.

photon with momentum p− k, the momentum q shall be defined via qT = (2mτ̃1 +E, 0)
(binding energy E). Then we can write the Bethe-Salpeter equation as [63]

Γ̃(~p, q) = 1 +
∫ d3k

(2π)3
Γ̃(~k, q)Ṽ (|~p− ~k|)

[E − k2/mτ̃1 + iΓτ̃1 ] . (7.7)

By defining

G̃(~k, E + iΓτ̃1) = − Γ̃(~k,E + iΓτ̃1)
[E − k2/mτ̃1 + iΓτ̃1 ] (7.8)

and inserting into the upper equation, we see after Fourier transformation that G is a
Green’s function to the Schrödinger equation from above:

(H − E − iΓτ̃1)G(~r, E + iΓτ̃1) = δ(3)(~r) (7.9)

The choice of the general potential V ϕ

i,j,̃i,j̃
will be a NLO-corrected Coulomb potential in

case of our QED resummation. We need the QED β-function of the running coupling
to express the potential (Fourier-transformed from momentum space) [64,65]:

V (~r) = α(µC)
|~r|

{
1 + α(µC)

4π

[
2β0

(
ln(µC~r) + γE

)
+ a1

]}
(7.10)

γE = 0.5772 indicates the Euler-Mascheroni constant,

a1 = −20
9
∑
f

Q2
f β0 = −4

3
∑
f

Q2
f (7.11)

are values where the second is derived from the one-loop β-function containing all
fermions f up to the scale of the typical momentum exchange. We will comment on
the Coulomb scale µC ,

µC = max {µB, 2mτ̃1 · vs} , (7.12)
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7. Sommerfeld Enhancement of the Annihilation of Staus

in the next chapter, when the scale variation is taken into consideration (µB = 2mτ̃1 ·
α: inverse Bohr radius). Now, we are ready to give the Sommerfeld-enhanced result,
factorisable with our leading order amplitude:

σSom(τ̃1τ̃
∗
1 → tt̄) = 4π

vm2
τ̃1

=[G(~r = 0;
√
s+ iΓτ̃ )]× σLO(τ̃1τ̃

∗
1 → tt̄) (7.13)

In fact, only the ~r = 0 Green’s function is known in an analytic expression

G(0;
√
s+ iΓτ̃1) =

α(µC)m2
τ̃1

4π ×
[
gLO + α(µC)

4π gNLO +O(α2)
]

(7.14)

that will be discussed in App. E.

Finally, we remark that these results are based on the implicit assumption of an s-
wave-dominated matrix element. Only this fact guarantees the strikingly simple fac-
torisability. The term s-wave has its origin in the partial wave expansion in quantum
mechanical scattering theory. This series is usually expanded in powers of the scattering
angle, where the exponent l indicates s-, p- and d-waves motivated by the quantum
number l for electrons in an atom. As the annihilation process only occurs in the s-
channel, the scattering angles do not appear in the matrix elements. Therefore, our
chosen computation is justified. The approximation fails, if higher partial waves domi-
nate parts of the leading-order amplitude and the amplitude depends on the momenta
of the Sommerfeld-enhanced particles. In this case even the leading-order Coulomb
potential has to be modified (we refer to [63]). Nonetheless, higher partial waves are
suppressed by orders of the relative velocity v, so processes with t- and u-channels can
be treated in the same way after an in-depth look on the performed partial wave decom-
position.

Present research deals also with a multiple Higgs exchange leading to similar ladder
diagrams [66] under the assumption of light Higgs bosons (compared to the initial parti-
cles). The formalism can be transferred easily. Related to the Bethe-Salpeter equation
is, furthermore, the formation of bound states emitting photons/gluons. This process
was rediscovered from the theory of exotic quarkonium states and is now applied in order
to improve the precision of dark matter (co-)annihilation processes. [67]
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8. Numerical Results
After all calculations, we will come now to the numerical investigation of our imple-
mented code. First, we briefly introduce to the background of the chosen scenarios in
the SUSY parameter space. Then, we discuss the percentage importance of stau anni-
hilations for the dark matter relic density with the help of a mass scan. We analyse the
impact of our NLO corrections and the Sommerfeld enhancement on the integrated cross
section and the resulting shift of the relic density. Moreover, the gravitino is discussed as
LSP. The main results led to the publication [31], in which we also perform an analysis
of theoretical uncertainties arising from renormalisation scale and scheme variation.
At least an analysis of the leading order contribution to the stop annihilation into gluons
shall be performed.

8.1. Stau Annihilation Into Top Quarks
8.1.1. Phenomenology of the Chosen Scenarios
In SUSY the explicit physical properties of the particle content are - as described in
Section 4.2 - entirely undetermined. In fact, there is an endless number of possible
points in the 105-dimensional parameter space. In this study we constrain the free pa-
rameters and end up with 19+3 values of a special kind of the pMSSM. A huge amount
of data was produced after the LHC Run 1, in which the sensitivity to supersymmetry
was investigated within the ATLAS project. This analysis is based on proton-proton
collisions at

√
s = 7 and 8 TeV and interpreted in the context of the pMSSM with

neutralinos as LSP. The points in the parameter space have to be in accordance with
certain constraints from LHC searches: Mainly, the Higgs mass of the scenario has to
be congruent with the observed one (mh0 = 125 GeV) and the parameter point must
not be in conflict with rare decays like b → sγ or Bs → µ+µ−. With the help of these
restrictions, the gigantic parameter space can be reduced to specific regions. Possible
scenarios are written in so-called SLHA (SUSY Les Houches Accord) files [82,83] we
used to implement the needed parameters. They are listed in the table below. We can
neglect Scenario II for a while, as it corresponds to the gravitino analysis. This table
contains several parameters we encountered in Chapter 4: The Mi mass parameters and
µ were already in the context of SUSY-breaking. Now, the spectrum calculator SPheno
3.3.3 [35] needs a particular value, at which the symmetry breaks - the SUSY-breaking
scale Q (can be expressed via the physical stop masses: Q = √mt̃1mt̃2). The trilinear
and Yukawa couplings, Ai and yi, occur regarding the couplings of (s)fermions to Higgs
bosons; the mass parameters are self-explanatory (note that they are given in the gauge

74



8. Numerical Results

I II
Mq̃L 1599.9 5000
Mt̃L 3007.0 5000
MũR 3904.4 5000
Mt̃R 3093.0 5000
Md̃R

3096.7 5000
Mb̃R

581.6 5000
M˜̀

L
3586.7 5000

Mτ̃L 563.6 1800
M˜̀

R
3950.4 5000

Mτ̃R 585.5 1846
Q 3047.8 5000

I II
M1 546.0 5000
M2 -3461.7 5000
M3 3126.7 5000
At 5246.7 -3000
Ab -2530.3 1000
Aτ 1586.4 5000

tan β 18.0 22.0
µ 2643.6 5000
mA0 2962.3 5000
mχ̃0

1
540.6 4915.8

mτ̃1 540.7 1810.8

Table 8.1.: Scalar soft mass parameters, gaugino mass parameters, trilinear couplings,
and parameters related to the Higgs sector at the input scale Q for two
reference scenarios I and II within the pMSSM. We also indicate the resulting
physical masses of the lightest neutralino and the lighter stau. The values of
the remaining physical masses are not displayed here, as they are not relevant
for our study. The gravitino mass for the study of Scenario II will be specified
in subsection 8.1.4. All dimensionful quantities are given in GeV.

eigenstates, mixing matrices may lead to the observable states). We do not explicitly
give the Yukawa couplings as they are defined solely by SM parameters (explaining the
notation 19+3 parameters), therefore small deviations appearing in different scenarios
arise simply from the running of the renormalisation group equations. tan(β) is equal
to the ratio of the VEVs 〈H0

u〉 and 〈H0
u〉 (see 4.4). A sufficiently small value prefers top

quarks in the final state as their coupling to the Higgs is proportional to sin−1(β). We
also give the physical stau and neutralino mass calculated by the mixing angles. The
physical neutralino is due to vanishing mixing a pure bino in both scenarios. Due to less
interactions than a Wino-like neutralino (corresponding to SU(2)L with more thinkable
coannihilations), the relic density of the bino-like LSP is bigger. The lighter stau is
strongly mixed, the mixing angle corresponding to cos2 θτ̃ ≈ 0.42 and sin2 θτ̃ ≈ 0.58 for
Scenario I and cos2 θτ̃ ≈ sin2 θτ̃ ≈ 0.50 for Scenario II.

For the understanding of the relevance of stau annihilation it is necessary to discuss
the mass degeneracies appearing in the table. In Chapter 2 the Boltzmann equation for
the neutralino number density contained the averaged annihilation cross section. All
the possible interactions of dark matter can be expressed in a generalised version of the
annihilation cross section, containing every possible (co-)annihilation process:

〈σannv〉 =
∑
i,j

〈σijvij〉
neqi
neqχ

neqj
neqχ

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
(8.1)
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Processes I II
τ̃1τ̃
∗
1 → tt̄ 31.5 25.9

τ̃1τ̃
∗
1 → γγ 12.9 21.4

τ̃1τ̃
∗
1 → h0h0 10.0 2.2

τ̃1χ̃
0
1 → `h0 9.2 -

τ̃1τ̃
∗
1 → `¯̀, νν̄ 7.4 8.4

τ̃1χ̃
0
1 → `Z0 7.0 -

τ̃1χ̃
0
1 → `γ 6.0 -

τ̃1τ̃
∗
1 → W+W− 6.5 11.3

Table 8.2.: Relative contributions in percent of the dominant annihilation channels con-
tributing to the annihilation cross section σann in the two reference scenarios
I and II defined in Tab. 8.1. Here, ` and ν denote arbitrary lepton and
neutrino states, ` = e, µ, τ and ν = νe, νµ, ντ . Further contributions below
5% are omitted.

In this thermally averaged expression, the ratios of the equilibrium number densities neq
are suppressed via the so-called Boltzmann factor:

neqi
neqχ
∝ exp[−(mi −mχ)/T ] (8.2)

This proportionality tells us that only small mass differences between the coannihilating
particles are responsible for a reasonable impact on the whole relic density. These
approximative degeneracies often occur in the investigated SUSY scenarios (usually
LSP+NLSP). For small freeze-out temperatures T , the suppression factor increases -
in our case, this value turned out to be 26.6 K. The small mass difference between stau
and neutralino can be directly be read off from the table.

Scanning the stau and neutralino mass a few GeV above and below the values of the
chosen scenario is a good opportunity to identify regions in the parameter space in which
the process of interest has greater importance for the relic density. In Fig. 8.1 we can see
how strongly the percentage impact may differ: By varying the two key parameters bino
mass M1 and the left-handed stau mass parameter Mτ̃L in the vicinity of our parameter
values in the upper table, we find a value for the neutralino relic density for each point in
the plane. Taking the experimental value of this quantity, a Planck-compatible ribbon
can be drawn in the plane. This is of course in the near of the line with equal masses of
LSP and NLSP, in accordance with the Boltzmann suppression. The deep green regions
are of particular interest as stau annihilation yields a considerable contribution to the
relic density. In general, this scenario possesses a handful of further dominant channels
we summarize in Tab. 8.2. Unfortunately, these are insensitive with respect to QCD
corrections and, therefore, no other processes implemented in our code can be used to
improve the precision.

76



8. Numerical Results

450 500 550 600 650
 [GeV]

450

500

550

600

650

700

 [G
eV

]

-50
.00

0

0.0
00

50
.00

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Co
nt

rib
ut

io
n 

of
 

*

Figure 8.1.: Parameter regions in the M1–Mτ̃L plane that are compatible with the Planck
limits given in Eq. 2.5, where the relic density has been computed using
micrOMEGAs. All other parameters are fixed to those given in Table 8.1.
The red dot indicates Scenario I defined in the same table. The green
contours correspond to the contribution of the process τ̃1τ̃

∗
1 → tt̄. The black

contour lines indicate the difference mτ̃1 −mχ̃0
1

in GeV between the physical
masses of the lighter stau and the lightest neutralino.
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8. Numerical Results

8.1.2. Cross Sections and Their Theoretical Uncertainties
In present dark matter research not only the experimental uncertainty is a quantity that
has to be dealt with. At next-to-leading order, theoretical predictions may differ, depen-
dent on the renormalisation scale and scheme (a small uncertainty at NLO excludes the
necessity of higher-order calculations in order to reduce possibly upcoming uncertain-
ties). In order to estimate their reliability, it is a common method to perform a variation
of the scale µR for investigating the sensitivity of our NLO results. More precisely, we
vary around the central scale of 1 TeV and analyse the ratio of these results and those
of 0.5 TeV and 2 TeV, respectively. Due to the aforementioned hybrid-renormalisation
scheme, a handful of the parameters in Table 8.1 are renormalised on-shell; therefore,
the µR variation is only relevant for the masses and couplings which are taken in the
DR scheme. We postpone the scale variation and discuss the scheme dependence first:
Our two renormalisation schemes should be defined.

• DM@NLO scheme: mb and trilinear couplings shall be renormalised in DR
scheme, mt, mt̃1 , mb̃1

and mb̃2
are defined on-shell, mixing angles and mt̃2 are

dependent parameters (can be calculated using the remainder)

• alternative scheme: mt,b and trilinear couplings renormalised in DR scheme, mt̃1 ,
mb̃1

and mb̃2
defined on-shell, mixing angles and mt̃2 are dependent parameters

In Fig. 8.2 we show the stau annihilation cross section with parameters from Scenario I
and as a function of the centre-of-mass momentum pcm. The corresponding thermal dis-
tribution is plotted since the Boltzmann equation contains the thermally averaged cross
section. A velocity distribution demonstrates these momenta which are most relevant
to calculate the neutralino relic density.

In the figure the black micrOMEGAs line does not coincide with our tree level results, due
to different Yukawa couplings (the former one uses effective couplings). The Sommerfeld
enhancement enters the stage, as expected, for small relative velocities and enlarges the
cross section, as the QED interaction is attractive. The annihilation process becomes
more likely. The interesting point in our standard renormalisation scheme is the (ap-
proximate) cancellation of the NLO results with the Sommerfeld enhancement yielding
no visible corrections to the leading-order results. That accident gave the motivation
to investigate the sensitivity of the cross section regarding the renormalisation scheme.
Turning to our alternative scheme changes the definition of the top-quark mass. To
change consistently, we demand

mOS
t + δmOS

t = mDR
t + δmDR

t (8.3)
Hence, the top mass appearing in the tree level calculations changes massively leading
to rather different cross sections (the difference is larger than 30 %): In the alternative
scheme the leading order is the lowest line. This implies that NLO and Sommerfeld
corrections are not subtractive any more - we see a considerable shift. The impact on the
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Figure 8.2.: Annihilation cross section of the process τ̃1τ̃
∗
1 → tt̄ as a function of the

centre-of-mass momentum pcm for Scenario I of Tab. 8.1 using the standard
DM@NLO scheme (left) and the alternative scheme (right). The upper
panels show tree level results and different levels of corrections that were
discussed in Chapter 7. The lower panels show the corresponding relative
corrections. The grey areas indicate the thermal distribution in arbitrary
units.

NLO results, however, is relatively mild (4 %). This fact guarantees a good reliability
of the second order of perturbation theory. Taking into account higher-order corrections
will not visibly affect the theoretical uncertainty. We plotted the discussed ratios in
Fig. 8.3. Now, we turn back to the mentioned scale variation. Again, it is rather
important if the SUSY parameter is renormalised in the DR scheme, otherwise it is
insensitive with respect to the renormalisation scheme. It is worth mentioning that all
other SUSY parameters were read at the central scale, as we are only interested in QCD
corrections. In fact, this solely holds for the trilinear coupling At and (in the alternative
scheme) for the top mass, when we take those parameters into account which appear
within the stau annihilation. Note, that the Born cross section is completely electroweak,
so the running strong coupling and its contribution to the cross section is a totally new
phenomenon appearing at NLO. The variation has an impact on the strong coupling
αs(µR) as well since it is renormalised in the DR scheme. This effect is the main reason
for the deviations that can be found in the left of Fig. 8.4, because At only appears
within the gluino vertices, contributing less than the SM corrections. Nonetheless, the
deviation is immensely small (around 0.25 %). We did not treat bottom quarks in the
final state (dependent on variation) and no mixing matrices occurred in the calculations.
Taking the top mass into consideration (alternative scheme, right hand side of Fig. 8.4)
leads, of course, to a higher dependence on the scale. But luckily, the 3 % deviation at
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Figure 8.3.: Ratios of the τ̃1τ̃
∗
1 → tt̄ cross section calculated in the DM@NLO scheme

and the alternative scheme at leading (orange) and at next-to-leading order
(green).
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Figure 8.4.: Ratios of the τ̃1τ̃
∗
1 → tt̄ cross section for renormalisation scale µR varied

around the central scale (µR =1 TeV) at leading (dashed line) and next-to-
leading order (solid line) for the DM@NLO scheme (left) and the alterna-
tive scheme.
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leading order shrinks to a per mille level at NLO - the theoretical uncertainty is reduced
in a similar manner like in the scheme variation. The remaining open question might be,
if deviations from the resummation scale µC may affect our results more visibly. This
value was determined via

µC = max{µB, 2mτ̃1 · v} (8.4)
using the relative velocity of the initials and µB = 2mτ̃1 ·α (corresponding to the inverse
Bohr radius). The choice of α as 1/137 (zero-energy, instead of 1/128 at Z0 energy)
and even by taking twice the value of µcentralC had no visible impact on the results. It
furthermore turned out that due to this independence, the β-function of QED yields a
negligible NLO contribution. For this reason, our results could have even been investi-
gated using a leading-order Green’s function.

Obviously, the main theoretical uncertainties occur within the renormalisation scheme
variation. We finally plot the Planck-compatible band in both schemes again in the
vicinity of our parameter point from Scenario I at LO and NLO and compare them with
a smeared band (yellow), the micrOMEGAs result including the 1σ confidence level. The
NLO lines nearly overlap and contain therefore much lower uncertainties than those that
come from measurements.

8.1.3. Impact on the Neutralino Relic Density
The impact of our corrections on the neutralino relic density was already implicitly in-
vestigated in the part of theoretical uncertainties. Nonetheless, we turn back to our
standard DM@NLO scheme as in previous publications about other processes and take
a look at both the soft-parameter and the physical mass plane, i.e. M1–Mτ̃L plane
(left) and mχ̃0

1
–mτ̃1 plane (right) as shown in Fig. 8.6. We compare micrOMEGAs with

our NLO+Sommerfeld results and plot the areas which are compatible with Eq. 2.5 in
orange/blue. The small corrections (less than 1 GeV) are explained by the aforemen-
tioned cancellation of NLO and enhancement corrections in our standard renormalisation
scheme and, furthermore, by the small contribution of τ̃1τ̃

∗
1 → tt̄ to the total annihilation

cross section we gave in Tab. 8.2. However, the gap between the lines should not be
underestimated: In shortcoming of an overlap, the corrections are at least beyond the
experimental uncertainty and have to be taken into account. Generally, one should not
worry about small corrections. Since in the DM@NLO scheme the NLO corrections
are visibly smaller than in the alternative scheme, we assume a quicker convergence of
the perturbative series.

Although a gap was found, the main message of this numerical investigation is rather
the strong dependence of leading order results on the renormalisation scheme. One
should always keep in mind that even small changes like the on-shell top quark mass
massively affect the Born cross section. Adding now higher-order corrections does not
only enlarge the precision of the perturbative series - the deviations after changing the
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Figure 8.5.: Comparison of experimental and theoretical uncertainties in the M1–Mτ̃L

plane around reference Scenario I (indicated by the red dot). The yellow
band shows the experimental uncertainties given in Eq. 2.5 as measured by
the Planck satellite at the 1σ confidence level. The leading (next-to-leading)
order relic density from both our renormalisation schemes is denotes by blue
(black) lines. The predictions in the DM@NLO (alternative) scheme are
shown using the solid (dashed) lines. As in Fig. 8.1, the green contours
indicate the relative contribution of the process τ̃1τ̃

∗
1 → tt̄ to the total anni-

hilation cross section, based on the micrOMEGAs calculation.
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Figure 8.6.: Parameter regions in the M1–Mτ̃L plane (left) and mχ̃0
1
–mτ̃1 plane (right)

that are compatible with the Planck limits given in Eq. 2.5, where the stau
relic density has been computed using micrOMEGAs (orange) and our full
NLO and Sommerfeld corrected cross section (blue). All other parameters
are fixed to those given for Scenario I in Tab. 8.1. The red dot corresponds
to the Scenario I. The green contours correspond to the relative contribution
of the process τ̃1τ̃

∗
1 → tt̄ to the total annihilation cross section.

renormalisation scheme are remarkably reduced! The same holds in certain cases for
variations of the µR scale. Finally a warning: The comparison of theoretical and exper-
imental uncertainties may confuse. An experimental uncertainty implies an expectation
value lying between the boundary values. In our estimation of the theoretical one, one
must not deduce that the truth lies between those two schemes. Moreover, there are
a couple of more schemes (e.g. take simply everything in dimensional reduction) and
their usage highly depends on the process. Especially in the MSSM, they are not easy
to define consistently. For the case that this can be done successfully, this approach
still cannot cover constant terms. Their values have to be determined only using exact
calculations of higher orders whose size we are trying to give. We conclude: As one
cannot define a true/an expectation value for the calculations, the reduction of the gaps
between different schemes is the only way to predict reliable results.

8.1.4. On Gravitinos
In order to consequently bring the quantisation of fundamental interactions to an end,
a theory of quantum gravity still has to be developed. Although a manifold of ideas
was discussed in the last decades, a quantisation often turned out to be perturbatively
non-renormalisable. Nonetheless, it is natural to assume gravitons to mediate gravity
like the other gauge bosons do in the remaining interactions. These particles, thought
as quantised gravitational waves, have to carry a spin of 2 as gravity acts only attrac-
tively and the gauge field is the energy-stress tensor of rank 2. SUSY transformations
then produce spin-3/2 gravitinos obeying the Rarita-Schwinger equation of motion. We
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previously mentioned the gauge-mediated SUSY-breaking (GMSB) which is mediated
to the visible sector of supersymmetric particles at a certain scale. The GMSB scale
〈F 〉 is then related to the gravitino mass mG̃ and the reduced Planck mass MP by
mG̃ = 〈F 〉/(

√
3MP ). Gravitinos are the LSPs (and therefore dark matter candidates)

in scenarios of a SUSY breaking via a gauge-singlet chiral superfield S and quark- and
lepton-like messenger fields that we discussed before. We give some references that treat
gravitino dark matter under the given conditions: [68,69]. Now, we skip over details and
come to our omnipresent object of desire. The relic density ΩG̃h

2 of frozen-out gravitinos
comes into being in a twofold manner:

ΩG̃h
2 = Ωth

G̃h
2 + Ωnon−th

G̃
h2 (8.5)

The non-thermal gravitino production is based on the decay of the NSLP which shall be
later the scalar tau (only, if R-parity is conserved). Every NLSP usually decays into a
gravitino and the SM partner of the NLSP, so the relic density is related to the known
value for staus in a very simple way [70]:

Ωnon−th
G̃

h2 = mG̃

mNLSP

Ωth
NLSPh

2 (8.6)

The nature of the second constituent, the thermal production, is a bit harder to motivate
[70,71] and has the following form:

Ωth
G̃h

2 = 0.27
(

TR
1010 GeV

)(
100 GeV
mG̃

)(
mg̃

1 TeV

)2

(8.7)

The formula involves the gluino mass mg̃ of the particular scenario and the reheating
temperature TR. This quantity comes from the end of the inflationary expansion. This
moment of expansion of the very early Universe happened in a supercooled way (tem-
perature drops by 105 in the most models). In order to get back to the pre-inflationary
temperature, a thermalisation or reheating must occur. One defines TR as temperature
value to reach this realm again, although the actual value is unknown. It is, however,
possible to estimate TR beyond 109 GeV to explain the baryon asymmetry by leptogene-
sis. The method to derive the upper equation is, on top, only reliable if TR lies above 107

GeV. Details on the reheating temperature can be found in [73]. In Fig. 8.7 a numerical
investigation of the parameters from above is shown that may illustrate the dependences
a bit more.
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Figure 8.7.: A detailed study of the importance of non-thermal and thermal gravitino
production depending on their masses and the reheating temperature [69].

At the end, we should lose some words about the stau lifetime that can be written in
the following form:

tτ̃1 '
(
6100 s

)(1 TeV
mτ̃1

)5 (
mG̃

100 GeV

)2
. 6000 s (8.8)

The abundance of light elements after primordial nucleosynthesis has to be preserved,
so a maximum lifetime for SUSY particles must be incorporated [74,75]. With this con-
dition, the gravitino mass is often constrained to be an order of magnitude smaller than
the stau mass. The ATLAS analysis was performed for neutralino relic densities. This
fact together with the liftetime constraint made it nearly impossible to find a promising
scenario in the set of the ATLAS points, given that we are interested in the non-thermal
production of gravitinos. Indeed, an allowed scenario would have been found, but a
too large contribution of thermally produced gravitinos would make our corrections
worthless, as no corrected cross section appears. We therefore decided to construct an
illustrative scenario in order to show what can principally be done with the stau an-
nihilation cross section. With relatively light stau masses around 2 TeV, while other
particles have masses around 5 TeV, we were able to generate a parameter set fulfilling
the lifetime constraint as well as our hope of big non-thermal contributions (we called it
Scenario II). Thus, the gravitino mass lies around 400 GeV. A Planck-compatible result
can then be achieved with a reheating temperature of TR ≈ O(107) GeV .

Similarly to the neutralino relic analysis, we illustrate in Fig. 8.8 the shift induced by
NLO and Sommerfeld corrections - now in the mG̃–TR plane. Again, the shift is far
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Figure 8.8.: Parameter regions in the mG̃–TR plane which are compatible with the Planck
limits for the case of gravitino dark matter, where the stau relic density has
been computed using micrOMEGAs (yellow) and our full NLO and Som-
merfeld corrected cross section in the DM@NLO scheme (orange). All other
parameters are fixed to those given for Scenario II in Tab. 8.1. The blue
contours correspond to the gravitino relic density based on the micrOMEGAs
calculation. The black lines indicate the relative non-thermal contribution in
percent to the total gravitino relic density, again based on the micrOMEGAs
calculation.
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8. Numerical Results

value
Mq̃L 3796.6
Mt̃L 2535.0
MũR 3995.0
Mt̃R 1258.6
Md̃R

3133.2
Mb̃R

3303.7
M˜̀

L
3134.1

Mτ̃L 1503.9
M˜̀

R
2102.5

Mτ̃R 1780.4
Q 1784.6

I
M1 1278.4
M2 -2093.5
M3 1267.15
At 2755.3
Ab -2320.9
Aτ -1440.3

tan β 15.5
µ -3952.55
mA0 3624.8

Table 8.3.: Scenario, analogously to those in Tab. 8.1, in the (19+3)-pMSSM parameter
space containing a remarkable impact of stop annihilation into gluon pairs
for the neutralino relic density. All dimensionful quantities are given in GeV.

beyond the experimental uncertainty and the additional terms should be taken into
account: They are responsible for a shift of about 50 GeV for the gravitino mass, or
(equivalently) for a fixed gravitino mass of 450 GeV, TR has to be doubled in order to
still satisfy the experimental data.

Finally note, that this kind of gravitino cosmology underlies several strong assumptions.
We do not only demand the SUSY conjecture to be true, but also the quantisation of
gravity by tensor bosons (gravitons) and the theory of inflation as well. Seen from a
viewpoint of philosophy of science, this construction of dark matter candidates and their
investigation is based on a very unstable ground.

8.2. Stop Annihilation Into Gluons
Currently, the NLO results in order to investigate their impact on the Planck-compatible
ribbon are not available yet. Nonetheless, we have the possibility to present an interest-
ing scenario (Table 8.3) in analogy to the previous one to analyse the contributions of the
different channels of stop annihilation into gluon pairs. The mass degeneracy between
the neutralino and mqRt

has the consequence that almost every important process for the
LSP relic density contains stops in the initial state. More precisely, we have our process
of interest (38,6 %), stop annihilation into top quarks (30,5 %) and coannihilation into a
gluon and a top (9 %). Luckily, the second process has been already implemented, there-
fore our DM@NLO corrections are very dominant in this scenario. Our scenario features
again bino-like neutralinos. In Fig. 8.9 we performed a scan in the neighbourhood of the
ATLAS point (red dot) in the plane analogous to the stau annihilation process. In this
case we deal with considerably higher masses and also the relative contribution to the
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Figure 8.9.: Planck-compatible relic density ribbon of micrOMEGAs. The red point de-
notes the point of the ATLAS scenario from Tab. 8.3. The ribbon is plotted
in the (Mt̃R ,M1) plane. A contour provides information about the mass
difference (for neutralino LSP, only positive values are relevant). We give
relative contributions of t̃1t̃∗1 → gg to the neutralino relic density using the
green colour bar.

relic density is bigger. In general, one could find scenarios with fairly high percentages
up to 70 %. The chosen soft parameter is the right-handed stop mass - a strong mixing
leads to the lighter stop. In Fig. 8.10 we did something new and decomposed the Born
cross section into its channels. The four-vertex - the simplest diagram - turns out to be
by far the most relevant one. It decreases for high momenta whereas t- and u-channel
increase. At higher energies they may collide, but the maximum of the thermal distri-
bution is already around 260 GeV. One should not be confused by the s-channel as the
process has to be seen inclusively. The single channel does not occur in Nature. The
micrOMEGAs result are rather congruent with our DM@NLO code, the renormalisation
scheme does not visibly affect the results.

The diagrams may drastically change in another scenario; moreover, the analysis is
only for illustrative purposes to show how the process and its single channels behave
and that promising scenarios do exist. As there appear far more corrections than in stau
annihilation with electroweak initial states, we expect bigger corrections and a slower
convergence of the perturbative series. With a maximum of the thermal distribution
at low centre-of-mass energies, a QCD Sommerfeld enhancement should be visible as
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Figure 8.10.: Annihilation cross section, dependent on the centre-of-mass energy pcm. We
give absolute and relative (below) contributions of the different channels
s, t, u and the four-vertex, denoted by σ4, for the stop annihilation into
a gluon pair. The grey area indicates a thermal distribution in arbitrary
units.

well. Generally, the stronger coupling leads to the assumption of a stronger impact on
the final cross section than an exchange of infinitely many photons. Nevertheless, one
should keep attractive and repulsive colour potentials in mind - depending on the colour
decomposition effects they could cancel each other.
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9. Conclusion and Outlook
Before this thesis comes to an end, we briefly recapitulate what was achieved within the
last year and, maybe even more important, what has to be done in the future to finish
the stop annihilation. Over and above that, it might be interesting to discuss how the
DM@NLO project may go on.

We started with an overview of the current dark matter research - about promising
and falsified models, some experimental constraints and especially SUSY giving birth to
the lightest neutralino which we appointed to the main dark matter constituent. Sub-
sequently, we explained the basic ideas of DM@NLO. The stop annihilation into gluon
pairs involves some non-trivial QCD like the appearance of Faddeev-Popov ghosts and
(not necessary, but convenient) a colour decomposition into irreducible representations.
With a short group theoretical introduction, we explained the procedure in greater detail
- as a cooking recipe for coming processes. Where do all these peculiar supersymmetric
particles come from? Using the group theory part, we roughly derived the algebraic
origin of squarks & Co. and pondered why SUSY might be promising. At this point,
all necessary foundations were set out - let us now repeat the achievements in the stop
annihilation process:

• implementation of born cross section, in accordance with mircOMEGAs and the
results of S. Schmiemann

• colour decomposition of the single channels

• numerical analysis of tree level + parameter scan

• remaining Passarino-Veltman integrals (for 3-gluon topology) were implemented

• UV-convergent propagator corrections were fully implemented

• vertex corrections calculated and implemented (successful renormalisation, one
case of doubt explained in Appendix D)

• automatic box calculation with interferences by FeynCalc code

• manually calculated amplitudes of all real emissions (for cross-check by the suc-
cessor)

Furthermore, some integration methods and preliminary results regarding the dipole
subtraction method for massive initial scalars have been developed (Chapter 6).
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9. Conclusion and Outlook

The thesis continued with the second process (stau annihilation into heavy quarks),
where some NLO corrections have already been performed in a previous work. We
completed the virtual and real corrections for the vector boson exchange and compared
an analytical treatment of the gluon emission with the numerically performed dipole
subtraction and came to the same result. Electroweak corrections in the form of a
QED Sommerfeld enhancement were added. Interestingly, they almost cancelled the
SUSY-QCD calculations at NLO. Therefore, by an accident, we discovered the consid-
erable dependence of the results on the renormalisation scheme. The Born cross section
strongly differs when changing the scheme, whereas the corrections were more or less
left untouched. In the course of that, we also varied the renormalisation scale and in-
vestigated the sensitivity of the results by modified Coulomb scales.

In total, we could estimate the reliability of our NLO and Sommerfeld corrections with
the theoretical uncertainties appearing in such variations. We found an interesting sce-
nario in the SUSY parameter space in which the stau-antistau annihilation into heavy
quarks was relatively important. The vicinity of this point was intensively studied - the
Planck-compatible ribbon was visibly shifted by our corrections. We applied our calcula-
tions to gravitino dark matter physics and showed, how gravitino mass and the reheating
temperature in the postinflationary Universe are shifted using our precise cross section.
This happened with an artificially constructed scenario just for illustrative purposes as
the ATLAS points got into conflict with the stau lifetime constraint from primordial
nucleosynthesis. The results were published in [69].

In the near future, the DM@NLO project will finally come to an end. The successor
of the author will possibly finish the stop annihilation into gluons being the last pro-
cess of interest for SUSY dark matter coannihilation processes (eventually, light gluinos
may represent further coannihilation partners). After the successful development of the
dipoles for initial scalars, an automatisation of the real interferences seems desirable.
In these diagrams an interesting challenge appears: The interface to the stop annihi-
lation into heavy quarks - as the same 2 → 3 diagram appears in both processes. A
Sommerfeld enhancement should be very easily implementable as all necessary tools are
already existent. Nonetheless, the phenomenon of attractive and repulsive colour po-
tentials may enrich the investigation. In current research in the area of dark matter
(co-)annihilations, a handful of new ideas have been rediscovered from exotic QCD and
quarkonium formations, as the formation of bound states made of the initial particles.
The multiple Higgs exchange leading to Sommerfeld-like ladder diagrams is a further
method to achieve greater precision (especially in the low-energy regime) with small
effort. In suitable scenarios one may think about the application of these methods to
DM@NLO.
Ultimately, the DM@NLO code might be published as a whole. Furthermore, turning
the diagrams around could easily lead to predictions for direct detection with accuracies
at next-to-leading order. The library of implemented Passarino-Veltman integrals and
dipoles are very helpful for further processes (not necessarily related to SUSY) as well.
Thus, the DM@NLO project may turn out as very useful in various contexts.
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A. Some Algebra

A.1. Miscellaneous Relations
In order to use the technique of dimensional regularisation, one has to deal with Dirac
matrices in D dimensions. The known identities from the Minkowski space can change!
The following relations simplified the calculations:

γµγµ = D (A.1)

γαγµγα = (2−D)γµ (A.2)
γαγµγνγα = 4gµν − (4−D)γµγν (A.3)

γαγµγνγργα = −2γργνγµ + (4−D)γµγνγρ (A.4)
In D dimensions the Dirac traces are the same like in the common Minkowski space:

Tr(γµγν) = 4gµν → Tr(/a/b) = 4ab (A.5)

Tr(γµγνγλγρ) = 4(gµνgλρ − gµλgνρ + gµρgνλ) (A.6)
Tr(γµγνγλγργσγτ ) = 4(2gµνgλρgστ − gµνgλσgρτ − gµλgντgρσ

+gµλgνσgρτ + gµρgντgλσ − gµρgνσgλτ + gµτgνλgρσ

−gµσgνλgρτ − gλρgµτgνσ + gµσgρλgτν

+gµρgνλgστ − gµλgνρgστ )

(A.7)

Tr(γµ1 · ... · γσn) = Tr(γ5γµ1 · ... · γσn) = 0 (n odd) (A.8)

A.2. Projection Operators
The concept of chirality was born in the context of the observation of parity-violating
processes by Madame Wu. The coupling of weakly interacting gauge bosons is highly
dependent on the chirality of the particles. The projection operators filter the left- and
right-handed part out of the entire Dirac spinor:

PR = 1 + γ5

2 PL = 1− γ5

2 with γ5 = iγ0γ1γ2γ3 (A.9)

PRPL = 0 (A.10)
PRPR = PR PLPL = PL (idempotent) (A.11)
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A. Some Algebra

Tr(PL) = Tr(PR) = 2 (A.12)
They become important in case of quark-squark-gaugino mixing, when left- and right-
handed part carry a different vertex factor. In other cases, the two projection operators
can simply be added to a unity matrix.

A.3. Colour Algebra
The algebraic background of the following equations needed for computing the colour
factors was already explained in Section 3.1. Therefore, we just give all of the used
properties of colour algebra (in the general form arising from the SU(N) group) [76,77,78].

Tr(T a) = 0 (A.13)

Tr(T aT b) = 1
2δab (A.14)

{T a, T b} = 1
N
δab + dabcT c (A.15)

T aijT
a
kl = 1

2

(
δilδjk −

1
N
δijδkl

)
(A.16)

In principal, these relations are sufficient for the calculation of colour factors, nonetheless
a couple of properties that can be derived from the previous ones save much time during
the calculations:

fabc = −2iTr(T a[T b, T c]) (A.17)
dabc = 2Tr(T a{T b, T c}) (A.18)

T aT b = 1
2

(
1
N
δab + (dabc + ifabc)T c

)
(A.19)

facdf bcd = Nδab (A.20)

dabcT c = {T a, T b} − 1
N
δab (A.21)

Tr(T aT bT c) = 1
4(dabc + ifabc) (A.22)

T aT bT a = − 1
2N T b (A.23)

Tr(T aT bT aT c) = − 1
4N δbc (A.24)

facddbcd = 0 (A.25)

fadef beff cfd = N

2 f
abc (A.26)

dabcdabd =
(
N2 − 4
N

)
δcd (A.27)
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A. Some Algebra

dabcT aT b = N2 − 4
2N T c (A.28)

fabcT aT b = iN

2 T c (A.29)

dabcT aT bT c = N2 − 4
2N CF (A.30)

fpakfkblf lcp = −3
2f

abc (A.31)

dpakfkblf lcp = 3
2d

abc (A.32)

dpakdkblf lcp = 5
6f

abc (A.33)

dpakdkbldlcp = −1
2d

abc (A.34)

fabedcde + facedbde + fadedbce = 0 (A.35)
fabedcde + f cbedade + fdbedace = 0 (A.36)

fabef cde = 2
N

(
δacδbd − δadδbc

)
+dacedbde − dbcedade (A.37)

dabkdkcl + dbckdkal + dcakdkbl = 1
N

(
δabδcl + δacδbl + δalδbc

)
(A.38)

The following abbreviations are common (arithmetically expressed for the SU(3) group):

CF = (N2 − 1)
2N = 4

3 TF = 1
2 (A.39)

The last normalisation factor is often called Dynkin index.

Within the loop calculations for the four-vertex, fairly complicated colour structures
appear. We refer to [27], where the Mathematica package color.m is introduced. One
can also export the source code from this reference.
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B. Propagators and Couplings
All momenta k1, k2 and k3 go from left to the right.

(a) 2-squark-gluon:

a, µ

i, s

j, t

−igsT
a
st(k2 − k3)µδij

k1

k2

k3

Changing the direction of the arrows leads to an additional minus sign.

(b) 2-quark-gluon:

a, µ

s

t

−igsT
a
stγµ

(c) 2-ghost-gluon:

a, µ

b

c

k1

k2

k3

−gsfabck2µ

It should be noted that only the particle, not the anti-particle, contributes to the
vertex factor.
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(d) 3-gluon:

a, µ

b, ν

c, λ

−gsfabc[(k1 + k2)λgµν + (k3 − k2)µgνλ − (k3 + k1)νgµλ]
k1

k2

k3

The minus sign originally means i2 as one imaginary unit is contained in the colour
factor.

(e) 4-gluon:

b, ν

a, µ

d, ρ

c, λ

−ig2s [feabfecd(gµλgνρ − gµρgνλ)

+feacfedb(gµρgνλ − gµνgρλ)

+feadfebc(gµνgλρ − gµλgνρ)]

(f) 2-gluino-gluon:

a, µ

b

c

−gsfabcγµ

(g) 2-squark-2-gluon:
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b, ν

a, µ

j, t

i, s

ig2s(
1
3δabδst + dabcT

c
st)gµνδij

To express the next vertex factors we have to define the mixing of the squark types.(
q̃1
q̃2

)
= Rq̃

(
q̃L
q̃R

)
= (RiL, RiR)

(
q̃L
q̃R

)
=
(

cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)(
q̃L
q̃R

)
(B.1)

Furthermore, we introduce for the vertex of four interacting squarks (we define with
α = 1 the stop sector and with 2 the sbottom sector):

Aαij = Rα
i1R

α
j1 −Rα

i2R
α
j2 =

(
cos 2θq̃α − sin 2θq̃α
− sin 2θq̃α − cos 2θq̃α

)
(B.2)

The fermion flow makes it necessary to distinguish between two different Feynman rules:

(h) quark-squark-gluino:

s

i, t

a

s

i, t

a

√
2igsT

a
st(RiLPL −RiRPR)

√
2igsT

a
st(RiLPR − RiRPL)

(i) 4-squark:

Four interacting squarks lead to a lengthy expression: We sum over a, but not over
the index α.

97



B. Propagators and Couplings

α; i, r

α; j, s

β; k, t

β; l, u

−ig2s [T
a
rsT

a
tuA

α
ijA

β
kl + δαβT

a
ruT

a
tsA

α
ilA

β
kj]

In this chapter we used the Feynman rules in [79]. There exist uncountable other
definitions, the direction of momenta, charge and fermion flows have to be handled with
care.
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C. Tree Level Calculations

C.1. Kinematics
A convenient way to express the cross section is the usage of the Mandelstam variables,
defined via

s = (p1 + p2)2 = (k1 + k2)2 (C.1)
t = (p1 − k1)2 = (p2 − k2)2 (C.2)
u = (p1 − k2)2 = (p2 − k1)2 (C.3)

fulfilling the relation

s+ t+ u =
4∑
i=1

m2
i = p2

1 + p2
2 + k2

1 + k2
2 (C.4)

C.2. Born Cross Sections and Their Interferences
Although some amplitudes were mentioned in the main part of this thesis, the expres-
sion in Mandelstam variables was totally excluded, furthermore the amplitudes of the
interferences. Of course, there is no interference of ghosts with other channels. Some
other expectable interferences are forbidden by the colour decomposition. Finally, one
should keep in mind that every squared amplitude needs a prefactor 1

2·9 since we are
treating identical particles in the final state and we have to average the possible colours.
The colours themselves will not be given here as it was done in detail in the chapter on
decomposition.

Ms = −ig
2
s

s
(p2 − p1)αgαρ[gρν(k1 + 2k2)µ + gµν(k1 − k2)ρ − gµρ(2k1 + k2)ν ]ε∗µ(k1)ε∗ν(k2)

(C.5)

|M̄s|2 = −g
4
s

s2 (3s2 + 8sm2
t̃1
− 2m2

t̃1
(6s+ 14m2

t̃1
− 20t)− 20(ts+ t2)) (C.6)

Mt = (2p1 − k1)µ ig2
s

t−m2
t̃1

(2p2 − k2)νε∗µ(k1)ε∗ν(k2) (C.7)

|M̄t|2 = g4
s

(t−m2
t̃1

)2 (2m2
t̃1

+ 2t)2 (C.8)
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Mu = (2p1 − k2)µ ig2
s

t−m2
t̃1

(2p2 − k1)νε∗µ(k2)ε∗ν(k1) (C.9)

|M̄u|2 = g4
s

(u−m2
t̃1

)2 (−2s+ 6m2
t̃1
− 2t)2 (C.10)

M4 = ig2
sg

µνε∗µ(k1)ε∗ν(k2) (C.11)

|M̄4|2 = 4g4
s (C.12)

Mgh = −ig
2
s

s
(p2 − p1)αgαρ(k1)ρ − i

g2
s

s
(p2 − p1)αgαρ(k2)ρ (C.13)

|M̄gh|2 = g4
s

s2 · 2(s− 2m2
t̃1

+ 2t)2 (C.14)

We continue with interferences:

|MsMt| =
1
2

g4
s

s · (t−m2
t̃1

) [s2 + 8m4
t̃1

+ 4ts−m2
t̃1

(8s+ 8t+ 4m2
t̃1

)] (C.15)

|MsMu| =
1
2

g4
s

s · (u−m2
t̃1

) [10s2 + 16m4
t̃1

+ 16ts− 8t2 −m2
t̃1

(32s+ 16t)] (C.16)

|MtMu| = −
2g4

s

(t−m2
t̃1

)(u−m2
t̃1

)(4m2
t̃1
− s)2 (C.17)

|MtM4| = −
g4
s

(t−m2
t̃1

)(4t+ 4m2
t̃1
− s) (C.18)

|MuM4| = −
g4
s

(u−m2
t̃1

)(12m2
t̃1
− 4t− 5s) (C.19)

These results were implemented into the code in a twofold manner: in earlier work of S.
Schmiemann and by the author of the thesis. Both are in accordance with mircOMEGAs.
Furthermore, S. Schmiemann was able to reproduce the same cross section in the light-
cone gauge instead of using ghosts.
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D. NLO Calculations

D.1. Dimensional Regularisation
In Chapter 5 we mentioned the calculation of loop diagrams, but did not pay attention to
the explicit performance. Here, we give the most important tools for the integration over
the momenta within loops. In order to get rid of the ill-defined corrections (explained
in the section about renormalisation), one has to make these contributions calculable.
This can successfully be worked out using dimensional regularisation/reduction schemes
(there are further methods like the one of Pauli-Villars, cut-off scheme, ...). The loop
integrals get analytically continued to an arbitrary, complex number of dimensions D
separating the ill-defined parts to a singular and a non-singular contribution:∫

d4q → µ(4−D)/2
∫
dDq (D.1)

µ keeps the mass dimension of the equation equal. After integration, we take the limit
D → 4 and singular poles in the form of 2/(D − 4) occur. One can imagine that every
possible loop leads to the same kind of integrals. Passarino and Veltman [80] discovered
this fact and developed a general type of loop integrals, the so-called Passarino-Veltman
integrals. First, we write them generically:

TNµ1,...,µM
(p1, ..., pN−1,m0, ...,mN−1) (D.2)

= (2πµ)(4−D)/2

iπ2 ·
∫
dDq

qµ1 ...qµM
[q2 −m2 + iε][(q + p1)2 −m2

1 + iε]...[(q + pN−1)2 −m2
N−1 + iε]

This integral describes a generic loop of the form in the figure below [81]. It has to be
noted that the sign of the momenta pi depends on their chosen direction in the Feynman
diagram. As a convention, one uses the nomenclature T 1 → A, T 2 → B and so on. The
basic idea behind the evaluation of loop diagrams is the possibility of expressing every
TNµ1,...,µM

(p1, ..., pN−1,m0, ...,mN−1) as a linear combination of the scalar integrals (no q
in the numerator) A to D. The scalar integrals used in the calculations have the obvious
form:

A0 = (2πµ)4−D

iπ2 ·
∫
dDq

1
[q2 −m2 + iε] (D.3)

B0 = (2πµ)4−D

iπ2 ·
∫
dDq

1
[q2 −m2 + iε][(q + p1)2 −m2

1 + iε] (D.4)

C0 = (2πµ)4−D

iπ2 ·
∫
dDq

1
[q2 −m2 + iε][(q + p1)2 −m2

1 + iε][(q + p2)2 −m2
2 + iε] (D.5)
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The arguments of these functions of course depend on the momentum convention as we
illustrated for the 3- and 4-point function. So how is it possible to express the tensor

integrals via these scalar ones? The answer is tensor reduction: In analogy to contracting
tensors one can work out the reduced form of the TNµ1,...,µM

(p1, ..., pN−1,m0, ...,mN−1):

Bµ = pµ1B1 (D.6)

Bµν = gµνB00 + pµ1p
ν
1B11 (D.7)

Cµ = pµ1C1 + pµ2C2 (D.8)

Cµν = gµνC00 +
2∑

i,j=1
pµi p

ν
jCij (D.9)
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Cµνα =
2∑
i=1

(gµνpαi + gναpµi + gαµpνi )C00i +
2∑

i,j,k=1
pµi p

ν
jp
α
kCijk (D.10)

Dµ =
3∑
i=1

pµiDi (D.11)

Dµν = gµνD00 +
3∑

i,j=1
pµi p

ν
jDij (D.12)

Dµνα =
3∑
i=1

(gµνpαi + gναpµi + gαµpνi )D00i +
3∑

i,j,k=1
pµi p

ν
jp
α
kDijk (D.13)

Those scalar integrals also decay in the four mentioned basic integrals, for instance:

B1 = 1
2p2

1
(A0(m0)− A0(m1)− (p2

1 −m2
1 +m2

0)B0) (D.14)

They can be calculated in a rather involved way. In the results, the following variable
ε := 4−D

2 will appear (dependent on conventions); furthermore, we remember the Gamma
function:

Γ(x) =
+∞∫
0

e−ttx−1dt (D.15)

The number ∂xΓ(x)|x=1 = γE is called Euler-Mascheroni constant and has the value
0,5772. Finally, the A0 is given by:

A0 = m2(ε−1−γE+ln 4π− ln
(
m2

µ2

)
+1+O(ε)) := m2(∆− ln

(
m2

µ2

)
+1+O(ε)) (D.16)

With the Feynman parametrisation

1
ab

=
1∫

0

dx 1
(a(1− x) + bx)2 (D.17)

1
abc

=
1∫

0

dx
1−x∫
0

dy 1
(a(1− x− y) + bx+ cy)3 (D.18)

one calculates

B0 = ∆−
1∫

0

dx ln
(
x2p2

1 − x(p2
1 −m2

1 +m2
0) +m2

0 − iε
µ2

)
(D.19)

C0 is too long to be mentioned it in this appendix. Divergences appear only in some
tensor integrals as we see in the two tables.
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Figure D.1.: UV and IR divergences of Passarino-Veltman integrals [81]

D.2. Tensor Reduction of Three-Point Functions
The most of the tensor integrals are already implemented in the DM@NLO code, so one
had less work regarding tensor reduction. The three-gluon topology however requires
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the knowledge of the decomposition of Cµνρ, given by

Cµνρ =
2∑
i=1

(gµνpρi + gνρpµi + gρµpνi )C00i +
2∑

i,j,k=1
pµi p

ν
jp
ρ
kCijk (D.20)

which means that the components C001, C002, C111, C112, C122 and C222 have to be
identified with linear combinations of already known tensors. There exists a procedure
to reduce every tensor integral to the scalar basis TN0 , but it is only necessary to end up
with any implemented integrals, generically worked out in [60]. Let us apply this set of
rules, starting with a contraction of the integral momentum qµ with an external one:

q.pk = 1
2[Dk −D0 − fk], fk = p2

k −m2
k +m2

0 (D.21)

The Dk are the factors in the denominator of the respective tensor integral. For this
multiplication we define

RN,k
µ1...µP−1

:= TNµ1...µP
pµPk = 1

2

[
TN−1
µ1...µP−1

(k)− TN−1
µ1...µP−1

(0)− fk · TNµ1...µP−1

]
(D.22)

where the argument k appears, if the propagator Dk was cancelled. For the number of
momenta P > 1 we can also contract gµνqµqν → D0 +m2

0, so we define again:

RN,00
µ1...µP−2

= TNµ1...µP
gµP−1µP = TN−1

µ1...µP−2
(0) +m2

0T
N
µ1...µP−2

(D.23)

These reductions yield a set of N −1 linear equations for each tensor integral, expressed
via a representation matrix XN−1. We assume the matrix to be non-singular, otherwise
the algorithm would break down. For M < N Lorentz vectors we can give the result:

TN00i1...iP−2
= 1
D + P − 2−M

[
RN,00
i1...iP−2 −

M∑
k=1

RN,k
ki1...iP−2

]
(D.24)

TNki1...iP−1
= (X−1

M )kk̃
[
RN,k̃
i1...iP−1 −

P−1∑
r=1

δk̃irT
N
00i1...ir−1ir+1...iP−1

]
(D.25)

The representation matrix X2 and its inverse read:

X2 =
(
p2

1 p1.p2
p1.p2 p2

2

)
(X2)−1 = 1

detX2

(
p2

2 −p1.p2
−p1.p2 p2

1

)
(D.26)

where the determinant can be expressed via the Källen function:

detX2 = p2
1p

2
2 − (p1.p2)2 = −1

4λ[(p2 − p1)2, p2
1, p

2
2] (D.27)

Applying these formulae leads to:

C001 = 1
2

1
D − 1

(
f2C12 + 2m2

0C1 + f1C11 −B1
0 − 2B1

1

)
(D.28)
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C002 = 1
2

1
D − 1

(
B1

1 + f1C12 + 2m2
0C2 + f2C22

)
(D.29)

The expansion of 1
D−1 using the geometric series yields the ultraviolet divergence:

1
3− 2ε = 1

3

∞∑
i=0

(2ε)i
3i ≈

3 + 2ε
9 (D.30)

The convergent integrals read:

C111 = −2
λ

[p2
1(−B1

0−2B1
1−B1

11−f1C11+4C001)+p1.p2(−B1
0−2B1

1−B1
11−f2C11)] (D.31)

C112 = −2
λ

[p1.p2(−B1
0−2B1

1−B1
11−f1C11+4C001)+p2

2(−B1
0−2B1

1−B1
11−f2C11)] (D.32)

C122 = −2
λ

[p2
1(−B1

11 − C22f1 +B2
11) + p1.p2(−B1

11 − f2C22 − 4C002)] (D.33)

C222 = −2
λ

[p1.p2(−B1
11 − C22f1 +B2

11) + p2
2(−B1

11 − f2C22 − 4C002)] (D.34)

D.3. Self-Energies
First, we define the denominators of the tensor integrals:

D1 = q2 −m2
1 D2 = (q + p)2 −m2

2 (D.35)

Π denotes a self-energy, the lower index stands for the virtually corrected particle, the
upper one for the particles in the loops.

D.3.1. Gluon self-energy
In this case, the amplitude can be separated into two components, a transversal (T) and
a longitudinal (L) one:

Πg = εµ(p)−ig
2
s

16π2

[(
gµν − pµpν

p2

)
ΠT (p2) + pµpν

p2 ΠL(p2)
]
ε∗ν(p) (D.36)

We are interested in ΠT and will give only this contribution.

Quark loop/gluino loop:

j

ν, bµ, a

i

µ, a ν, b

i, c

j, d
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We give the general amplitude for this topology and insert specific couplings for quarks
and gluinos afterwards.

Πff
g = µ

4−D
2
−i

16π2 g
2
s

∫
q

1
D1D2

(−1)i4

× Tr[γµ(gL1 PL + gR1 PR)(/q +m1)γν(gL2 PL + gR2 PR)(/p+ /q +m2)]ε∗ν(p)
(D.37)

Πff,T
g = εµ(p)−ig

2
s

16π2 g
µν [2m1m2(gL1 gR2 + gR1 g

L
2 )B0 − 2(gL1 gL2 + gR1 g

R
2 )

× (p2B1 +m2
1B0 + A0(m2

2)− 2B00]ε∗ν(p)
(D.38)

In general, we can equate L = R. The couplings for the gluinos read g1 = −gsγµfacd
and g2 = −gsγνf cbd, so the colour factor becomes −Nδab. This loop gets an additional
symmetry factor of 1/2 as gluinos are Majorana fermions. The couplings for the quarks
read g1 = −igsT ajiγµ and g2 = −igsT bijγν , so the colour factor becomes TF .

Gluon loop:

µ, a ν, b

c

d

ρ

σ

β

α

Πgg
g = εµ(p)µ 4−D

2
1
2
−i

16π2 g
2
s

∫
q

1
D1D2

i2facdf bdcΓµρσΓναβgρβgσαε∗ν(p) (D.39)

Γµρσ = gµρ(p− q)σ + gρσ(2q + p)µ − gσµ(2p+ q)ρ (D.40)

Γαβν = gαβ(p+ 2q)ν + gβν(p− q)µ − gαν(2p+ q)β (D.41)

Πgg,T
g = εµ(p) −i16π2 g

2
s(−Nδab)

1
2(10B00 + 2p2B1 + 5p2B0 + 2A0)ε∗ν(p) (D.42)

Squark loop:
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µ, a

i

j

ν, b

Πq̃q̃
g =εµ(p)µ 4−D

2
−i

16π2 g
2
s

∫
q

1
D1D2

i4T ajiT
b
ij(p+ 2q)µ(p+ 2q)νε∗ν(p) (D.43)

Πq̃q̃,T
g = εµ(p)−ig

2
s

16π2TF δab · 4B00ε
∗
ν(p) (D.44)

Ghost loop:

Since they behave quite peculiar - as scalars, they obey Fermi-Dirac statistics - we need
a (-1) factor to accommodate the closed ghost loop. The colour structure is equivalent
to the gluon loop.

µ, a

c

d

ν, b

Πgh
g = εµ(p)µ 4−D

2
−i

16π2 g
2
s

∫
q

1
D1D2

i2(−1)facdf bdc(p+ q)µqνε∗ν(p) (D.45)

Πgh,T
g = εµ(p) ig

2
s

16π2 (−Nδab)B00ε
∗
ν(p) (D.46)

Squark 1-point loop:

µ, a ν, b

k

108



D. NLO Calculations

This tadpole is quite simple, so we only give

Πq̃,T
g = εµ(p) −i16π2 g

2
s{T a, T b}A0(m2

q̃)ε∗ν(p) (D.47)

Gluon 1-point loop:

This one is even easier than the previous: We remember the Jacobi identity of our
structure constants and see that the amplitude vanishes.

D.3.2. Squark self-energy
Quark-gluino loop:

The non-trivial mixing within this vertex can be found in App. B about couplings.

i

j

k

a

Πqg̃
q̃ = µ

4−D
2

i

8π2 g
2
s

∫
q

1
D1D2

i4T ajiT
a
kj(−1)Tr[(R1LPL

−R1RPR)(/p+ /q +mq)(R1LPR −R1RPL)(/q +mg̃)
(D.48)

Πqg̃
q̃ = µ

4−D
2
iCF
8π2 g

2
sδik[−2mqmg̃R1LR1RB0 + (R2

1L +R2
1R)(mg̃B0 + p2B1 + A0(m2

q))]
(D.49)

Squark-gluon loop:

a

i

j

k

Πgq̃
q̃ = µ

4−D
2

i

16π2 g
2
s

∫
q

1
D1D2

(−i)4T ajiT
a
kj(2p+ q)νgµν(2p+ q)µ (D.50)
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Πgq̃
q̃ = µ

4−D
2
iCF
16π2 g

2
sδik(4p2(B0 +B1) + A0(m2)) (D.51)

Squark 1-point loop:

l, u

i, r

k, t

Again, the tadpole diagrams are more than simple:

Πq̃
q̃ = µ

4−D
2

i

16π2 g
2
s(T arrT atuAiiAkl + T aruT

a
rtAilAik)

∫
q

1
D1

(D.52)

Πq̃
q̃ = µ

4−D
2

i

16π2 g
2
sTFA

2
ikA0(m2

q̃) (D.53)

Gluon one-point loop:

i j

a

µ ν

Πg
q̃ = µ

4−D
2

i

16π2 g
2
s

∫
q

1
D1
{T a, T a}gµνgµν (D.54)

Πg
q̃ = µ

4−D
2

i

16π2 g
2
sDA0(m2

g) = 0 (D.55)

As the gluon is massless and A0(0) = 0, we have no contribution.

D.4. Renormalisation
The principles of renormalisation were briefly explained in the main part - but the explicit
expressions of the counterterms are still remaining. We first show how to renormalise the
squark and gluon sector to construct the counterterms and give afterwards the needed
terms to absorb the UV divergence for the vertices and self-energies of our process.
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D.4.1. Squark Sector
The bare and shifted Lagrangian was already shown in 5.2.1. We continue with de-
composing the matrix elementM of the one-scalar irreducible two-point functionM =
i[δij(k2 −m2

q̃i
)Π̂ij(k2)] into the Born contribution and the parts from the one-loop cor-

rected self-energy (note that i, j are the indices for the squark mass eigenstate basis):

Π̂ij(k2) = Πij(k2)− δijδm2
q̃i

+ 1
2(k2 −m2

q̃i,j
)(δZij + δZ∗ji) (D.56)

The expression contains the renormalised self-energy Πij(k2) and its corresponding coun-
terparts (mass and wave function). The next step is, as described in Section 5.2, the
application of the on-shell renormalisation conditions (5.21) providing the following ex-
pressions

δm2
q̃i

= ReΠii(m2
q̃i

) (D.57)

δZij = 2
m2
q̃i −m2

q̃j

ReΠij(m2
q̃j

), i 6= j (D.58)

δZii = −Re ∂

∂k2 Πii(k2)|k2=m2
q̃i

(D.59)

Gluon loop contribution:

δZg
q̃ = CF

g2
s

16π2 (2B0(k2, 0,mq̃) + 2(k2 +m2
q̃)Ḃ0(k2, 0,mq̃)) (D.60)

Gluino loop contribution:

δZ g̃
q̃ = CF

g2
s

16π2 [((R2
1L+R2

1R)(m2
g̃+m2

q+k2)−4R1LR1Rmg̃mq)Ḃ0(k2,mg̃,mq)−B0(k2,mg̃,mq)]
(D.61)

The mass term, however, is easily derived by substituting the internal momentum by
the squark mass in the self-energies.

D.4.2. Gluon Wave Function
The renormalisation starts once again with the bare Lagrangian, in this case given by
the free-field Proca density for vector particles:

L = −1
4(∂µ(Aa0)ν − ∂ν(Aa0)µ)(∂µ(Aa0)ν − ∂ν(Aa0)µ) (D.62)

The matrix element for the irreducible two-point function can be expressed as follows,
where the gluon self-energy Π̂µν was splitted in transversal and longitudinal parts:

M = −iεµ(k)
[(
gµν −

kµkν
k2

)
Π̂T (k2) + kµkν

k2 Π̂L(k2)
]
ε∗ν(k) (D.63)
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The Ward identity together with the renormalisation conditions

Re[Π̂µν(k2)]|k2=0ε
∗ν(k) = 0 (D.64)

lim
k2→0

1
k2 Re[Π̂µν(k2)]ε∗ν(k) = −εµ(k) (D.65)

tells us that the longitudinal one is negligible. The corrected self-energy therefore has
the following form, after the conditions were applied:

Π̂T (k2) = ΠT (k2) + k2δZg δZg = −Re ∂

∂k2 ΠT (k2)|k2=0 (D.66)

Starting from the self-energies, we again derive the δZg term:

Squark loop contribution:

δZ q̃
g = TF

g2
s

144π2 (3B0(k2,m2
q̃,m

2
q̃)− 12m2

q̃Ḃ0(k2,m2
q̃,m

2
q̃)) (D.67)

Quark loop contribution:

δZq
g = TF

g2
s

36π2 (6m2
qḂ0(k2,m2

q,m
2
q) + 3B0(k2,m2

q,m
2
q)) (D.68)

Gluino loop contribution:

δZ g̃
g = N

g2
s

72π2 (6m2
qḂ0(k2,m2

g̃,m
2
g̃) + 3B0(k2,m2

g̃,m
2
g̃)) (D.69)

Gluon loop contribution:

δZg
g = −N 57g2

s

576π2B0(k2, 0, 0) (D.70)

Ghost loop contribution:

δZgh
g = −N 3g2

s

576π2B0(k2, 0, 0) (D.71)

The one-point loops do not contribute to the counterterm. For an obvious reason, a
mass counterterm does not exist.

It remains the renormalisation of the strong coupling. For this procedure we need the
vertex corrections from below, so we continue later.
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D.5. Vertex Corrections
As we had to struggle with more than 40 vertex corrections, we can only give the result
(which again means the whole amplitude and the expression with Passarino-Veltman
integrals).
One should notice, that every vertex already carries factor µ 4−D

2 . It is more convenient
to introduce the shorthand-notation:

µ4−Dµ
4−D

2

∫ dDq

(2π)D = µ
4−D

2
i

16π2

∫
q

(D.72)

Again, the vertex amplitude reads A...... - the upper index contains the particles within
the loops, the lower one stands for the corrected vertex from the tree level diagrams
(3-gluon, gluon-2-ghost, 2-squark-2-gluon, 2-squark-gluon). In front of the expression,
a possible non-trivial symmetry factor may be written, as introduced in 5.2.2. Let us
start with the most complicated structure of the vector-vector-vector-topology:

3-GLUON CORRECTIONS

The colour factors can be factorised with the Born cross section colour factor fabc in
the most cases. We always express the colour structure in the first equation via all
needed elements of the colour algebra and in the second one the factorisation or at least
a representation with the colour basis.
We briefly comment on the potentially enormous simplification: After having performed
the tensor reduction, one obtains 14 different kinematical structures (1 to 8: kµi kνj k

ρ
k for

i, j, k = 1, 2 and 9 to 14: kµi gνρ, kνi gµρ, k
ρ
i g

νµ, more on the code). A linear combination
of the last six yields the tree level amplitude - therefore, they have to contain the diver-
gences, whereas all others stay convergent, at least summed up. Using the properties
of the indistinguishable final gluons, one can simplify all these structures to less (some
commentaries are left in the code). Moreover, the renormalisation can be split into
pure Standard Model parts and SUSY parts since the three-gluon topology has some
diagrams where SUSY particles do not appear at all. This requires adapted coupling
and wave function renormalisation to check the finiteness separately. Only the quark
loop is responsible for treating the divergences in the counterterm, the different gluon
and ghost loops should cancel themselves.

Complicated integrands may drastically differ, but have numerically equivalent expres-
sions in terms of Passarino-Veltman integrals, depending on the chosen substitution
techniques!
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3-gluon loop:

ρ, a

β

α

λ

e

µ, b

ν, c

f

τ

σ

γ

d

Agggg = µ
4−D

2
i

16π2 g
3
s i

3fadefdbff fce
∫
q

−i6

D0D1D2
ΓαβρgαλΓλτνgτσΓγµσgγβ (D.73)

with

Γαβρ = gρβ(2k1 + k2 − q)α + gβα(k2 − k1 + 2q)ρ − gρα(q + k1 + 2k2)β (D.74)

Γλτν = gλτ (k2 + 2q)ν + gτν(k2 − q)λ − gνλ(2k2 + q)τ (D.75)
Γγµσ = gγσ(2q − k1)µ − gσµ(q + k1)γ + gµγ(2k1 − q)σ (D.76)

Agggg = g3
s

16π2{−
iN

2 fabc × [3kρ2kµ1kν1 + qρkµ1k
ν
1 + 16kρ2kµ2kν1 − 3kρ1qµkν1

−13kρ2qµkν1 + 3kρ1kµ1kν2 − 3kρ2kµ1kν2 − 4qρkµ1kν2
−3kρ1kµ2kν2 + 3qρkµ2kν2 − 2kρ1qµkν2 − 6kρ2qµkν2
+9qρqµkν2 − 6kρ1kµ1 qν − 2kρ2kµ1 qν − 9qρkµ1 qν

−13kρ1kµ2 qν + 3kρ2kµ2 qν − 9kρ1qµqν + 9kρ2qµqν

18qρqµqν + gρµ(−4k1.k2k
ν
1 − 8k1.qk

ν
1 + 4q2kν1 + 10qνk1.k2

−4kν2k1.q + 3kν2k2.q + 2qνk2.q + 3q2kν2 + 2q2qν)
+gµν(kρ1k1.k2 − 3kρ2k1.k2 − 14qρk1.k2 + 3kρ1k1.q + kρ2k1.q − 2qρk1.q

+kρ1k2.q + 3kρ2k2.q + 2qρk2.q − 3(kρ1 − kρ2)q2 + 2q2qρ)
+gνρ(4kµ2k1.k2 + 10qµk1.k2 + 3kµ1k1.q − 2qµk1.q − 4kµ1k2.q − 8kµ2k2.q

−3q2kµ1 − 4q2kµ2 + 2qµq2)]}

(D.77)
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3-fermion loop:

i

j

k

ρ, a

µ, b

ν, c

µ, b

ν, c

ρ, a

d

e

f

The gluino loop and the quark loop have the same topology, so only the coupling
constants are different, the tensor reduction is untouched by this change. It is impor-
tant to take both directions of the fermion flow into consideration! For the gluinos as
Majorana particles there is no need to distinguish between two diagrams. Furthermore,
the diagrams differs from each other within the colour structure.

Afffg = µ
4−D

2
iFcol
16π2 g

3
s i

6
∫
q
(−1) 1

D0D1D2

× Tr[γµ(/q − /k1 +mf1)γρ(/q + /k2 +mf2)γν(/q +mf3)]
(D.78)

Afffg = 4i · CF
16π2 g3

s [gνρ(−mf2mf3k
µ
1 −mf1mf3k

µ
2 + qµk1.k2 − kµ2k1.q + (mf1mf2 +mf2mf3

−mf1mf3)qµ + kµ1k2.q − 2qµk2.q + (kµ1 + kµ2 − qµ)q2] + gµρ[mf2mf3k
ν
1

+mf1mf3k
ν
2 + (mf2mf1 −mf2mf3 +mf1mf3)qνk1.k2 + (kν2 + 2qν)k1.q

−kν1k2.q − q2(kν1 + kν2 − qν)] + gµν [−mf2mf3k
ρ
1 + (−mf2mf1 +mf2mf3 +mf1mf3)qρ

−k1.k2q
ρ + (kρ1 + kρ2)k1.q + q2(kρ1 − kρ2 − qρ]− qµkν2k

ρ
1 − k

µ
2 q

νkρ1
−2qµqνkρ1 − qµkν1k

ρ
2 − k

µ
1 q

νkρ2 + 2qµqνkρ2 + kµ2k
ν
1q

ρ

−kµ1kν2qρ + 2qµkν2qρ − 2kµ1 qνqρ + 4qµqνqρ]
(D.79)

Regarding the gluinos/quarks, the colour factor is given by:

F g̃
col = i3fadefdbff fce = −iN2 f

abc (D.80)

F q
col = T aikT

c
kjT

b
ji = −d

abc − ifabc

4 (D.81)
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3-squark:

i

j

k

ρ, a

µ, b

ν, c

Aq̃q̃q̃g = µ
4−D

2
i

16π2 g
3
sT

a
ikT

c
kjT

b
ji

∫
q

i6

D0D1D2
(2q − k1 + k2)ρ(2q − k1)µ(2q + k2)ν (D.82)

Aq̃q̃q̃g = −g
3
s

16π2
dabc − ifabc

4 [8Cµνρ + 4Cµρkν2 − 4Cµν(k1 − k2)ρ

−4Cρνkµ1 − 2Cρkµ1k
ν
2 − 2Cµ(k1 − k2)ρkν2 + 2Cν(k1 − k2)ρkµ1 + (k1 − k2)ρkµ1kν2 ]

(D.83)

2-gluon loop A:

ρ, a

µ, b

ν, c

σ

d
α

τ

e
δ

Loops with two virtual gluons can occur in three different ways. But only two are
in fact different, if one rotates the diagram in a three-dimensional space. One finds a
symmetry factor standing in front of the amplitudes.

Aggg = µ
4−D

2
1
2

i

16π2 g
3
s(−i4)

∫
q

1
D0D1

Γρστgσαgτδ

×
[
(gανgδµ − gαδgµν)f1 + (gαµgδν − gαδgµν)f2 + (gαµgδν − gανgµδ)f3

] (D.84)

Γρστ = gρσ(k1 + k2 + q)τ − gστ (2q − k1 − k2)ρ − gρτ (2k1 + 2k2 − q)σ (D.85)
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Aggg = 1
2
g3
s

16π2

[
f1[(4Bρgµν +Bµgρν +Bνgµρ) +B0((k1 + k2)µgρν

−2(k1 + k2)νgµρ)] + [f2[(4Bρgµν +Bµgρν +Bνgµρ) +B0((k1 + k2)νgρµ

−2(k1 + k2)µgνρ)] + 3f3[(k1 + k2)νgµρ − (k1 + k2)µgνρ]
] (D.86)

f1 = iN

2 fabc f2 = −iN2 fabc f3 = iNfabc (D.87)

2-gluon loop B,C:

Due to indistinguishable final states, the two diagrams are equivalent - easily shown
diagrammatically by rotation at the axis of the four-gluon vertex.

ρ, a

ν, c

µ, b

σ

τ

α

λ

d

e

Aggg = µ
4−D

2
1
2

i

16π2 g
3
s

∫
q

(−i4)
D0D1

Γσµτgσλgτα

×
[
(gναgρλ − gνλgρα)f1 + (gνλgρα − gρνgαλ)f2 + (gρνgαλ − gναgρλ)f3

] (D.88)

Γσµτ = gσµ(q + k1)τ + gµτ (q − 2k1)σ − gστ (2q − k1)µ (D.89)

Aggg = 1
2
g3
s

16π2

[
3f1(kν1gµρ − k

ρ
1g

µν)B0 + f2[(kρ1gµν

−2kν1gµρ − 2kµ1 gνρ)B0 + 4Bµgνρ +Bνgµρ

+Bρgνµ] + f3[(−kρ2gµν + 2kν2gµρ + 2kµ2 gνρ)

× B0 − 4Bµgνρ −Bνgµρ −Bρgνµ]
] (D.90)

f1 = iNfabc f2 = iN

2 fabc f3 = iN

2 fabc (D.91)

2-squark loop A:

The diagrammatic structure of the 2-gluon loop can be transferred to the following
squark loops:
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i

j

ρ, a

µ, b

ν, c

Aq̃q̃,Ag = µ
4−D

2
i

16π2 g
3
sT

a
ji{T b, T c}ij

∫
q

i4

D0D1
(2q − k1 − k2)ρgµν (D.92)

Aq̃q̃,Ag = − 1
16π2 g

3
s

dabc

2 (2Bρ − (k1 + k2)ρB0)gµν (D.93)

2-squark loop B,C:

Once again, we consider only the left diagram.

ρ, a

i

j

µ, b

ν, c

Aq̃q̃,Bg = µ
4−D

2
i

16π2 g
3
sT

b
ij{T a, T c}ji

∫
q

−i4

D0D1
(2q − k1)µgρν (D.94)

Aq̃q̃,Bg = 1
16π2 g

3
s

dabc

2 (2Bµ − kµ1B0)gρν (D.95)
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3-ghost loop:

ρ, a

µ, b

ν, c

d

e

f

The ghost loop has to be separated into two directions of ghost flows in analogy to
the closed flows in the loops from above. They are nevertheless numerically equivalent.
We give results for a clockwise flow:

A3gh
g = µ

4−D
2

i

16π2 g
3
s i

3fadefdbff fce
∫
q
(−1) i6

D0D1D2
(k1 − q)ρqµ(q + k2)ν (D.96)

A3gh
g = −i

16π2 g
3
s

N

2 f
abc(−Cµνρ − Cρµkν2 + Cµνkρ1 + Cµkρ1k

ν
2) (D.97)

The UV-divergent parts are eliminated by the counterterm

igs

(
δgs
gs

+ 3δZg
2

)
(D.98)

GLUON-2-GHOST CORRECTIONS

Ghost exchange:

µ, a

b

c

d

f

e

γ

ρ

β

λ
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The virtual gluon could decay into to different diagrams dependent on the position of
ghost and anti-ghost. We therefore have for each corrections always two diagrams (flow
directions - A: bottom-up, B: top-down).

Agh−gg,Agh = µ
4−D

2
i

16π2 g
3
s i

3fadefdbff fce
∫
q

i6

D0D1D2
Γµγβgγρgβλqλkρ1 (D.99)

Γµγβ = gµγ(2k1 + k2 − q)β + gβγ(2q + k2 − k1)µ − (k1 + 2k2 + q)γgµβ (D.100)

Agh−gg,Agh = − i

16π2
N

2 f
abcg3

s [−2Cµk1.k2 + Cµνkν1 −B0k
µ
1 + Cν(4kµ1kν2 − k

µ
1k

ν
1)] (D.101)

Agh−gg,Bgh = µ
4−D

2
i

16π2 g
3
s i

3fadefdbff fce
∫
q

i6

D0D1D2
Γαγβgγρgβλqρkλ2 (D.102)

Agh−gg,Bgh = − i

16π2
N

2 f
abcg3

s [2Cµk1.k2 + Cµνkν2 −B0k
µ
2 + Cν(−2kµ2kν2 − k

µ
2k

ν
2)] (D.103)

Gluon exchange:

µ, a

b

ν

ρ

f

c

d

e

A2gh−g,A
gh = µ

4−D
2

i

16π2 i
3fadefdbff fceg3

s

∫
q

−i6

D0D1D2
k1.(q + k2)(k1 − q)µ (D.104)

A2gh−g,A
gh = − i

16π2
N

2 f
abcg3

sk1.k2(kµ1 (C0 + C1)− kµ2C2 + kµ1C2 − kµ1C12 − kµ2C22)
(D.105)
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A2gh−g,B
gh = µ

4−D
2

i

16π2 i
3fadefdbff fceg3

s

∫
q

−i6

D0D1D2
(q + k2)µk2.(q − k1) (D.106)

A2gh−g,B
gh = − i

16π2
N

2 f
abcg3

s [k1.k2(−kµ2 (C0 + C1 + C2 + C12) + kµ1 (C1 + C11)) + kµ2C00]
(D.107)

It remains the renormalisation procedure.

FOUR-VERTEX CORRECTIONS

This vertex mostly has no complicated kinematical structures. However, the colour
algebra as well as combinatorics are quite intricate in this context! Colour factors and
Passarino-Veltman integrals have been checked twice, partly based on previous calcu-
lations by S. Schmiemann. Large parts of ultraviolet divergences cancel themselves
without taking the counterterm into account. One finds the striking pattern that loops
containing two scalars/bosons subtract divergences of three scalars/bosons in a loop. It
remains to investigate combinatorial factors again since they currently seem to be the
only reason how to absorb the last poles.

Regarding the four-vertex, the gluon has four possibilities to build a loop:

Gluon exchange A (left):

s

t

i

j

µ, a

ν, b

ρ

λ

AgA4 = µ
4−D

2
i

16π2 g
4
s

∫
q

1
D0D1D2

(i6){T a, T b}T cisT ctjgµν(2p1 − q)ρgρλ(2p2 + q)λ (D.108)

AgA4 = g4
s

16π2

(
CF
N
δabδts −

1
2N dabcT cts

)
× (4p1.p2C0 + 2(p1.p2C2 −m2

1C1 + p1.p2C2 −m2
2C2)−B0)gµν

(D.109)
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Gluon exchange B (right):

s

t

ρ

α

µ, a

ν, b

σ

τλ

β
e

c

d

AgB4 = µ
4−D

2
i

16π2 g
4
s

(
1
N
δstδde + ddefT fts

)
fdacf cbe

∫
q

−i4

D0D1D2
gραgστgλβ

× (gαµ(2k1 − q)σ + gασ(2q − k1)µ − gµσ(q + k1)α)
× (gβτ (2q + k2)ν − gντ (q − k2)β − gβν(q + 2k2)τ )

(D.110)

AgB4 = −
(

3
2d

abdT dts + δabδts

)
g4
s

16π2 [(4kν1k
µ
2 − 2kν2k

µ
1 − 5gµνk1.k2)C0 + 10Cµν

−k1.k2g
µν(C1 + C2) + 2B0g

µν − 4kµ1Cν + 4kν2Cµ − kν1Cµ + kµ2C
ν ]

(D.111)

Gluon exchange C (above):

s

i

t

µ, a

ν, b

ρ d λ

τ

c

σ

AgC4 = µ
4−D

2
i

16π2 g
4
s

∫
q

1
D0D1D2

(−i6)facd{T c, T b}T dis

× (2p1 − q)ρgρλgσν [(q + k1)σgµλ − (2k1 − q)λgµσ + (k1 − 2q)µgλσ]
(D.112)
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AgC4 = 3
4

(
−dabd − ifabd

)
T dts ·

g4
s

16π2 [−gµν(4p1.k1C0 +B0

+2p1.k1(C1 + C2) + 2m2
1C1) + 2(pµ1kν1 + kµ1p

ν
1)C0 − Cµkν1

+2pµ1Cν − kµ1Cν − 4pν1Cµ + Cµν ]

(D.113)

Gluon exchange D (below):

Take a three-dimensional look on the gluon exchange C: By rotating, we obtain the
same for the gluon exchange above - the cross section contribution is, naturally, equal.

We do not give the u-channel-like contributions since they are easily calculated by chang-
ing the outgoing momenta and the colours a and b so that the colour structure needs a
changed sign in the ifabc basis vector.
Once again, we have to treat four possible ways of exchanging a squark (we exclude the
u-channel-like diagrams once more).

Squark exchange A(left)

s

i

t

µ, a

ν, b

σ

c

λ

ρ

τ

d

Aq̃A4 = µ
4−D

2
i

16π2 g
4
s

∫
q

−i6

D0D1D2
T cisT

d
ti(p1 + q)λ(q − p2)ρ

× [f edcf eba(gµλgνρ − gµρgνλ) + f edbf eac(gµρgνλ − gµνgρλ) + f edaf ecb(gµνgρλ − gµλgνρ)]
(D.114)

Aq̃A4 = g4
s

16π2{(F2 − F3)[(−C00 +B0 +m2
0C0 + p1.p2(C2 + C1 − C0)

−m2
1C1 −m2

2C2)gµν + pµ1p
ν
1(C1 − C11)

+pµ2pν2(C2 − C22)] + pµ1p
ν
2[F1(C0 − C1 − C2)

+F2C12 + F3(C2 + C1 − C12)] + pµ2p
ν
1[F1(C2 + C1 − C0)

+F2(C0 − C2 − C1 + C12)− F3C12]}

(D.115)
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F1 = −iN2 fabc (D.116)

F2 = −1
2δabδts + N

4

(
ifabc − dabc

)
T cts (D.117)

F3 = 1
2δabδts + N

4

(
ifabc + dabc

)
T cts (D.118)

Squark exchange B (right):

l, s

k, t

j, x

i, y

z

µ, a

ν, b

Aq̃B4 = µ
4−D

2
i

16π2 g
4
s [T cyxT ctsAijA11 + T cysT

c
txAi1A1j]T axzT bzy

×
∫
q

1
D0D1D2

(i6)(2q + k1)µ(2q − k2)ν
(D.119)

Aq̃B4 = g4
s

16π2 [T cyxT ctsAijA11 + T cysT
c
txAi1A1j]T axzT bzy[4C00g

µν + kµ1k
ν
1(2C1 + 4C11)

+kµ2kν2(4C22 + 2C2)− kµ1kν2(4C12 + 2C2)− kµ2kν1(C0 + 2C1 + 4C12)]
(D.120)

F1 = 1
4d

abcT cts + i

4f
abcT cts (D.121)

F2 = N2 − 1
4N2 δabδts −

1
4N dabcT cts −

i

4N fabcT cts (D.122)

with
[T cyxT ctsAijA11 + T cysT

c
txAi1A1j]T axzT bzy = F1AijA11 + F2Ai1A1j (D.123)

Squark exchange C (above):
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s

i

µ, a

ν, b

ρ

c

λ

t

j

Aq̃C4 = µ
4−D

2
i

16π2 g
4
s

∫
q

1
D0D1D2

(−i6){T b, T c}T ajiT cisgρλgλν(q + p1)ρ(2q − k1)µ (D.124)

Aq̃C4 = −
[
N2 − 2

4N2 δabδts + 1
2N

(
−dabc + ifabc

)
T cts

]
g4
s

16π2

× (2Cµν + 2pν1Cµ − kµ1Cν − pν1k
µ
1 )

(D.125)

Squark exchange D (below):

This amplitude does not have to be treated for the same reason as in case of gluon
exchange.

Gluon loop:

Combinatorics yields a symmetry factor of 1/2.

s

t

µ, a

ν, b

σ c ρ

τ d λ

Agg4 = µ
4−D

2
1
2

i

16π2 g
4
s{T d, T c}tj

∫
q

1
D0D1

(−i4)gστgσρgτλ

×[f eabf ecd(gµρgνλ − gνρgµλ) + f eacf edb(gνρgµλ
−gµνgρλ) + f eadf ebc(gµνgρλ − gµρgνλ)]

(D.126)
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Agg4 = g4
s

16π2
1
2(−B0)

[
(1−D) · (δabδts + N

2 d
abdT dts)

+(D − 1) · (−δabδts −
N

2 d
abdT dts)

] (D.127)

The tensor reductions for the coming loops are trivial, so we only give the amplitude.

Squark loop:

l, s

k, t

j, x

i, y

µ, a

ν, b

Aq̃q̃4 = µ
4−D

2
i

16π2 g
4
s [T cyxT ctsAijA11 + T cysT

c
txAi1A1j]{T a, T b}

∫
q

i4

D0D1
gµν (D.128)

F1 = 1
2d

abcT cts (D.129)

F2 = N2 − 1
2N2 δabδts −

1
2N dabcT cts (D.130)

with

[T cyxT ctsAijA11 + T cysT
c
txAi1A1j]{T a, T b} = F1AijA11 + F2Ai1A1j (D.131)

Squark-gluon loop:

s

i

t

µ, a

ν, b

ρ

σ

c
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Agq̃4 = µ
4−D

2
i

16π2 g
4
s

∫
q

1
D0D1

(−i4)gµρgρσgσν{T a, T c}{T b, T c} (D.132)

{T a, T c}{T b, T c} = N2 − 2
2N2 δabδts + N2 − 4

4N

[
dabc + ifabc

]
T cts (D.133)

We end with the counterterm:

ig2
s

(
2δgs
gs
δij + δZgδij + δZij + δZ∗ji

)
(D.134)

In this vertex the term g2
s has to be renormalised. Hence, as we stop before NNLO, we

take in fact the mixing term of the binomial which is still at NLO, carrying a factor 2.

2-SQUARK-GLUON CORRECTIONS

The general structure of this topology was calculated with the help of [12] where the
generic diagram was evaluated (in the convention below; note, that also Mandelstam
variables change). By rotating and renaming the momenta, we enjoy the advantage of
having the opportunity to describe five vertex corrections with one (two for t-, u-channel
and one for the left hand side of the s-channel).

From the convention of momenta, it follows that

D0 = q2 −M2
0 D1 = (q − p1)2 −M2

1 D2 = (q − p2)2 −M2
2 (D.135)

Gluon-2-squark loop:

i

j

a

σ

ρ

k

l

µ, b

Agq̃q̃s = µ
4−D

2
i

16π2 g
3
sT

B
lkT

a
jlT

a
ki(−i6)

∫
q

1
D0D1D2

(2q − p1 − p2)µ(q − 2p1)σgσρ(q − 2p2)ρ

(D.136)
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Agq̃q̃s = g3
s

16π2

(
1

2N T aji

){
2(p1 − p2)µB1 + 2pµ1B0 − 2pµ1M2

0C1 − 2pµ2M2
0C2

− 4[(p1 + p2)µC00 + pµ1(p2
1 + p1.p2)C11 + pµ2(p2

2 + p1.p2)C22

+ pµ1(p2
2 + p1.p2)C12 + pµ2(p2

1 + p1.p2)C12]− 8p1.p2(pµ1C1 + pµ2C2)

− (p1 + p2)µ[B0 +M2
0C0 + 2p2

1C1 + 2p2
2C2 + 2p1.p2(C1 + C2 + 2C0)]

} (D.137)

Squark-2-gluon loop:

c

µ, a
ν

ρ

b
β

α

i

k

j

Aggq̃s = µ
4−D

2
i

16π2 g
3
sf

abcT ckiT
b
jki

6
∫
q

1
D0D1D2

Γµνρgνα(q + p1)αgρβ(q + p2)β (D.138)

Γµνρ = gµν(p2 − 2p1 + q)ρ + gνρ(p1 + p2 − 2q)µ + gρµ(q − 2p2 + p1)ν (D.139)

Aggq̃s =− g3
s

16π2

(
N

2 T
a
ji

){
pµ1 [2B0 + 2M2

0C0 − 2C00 + (p2
2 − p1.p2)C0

− (p2
2 − 3p1.p2)C1 − (3p2

2 − p1.p2)C2 − 2(p2
1 + p1.p2)C11 − 2(p2

2 + p1.p2)C12]
+ pµ2 [2B0 + 2M2

0C0 − 2C00 + (p2
1 − p1.p2)C0 − (3p2

1 − p1.p3)C1)

− (p2
1 − 3p1p2)C2 − 2(p2

1 + p1.p2)C12 − 2(p2
2 + p1.p2)C22]

}
(D.140)

Quark-2-gluino loop:
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i

j

k

c

b

µ, a

Aqg̃g̃s =µ 4−D
2

i

16π2 (−i6)g3
sf

abcT ckiT
b
jk

∫
q
(−1) 1

D0D1D2

Tr[(gL2 PL + gR2 PR)(/q +M0)(gL1 PL + gR1 PR)
× (/q − /p1 +M1)γµ(gL0 PL + gR0 PR)(/q − /p2 +M2)]

(D.141)

gL0 = 1 gR0 = 1 (D.142)
gL1 =

√
2R1R gR1 = −

√
2R1L (D.143)

gL2 = −
√

2R1L gR2 =
√

2R1R (D.144)

Aqg̃g̃s =
{

2M0M1(gL2 gL1 gR0 + gR2 g
R
1 g

L
0 )(pµ1C1 + pµ2(C2 + C0)

+ 2M0M2(gL2 gL1 gL0 + gR2 g
R
1 g

R
0 )(pµ1(C1 + C0) + pµ2C2)

+ 2M1M2(gL2 gR1 gL0 + gR2 g
L
1 g

R
0 )(pµ1C1 + pµ2C2)

− 2(gL2 gR1 gR0 + gR2 g
L
1 g

L
0 )((p1 − p2)µB1 + pµ1B0 −M2

0 (pµ1C1 + pµ2C2)
+ p1.p2(pµ1C1 + pµ2C2)− (B0 +M2

0C0)(p1 + p2)µ − pµ1(p1.p2C1 + p2
2C2)

− pµ2(p2
1C1 + p1.p2C2))

}
× g3

s

16π2
N

2 T
a
ji(−1)

(D.145)

Gluino-2-quark loop:

b

i

k

l

j

µ, a
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Apparently, we expect the same topology due to a generic fermion loop. But the
couplings are different as well as the colour factors:

gL0 = −1 gR0 = −1 (D.146)

gL1 =
√

2R1R gR1 = −
√

2R1L (D.147)
gL2 = −

√
2R1L gR2 =

√
2R1R (D.148)

The kinematical structure is identical, so that we only express the different colour factor
by CF = i 1

2NT
a
ji.

Gluon loop:

For this diagram, a look at the colour structure is again less time-consuming:

CF = fabc
(

1
N
δab + dabcT

c

)
= 0 (D.149)

CF is so to speak an orthogonality relation of the eigendirections in colour space. Hence,
we do not have to take this contribution into account.

Squark loop:

l, s

k, t

j, x

i, y

µ, a

Aq̃s = µ
4−D

2
i

16π2 g
3
s i

4T axy[T cyxT ctsAijA11 + T cysT
c
txAi1A1j]

∫
q

1
D0D1

(2q − p1 − p2)µ (D.150)

Aq̃s = g3
s

16π2

(
1
2T

a
tuAijA11 −

1
2N T atuAi1A1j

)
(−(p1 + p2)µB0 + 2Bµ) (D.151)

Squark-gluon loop:
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i

k

j

b

τ
µ, a

σ

Agq̃As = µ
4−D

2
i

16π2 g
3
sT

b
ki{T a, T b}jk

∫
q

1
D0D1

gστgτµ(q + p1)σ (D.152)

Agq̃As = g3
s

16π2

(
N

2 −
1
N

)
T aji(Bµ + pµ1B0) (D.153)

After having calculated the amplitudes one can decompose these vertices into two am-
plitudes, keeping in mind that one of them vanishes due to the Ward identity (if the
vector particle is on-shell, so not in the case of the s-channel).

As = µ
4−D

2
i

16π2

[
A+
s (p1 + p2)µ +A−s (p1 − p2)µ

]
(D.154)

This is of course much more time-saving than evaluating every possible kinematical
structure of the 3-gluon topology. The vertex counterterm reads:

−igs
(
δgs
gs
δij + δZg

2 δij + δZij + δZ∗ji

)
(D.155)

D.5.1. The Renormalisation of the Strong Coupling Constant
In every vertex needed for our NLO calculation, the strong coupling constant gs, also
expressed by αs = g2

s

4π appears - so it is unsurprising to renormalise gs, too. First, we look
upon the general behaviour of αs - the evolution of the strong coupling in perturbative
QCD is controlled by a perturbative series (β-function) yielding us the scale dependence
(physical scale Q):

β(αs) = Q2 ∂αs
∂Q2 = −

(
αs
4π

)2∑
n

(
αs
4π

)n
βn (D.156)

In those QCD calculations, one can determine the values of βi by calculating the corre-
sponding loop integrals of order i+ 1 and obtains (for the number of flavours nf active
at the scale Q and working within the minimal subtraction scheme) [82]:

β0 = 11− 2
3nf β1 = 102− 38

3 nf β2 = 2857
2 − 5033

18 nf + 325
54 n

2
f (D.157)
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This series may diverge already at finite energies (Landau pole) and the perturbative
approach breaks down. Lattice-QCD, however, provides a means to perform predictive
calculations beyond the perturbative realm. In our case, some additional SUSY-specific
terms appear. An easy way to derive δgs/gs, needed in every vertex counterterm (see
above), is simply to compare the UV-divergent parts of a particular vertex correction
with the corresponding counterterms from wave function renormalisation (e.g. the 2-
squark-gluon vertex). As the δZij and the δZg terms subtract the ∆-terms of the tensor
integrals in this vertex only partially, exactly the remaining ∆-terms have to be within
the δgs/gs result in order to make the whole vertex correction UV finite. Working in
dimensional reduction, we obtain (separately for SM and SUSY where we encounter
again the β0)
(
δgs
gs

)SM,DR

= αs
8π∆

(
2
3nf −

11
3 CA

) (
δgs
gs

)SUSY,DR
= αs

8π∆
(

1
3nf + 2

3CA
)

(D.158)

and, in total, the last counterterm we need for the renormalisation [39]:
(
δgs
gs

)DR
= αs

8π∆(nf − 3CA) (D.159)

D.6. Box Diagrams
The full amplitudes of the calculated box diagrams are even longer, so we only give the
amplitude, again. First of all, we will again define the denominators:

D1 = q2 −M2
1 D2 = (q + p1)2 −M2

2 (D.160)

D3 = (q + p1 + p2)2 −M2
3 D4 = (q + k1)2 −M2

4

These expressions belong to the following convention (internal momenta go counter-
clockwise):

q

q + p1

q + p1 + p2

q + k1

For a time-saving evaluation, we wrote a FeynCalc file performing the tensor reduc-
tion in (bosonic) box diagrams automatically, including all helpful substitutions and
simplifications. The output is a Fortran code containing the nomenclature of our code.
For illustrative purposes, we give an example of a non-trivial substitution - a q4 in the
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numerator- shrinking the complexity of the Passarino-Veltman integrals enormously. We
begin with adding a zero:

M2
1 ·
∫
dDq

q2

D1D2D3D4
+
∫
dDq

q2(q2 −M2
1 )

D1D2D3D4
(D.161)

We repeat that step for the first term, in the second term we introduce q̃ = q + p1:

M4
1D0 +M2

1C0 +
∫
dDq̃

q̃2 − 2q̃.p1 +mt̃1

[q̃2 −M2
2 ][(q̃ + p2)2 −M2

3 ][(q̃ + k1 − p1)2 −M2
4 ] (D.162)

Be aware of the different arguments in the Passarino-Veltman integrals after substitution.
The poles are still the same. We add a zero for the third time and interpret q̃.p1 as q̃µpµ1 :

M4
1D0 + C0(M2

1 +M2
2 +mt̃1) + 2p1.p2C1 + 2C2(k1.p1 −mt̃1) +B0 (D.163)

The alternative would have been the contraction of Dµµνν which is clearly no alternative.

We start with the integer-spin diagrams, continue with fermionic boxes and finish with
ghost final states for gauge invariance. The number of boxes in Chapter 4 is reduced
by taking only diagrams into account that have considerably different structures and
cannot be obtained via substitutions.

Box 1:

i

j

l

m

n

µ, a

ν, b

ρ

σ

c

B1 = ig4
s

16π2
(2πµ)4−D

iπ2 T cliT
a
mlT

b
nmT

c
jn

∫ dDq

D1D2D3D4
i8(p1 − q)ρ ×

(2q + k1)µ(2q + p1 + p2 + k1)νgσρ(q + p1 + 2p2)σε∗µ(p)ε∗ν(p)
(D.164)

Box 2:

i

k

j

µ, a

ν, a

d

e

c

σ τ

ρ

λ

δ ǫ
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B2 = ig4
s

16π2
(2πµ)4−D

iπ2 fadcfdbeT ejkT
c
ki

∫ dDq

D1D2D3D4
×

i6(q + 2p1)σ(p2 − q − p1)δgδεΓνελgρλΓρτµgστε∗µ(p)ε∗ν(p)

Γνελ = (2q + p1 + p2 + k1)νgελ + (k2 − q − k1)εgνλ − (k2 + q + p1 + p2)λgνε

Γρτµ = (k1 − q)ρgτµ − (q + 2k1)τgµρ + (2q + k1)µgρτ

(D.165)

Box 3:

i

j

m

n

µ, a

ν, b

λ, d

σ c τ

ρ

B3 = − g4
s

16π2
i(2πµ)4−D

iπ2 T dmiT
a
nmT

c
jnf

dbci7
∫ dDq

D1D2D3D4
×

(q − p1)ρ(2q + p1)µ(q + p2 + k1)σgστgλρΓλντ ε∗µ(p)ε∗ν(p)

Γλντ = gλν(q + p1 + k2)τ + gτν(q + p1 − 2k2)λ − gτλ(2q + 2p1 − k2)ν

(D.166)

Box 4:

i

j

µ, a

ν, b

c

d

e

k

B4 = g4
s

16π2
i(2πµ)4−D

iπ2 T ckiT
e
jkf

cadfdbe
∫ dDq

D1D2D3D4
i6(−1) ×

Tr[(g1
LPL + g1

RPR)(/q +mg̃)γµ(/q + /k1 +mg̃)γν

(/q + /p1 + /p2 +mg̃)(g3
LPL + g3

RPR)(/q + /p1 +mq)]ε∗µ(p)ε∗ν(p)

g1
L =
√

2R1R g1
R = −

√
2R1L g3

L = −
√

2R1L g3
R =
√

2R1R

(D.167)
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Box 5:

i µ, a

ν, b

l

m

n

c

j

B5 = g4
s

16π2
i(2πµ)4−D

iπ2 T cliT
a
mlT

b
nmT

c
jn

∫ dDq

D1D2D3D4
i8(−1) ×

Tr[(g1
LPL + g1

RPR)(/q + /p1 +mg̃)(g3
LPL + g3

RPR)
(/q + /p1 + /p2 +mq)γν(/q + /k1 +mq)γµ(/q +mq)]ε∗µ(p)ε∗ν(p)

g1
L =
√

2R1R g1
R = −

√
2R1L g3

L = −
√

2R1L g3
R =
√

2R1R

(D.168)

Box 6:

i

j

µ, a

ν, b

m

n

c

d

B6 = g4
s

16π2
i(2πµ)4−D

iπ2 T cmiT
a
nmT

d
jnf

cbd(−1)
∫ dDq

D1D2D3D4
×

Tr[γν(/q + /p1 − /k2 +mg̃)(g3
LPL + g3

RPR)(/q + /k1 +mq)
γµ(/q +mq)(g1

LPL + g1
RPR)(/q + /p1 +mg̃)]ε∗µ(p)ε∗ν(p)

g1
L =
√

2R1R g1
R = −

√
2R1L g3

L = −
√

2R1L g3
R =
√

2R1R

(D.169)

Finally, we give the two boxes with ghosts in the final state:
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i

k

j

a

b

c

d

eσ ν

ρ µ

Box 7:

B7 = g4
s

16π2
i(2πµ)4−D

iπ2 (−i6)facdf cbeT ejkT dki
∫ dDq

D1D2D3D4
×

(2p1 + q).k1 · (p2 − q − p1).(k1 + q)
(D.170)

Box 8:

B8 = g4
s

16π2
i(2πµ)4−D

iπ2 (−i6)facdf cbeT ejkT dki
∫ dDq

D1D2D3D4
×

(2p1 + q).(k1 + q) · (p2 − q − p1).k2

(D.171)

D.7. Real Emissions: Analytical Phase Space Integrals
We used a generic 12-dimensional integral for the phase space integration of the stau
annihilation; its explicit expressions were worked out in [30].

Ij1,...,jmi1,..,in (m0,m1,m2) = 1
π2

∫ d3p1

2E1

d3p2

2E2

d3q

2Eq
δ(p0 − p1 − p2 − q)

(±2qpj1)...(±2qpjm)
(±2qpi1)...(±2qpin)

(D.172)
The integrated squared amplitude of the real emission

1
F

∫
|M̄|2dPS(3) (D.173)

can be written now via linear combinations of these integrals. First we have to introduce
some special abbreviations like the Källen root function (compare to λ(...) in Section 6)

κ = κ(m2
0,m

2
1,m

2
2) =

√
m4

0 +m4
1 +m4

2 − 2(m2
0m

2
1 +m2

0m
2
2 +m2

1m
2
2) (D.174)

occurring in the βi that have the following form:

β0 = m2
0 −m2

1 −m2
2 + κ

2m1m2
β1 = m2

0 −m2
1 +m2

2 − κ
2m0m2

β2 = m2
0 +m2

1 −m2
2 − κ

2m2m1
(D.175)

They fulfil the property
β0β1β2 = 1 . (D.176)
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Moreover, the Spence function appears:

Sp(z) = Li2(z) = −
∫ z

0

ln(1− u)
u

du =
∞∑
k=1

zk

k2 . (D.177)

The integrals decay into IR-finite and IR-divergent ones. The singular expressions can be
easily identified due to their artificial mass λ. The indices are exchangable by exchanging
m1 and m2. The singularities are subtracted with the following terms:

I00 = 1
4m4

0

[
κ ln

(
κ2

λm0m1m2

)
− κ− (m2

1 −m2
2) ln

(
β1

β2

)
−m2

0 ln β0

]
(D.178)

I11 = 1
4m2

1m
2
2

[
κ ln

(
κ2

λm0m1m2

)
− κ− (m2

0 −m2
2) ln

(
β0

β2

)
−m2

0 ln β1

]
(D.179)

I01 = 1
4m2

0

[
2 ln

(
λm0m1m2

κ2

)
ln(β2) + 2 ln2(β2)− ln2(β0)− ln2(β1)

+2Sp(1− β2
2)− Sp(1− β2

1)− Sp(1− β2
1)
] (D.180)

I12 = 1
4m2

0

[
2 ln

(
λm0m1m2

κ2

)
ln(β0) + 2 ln2(β0)− ln2(β1)− ln2(β2)

+2Sp(1− β2
0)− Sp(1− β2

1)− Sp(1− β2
2)
] (D.181)

The last one cancels the divergences of the C0(m2
1, s,m

2
2, λ

2,m2
1,m

2
2), whereas the first

two remove the poles of the counterterms. There are various IR-finite integrals:

I = 1
4m2

0

[
κ

2 (m2
0 +m2

1 +m2
2) + 2m2

0m
2
1 ln(β2) + 2m2

0m
2
2 ln(β1) + 2m2

1m
2
1 ln(β0)

]
(D.182)

I0 = 1
4m2

0

[
−2m2

1 ln(β2)− 2m2
2 ln(β1)− κ

]
(D.183)

I1 = 1
4m2

0

[
−2m2

0 ln(β2)− 2m2
2 ln(β0)− κ

]
(D.184)

I1
0 = 1

4m2
0

[
m4

1 ln(β2)−m2
2(2m2

0 − 2m2
1 +m2

2) ln(β1)− κ

4 (m2
0 − 3m2

1 + 5m2
2)
]

(D.185)

I0
1 = 1

4m2
0

[
m4

1 ln(β2)−m2
2(2m2

1 − 2m2
0 +m2

2) ln(β1)− κ

4 (m2
1 − 3m2

0 + 5m2
2)
]

(D.186)

137



D. NLO Calculations

I1
2 = 1

4m2
0

[
m4

1 ln(β0)−m2
0(2m2

2 − 2m2
1 +m2

0) ln(β1)− κ

4 (m2
2 − 3m2

1 + 5m2
0)
]

(D.187)

I12
00 = − 1

4m2
0

[
m4

1 ln(β2) +m4
2 ln(β1) + κ3

6m2
0

+ κ

4 (3m2
1 + 3m2

2 −m2
0)
]

(D.188)

I02
11 = − 1

4m2
0

[
m4

1 ln(β2) +m4
2 ln(β0) + κ3

6m2
1

+ κ

4 (3m2
0 + 3m2

2 −m2
1)
]

(D.189)

I00
11 = 1

4m2
0

[
2m2

2(m2
1 +m2

2 −m2
0) ln(β0) + κ3

6m2
1

+ 2κm2
2

]
(D.190)

I11
00 = 1

4m2
0

[
2m2

2(m2
0 +m2

2 −m2
1) ln(β1) + κ3

6m2
0

+ 2κm2
2

]
(D.191)

I22
11 = 1

4m2
0

[
2m2

0(m2
0 +m2

1 −m2
2) ln(β2) + κ3

6m2
1

+ 2κm2
0

]
(D.192)
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Enhancement

This collection of formulae starts with recapitulating the zero-distance Green's func-
tion to the Hamiltonian describing the dynamics of the quasi-stauonium, given as an
expansion up to NLO:

G(0;
√
s+ iΓτ̃1) =

α(µC)m2
τ̃1

4π ×
[
gLO + α(µG)

4π gNLO +O(α2)
]

(E.1)

We define the quantities
κ = iα(µC)

2v (E.2)

v =

√√√√√s+ iΓτ̃1 − 2mτ̃1

mτ̃1

(E.3)

L = ln
(

iµC
2mτ̃1v

)
(E.4)

and the function
ψ(n)(1− κ) = dn

dzn

(
γE + d

dz
Γ(z)|z=1−κ

)
(E.5)

with the Gamma function

Γ(x) =
+∞∫
0

e−ttx−1dt (E.6)

and the Euler-Mascheroni constant d/dzΓ(z)z=1 = γE = 0, 5772 to express g(N)LO given
by

gLO = − 1
2κ + L− ψ(0) (E.7)

gNLO =β0[L2 − 2L(ψ(0) − κψ(1)) + κψ(2) + (ψ(0))2

− 3ψ(1) − 2κψ(0)ψ(1) + 44F2(1, 1, 1, 1; 2, 2, 1− κ; 1)]
+ a1(L− ψ(0) + κψ(1))

with
a1 = −20

9
∑
f

Q2
f β0 = −4

3
∑
f

Q2
f (E.8)
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The sum contains all fermions f up to the scale of the typical momentum exchange.

One special function still needs our attention, the generalised hypergeometric function.
Before treating them, we discuss how to get rid of the double counting of the LO contri-
bution as it was calculated in the tree level diagrams: We expand the expression from
above in powers of the fine-structure constant and see that the term − 1

2κ yields the only
LO contribution. This term of course has to be subtracted, namely:

={GLO(0;
√
s+ iΓτ̃1)} = m2

τ̃1=
{
iv

4π

}
(E.9)

Now we turn back to the hypergeometric function pFq. Using again the Eulerian Gamma
function, we can express it via

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
k=0

p∏
i=1

Γ(k + ai)
Γ(ai)

q∏
j=1

Γ(bj)
Γ(k + bj)

zk

k! (E.10)

To use parameters a, b yielding poles is naturally restricted. This special function con-
tains, in its general form, several trigonometric functions, the (modified) Bessel functions
and more. The trivial case 0F0(; ; z) is the complex exponential function. Unsatisfacto-
rily, the convergence of this series underlies diverse constraints. If p < q + 1 (a), the
ratio criterion claims the quotient of the coefficients to be bounded, going towards zero.
This implies convergence for finite z. For the important case p = q + 1 (b), the ratio
criterion gives an unclear answer. The divergence for |z| > 1 is obvious, our |z = 1| is
instead difficult to treat. Absolute convergence is guaranteed for the case

Re
( q∑
j=1

bj −
p∑
i=1

ai

)
> 0 (E.11)

and if not, we can at least give a convergence condition for real z arguments, z → 1:

(1− z) d
dz

log(pFq(a1, ..., ap; b1, ..., bq; zp)) =
p∑
i=1

ai −
q∑
j=1

bj (E.12)

Working out the case p > q + 1 (c) yields even divergences for z = 0. Finally, the
implementation should be commented: The basic structure of the code was written by
M. Meinecke [63] for QCD resummation. At some points, a few simplifications were
carried out as well as the QED modifications by the author of this work. The Gamma
function had to be implemented approximately, using the Lanczos approximation:

Γ(z + 1) =
√

2π(z + g + 1/2)z+1/2 exp(−z − g − 1/2)Ag(z) (E.13)

with
Ag(z) = 1

2p0(g) + p1(g) z

z + 1 + p2(g) z(z − 1)
(z + 1)(z + 2) + ... (E.14)
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containing an arbitrary constant g and

pk(g) =
k∑
a=0

C(2k+ 1, 2a+ 1)
√

2
π

(a− 1/2)!(a+ g+ 1/2)−(a+1/2) exp(a+ g+ 1/2) (E.15)

with C(i, j) representing the Chebyshev polynomial coefficient matrix.

Following [65], an improvement of the convergence of our series was implemented:

4F3(1, 1, 1, 1; a, a, z; 1) = 1
a2z(z − 2)2− a))(a− z)2

× [a2(z − 1)4
4F3(1, 1, 1, 1; a, a, z + 1; 1)

+ a(a− 1)3z(3a+ 1− 4z)4F3(1, 1, 1, 1; a+ 1, a, z; 1)
+ (a− 1)4z(z − a)4F3(1, 1, 1, 1; a+ 1, a+ 1, z; 1)]

4F3(1, 1, 1, 1; a, b, z; 1) = 1
a+ b+ x− 4

[
(a− 1)4

a(a− b)(a− z)4
F3(1, 1, 1, 1; a+ 1, b, z; 1)

+ (b− 1)4

b(b− a)(b− z)4
F3(1, 1, 1, 1; a, b+ 1, z; 1)

(z − 1)4

z(z − a)(z − b)4
F3(1, 1, 1, 1; a, b, z + 1; 1)

]

These results arise from the identity

4F3(1, 1, 1, 1; 2, 2, z; 1) = 1
4z2(2− z)2 [4(z − 1)4

4F3(1, 1, 1, 1; 2, 2, z + 1; 1)

+ 2z(7− 4z)4F3(1, 1, 1, 1; 3, 2, z; 1)
x(x− 2)4F3(1, 1, 1, 1; 3, 3, x; 1)]
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F. Dipole Formulae for Real
Corrections of Stau Annihilation

The integration over the gluon phase space in the diagrams of Fig. 7.3 led to the integral

I = −CFg
2
s

8π2
(4π)ε

Γ(1− ε) ·
[(

µ2

s12

)ε(
Vq(s12,mq,mq; ε)−

π2

3

)

+Γq(mq, ε)
CF

+ 3
2 ln

(
µ2

s12

)
+5− ζ(2)

] (F.1)

With the definitions β =
√

1− 4µ2
q, µq = mq/

√
s and s12 = s− 2m2

q we can express Vq,
decomposed into a singular and a regular part VS + VNS as follows:

VS(s12,mq,mq; ε) = 1 + β2

2β

[
1
ε

ln
(

1− β
1 + β

)

−1
2 ln2

(
1− β
1 + β

)
−ζ(2) + ln

(
1− β
1 + β

)
· ln
(

2
1 + β2

)] (F.2)

VNS(s12,mq,mq; ε) = 3
2 ln

(
1 + β2

2

)
+1 + β2

2

×
[
2 ln

(
1− β
1 + β

)
· ln
(

2(1 + β2)
(1 + β)2

)
+2Li2

(
1− β
1 + β

)2

−2Li2
(

2β
1 + β

)
−ζ(2)

]
+ ln

(
1−
√

1− β2

2

)

−2 ln(1−
√

1− β2)− 1− β2

1 + β2 ln
( √

1− β2

2−
√

1− β2

)

+3ζ(2)−
√

1− β2

2−
√

1− β2 + 21− β2 −
√

1− β2

1 + β2

(F.3)

It remains the definition of

Γq(mq; ε) = CF

[
1
ε

+ 1
2 ln

(
m2
q

Q2

)]
(F.4)

with the renormalisation scale Q. Furthermore, the dipole contributions from |M2→3|2 =
D31,2 +D32,1 need an explicit expression. These elements are related via the interchange

142



F. Dipole Formulae for Real Corrections of Stau Annihilation

of k1 and k2. Hence, we only give

D31,2 = CF
8παs
s
|Mtree|2 ·

1
1− x2

[
2(1− 2µ2

q)
2− x1 − x2

− β√
x2

2 − 4µ2
q

x2 − 2µ2
q

1− 2µ2
q

(
2 + x1 − 1

x2 − 2µ2
q

+
2µ2

q

1− x2

)] (F.5)

with the abbreviations xi = 2ki.q/q2, q2 = (k1 + k2 + k3)2 = s.
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