Chapter 5
Sine-Gordon Equation

The sine-Gordon equation is a nonlinear hyperbolic padifédrential equation in-
volving the d’Alembert operator and the sine of the unknownction. The equa-
tion, as well as several solution techniques, were knowhénnineteenth century
in the course of study of various problems of differentiabigetry. The equation
grew greatly in importance in the 1970s, when it was realthedlit led tosolitons
(so-called "kink" and "antikink“). The sine-Gordon equattiappears in a number of
physical applications [14, 7, 27], including applicatidngelativistic field theory,
Josephson junctions [21] or mechanical trasmission liRés21].
The equation reads

Ut — Uy +Sinu= 0, (5.1)

whereu = u(x, t). In the case of mechanical trasmission lingx, t) describes an
angle of rotation of the pendulums. Note that in the low-dtage case (sin = u)
Eq. (5.1) reduces to the Klein-Gordon equation

Ut — U +U=0,
admiting solutions in the form
u(x, t) = up cogkx — wt), w=v1+k2.

Here we are interested in large amplitude solutions of EG4)(5

5.1 Kink and antikink solitons

Let us look for travelling wave solutions of the sine-Gordaquation (5.1) of the
form

u(é):=u(x—ct),
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Fig. 5.1 Representation of
the kink (blue) and antikink
(red) solutions (5.4)

wherec is an arbitrary velocity of propagation and— 0, usg — 0, whené —
+o[21, 27]. In the co-moving frame Eg. (5.1) reads

(1-c?)ugg = sinu.

Multiplying both sides of the last equation by and integrating yields

NI =

uf (1—-¢%) = —cosu+cy, (5.2)

wherec; is an arbitrary constant of integration. Notice that we lémsolutions for
whichu — 0 andug — 0 when¢ — £, soc; = 1. Now we can rewrite the last

equation as

du 2
— =+ dé. 5.3
st~ =g (5.3)

Integrating Eq. (5.3) yields

2
v1—c?

B ¢ —&o
ué)=4 arctar(exp(i = C2)> .

That is, the solution of Eq. (5.1) becomes

uix,t) =4 arctar(exp(i %/——_c;t) ) . (5.4

Equation (5.4) represents a localized solitary wave, tliageat any velocityic| < 1.
The + signs correspond to localized solutions which are catlell and antikink,
respectively. For the mechanical transmission line, wdianoreases from-oo to 4-co
the pendlums rotate from 0 torefor the kink and from O to-2 17 for the antikink.
(see Fig. 5.1)

One can show [14, 21], that Eq. (5.1) admits more solutiortheform

uix,t) =4 arctar(%) .

+

(€ &) =2 m(tan;) |

or
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whereF andG are arbitrary functions. Namely, one distinguishes th&#iimk and
the kink-antikink collisions as well as the breather santiThekink-kink collision

solution reads _
csinh(
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u(x,t) =4 arcta 7502) (5.5)
cos N)

and describes the collision between two kinks with respeactelocitiesc and—c

and approaching the origin from— —co and moving away from it with velocities

+c fort — o (see Fig. 5.2). In a similar way, one can construct soluttamre-
sponding to théink-antikink collision. The solution has the form:

sinh(—<.
u(xt) =4 arctar<$) (5.6)
Vi-e&

The breather soliton solution, which is also called lareather mode or breather
soliton [21], is given by

(5.7)

ug(x,t) =4 arctar( wctsr(ai/wti))

which is periodic for frequencie® < 1 and decays exponentially when moving
away fromx = 0. Now we are in the good position to look for numerical sao§
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of Eq. (5.1).



5.2 Numerical treatment

A numerical scheme
Consider an IVP for the sine-Gordon equation (5.1):
Ut — Uxx+Sin(u) =0
on the intervak € [a, b] with initial conditions
ux0)=f(x,  uw(x0) =g, (5.8)
and with, e.g., no-flux boundary conditions

Ju

— =0.
ox x=a,b

Let us try to apply a simple explicit scheme (4.9) to Eq. (5The discretization
scheme reads
Wt =—u 21 -0 Fa?l, Ful ) - Asinu)  (5.9)

with a = At/Ax,i=0,...,M andt =0,...,T. To the implementation of the sec-
ond initial condition one needs again the virtual p(njﬁf,

o uteut
u(x,0) =9g(x) = SAT

+O(A?).

Hence, one can rewrite the last expression as
ut=ul - 2Atg(x) + O(AE2),

and the second time rou} can be calculated as

2

ul = Atg(x) + (1—a?) f(x) + % a?(f(x 1)+ f(X11)) — ATt sin(f(x)). (5.10)

In addition, no-flux boundary conditions lead to the follagriexpressions for two
virtual space pointa’ ; anduy,, ;:
j .

]
ou u;—u

e - e e Iy

aXX:a_Oc> DX =0su =y

au uj 7u=\/| . .
_ +1 J _

oxl, 0T T Ak 0T U =l




One can try to rewrite the differential scheme to more gdmeadrix form. In matrix
notation the second time-row is given by

1 o At
u :Atyj_‘i’AU *TB:]_, (511)

where

% = (9(2).904),90%).-..gbw-1).g(b)) " and
By = (sin(u3),sin(u), ..., sin(u$y_4),sin(ud))"

areM + 1-dimensional vectors anilis a tridiagonal squark! + 1 x M + 1 matrix
of the form
1-a? 0o ...0
a?/2 1—a? a?/2 ...0
A= 0 a?/21-a% ...0

The boxed elements indicate the influence of boundary conditOther time rows
can also be written in the matrix form as

uj+l:—uj71+BUj*AtZB7 j=1,...,T-1 (5.12)

Here

B= (sin(ué),sin(ui), . ,sin(u,j\,lil),sin(u{'\,,))T

is aM + 1-dimensional vector anl is a square matrix, defined by an equation
B=2A

Now we can apply the explicit scheme (5.9) described aboveqto(5.1). Let us
solve it on the interval-L, L] with no-flux boundary conditions using the following
parameters set:

Space i nterval L=20
Space discretization step||[Ax=0.1
Ti me discretization step [[At=0.05
Amount of tine steps T =1800
Vel ocity of the kink c=02

We start with the numerical representation of kink and ankikolutions. The initial
condition for the kink is



f(x)y=4 arctar(exp(ﬁ) ) ,

c X
g(x) = —2\/1__023ecl'<\/1__02) .

Figure 5.4 (a) shows the space-time plot of the numericat kimlution. For the
antikink the initial condition reads

f(x) = 4arctar<exp< \/1X_—Cz> >,

C X
g(x) = _2\/1——c258d-(\/1——c2) .

Numerical solutions is shown on Fig. 5.4 (b).
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Fig. 5.4 Numerical solution of Eq. (5.1), calculated with the schegf®) for the case of (a) the
kink and (b) antikink solitons, moving with the velocity= 0.2. Space-time information is shown.

Now we are in position to find numerical solutions, correstiog to kink-kink
and kink-antikink collisions. For the kink-kink collisiome choose

f(x) =4 arctar(exp( i(/JlrL_/CZZ) > +4 arctar<exp< i(/lL—/(:22> ) ,

gx) = —2—°_sec X+L/2>+2 sec M),
V1-c? V1-c? V1-c? V1-c?

whereas for the kink-antikink collision the initial conidins are

f(x) =4 arctar<exp< T/IL—/CZ?)) +4 arctar(exp( i(/lL—/cZ?)) ;

g(x) = 22— sec X+L/2)2 ¢ sec M)
Vi-¢c? Vi-¢c? Vi-c? Vi-¢2




Numerical solutions, corresponding to both cases is pteden Fig. 5.5 (a)-(b),
respectively. Finally, for the case of breather we choose
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Fig. 5.5 Space-time representation of the numerical solution ofE4) for (a) kink-kink collision
and (b) kink-antikink collision.

f(x) =0,

g(x) = 4\/@secl-<x \/m> .

Corresponding numerical solution is presented on Fig. 5.6.
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