Appendix A
 Tridiagonal matrix algorithm

The tridiagonal matrix algorithm (TDMA), also known als Thomas algorithm, is a simplified form of Gaussian elimination that can be used to solve tridiagonal system of equations

$$
\begin{equation*}
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=y_{i}, \quad i=1, \ldots n \tag{A.1}
\end{equation*}
$$

or, in matrix form ($a_{1}=0, c_{n}=0$)

$$
\left(\begin{array}{cccccc}
b_{1} & c_{1} & 0 & \ldots & \ldots & 0 \\
a_{2} & b_{2} & c_{2} & \ldots & \ldots & 0 \\
0 & a_{3} & b_{3} & c_{3} & \ldots & 0 \\
\ldots & \ldots & \cdots & \ldots & \ldots & c_{n-1} \\
0 & \ldots & \ldots & 0 & a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right)
$$

The TDMA is based on the Gaussian elimination procedure and consist of two parts: a forward elimination phase and a backward substitution phase [8]. Let us consider the system (A.1) for $i=1 \ldots n$ and consider following modification of first two equations:

$$
\mathrm{Eq}_{i=2} \cdot b_{1}-\mathrm{Eq}_{i=1} \cdot a_{2}
$$

which relults in

$$
\left(b_{1} b_{2}-c_{1} a_{2}\right) x_{2}+c_{2} b_{1} x_{3}=b_{1} y_{2}-a_{2} y_{1}
$$

The effect is that x_{1} has been eliminated from the second equation. In the same manner one can eliminate x_{2}, using the modified second equation and the third one (for $i=3$):

$$
\left(b_{1} b_{2}-c_{1} a_{2}\right) \mathrm{Eq}_{i=3}-a_{3}\left(\bmod . \mathrm{Eq}_{i=2}\right)
$$

which would give
$\left(b_{3}\left(b_{1} b_{2}-c_{1} a_{2}\right)-c_{2} b_{1} a_{3}\right) x_{3}+c_{3}\left(b_{1} b_{2}-c_{1} a_{2}\right) x_{4}=y_{3}\left(b_{1} b_{2}-c_{1} a_{2}\right)-\left(y_{2} b_{1}-y_{1} a_{2}\right) a_{3}$
If the procedure is repeated until the n'th equation, the last equation will involve the unknown function x_{n} only. This function can be then used to solve the modified equation for $i=n-1$ and so on, until all unknown x_{i} are found (backward
substitution phase). That is, we are looking for a backward ansatz of the form:

$$
\begin{equation*}
x_{i-1}=\gamma_{i} x_{i}+\beta_{i} . \tag{A.2}
\end{equation*}
$$

If we put the last ansatz in Eq. (A.1) and solve the resulting equation with respect to x_{i}, the following relation can be obtained:

$$
\begin{equation*}
x_{i}=\frac{-c_{i}}{a_{i} \gamma_{i}+b_{i}} x_{i+1}+\frac{y_{i}-a_{i} \beta_{i}}{a_{i} \gamma_{i}+b_{i}} \tag{A.3}
\end{equation*}
$$

This relation possesses the same form as Eq. (A.2) if we identify

$$
\begin{equation*}
\gamma_{i+1}=\frac{-c_{i}}{a_{i} \gamma_{i}+b_{i}}, \quad \beta_{i+1}=\frac{y_{i}-a_{i} \beta_{i}}{a_{i} \gamma_{i}+b_{i}} . \tag{A.4}
\end{equation*}
$$

Equation (A.4) involves the recursion formula for the coefficients γ_{i} and β_{i} for $i=$ $2, \ldots, n-1$. The missing values γ_{1} and β_{1} can be derived from the first $(i=1)$ equation (A.1):

$$
x_{1}=\frac{y_{1}}{b_{1}}-\frac{c_{1}}{b_{1}} x_{2} \Rightarrow \gamma_{2}=-\frac{c_{1}}{b_{1}}, \beta_{2}=\frac{1}{b_{1}} \Rightarrow \gamma_{1}=\beta_{1}=0 .
$$

The last what we need is the value of the function x_{n} for the first backward substitution. We can obtain if we put the ansatz

$$
x_{n-1}=\gamma x_{n}+\beta_{n}
$$

into the last $(i=n)$ equation (A.1):

$$
a_{n}\left(\gamma x_{n}+\beta_{n}\right)+b_{n} x_{n}=y_{n}
$$

yielding

$$
x_{n}=\frac{y_{n}-a_{n} \beta_{n}}{a_{n} \gamma_{n}+b_{n}} .
$$

One can get this value directly from Eq. (A.2), if one formal puts

$$
x_{n+1}=0 .
$$

Altogether, the TDMA can be written as:

$$
\begin{aligned}
& \text { 1. Set } \gamma_{1}=\beta_{1}=0 ; \\
& \text { 2. Evaluate for } i=1, \ldots, n-1 \\
& \qquad \gamma_{i+1}=\frac{-c_{i}}{a_{i} \gamma_{i}+b_{i}}, \quad \beta_{i+1}=\frac{y_{i}-a_{i} \beta_{i}}{a_{i} \gamma_{i}+b_{i}} ; \\
& \text { 3. Set } x_{n+1}=0 ; \\
& \text { 4. Find for } i=n+1, \ldots, 2 \\
& x_{i-1}=\gamma_{i} x_{i}+\beta_{i} .
\end{aligned}
$$

The algorithm admits $\mathscr{O}(n)$ operations instead of $\mathscr{O}\left(n^{3}\right)$ required by Gaussian elimination.

Limitation

The TDMA is only applicable to matrices that are diagonally dominant, i.e.,

$$
\left|b_{i}\right|>\left|a_{i}\right|+\left|c_{i}\right|, \quad i=1, \ldots, n
$$

Appendix B

The Method of Characteristics

The method of characteristics is a method which can be used to solve an initial value problem for general first order PDEs [2]. Let us consider a quasilinear equation of the form

$$
\begin{equation*}
A \frac{\partial u}{\partial x}+B \frac{\partial u}{\partial t}+C u=0, \quad u(x, 0)=u_{0} \tag{B.1}
\end{equation*}
$$

where $u=u(x, t)$, and A, B and C can be functions of independent variables and u. The idea of the method is to change coordinates from (x, t) to a new coordinate system (x_{0}, s), in which Eq. (B.1) becomes an ordinary differential equation along certain curves in the (x, t) plane. Such curves, $(x(s), t(s))$ along which the solution of (B.1) reduces to an ODE, are called the characteristic curves. The variable s can be varied, whereas x_{0} changes along the line $t=0$ on the plane (x, t) and remains constant along the characteristics. Now if we choose

$$
\begin{equation*}
\frac{d x}{d s}=A, \quad \text { and } \quad \frac{d t}{d s}=B \tag{B.2}
\end{equation*}
$$

then we have

$$
\frac{d u}{d s}=u_{x} \frac{d x}{d s}+u_{t} \frac{d t}{d s}=A u_{x}+B u_{t}
$$

and Eq. (B.1) becomes the ordinary differential equation

$$
\begin{equation*}
\frac{d u}{d s}+C u=0 \tag{B.3}
\end{equation*}
$$

Equations (B.2) and (B.3) give the characteristics of (B.1).
That is, a general strategy to find out the characteristics of the system like (B.1) is as follows:

- Solve Eq. (B.2) with initial conditions $x(0)=x_{0}, t(0)=0$. Solutions of (B.2) give the transformation $(x, t) \rightarrow\left(x_{0}, s\right)$;
- Solve Eq. (B.3) with initilal condition $s(0)=u_{0}\left(x_{0}\right)$ (where x_{0} are the initial points on the characteristic curves along the $t=0$ axis). So, we have a solution $u\left(x_{0}, s\right)$;
- Using the results of the first step find s and x_{0} in terms of x and t and substitute these values in $u\left(x_{0}, s\right)$ to get the solution $u(x, t)$ of the original equation (B.1).

