Summary 0

Introduction to Monte Carlo event generators part III

Korinna Zapp

LIP (Lisbon), CERN

Münster 19. 10.-2. 11. 2016

Cnet

Korinna Zapp Introduction to MC event generators

Outline

Higher order corrections in event generators Next-to-leading order matrix elements Matrix element corrections NLO matching Multi-jet merging

MC event generators at work LEP: $e^+ + e^- \rightarrow \text{jets}$ LHC: Z + jetsLHC: jets LHC: other processes

Other tools

Summary

Outline

Higher order corrections in event generators Next-to-leading order matrix elements Matrix element corrections NLO matching Multi-jet merging

MC event generators at work LEP: $e^+ + e^- \rightarrow \text{jets}$ LHC: Z + jetsLHC: jets LHC: other processes

Other tools

Summary

Korinna Zapp Introduction to MC event generators Higher order corrections in event generators

Next-to-leading order matrix elements

Next-to-leading order matrix elements

- \blacktriangleright UV divergences in \mathcal{V} removed by renormalization procedure
- \triangleright V and R both still infrared divergent
- \blacktriangleright IR divergences cancel between \mathcal{V} and \mathcal{R} (KLN theorem)
 - \rightarrow finite result for IR safe observables

Real and virtual correction

Real correction: $\mathcal{R} = \sum_{i=1}^{n} \sum_{j=1}^{n} \Rightarrow$ tree-level, same technologies as for \mathcal{B}

Virtual correction: $\mathcal{V} = \mathbf{v}$

reduce 1-loop matrix element to master integrals

compute coefficients with tensor reduction or unitarity cuts

problem: numerical stability, may need quad-precision

Cancellation of IR divergencies

NLO calculation

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_{N} \Big[\mathcal{B}(\Phi_{N}) + \mathcal{V}(\Phi_{N}) \Big] O(\Phi_{N}) \\ + \int \mathrm{d}\Phi_{N+1} \, \mathcal{R}(\Phi_{N+1}) \, O(\Phi_{N+1})$$

- ► IR divergences cancel between V and R (KLN theorem), but live in different phase spaces
 → IR divergences in V arise from integral over loop momentum
 → IR divergences in R arise from integral over soft-collinear external momentum
- ► subtraction method: construct universal integrable terms that reproduce *R* in the soft-collinear limit

Korinna Zapp Introduction to MC event generators

Subtraction method

Frixione, Kunszt, Signer NPB467(1996); Catani, Seymour NPB485(1997)291; Kosower PRD57(1998)5410

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_{N} \Big[\mathcal{B}(\Phi_{N}) + \mathcal{V}(\Phi_{N}) + \mathcal{I}(\Phi_{N}) \Big] O(\Phi_{N}) \\ + \int \mathrm{d}\Phi_{N+1} \Big[\mathcal{R}(\Phi_{N+1}) O(\Phi_{N+1}) - \mathcal{D}(\Phi_{N} \cdot \Phi_{1}) O(\Phi_{N}) \Big]$$

- ► subtraction method: construct universal integrable terms D that reproduce R in the soft-collinear limit
- ▶ holds for infrared-safe observables, i.e. $O(\Phi_{N+1}) \rightarrow O(\Phi_N)$ in IR limit
- assume phase space factorisation: $\Phi_{N+1} = \Phi_N \cdot \Phi_1$
- ► need to add $\int d\Phi_1 \mathcal{D}(\Phi_N \cdot \Phi_1) = \mathcal{I}(\Phi_N)$ back \rightarrow cancels divergences in \mathcal{V} (KLN)
- \Rightarrow integrands of both phase space integrals separately finite

Subtraction method

Frixione, Kunszt, Signer NPB467(1996); Catani, Seymour NPB485(1997)291; Kosower PRD57(1998)5410

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_{N} \Big[\mathcal{B}(\Phi_{N}) + \mathcal{V}(\Phi_{N}) + \mathcal{I}(\Phi_{N}) \Big] O(\Phi_{N}) \\ + \int \mathrm{d}\Phi_{N+1} \Big[\mathcal{R}(\Phi_{N+1}) O(\Phi_{N+1}) - \mathcal{D}(\Phi_{N} \cdot \Phi_{1}) O(\Phi_{N}) \Big]$$

- subtraction method: construct universal integrable terms D that reproduce R in the soft-collinear limit
- ► holds for infrared-safe observables, i.e. $O(\Phi_{N+1}) \rightarrow O(\Phi_N)$ in IR limit
- assume phase space factorisation: $\Phi_{N+1} = \Phi_N \cdot \Phi_1$
- ► need to add $\int d\Phi_1 \mathcal{D}(\Phi_N \cdot \Phi_1) = \mathcal{I}(\Phi_N)$ back \rightarrow cancels divergences in \mathcal{V} (KLN)
- \Rightarrow integrands of both phase space integrals separately finite

Subtraction method

Frixione, Kunszt, Signer NPB467(1996); Catani, Seymour NPB485(1997)291; Kosower PRD57(1998)5410

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_{N} \Big[\mathcal{B}(\Phi_{N}) + \mathcal{V}(\Phi_{N}) + \mathcal{I}(\Phi_{N}) \Big] O(\Phi_{N}) \\ + \int \mathrm{d}\Phi_{N+1} \Big[\mathcal{R}(\Phi_{N+1}) O(\Phi_{N+1}) - \mathcal{D}(\Phi_{N} \cdot \Phi_{1}) O(\Phi_{N}) \Big]$$

- subtraction method: construct universal integrable terms D that reproduce R in the soft-collinear limit
- ▶ holds for infrared-safe observables, i.e. $O(\Phi_{N+1}) \rightarrow O(\Phi_N)$ in IR limit
- assume phase space factorisation: $\Phi_{N+1} = \Phi_N \cdot \Phi_1$
- ► need to add $\int d\Phi_1 \mathcal{D}(\Phi_N \cdot \Phi_1) = \mathcal{I}(\Phi_N)$ back \rightarrow cancels divergences in \mathcal{V} (KLN)
- \rightarrow callees uivergences in ν (KLIN)

 \Rightarrow integrands of both phase space integrals separately finite

Subtraction method

Frixione, Kunszt, Signer NPB467(1996); Catani, Seymour NPB485(1997)291; Kosower PRD57(1998)5410

$$\langle O \rangle^{\mathsf{NLO}} = \int \mathrm{d}\Phi_{N} \Big[\mathcal{B}(\Phi_{N}) + \mathcal{V}(\Phi_{N}) + \mathcal{I}(\Phi_{N}) \Big] O(\Phi_{N}) \\ + \int \mathrm{d}\Phi_{N+1} \Big[\mathcal{R}(\Phi_{N+1}) O(\Phi_{N+1}) - \mathcal{D}(\Phi_{N} \cdot \Phi_{1}) O(\Phi_{N}) \Big]$$

- subtraction method: construct universal integrable terms D that reproduce R in the soft-collinear limit
- ► holds for infrared-safe observables, i.e. $O(\Phi_{N+1}) \rightarrow O(\Phi_N)$ in IR limit
- assume phase space factorisation: $\Phi_{N+1} = \Phi_N \cdot \Phi_1$
- ► need to add $\int d\Phi_1 \mathcal{D}(\Phi_N \cdot \Phi_1) = \mathcal{I}(\Phi_N)$ back \rightarrow cancels divergences in \mathcal{V} (KLN)

 \Rightarrow integrands of both phase space integrals separately finite

Subtraction method

 \blacktriangleright subtraction term for N particle process

$$\mathcal{D}(\Phi_N \cdot \Phi_1) = \mathcal{B}(\Phi_N) \otimes \mathcal{K}^{(\mathcal{S})}(\Phi_1)$$

 $\mathcal{I}(\Phi_N) = \int d\Phi_1 \, \mathcal{B}(\Phi_N) \otimes \mathcal{K}^{(\mathcal{S})}(\Phi_1)$

with universal, i.e. process independent, kernel $\mathcal{K}^{(S)}(\Phi_1)$

- subtraction kernels can be used as splitting kernels in dipole shower
- need invertible phase space mapping $\Phi_{N+1} \longleftrightarrow \Phi_N \cdot \Phi_1$

Reminder and notation: the parton shower

1. 17

Sudakov form factor: no-splitting probability for dipole *ik*

$$\Delta_{ik}^{(\mathcal{K})}(t,t_0) = \exp\left\{-\int_{t_0}^t \frac{\mathrm{d}t}{t} \int \mathrm{d}z \, \frac{\mathrm{d}\phi}{2\pi} \frac{\alpha_{\mathsf{s}}}{2\pi} \mathcal{K}_{ik}(t,z,\phi)\right\}$$

► will replace
$$\frac{dt}{t} dz \frac{d\phi}{2\pi} \longrightarrow d\Phi_1$$

► Sudakov form factor for emission off *N* particle configuration
 $\Delta_N^{(\mathcal{K})}(t, t_0) = \exp\left\{-\int_{t_0}^t d\Phi_1 \mathcal{K}_N(\Phi_1)\right\}$ with $\mathcal{K}_N(\Phi_1) = \sum_{\{ik\}} \frac{\alpha_s}{2\pi} \mathcal{K}_{ik}(\Phi_1)$

Korinna Zapp

LIP (Lisbon), CERN

Reminder and notation: the parton shower

consider first parton shower emission off Born configuration

$$d\sigma_{PS}^{(LO)} = d\Phi_N \mathcal{B}(\Phi_N) \\ \times \underbrace{\left[\Delta_N^{(\mathcal{K})}(\mu_F^2, t_0) + \int_{t_0}^{\mu_F^2} d\Phi_1 \, \mathcal{K}_N(\Phi_1) \Delta_N^{(\mathcal{K})}(\mu_F^2, t(\Phi_1)) \right]}_{=1 \quad (\text{unitarity of parton shower})}$$

- parton shower is unitary
- further emissions by recursion

Matrix element corrections

Matrix element corrections

- parton shower not a good description for hard emissions
- form many processes $\mathcal{R} < \mathcal{B} \times \mathcal{K}_N$
- ▶ procedure: generate emission with parton shower and reject with probability $\mathcal{P} = \mathcal{R}/(\mathcal{B} \times \mathcal{K}_N)$

$$d\sigma_{MEC}^{(LO)} = d\Phi_{N}\mathcal{B}(\Phi_{N})$$

$$\times \underbrace{\left[\Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{F}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{F}^{2}} d\Phi_{1} \frac{\mathcal{R}(\Phi_{N} \cdot \Phi_{1})}{\mathcal{B}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{F}^{2}, t(\Phi_{1})) \right]}_{=1}$$
where
$$\Delta_{N}^{(\mathcal{R}/\mathcal{B})}(t, t_{0}) = \exp\left\{ -\int_{t_{0}}^{t} d\Phi_{1} \frac{\mathcal{R}(\Phi_{N} \cdot \Phi_{1})}{\mathcal{B}(\Phi_{N})} \right\}$$

Matrix element corrections

Matrix element corrections

- cross section still LO
- first emission described by \mathcal{R} (correct at order α_s)
- but: phase space constrained by μ_F^2
- "power shower": replace $\mu_F^2 \longrightarrow s$ and apply ME correction
- problem: generates wrong log
- extends resummation built into parton shower beyond region of its validity

NLO matching: Basic idea

- parton shower resums logarithms
 - fair description of collinear/soft emissions
 - ► jet evolution

where the logs are large

matrix elements exact at given order

- fair description of hard/large-angle emissions
- jet production

where the logs are small

- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (*R*-part of the NLO calculation)
 - maintain (N)LL-accuracy of parton shower

review: Nason, Webber, Ann. Rev. Nucl. Part. Sci. 62 (2012) 187

Korinna Zapp Introduction to MC event generators

NLO matching: Basic idea

- parton shower resums logarithms
 - fair description of collinear/soft emissions
 - ► jet evolution

where the logs are large

- matrix elements exact at given order
 - fair description of hard/large-angle emissions
 - jet production

```
where the logs are small
```

- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (*R*-part of the NLO calculation)
 - maintain (N)LL-accuracy of parton shower

review: Nason, Webber, Ann. Rev. Nucl. Part. Sci. 62 (2012) 187

Korinna Zapp Introduction to MC event generators

Higher order corrections in event generators ○○○○○○○○○○○○○○○○○○○○○○○	MC event generators at work	Other tools 0000	
NLO matching			
DOWNER			

POWHEG

Nason, JHEP 0411 (2004) 040; Frixione, Nason, Oleari, JHEP 0711 (2007) 070

=1

 promote ME correction to NLO accuracy by defining Born configuration with NLO weight
 local K-factor

$$\begin{split} \bar{\mathcal{B}}(\Phi_N) &= \mathcal{B}(\Phi_N) + \mathcal{V}(\Phi_N) + \mathcal{I}(\Phi_N) \\ &+ \int \mathsf{d} \Phi_1 \left[\mathcal{R}(\Phi_N \cdot \Phi_1) - \mathcal{D}(\Phi_N \cdot \Phi_1) \right] \end{split}$$

• integrates to NLO cross section • radiation pattern like in ME correction $d\sigma_{\text{POWHEG}}^{(\text{NLO})} = d\Phi_N \overline{\mathcal{B}}(\Phi_N)$ $\times \left[\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_F^2, t_0) + \int_{t_0}^{\mu_F^2} d\Phi_1 \frac{\mathcal{R}(\Phi_N \cdot \Phi_1)}{\mathcal{B}(\Phi_N)} \Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_F^2, t(\Phi_1)) \right]$

POWHEG

- ▶ pitfall, again: have to replace $\mu_F^2 \rightarrow s$ to fill entire phase space for first emission same implications as for MEC
- leads to formally sub-leading but numerically large deviations from NLO in distributions

Alioli, Nason, Oleari, Re, JHEP 0904 (2009) 002

POWHEG

- $\label{eq:point} \begin{tabular}{ll} \mathbf{F} pitfall, again: have to replace $\mu_F^2$$ $\to s to fill entire phase space for first emission $$ $same implications as for MEC$ $$$
- leads to formally sub-leading but numerically large deviations from NLO in distributions
- ► R/B generates sub-leading logs that get exponentiated not clear whether they should be exponentiated
- ► all configurations enhanced by local K-factor K-factor for inclusive production of X adequate for X + jet at large p_⊥?
- ► some *R* configurations cannot be generated by adding an extra emission to *B*
- all events have positive weights

Improved POWHEG

split real-emission matrix element

$$\mathcal{R} = \mathcal{R}\left(\frac{h^2}{p_\perp^2 + h^2} + \frac{p_\perp^2}{p_\perp^2 + h^2}\right) = \mathcal{R}^{(5)} + \mathcal{R}^{(F)}$$

- can "tune" h to mimick NNLO or other (resummation) result
- differential event rate up to first emission

$$d\sigma_{\text{POWHEG}}^{(\text{NLO})} = d\Phi_N \bar{\mathcal{B}}^{(\mathcal{R}^{(5)})} \left[\Delta_N^{(\mathcal{R}^{(5)}/\mathcal{B})}(s, t_0) + \int_{t_0}^s d\Phi_1 \frac{\mathcal{R}^{(5)}}{\mathcal{B}} \Delta_N^{(\mathcal{R}^{(5)}/\mathcal{B})}(s, t) \right] + d\Phi_{N+1} \mathcal{R}^{(F)}(\Phi_{N+1})$$

Othe 0000

NLO matching

Improved POWHEG

Alioli, Nason, Oleari, Re, JHEP 0904 (2009) 002

MC@NLO

Frixione, Webber, JHEP 0206 (2002) 029; Hoeche, Krauss, Schonherr, Siegert, JHEP 1209 (2012) 049

- ► divide \mathcal{R} in IR-singular (soft) and IR-regular (hard) part $\mathcal{R} = \mathcal{R}^{(S)} + \mathcal{R}^{(H)} = \mathcal{D} + \mathcal{H}$
- ► NLO weighted Born configuration simplifies $\vec{\mathcal{B}}^{(\mathcal{R}^{(S)})}(\Phi_N) \longrightarrow \vec{\mathcal{B}}(\Phi_N) = \mathcal{B}(\Phi_N) + \mathcal{V}(\Phi_N) + \mathcal{I}(\Phi_N)$ ► use subtraction kernels as splitting kernels in PS $\mathcal{K}_N = \mathcal{D}$ $d\sigma_{MC@NLO}^{(NLO)} = d\Phi_N \vec{\mathcal{B}}(\Phi_N) \left[\Delta_N^{(\mathcal{K})}(\mu_F^2, t_0) + \int_{t_0}^{\mu_F^2} d\Phi_1 \,\mathcal{K}_N(\Phi_1) \Delta_N^{(\mathcal{K})}(\mu_F^2, t(\Phi_1)) \right] \\
 + d\Phi_{N+1} \mathcal{H}(\Phi_{N+1})$

MC@NLO

- ▶ only resummed parts modified with local K-factor
- process independent

no tuning of h

- makes high demands on parton shower:
 - parton shower must reproduce full IR structure

problem with soft singularities in monopole showers

- first emission must be full colour correct
- parton shower has to fill phase space properly
- events can have negative weights

Korinna Zapp

MC@NLO

- only resummed parts modified with local K-factor
- process independent

no tuning of *h*

- makes high demands on parton shower:
 - parton shower must reproduce full IR structure

problem with soft singularities in monopole showers

- first emission must be full colour correct
- parton shower has to fill phase space properly
- events can have negative weights
- some formally sub-leading terms can become numerically large visible in some observables in processes with large NLO corrections can be cured by NLO multi-jet merging

Multi-jet merging: Basic idea

- parton shower resums logarithms
 - ► fair description of collinear/soft emissions
 - ► jet evolution

where the logs are large

- matrix elements exact at given order
 - fair description of hard/large-angle emissions
 - jet production

where the logs are small

- combine ("merge") both: results in "towers" of MEs with increasing number of jets evolved with PS
 - multi-jet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

Korinna Zapp Introduction to MC event generators

Multi-jet merging: Basic idea

- parton shower resums logarithms
 - fair description of collinear/soft emissions
 - ► jet evolution

where the logs are large

- matrix elements exact at given order
 - ▶ fair description of hard/large-angle emissions
 - jet production

where the logs are small

- combine ("merge") both: results in "towers" of MEs with increasing number of jets evolved with PS
 - multi-jet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

Korinna Zapp Introduction to MC event generators

Multi-jet merging: Basic idea

Problem: Overlap between ME and PS

- cross sections in fixed order perturbation theory are inclusive
- parton shower reproduces leading-log approximation of cross section

Solution

- introduce merging scale t_{MS} to divide phase space in
 - $t > t_{MS}$: hard regime to be populated by matrix elements
 - $t < t_{MS}$: soft/collinear regime to be populated by PS
- make matrix elements exclusive above t_{MS}
- restrict parton shower to radiate only below t_{MS}

Translating MEs to PS language: Parton shower histories

Andre, Sjostrand, Phys. Rev. D 57 (1998) 5767

- translate matrix element into branching sequence
- can be achieved by "running PS backwards"
 - identify most likely splitting according to PS emission probability
 - combine partons into mother according to PS kinematics
 - continue until core process is reached
- core process is considered inclusive
- ▶ it sets the resummation scale t_{max}

MLM merging

Mangano, Moretti, Piccinini, Treccani, JHEP 0701 (2007) 013

MLM procedure

- 1. generate parton configuration from matrix element with $E_{\perp} > E_{\perp}^{\min}$ and angular separation $\Delta R_{ii} > R_{\min}$
- 2. shower event without restrictions on parton shower
- 3. cluster jets with cone radius $R_{
 m min}$ and $E_{
 m \perp} > E_{
 m \perp}^{
 m min}$
- 4. match partons and jets
- 5. reject event if not all partons and jets match or additional jets have been produced
- 6. add all accepted events
- works in practice
- theoretically not fully under control

CKKW/CKKW-L merging

Catani, Krauss, Kuhn, Webber, JHEP 0111 (2001) 063 & Lonnblad, JHEP 0205 (2002) 046

- configurations generated by parton shower are exclusive
- e.g. jet rates in $e^+ + e^-
 ightarrow$ jets
- Durham jet definition: relative transverse momentum $k_{\perp} > t_{\rm MS}$

$$\mathcal{P}_{2}(t_{\rm MS}) = [\Delta_{\rm q}(t_{\rm max}, t_{\rm MS})]^{2}$$
$$\mathcal{P}_{3}(t_{\rm MS}) = 2\Delta_{\rm q}(t_{\rm max}, t_{\rm MS}) \int_{t_{\rm MS}}^{t_{\rm max}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \left[\int dz \, \frac{\alpha_{\rm s}}{2\pi} \mathcal{K}_{\rm q}(k_{\perp}^{2}, z) \right]$$
$$\times \Delta_{\rm q}(t_{\rm max}, k_{\perp}^{2}) \Delta_{\rm q}(k_{\perp}^{2}, t_{\rm MS}) \Delta_{\rm g}(k_{\perp}^{2}, t_{\rm MS})$$

Sudakov factors prevent further emissions

Korinna Zapp Introduction to MC event generators

Truncated & vetoed parton shower

- make ME exclusive by multiplying Sudakov factors
- can be done using analytic Sudakov factors (CKKW) or the parton shower (CKKW-L)

METS procedure

- 1. regularise matrix element with $t_{\rm MS}$ and generate configuration
- 2. cluster backwards until core process is reached
- 3. starting from t_{\max} evolve until predefined branching \leftrightarrow "truncated parton shower"
- 4. insert branching defined by matrix element
- 5. continue until t_0 is reached
- 6. emissions with $t > t_{\sf MS}$ lead to rejection of event \leftrightarrow "veto"

Hoeche, Krauss, Schumann, Siegert, JHEP 0905 (2009) 053; Hamilton, Richardson, Tully, JHEP 0911 (2009) 038

LO merging in MC@NLO notation

vetoed shower generates Sudakov form factor

$$\Delta_{N}^{(\mathcal{K})}(t_{\max},t; > t_{\text{MS}}) = \exp\left\{-\int_{t_{0}}^{t} d\Phi_{1}\mathcal{K}_{N}(\Phi_{1})\theta(t-t_{\text{MS}})\right\}$$

expression for first emission

$$d\sigma_{\mathsf{CKKW}} = d\Phi_{N}\mathcal{B}\left[\Delta_{N}^{(\mathcal{K})}(t_{\max}, t_{0}) + \int_{t_{0}}^{t_{\max}} d\Phi_{1}\mathcal{K}_{N}\Delta_{N}^{(\mathcal{K})}(t_{\max}, t)\theta(t_{\mathsf{MS}} - t)\right] + d\Phi_{N+1}\mathcal{B}_{N+1}(\Phi_{N+1})\Delta_{N}^{(\mathcal{K})}(t_{\max}, t; > t_{\mathsf{MS}})\theta(t - t_{\mathsf{MS}})$$

can add more matrix elements in the same way

Korinna Zapp

LIP (Lisbon), CERN

Other techniques and approaches

UMEPS: unitary (process independent) multi-jet merging

Lonnblad, Prestel, JHEP 1302 (2013) 094 & Plätzer, JHEP 1308 (2013) 114

FxFx: MLM at NLO Frixione, Frederix, JHEP 1212 (2012) 061

MEPS@NLO: process independent multi-jet merging at NLO

Höche, Krauss, Schönherr, Siegert JHEP 1304 (2013) 027 & JHEP 1301 (2013) 144

UNLOPS: UMEPS at NLO

Lönnblad, Prestel, JHEP 1303 (2013) 166 & Plätzer, JHEP 1308 (2013) 114

MiNLO: NLO+PS for Higgs and DY without merging cut

Hamilton, Nason, Oleari, Zanderighi, JHEP 1305 (2013) 082

UN²LOPS: UMEPS at NNLO for Higgs and Drell-Yan

Höche, Li, Prestel, Phys. Rev. D 91 (2015) no.7, 074015

NNLOPS: MiNLO based NNLO+PS for Higgs and Drell-Yan

Hamilton, Nason, Re, Zanderighi, JHEP 1310 (2013) 222

NLO QCD+EW: including multi-jet merging

Kallweit, Lindert, Maierhofer, Pozzorini, Schönherr, JHEP 1604 (2016) 021

Outline

Higher order corrections in event generators Next-to-leading order matrix elements Matrix element corrections NLO matching Multi-jet merging

MC event generators at work LEP: $e^+ + e^- \rightarrow \text{jets}$ LHC: Z + jetsLHC: jets LHC: other processes

Other tools

Summary

Korinna Zapp Introduction to MC event generators

Oth ei 0000

LEP: $e^+ + e^- \rightarrow jets$

$e^+ + e^- ightarrow$ jets at LEP

ALEPH, Eur. Phys. J. C35 (2004) 457; DELPHI, Z. Phys. C73 (1996) 11

Oth ei 0000

LEP: $e^+ + e^- \rightarrow jets$

$e^+ + e^- ightarrow$ jets at LEP

ALEPH, Eur. Phys. J. C35 (2004) 457; DELPHI, Z. Phys. C73 (1996) 11

Othe

LHC: Z + jets

Z + jets at LHC

Othe

LHC: Z + jets

Z + jets at LHC

Other

LHC: Z + jets

Z + jets at LHC

Othe

LHC: Z + jets

Z + jets at LHC

Othe

LHC: Z + jets

Z + jets at LHC

Oth

LHC: Z + jets

Now let's do LO multi-jet merging

ATLAS, Phys. Lett. B 705 (2011) 415; CMS, Phys. Rev. D 91 (2015) no.5, 052008

Korinna Zapp

Oth

Sun

LHC: Z + jets

Now let's do LO multi-jet merging

ATLAS, Phys. Lett. B 705 (2011) 415; CMS, Phys. Rev. D 91 (2015) no.5, 052008

Korinna Zapp

Oth

LHC: Z + jets

Now let's do LO multi-jet merging

ATLAS, Phys. Lett. B 705 (2011) 415; CMS, Phys. Rev. D 91 (2015) no.5, 052008

Korinna Zapp

Oth

Sumn

LHC: Z + jets

Now let's do LO multi-jet merging

ATLAS, Phys. Lett. B 705 (2011) 415; CMS, Phys. Rev. D 91 (2015) no.5, 052008

Korinna Zapp

LHC: Z + jets

Adding NLO corrections

ATLAS, Phys. Rev. D 85 (2012) 032009; CMS, Phys. Rev. D 85 (2012) 032002

Korinna Zapp

Introduction to MC event generators

LIP (Lisbon), CERN

LHC: Z + jets

Adding NLO corrections

ATLAS, Phys. Rev. D 85 (2012) 032009; CMS, Phys. Rev. D 85 (2012) 032002

Korinna Zapp

Introduction to MC event generators

LIP (Lisbon), CERN

LHC: Z + jets

Adding NLO corrections

ATLAS, Phys. Rev. D 85 (2012) 032009; CMS, Phys. Rev. D 85 (2012) 032002

Korinna Zapp

Introduction to MC event generators

LIP (Lisbon), CERN

Ot

ols

Summa ○

LHC: Z + jets

Different merging schemes

ATLAS, JHEP 1307 (2013) 032

LHC: jets

Effect of underlying event

ATLAS, Phys. Rev. D 83 (2011) 052003 & Eur. Phys. J. C 71 (2011) 1763

Introduction to MC event generators

0**th** e

LHC: jets

Shower vs. matrix element

Korinna Zapp

Other 0000

LHC: jets

Theoretical uncertainties

Hoeche, Schonherr, Phys. Rev. D 86 (2012) 094042

Othe

Summary

LHC: jets

Theoretical uncertainties

Korinna Zapp Introduction to MC event generators

Othe

Summa

LHC: other processes

W+jets – NLO merging

Korinna Zapp Introduction to MC event generators

Oth e

LHC: other processes

Diphotons

► SHERPA: di-photon ME merged with up to 2 jets + PS

Korinna Zapp

Othe

LHC: other processes

Top quark pairs

CMS,arXiv:1610.04191

MG5: MadGraph5_aMC@NLO (NLO matrix element generator including matching/merging); P8: PYTHIA8; H++: HERWIG++

: Ot

s

LHC: other processes

Higgs – NNLO event generation

Höche, Li, Prestel, Phys. Rev. D 90 (2014) no.5, 054011

Outline

Higher order corrections in event generators Next-to-leading order matrix elements Matrix element corrections NLO matching Multi-jet merging

MC event generators at work LEP: $e^+ + e^- \rightarrow \text{jets}$ LHC: Z + jetsLHC: jets LHC: other processes

Other tools

Summary

Korinna Zapp Introduction to MC event generators

RIVET

http://rivet.hepforge.org

- HEP tool for analysing Monte Carlo events
- generator independent code due to "industry standard" for simulated events (HepMC)
- powerful library of predefined calculators (e.g. event shapes, jets, Z- finder,...)
- analyses are based on physical objects
 - final state hadrons
 - muons, electrons (dressed)
 - bosons reconstructed from particles

rather than taken from event record

▶ allows for fair comparison with (unfolded) collider data

Korinna Zapp

Introduction to MC event generators

•

RIVET

- version 2.5 contains \sim 350 Analyses (195 LHC)
- plugin system for new analyses
- lightweight histogramming (YODA), quite ok plotting
- exploration of BSM physics (UFO + Herwig7/Sherpa)

RIVET serves twofold purpose

- Monte Carlo validation and tuning
- data preservation

data are useless without detailed information about analysis

PROFESSOR

http://professor.hepforge.org

- phenomenological models in event generators have to be tuned to data
- many parameters \rightarrow brute force doesn't work
- PROFESSOR procedure:
 - 1. random sampling: N parameter points in n-dimensional space
 - 2. run generator and fill histograms
 - for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)

4. construct overall
$$\chi^2 pprox \sum_{
m bins} rac{(
m iterpolation - data)^2}{
m error^2}$$

5. numerically minimise

Other tools and standards

HepMC: generator independent event record for MC events

http://hepmc.web.cern.ch/hepmc/

LHAPDF: general purpose interpolator for evaluating PDFs from discretised data files, provides PDFs to MC generators

http://lhapdf.hepforge.org/

FASTJET: provides jet finding algorithms and related tools liketaggers, used by RIVEThttp://www.fastjet.fr/DELPHES/GEANT: detector simulation

http://cp3.irmp.ucl.ac.be/projects/delphes; http://geant4.web.cern.ch/geant4/

Binoth LHA/LHEF: standard for passing matrix element configurations between generators arXiv:1003.1643 PDG particle codes: system for numbering particles many more

Outline

Higher order corrections in event generators Next-to-leading order matrix elements Matrix element corrections NLO matching Multi-jet merging

MC event generators at work LEP: $e^+ + e^- \rightarrow \text{jets}$ LHC: Z + jetsLHC: jets LHC: other processes

Other tools

Summary

Summary

- double counting has to be avoided when combining higher order matrix elements with each other and parton showers
- NLO ME + PS matching: POWHEG & MC@NLO
- merging of MEs of different multiplicity (combined with parton showers): different techniques available at LO and NLO MLM, CKKW(-L), MEPS@NLO, ...
- MC event generators are controlled and quantitative tools
- MC generators essential for
 - interpretation of collider data
 - correction of detector effects
- additional tools are needed around generators, in particular RIVET for analysis and data preservation